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Samenvatting 
 

 

 

De belangrijkste eigenschap van structureel glas, transparantie, heeft ervoor 

gezorgd dat het op grote schaal over de hele wereld wordt gebruikt en een integraal 

onderdeel is van de skyline van grote steden. Een traditioneel systeem om glas te 

verbinden met de onderliggende dragende constructie en om de globale 

transparantie te vergroten, zijn zogenaamde puntverbindingen. Met de huidige 

stand van techniek is het gebruikelijk om geboute puntverbindingen te gebruiken. 

Verlijmde puntverbindingen hebben echter verschillende voordelen ten opzichte 

van deze geboute puntverbindingen, zoals de mogelijkheid van 

spanningsherverdeling in het adhesief, geen verzwakking in het glas door de 

doorboring, het voorkomen van een koudebrug, etc. Deze voordelen, samen met 

de veelbelovende sterktewaarden, zijn belangrijke redenen waarom verlijmde 

puntverbindingen momenteel als een veelbelovend alternatief worden beschouwd. 

In deze verhandeling is een ontwerpmethode voorgesteld voor glaspanelen 

ondersteund door verlijmde puntverbindingen middels een flowchart. De 

ontwerpmethode is gebaseerd op de tijd-efficiënte SLG-methode (Superpositie 

van Lokale en Globale componenten), ontwikkeld door Beyer voor het ontwerp 

van geboute puntverbindingen. Het ontwerp wordt verdeeld in twee onderdelen, 

namelijk het glasontwerp en het lijmontwerp. In het glasontwerp wordt de 

glasplaat gemodelleerd als de superpositie van een globale en een lokale 

component. Het numerieke globale model wordt  opgebouwd met een minder 

dicht maaspatroon, terwijl het numerieke lokale model in detail wordt opgebouwd 

met een complexer en dichter maaspatroon. Door deze onderverdeling kan de 

spanningsverdeling op een zeer efficiënte en tijdbesparende wijze bekomen 

worden. De spanning in het glas en de vervorming van het glas centraal wordt 

onderzocht met het globale model. De spanning in de nabijheid van de connectie 

wordt onderzocht door de superpositie van de globale spanning en de maximale 

hoofdspanning in de lokale modellen. De lijmverbinding kan met behulp van één 

lokaal model onderzocht worden, namelijk het multi-axiale model.  
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De optredende spanningen in het glaspaneel en de lijmverbinding kunnen worden 

aangepast door verandering van geometrische parameters en materiaalparameters. 

Wanneer aan beide ontwerpen is voldaan, zal de beschouwde configuratie de 

optredende belastingen op kunnen nemen zonder falen. 

De geschiktheid van de SLG-methode voor verlijmde puntverbindingen is 

onderzocht door een numerieke vergelijking tussen de spanningsverdelingen te 

bekomen enerzijds door de SLG-methode en anderzijds door een numeriek totaal 

model waarbij het totale glaspaneel met de verlijmde verbindingen in detail is 

gemodelleerd. Ondanks kleine afwijkingen, voorspelt de SLG-methode de 

optredende spanningen conservatief en nauwkeurig. De spanningsverdeling in de 

lijmlaag kan tevens ook worden bepaald middels de SLG-methode. Aangezien 

deze spanningsverdeling slechts bestaat uit de sommatie van de lokale spanningen, 

kan deze verdeling rechtstreeks bepaald worden door middel van het multi-axiale 

model. 

De lokale modellen zijn numeriek gevalideerd voor verschillende geometrische 

eigenschappen (drie glasdiktes en drie connectordiameters), verschillende 

materiaaleigenschappen (twee lijmtypes) en drie verschillende belastingen (trek, 

afschuiving en multi-axiale belasting). Door de ondersteuning van het glaspaneel 

langsheen een omtrek met een diameter gelijk aan zes maal de connector diameter, 

wordt de vervorming van het glaspaneel ook in rekening gebracht. Deze 

vervorming brengt namelijk grote spanningsconcentraties aan in de lijmlaag. Het 

lokale multi-axiale model kan tevens worden gebruikt om de som van de lokale 

spanningen direct te bepalen.  

De materiaalmodellen in de lokale modellen zijn bepaald voor een rubberachtig 

adhesief (MS-polymeer Soudaseal 270 HS) en een glasachtige adhesief 

(tweecomponenten epoxy 3M™ Scotch-Weld™ 9323 B/A). Tweecomponenten 

epoxy en acrylaten zijn thermohardende adhesieven. Het gedrag is meestal 

elastisch tot falen en het adhesief zal bezwijken bij relatief kleine rekken door 

voortplanting van een scheur. Veel lijmen zijn echter rubberachtig, zoals siliconen 

en MS-polymeren. Lokale vervormingen van kleinschalige proefstukken werden 

gemeten door middel van 3D-Digital Image Correlation (DIC). De vergelijking tussen 

de gegevens van de testmachine en de DIC toonde grote verschillen tussen de 

gemeten vervormingen. Dit bevestigt dat het gebruik van DIC nodig is om 

nauwkeurig de optredende spanningen op te meten in de proefstukken. 
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Het globale en totale model voor de verificatie van de SLG-methode zijn tevens 

experimenteel gevalideerd. De experimentele resultaten tonen aan dat de hoogste 

spanningen optreden voor  de kleinste randafstanden. En zoals verwacht zijn de 

vervormingen aanzienlijk groter met kleine randafstanden. De numerieke analyses 

tonen spanningspieken die niet zichtbaar zijn in de experimenten. Dit benadrukt 

de voordelen en de noodzaak van numeriek onderzoek. Om de spanning in het 

glaspaneel of de lijmlaag te verminderen kunnen volgende handelingen 

ondernomen worden, in volgorde van afnemende invloed: 

- Het aantal puntverbindingen verhogen; 

- De afmetingen van het glaspanel verkleinen; 

- De randafstand vergroten; 

- De excentriciteit verkleinen; 

- De connectordiameter vergroten; 

- De glasdikte vergroten; 

- De elasticiteitsmodulus van het adhesief verlagen; 

- De randvoorwaarde veranderen naar scharnierend; 

- De lijmdikte vergroten; 

- De Poisson-factor van het adhesief verlagen. 

Tevens zijn de faalcriteria voor de twee geselecteerde adhesieven door middel van 

experimenten bepaald. De faalbelasting verkregen met het faalcriterium maximale 

glijding voorspelt de experimentele faalbelasting zeer accuraat voor de MS-

polymeer Soudaseal 270 HS. Door spanningssingulariteiten in de lijmlaag met de 

2c-epoxy 3M™ Scotch-Weld™ 9323 B/A dient de "spanning op een afstand" 

methode toegepast te worden voor dit adhesief. Alleen het faalcriterium maximale 

schuifspanning met de schuifspanning bepaald op een afstand gelijk aan de totale 

lijmdikte van de spanningssingulariteit voorspelt de experimentele faalbelasting. 

Deze faalcriteria zijn ook toegepast op de lokale modellen en voorspellen de 

experimentele faalbelastingen conservatief en accuraat. Voor adhesieven tussen 

flexibele en stijf adhesieven, dienen beide faalcriteria te worden toegepast, de 

laagste faalbelasting zal de feitelijke faalbelasting zijn. 
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Summary 
 

 

Its main property, i.e. transparency, has ensured that structural glass is used 

extensively throughout the world and has become an integral part of the skyline 

of major cities and constructions in general. Nonetheless, connections in structural 

glass members still represent a field of research of structural glass engineering 

which is developing and expanding rapidly. Traditional systems to connect glass 

to the supporting substructure and to improve the overall transparency, often 

consist of so-called point-fixings. With the current state of technology, it is 

common to use bolted solutions for point-fixings in glass. However, adhesive 

point-fixings have several advantages compared to bolted point-fixings, such as 

the stress redistributing ability of the adhesive, no weakening or residual stresses 

in the glass due to glass perforation, prevention of a thermal bridge, etc. These 

advantages, together with promising strength values are important reasons why 

adhesive bonding is currently considered a very promising alternative for structural 

glass point-connections. 

In this work a design method for glass panels supported by adhesive point-fixings 

is proposed by means of a flowchart. The design is based on the time-efficient 

SLG-method (Superposition of Local and Global components), developed by 

Beyer for the design of bolted point-fixings. In the flowchart, the design is divided 

in two parts, i.e. the glass design and the adhesive design. In the former, the glass 

panel is separated in a global component and a local component. Due to the 

separation into one global component that can be built up with a less dense mesh 

pattern and one local component that is built up with a more complex and dense 

mesh pattern, the stress distribution can be determined in a very time-efficient 

manner. The stress and deformation in the field are examined by means of the 

global model. The stress in the vicinity of the connection is examined by the sum 

of the global stress and the maximum principal stress in the local models. For the 

adhesive design, only one local model can be considered, i.e. the multi-axial model.  

By applying the obtained failure criteria the adhesive layer can be examined for the 

considered loads. The occurring stress in the glass panel and in the adhesive layer 
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can be altered by chancing geometrical parameters and material parameters. When 

both designs are satisfied, the design of glass panels supported by adhesive point-

fixings for the considered configuration is completed. 

The suitability of the SLG-method for adhesive point-fixings is examined by a 

FEA comparison between the stress distributions conducted on the one hand by 

the SLG-method and on the other hand by a FEA model in which the total glass 

plate with the adhesive connections is built up in detail with volumetric elements. 

Despite small deviations, the SLG-method predicts the occurring stresses in a glass 

panel supported by adhesive point-fixings conservatively and accurately. The 

stress distribution in the adhesive layer can also be determined by the SLG-method. 

As the stress distribution consists of only the sum of the local stresses in the SLG-

method, these stresses are derived from the multi-axial model.  

The local model is numerically validated for different geometrical properties (three 

glass thicknesses and three diameter connectors), different material properties 

(two adhesive types) and three different load conditions (tension, shear and multi-

axial load). By supporting the glass panel along a circumference with a diameter 

equal to six times the connector diameter, the deformation of the glass panel is 

also taken into account. This deformation causes important stress concentrations 

in the adhesive layer. The multi-axial local model can be used to directly determine 

the sum of the local stresses.  

The material models in the local model are obtained for a rubber-like adhesive 

(MS-polymer Soudaseal 270 HS) and a glassy adhesive (two-component epoxy 

3M™ Scotch-Weld™ 9323). Two-component epoxies and acrylates are 

thermosetting adhesives. The behaviour of these materials is typically elastic until 

failure and will fail at relatively small strains by the initiation and propagation of a 

crack. However, many adhesives are rubber-like materials, such as silicones and 

MS-polymers. Local deformations of the small-scale test specimens were 

measured through 3D-DIC. The comparison between the data from the test 

machine and the DIC-output revealed major differences between the measured 

deformations. This confirms that the use of DIC is needed to accurately measure 

the occurring strains during the small-scale tests.  

The total model for the validation of the SLG-method is experimentally validated. 

The experimental results demonstrate that the highest stresses are reached with 
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the smallest edge distances. As expected the deformations are significantly larger 

with small edge distances. The numerical analyses show stress peaks which are not 

visible in the experiments. This highlights the benefits and necessity of numerical 

investigation. To reduce the stress in the glass panel or adhesive layer following 

actions can be taken, in order of decreasing influence: 

- Increase the number of connections; 

- Decrease the panel size; 

- Increase the edge distance; 

- Decrease the eccentricity; 

- Increase the connector diameter; 

- Increase the glass thickness; 

- Decrease the Young’s modulus of the adhesive; 

- Change the boundary condition to hinged; 

- Increase the adhesive thickness; 

- Decrease the Poisson ratio of the adhesive. 

Furthermore, the failure criteria for the two selected adhesives were determined. 

The failure load obtained from the failure criterion maximum shear strain predicts 

the experimental failure load with a mere difference of 2% for the MS-polymer 

Soudaseal 270 HS. Due to the stress singularities in the adhesive layer with the 2c-

epoxy 3M™ Scotch-Weld™ 9323 B/A the "stress at a distance" approach must 

be applied for this adhesive. Only the failure criterion maximum shear stress with the 

stress considered at a distance equal to the full adhesive thickness from the stress 

singularity predicts the experimental failure load. These failure criteria predict the 

experimental failure loads of the local models conservatively and accurately. For 

adhesives between flexible adhesives and stiff adhesives, both failure criteria must 

be applied, the lowest failure load will be the actual failure load. 
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The Capitol Building of the United States of America,  

seen from behind glass panels supported by bolted point-fixings. 
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Chapter 1: Introduction 

“Begin at the beginning,” the King said, very gravely, 

“and go on till you come to the end: then stop.” 

Lewis Carroll, Alice in Wonderland 

1.1. Motivation and background 

The main property of structural glass, i.e. transparency, has ensured that structural 

glass is used extensively throughout the world and has become an integral part of 

the skyline of major cities and constructions in general. Nonetheless, connections 

in structural glass members still represent a field of research of structural glass 

engineering, which is developing and expanding rapidly. Traditional systems to 

connect glass to the supporting substructure often consist of linear supports. By 

using such systems, the transparency of the facade is highly reduced. In contrast, 

the overall transparency improves significantly by using so-called point-fixings 

(Vyzantiadou & Avdelas 2004; Dodd 1997). Point-fixings are widely used in 

facades and canopies, as depicted in Figure 1.1. 

With the current state of technology, it is common to use bolted solutions for 

point-fixings in glass. These fixings typically consist of locally installed metal pieces, 

of limited size, connecting the glass elements to the structure using bolts through 

the glass. Obviously, this requires the glass panel to be drilled in corner or edge 

zones, tempered and bolted (Siebert 2006). A relatively large amount of research 

has been performed on bolted point-fixings, most of which has focused on tensile 

and shear loads since point-fixings are mostly used as overhead glazing or in 

facades. The main conclusions drawn from these works are that the loadbearing 

capacity of glass with properly installed point-fixings depends mainly on the 

geometry of the point-fixing, the distance of the borehole to the edge, the used 

materials for the washer and the edge finishing of the borehole. 
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a)   b) 

c)   d) 

e)   f) 

FIGURE 1.1 :  EXAMPLES OF BOLTED POINT-FIXINGS USED IN A CANOPY FOR (A) THE TRAIN 

STATION SINT-PIETERS IN GHENT, BELGIUM AND FOR (B) A BUS TERMINAL IN 

KAISERSLAUTERN, GERMANY, IN A FACADE FOR (C) THE FEDERAL PUBLIC SERVICE FINANCE 

BUILDING IN BRUSSELS, BELGIUM AND FOR (D) AN ELEVATOR IN TAMPERE, FINLAND AND 

IN A COMBINATION  FOR (E) A RESTAURANT IN GHENT, BELGIUM AND FOR (F) A BUS 

TERMINAL IN GHENT, BELGIUM.  
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Although the use of bolted point-fixings is widespread, a major disadvantage of 

this type of connections is the significant weakening of the glass by the drilling 

process at the hole edges, which is where high stress peaks occur due to the 

transfer of forces by contact between metal and glass (Overend 2005; Maniatis 

2006; Beyer 2007; Mocibob & Belis 2010). 

The use of adhesive connections avoids this issue because the glass is directly 

bonded to the metal connector. Indeed, adhesive bonds can be very suitable to 

avoid high stress concentrations in the glass by redistributing local stresses, 

although this is obviously influenced by the stiffness of the specific adhesive 

product considered (Goss 2002; Blandini 2007; Overend et al. 2011; Blyberg et al. 

2012; Santarsiero 2015). This stress-redistributing ability, together with promising 

strength values and the absence of boreholes are important reasons why adhesive 

bonding is currently considered a very promising alternative for structural glass 

point-connections. 

1.2. Thesis objectives 

Despite these advantages, relatively little research has been performed on this type 

of connections. This is partially because of the enormous bandwidth of physical 

properties of adhesives together with their nonlinear properties and unknown 

lifetime behaviour (Yu et al. 2001; Feng et al. 2005; Khalili et al. 2009). This makes 

it challenging to model them correctly in a e.g. finite element program. 

Furthermore the enormous amount of adhesive products, each with specific 

properties and application ranges, is one of the reasons why designers are doubtful 

about adhesive point-fixings. 

Although the knowledge about adhesive point-fixings is growing, many 

shortcomings still exist (Sitte et al. 2011; Overend et al. 2013; Dispersyn et al. 2014; 

Santarsiero 2015). A first step in the process to improve this situation is the 

determination of a proper design method for adhesive point-fixings. In the 

following, a proposal for a design method is therefore made for adhesive point-

fixings based on the existing design methods for bolted point-fixings.  
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1.3. Structure of the thesis 

This work is divided in three parts, as shown in Figure 1.2.  In the first part an 

overview is given of the existing research about bolted and adhesive point-fixings. 

The second part contains all experimental and numerical work. Based on this work, 

a proposal for a design method for adhesive point-fixings is made in the third part 

together with the conclusions and further research. 

 

FIGURE 1.2:  OUTLINE DIAGRAM OF THE THESIS 
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Part 1  In Chapter 2, an overview is given of the current design methods for 

bolted point-fixings in glass structures. These design methods will constitute the 

basis for a design method for adhesive point-fixings. Furthermore, an overview of 

existing research on adhesive point-fixings is given. 

Part 2  The determination of the material model for two selected adhesive is 

given in Chapter 3. These material models are used in Chapter 4, for the 

validation of the local numerical model. This validation is performed for three load 

configurations, i.e. tension, shear and multi-axial load. The development and 

validation of a global numerical model of a full-scale glass panel supported by 

discrete point-fixings is performed in Chapter 5. The conducted experiments and 

numerical models for the total model are described in Chapter 6. The validation 

of the SLG-principle for adhesive point-fixings is conducted  in Chapter 7. A 

failure criterion for adhesive point-fixings is selected in Chapter 8.  

Part 3  A design method for adhesive point-fixings is proposed in Chapter 9. 

This method is developed from the SLG-method together with the selected failure 

criterion. Finally, conclusions for this thesis and recommendations for further 

research are given in Chapter 10. 

  



8  

 



Chapter 2: State of the art  9 

Chapter 2: State of the art 

 We can know only that we know nothing.  

And that is the highest degree of human wisdom.  

Leo Tolstoy, War and Peace 

2.1. General 

As mentioned in Chapter 1, the overall transparency of glass structures can be 

improved by using so-called bolted point-fixings (Vyzantiadou & Avdelas 2004; 

Siebert & Herrmann 2010). This type of connection requires the glass panel to be 

drilled near the corners or edges, and subsequently to be tempered and bolted 

(Siebert 2006), as depicted in Figure 2.1b, c and d. A recent technology prevents 

drilling through the glass by using so-called undercut point-fixings, as illustrated 

in Figure 2.1d. These connections do not penetrate the insulation cavity in 

insulating glass units (IGU).  

The drilling will significantly weaken the glass at the holes, which is exactly the 

position where relatively high peak stresses occur when forces are transferred. This 

disadvantage could be avoided efficiently with adhesive bonding technologies, as 

depicted in Figure 2.1a. Indeed, adhesive bonds can be very suitable to avoid high 

stress concentrations in the glass by redistributing local stresses (Blandini 2007; 

Blyberg et al. 2012; Goss 2002).  

The combination of bolted point-fixings and adhesive bonding gives adhesive 

point-fixings, as depicted in Figure 2.1e. This type of connection combines the 

advantage of increased transparency of bolted point-fixings and the advantage of 

stress redistributing ability of adhesive glass-steel connections (Blandini 2007; 

Overend et al. 2011; Blyberg et al. 2012; Nhamoinesu & Overend 2012). In this 

work, the determination of a proper design method for adhesive point-fixings is 

made based on the existing design methods for bolted point-fixings. In the next 

paragraphs, these existing design methods and several influencing parameters will 

be discussed. 
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           a)         b)               c)            d)       e) 

FIGURE 2.1 :  SCHEMATIC REPRESENTATION (CROSS-SECTION) OF THREE DIFFERENT WAYS 

TO CONNECT GLASS PANELS TO THE UNDERLYING STRUCTURE WITH (A) LINEAR ADHESIVE 

SUPPORT, (B), RAISED HEAD BOLTED POINT-FIXING, (C) COUNTERSINK BOLTED POPINT-

FIXING, (D) UNDERCUT BOLTED POINT-FIXINGS AND (E) ADHESIVE POINT-FIXING. 

2.2. Bolted point-fixings 

Point-fixings in glass structures are usually bolted point-fixings and are produced 

in several different geometries. The different components of a general bolted 

point-fixing, i.e. a V2003 fixed bolt type with cylindrical head of Sadev (2015), is 

depicted in Figure 2.2. The different components are given in Table 2.1. The 

bushing in this configuration is fabricated in POM, but can also fabricated in 

aluminium, PEEK, nylon, etc. 

 

  

FIGURE 2.2:  COMPONENTS OF A FIXED CYLINDRICAL HEAD BOLTED POINT FIXING (SADEV 

2015).  
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TABLE 2.1 :  DESIGNATION OF PARTS OF BOLTED POINT FIXING (SADEV 2015).  

No. Name Material 

1, 7 Bolt Stainless steel (AISI 316L) 

2 External plate Stainless steel (AISI 316L) 

3 Contact washer EPDM rubber 

4 Bushing Polyoxymethylene (POM) 

5 Glass nut Steel (X2 Cr Ni Mo) 

6 Threaded axle Stainless steel (AISI 316L) 

Extensive experimental research has been carried out on this type of connections. 

Most of the current research focusses on tensile and shear loads (Siebert 2005; 

Haese 2007; Siebert 2007). The conclusion can be drawn that the loadbearing 

capacity of glass with properly installed point-fixings depends mainly on the edge 

distance and the geometry of the point-fixing, i.e. the diameter, raised head fixture 

(Figure 2.1b) or countersink fixture (Figure 2.1c), hinged or clamped systems, etc. 

Mocibob and Crisinel (2007) performed in-plane (shear and compression) loading 

tests on bolted point-fixings in glass panels. As in fully-transparent pavilions, the 

glass panels can be used as wind bracing elements to stabilize and strengthen the 

pavilion. High compressive and shear loads are introduced in the glass panels and 

are transferred through the bolted point-fixings to the underlying structure. The 

most important conclusion was that the load should be adequately introduced into 

the glass panels. This depends strongly on the material of the bushing between the 

bolt and the glass panel. Heat strengthened glass specimens of different 

thicknesses (6 mm of monolithic glass, 6/1.52/6 and 8/1.52/8 of laminated glass) 

were tested. The research showed that an injected mortar is an adequate solution 

for uniform load introduction. Depending on the bolt diameter and support 

conditions, failure loads from 10 kN (eccentric shear test with an M16 bolt) to 48 

kN (axial compressive test with an M20 bolt) were reached. 

A glass panel in a facade under a wind load is loaded with a combination of shear 

and tensile forces (Wellershoff et al. 2004; Tibolt et al. 2013). Both investigations 

validated a numerical model with experimental data. The different load angles that 

Tibolt et al. investigated are shown in Figure 2.3. The failure load of the glass 

panels increased with increasing loading directions, i.e. glass panels supported by 

bolted point-fixings better withstand shear forces. 
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FIGURE 2.3:  DIFFERENT LOADING DIRECTIONS (TIBOLT ET AL. 2013)  

Bolted point-fixings normally require fully tempered glass, due to the high stress 

concentration at the borehole. However, research conducted at Ghent University 

proves that annealed float glass can be used to transfer considerable loads, 

reaching more than 12 kN for the configuration of 8 mm + 8 mm glass with a bolt 

of 10 mm in a hole of 16 mm and a preloading moment of 20 Nm (Callewaert et 

al. 2007). This research concluded that the maximum shear load of bolted point-

fixings depends on the glass thickness, the edge distance, the diameter of the bolt 

and the material of the interlayer. 

Typically, experiments on bolted point-fixings are used to validate a numerical 

model in a Finite Element Analysis (FEA). With this numerical model, the 

occurring stresses and strains can be investigated more thoroughly (Panait et al. 

2005). The validation is usually obtained by measuring the strains on the glass 

surface with strain gauges (Siebert 2003; Tibolt et al. 2013). However, the 

occurring stresses can also be measured using the photo-elastic method as 

described in the work of Radim et al. (2008), or estimated with an analytical 

method (Maniatis 2006b; Maniatis 2006a; Baitinger & Feldmann 2010b). With the 

latter, the stress distributions around the borehole can be analytically determined. 

Another analytical method was developed by Seel and Siebert (2012), based on the 

classic plate theory of Kirchhoff. The analytical method of Seel and Siebert gives 

the stress for circular and ring-shaped plates under rotationally symmetrical and 

rotationally anti-symmetrical loading as shown in Figure 2.4. This method is also 

applicable for adhesive point-fixings.  

 
FIGURE 2.4:  PLATES UNDER ROTATIONALLY SYMMETRICAL AND ROTATIONALLY ANTI-

SYMMETRICAL LOAD (SEEL & SIEBERT 2012). 
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A difficulty with FEA models is the validation of the contact washer material and 

the bushing material. These components prevent direct contact between the bolt 

and the glass panel. The group of plastics is the most uncertain factor in the 

investigation of point-fixings in structural glass. The enormous bandwidth of 

physical properties of the thermoplastic and thermosetting materials together with 

nonlinearity effects make it difficult to model them correctly in the finite element 

analysis (Herrmann 2005).  

The main purpose of numerical models is to study the stress and strain 

distributions in the glass in function of several parameters, for example the 

diameter of the hole, the diameter of the bolt, the thickness of the glass panel, etc. 

In the research of Mocibob and Belis (2010), experimental and numerical analyses 

have been performed on axially compressively loaded glass panels. The numerical 

model gives relatively high stress concentrations in the borehole at the contact 

point, as depicted in Figure 2.5. This is also visible in the experiments since the 

initial fractures typically start at this point. These stress concentrations consist of 

maximal principal compressive and tensile stresses, leading to the conclusion that 

the compressed samples failed due to a complex, two-dimensional stress state. A 

smaller diameter will lead to a higher stress concentration at the borehole.  

The prestressing of prestressed bolts has a positive impact on the stress state in 

the glass panel (Bernard & Daudeville 2009; Bernard 2008). Furthermore, 

decreasing the friction coefficient between the glass and the bushing also has a 

positive impact. 

 
FIGURE 2.5:  NUMERICAL RESULTS FOR A GLASS PANEL SUBJECTED TO A COMPRESSIVE LOAD 

OF 20 KN: (A) BOREHOLE DEFORMATION, (B) PRINCIPAL COMPRESSIVE STRESS σ c  

DISTRIBUTION AND (C) PRINCIPAL TENSILE STRESS σ t  (MOCIBOB & BELIS 2010) 
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To investigate the tempering process on the stress state, Bernard modelled the 

thermal tempering process and came to the conclusion that not only the strength 

increased but also that the tempering process implied a certain amount of crack 

healing. The modelling of the tempering process is also used by Nielsen et al. 

(2009), where the residual stresses at the boreholes were investigated.    

2.2.1. Influence of the corner and edge distance 

The distance between the centre of the borehole and the corner, i.e. the corner 

distance, and the distance between the centre of the borehole and the edge, i.e. the 

edge distance, also have a great influence on the mechanical behaviour of glass 

panels connected with bolted point-fixings. The experimental and numerical 

research of Rex et al. (2003) shows that the initial stiffness of a bolt bearing on a 

single steel plate increases with increasing distance. Theoretical and experimental 

studies of pinned connections in steel plates that have been published over the 

past 65 years are discussed by Duerr and Asce (2006). With increasing distance the 

limit state load will increase proportionately. 

The research of Klinkenberg et al. (1998) was one of the first research projects on 

the influence of the corner and edge distance for glass panels supported by bolted 

point-fixings. The optimal position of the connection was determined from FEA. 

The stresses decrease with increasing corner and edge distances. The analytical 

results and initial experimental investigations by Overend (2005) of the 

conventional point-fixings demonstrate that an optimum hole diameter exists for 

a given corner and edge distance. The largest stress peaks can be found for the 

smallest edge distance with the largest glass panel width. In her doctoral 

dissertation, Maniatis also investigated the influence of the edge distance of bolted 

point-fixings (Maniatis 2006b; Maniatis 2006a). The principal tensile stresses 

increase with the reduction of the edge distance. In the numerical investigation of 

Nielsen et al. (2009) the influence of the edge distance is investigated on the 

minimal value of the residual compressive in-plane stress at the surface of the hole 

resulting from the tempering process. This stress will decrease when decreasing 

the edge distance. Hence, the strength of the panel will reduce when reducing the 

edge distance. Interpolation curves have been proposed to predict the average 

failure load based on the distance between the hole and the panel edge by Amadio 

et al. (2008). It can be observed that the specimen strength rises as the edge 

distance increases. Furthermore, the influence of the edge distance is investigated 
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by FEA and validated by empirical methods by Overend et al. (2013). The maximal 

peak principal stress occurs with the smallest edge distance. The principal stress 

will decrease with an increase of edge distance. 

A general conclusion from literature is that the maximal occurring stresses will 

reduce with increasing the corner and edge distance, which results in a higher 

strength of the glass panel. Due to its significant influence, the corner and edge 

distance for bolted point-fixings are described in several guidelines and standards 

(CSTB 3574-V2 2012; DIN 18008 2010; EN 12150-1 2015). In these guidelines 

and standards the influence is not described, only the minimal or maximal edge 

distance is specified depending on the diameter of the borehole ϕhole and the glass 

thickness tglass. Table 2.2 gives a summary of standards according to Figure 2.6 for  

minimal values of the corner distances A, B and D, and of the edge distance C. 

 
FIGURE 2.6:  DEFINITIONS OF THE SYMBOLS.  

TABLE 2.2.  SUMMARY OF THE MINIMUM AND MAXIMUM CORNER AND EDGE DISTANCE 

ACCORDING TO GUIDELINES AND STANDARDS.  

 CSTB 3574-V2, 2012 EN 12150-1, 2015 DIN 18008, 2010 

A [mm] > 2·tglass+0.5·ϕhole ≥ 2·tglass + 0.5·ϕhole ≥ 80 mm+0.5·ϕhole 

≤ 300 mm+0.5·ϕhole 

B [mm] > 2·tglass+0.5·ϕhole ≥ 2·tglass + 0.5·ϕhole ≥ 80 mm+0.5·ϕhole 

≤ 300 mm+0.5·ϕhole 

C [mm] > 2·tglass+0.5·ϕhole ≥ 2·tglass + 0.5·ϕhole ≥ 80 mm+0.5·ϕhole 

≤ 300 mm+0.5·ϕhole 

D [mm] ≥ 6·tglass+0.5·ϕhole for tglass ≤ 12 mm 

≥ 4·tglass+0.5·ϕhole for tglass ≥ 15 mm 

≥ 6·tglass+0.5·ϕhole  

E [mm]  ≥ 2·tglass +d ≥ 80 mm+ϕhole 

C 

E A 

    

 

B 

D 

ϕhole 
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2.2.2. Design methods for bolted point-fixings 

Over the years several design methods have been developed for bolted point-

fixings in structural glass. Almost all developed design methods make use of FEA. 

In the next paragraph several existing design methods are explained.  

Kasper (2006) developed a design methodology based on tests and numerical 

analysis. In the research the first step consisted of small scale tests on glass plates 

with a centric point-fixing where the load was introduced at variable angles (0°, 

22.5°, 45°, 90°). Using strain gauges the glass strain was measured along predefined 

paths. With these strains an FEA-model was validated. Finally, the value and 

position of the maximal tensile stresses, the strains and tensile stresses along the 

paths were determined with the FEA-model. These stresses can be used as 

numerical benchmarking data. For the design of a connection, the designer has to 

model his own FEA-model of the point-fixing and validate it with the numerical 

benchmarking data. Subsequently, the designer can use design codes to see 

whether the occurring stresses will not exceed the maximum glass stresses 

(Overend 2005). 

The design method developed by B. Siebert (2006) is also based on tests and 

numerical analysis, similar to the approach by Kasper. However, in addition to the 

approach by Kasper, the meshing of the finite element model was also verified. 

First of all, a simple plate was modelled and the resulting stresses were compared 

to analytical results of the research of  Young and Budynas (2002) to check the 

suitability of the element type. Small scale bolted point-fixing tests were conducted 

first with an aluminium interlayer, since the clearly defined properties of 

aluminium make it easier to validate the FEA-model. With this validation the 

elements and contact elements derived earlier were validated. Afterwards, the same 

tests were conducted with a more elastic interlayer. The strain values served as 

numerical benchmarking data. The design method consisted of modelling the 

small scale test and comparing the generated results for strain and stress to the 

values of the numerical benchmarking data. The achieved validated model was 

subsequently extended to the geometry of the plane to be designed and the results 

for stresses and deformation were verified against the resistance and design limits. 
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In analogy with Kasper and Siebert, Brendler used tests and numerical analysis to 

develop his design method (Brendler & Schneider 2004). However, instead of 

comparing the strains, Brendler used the load-deformation behaviour of the point-

fixing as the validation parameter. Small scale tests were conducted to investigate 

the stiffness of the point-fixings and to determine the load-deformation curves. 

The point-fixings were mounted into steel plates and loaded into different 

directions to determine the longitudinal and transversal stiffness. These stiffness 

values were used as numerical benchmarking data. In this design method, a 

designer first has to model the point-fixing in a rigid plate subjected to tension and 

compression, so the head stiffness of the point-fixing can be validated. Secondly 

the stiffness in longitudinal direction has to be checked. Hereby the joint is 

modelled as a spring. In a third step the transverse stiffness is verified in the same 

way. These three steps are illustrated in Figure 2.7. Finally the glass plane is 

modelled with the obtained point-fixing model.  

 
FIGURE 2.7:  THE VERIFICATION OF THE HEAD STIFFNESS, THE STIFFNESS IN LONGITUDINAL 

DIRECTION AND THE TRANSVERSE STIFFNESS (BRENDLER & SCHNEIDER 2004).  

Aluminium or polymer prefabricated bushings are placed between the glass and 

the bolt or a resin mortar is injected to avoid contact between the steel and the 

glass to prevent high stress concentrations. As mortar is often used to solve 

alignment problems caused by the lamination of drilled glass panels, Baitinger 

transformed her analytical method into a simplified formula especially for the use 

of Hilti HIT-HY 270, a two component hybrid system composed of an organic 

and an inorganic curing mechanism (Baitinger & Feldmann 2010a; Baitinger & 

Feldmann 2010b). The simplified formula is given in Eq. (2.1), with σ∅,max,d the 

maximum tangential stress at the borehole, Pd the resulting design force, ki 

coefficients to consider the design of the joint as well as production and erection 

tolerances, bm the relevant pane width, Km the multiplication parameter and σR the 

design resistance of the glass element. 
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≤ 𝜎𝑅 (2.1)  

It is obvious that most of the methods described above require a lot of 

computation time and consequently have a great cost, especially for complex 

geometries. Therefore Beyer  developed a time-efficient design method for the 

design of bolted point-fixings (Beyer 2007; Beyer 2008; Beyer & Unterweger 2007). 

This method appears to offer a very appealing basis for the design of glass plates 

supported with adhesive point-fixings, in particular because of its time-efficiency. 

The solution that Beyer proposes, is based on the principle of superposition. This 

approach is already known from beam theory, in which complex structures are 

divided into global and local components. Based on the principle of Saint-Venant, 

Beyer assumes that changing geometrical characteristics of the point-fixing only 

have an influence on the stress distribution in a local region around the joints, 

while the influences decrease further away from the connection. This principle 

allows to separate the entirety from the connections (the global component), and 

the connections from the entirety (the local component). This concept of 

superposition of a local and global component is called the SLG-method. The 

principle of the SLG-method for bolted point-fixings is depicted in Figure 2.8. 

The entire glass plate is modelled as the global component in which the point-

fixings are represented by springs with a certain stiffness given in datasheets. A 

certain zone surrounding the joints (the local component) is not taken into account. 

From this global model, deflections and stresses in the field are determined and 

checked with design values. Using this model the stresses at the boundary between 

the global and local component can also be determined, which will further 

onwards be referred to as the global stress σglobal. Furthermore the support reactions 

of the point fittings (N, Q, M) are determined.  
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FIGURE 2.8:  PRINCIPLE OF THE SLG-METHOD (BEYER 2007).  

Larger stresses will be present around the borehole compared to the stresses in 

the field due to the Saint-Venant’s principle. This is taken into account by 

multiplying the global stresses by a stress concentration factor k, as depicted in 

Figure 2.9. This stress concentration factor is derived from FEA, in which a plate 

with the exact borehole geometry is modelled and subjected to bending.  

 

σ 

σ 

k·σ 

FIGURE 2.9:  STRESS CONCENTRATION DUE TO THE SAINT-VENANT'S PRINCIPLE.  
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For the local design, the glass plate around the borehole and the connection are 

modelled in detail representing the local component. The diameter of the local 

component ϕloc for bolted point-fixings is determined to be at least six times the 

diameter of the borehole ϕhole, as is expressed in Eq. (2.2). By applying the reaction 

forces and moments on the connection derived from the global component, the 

reaction stresses σFz, σFxy and σM are determined. The sum of these stresses and the 

global stresses must be less than the critical stress σR for the glass plate according 

to Eq. (2.3). Beyer validated the SLG-method by comparing stress distributions in 

glass plates in experiments with the distributions derived with the SLG-method. 

The proposed solution turned out to be a good method to approximate the stress 

distribution in a glass plate connected with bolted point-fixings. Due to the 

separation into one global component that can be built up with less complex 

elements and one local component that can be built up with more complex 

volumetric elements, the stress distribution can be determined in a very time-

efficient manner.  

𝜙𝑙𝑜𝑐 ≥ 6 ∙ 𝜙ℎ𝑜𝑙𝑒 (2.2)  

𝜎𝐹𝑧 + 𝜎𝐹𝑥𝑦 + 𝜎𝑀 + 𝑘 ∙ 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 ≤ 𝜎𝑅 (2.3)  

2.3. Adhesive point-fixings 

As mentioned above, the main disadvantage of bolted point-fixings is the drilling 

of the glass. Furthermore, the bolt will act as thermal bridge and can cause leakages 

in an IGU. These disadvantages could be avoided efficiently with adhesive 

bonding technologies. The stress redistributing ability of adhesives, together with 

promising strength values are important reasons why adhesive glass-steel 

connections are currently frequently used for structural glass connections (Pye & 

Ledbetter 1998; Overend et al. 2011; Belis et al. 2011; Zangenberg et al. 2012; 

Santarsiero 2015). Beyond the stress redistributing ability, adhesive point-fixings 

have even more advantages compared with bolted point-fixings: 

- No weakening or residual stresses in the glass due to glass perforation; 

- Use of regular annealed glass possible; 

- Less problems with moisture and dirt accumulation at the point fixing; 

- Prevention of a thermal bridge. 
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Adhesive point-fixings have also disadvantages compared to bolted point-fixings: 

- No proper quality control; 

- Influenced by temperature, moisture, UV-radiation and time; 

- Complex material behaviour of the adhesives. 

The ideal adhesive for adhesive point-fixings should be flexible enough to deal 

with differential thermal expansions and strong enough to withstand the loads 

applied on the point-fixing. The most commercial adhesive types and their 

properties are summarized in Table 2.3 and depicted in Figure 2.10. 

TABLE 2.3:  DIFFERENT ADHESIVE TYPES AND THEIR GENERAL PROPERTIES (SILVESTRU & 

ENGLHARDT 2014) 

Adhesive type General properties 

Silicones - Low strength and stiffness; 

- High durability and resistance against moisture and UV-radiation; 

- Hyper-elastic material behaviour. 

 

MS-polymers - Medium strength and stiffness; 

- Medium resistance against moisture and UV-radiation; 

- Hyper-elastic material behaviour. 

 

Polyurethanes - Medium strength and stiffness; 

- Low resistance against UV-radiation; 

- Hyper-elastic material behaviour. 

 

Acrylates - Generally high shear strength and small optimal thickness; 

- Generally low resistance against moisture; 

- Visco-elastic material behaviour.  

 

Epoxies - High strength and stiffness, brittle 

- Small optimal thickness; 

- Linear-elastic material behaviour. 
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FIGURE 2.10:  CLASSIFICATION OF THE DIFFERENT ADHESIVE TYPES 

Despite the advantages of adhesive point-fixings, there has been limited research 

performed on adhesive point-fixings. This is partially because of the enormous 

bandwidth of physical properties of adhesives together with their nonlinear 

properties. This makes it challenging to model them correctly in a finite element 

program. The characterisation of the material behaviour has been mostly done by 

obtaining stress-strain curves from tensile tests on bulk material  (Weller et al. 2009; 

Bos & Veer 2007; Dias et al. 2012; Santarsiero et al. 2014). However, the adhesive 

can react mechanical differently in an adhesive connection than in bulk material 

(Dean et al. 1996). This has been confirmed by the research of Hagl (2010), where 

the comparison between uniaxial material tests and circular point-fixings showed 

different working principles of the adhesive material. Therefore, Weller and Vogt 

(2008) obtained the material properties of the adhesive from butt-bonded hollow 

cylinders for the numerical investigation of adhesive point-fixings. According to 

Weller and Vogt, the closed ring-shaped geometry produces a homogenous state 

of stress along the circumference. The stress distributions in the adhesive with the 

butt-bonded hollow test are illustrated in Figure 2.11. However since the same 

load is transferred in both the substrates and the adhesive, and the substrates are 

mostly much stiffer than the adhesive, the axial strains in the adhesive will be much 

higher than those in the adherent. This will also cause much larger lateral 

(Poisson’s) strains in the adhesive. Where the two materials join, the lateral strains 

are limited by the stiffer adherent. This restriction will cause large radial shear 

stresses in the adhesive at the interface. Since the adhesive is applied in a thin film 

form, these radial shear stresses together with the tension will introduce complex 

stresses in the adhesive (Adams et al. 1997). 
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FIGURE 2.11 :  STRESS DISTRIBUTION FOR TENSION (LEFT) AND TORSION (RIGHT) (WELLER & 

VOGT 2008)  

When the adhesive is assumed to be linear elastic, simple calculations can be done 

to obtain a first insight into the behaviour of the adhesive point-fixing under 

varying parameters. Santarsiero et al. (2013) and Santarsiero & Louter (2013) 

investigated the influence of the Young’s modulus of the adhesive, the Poisson’s 

ratio of the adhesive, the diameter and the thickness, modelling the adhesive 

behaviour as linear elastic. The general conclusion was that adhesive connections 

exhibit a relatively complex behaviour due to large nonlinearities that cannot be 

neglected. 

Bues et al. (2009) did research on the influence of the shape of the point-fixing 

with silicone, i.e. convex, concave or standard fitting depicted in Figure 2.12. The 

concave point-fixing were accompanied by the largest failure loads, followed by 

the standard and the convex fixing. Mostly silicones are used for glass-steel 

connections; however in the work of Puller & Sobek (2008) three different acrylate 

adhesives were tested for adhesive point-fixings with a diameter of 50 mm in 

tension and shear. Depending on the adhesive type, tensile strengths of 20 kN and 

shear strengths of 40 kN were reached. The results of the tensile and shear tests 

are depicted in Figure 2.13. 

 Convex           Concave      Standard 

 

FIGURE 2.12:  DIFFERENT SHAPES OF A POINT-FIXING (BUES ET AL. 2009)  



24  

     

FIGURE 2.13:  MAXIMUM TENSILE FORCES (LEFT) AND MAXIMUM SHEAR FORCES (RIGHT) 

(PULLER & SOBEK 2008).  

The influence of the thickness of the adhesive layer is investigated in the work of  

Weller and Schadow (2007). Point-fixings with a diameter of 60 mm and different 

adhesive thicknesses were loaded in tension and shear. The main conclusion that 

could be drawn from the results was that the thinner the adhesive layer, the higher 

the strength of the adhesively bonded joint is. Furthermore, an important factor 

for the strength of the adhesive connection is the surface condition of the 

adherents. This can be improved by a mechanical treatment or a chemical 

treatment. Both methods show a high improvement of the adhesive strength 

(Weller & Tasche 2005; Weller & Kothe 2011).  

Tests on large specimens with adhesive point-fixing are uncommon. At Ghent 

University, canopies with adhesive point fixings were experimentally tested (Belis 

et al. 2012). The tests followed a fixed schedule consisting of different steps, based 

on testing for normal, non-accessible overhead glazing (Siebert 2007; Haldimann 

et al. 2008). The canopies consisted of a glass panel of 1 m x 1 m supported by 

four adhesive point-fixings and was initially loaded with a load of 1.5 kN/m² for 

24 hours. Secondly, all the glass panels were broken by a ball drop or a hammer-

driven centre punch. Finally, the broken glass plates were loaded with a static load 

of 0.5 kN/m². The configuration with the heat-strengthened glass panels did not 

fail. The tempered glass panels only resisted the final load for 12 hours. The failure 

was due to thin layer failure of the glass, and not to failure of the adhesive bond. 

This is illustrated in Figure 2.14. 
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FIGURE 2.14:  DETAIL OF CONNECTION AFTER FAILURE WITH A THIN LAYER OF BROKEN 

GLASS STILL ADHERED TO THE ADHESIVE (BELIS ET AL. 2012) .  

In the doctoral research of Santarsiero (2015), two transparent adhesives for 

adhesive point-fixings were used: the ionomer SentryGlas® (SG) from Kuraray 

and the Transparent Structural Silicon Adhesive (TSSA) from Dow Corning. The 

latter has been recently commercialized for adhesive point-fixings in structural 

glass applications. Compared to standard silicone adhesives used in glass 

applications, TSSA exhibits higher stiffness and strength. It should be noticed that, 

conversely to SG, TSSA is exclusively intended to realize adhesive point-fixings. 

TSSA is a one-component addition-cured silicon with no by-products, 

characterized by nanosilica and cross-linked polymers (Santarsiero 2015). In the 

work, the mechanical behaviour of laminated connections at varying temperature, 

strain rate and loading condition was studied by experimental, analytical and 

numerical investigations. The outcome was a failure criterion in function of the 

equivalent stress, the hydrostatic stress, the temperature and the strain rate.  

2.4. Adhesive point-fixings applications 

The use of adhesive point-fixings in practical construction compared to bolted 

point-fixings is rather limited up till today. A project in which these point-fixings 

were constructed with TSSA is the Euridice building in Feluy (Belgium) of Dow 

Corning, as depicted in Figure 2.15 (Sitte & Wolf 2012). The large insulating glass 

panels have a length of 3200 mm and a width of 1877 mm and the edge distance 

ranges from 70 to 110 mm. Other smaller projects with TSSA as an adhesive point-

fixings have been realized in Germany, Poland, Switzerland, Japan, Italy and the 

United States of America (Santarsiero 2015).   
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FIGURE 2.15:  DOW CORNING EUROPEAN DISTRIBUTION CENTER, EURIDICE WAREHOUSE, 

FELUY, BELGIUM, ADHESIVE PRODUCER: DOW CORNING (PHOTOS COURTESY OF DOW 

CORNING). 

In the work of Van Hulle et al. (2011) adhesive point-fixings with TSSA were 

tested in shear for several durability tests (4 and 12 weeks exposition to 90% R.H. 

and 50°C). The reduction of the strength was about 10% compared to the non-

aged specimens. Depending on the fabrication process the strength could increase 

about 20%.  

The energetic benefit of using adhesive point-fixings with TSSA compared to 

bolted point-fixings was investigated on a IGU 6-12-6 by Appelfeld et al. (2015) 

and is illustrated in Figure 2.16. The boundary conditions for the thermal models 

were +20°C interior, -10°C exterior and the relative humidity was 40%. The heat 

flow through this specific detail was reduced from 62.0 W/m for bolted point-

fixings to 25.3 W/m for adhesive point-fixings. The condensation on the glass and  

the fixings bolds with bolted point-fixings, indicated by the thick red line, was not 

present with adhesive point-fixings.  

 
FIGURE 2.16:  THERMAL MODEL FOR BOLTED AND ADHESIVE POINT-FIXINGS WITH TSSA 

(APPELFELD ET AL. 2015).  
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Another example of an adhesive point-fixing in structural glass is the Floreasca 

City Center in Bucharest constructed by Al Promt (Figure 2.17). Due to the 

curvature of the glass panels in the corner of the building, traditional bolted point-

fixings could not be used. The adhesive point-fixings with a large diameter were 

fabricated with the silicone Sikasil® SG500, and for this adhesive, a minimal 

diameter of 144 mm was needed to bond the glass unit to the point-fittings.  

   
FIGURE 2.17:  FLOREASCA CITY CENTER, BUCHAREST, ADHESIVE PRODUCER: SIKA NV 

(PHOTOS COURTESY OF AL PROMT).  

Adhesive point-fixings constructed with an epoxy adhesive are used by Bellapart 

in the roof of the Würth La Rioja Museum in Agoncillo, La Rioja (Spain), 

illustrated in Figure 2.18. The diameter of the connectors are 60 mm and are 

produced out of stainless steel grade AISI 316 with a specific surface roughness 

to increase adhesion. All connectors are bonded through a 0.8 mm thick layer of 

3MTM DP-490 epoxy adhesive. 

   
FIGURE 2.18:  ROOF OF THE WÜRTH LA RIOJA MUSEUM IN AGONCILLO, LA RIOJA (SPAIN), 

EACH GLASS PANEL IS SUPPORTED BY FOUR ADHESIVE POINT-FIXINGS (PHOTOS COURTESY 

OF BELLAPART) 
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It is clear that despite the knowledge about adhesive point-fixings is still growing, 

a lot of shortcomings still exist in the research. For instance, there is more 

systematic investigation needed on the influence of several parameters, such as the 

diameter of the point-fixing, glass thickness, load directions, type of adhesive and 

more specifically the stiffness of the adhesive. Furthermore research on 

environmental parameters, such as humidity, UV-radiation and temperature, is 

needed to develop a proper design method for adhesive point-fixings between 

metal and constructive glass.  



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multi-axial test with an eccentricity of 45 mm  

and a multi-axial angle of 67.5°. 
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Chapter 3: Adhesive material  
Chapter 3: model 

I have not failed. I’ve just found 10 000 ways that won’t work 

Nikola Tesla 

3.1. Introduction 

In following chapters of this dissertation, numerical analyses will be performed. 

Numerical analyses provide a fast and cost-effective way to analyse and optimise 

the mechanical performance of adhesive connections. Nowadays a lot of finite 

element programs are available on the market, most of them are suitable to model 

adhesive connections. With these FEA, the stress distributions and deformations 

can be determined in a bonded structure. However the accuracy of the numerical 

results depends on the validity of the used material models which describe the 

deformation behaviour of the adhesive and on the availability of suitable material 

property data for these models. The aim of this chapter is to determine the material 

models for two selected adhesives. 

The choice of material model depends on the adopted adhesive material. Two-

component epoxies and acrylates are thermosetting adhesives. These kinds of 

adhesives are usually brittle materials that will fail at relatively small strains by the 

initiation and propagation of a crack. The behaviour of these materials is typically 

elastic until failure. However, many other adhesives are rubber-like materials, such 

as silicones and Modified Silane (MS) polymers. With these adhesives, due to the 

rubber phase that occurs, relatively large strains (>5%) can appear prior to failure. 

This requires the use of material models that describe the non-linear mechanical 

behaviour to obtain a good calculation under high deformations, i.e. hyperelastic 

material models. These material models are presented as mathematical expressions, 

which can be implemented in the used finite element software. The determination 

of the material constants in the mathematical expressions, the so-called calibration 

of the material models, is done by fitting the mathematical functions to 

experimental curves using a least squares method.  
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The suitability of the used material model is often examined by modelling the 

experiments that are used for the calibration, e.g. an uniaxial tensile test on bulk 

material, in the finite element software. The numerical results from this finite 

element model are then compared to the experimental results (Arruda & Boyce 

1993; Meunier et al. 2008; Hoss & Marczak 2009). This comparison is called the 

validation of the material model. Indeed, with this kind of validation, it is very 

likely that the validation will give good results, considering that the numerical 

results are compared to the same experimental results that are used as input-data. 

This kind of validation will only give information about the suitability of the used 

material constants. Also, the adhesive can react differently in an adhesive 

connection than in bulk material (Weller & Vogt 2009; Dean et al. 1996).  

Therefore, it is recommended to implement the selected and calibrated material 

model in the numerical model for an adhesive connection for a good validation. 

The validation consists of comparing the numerical results to the experimental 

results of the same adhesive connection. This process will be iterative since it is 

not known in advance which of the several possible models will correspond best. 

Those additional validation experiments are best derived from the final 

geometrical configuration of the adhesive joint. In this chapter these validation 

experiments consist of adhesively bonded steel point-fixings loaded in tension and 

in a combination of tension and shear, which is in line with the main load 

conditions expected for adhesive point-fixings. 

3.2. Theoretical background 

Adhesives usually consists of long chain molecules, so-called polymers. The term 

elastomer is the combination of elastic and polymer and is often used 

interchangeably for rubber-like materials. Elastomers present a very complicated 

mechanical behaviour that mostly exceeds the linear elastic theory and usually 

contains large deformations and plastic and viscoelastic properties (Chagnon et al. 

2004). Elastomers are basically super-condensed gases, because most primary 

monomers are gases, and after polymerization have long chain molecules which 

will be in an amorphous (rubber), glassy or crystalline phase. During crosslinking, 

the molecules are chemically fastened together at various points to form a network. 

They make stationary positions to prevent slippage of chains.  
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When subjected to an applied stress, polymers may deform by either or both of 

two fundamentally different atomistic mechanisms. The lengths and angles of the 

chemical bonds connecting the polymer chains may distort, moving the polymer 

chains to new positions of greater internal energy. This is a small motion and 

occurs very quickly, requiring only  ≈10-12 seconds. If the polymer has sufficient 

molecular rotation, larger-scale rearrangements of the polymer chains may also be 

possible. Depending on the rotation, a polymer molecule can extend itself in the 

direction of the applied stress, which decreases its conformational entropy (the 

molecule is less “disordered”). Elastomers respond almost entirely by this entropic 

mechanism, with little distortion of their covalent bonds or change in their internal 

energy. The rate at which the polymer’s chains can change direction quantifies the 

amount of mobility of the polymer molecules. This rate depends mostly on the 

glass transition temperature Tg. The value of Tg is so an important descriptor of 

polymer thermomechanical response. 

At temperatures much above Tg the deformation rate of the polymer molecules is 

so high as to be essentially instantaneous, and the polymer acts in a rubber-like 

manner in which it exhibits large, instantaneous, and fully reversible strains in 

response to an applied stress (Roylance 2001). Rubber-like materials have a typical 

‘S’ shaped stress-strain diagram and are unique in being soft, very extensible and 

very elastic, which describes hyperelastic behaviour. Conversely, at temperatures 

much lower than Tg, the deform rate is so low as to be negligible. Here the chain 

uncoiling process is essentially “frozen out” so the polymer is able to respond only 

by bond stretching. It now responds instantaneously and reversibly but being 

incapable of being strained beyond a few percent before fracturing in a brittle 

manner. In the range near Tg, the material is midway between the glassy and 

rubbery regimes. Its response is a combination of viscous fluidity and elastic 

solidity, and this region is termed visco-elastic behaviour. Factors that enhance 

mobility, such as absorbed diluents, expansive stress states and lack of bulky 

molecular groups, all tend to produce lower values of Tg (Roylance 2001). 

Hyperelastic behaviour  In general, more flexible adhesives present a very 

complicated mechanical behaviour that often exceeds linear elastic theory. Very 

large reversible strains can occur at rubber-like polymers in a certain state. The 

stresses are no longer linearly proportional to the strains at large deformations; the 
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material’s behaviour is hyperelastic. An appropriate way to describe the behaviour 

of hyperelastic materials is the use of the strain energy function W (Dias et al. 

2014). This function relates the strain energy density of a material to the 

deformation gradient according to Eq. (3.1). 

𝑊 = 𝑓(𝐼1, 𝐼2, 𝐼3) (3.1)  

With: 

W  = strain energy function 

I1, I2 and I3  = the three invariants of the left Gauchy-Green deformation 

tensor given in terms of the principal extension ratios 1, 

2 and 3 defined as the ratio between the final length to 

the initial length, by: 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆1
2𝜆3

2 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 

These expressions for the three invariants are derived from Eq. (3.2), (3.3) and 

(3.4). 

𝐼1(𝐵) = 𝑇𝑅(𝐵) (3.2)  

𝐼2(𝐵) =
1

2
[𝑡𝑟(𝐵)2 − 𝑡𝑟(𝐵2)] (3.3)  

𝐼3(𝐵) = 𝑑𝑒𝑡(𝐵) (3.4)  

With TR the trace of a square matrix, representing the sum of its diagonal entries. 

The expression of the left Gauchy-Green tensor B is given in Eq. (3.5), with F the 

deformation gradient tensor. 

𝐵 = 𝐹. 𝐹𝑇 (3.5)  

According to Chagnon et al. (2004) an efficient hyperelastic model must conform 

to four main qualities: 

- It should have the ability to exactly reproduce the whole ‘S’ shaped 

response of rubbers;  
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- The change of deformation modes should not be problematic, i.e. if the 

model behaves satisfactorily in tension, it should also be quite accurate in 

simple shear or in a equibiaxial extension; 

- The number of relevant material parameters should be small; 

- The mathematical formulation should be as simple as possible for the 

numerical performance of the model. 

The material models are generally distinguished in two main groups: purely 

micromechanical-based network models and phenomenological models.  

The micromechanical-based network models are based on statistical 

mechanics of idealized networks of cross-linked long-chain molecules (Boyce & 

Arruda 2000). The governing parameters in micromechanical models relate 

macroscopic mechanical behaviour to the causative physical/chemical structure. 

Prominent examples for micromechanical models are the 3-chain and 8-chain 

models which have been proven to be appropriate for moderate to large elastic 

deformations of rubber-like materials (Boyce & Arruda 2000; Miehe 2004). The 

second group of material models, the phenomenological models, rely on 

continuum mechanics, often using polynomial formulations in terms of strain 

invariants or principal extension ratios derived from the fitting of experimental 

results. Such empirical functions generally lack a connection to the molecular 

structure of the material which results in a less direct physical interpretation of the 

governing parameters (Miehe 2004). Owing to their polynomial form, these 

models may result in unrealistic results beyond the deformation range within 

which their material parameters are determined. The polynomial model based on 

the first and second invariant is given in Eq. (3.6) where Cij are material constants. 

When only the first invariant is taken into account (j=0), the reduced polynomial 

model is obtained (Rivlin & Saunders 1997; Dias et al. 2014). 

𝑊 = ∑ 𝐶𝑖𝑗  (𝐼1 − 3)𝑖
𝑁

𝑖+𝑗=1

. (𝐼2 − 3)𝑗 (3.6)  

The Mooney-Rivlin model, which was originally proposed by Mooney (Mooney 

1940), can be considered as one of the simplest forms of the invariant-based 

models. The formulation of the Mooney-Rivlin model is given by the first order 

(N=1) of the polynomial model. The Neo-Hooke model constitutes the simplest 
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specification of the Mooney–Rivlin model series (Treloar 1943). It only considers 

the first order (N=1) of the reduced polynomial model (j=0). Another well-known 

phenomenological model has been suggested by Yeoh in the form of the third-

order (N=3) polynomial of only the first invariant I1 (j=0) (Yeoh 1990). Finally, 

the model proposed by Ogden (Ogden 1972) is probably the best known example 

of the principal extension ratio-based material models.  

An overview of the above-mentioned material models for both micromechanical 

and phenomenological material models for incompressible materials is given in 

Figure 3.1. The material parameters in the strain energy potential are determined 

by fitting the strain energy function to stress-strain data based on a non-linear least 

square optimization method, the so-called calibration of the material parameters. 

It should be noted that fitting results should always be checked with the 

recommended strategies such as using a different model and providing more data 

points. However, models with few material parameters are preferred for the 

purpose of computational efficiency (Ali et al. 2010; Steinmann et al. 2012). In this 

work, 14 material models were calibrated and validated. A summary of these 14 

material models is given in Appendix A. 

 

FIGURE 3.1 :  OVERVIEW OF MICROMECHANICAL AND PHENOMENOLOGICAL MATERIAL 

MODELS FOR INCOMPRESSIBLE MATERIALS.  

Models for rubber-like materials 

Micromechanical 

3-Chain 

𝑊 =
𝜇𝑁

3
∑ 𝛾 𝑖  𝜆 ,𝑖 + 𝑙𝑛  

𝛾 𝑖
sinh𝛾 𝑖

  

3

𝑖=1

 

Full-network 
𝑊 = 𝑊3−𝑐ℎ𝑎𝑖𝑛(1 − 𝜌) + 𝜌𝑊8−𝑐ℎ𝑎𝑖𝑛 

8-Chain 

𝑊 = 𝜇𝑁  𝜆𝑟
  + 𝑙𝑛 

𝛾

sinh 𝛾
   

Invariant based 

W=f(I1, I2, I3) 

Extension ratio based 

W=f(1, 2, 3) 

Ogden 

𝑊 = ∑
2𝜇𝑖

𝛼𝑖

 𝜆1
 𝛼𝑖 + 𝜆2

 𝛼𝑖 + 𝜆3
 𝛼𝑖 − 3 

𝑁

𝑖=1

 

Mooney-Rivlin (N=1) 
𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) 

Neo-Hooke (j=0; N=1) 
𝑊 = 𝐶10(𝐼1 − 3) 

Yeoh (j=0; N=3) 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)² + 𝐶30(𝐼1 − 3)³ 

Phenomenological 



Chapter 4: Adhesive material model  37 

3.3. Materials and methods 

  Adhesives 

The ideal adhesive for adhesive point-fixings should be flexible enough to deal 

with differential thermal expansions and strong enough to withstand the loads 

applied on the point-fixing. The selection of two adhesives is made based on earlier 

research. An extensive experimental programme on adhesives for structural 

applications with glass has been performed by researchers of Ghent University 

and Delft University of Technology to help designers to select potential adhesives 

based on specific environmental exposures and loading conditions (Belis et al. 

2011). As a more flexible adhesive, the one-component MS-polymer Soudaseal 

270 HS (SO) adhesive was selected, a hybrid polymer adhesive with a base of 

polyurethane and silicone. This adhesive combines the advantages of a 

polyurethane adhesive and a silicone, which gives a strong and flexible bond. The 

colour of the adhesive is white. Typical applications are elastic structural bonding 

in car-, train- and aerospace industries. As a more stiff adhesive, the structural two-

component epoxy 3M™ Scotch-Weld™ 9323 B/A (3M) was selected. This 

adhesive cures in 14 days at room temperature or with mild heat to form a tough, 

impact resistant structural polymer material. A chemical reaction is initiated by 

mixing a modified epoxy with a modified amine. It has an excellent adhesion to a 

wide variety of substrates such as metals, glass, ceramics and plastics. Once cured 

it provides high shear and peel strength over a wide temperature range. 

 Glass transition temperature  

The determination of the glass transition temperature Tg for the two selected 

adhesives is done by Dynamic Mechanical Thermal Analysis (DMTA). In DMTA 

a specimen (e.g. a cured adhesive) is subjected to a Dynamic Mechanical Analysis 

(DMA) for different temperatures. In DMA the specimen is subjected to a 

mechanical oscillation at fixed resonant frequencies. From DMTA, the storage 

(elastic) modulus E′ and the loss (viscous) modulus E″ are determined in function 

of the temperature. From these moduli the glass transition temperature is 

determined. Tg is the temperature of the point of inflection of the decrease in the 

storage modulus curve. This point corresponds often with the peak of the loss 

modulus data (ISO 6721-11 2012).  
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The bulk samples of the two adhesives were fabricated with a mould of 

polytetrafluoroethylene (PTFE). After curing, the samples were stored for a time 

period of 4 weeks at a constant temperature of 21° C and a relative humidity of 

45% without any UV-radiation in a climatic chamber. The curing process of SO is 

moisture curing. Since the chosen fabrication method implied sealing off the 

sample from air, extra water was mixed with the adhesive before injecting it into 

the mould to increase its moisture content. After contacting the manufacturer of 

SO, this extra amount of humidity was set to 5%.  The mixing ratios by weight of 

the two components of the epoxy 3M are 27 to 100, respectively. The weighing of 

each component was done with a balance (± 0.1 gram). The components were 

mixed manually in a specific PTFE cartridge, which was then installed on the 

mould. The curing of the adhesive took place inside the mould at 20°C. After two 

hours the adhesive was sufficiently cured to be removed from the mould.  

A sample of 40 x 10 x 4 mm was loaded in oscillating tension in the DMTA 

machine. First a static load was applied on the specimen with a value set by the 

maximum of either 100 N or the force needed for a strain of 1%. Afterwards 

additional 10 loading cycles were applied for each temperature step with a 

magnitude set by the maximum of either 40 N or the force needed for a strain of 

0.2%. The used DMTA-machine of the University of Kaiserslautern is depicted in 

Figure 3.2 together with a tensile sample. 

a)     b) 

FIGURE 3.2:  A) DMTA TESTING MACHINE OF THE UNIVERSITY OF AND B) THE TENSILE 

CONFIGURATION. 
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The temperature range was set from -100°C to 20°C in steps of 5°C for the MS-

polymer samples and from -20°C to 120°C with a step of 2°C for the epoxy 

samples. High frequencies may cause resonance in the samples while low 

frequencies take a very long time. As a result, the samples were subjected to 

frequencies of 1 Hz, 3.162 Hz and 10 H. The results are shown in Figure 3.3a for 

the MS-polymer and in Figure 3.3b for the epoxy. The glass transition temperature 

has a value of -64.3°C for the MS-polymer SO and 83.1°C for the 2c-epoxy 3M.  

a) b) 

FIGURE 3.3:  TENSILE DMTA OF A) THE MS-POLYMER SAMPLES AND B) THE EPOXY SAMPLES. 

With the DMTA machine it was also possible to perform compression tests on 

bulk material. A square sample of 10 mm length and thickness 4 mm was 

fabricated. Samples mounted between the compression clamps of the MS-polymer 

and the epoxy are depicted in Figure 3.4. The sample of the MS-polymer SO was 

placed horizontally to prevent buckling of the sample. 

a)     b) 

FIGURE 3.4:  THE COMPRESSION TEST CONFIGURATION FOR A) THE MS-POLYMER SO AND B) 

THE 2C-EPOXY 3M. 
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To obtain a constant pressure during the test a contact force of 2,0 N was set. The 

temperature range was set from -100°C to 20°C for the MS-polymer samples and 

from 20°C to 120°C for the epoxy samples with a step of 2°C and the same three 

frequencies as in the previous test were set. The results of the compression DMTA 

for the MS-polymer SO are presented in Figure 3.5a and in Figure 3.5b for the 2c-

epoxy 3M. The glass transition temperature is equal to -63.4°C for the MS-

polymer SO and 72.1°C for the 2c-epoxy 3M.  

a) b) 

FIGURE 3.5:COMPRESSIVE DMTA OF A) THE MS-POLYMER SAMPLES AND B) THE EPOXY 

SAMPLES. 

Since there is a relatively large difference between the values of the glass transition 

temperature for the epoxy samples, Tg was also measured with another method, 

i.e. Differential Scanning Calorimetry (DSC) for the 2c-epoxy 3M. DSC is a 

thermo-analytical  technique in which the difference in the amount of heat 

required to increase the temperature of a sample and reference is measured as a 

function of temperature. The underlying basic principle is that when the sample 

undergoes a physical transformation such as a phase transition, more or less heat 

will need to flow to it than the reference to maintain the same temperature. 

Whether less or more heat must flow to the sample depends on whether the 

process is exothermic or endothermic. For example, as a solid sample melts to a 

liquid it will require more heat flowing to the sample to increase its temperature at 

the same rate as the reference. This is due to the absorption of heat by the sample 

as it undergoes the endothermic phase transition from solid to liquid. Likewise, as 

the sample undergoes exothermic processes (such as crystallization) less heat is 

required to raise the sample temperature. By observing the difference in heat flow 

between the sample and reference, DSC is able to measure the amount of heat 

absorbed or released during such transitions. DSC may also be used to observe 

more subtle physical changes, such as glass transitions. Glass transitions occur as 

the temperature of an amorphous solid is increased. These transitions appear as a 

step in the baseline of the recorded DSC signal. This is due to the sample 
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undergoing a change in heat capacity. An epoxy sample was subjected to an 

increasing temperature rate of 20°C/min. The outcome of this temperature cycle 

is depicted in Figure 3.6 and the glass transition temperature is determined at a 

value of 74.6°C.  

 
FIGURE 3.6:  DSC RESULTS FOR THE EPOXY 3M. 

The glass transition temperature of SO can be set to around -64°C and to 75°C 

for 3M. Since the working temperature is higher than the glass transition 

temperature for SO, the adhesive is assumed to be a rubber-like adhesive and will 

behave hyperelastically. This type of behaviour can be modelled by means of 

phenomenological and micromechanical material models, as mentioned above. 

The accuracy of these material models is accomplished by additional validation 

experiments. Since the working temperature is lower than the glass transition 

temperature for 3M, the adhesive is assumed to behave linear elastically. This 

behaviour can be characterised by the Young’s modulus and the Poisson’s ratio.  

 Tensile tests 

Since the material models will be more accurate if experimental data is obtained 

for different load directions (Sasso et al. 2008; Stumpf & Marczak 2010), the 

calibration of the material models was performed with the experimental data 

obtained from uniaxial tensile, compressive and shear experiments. All these 

experiments were performed on a Zwick/Roell 10kN ProLine testing machine 

with a load cell of 0.5 kN or 10 kN.  

The tensile experiments were performed by subjecting the tensile test samples to 

a tensile load. Five tensile test samples for each adhesive were produced according 

to the European standard EN ISO 527 (1996), a commonly used standard to make 

dumbbell samples. The shape and dimensions of the used dumbbell specimen type 

1A according to ISO 527 are illustrated in Figure 3.7.  
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FIGURE 3.7:  DIMENSIONS IN MM. OF DUMBBELL SPECIMEN TYPE 1A  (ISO 527 1996). 

The mould that was used consists of an intermediate layer and a body of PTFE, a 

stiff material with a low solid surface free energy. The total configuration of the 

mould is depicted in Figure 3.8. According to standard ISO 527 a displacement 

rate between 1 mm/min and 500 mm/min must be applied on the dumbbell 

specimens. Exploratory tests were performed to determine the applied 

displacement rate. To obtain the best measurements, low displacement rates were 

preferred. Due to the long elongation at failure of the MS-polymer and time 

constraints, a 5 mm/min displacement rate was applied for SO and 1 mm/min for 

3M. 

 

FIGURE 3.8:  BUILD-UP OF THE MOULD FOR TENSILE TEST SPECIMENS. 

For uniaxial tension, the specimen will be elongated in only one direction. With 

the elongation according to 1 = , the assumption of isotropy gives the two 

others principal extension ratios 2 = 3 = -1/2. Due to the assumption of (near) 

incompressibility, the third invariant of the deformation tensor will be: I3 =

λ1
2λ2

2λ3
2 = 1 . From the occurring elongations consecutively the deformation 

gradient tensor F, the left Gauchy-Green tensor B, the three strain invariants can 

be determined and finally the principal Cauchy stresses σi, i Є {1,2,3} can be 

defined according to Eq. (3.7) with p a Lagrange multiplier (Ogden et al. 2004). 

This derivation for the situation of uniaxial tensile is summarised in Table 3.1. 

Cover layer – PMMA (10 mm) 

 
Intermediate layer – PTFE (1 mm) 

 
Body layer – PTFE (4 mm) 

 
Intermediate layer – PTFE (1 mm) 
 

 
Rigid layer – Trespa® (10 mm) 
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𝜎𝑖 = 𝜆𝑖

𝜗𝑊

𝜗𝜆𝑖
− 𝑝 

(3.7)  

TABLE 3.1 :  DETERMINATION OF THE PRINCIPAL CAUCHY STRESSES FOR UNIAXIAL TENSION. 

𝐹 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] = [

𝜆1 0 0

0 𝜆1
−1

2⁄ 0

0 0 𝜆1
−1

2⁄

] 𝐵 = [

𝜆1
2 0 0

0 𝜆1
−1 0

0 0 𝜆1
−1

] 

 

𝐼1 = 2𝜆1
−1 + 𝜆1

2
 

𝐼2 = 𝜆1
−2 + 2𝜆1 

𝐼3 = 1 

𝜎11 = 2  
𝜕𝑊

𝜕𝐼1
+

1

𝜆1

𝜕𝑊

𝜕𝐼2
  𝜆1 −

1

𝜆1
2  

𝜎22 = 0 

𝜎33 = 0 

For the hyperelastic material models, with the expression of the principal stresses 

and uniaxial tensile data, the material coefficient can be determined of the used 

material model. For example, in Figure 3.1 the strain energy function W is depicted 

for the material model of Neo-Hooke, i.e. 𝑊 = 𝐶10(𝐼1 − 3) . The relationship 

between the principal stress σ11 and the elongation λ1 can now be expressed in 

function of the unknown material coefficient C10, given by Eq. (3.8). This equation 

is then fitted to the test data for uniaxial tension, from which the material 

parameter C10 is ultimately determined. This procedure is implemented to 

determine all the material coefficients of all the selected material models. 

𝜎11 = 2𝐶10  𝜆1 −
1

𝜆1
2  

(3.8)  

 Compressive tests 

In realistic situations the adhesive in an adhesive joint is usually not only loaded in 

tension. Complex stress distributions occur when the adhesive is loaded in several 

types of loading. Hyperelastic material models derived from solely uniaxial tensile 

tests are insufficient in that case. Hence, to take the compressive mode into 

account, compressive tests are indispensable. With compressive tests, the test 

samples can be typical blocks or cylinders (ISO 604 2002; ASTM D695 2010). In 

this research five cylindrical compression specimens were produced in a PTFE-

mould with a diameter of 30 mm and a height of 15 mm for each adhesive (ISO 

604 2002). The applied displacement rate was 1 mm/min. The principal Cauchy 

stresses for uniaxial compression are derived in the same way as for uniaxial 

tension displaced in Table 3.1.  
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 Shear tests 

A very frequently used test to determine the material properties of adhesives under 

shear is the single-lap joint (SLJ) (ASTM D1002; ASTM D3163; DIN 54451; ISO 

4587). As shown in Figure 3.9, the applied forces are not co-linear and will 

therefore introduce a bending moment in the joint. The adherents will bend due 

to eccentricity and the adhesive layer will not only be loaded in shear but will also 

have tearing stresses at the ends of the joint. This introduces stress concentrations 

at the ends of the joints which can cause plastic regions in the adherents and/or 

adhesives and early failure. 

 

FIGURE 3.9:  BENDING MOMENT DUE TO THE ECCENTRICITY IN A SLJ. 

This problem can be partially improved by using the thick adherent shear test 

(TAST) (ASTM D3983; ASTM D5656; DIN 14869-2; ISO 11003-2). The adhesive 

overlap is created by removing half of the thickness of each thick adherent. 

Together with the increased stiffness of the connection due to the thicker 

adherents, this led to the believe that there are no significant transverse peeling 

loads. The simplest analysis assumes that the adherents are rigid and the adhesive 

will only deform in shear. The shear stress will be evenly distributed along the 

adhesive layer (see Figure 3.10a) and can easily be determined by dividing the 

applied force by the glued surface. This is shown in Eq. (3.9), where τ is the shear 

stress, F the applied force, b the width of the adhesive layer and l the overlap length 

of the adhesive layer. Although this equation is used in several standards, the 

assumptions that the adherents are rigid and that the adhesive will only deform in 

shear, are not entirely correct. In fact, with very stiff adhesives, e.g. epoxies and 

acrylates, the adherents will also deform under the tensile force. This will cause 

non-uniform shear stresses in the adhesives, so-called differential shear. Due to 

the differential shear, shear stress concentration will occur at the ends of the joint. 

This was first brought into account by Volkersen (1938) in his analytic method to 

describe the shear stress distribution in single lap joints. The effect of differential 

shear is shown in Figure 3.10b. 
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𝜏 =
𝐹

𝑏 ∙ 𝑙
 (3.9)  

 
FIGURE 3.10:  SHEAR STRESS DISTRIBUTING WITH A) A RELATIVE FLEXIBLE ADHESIVE AND 

B) A RELATIVE STIFF ADHESIVE. 

The technical datasheet of the MS-polymer SO gives a Young’s modulus around 

2 MPa (Soudal 2003). For this adhesive the TAST can be used since the aluminium 

adherents with an elasticity modulus of 70000 MPa are significantly stiffer than the 

adhesive. The dimensions of the used TAST configuration according to DIN 

14869-2 are depicted in Figure 3.11. Five TAST were performed. 

 
FIGURE 3.11 :  DIMENSIONS OF THE THICK ADHERENT TEST IN MM. 

The Young’s modulus of the epoxy 3M is much higher. Since the ratio between 

the adhesive stiffness and the adherents stiffness for this adhesive will be too high, 

stress concentration will occur at the edges. So the TAST is not suitable to 

determine the shear characteristics for the epoxy 3M. The Iosipescu (notched 

beam) shear test is a shear test on bulk material and is described in the American 

standard ASTM D5379 (see Figure 3.12). This test is originally designed to 
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determine the shear properties of composite materials. Recent research has shown 

that the Iosipescu test can also be used for adhesives (Almeida & Monteiro 2000; 

Xu et al. 2004; da Silva et al. 2011; Daiyan et al. 2012). With this test a straight 

beam with two 90° V-notches or U-notches is clamped between two pairs of 

loading rails. A pure and uniform shear stress distribution is obtained between the 

notches when two forces couples are applied so that two counter acting moments 

are generated, as depicted in Figure 3.13. The shear stress can easily be calculated 

by Eq. (3.10) with F the applied load, b the width between the notches and t the 

thickness of the specimen. 

𝜏 =
𝐹

𝑏 ∙ 𝑡
 (3.10)  

The stress distribution and strains between the notches are quite uniform at low 

forces. However at higher forces stress concentration occurs at the notch tips and 

causes failure of the specimens prior to the maximal shear stress of the stress-

strain curve being reached (Seneviratne et al. 2010). 

 

FIGURE 3.12:  V-NOTCHED BEAM SHEAR 

TEST (ASTM D5379).  

 

FIGURE 3.13:  A) GEOMETRY OF THE TEST 

SPECIMEN AND LOADING CONFIGURATION 

FOR THE IOSIPESCU TEST WITH B) THE SHEAR 

DIAGRAM AND C) THE MOMENT DIAGRAM 

(BASED ON ALMEIDA & MONTEIRO, 2000).  

In the research of Seneviratne et al. (2010) several specimen geometries were tested 

and the U-notched specimens showed the preferred results. These types of 

notched samples are already used in other researches (Harman et al. 2008). In the 

presented research five V-notched specimens as well as five U-notched specimens 

were used to obtain the complete stress-strain curve of the adhesive. The 

dimensions of the specimens are depicted in Figure 3.14. A thickness of 4 mm was 

selected to prevent in-plane bending of the specimens which can occur with 

thinner specimens (Daiyan et al. 2012).  
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FIGURE 3.14:  DIMENSIONS OF THE V-NOTCHED AND U-NOTCHED SPECIMENS IN MM. 

The fabrication of the specimens was done in the same way as the dumbbell and 

compression specimens, i.e. the adhesive is poured and cured in a PTFE-mould. 

The applied displacement rate was 1 mm/min for the TAST and the Iosipescu 

shear test. The determination of the principal Cauchy stresses for pure shear is 

given in Table 3.2. 

TABLE 3.2:  DETERMINATION OF THE PRINCIPAL CAUCHY STRESSES FOR PURE SHEAR. 

 𝐹 = [

𝜆1 0 0
0 1 0

0 0 𝜆1
−1

] 
𝐼1 = 𝐼2 = 𝜆1

2 + 𝜆1
−2 + 1 

 𝐼3 = 1 

 𝐵 = [
𝜆1

2 0 0
0 1 0

0 0 𝜆1
−2

] 

𝜎11 = 2  
𝜕𝑊

𝜕𝐼1
+

𝜕𝑊

𝜕𝐼2
  𝜆1 −

1

𝜆1
3  

𝜎22 = 2  
1

𝜆1
2

𝜕𝑊

𝜕𝐼1
+

𝜕𝑊

𝜕𝐼2
 [𝜆1

2 − 1] 

𝜎33 = 0 

 Additional validation experiments 

With the above described tests the material characteristics of the two adhesives 

were determined. For the MS-polymer, the material constants of the material 

models for hyperelastic behaviour were determined by curve-fitting the 

mathematical functions to the experimental curves using a least squares method 

and for the 2c-epoxy the Young’s modulus and Poisson’s ratio were determined. 

To determine to suitability of the calibrated material model for the MS-polymer, 

additional validation experiments were conducted. These experiments consisted 

of two adhesively bonded point-fixings of stainless steel AISI 316L with a diameter 

of 50 mm (see Figure 3.15). The adhesive thickness of the MS-polymer SO was 

equal to 2 mm according to the technical data sheets of the producer.  
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This validation of the material model was conducted for two load configurations, 

i.e. one in uniaxial tension and one in a combination of tension and shear. The 

load condition where the adhesive was only loaded in tension was obtained by 

loading perpendicular to the adhesive layer. The combination of tension and shear 

was obtained by loading under an angle of 45° to the adhesive layer. The 

configuration of the tensile and tensile/shear additional validation experiment is 

illustrated in Figure 3.15. The displacement rate for the two load configurations 

was equal to 1 mm/min. All tests were performed at ambient temperature and 

humidity, i.e. 23.5°C and 40% RH. 

  

FIGURE 3.15:  TEST CONFIGURATIONS IN MM. OF THE ADDITIONAL VALIDATION 

EXPERIMENTS FOR A. UNIAXIAL TENSION AND B. COMBINATION OF TENSION AND SHEAR 

FOR THE MS-POLYMER SO. 

 Digital image correlation 

It is important to measure the complete deformation of the bulk material and 

adhesive layer to obtain valuable measurements. As the dumbbell specimens 

deformed over their entire length instead of deforming only at the narrow section, 

recording the displacements of the clamps was not sufficient. For this reason, 

digital image correlation (DIC) was chosen to measure the full-field surface 

deformation of all test specimens. DIC is a measurement method where occurring 

deformations of test specimens are calculated after the application of a random 

speckle pattern. It is a full field measurement method which implies that, unlike a 

traditional extensometer (considering the relative displacement of only two points), 

the deformations of an entire surface area of interest can be investigated. The 

measurement consists of taking photos of the specimen at regular, discrete 

moments during the test. Afterwards, the photos are correlated by adequate 

software, the occurring deformations being calculated from the relative speckle 

a) b) 
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movement. As such, relative or absolute displacements, in-plane strains in 

different directions, virtual strain gauges and virtual extensometers can be read out 

of the correlation software. In this research, the DIC software was also used to 

calculate the occurring lateral contraction to determine the real specimen section 

and thus the true stress instead of the commonly used engineering stress. Recent 

research demonstrated that DIC is highly complementary to conventional strain 

measurements techniques as strain gauges or LVDTs in structural adhesive testing 

(Van Lancker et al. 2016a). For an in-depth mathematical background and more 

details, the reader is referred to literature (Sutton et al. 2009; Hertelé et al. 2013).  

The images were collected by a stand-alone system of Limess Messtechnik GmbH & 

Software, consisting of two synchronized monochromatic 14 bit cameras having a 

resolution of 2452 x 2054 pixels (5 megapixels). The DIC measurements were 

performed using hardware and a software license of Soete Laboratory, Ghent 

University. The dull black paint speckles were sprayed on the white bulk material. 

The paint was sufficiently flexible and ductile to withstand the occurring strains, 

so that no slip could occur between the pattern and the specimens. Of course, the 

pattern itself may not reinforce the specimen. A sufficient number of speckles, i.e. 

±50% coverage of the specimen surface, was applied. The size of the random 

speckles was chosen with the aim of obtaining an optimal accuracy, roughly 3x3 

pixels per speckle, (Sutton et al. 2009). The use of two cameras rather than one 

allows to include the third dimension into the analysis of displacements, the stereo-

vision system 3D DIC. The displacements and strains were analysed using the 

VIC-3D software from Correlated Solutions Inc.  

The test specimen itself was illuminated by two cold light sources, over which a 

cloth was stretched to promote a diffuse light intensity. The cameras could be 

positioned horizontally or vertically, as depicted in Figure 3.16a for a horizontal 

setup and in Figure 3.16b for a vertical setup for a tensile test. The vertical 

positioning was maintained for all tests, except for the compressive tests where 

the cameras were positioned horizontally. To construct stress-strain diagrams, 

strain values were determined by means of DIC and the force was measured by 

the tensile machine. A data acquisition (DAQ) connection between the analogous 

machine output and the DIC software coupled the captured images (i.e., strain 

information) with their corresponding forces (i.e., stress information), from which 

the stress-strain diagrams were derived. 
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a)  b) 

FIGURE 3.16:  A) VISUALISATION OF THE SETUP FOR HORIZONTAL 3D-DIC (VAN LANCKER ET 

AL. 2016A) AND B) VERTICAL POSITIONING OF THE CAMERAS AND LIGHTS FOR A TENSILE 

TEST. 

3.4. Small-scale test results 

The determination of the material coefficient for the hyperelastic material models, 

the so-called calibration of the material models, is based on a non-linear least 

squares method between a theoretical stress-strain diagram and an experimental 

stress-strain diagram. The theoretical relationship between the principal stresses 

and the strains was determined by the procedure explained by Eq. (3.8).  The 

experimental relationship was determined by uniaxial small-scale tests, i.e. tensile, 

compression and pure shear tests. For the linear elastic material model, the 

material properties were gained from tensile and pure shear small scale tests.   

3.4.1. Tensile tests 

As mentioned before, the tensile properties were determined by uniaxial tensile 

tests on the bulk material in the shape of dumbbells. For this test method, the 

standard ISO 527 was followed. The test specimen was loaded under a constant 

speed according to its longitudinal axis until fracture occurred. From the recorded 

load and strains, the corresponding stress-extension ratio diagrams were 

determined. Often the engineering strain and stress are used for the diagram, 

however with DIC it is possible to determine the true strain and stress. 

Engineering strain and stress 

The engineering strain or Cauchy strain εE is the ratio between the deformation 

ΔL to the initial length L0 of the test specimen and is expressed by Eq. (3.11) with 

Tensile test sample 

Light source 

Vertical camera 1 

Vertical camera 2 
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L the final length of the specimen. For elongation the engineering strain will be 

positive and for compression negative. The extension ratio λ is defined as the ratio 

between the final length of the specimen L to the initial length L0 and is expressed 

by Eq. (3.12). The engineering stress σE is calculated as the ratio between the 

applied load F and the initial cross-sectional area A0 and is given by Eq. (3.13). 

𝜀𝐸 =
𝐿 − 𝐿0

𝐿0
=

∆𝐿

𝐿0
 

(3.11)  

𝜆 =
𝐿

𝐿0
= 𝜀𝐸 + 1 (3.12)  

𝜎𝐸 =
𝐹

𝐴0
 (3.13)  

True strain and stress 

However, the engineering strain is a small strain measure which is invalid once the 

strain is no longer 'small' (≈ 5%). True strain or Hencky strain εT is a non-linear 

strain measure that is dependent upon the final length of the model and is given 

by Eq. (3.14). The cross sectional area will also deform by the applied load due to 

the Poisson effect, for tensile tests the cross sectional area will decrease as depicted 

in Figure 3.17. This means that the occurring stress will increase. The true stress 

σT is determined by the instantaneous load F acting on the instantaneous cross 

sectional area A, as given in Eq. (3.15). 

𝜀𝑇 = 𝑙𝑛(1 + 𝜀𝐸) = 𝑙𝑛(𝜆) (3.14)  

𝜎𝑇 =
𝐹

𝐴
 (3.15)  
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FIGURE 3.17:  OCCURRING DEFORMATION FOR A DUMBBELL SPECIMEN LOADED UNDER 

TENSION. 

The instantaneous cross sectional area A in Eq. (3.15) could be derived from the 

measured strains. As depicted in Figure 3.17, the width w and thickness t of the 

specimen will decrease by the transversal strains εx and εz respectively. As the bulk 

material is isotropic, the transversal strains will be equal. The instantaneous cross 

sectional area A was then derived as in Eq. (3.16).  

 
𝐴 = 𝑤 ∙ (1 + 𝜀𝑥) ∙ 𝑡 ∙ (1 + 𝜀𝑧) 

𝐴 = 𝑤 ∙ exp(𝜀𝑇𝑥) ∙ 𝑡 ∙ exp(𝜀𝑇𝑧) 

𝐴 = 𝐴0 ∙ exp(2 ∙ 𝜀𝑇𝑥) (3.16)  

The stress-extension ratio diagram for the five tested tensile specimen was 

calculated from the measured load and strains with Eq. (3.14) and (3.15). From 

these five stress-extension ratio diagrams, an average stress-extension ratio 

diagram was calculated by means of an interpolation of the abscissa values for each 

dataset using Matlab®. The corresponding ordinate values were calculated by 

interpolation between the original ordinate values. With this approach, the 

interpolation must always be smaller than the measurement frequency. The 

abscissa values were interpolated every 0.001. After the interpolation, the average 

value of the ordinate value was calculated per abscissa value. The local true strain 

on the surface of the sample was determined by DIC. This allowed a stress-strain 
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analysis in which deformation occurs uniformly. Figure 3.18 and Figure 3.19 show 

a picture sequence of the test for tensile tests on the MS-polymer SO and the 

epoxy 3M, respectively. Furthermore, the strain along the longitudinal axis εy is 

depicted on the figures. From Figure 3.18 it is clear that the occurring strains are 

almost uniformly distributed along the longitudinal axis for SO. Strains also 

occurred at the wide section of the dumbbell specimen. For the epoxy sample in 

Figure 3.19 the strain is uniformly distributed at small elongations. However, at 

large elongations strain concentration occurred at the place where failure would 

initiate, resulting in a non-uniformly distributed strain. These observations 

substantiates the use of DIC to measure the strains. 

 
FIGURE 3.18:  PHOTO SEQUENCE OF THE UNIAXIAL TENSILE TEST FOR SO. 
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FIGURE 3.19:  PHOTO SEQUENCE OF THE UNIAXIAL TENSILE TEST FOR 3M. 

The individual curves together with their average diagram are plotted in Figure 

3.20. The curves are all reasonably close to each other. The tensile curve for SO 

does not follow the expected S-curve for hyper-elastic materials. To exclude 

elastic-plastic behaviour, tensile tests were performed till an extension rate of 1.3 

and unloaded. This cycle was five times performed and the maximal residual 

extension rate was smaller than 1.0005. The latter demonstrates that no yielding 

occured and that the assumption of hyper-elastic behaviour for SO is valid.  The 

almost linear curve for 3M and the brittle failure due to the initiation and 

propagation of a crack, demonstrates the linear elastic behaviour. 
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b)  
FIGURE 3.20:  AVERAGE STRESS-EXTENSION RATIO DIAGRAM FOR THE TENSILE TEST FOR A) 

SO AND B) 3M. 

From the tensile test data the Young’s modulus E was also derived. Since SSO is 

considered non-linear, the Young’s modulus will only give an indication of the 

adhesive stiffness for this adhesive. The modulus of elasticity E was determined 

with Eq. (3.17) according to the standard ISO 527 (1996), with Δε equal to 0.2. As 

mentioned above transversal contraction will occur due to Poisson’s effect. The 

Poisson ratio ν was determined by Eq. (3.18) with εx and εz the strains along the 

transversal axes and εy the strain along the longitudinal axis (see Figure 3.17). These 

values were measured by DIC. 

𝐸 =
∆𝜎

∆𝜀
 (3.17)  

𝜈 = −
𝜀𝑥
𝜀𝑦

 𝑜𝑟 −
𝜀𝑧
𝜀𝑦

 (3.18)  

The values for these material properties are summarized in Table 3.3. There was 

no difference in Poisson ratio measured with the strain along the width of the 

specimen or measured along the thickness, which proves the isotropic behaviour 

of the adhesives. The Poisson ratio of 0.494 for SO implies that the MS-polymer 

is almost a perfectly incompressible material and that the assumption of 

hyperelastic material for the MS-polymer was correct. 

TABLE 3.3:  MATERIAL PROPERTIES 

Adhesive Young’s modulus [MPa] Poisson ratio [-] 

SO 9.019 (±921E-03) 0.494 (±1.917E-03) 

3M 2267.37 (±57.56) 0.392 (±4.340E-03) 
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3.4.2. Compression tests 

As mentioned above, the compression properties were determined by five uniaxial 

compression tests on the bulk material in the shape of cylinders with a diameter 

of 30 mm and a height of 15 mm. The test specimens were loaded under a constant 

speed according to its longitudinal axis to 10 kN, the maximal load of the test 

machine. To minimize friction between the compression plates and the specimens, 

the compression plates were covered with a PTFE-spray. From the recorded load 

and deformation, the corresponding stress-strain diagram could be determined.  

As for the tensile properties, the true strain and stress were derived by means of 

DIC. As the bulk material is isotropic, the transversal strains are equal. The 

instantaneous cross sectional area A could be derived as in Eq. (3.19) with r0 and 

A0 the initial radius and initial surface of the specimen, respectively. The local true 

strain on the surface of the sample is determined by DIC. 

 
𝐴 =

[𝑟0 ∙ (1 + 𝜀𝑥)]
2 ∙ 𝜋

4
 

𝐴 =
[𝑟0 ∙ exp(𝜀𝑇𝑥)]

2 ∙ 𝜋

4
 

𝐴 =
𝑟0

2 ∙ exp2(𝜀𝑇𝑥) ∙ 𝜋

4
 

𝐴 = 𝐴0 ∙ exp(2 ∙ 𝜀𝑇𝑥) (3.19)  

 

Figure 3.21 shows a picture sequence of the test for compression tests on the MS-

polymer SO. For the determination of the instantaneous cross sectional area A, 

the strain along the transversal axis εTx is needed, this strain is also depicted on the 

figures. Also here, the stress-extension ratio diagram for the five tested specimen 

are calculated with Eq. (3.14) and (3.15). From these diagrams an average stress-

extension ratio diagram was calculated by means of an interpolation of the abscissa 

values using Matlab®. The individual curves together with their average diagram 

are plotted in Figure 3.22. 
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FIGURE 3.21 :  PHOTO SEQUENCE OF THE UNIAXIAL COMPRESSIVE TEST FOR SO. 

 

FIGURE 3.22:  AVERAGE STRESS-EXTENSION RATIO DIAGRAM FOR THE COMPRESSION TEST 

FOR SO. 

3.4.3. Shear tests 

Thick Adherent Shear Test  

In contrast to the tests on pure bulk material, such as the tensile and compression 

tests, it was not possible to directly measure the strains on the adhesive with TAST. 

This was due to the very small area of interest, as well as due to the rough surface 

of the adhesive layer. Therefore, instead of measuring the deformation of the 

adhesive, the displacements of the two adherents were measured. This method is 

also described in the corresponding standard DIN 14869-2 (2004). Due to the 

 

 

0.0939 

1.35e-2 

ɛ𝒙 [-] 

1.83e-1 

-5.9e-2 

ɛ𝒙 [-] 

1.7e-1 

-2.64e-1 

ɛ𝒙 [-] 

3.3e-1 

-1.02 

ɛ𝒙 [-] 

0

1

2

3

4

0.70.750.80.850.90.951

σ
[MPa]

λ [-]



58 

large difference in stiffness between the adhesive SO and the aluminium adherents, 

the adherents did not deform, as depicted in Figure 3.23. This indicates that by 

measuring the relative displacement of the substrates, the shear properties could 

be properly calculated. The shear stress was evenly distributed along the adhesive 

layer and could be determined by Eq. (3.9). As mentioned before, this argument 

does not apply in the case of more stiff adhesives. 

 
FIGURE 3.23:  PHOTO SEQUENCE OF THE THICK ADHERENT SHEAR TEST FOR SO. 

The occurring shear strain γ was determined by Eq. (3.20) with t the average value 

of the thickness and ds the shear displacement of the adhesive. The obtained stress-

extension ratio diagrams are depicted in Figure 3.24 together with the average 

diagram. 

𝑡𝑎𝑛  𝛾 =
𝑑𝑠

𝑡
≅ 𝛾 (3.20)  

 

 

FIGURE 3.24:  AVERAGE STRESS-EXTENSION RATIO DIAGRAM FOR TAST FOR SO. 
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Iosipescu Shear Test 

As mentioned above, TAST will not give proper shear properties for stiff 

adhesives. For the determination of the shear characteristics of the stiff epoxy, the 

Iosipescu Shear Test, (V-Notched Beam Test) was used (ASTM D5379 2012). The 

test specimens were placed in a specially designed clamp mechanism. The 

mechanism consisted of two parts that were connected to each other by a ball 

bearing system. The bearing system ensured that no bending moments were 

generated and that pure shear was introduced in the specimen. The lower part of 

the mechanism was placed on a pressure plate, while the upper part was connected 

to the load cell, as depicted in Figure 3.25.  

    

FIGURE 3.25:  TEST SETUP OF THE IOSIPESCU SHEAR TEST 

The test setup was designed so that the centre of the specimen was placed on the 

axis of the occurring deformation. The standard required the strains to be 

measured at the centre by means of two strain gauges at an angle of 45° to obtain 

the occurring shear strain in the specimen. These strains could be easily obtained 

through DIC. DIC also offers the possibility to give the deformation of the entire 

specimen, whereas strain gauges will only give the local deformations. With V-

notched specimens, the stress distribution and strains between the notches were 

uniform at low forces, however at higher forces stress concentration occurred at 

the notch tips, causing failure of the specimens prior to the maximal shear stress 

of the stress-strain curve being reached. To solve this, U-notched specimens were 

also tested according to literature (Seneviratne et al. 2010; Harman et al. 2008). In 

Figure 3.26 a picture sequence of DIC on the tested specimen is depicted for V-

notched specimens and U-notched specimens, respectively. As one can see, the 

stress concentrations at the notches are concentrated more at the V-notch.  
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a)  b) 
FIGURE 3.26:  PHOTO SEQUENCE OF THE IOSIPESCU SHEAR TEST FOR 3M WITH A) V-NOTCHED 

AND B) U-NOTCHED SPECIMEN. 

The shear strain was determined by taking the sum of the strain under two angles 

(+45° and -45°) between the two notches, as given in Eq. (3.21). These strains 

were determined by DIC. 

𝛾 = |𝜀+45| + |𝜀−45| (3.21)  

The obtained stress-strain curves of the V-notch and U-notch specimens are 

depicted in Figure 3.27. The toughness of the adhesive is very clear with yielding 

at a shear stress of 23.02 MPa and 22.24 MPa for the V- and U-notch specimens, 

respectively.  After the yielding, strain softening and strain hardening occurs. 

Furthermore, the diagrams below show that the stress-strain behaviour is very 

similar for both types of specimens. The focus in this dissertation is on the linear 

elastic behaviour of the adhesive. The linear part before the yielding, confirms the 

assumption that the epoxy 3M will behave as a linear elastic material till an shear 

extension ratio of around 1.055. 

a)   
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b)  

FIGURE 3.27:  STRESS-STRAIN DIAGRAMS OF IOSIPESCU SHEAR TEST FOR 3M WITH A)V-

NOTCHED AND B) U-NOTCHED SPECIMEN.  

The determination of the shear modulus is calculated by considering only a small 

amount of the linear stress-strain curve with Eq. (3.22), where Δτ is the difference 

in shear stress over a Δγ zone with a length of (4000 ±200)·10-6. This Δγ zone 

starts with a value for γ between 1.5·10-3 and 2.5·10-3
 (ASTM D5379 2012). 

𝐺 =
∆𝜏

∆𝛾
 (3.22)  

For the Iosipescu shear tests on 3M the difference in geometry will only have a 

small influence on the result. The shear modulus is equal to 767 MPa and 724 MPa 

for the V-notched specimens and U-notched specimens, respectively. The 

difference is due to the lower stress concentrations in the U-notched specimens, 

resulting in a less inclined curve. Homogeneous isotropic elastic materials have 

their elastic properties uniquely determined by any two moduli. Consequently, the 

shear modulus can also be derived from the Young’s modulus and Poisson’s ratio, 

according to Eq. (3.23). With a Young’s modulus of 2267.4 MPa and a Poisson’s 

ratio of 0.39, derived from the tensile small-scale tests, the shear modulus is equal 

to 815.6 MPa. This is a difference of 6% and 11% with the shear modulus for the 

V-notched specimens and U-notched specimens, respectively. These values imply 

that 3M behaves almost linear and that the assumption of a linear elastic material 

model till a shear strain of around 5.5% is correct. 

𝐺 =
𝐸

2(1 + 𝜈)
 (3.23)  
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3.4.4. Additional validation experiments 

As with TAST, it was not possible to directly analyse the strains on the adhesive 

for the additional validation experiments. Again this was due to the narrow area 

of interest and the rough surface of the adhesive layer. Therefore, instead of 

measuring the deformation of the adhesive, the relative displacement of the two 

connectors of the additional validation experiments was measured. As can be seen 

in Figure 3.28, due to the large difference in stiffness between the connectors and 

the adhesive, the connectors did not deform. This methodology was used for both 

the tensile and tensile/shear additional validation experiment. 

 

FIGURE 3.28:  DISPLACEMENT OF THE CONNECTORS FOR THE TENSILE ADDITIONAL 

VALIDATION EXPERIMENT FOR SO. 

With these tests for SO, cohesive failure occurred in the adhesive. This is visible 

in the force-deformation diagram in Figure 3.29. Three different zones can be 

distinguished, i.e. (a) no cohesive failure, (b) start of cohesive failure and (c) 

complete cohesive failure. In Figure 3.30, the three occurring deformations for 

these zones are depicted. For the validation of the material model, only zone (a) 

was taken into account. 
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FIGURE 3.29:  FORCE-DEFORMATION DIAGRAM FOR THE TENSILE/SHEAR ADDITIONAL 

VALIDATION EXPERIMENT FOR SO. 

 

           

FIGURE 3.30:  THE THREE OCCURRING ZONES WITH THE TENSILE/SHEAR ADDITIONAL 

VALIDATION EXPERIMENT FOR SO. 

3.5. Identification of the material model for SO 

3.5.1. Determination of the material model coefficients 

The obtained tensile, compressive and shear properties could now be used to 

determine the material model coefficients, i.e. the calibration, of the different 

hyperelastic material models for SO. 14 material models were calibrated and finally 

validated by the finite element model. In this way the material model with the best 

prediction was determined.  

The calibration of the material model is the fitting of a predetermined equation 

(the material model) with the average experimental stress-strain curve. This fitting 

is done by optimizing the coefficients (material constants) in the equations. The 

equations were established by following the calculation procedure as for Eq. (3.8).  

a) b) c) 
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The optimizing of the coefficient was done by means of a non-linear least squares 

analysis (Ogden et al. 2004; Sasso et al. 2008; Dias et al. 2014). Steinmann, Hossain, 

and Possart (2012) used the Curve Fitting Toolbox of Matlab®, a graphical 

interface. The latter was also used here for the curve fitting with the Baker-

Ericksen inequalities taken into account. The Baker-Ericksen (1954) inequalities 

impose conditions on the material, namely that for a compressible isotropic elastic 

material under deformation the largest stress must correspond with the largest 

occurring strain. Truesdell, Noll, and Pipkin (2004) stated that there is compliance 

with this condition, if the derivative of the strain energy function to the first strain 

invariant is greater than zero, and the derivative to the second strain invariant is 

not negative, as given in Eq. (3.24) and (3.25). 

𝜕𝑊

𝜕𝐼1
> 0 (3.24)  

𝜕𝑊

𝜕𝐼2
≥ 0 (3.25)  

Figure 3.31 depicts the curve fitting of the 14 selected material models on the 

uniaxial tensile test curve. All 14 material models give accurate curve fittings. The 

curve fitting as in Figure 3.31 was also performed for uniaxial compression and 

shear. As mentioned above, the accuracy of the material model is increased by 

fitting it with more load conditions. So a fitting of the three load conditions was 

performed with their respective data sets. This fitting is based on the least squares 

analysis proposed by Stumpf and Marczak (2010). They used the following method, 

where the error function E should be kept as small as possible: 

𝐸 = ∑ 𝜎𝑇𝑖
− 𝜎𝐸𝑖

 ²

𝑛𝑇

𝑖=1

+ ∑(𝜎𝑇𝑗
− 𝜎𝐸𝑗

) ²

𝑛𝑆

𝑗=1

+ ∑ 𝜎𝑇𝑘
− 𝜎𝐸𝑘

 ²

𝑛𝐶

𝑘=1

 (3.26)  

whereby nT, nS and nC are the number of test data for testing tension, shear and 

compression respectively, and σT and σE are the theoretical and experimental values 

for the stresses. This method gives the advantage to model multiple deformation 

states with a single set of material parameters. Although theoretically the most 

optimal material model is reached by calibrating for all three load conditions, 

calibrations for only two load conditions were also investigated, yielding in 98 

different material models. 
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FIGURE 3.31 :  CURVE FITTING OF THE MATERIAL MODELS FOR THE TENSILE TEST 

The fitting was also assessed by the value of a fit parameter, i.e. the coefficient of 

determination R2, given by Eq. (3.27). The model provides a perfect fitting with a 

R² value equal to 1. 

𝑅² = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑖

∑ (𝑦𝑖 − �̅�)2𝑖
 (3.27)  

In the above equation 𝑦𝑖 , �̂�𝑖 and �̅� are equal to the test data, the modelled data 

and the average value, respectively. In Table 3.4 the material constants of the 14 

calibrated material models are summarized together with their coefficient of 

determination for each of the considered load conditions separately and their 

combinations. 

TABLE 3.4:  MATERIAL CONSTANTS AND COEFFICIENT OF DETERMINATION OF THE 

MATERIAL MODELS FOR TENSION (T), COMPRESSION (C) AND SHEAR (S) SEPARATELY AND 

THEIR COMBINATIONS.  

  Tension (T) Compression (C) Shear (S) T-C T-S C-S T-C-S 

Mooney- 
Rivlin 

C10 0.144 -6.431 0.362 0.855 2.156 2.000 2.207 

C01 0.178 7.487 0.362 0.658 -1.395 -1.184 -1.404 

R² 0.995 0.974 0.997 0.977 0.955 0.983 0.889 

Neo- 
Hooke 

µ 2.524 2.111 1.448 2.601 2.092 1.773 2.180 

R² 0.995 0.973 0.997 0.967 0.671 0.455 0.660 

Gent- 
Thomas 

C1 1.192 25.35 0.837 1.015 1.960 1.724 1.932 

C2 0.370 -73.41 -0.396 1.435 -3.996 -3.000 -3.650 

R² 0.995 0.9923 0.998 0.977 0.903 0.692 0.817 
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  Tension (T) Compression (C) Shear (S) T-C T-S C-S T-C-S 

Hart- 
Smith 

C10 -0.871 11.410 0.719 1.016 2.656 4.432 2.929 

C1 -2.564 -43.83 0.000 0.000 -0.175 -0.265 -0.235 

C01 8.300 -32 0.579 1.436 -6.141 -11.7 -6.792 

R² 0.996 0.999 0.998 0.977 0.952 0.950 0.909 

Ogden  
(N=1) 

µ1 2.755 0.253 1.228 4.595 0.781 1.481 1.083 

α1 1.873 14.04 2.301 1.263 3.889 2.329 3.301 

R² 0.995 0.991 0.998 0.976 0.795 0.457 0.718 

Yeoh 

C1 1.355 0.727 0.715 1.488 1.077 1.239 1.3073 

C2 -0.173 13.76 -0.007 -0.301 -0.298 -0.555 -0.560 

C3 0.084 -159. 0.017 0.123 0.238 0.180 0.333 

R² 0.997 0.998 0.998 0.979 0.727 0.574 0.700 

Gent 

𝜇 2.524 2.111 1.414 2.601 1.742 1.773 2.080 

𝐽𝑚 99640 -6100 21.43 34389 3.883 404510 12.749 

R² 0.995 0.974 0.998 0.965 0.710 0.455 0.663 

Yeoh-  
Fleming 

A 1.156 0.545 0.687 0.884 0.435 0.958 0.788 

B -0.074 140 -0.084 0.938 3.024 1.014 1.868 

C 0.718 1.118 0.349 0.605 0.680 0.255 0.517 

Im 2.970 -866.6 2.994 5.983 5.382 -91.89 4.963 

R² 0.999 0.992 0.999 0.979 0.7271 0.576 0.699 

Pucci- 
Saccomandi 

µ 7.558 8.085 1.375 1.109 1.9 1.897 6.7 

Jm -2.435 -10 10 3.886 3.719 4.000 -2.601 

C2 -9 -9 0 3.185 -0.569 -0.712 -7.265 

R² 0.9985 0.992 0.999 0.978 0.902 0.692 0.959 

Lopez-  
Pamies 

µ1 2.431 -1.403 -3.157 2.814 1.564 17.721 2.593 

µ2 0.962 2.763 5.034 0.166 1.060 -15.22 0.226 

α1 1.141 -621.1 0.142 -0.631 2.500 3.729 -1.589 

α2 -42.46 7.791 0.459 6.263 -8.723 4.162 6.843 

R² 0.999 2.763 0.998 0.979 0.9227 0.803 0.897 

Van der 
Waals 

µ 2.504 1.462 1.495 2.995 2.548 2.036 2.857 

α 7.858 -4.342 0.7075 0.878 2.363 1.836 2.586 

β 1.159 3.021 5.77 -0.091 -0.019 1.815 -0.192 

λ 17.52 31.97 3.415 2.895 -2.430 -2.558 2.39 

R² 0.992 0.995 0.998 0.979 0.985 0.986 0.965 

Arruda- 
Boyce 

µ 2.524 1.502 1.222 2.601 1.893 1.503 1.987 

N 19090 -98970 19970 409950 19970 20030 19970 

R² 0.995 0.970 0.998 0.967 0.4213 0.243 0.449 

3-chain 

µ 4.603 0.543 1.303 5.768 6.277 5.320 1.473 

N 0.396 0.68 17.050 0.332 -0.002 0.001 6.242 

R² 0.998 0.991 0.998 0.974 0.671 0.455 0.701 

8-chain 

𝜇 7.107 -3.671 4.982 4.607 1.088 3.082 1.699 

N -0.041 0.580 0.069 -0.638 2.098 -0.657 4.016 

R² 0.995 0.967 0.998 0.974 0.711 0.479 0.664 
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3.5.2. Validation of the material models 

For the validation of SO, the 98 calibrated material models above were 

implemented in two numerical models, i.e. the numerical tensile and tensile/shear 

additional validation experiment resulting in 196 numerical models. The final mesh 

distribution of the two models for SO are depicted in Figure 3.32. A convergence 

study demonstrated that the best results were obtained with the element type 

C3D8H and with five elements along the thickness of the adhesive layer. To avoid 

mesh singularities in the centre of the circular connector a square mesh pattern 

was inserted inside the circular pattern. The tie-constraint between the metal point-

fixings and the adhesive was modelled as a master-slave surface, with the adhesive 

each time as the slave surface. The material models were implemented as 

subroutines with dependent state variables in Abaqus®. The stainless point-fixings 

were modelled as linear elastic material with a young’s modulus of 195000 MPa 

and a Poisson’s ratio of 0.3 (Outeiro et al. 2006). The load-displacement output of 

the numerical models was then compared to the experimental load-displacement 

curves. 

  
FIGURE 3.32:  MESH CONFIGURATION OF THE NUMERICAL TENSILE AND TENSILE/SHEAR 

ADDITIONAL VALIDATION EXPERIMENT FOR SO. 

Figure 3.33 shows the most optimal material models for the additional tensile 

validation experiment for SO. Two models provided a good prediction for both 

the initial stiffness and the occurring deformations, i.e. Ogden and Pucci-

Saccomandi. The model of Gent-Thomas gave an even better approach to the 

initial stiffness but failed in the prediction of the deformations. The same 

comparison of the optimal material models for the tensile/shear additional 

validation experiment was performed in Figure 3.34 
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FIGURE 3.33:  COMPARISON OF THE OPTIMAL MATERIAL MODELS FOR THE TENSILE 

ADDITIONAL VALIDATION EXPERIMENT, CALIBRATED WITH TENSILE (T), COMPRESSIVE (C) 

AND/OR SHEAR (S) EXPERIMENTAL DATA. 

 

 

FIGURE 3.34:  COMPARISON OF THE OPTIMAL MATERIAL MODELS FOR THE TENSILE/SHEAR 

ADDITIONAL VALIDATION EXPERIMENT, CALIBRATED WITH TENSILE (T), COMPRESSIVE (C) 

AND/OR SHEAR (S) EXPERIMENTAL DATA. 
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The proposed material models for the two load configurations are summarized in 

Table 3.5, based on how well the material model predicts on the one hand the 

initial stiffness of the connection and on the other hand the deformation of the 

connection. This comparison of the optimal material models shows that 

calibration with test data from shear provides the best results. In contrast to what 

is argued in literature, it is not always advantageous to use and combine test data 

from as many experimental set-ups as possible.  

TABLE 3.5:  PROPOSED OPTIMAL MATERIAL MODELS FOR THE TWO LOAD CONFIGURATIONS 

FOR SO. 

Connection Criteria Optimal material models 

Tensile  

point-fixing 

Initial stiffness Arruda-Boyce:  

Ogden:  

Gent-Thomas:  
 

Tension-Shear  

Shear 

Tension-Compression-Shear 

Deformation Pucci-Saccomandi:  

Ogden:  

Arruda-Boyce:  
 

Shear 

Tension-Shear 

Shear 

 

Tensile/shear  

point-fixing 

Initial Stiffness Arruda-Boyce:  

Yeoh-Fleming:  

Van der Waals:  
 

Tension-Compression  

Tension-Compression-Shear  

Tension-Shear 

Deformation Ogden:  

Mooney-Rivlin:  

Gent-Thomas: 

Compression-Shear 

Shear 

Shear 

3.6. Summary and conclusions 

In this chapter different material laws were compared for a rubber-like adhesive, 

the MS-polymer Soudaseal 270 HS (SO), and a tough adhesive, the two-

component epoxy 3M™ Scotch-Weld™ 9323 (3M). The flexible adhesive SO is 

modelled as a hyper-elastic material. This is done by means of phenomenological 

and micromechanical material models, of which the calibration is carried out by 

means of test data from tensile, compressive and shear tests on the adhesive as a 

bulk material. These test data were used to calibrate the models, using a non-linear 

least squares method.  
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The epoxy 3M can be modelled with linear elastic behaviour till an shear extension 

ratio of around 1.055. Linear elastic behaviour is characterized by the Young’s 

modulus and the Poisson’s ratio. 

Dumbbells, solid cylinders and thick adherend shear test specimens were made. 

Local deformations of the test specimens have been measured through three-

dimensional digital image correlation (DIC). The comparison between the data 

from the test machine and the DIC-output revealed major differences between the 

measured deformations. This confirms that the use of DIC is needed to accurately 

measure the occurring strains during the small-scale tests. 

For SO, the Poisson’s ratio was determined to be 0.49. Consequently, the material 

is near to incompressible. Fourteen material models for the MS-polymer SO as a 

hyper-elastic material were calibrated by means of the acquired test data. The 

calibration is accomplished for seven combinations of the test data, i.e. tension, 

compression, shear, tension-compression, tension-shear, compression-shear and 

tension-compression-shear, resulting in 98 calibrated material models. To validate 

these material models, an additional validation test was performed consisting of 

two adhesively connected steel point-fixings. This additional validation experiment 

was performed with a horizontal contact surface and with an angled contact 

surface of 45°. The same configurations were implemented in the finite element 

software Abaqus®, where the adhesive material was modelled with the 98 

calibrated material models. For the validation, the load-displacement output of the 

numerical models were compared to the experimental load-displacement.  

For 3M, the Young’s modulus is equal to 2267.4 MPa, the Poisson’s ratio to 0.39 

and the shear modulus to 767.0 MPa and 723.9 MPa for the V-notched specimens 

and U-notched specimens, respectively.  

After comparison of the numerical displacements with the experimental, it 

appeared that the material models, calibrated by shear tests or by a combination 

of shear tests yielded the best results for SO. In contrast to what is argued in 

literature, it is not always advantageous to use and combine test data from as many 

experimental set-ups as possible. No optimal model was achieved, however the 

material model developed by Ogden (1973) calibrated by results from only shear 

tests or in a combination with tension or compression predicted the experimental 

results the best based on the initial stiffness and deformation.  



 
Chapter 4: Local model       71 

Chapter 4: Local model 

 It’s a magical world, Hobbes, Ol’ buddy …  

… let’s go exploring!  

Bill Watterson – The complete Calvin and Hobbes 

4.1. Introduction 

Almost all developed design methods for bolted point-fixings make use of FEA. 

It is obvious that most of these methods described require significant computation 

time and consequently have a great cost, especially for complex geometries. 

Therefore Beyer developed the time-efficient SLG-method for the design of 

bolted point-fixings (Beyer 2007; Beyer 2008). Due to the separation into one 

global component that can be built up with a less dense mesh pattern and one 

local component that is built up with a more complex and dense mesh pattern, the 

stress distribution can be determined in a very time-efficient manner.  

This method appears to offer a very appealing basis for the design of glass plates 

with adhesive point-fixings. The validation of the SLG-method will consist of a 

FEA comparison between the stress distribution obtained from the superposition 

of local models and global model and the stress distribution in a total model, as 

depicted in Figure 4.1. In this chapter, the aim is to develop the validated numerical 

local models, indicated with in Figure 4.1. The local component is validated for 

different geometrical properties, such as the glass thickness and diameter 

connector, different material properties, such as the adhesive type, and three 

different load conditions, such as tension, shear and multi-axial load. The diameter 

of the local component ϕloc for bolted point-fixings is determined to be at least six 

times the diameter of the borehole ϕhole, as expressed in Eq. (2.2). This distance 

was also verified and used for the study of adhesive point-fixings.  
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FIGURE 4.1 :  SLG-METHOD FOR ADHESIVE POINT-FIXINGS.  

By supporting the glass panel along a circumference with a diameter equal to six 

times the connector diameter, the deformation of the glass panel was also taken 

into account. The investigation of the entire connection is innovative considering 

that previous studies that have been performed on adhesive point-fixings focus 

mainly on the adhesive bond between the glass and metal connector by supporting 

the glass panel right next to the connector (§Chapter 2). The experiments in these 

previous works neglect the deformation of the glass panel, which does not 

correspond to reality. Indeed, the deformation of the glass can cause stress 

concentrations in the adhesive layer. The chapter is subdivided according to the 

three load conditions, starting with the tensile load condition. 

4.2. Tension 

As depicted in Figure 1.1, point-fixings can be used for supporting glass facades 

or glass canopies. In the case of glass canopies, the supports will mostly be placed 

underneath the glass panel so the connection is generally loaded under pressure 

by the dead load of the glass panel and possibly under tension by wind suction. 

However, when the support is placed on top of the glass panel, the connection 

will almost continuously be loaded in tension by the dead load of the glass panel. 

Mechanical self-weight supports are mostly described for structural sealant glazing 
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M 
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systems (SSGS) according to the ETAG 002 (2002) as depicted in Type I, II and 

III in Figure 4.2. Hence, additional mechanical self-weight supports will be used 

for adhesive point-fixings loaded in constant shear. With these mechanical self-

weight supports the adhesive connection will only be loaded by horizontal actions, 

with tensile forces the determining factor for the design. The tensile experiments 

will be used to validate the tensile factor σFz in Eq. (2.3). 

 
FIGURE 4.2:  SCHEMATIC EXAMPLES OF THE DIFFERENT TYPES OF SSGS, BASED ON ETAG 002 

(2002).  

4.2.1. Test specimens and materials 

Chapter 2 demonstrated that many parameters have an influence on the stress 

distributions and strength of adhesive point-fixings, such as the diameter of the 

connection, the thickness of the glass, the tempering process, the shape of the 

connector, the type of adhesive, environmental parameters, etc.  To obtain a 

complete validated numerical model, experiments were conducted with different 

geometrical parameters and material characterisations. Three different diameters 

were combined with three different glass thicknesses according to Table 4.1, for 

the two selected adhesives, i.e. the MS-polymer Soudaseal 270 HS (SO) and the 

2c-epoxy 3MTM Scotch-WeldTM 9323 B/A (3M). The combination of 10 mm glass 

thickness and 50 mm connector diameter was taken as the reference case. 

TABLE 4.1 :  TEST COMBINATIONS. 

Glass thickness [mm]   

4 10 19   

X  X 30  

 X  50 Connector diameter [mm] 

X  X 70  
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In the experiments, simple supports were used, consisting of a steel plate with a 

circular opening that had a diameter equal to six times the diameter of the fitting. 

The width and length of the glass plate were seven times the fitting diameter. For 

the validation, the strain on top of the glass panel at three different distances from 

the centre on the glass plate were measured using strain gauges. The positions of 

the strain gauges were determined by means of a preliminary FEA model. The 

dimensions of the glass plate, the circumference of the support and the positions 

and directions of the strain gauges are illustrated in Figure 4.3. The strain gauges 

of type FAE-12S-35-S6E-J with an accuracy of 1% were used for all the strain 

measurements in this dissertation. Due to economic reasons, the strains of only 

four out of ten test specimens for each configuration were completely determined, 

where the six remaining specimens were used to measure the variation between 

the specimens and measured only the strain ε2. At the same three distances from 

the centre, denoted as U1, U2 and U3, the deflection of the glass was measured by 

using three linear variable differential transformers (LVDT). The used LVDTs in 

this dissertation have an stroke range of 20 mm and an accuracy of 0.1% of the 

stroke range. However, due to practical constraints, for the configuration with a 

connector diameter of 30 mm U1 is measured at a distance of 30 mm from the 

centre and for the configuration with a connector diameter of 70 mm U3 at a 

distance of 172.5 mm. A certain scatter of the experimental results is expected due 

to small imperfections that could have occurred during the production process of 

the connector and the glass and also during the fabrication process of the 

connection. 

 
FIGURE 4.3:  DIMENSIONS IN MM. OF THE GLASS PLATES WITH POSITION OF THE STRAIN 

GAUGES FOR A CONNECTOR DIAMETER OF 30 MM, 50 MM AND 70 MM. 
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The optimum adhesive thickness of the MS-polymer SO is 2 mm and for the 2c-

epoxy 3M 0.2 mm according to the technical data sheets of the producers. The 

thicknesses were carefully ensured by the use of high precision milled steel 

brackets. These brackets ensured that the connector was always 2 mm or 0.2 mm 

above the glass panel. They are illustrated in Figure 4.4 with a connector diameter 

of 50 mm. After applying the adhesive on the connector, the connector and the 

bracket were placed on the air side of the glass panel and excess adhesive material 

was removed. Of every configuration, ten specimens were fabricated and tested; 

with 10 configurations this resulted in a total of 100 experimental specimens. 

Before testing, the specimens were stored for four weeks in a climatic chamber at 

a constant temperature of 21°C and a relative humidity (RH) of 45% without any 

UV-radiation to ensure the full curing of the adhesives. 

 

FIGURE 4.4:  EXAMPLE OF THE BRACKET WITH A CONNECTOR OF Ø 50 MM FOR THE MS-

POLYMER SO (LEFT) AND THE 2C-EPOXY 3M (RIGHT).  

The material properties of the two selected adhesives were determined in Chapter 

3. For SO, the stretch based phenomenological material model developed by 

Ogden (1973) gave the best results. The mathematical expression of the Ogden 

material model is given by Eq. (4.1). The obtained material constants μ1 and α1 

were equal to 0.781 and 3.889, respectively. For 3M, the linear elastic material 

characteristics were determined and were equal to 2267 MPa and 0.39 for the 

Young’s modulus and the Poisson’s ratio, respectively.  

𝑊 =∑
2𝜇𝑖
𝛼𝑖

(𝜆1
𝛼𝑖 + 𝜆2

𝛼𝑖 + 𝜆3
𝛼𝑖 − 3)

𝑁

𝑖=1

 (4.1)  
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The metal cylinder was made of stainless steel EN 10088-1 1.4404 (AISI 316L), a 

commonly used type of stainless steel, and the glass was annealed soda-lime float 

glass. In the numerical research, the adherents were modelled using linear elastic 

behaviour, using the material properties given in Table 4.2. The material properties 

of glass and stainless steel were derived from literature (Outeiro et al. 2006; 

Haldimann et al. 2008) 

TABLE 4.2:  MATERIAL PROPERTIES OF THE ADHERENTS.  

 Young’s modulus E [MPa] Poisson’s ratio ν [-] 

Stainless steel  

EN10088-1 1.4404 

195000 0.30 

Annealed float glass 70000 0.23 

4.2.2. Test method 

As stated above, the local component is defined as the glass plate with a diameter 

six times the diameter of the connector. In the experiments, the circumference 

was simply supported and the fitting was loaded with a tensile force until failure. 

To test the specimens under uniaxial tension, a special test frame was fabricated. 

A visualization of the test frame for the reference configuration is depicted in 

Figure 4.5. An aluminium plate between the glass panel and the steel test frame 

protected the glass panel. The tensile tests were performed on a universal electro-

mechanic test machine Instron 5800R (frame 4505 retrofitted with a digital 

controller 8800). A load cell of 10 kN or 100 kN was used and the value of the 

load was measured.  

4.2.3. Numerical model 

The finite element software Abaqus® was used to build a three-dimensional finite 

element model to numerically analyse the connection. Due to symmetry only a 

quarter of the glass plate was modelled. Since stress concentrations were expected 

around the connector, local refinement of the mesh pattern was introduced. To 

avoid mesh singularities in the centre of the circular connector, a square mesh 

pattern was applied inside the circular pattern. The mesh refinement around the 

connector and the square pattern are illustrated in Figure 4.6. In this figure the 

path along the x-axis is also depicted where the nominal strains perpendicular to 

this path were determined. 
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FIGURE 4.5:  TEST FRAME FOR UNIAXIAL TENSILE TESTS FOR THE REFERENCE 

CONFIGURATION, I.E. CONNECTOR DIAMETER OF 50 MM AND A GLASS THICKNESS OF 10 MM. 

 

FIGURE 4.6:  DETAIL OF THE REFINED MESH PATTERN AT THE CENTRE FOR THE REFERENCE 

CONFIGURATION. 

As strain gauges measure the deformation as the ratio of change in length-to-

length, nominal strain in Abaqus® was used for the validation. The nominal strain 

in Abaqus® is defined as the ratio of change in length to length in the reference 

configuration, which is the same as the measured strain. Along the circular line of 

support, the upward displacement is prevented as the boundary condition for Uz 

is set to zero. 
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The adhesive layer was connected to the glass and the metal connector by means 

of a tie-constraint. The tie-constraint between glass-adhesive and metal-adhesive 

was modelled as a master-slave surface, with the adhesive layer each time as the 

slave surface. Surface-to-surface was selected as discretization method and for the 

position tolerance method Abaqus® determined the nodes to be tied using the 

default position tolerance. This kind of constraint specifies that the mesh size of 

the slave surface has to be smaller than the mesh size of the master surface. A 

convergence study demonstrated that when the mesh of the adhesive layer was 

four times finer than the glass and steel mesh the best results were obtained. This 

refinement also allowed to investigate thoroughly the stresses that occurred in the 

adhesive layer.  

For the continuum element types, a distinction can be made between linear and 

quadratic interpolation, with either full or reduced integration. Different element 

geometries are available: tetrahedral, wedge and hexahedral. As the parts used in 

the model have regular shapes (cylinder, prism), the best volume element which 

can be used is a hexahedron (hex) element. These have a better convergence speed 

than the other volume elements available in Abaqus®. Some specific problems 

which are inherent to the chosen element type can be present.  

A first problem is shear-locking. This problem only affects the performance of 

fully integrated, linear (C3D8) elements subjected to bending loads. These 

elements function well under direct or shear loads. However, when bending is 

present, the nodes and accompanying interpolation functions are unable to 

approximate the deformations. The behaviour of a linear element subjected to a 

bending moment is illustrated in Figure 4.7. In reality, the top and bottom side are 

curved while the vertical edges are subjected to a rotation. This allows to maintain 

the orthogonality between horizontal and vertical edges and no shear stresses are 

introduced. However, when using a linear element, the vertical and horizontal 

edges are not perpendicular after deformation which means that spurious shear 

stresses are introduced at the integration points. This results in smaller 

deformations which implies a stiffer behaviour of the material. The quadratic 

elements are not subjected to this problem since the edges are able to adjust to a 

certain curvature. 
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FIGURE 4.7:  REAL MECHANICAL BEHAVIOUR WHEN SUBJECTED TO BENDING (TOP) AND 

MECHANICAL BEHAVIOUR OF A LINEAR ELEMENT SUBJECTED TO BENDING (BOTTOM) 

(ABAQUS 2014).  

Another solution to solve shear-locking is the use of linear elements with reduced 

integration (C3D8R). When using elements of a reduced type, the stiffness matrix 

is not calculated exactly and completely (since terms of higher order are omitted). 

However, these elements tend to be too flexible because they experience their own 

numerical problem called hourglassing. Since the only integration point of an 

element is located in its centre, no deformations will be registered at the position 

of the integration point when subjected to a bending moment. The problem can 

affect the entire model which leads to incorrect results. Especially in coarse meshes, 

this zero-energy mode can propagate through the mesh, producing incorrect 

results. The hourglassing effect is illustrated in Figure 4.8 for a C3D8R element 

subjected to bending. The length of and the angle between the dotted visualisation 

lines in Figure 4.8 remains unchanged, which means that all components of stress 

at the element’s single integration point are zero. This bending mode of 

deformation is thus a zero-energy mode because no strain energy is generated by 

this element distortion. The element is unable to resist this type of deformation 

since it has no stiffness in this mode.  

 

FIGURE 4.8:  DEFORMATION OF A LINEAR ELEMENT WITH REDUCED INTEGRATION 

SUBJECTED TO BENDING MOMENT M (ABAQUS 2014).  

A third possible problem is volumetric locking. This occurs in fully integrated 

elements when the material behaviour is (almost) incompressible (ν > 0.475). It 
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results in overly stiff behaviour of the material for deformations that should not 

experience any volume changes. The kinematic constraints inherent to an 

incompressible material behaviour constrain the volume of the element’s 

integration points to be constant. This can make the element over-constrained 

which induces the overly stiff behaviour. Consider an element under hydrostatic 

pressure (Figure 4.9), the element’s volume cannot change under this load when 

the material is incompressible. Hence, it is impossible to compute the pressure 

stress based on the displacements of the nodes which means that a pure 

displacement formulation is inadequate. This problem can be solved by using 

hybrid elements. Hybrid elements (H) are equipped with an extra degree of 

freedom which calculates the stresses in the element directly. The nodal elements 

are then only used to calculate shear strains and shear stresses. A summary of 

characteristic behaviour of hexagonal elements is given in Table 4.3. 

 

FIGURE 4.9:  ELEMENT UNDER HYDROSTATIC PRESSURE (ABAQUS 2014).  

TABLE 4.3:  BEHAVIOUR OF THE AVAILABLE HEXAGONAL ELEMENTS WITH RESPECT TO 

SPECIFIC PROBLEMS (++ = EXCELLENT, - - = POOR).  

Element Type Shear  

Locking 

Hourglassing Volumetric  

Locking 

CPU  

computation time 

C3D8 Linear - - ++ - - + 

C3D8H Linear, hybrid - - ++ ++ + 

C3D8R linear, reduced ++ - - ++ ++ 

C3D20 Quadratic - ++ - - - 

C3D20R quadratic, reduced ++ ++ ++ - 

 

The used element types and sizes are summarized in Table 4.4 for the two selected 

adhesives. The element size is the size of one element in the centre of the 

Uniform pressure 
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connection. Here, 20-nodes quadratic brick elements were used. The number of 

elements along the adhesive thickness is set on ten for the FEA model with SO 

and four with 3M. This causes small elements in the adhesive layer and hence in 

the other components. The ratio of the height to the width of an element in the 

centre of the adhesive layer for SO and 3M is 0.98 and 1.28, respectively. The ratio 

for an element at the edge of the connection is 0.5 and 0.65, respectively. A 

maximum of 2 and a minimum of 0.5 is advised for the ratio (ABAQUS 2014). By 

using reduced integration for the glass and the steel connector, the calculation time 

is reduced.  Due to the near incompressibility of the MS-polymer, a hybrid 

formulation is used for the adhesive elements of the MS-polymer. General, static 

step-by-step numerical analyses are performed by means of the implicit Abaqus® 

solver. 

TABLE 4.4:  ELEMENT SIZE AND TYPE FOR THE THREE MATERIALS.  

Material Element type Element size [mm] 

  SO 3M 

Glass C3D20R 0.818 0.156 

Steel C3D20R 0.818 0.156 

MS-polymer  C3D20H 0.205 / 

2c-epoxy C3D20 / 0.039 

 

4.2.4. Results and discussion 

Experimental results 

The failure mechanisms of the samples can be divided into three categories: glass 

failure, adhesive failure and cohesive failure. Adhesive failure occurred only with 

SO and always in combination with cohesive failure. An example of this is depicted 

Figure 4.10c together with an example of glass failure (Figure 4.10a) and cohesive 

failure (Figure 4.10b & d). A thin film of epoxy remained when cohesive failure 

occurred with 3M; this phenomenon is also known as the thin-layer cohesive (TLC) 

failure pattern (Lee et al. 2009). This thin film is visible in Figure 4.10d on the glass 

panel. 
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a) 

 
b) 

d) 
 

c) 

FIGURE 4.10:  EXAMPLE OF A) GLASS FAILURE, B) COHESIVE FAILURE, C) COMBINATION OF 

ADHESIVE AND COHESIVE FAILURE AND D) THIN LAYER COHESIVE FAILURE. 

The maximum tensile forces corresponding to glass failure and failure in the 

adhesive layer for all configurations are depicted in Figure 4.11, where the letter t 

is used to indicate the glass thickness and the letter D for the connector diameter. 

For example, t19D30 refers to a specimen with a glass thickness of 19 mm and a 

connector diameter of 30 mm. Tensile forces up to 8 kN were obtained with SO 

and up to 15 kN with 3M. The high failure tensile forces prove that adhesive point-

fixings are indeed a good alternative for the connection of glass panels to the 

underlying structure. The adhesive ensures that no boreholes are needed, which 

gives stronger and visually more appealing glass panels. Furthermore, a larger 

fitting diameter increased the adhesive strength of the MS-polymer SO. This was 

not noticeable when using the epoxy 3M. Using 3M the thickness of the glass had 

a bigger influence on the strength than the diameter. Indeed, the thin glass plates 

deformed much more than the thicker glass plates, and the corresponding 

curvature under the connector introduced stress concentrations at the edge of the 

connector. These stress concentrations caused the connection to fail faster 

compared to thicker plates. Thicker glass plates were so stiff that the glass plate 

stayed relatively straight during the test, causing almost only uniaxial tensile 

stresses in the adhesive layer. This phenomenon was not affected by the diameter. 

From this it can be concluded that the diameter is more determinative for more 

flexible adhesives and the glass thickness for rather stiff adhesives. The scatter of 

the experimental results for failure in the adhesive layer for a glass thickness of 19 

mm for 3M is most likely due to small imperfections that occurred during the 

fabrication process of the connection. Despite that the thickness of the adhesive 

has been ensured carefully and with high precision, very small differences in 

thickness will always occur. These differences have a major influence on the 

strength of the connection, especially when the stress concentrations are small.  
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FIGURE 4.11 :  MAXIMUM TENSILE FORCES CORRESPONDING TO GLASS FAILURE AND FAILURE 

IN THE ADHESIVE LAYER FOR SO AND 3M. 

Validation of numerical results 

As mentioned above, three strain gauges were used to measure the occurring 

strains in the glass panel together with the displacement of the glass panel at three 

locations. These strain gauges and deformations formed one path. The obtained 

experimental results were used to validate the developed numerical model. The 

comparison between the experimental and numerical values was performed for 

the five geometrical configurations and for the two selected adhesives. The 

numerical nominal strains NE22 and vertical displacements U33 were obtained 

for the predefined path (Figure 4.6). In Abaqus® 11, 22 and 33 are the components 

in the x-, y- and z-direction, e.g. NE22 is the nominal strain in y-direction. The 

applied tensile force was the minimal force that was obtained for each 

configuration regardless of the failure mode. The applied tensile forces are 

summarized in Table 4.5 for each configuration. The comparison for the 

numerical strains and the strains measured during the experiments are illustrated 

in Figure 4.12 for the specimens with the relatively flexible adhesive SO and in 

Figure 4.13 for the specimens with the relatively stiff adhesive 3M. The dots 

represent the experimentally measured strains and the full line is the strain from 

the finite element model. Any outliers have been omitted. The dotted lines 

represent the edge of the connection and the support, respectively. Despite of a 

certain scatter of the experimental result, a good agreement between the numerical 

and experimental results is achieved.  
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From these graphs, the influence of the stiffness of the adhesive is very 

distinguishable. Bonded by a relatively flexible adhesive, the glass can deform 

unimpededly, in contrast to a relatively stiff adhesive bond, where the glass 

deformations under the connection are hindered by the adhesive. The strains even 

become zero or smaller for most configurations with the stiff adhesive; only with 

a glass thickness of 19 mm and a connector diameter of 30 mm larger strains were 

obtained in the centre of the glass panel. This phenomenon influences the position 

of the maximal strain and, consequently, the position of the maximal stresses. 

However, for specimens with flexible adhesives, the glass panel will also be locally 

prevented to bend for a small connector diameter and a small glass thickness, the 

glass will behave similar to the specimens with the stiff adhesive. 

 

FIGURE 4.12:  VALIDATION OF THE NUMERICAL STRAIN εY OF THE LOCAL MODEL FOR SO. 
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TABLE 4.5:  MINIMAL TENSILE FORCE FOR EACH CONFIGURATION 

 SO 3M 

t4 D30 0.8 kN 0.6 kN 

t4 D70 0.7 kN 0.5 kN 

t10 D50 2.1 kN 2.9 kN 

t19 D30 0.9 kN 4.9 kN 

t19 D70 4.4 kN 4.7 kN 
 

 

 

 

FIGURE 4.13:  VALIDATION OF THE NUMERICAL STRAIN εY OF THE LOCAL MODEL FOR 3M. 
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As can be seen in Figure 4.12 and Figure 4.13, the location of maximal strain for 

the specimen is at the centre of the glass panel for the flexible adhesive and outside 

the connection for the stiff adhesive. This difference was also observed in the 

experiments by the location of the crack initiation when the specimens fail due to 

glass failure. The crack initiation for the specimens with SO was mostly situated 

under the connection as depicted in Figure 4.14a and was situated close to the 

connection for the specimens with 3M as depicted in Figure 4.14b, corresponding 

with the location of maximal strain. 

a)     b) 
FIGURE 4.14:  THE LOCATION OF THE CRACK INITIATION FOR A) SO HS AND B) 3M. 

Since the relatively flexible adhesives do not significantly impede the deformations 

of the glass plate, it is also possible to calibrate these adhesives with the analytical 

method developed by Seel and Siebert (2012). This analytical method gives the 

maximal principal stresses on the top and bottom side of a circular glass plate 

loaded with a rotationally symmetric load. The relatively flexible adhesive will 

introduce an almost rotationally symmetric load on the glass plate, in contrast to 

the relatively stiff adhesive 3M. As the glass panel can almost freely deform under 

the connection with SO, this is not the case with 3M where the glass panel is locally 

strengthen due to the stiff and thin adhesive layer and the stiff connector. The 

glass panel will remain almost plane under the connector with 3M. However, as 

mentioned above this assumption is only true when the diameter of the connection 

is small enough and the glass thickness is thick enough. The comparison was made 

for the reference configuration SO-t10D50 with a load of 2 kN and is illustrated 

in Figure 4.15. The stress distributions derived from both methods correspond 

well in general. In detail, the curves correspond better at the centre of the glass 

panel and less at the support. This is probably due to the different geometry in the 

analytical method, i.e. the glass plate is circular in the analytical method and in the 

FEA the glass panel is a square plate that is circularly supported.  
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FIGURE 4.15:  COMPARISON OF THE MAXIMAL PRINCIPAL STRESSES IN THE GLASS PLATE 

OBTAINED WITH AN ANALYTICAL METHOD AND THE FEA. 

As mentioned above, the displacements were also measured and compared with 

the numerical deformation of the glass panel. The applied tensile forces were the 

same as for the validation of the strains (Table 4.5). The comparison for the 

numerical deformation U3 and the displacements measured during the 

experiments are illustrated in Figure 4.16 for the specimens with the relatively 

flexible adhesive SO and in Figure 4.17 for the specimens with the relatively stiff 

adhesive 3M. The dots again represent the experimentally measured deformations 

and the full line is the deformation U3 from the finite element model. The scatter 

of the experimental values is larger compared to the experimental values of the 

strains. The maximal deformations of the specimens with a glass thickness of 19 

mm were too small to measure properly with LVDTs and are therefore not 

depicted. Furthermore, the deformation with a diameter of 30 mm with SO was 

also too small. A good comparison between the experimental and numerical values 

can be obtained. The difference in adhesive type is also clear here; the glass panel 

will remain straight under the connection for the 3M-specimens and will deform 

under the connection for the SO-specimens. Furthermore, as expected, the 

thinner the glass panel, the larger the deformation. 
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FIGURE 4.16:  COMPARISON OF THE NUMERICAL AND EXPERIMENTAL DEFORMATION U3 OF 

THE LOCAL MODEL FOR SO.  

  

  
FIGURE 4.17:  COMPARISON OF THE NUMERICAL AND EXPERIMENTAL DEFORMATION U3 OF 

THE LOCAL MODEL FOR 3M. 

4.2.5. Parametric study 

The validated numerical model now enables a more thorough investigation of the 

geometrical and material aspects of an adhesive point-fixing loaded in tension. In 

this paragraph, firstly the diameter of the connector (ϕ) is described together with 

the thickness of the glass (tglass). Next, the study of the adhesive thickness (tadhesive) 

together with the Young’s modulus of the adhesive (Eadhesive) and finally the 

influence of the Poisson ratio (νadhesive) is described. The values for each parameter 
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are summarized in Table 4.6 for a flexible adhesive and in Table 4.7 for a stiff 

adhesive. The maximum value of the maximal principal stress was obtained for 

the glass panel and the adhesive layer.  With these values the influence of each 

parameter was investigated. Indeed, the maximal principal stress is often used as a 

failure criterion for structural glass and adhesives (Crocombe et al. 1990; Clark & 

McGregor 1993; Dean et al. 2004; Haldimann et al. 2008; Christensen 2013). Also 

the maximal deflection of the glass panel was obtained. The hyperelastic material 

model of the MS-polymer corresponds for small deformations to an linear-elastic 

material model with a Young’s modulus of 9.02 MPa and a Poisson’s ratio of 0.49. 

For the convenience in the parametrical study a Young’s modulus of 10 MPa and 

a Poisson’s ratio of 0.49 was used to simulate a flexible adhesive. For the 

simulation of a stiff adhesive a Young’s modulus of 2000 MPa and a Poisson’s 

ratio of 0.39 was used. The applied force on the numerical model was always equal 

to 1 kN. 

TABLE 4.6:  THE INVESTIGATED PARAMETERS AND THEIR VALUES FOR THE FLEXIBLE 

ADHESIVE. 

Parameter Symbol and unit Values 

Connector diameter ϕ  [mm] 30, 50, 70, 100 

Glass thickness tglass  [mm] 2, 4, 9 ,12 15, 19 

Adhesive thickness tadhesive  [mm] 0.5, 1, 2, 5, 10  

Adhesive Young’s 

modulus 

Eadhesive  [MPa] 0.5, 1, 5, 10, 20, 50 

Adhesive Poisson’s ratio νadhesive  [-] 0.47, 0.48, 0.49, 0.495, 0.499 

TABLE 4.7:  THE INVESTIGATED PARAMETERS AND THEIR VALUES FOR THE STIFF ADHESIVE. 

Parameter Symbol and 

unit 

Values 

Connector diameter ϕ  [mm] 15, 30, 50, 70, 100 

Glass thickness tglass  [mm] 2, 4, 9 ,12 15, 19 

Adhesive thickness tadhesive  [mm] 0.05, 0.1, 0.2, 0.5, 1  

Adhesive Young’s 

modulus 

Eadhesive  [MPa] 50, 200, 1000, 2500, 5000, 

10000 

Adhesive Poisson’s ratio νadhesive  [-] 0.35, 0.37, 0.39, 0.41, 0.43 

 

Connector diameter and glass thickness 
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The influence of the diameter of the connection was studied for values between 

15 and 100 mm, and the glass thickness varied between 2 and 19 mm. These values 

were studied for two types adhesive layers, i.e. a flexible and a stiff adhesive. As 

mentioned before, the flexible adhesive was modelled with a thickness of 2 mm, a 

Young’s modulus of 10 MPa and a Poisson’s ratio of 0.49 and the stiff adhesive 

with a thickness of 0.2 mm, a Young’s modulus of 2000 MPa and a Poisson’s ratio 

of 0.39. The maximum value for the maximal principal stress in the glass panel for 

each studied connector and glass thickness is depicted in Figure 4.18a. An 

increasing diameter had a positive effect on the stresses, i.e. decreasing the 

occurring stresses. A larger diameter will support the glass panel over a larger 

surface, resulting in lower stresses. The maximal principal stresses in the adhesive 

layers are given in Figure 4.18b. Also the maximum value for the maximal principal 

stress decreases with an increase of the connector diameter and glass thickness. 

However, the effect of the connector diameter is more pronounced with the 

flexible adhesive and the effect of the glass thickness is more pronounced with the 

stiff adhesive. This confirms the assumptions from the experiments that thin glass 

panels will yield larger stress concentrations for stiffer adhesives and that the 

diameter is more determinative for more flexible adhesives. 

Specimens with a larger diameter will have a larger deflection, as is visualised in 

Figure 4.18c. The decrease of stiffness of the glass panel is due to the increase of 

the size of the glass panel. Indeed, with the SLG-method the size of the glass panel 

depends on the diameter, i.e. the width and length of the glass panel is equal to 

seven times the connector diameter and the support diameter is equal to six times 

the connector diameter. When the glass panel has a fixed geometry and support 

diameter, one would expect that the glass deformation would decrease with 

increasing connector diameter. The increase in thickness of the glass will increase 

the moment of inertia of the glass panel. This increase of the rigidity of the panel 

will result in lower stresses and deformations. The reduction in stress between 9 

mm and 19 mm thick glass is an average factor of 3.5, while the used volume will 

only rise with a factor of 2.1, so there is an economical benefit as well.  
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a)  

b)  

c)  

FIGURE 4.18:  MAXIMUM VALUE OF THE MAXIMAL PRINCIPAL STRESS IN A) THE GLASS PANEL, 

B) THE ADHESIVE LAYER AND C) THE MAXIMAL DEFORMATION OF THE GLASS PANEL IN 

FUNCTION OF THE GLASS THICKNESS AND CONNECTOR DIAMETER WITH (LEFT) A FLEXIBLE 

ADHESIVE AND (RIGHT) A STIFF ADHESIVE FOR A LOAD OF 1 KN. 
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Adhesive thickness and Young’s modulus 

The values of the Young’s modulus of the adhesive from Table 4.7 were applied 

on the reference configuration, i.e. a glass thickness of 10 mm and a connector 

diameter of 50 mm. The Poisson’s ratio was kept constant on a value of 0.49 for 

a flexible configuration and 0.39 for a stiff configuration. The influence of the 

adhesive thickness and Young’s modulus on the stress in the glass is illustrated in 

Figure 4.19a. With increasing Young’s modulus of the adhesive, the maximum 

principal stress in the glass panel raised. This effect was less pronounced for lower 

Young’s moduli. Also by reducing the adhesive thickness, the adhesive behaved 

more stiff and larger stress concentration aroused.  

However, the maximal deformation of the glass panel increased with increasing 

the adhesive stiffness for small Young’s moduli, as is depicted in Figure 4.19c, and 

decreased with increasing adhesive stiffness for larger Young’s moduli. This 

phenomenon is also visible with decreasing the adhesive thickness. With thick and 

flexible adhesives, the adhesive layer will be the part that deforms the most and so 

reducing the deformation of the glass panel. However, this effect has a threshold; 

from a certain stiffness the adhesive layer will locally strengthen the connection 

and thus restricting the movement of the connection and decrease the 

deformation again. This effect is also visible in the adhesive layer, depicted in 

Figure 4.19b; from the threshold value the stress in the adhesive layer will increase 

more pronounced. For this configuration, for a Young’s modulus of 5 MPa, the 

deformation was independent of adhesive thickness. 

This effect is not visible with the stiffer configuration. Thick and flexible adhesive 

layers will increase the deformation capacity of the glass panel but the stresses in 

the glass panel will reduce due to the higher mobility of the connection. From 

Figure 4.19b, the adhesive Young’s modulus has a larger influence on the 

maximum value of the principal stress in the adhesive layer than in the glass panel. 

The stress concentrations in the adhesive layer will increase more rapidly with 

increasing adhesive stiffness. 
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a)  

b)  

c)  

FIGURE 4.19:  MAXIMUM VALUE OF THE MAXIMAL PRINCIPAL STRESS IN A) THE GLASS PANEL, 

B) THE ADHESIVE LAYER AND C) THE MAXIMAL DEFORMATION OF THE GLASS PANEL IN 

FUNCTION OF THE ADHESIVE THICKNESS AND ADHESIVE YOUNG’S MODULUS FOR (LEFT) A 

FLEXIBLE CONFIGURATION AND (RIGHT) A STIFF CONFIGURATION WITH A LOAD OF 1 KN. 
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Adhesive Poisson’s ratio 

To investigate the influence of the Poisson’s ratio, the adhesive layer is modelled 

with five values of the Poisson’s ratio for each Young’s modulus as summarised 

in Table 4.6 and Table 4.7. The reference configuration, i.e. a glass thickness of 10 

mm and a connector diameter of 50 mm, is used once more for the geometrical 

parameters. The adhesive thickness is kept constant on a value of 2 mm and 0.2 

mm for the flexible and stiff configuration, respectively. The influence of the 

adhesive Poisson’s ratio in function of the Young’s modulus is illustrated in Figure 

4.20a for the maximum value of the maximal principal stress in the glass panel. 

The influence of the Poisson’s ratio is rather small compared to the influence of 

the adhesive Young’s modulus. A decrease in the adhesive Poisson’s ratio will 

reduce the maximal occurring stresses in the glass panel slightly. The maximum 

values for the maximal principal stress in the adhesive layer are depicted in Figure 

4.20b. Again the influence is small and the stress depends proportionally on the 

Poisson’s ratio. This effect is practically only observable for larger values for the 

adhesive Young’s modulus. The increase in stress with increasing adhesive 

Poisson’s ratio can be attributed to the increase of the transversal deformation of 

the adhesive layer. However, this transversal deformation is constrained by the 

boundary conditions, i.e. the steel connector and the glass panel, resulting in an 

increase of the maximal principal stresses in the adhesive layer and glass panel. 

This observation was also noticeable in previous research (Dispersyn et al. 2014; 

Santarsiero 2015).  
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a)  

b)   

c)  

FIGURE 4.20:  MAXIMUM VALUE OF THE MAXIMAL PRINCIPAL STRESS IN A) THE GLASS PANEL, 

B) THE ADHESIVE LAYER AND C) THE MAXIMAL DEFORMATION OF THE GLASS PANEL TIN 

FUNCTION OF THE ADHESIVE POISSON’S RATIO  AND ADHESIVE YOUNG’S  MODULUS FOR 

(LEFT) A FLEXIBLE CONFIGURATION AND (RIGHT) A STIFF CONFIGURATION FOR A LOAD OF 

1KN. 
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4.3. Shear 

In the previous paragraph, adhesive point-fixings under uniaxial tension were 

studied. In this paragraph, the focus is on adhesive point-fixings under shear. As 

depicted in Figure 1.1 adhesive point-fixings can also be used to support glass 

facades. In this configuration without mechanical self-weight supports, the 

connection will predominantly be loaded by vertical actions, i.e. the dead load of 

the glass panel. The aim of this paragraph is to validate and investigate the shear 

component of the numerical local component, i.e. σFxy of Eq. (2.3). Metal 

connectors used for the connection between glass panels and their surroundings 

exist in a lot of shapes. Therefore, the load on the glass panel will have a certain 

eccentricity that varies with the shape of the connector. With a parametric study, 

the obtained FEA-model was then used to study the mechanical effect of 

geometrical and material parameters, such as the connection’s diameter, load 

eccentricity, adhesive thickness and the adhesive modulus of elasticity. 

4.3.1. Test specimens and materials 

The experiments were conducted with three different eccentricities and two 

adhesive types. Since the diameter of the local component must be at least six 

times the diameter of the connector diameter, the width and length of the glass 

plate was set at seven times the connector diameter. With a 50 mm connector 

diameter, this resulted in a glass panel of 350 mm by 350 mm which was supported 

along the vertical edges over an area with a width of 20 mm. The thickness of the 

glass panel was equal to 10 mm, i.e. the reference configuration of the tensile 

experiments. For the validation, the strain at three different distances from the 

centre on the glass plate were measured using strain gauges. The positions of the 

strain gauges were determined by means of a preliminary FEA model and are 

depicted in Figure 4.21a. The tests were interrupted before failure to preserve the 

panels for reuse. After each test, the panel was rotated about the z-axis by 90° and 

tested again. This process was repeated four times, resulting in gaining a complete 

strain distribution in the glass panel. The fourth turn was to compare the measured 

strains with strains in the first position to detect possible effects of e.g. fatigue of 

the adhesive. The strain distribution can be presented by four strain paths which 

include all strain gauges, as depicted in Figure 4.21b. As a result of symmetry, strain 

paths 45° and 135° yielded the same outcome. Due to economic reasons the 
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strains of two out of five test specimens were completely determined, i.e. ε1 till ε6. 

The three remaining specimens were used to measure the variation between the 

specimens and only ε1 and ε4 was measured.  

The selection of the adhesives was made in Chapter 3 and was the same as for the 

tensile experiments, i.e. the MS-polymer Soudaseal 270 HS (SO) and the 2c-epoxy 

3M™ Scotch-Weld™ 9323 B/A (3M). The shear specimens were produced in the 

same way as the tensile specimens. For each adhesive type, five specimens were 

fabricated and tested; for three load eccentricities this gave a total of 150 

experiments. Before testing, the specimens were stored for four weeks in a climatic 

chamber at a constant temperature of 21°C and a relative humidity of 45% without 

any UV-radiation. The material properties of the two selected adhesives were 

determined in Chapter 4 and were described in previous paragraphs.  

a) b) 

FIGURE 4.21 :  A) DIMENSIONS IN MM. OF THE GLASS PLATE WITH POSITION OF STRAIN 

GAUGES. B) THE FOUR STRAIN PATHS INCLUDING ALL STRAIN GAUGES. 

4.3.2. Test method  

As stated above, the local component is the glass plate with a diameter at least six 

times the diameter of the connector. In the experiments, the glass plate was 

supported along the vertical edges over an area with a width of 20 mm, as depicted 

in Figure 4.21, and the connector was loaded with a shear force until a certain 

threshold value. The back side of the glass panel was supported over the entire 

surface by a steel plate covered with a PTFE-film to minimize friction. The front 

side was supported over a width of 20 mm by two steel bars, which were also 
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coated with a PTFE-film. The shear force was applied by a push bar on the 

connector at a distance of 0 mm, 15 mm and 25 mm from the outer edge of the 

adhesive layer. The test configuration is depicted in Figure 4.22 and a visualisation 

of the test setup for the three eccentricities in Figure 4.23 for SO. The tests were 

performed on a universal electro-mechanic Zwick/Roell 10kN ProLine testing 

machine with a load cell of 10 kN using a displacement rate of 1 mm/min. A 

threshold load of 0.4 kN was chosen for the soft MS-polymer SO and 1,5 kN for 

the stiff  2c-epoxy 3M. 

   

FIGURE 4.22:  TEST SETUP FOR SHEAR 

 

FIGURE 4.23:  SETUP FOR SHEAR TESTS ON ADHESIVE POINT-FIXINGS FOR THE THREE 

ECCENTRICTIES WITH SO. (DIMENSIONS IN MM). 
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4.3.3. Numerical model 

The finite element software Abaqus® was used to build a three-dimensional finite 

element model and to numerically analyse the connection. Due to symmetry only 

half of the glass plate was numerically modelled. Since stress concentrations were 

again expected around the connector, local refinement of the mesh pattern was 

introduced. The same square mesh pattern as in the numerical tensile model was 

applied inside the circular pattern to avoid mesh singularities in the centre of the 

connector. At the back side of the glass panel a rigid body was modelled to 

simulate the test frame, this rigid body prevents only backward movements. The 

front side of the glass panel was completely constrained along the support area 

with a width of 20 mm. The applied force was equal to 350 N for the MS-polymer 

and 1000 N for the 2c-epoxy. Again the adhesive layer was connected to the glass 

and the metal connector by means of a tie-constraint with the same properties as 

in the numerical tensile model. The contact between the connector and the push 

bar was modelled as a surface-to-surface contact with a hard contact pressure-

overclosure relationship. The latter minimizes the penetration of the slave surface 

into the master surface at the constraint location and does not allow the transfer 

of tensile stress across the interface. Also separation after contact was enabled. 

Between the rigid body and the glass panel frictionless behaviour was applied. An 

exploded view of the separate parts and their contact properties in the numerical 

shear model is depicted in Figure 4.24. The element sizes and types for the 

different components in the numerical shear model were the same as for the 

numerical tensile model and are summarized in Table 4.4. 
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FIGURE 4.24:  EXPLODED VIEW OF THE NUMERICAL SHEAR MODEL WITH THE CONTACT 

PROPERTIES FOR AN ECCENTRICTY OF 15 MM. 

4.3.4. Validation of numerical results 

As mentioned before, six strain gauges were used during each test to measure the 

occurring strains in the glass panel. By rotating the panel 90° about the z-axis after 

each test, the strains at 24 locations were gained. The obtained experimental results 

were used to validate the developed numerical model. The comparison between 

the experimental and numerical values is performed for the three eccentricities and 

two selected adhesives. This comparison is illustrated in Figure 4.25 for an 

eccentricity of 0 mm, in Figure 4.26 for an eccentricity of 15 mm and in Figure 

4.27 for an eccentricity of 25 mm. In these graphs the dots represents the 

experimentally measured strains, the full line is the numerical strain. Due to 

symmetry, the results for strain paths 45° and 135° are the same and are put 

together. Despite a certain scatter in the experimental results, a good agreement 

between the numerical and experimental results is achieved. Moreover, for the stiff 

adhesive, glass deformations under the connection are impeded by the adhesive. 

The strains even become zero or smaller in the centre of the glass panel. As 

expected, the strains increase with increasing eccentricity, due to the increase of 

the bending moment. Based on the comparison between the numerical and 

experimental values for the strains, it can be concluded that the FEA model for 

shear is hereby validated. As expected, the highest strains occur along path y. The 

used test method did not give measurable fatigue in the adhesive layer. 
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FIGURE 4.25:  COMPARISON BETWEEN THE NUMERICAL AND EXPERIMENTAL VALUES ALONG 

THE FOUR STRAIN PATHS FOR THE MS-POLYMER SO AND THE 2C-EPOXY 3M FOR AN 

ECCENTRICITY OF 0 MM. 
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FIGURE 4.26:  COMPARISON BETWEEN THE NUMERICAL AND EXPERIMENTAL VALUES ALONG 

THE FOUR STRAIN PATHS FOR THE MS-POLYMER SO AND THE 2C-EPOXY 3M FOR AN 

ECCENTRICITY OF 15 MM. 
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FIGURE 4.27:  COMPARISON BETWEEN THE NUMERICAL AND EXPERIMENTAL VALUES ALONG 

THE FOUR STRAIN PATHS FOR THE MS-POLYMER SO AND THE 2C-EPOXY 3M FOR AN 

ECCENTRICITY OF 25 MM. 
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4.3.5. Parametric study 

The validated numerical shear model enables a thorough investigation of 

geometrical and material parameters of a point-fixing loaded in shear. Firstly the 

diameter of the connector (ϕ) was investigated together with the eccentricity (e). 

Next, the adhesive thickness (tadhesive) together with the Young’s modulus of the 

adhesive (Eadhesive) was studied. The values for each parameter are summarized in 

Table 4.8. The maximum value of the maximal principal stress is obtained for the 

glass panel and the adhesive layer separately, together with the maximum value of 

the shear stress in the adhesive layer. The applied force for every configuration in 

this parameter study equals 1 kN. 

TABLE 4.8:  INVESTIGATED PARAMETERS AND CORRESPONDING VALUES.  

Parameter Symbol and unit Values 

Connector diameter ϕ [mm] 15, 30, 50, 70 

Eccentricity e [mm] 0, 15, 30, 45, 60 

Adhesive thickness tadhesive [mm] 0.05, 0.1, 0.2, 0.5, 1  

Adhesive Young’s 

modulus 

Eadhesive [MPa] 50, 200, 1000, 2500, 5000, 

10000 
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Connector diameter and load eccentricity 

This parametric study was only performed on the stiff adhesive, which was 

modelled with a thickness of 0.2 mm, a Young’s modulus of 2000 MPa and a 

Poisson’s ratio of 0.39. The maximal principal stress in the glass panel for each 

studied connector diameter is depicted in Figure 4.28a in function of the load 

eccentricity. An increasing diameter has a positive effect on the stresses. A larger 

diameter will support the glass panel over a larger surface, resulting in lower 

stresses. The maximal principal stress in the adhesive layer is given in Figure 4.28b 

and the maximum value for the shear stress in the adhesive layer in Figure 4.28c. 

Further, the maximum value for the maximal principal stress decreases with an 

increase of the connector diameter. As expected, with increasing eccentricity the 

stresses in the glass panel and adhesive layer will increase due to the increasing 

bending moment. The influence of the eccentricity is more pronounced for smaller 

diameters. Moreover, the influence of the eccentricity is almost linear, i.e. doubling 

the load eccentricity will result in almost a doubling of the stress 

 

a)  b) 

c)  
FIGURE 4.28:  MAX. VALUE OF THE MAXIMAL PRINCIPAL STRESS IN A) THE GLASS PANEL, B) 

THE ADHESIVE LAYER AND C) THE MAXIMUM VALUE OF THE SHEAR STRESS IN THE 

ADHESIVE LAYER IN FUNCTION OF THE CONNECTOR DIAMETER AND ECCENTRICITY.  
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Adhesive thickness and Young’s modulus 

The experiments showed that the Young’s modulus of the adhesive has a 

significant influence on the occurring strains in the glass panel. The values from 

Table 4.8 are applied on the reference configuration, i.e. a connector diameter of 

50 mm and a load eccentricity of 15 mm. The Poisson’s ratio was kept constant 

on a value of 0.39. The influence of the adhesive thickness and Young’s modulus 

is illustrated in Figure 4.29. The maximum principal stress in the glass panel will 

rise with an increase of the Young’s modulus of the adhesive. Also, by reducing 

the adhesive thickness, the adhesive will behave stiffer and larger stress 

concentrations in the glass panel will arise. The latter is also visible in the adhesive 

layer; thick and flexible adhesive layers will decrease the stresses in the glass panel 

due to the higher mobility of the connection. In contrast to thinner and stiffer 

adhesive layers which locally strengthen the connection and thus restrict the 

movement of the connection and introduce higher stresses.  

a)  b) 

c)  

FIGURE 4.29:  MAX. VALUE OF THE MAXIMAL PRINCIPAL STRESS IN A) THE GLASS PANEL, B) 

THE ADHESIVE LAYER AND C) THE MAXIMUM VALUE OF THE SHEAR STRESS IN THE 

ADHESIVE LAYER IN FUNCTION OF THE ADHESIVE THICKNESS AND YOUNG’S MODULUS.  
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4.4. Multi-axial loading 

In the previous paragraphs, adhesive point-fixings under uniaxial tension and 

shear were studied. In this paragraph, adhesive point-fixings loaded with a 

combination of tension and shear will be studied. Adhesive point-fixings can be 

used to support glass facades, as depicted in Figure 1.1c and d. In this 

configuration, the connection will predominantly be loaded by vertical actions, i.e. 

the dead load of the glass panel, but horizontal actions will also occur, i.e. wind 

loads. Moreover, point-fixings can also be used for supporting glass panels under 

an angle as depicted in Figure 1.1e and f. In these situations, the connections will 

also be multi-axially loaded, i.e. a combination of tension and shear. The angle 

between the resultant force and the tensile force can vary, as it depends on the 

magnitude of the wind load or the angle of the glass panel. To gain a validated 

model, experiments were performed with three load eccentricities (15 mm, 30 mm 

and 45 mm), three multi-axial angles (22.5°, 45° and 67.5°) and the two selected 

types of adhesives. 

 Test specimens and materials 

As for the tensile and shear experiments, the SLG-method was also used to set the 

dimensions of the test specimens. The diameter of the local component ϕloc was 

determined to be at least six times the diameter of the borehole ϕhole, as expressed 

in Eq. (2.2). The width and length of the glass plate were seven times the connector 

diameter. The connector diameter was set on 50 mm, resulting in a glass panel of 

350 mm by 350 mm which was supported along a circumference with a diameter 

of 300 mm. The thickness of the glass panel was equal to 10 mm, as depicted in 

Figure 4.30. 
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FIGURE 4.30:  DIMENSIONS OF THE GLASS PLATE FOR THE MULTI-AXIAL LOCAL COMPONENT. 

The tests were performed using a universal electro-mechanical test machine 

Instron 5800R (frame 4505 retrofitted with a digital controller 8800). A load cell 

of 10 kN was used to obtain the test results presented here. The load of the 

connector was measured by the test machine. Furthermore, to validate the multi-

axial local component, the strains at the surface of the glass panel were measured 

by means of strain gauges. The strain at three different distances from the centre 

on the glass plate was measured. The positions of the strain gauges were also here 

determined by means of a preliminary FEA model. Due to economic reasons the 

stresses of only two out of five test specimens were completely determined, where 

the three remaining specimens were used to measure the variation between the 

specimens. The dimensions of the glass plate, the circumference of the support 

and the positions of the strain gauges for these two types are illustrated in Figure 

4.31a and b. The tests were interrupted before failure to preserve the panels for 

reuse. Since the specimens were symmetrical, the number of needed strain gauges 

could be reduced. After measuring the strains at the upper side of the panel, the 

panel was rotated about the z-axis by 180° to measure the strains at the lower side 

of the panel. As a result of symmetry, three strain paths were set, as depicted in 

Figure 4.31c. As previously described, an adhesive point-fixing can be subjected 

to wind loads and gravity resulting in a tensile force and a shear force respectively. 

Combining both forces results in a load which acts on the connection under a 

certain angle. The angle between the resultant force and the tensile force (wind 

load) is defined as the multi-axial angle. This angle is illustrated as θ in Figure 4.32. 
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FIGURE 4.31 :  POSITIONING OF THE STRAIN GAUGES FOR THE TWO TYPES A) AND B), AND C) 

THE THREE RESULTING STRAIN PATHS.  

 
FIGURE 4.32:  DEFINITION OF THE MULTI-AXIAL ANGLE θ .  

Chapter 2 and the previous paragraphs demonstrated that many parameters have 

an influence on the stress distributions and strength of adhesive point-fixings. As 

in the previous paragraphs, experiments were conducted with different 

geometrical and material parameters to obtain a complete validated numerical 

model. As mentioned above, tree different multi-axial angles and three different 

eccentricities were used for the two adhesives. To obtain sufficient understanding 

of the reciprocal effect of the parameters, a full factorial design was preferred. 

Table 4.9 summarises the values of the varying parameters. Each combination 

consisted of five test specimens to deal with variations between the specimens, 

hence a total of 180 tests were performed. 
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TABLE 4.9:  TEST COMBINATIONS FOR THE MULTI-AXIAL EXPERIMENTS . 

Multi-axial angle [°]   

22.5 45.0 67.5   

X X X 15  

X X X 30 Eccentricity [mm] 

X X X 45  

 Test method 

The three tested eccentricities are also visible in Figure 4.32. As described earlier, 

the MS-polymer Soudaseal 270 HS (SO) and the epoxy 3MTM Scotch WeldTM 9323 

B/A (3M) were used to determine the influence of the stiffness of the adhesive on 

the behaviour of the adhesive point-fixing. To ensure that the adhesive thicknesses 

were maintained, custom-made brackets were used during the curing of the 

adhesives, as depicted in Figure 4.33 for the MS-polymer. The adhesive thickness 

of SO was equal to 2 mm according to the technical data sheet of the producer 

and equal to 0.2 mm for the epoxy 3M. To avoid climatic influences during the 

curing process the specimens were stored for four weeks in a climatic chamber at 

a constant temperature of 21°C and a relative humidity of 45% without any UV-

radiation. 

   
FIGURE 4.33:  EXAMPLE OF THE BRACKET FOR THE MS-POLYMER SO WITHOUT ADHESIVE 

(LEFT) AND WITH ADHESIVE (RIGHT).  

To test the specimens under a multi-axial angle, a special test frame was fabricated. 

A visualization of the test frame is depicted in Figure 4.34. By supporting the glass 

panel under a well-defined angle and by loading the connector with a vertical force, 

a multi-axial load condition was obtained. Since the test frame was modular, the 

frame could be used for the three selected angles and eccentricities. The test frame 
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consisted of three main parts: (i) an underlying structure which was connected 

with the test machine, (ii) a movable structure which consisted of a steel plate with 

an opening which supported the glass panel, and (iii) two leverages that connected 

the movable structure to the underlying structure. These leverages could be 

attached at different locations to realize the three selected angles between the 

movable and underlying structure, as illustrated in Figure 4.35. From preliminary 

experiments the failure load of 0.58 kN for SO and 8.10 kN for 3M  was 

determined. For the soft MS-polymer a load of 0.35 kN was chosen as the 

threshold value and 1.5 kN for the stiff 2c-epoxy.  

 

FIGURE 4.34:  3D VISUALIZATION OF THE TEST FRAME FOR THE MULTI-AXIAL EXPERIMENTS. 

 
FIGURE 4.35:  THE THREE LOAD CONFIGURATIONS UNDER AN ANGLE OF A) 22.5°, B) 45.0° 

AND C) 67.5°.  

 Numerical model 

Once again, the finite element software Abaqus® was used to build a three-

dimensional finite element model to numerically analyse the connection. Due to 

symmetry only half of the glass plate was numerically modelled and local 
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refinement of the mesh pattern was introduced. The same square mesh pattern as 

in the numerical tensile and shear model was applied inside the circular pattern to 

avoid mesh singularities. The boundary conditions during the experiments are 

illustrated in Figure 4.36. These were taken into account in the numerical model. 

Along the circular line of support, the upward displacement was prevented as the 

boundary condition for Uz was set to zero and at the edge as Uy = 0. The load was 

introduced as a y- and z-component, representing the shear and tensile force, 

respectively. The amplitude of each component depended on the multi-axial angle. 

The two boundary conditions and the components of the applied load are depicted 

in Figure 4.37. 

 

FIGURE 4.36:  BOUNDARY CONDITIONS DURING THE EXPERIMENTS. 

 

FIGURE 4.37:  BOUNDARY CONDITIONS IN THE NUMERICAL MODEL. 

Fz 

Fy 

z 

x 

y 

Uz = 0 

Uy = 0 



 
Chapter 4: Local model       113 

Again, the adhesive layer is connected to the glass and the metal connector by 

means of a tie-constraint with the same properties as in the numerical tensile and 

shear model. The element sizes and types for the different components in the 

numerical multi-axial model were the same as for the numerical tensile and shear 

model and are summarized in Table 4.4.  

 Validation of numerical results 

As mentioned before, six strain gauges were used during each test to measure the 

occurring strains in the glass panel. By rotating the panel 180° after each test, the 

strains were obtained at 18 locations. The obtained experimental results were used 

to validate the developed numerical model. The comparison between the 

experimental and numerical values is performed for the three eccentricities, the 

three multi-axial angles and the two selected adhesives. The applied load was equal 

to 0.3 kN for SO and 1.45 kN for 3M. The results are presented along the three 

strain paths which include all strain gauges. The strain gauges measured the strains 

perpendicular to these paths, as depicted in Figure 4.31c. The graphs are always 

constructed in the same way, with the dots representing the experimentally 

measured strains and the full line the numerical strain. Four configurations are 

depicted in Figure 4.38 and Figure 4.39, the other 14 configuration are given in 

Appendix B. Also here, as expected, a certain scatter in the experimental results 

occurred. Nevertheless, a good agreement between the numerical and 

experimental results is achieved. As with the tensile and shear tests, for the stiff 

adhesive, glass deformations under the connection are impeded by the adhesive. 

The strains even become zero or smaller in the centre of the glass panel. Moreover, 

the strains along the paths 45° and y increase with increasing eccentricity, due to 

the increase of the bending moment. This influence is more prominent with larger 

multi-axial angles. With larger multi-axial angles, the shear component will increase, 

increasing the bending moment acting on the glass panel. However, with 

increasing multi-axial angle the strains decrease as the connection is loaded in shear 

more than in tension. Shear forces will introduce lower strains in the glass panel 

than tensile forces. The strains along path x are not influenced by the eccentricity, 

as the tensile component depends on the multi-axial angle and not the eccentricity. 

The strains will decrease with an increase of the multi-axial angle. Based on the 

comparison between the numerical and experimental values for the strains, it can 

be concluded that the multi-axial FEA model is hereby validated. 
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FIGURE 4.38:  CONFIGURATION WITH ECCENTRICITY OF 15 MM AND A MULTI-AXIAL ANGLE 

OF 22.5°.  
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FIGURE 4.39:  CONFIGURATION WITH ECCENTRICITY OF 45 MM AND A MULTI-AXIAL ANGLE 

OF 67.5°.  
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 Superposition of the local stresses 

As mentioned before, the SLG-method consists of the superposition of a global 

and local component. The sum of the stresses σFz, σFxy and σM from the local 

component and the global stress σglobal multiplied with a stress concentration factor 

k must be less than the critical stress σR according to Eq. (2.3). The local stresses 

σFz, σFxy and σM are derived by applying each support reaction (Fz, Fxy, M) on the 

local model with Fxy determined by Eq. (4.2). These support reactions are derived 

from the global model. The forces applied on the multiaxial model from previous 

paragraph contain all these three support reactions. So instead of using a local 

numerical model for each support reaction, the multi-axial model can be used to 

determine directly the sum of the local stresses. This superposition is shown in 

Figure 4.40. The applied force F, multiaxial angle θ and eccentricity e can be easily 

determined with Eq. (4.3), (4.4) and (4.5), respectively. 

𝐹𝑥𝑦 = √𝐹𝑥
2 + 𝐹𝑦

2 (4.2)  

𝐹 = √𝐹𝑧
2 + 𝐹𝑥𝑦

2  (4.3)  

𝜃 = 𝑐𝑜𝑠−1 (
𝐹𝑧
𝐹
) (4.4)  

𝑒 =
𝑀

𝐹𝑥𝑦
 (4.5)  

The validation of this principle of superposition can be performed with the 

developed local numerical models from the previous paragraphs. Only a numerical 

model for the moment is developed additionally. The validation consist of a 

comparison between the sum of the local stresses and the stresses obtain from the 

multi-axial model, as given in Eq. (4.6).  

𝜎𝐹𝑧 + 𝜎𝐹𝑥𝑦 + 𝜎𝑀 = 𝜎𝑚𝑢𝑙𝑡𝑖 (4.6)  
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FIGURE 4.40:  THE SUM OF THE LOCAL STRESSES CAN BE COMBINED IN THE MULTIAXIAL 

MODEL 

The stress S22 is compared along the path y according to Figure 4.21 and Figure 

4.31, as along this path the highest stresses occur. This comparison is performed 

for four configurations of the eccentricity and the multi-axil angle, i.e. E0-A0 (an 

eccentricity of 0 mm and an angle of 0°), E15-A22.5, E30-A45 and E45-A67.5 for 

the 2c-epoxy, as the epoxy gave the most complex stress distributions. These four 

comparisons are given in Figure 4.41. As expected, the stress from the multi-axial 

model corresponds very well with the superposition of the local stresses. This 

enables a thorough study of the stress components of the multi-axial model. In 

Figure 4.42 the different local components (tension, shear and moment) are given 

with the superposition of these components. As the superposition for E0-A0 only 

consists of the tensile component, this graph is not depicted. This superposition 

shows that the tensile force and bending moment induce the highest stresses in 

the glass panel. The magnitude of the latter will increase with an increase of the 

eccentricity and multi-axial angle, while the former decreases with an increase of 

the multi-axial angle. The shear component has a smaller influence on the stresses 

on the glass panel.   
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FIGURE 4.41 :  COMPARISON BETWEEN THE SUPERPOSITION OF THE LOCAL STRESSES 

(COMBINED) WITH THE STRESS FROM THE MULTI-AXIAL MODEL (MULTI).  

 

FIGURE 4.42:  THE DIFFERENT LOCAL COMPONENTS OF THE SUPERPOSITION.  

  

-5

0

5

10

15

20

25

-180 -120 -60 0 60 120 180

S2
2

 [M
P

a]

Distance along path y [mm]

E0-A0

Combined

Multi

-2.5

5

12.5

20

-180 -120 -60 0 60 120 180

S2
2

 [M
P

a]

Distance along path y [mm]

E15-A22.5

Combined

Multi

-5

5

15

25

-180 -120 -60 0 60 120 180

S2
2

 [M
P

a]

Distance along path y [mm]

E30-A45

Combined

Multi

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

S2
2

 [M
P

a]

Distance along path y [mm]

E45-A67.5

Combined

Multi

-2.5

5

12.5

20

-180 -120 -60 0 60 120 180

S2
2

 [M
P

a]

Distance along path y [mm]

E15-A22.5

Combined
Tension

Moment
Shear

-15

0

15

30

-180 -120 -60 0 60 120 180

S2
2

 [M
P

a]

Distance along path y [mm]

E30-A45

Combined

Tension

Moment Shear

-30

-20

-10

0

10

20

30

40

-180 -120 -60 0 60 120 180S2
2

 [M
P

a]

Distance along path y [mm]

E45-A67.5

CombinedTension
Moment

Shear



 
Chapter 4: Local model       119 

4.5. Summary and conclusions 

In this chapter, the mechanical behaviour of adhesive point-fixings under three 

different load configurations (uniaxial tension, uniaxial shear and multi-axial load) 

was investigated. The entire connection was studied by supporting the glass panel 

at a circumference equal to 6 times the diameter of the connection. To gain a total 

validated local model, the experiments were performed with three different 

diameters (30 mm, 50 mm and 70 mm), three different glass thicknesses (4 mm, 

10 mm and 19 mm), three load eccentricities (0 mm, 15 mm and 25 mm), three 

multi-axial angles (22.5°, 45.0° and 67.5°) and two adhesive types (SO – 3M).  

The experimental results were used to validate the numerical local models for the 

three load configurations. For the validation, the strains in the glass panel at three 

different distances from the centre were measured using strain gauges. The 

numerical results corresponded well with the experimental values. Based on the 

comparison between the numerical and experimental values for the strains and 

deformations, it can be concluded that the local FEA models are hereby validated. 

For tension, it can be concluded from the experiments that the connector diameter 

is more determinative for more flexible adhesives and the glass thickness for rather 

stiff adhesives. The location of maximal strain was at the centre of glass panel for 

the configuration with the flexible adhesive and at the outside of the connector 

with the stiff adhesive. This was also observed by the location of the crack 

initiation when the specimens fail due to glass failure. For shear, the experiments 

demonstrated that the occurring strains are higher in case of a stiff adhesive and 

for a larger eccentricity. In the three load configurations, glass deformation under 

the connection was impeded by the adhesive connection for the stiff adhesive. 

The strains even become zero or smaller in the centre of the glass panel. With 

larger multi-axial angles, the shear component increase, increasing the bending 

moment acting on the glass panel. However, with increasing multi-axial angle the 

strains decrease as the connection is loaded in shear more than in tension. Shear 

forces will introduce lower strains in the glass panel than tensile forces.  

The obtained FEA models were then used to study the influence of geometrical 

and material parameters more thoroughly, such as the connection’s diameter, the 

glass thickness, the adhesive modulus of elasticity, etc. Furthermore, the multi-

axial local model can be used to directly determine the sum of the local stresses. 
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Chapter 5: Global model 

A little nonsense now and then,  

is cherished by the wisest men. 

Roald Dahl, Charlie and the Great Glass Elevator 

5.1. Introduction 

The validation of the SLG-method will consists of a FEA comparison between 

the stress distributions obtained by on one hand by the SLG-method and on the 

other hand by a FEA model in which the total glass plate with the adhesive 

connections is built up in detail with volumetric elements. The stress distribution 

in the total model will be compared to the distribution obtained from the 

superposition of the local and global model. The local models were validated in 

previous chapter. The aim of this chapter is to validate the global model, indicated 

in Figure 5.1. As mentioned in Chapter 2, the distance of the connection to the 

edge or corner of the glass panel has a great influence on the mechanical behaviour 

of glass panels supported by bolted point-fixings. 

 

FIGURE 5.1 :  SLG-METHOD FOR ADHESIVE POINT-FIXINGS.  
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5.2. Materials and methods  

5.2.1. Test specimens and experimental setup 

As described in Chapter 2, the global component is very generally modelled, 

implying that the connections are modelled as discrete pinned joints. From this 

FEA model the global stress is obtained at a distance from the point-fixings equal 

to three times the connection diameter. To validate the numerical global 

component, experiments were conducted. As depicted in Figure 1.1, point-fixings 

can be used for supporting glass facades or glass canopies. In the case of glass 

canopies, the supports will mostly be placed underneath the glass panel so the 

connection is generally loaded under pressure by the dead load of the glass panel. 

Mechanical self-weight supports are mostly described for structural sealant glazing 

systems (SSGS) according to the ETAG 002 (2002) as depicted in Type I, II and 

III in Figure 4.2. Hence, additional mechanical self-weight supports will be used 

for adhesive point-fixings loaded in constant shear, as e.g. is the case in vertical 

facades with SSGS. With these mechanical self-weight supports the adhesive 

connection will only be loaded by horizontal actions. These remarks considered, 

only compressive forces for the validation of the global model were considered.  

The test specimen consisted of a full-scale glass panel of 1 m by 2 m with a nominal 

glass thickness of 10 mm supported by four discrete point-fixings. Point-fixings 

of only 10 mm diameter were made to resemble the discrete supports, as depicted 

in Figure 5.2. Since only compressive load is considered, a rubber (shore 70A 

hardness) was used between the steel connector and the glass panel, which highly 

improved the efficiency of the experiments. The use of a rubber results in an 

economic benefit because one full-scale panel could be used for different edge 

distances. The glass was annealed soda-lime silicate (float) glass with a Young’s 

modulus of 70000 MPa and a Poisson’s ratio of 0.23 (Outeiro et al. 2006; 

Haldimann et al. 2008).  
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FIGURE 5.2:  DISCRETE POINT-FIXINGS WITH A DIAMETER OF 10 MM. 

To obtain a complete validated numerical model, the experiments were conducted 

with five different edge distances, i.e. 35 mm, 105 mm, 175 mm and 245 mm. In 

literature and in real in-service bolted point-fixings, the edge distance is general 

between 60 mm and 150 mm (De Jaegher 2014). By also considering values smaller 

and larger, a larger range is obtained to investigate the influence of the edge 

distance. A modular test frame was produced. The applied uniform load was a 

uniform out-of-plane pressure, applied by 60 sand bags with a mass of 1.35 kg 

each, resulting in a total uniform load of 395 N/m². The loaded glass panel is 

depicted in Figure 5.3. The applied load is lower than the wind load that generally 

acts on glass panels, however, the load is still high enough for a validation. Using 

a numbered grid on the glass plate, the sand bags were always applied in the same 

sequence and positioning pattern.  

 
FIGURE 5.3:  LOADED TEST SETUP. 
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The setup enabled two different supporting conditions, i.e. a hinged and a fixed 

supporting condition. In detail, the hinged supporting condition was obtained by 

using a ball bearing between the support and  the underlying frame as depicted in 

Figure 5.4a. For the fixed supporting system a bolt was used, as depicted in Figure 

5.4b. As depicted in Figure 5.2, only the hinged connection was used in the 

experiments. Also visible in Figure 5.4 is the groove that made it possible to vary 

the edge distance between 0 and 250 mm. Since this groove is fabricated in a RHS 

profile, an extra reinforcement was applied by a block of steel which transferred 

the pressure load to the underlying foundation. The steel block also served as an 

anchor for the connection.  

      
FIGURE 5.4:  GRAPHICAL REPRESENTATION (LEFT) AND ACTUAL CONFIGURATION (RIGHT) 

OF A) THE HINGED CONNECTION BY MEANS OF A BALL BEARING AND B) THE FIXED 

CONNECTION BY MEANS OF A BOLT. 

5.2.2. Test method 

The numerical global model was validated by means of the occurring deflections 

and stresses in the glass panel. The deflection of the glass panel under the 

considered load was measured with five LVDTs. The deflection under de dead 

load of the glass panel was not measured. The stresses at the top surface of the 

glass panel were measured using 25 strain gauges forming four stress paths. The 

positions of the LVDTs and the four stress paths were determined with a 

preliminary FEA. The LVDTs are represented by small crossed circles in Figure 

5.5 and the strain gauges by full grey rectangles.  
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FIGURE 5.5:  POSITIONS OF THE FIVE LVDT’S AND THE 25 STRAIN GAUGES (IN MM).  

5.3. Numerical model 

The finite element software Abaqus® version 6.14 was used to build a finite 

element model. The geometry consists of a rectangular glass panel of 1 m by 2 m 

and a glass thickness of 10 mm. The load is applied for the uniform load 

configuration as a pressure load of 0.395 kN/m² acting on the glass surface. 

As the connection can be pinned or clamped to the underlying structure, the point-

fixing can be modelled in several ways, depending on the specific degrees of 

freedom, i.e. pinned or clamped. Both boundary conditions are depicted in Figure 

5.6. 

 
FIGURE 5.6:  TWO BOUNDARY CONDITIONS TO MODEL THE POINT-FIXING IN THE GLOBAL 

COMPONENT: A) PINNED AND B) CLAMPED.  

a) b) 
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For the validation, a hinged discrete point was modelled. For this type of model, 

shell elements are an obvious option. Nevertheless, previous research has shown 

that shell elements in comparison with volumetric elements do not reduce the 

calculation time significantly and in some cases even increase the calculation time 

(De Jaegher 2014; Devos 2014; Tournoy 2014). Also shell elements did not give a 

good correspondence with the experimental values. Consequently, the element 

type C3D20R, a 20-nodes quadratic brick element with reduced integration, was 

used with three elements over the glass thickness. A mesh refinement was applied 

around the point-fixing, as depicted in Figure 5.7. After a convergence study it 

became clear that three elements are sufficient between the panel edge and the 

point-fixing. This is equal to the number of elements that also Beyer (2007) 

proposed in his design-method.  

 
FIGURE 5.7:  GRAPHICAL REPRESENTATION OF THE MESH REFINEMENT AROUND SUPPORTS. 

5.4. Validation of the global model 

As mentioned above, 25 strain gauges were used to measure the occurring strains 

on the top surface of the glass panel. From these measured strains the stresses can 

be calculated with Hooke’s law. These calculated stresses form four stress paths, 

i.e. one along the long axis of the glass plate, two along the short axis and one at 

an angle of 45°. The positions of these stress paths with their names are depicted 

in Figure 5.8, the rectangles represent the strain gauges. Four displacement 

transducers also form one path along the long axis. This path and the remaining 

measuring point are also depicted in Figure 5.8, where the LVDTs are represented 

by crossed circles.  



Chapter 5: Global model  127 

 
FIGURE 5.8:  LOCATION OF THE FOUR STRESS PATHS OF THE STRAIN GAUGES (σ x,  σx’,  σy (1) 

AND σy (2)) AND THE LVDTS (ALL DISTANCES ARE IN MM). 

The obtained experimental results were used to validate the developed numerical 

model. The numerical stresses were obtained for the predefined four stress paths 

(Figure 5.8). All configurations that were tested were compared with the numerical 

model. In Figure 5.9 the comparison is made between the numerical and 

experimental results, with the four representing the stress paths and the lower two 

the deformation paths. The dots represent the experimentally measured stresses 

and deformations and the full line are the stresses and deformations from the finite 

element model. Furthermore, on the graphs the considered path is depicted in 

each graph. The legend for all graphs is given in Table 5.1.  

Besides the high stress concentrations at the discrete points, the numerical stress 

values give a good correspondence with the experimental stress values. The values 

for the deformation from FEA are reasonably close to the experimental values. 

This demonstrates that the numerical global model is reliable and, hence, could be 

used as global model.  

TABLE 5.1: LEGEND FOR THE COMPARISON GRAPHS FOR THE FULL SCALE NUMERICAL 

MODEL. 

Edge distance [mm] Numerical values Experimental values 

35   

105   

175   

245   
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FIGURE 5.9:  COMPARISON BETWEEN THE NUMERICAL AND EXPERIMENTAL VALUES ALONG 

THE FOUR STRESS PATHS AND TWO DISPLACEMENT PATHS FOR THE GLOBAL MODEL FOR 

FOUR EDGE DISTANCES.  

5.5. Summary and conclusions 

In this chapter, the global model for the SLG-method was experimentally validated. 

A transversally loaded glass panel was experimentally investigated by means of a 

modular test frame for a glass panel of 1 m by 2 m supported by discrete point-

fixings. The experimental results of four different edge distances were used to 

validate the numerical model. The numerical results corresponded very well with 

the experimental values. With a smaller corner and edge distance the field stress 

was more prominent. In contrast, the stresses were more uniform with larger 

distances.  
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Chapter 6: Total model 

If a cluttered desk is a sign of a cluttered mind,  

of what, then, is an empty desk a sign? 

Albert Einstein 

6.1. Introduction 

In this chapter, the aim is to develop a validated total numerical model of a full 

scale glass panel supported by adhesive point-fixings, i.e. the total model, as 

indicated in Figure 6.1. As mentioned in Chapter 2, together with the diameter of 

the connection, the distance of the connection to the edge or corner of the glass 

panel has a great influence on the mechanical behaviour of glass panels supported 

by bolted point-fixings. These parameters are expected to play a crucial role for 

adhesive point-fixings. However, for adhesive point-fixings the influence of the 

edge and corner distance and the connection diameter has not yet been extensively 

investigated. This chapter presents the results of an experimental study of the 

influence of these parameters on adhesive point-fixings together with a parametric 

study. 

 

FIGURE 6.1 :  SLG-METHOD FOR ADHESIVE POINT-FIXINGS.  
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6.2. Materials and methods  

6.2.1. Test specimens and experimental setup 

Considering the remarks mentioned in previous chapter, only compressive forces 

for the validation of the total model were considered. Due to membrane forces, 

the adhesive connections were not only loaded in compression but also in shear, 

given a complex state of forces acting on the connections. Since only compressive 

load is considered, a rubber (shore 70A hardness) was used as a replacement of 

the adhesive, which highly improved the efficiency of the experiments. The use of 

a rubber results in an economic benefit because one full-scale panel could be used 

for different edge distances. The rubber acts the same as more flexible adhesives 

under pressure such as silicones and MS-polymers. The rubber was connected by 

a double-sided tape to the connector and the glass panel. The double-sided tape 

by Tesa® could be removed from the glass using an appropriate amount of peeling 

force. The double-sided tape has a thickness of 0.24 mm compared to a thickness 

of 5.64 mm for the rubber, this will ensure that the double-sided tape has a 

negligible influence on the mechanical behaviour of the glass panel and the 

connections. Furthermore, the short-term tests were performed at room 

temperature, hence no creep occurred due to its visco-elastic behaviour. For safety 

reasons, it is very likely that laminated glass (LG) will be used in real-world 

applications. However, a single float glass panel was used in the experiments, as it 

led to an easier and more economical test setup and reduced the variables. The 

interpretation of the results was also more straightforward because time and 

temperature would otherwise have an influence on the mechanical behaviour of 

the glass panel.  

The same test specimen of Chapter 5 was used, i.e. a full-scale glass panel of 1 m 

by 2 m with a nominal glass thickness of 10 mm supported by adhesively 

connected point-fixings, by means of a rubber to a metal connector. For the metal 

connector a cylinder was made of stainless steel EN 10088-1 1.4404 (AISI 316L) 

and the glass was annealed soda-lime silicate (float) glass. The used material 

properties are listed in Table 6.1. The material properties of glass and stainless 

steel were derived from literature (Outeiro et al. 2006; Haldimann et al. 2008). 

Whereas the material properties of the rubber were obtained from small-scale 

compressive tests on the rubber discs used for the experiments. 
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TABLE 6.1 :  MATERIAL PROPERTIES. 

Material Young's modulus [MPa] Poisson's ratio [-] 

Glass 70 000  0.23  

Stainless steel 195 000  0.30  

Rubber 0.65  0.49  

To obtain a complete validated total numerical model, the experiments were 

conducted with different geometrical parameters and load configurations, i.e. five 

edge distances, two load configurations, two load locations, two boundary 

conditions, three different diameters and two support configurations. From the 

240 possible combinations, 68 combinations were experimentally performed for 

the validation. The values/configurations for the investigated parameters are listed 

in Table 6.2. In literature and in real in-service bolted point-fixings, the edge 

distance is general between 60 mm and 150 mm (De Jaegher 2014). By also 

considering values smaller and larger, a larger range is obtained to investigate the 

influence of the edge distance. The diameter of bolted point-fixings in literature 

and in real in-service facades is general between 45 and 65 mm (De Jaegher 2014). 

Also here, values are considered smaller and larger than 50 mm to obtain a larger 

range of the diameter. 

TABLE 6.2:  INVESTIGATED PARAMETERS WITH THEIR VALUES/CONFIGURATIONS 

Edge distance [mm] 35 – 70 – 105 – 175 – 245 

Load type [-] Uniform – concentrated 

Load location [-] Symmetrical – asymmetrical 

Boundary conditions [-] Hinged – fixed 

Diameter [mm] 30 – 50 – 70 

Support configuration [-] 4 point-fixings – 6 point-fixings 

The same modular test frame of Chapter 5 was used to examine the influence of 

the edge distance, i.e. a distance of 35 mm, 70 mm, 105 mm, 175 mm and 245 mm 

were tested. In Figure 6.2 a schematic overview and photograph of the test setup 

are depicted. In this figure three positioning plates are also visible; these were used 

to ensure that the glass panel was placed at the same position each time. The 

uniform load configuration for the symmetrical load location was the same as in 

Chapter 5, i.e. a total uniform load of 395 N/m². For the concentrated load 

configuration, a steel weight of 7.011 kg (68.78 N) was placed in the centre of the 
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glass plate. This weight was placed on a rubber with a measured thickness of 5.64 

mm thickness and 70 mm diameter to avoid direct contact between the steel and 

the glass. For the two load types, two load positions were considered, i.e. 

symmetric and asymmetric load location. The symmetric load was achieved by 

placing the sand bags on the entire surface or the concentrated load in the centre 

of the glass panel. The asymmetric load was achieved by placing the sand bags on 

only one half of the glass surface or the concentrated load in the centre of the half 

of the glass panel. The four possible load types and load locations are depicted in 

Figure 6.3. As depicted in Figure 5.4, the setup enabled two different supporting 

conditions, i.e. a hinged and a fixed supporting condition. The depicted connector 

has a diameter of 50 mm and a height of 30 mm, the connector diameter was easily 

altered, i.e. 30 mm or 70 mm. As depicted in Figure 6.2, the modular frame was 

constructed for a maximum of six point-fixings. By removing the two inner 

supports a support configuration of four point-fixings was achieved. As in Chapter 

5, the numerical total model was also validated by means of the occurring 

deflections and stresses in the glass panel, measured with five LVDTs and 25 strain 

gauges, respectively, as depicted in Figure 5.5. 

 

FIGURE 6.2:  GRAPHIC REPRESENTATION OF THE EXPERIMENTAL CONFIGURATION AND THE 

ACTUAL EXPERIMENTAL CONFIGURATION FOR SIX POINT-FIXINGS WITH A DIAMETER OF 50 

MM. 

 
FIGURE 6.3:  THE FOUR POSSIBLE COMBINATIONS OF THE LOAD TYPE AND LOAD 

LOCATION; A) SYMMETRIC UNIFORM, B) ASYMMETRIC UNIFORM, C) SYMMETRIC 

CONCENTRATED LOAD AND D) ASYMMETRIC CONCENTRATED LOAD. 

a)        b)           c)              d)395 N/m2 
395 N/m

2
 69 N 69 N 
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6.3. Numerical model 

The finite element software Abaqus® version 6.14 was used to build a three-

dimensional finite element model and to numerically analyse the glass panel 

supported by point-fixings. The geometry consists of a rectangular glass panel of 

1 m by 2 m and a thickness of 10 mm, adhesively connected by means of a rubber 

to a metal connector with a height of 30 mm. Due to double symmetry for the 

symmetrical load location only a quarter of the glass panel was modelled. For the 

asymmetrical load location only half of the plate was modelled. The displacement’s 

constraints were modelled as close as possible to the real test conditions and the 

test setup geometry. In the numerical model, the rubber is connected by means of 

a tie-constraint to the glass and metal connector to simulate an adhesive 

connection. The load is applied for the uniform load configuration as a pressure 

load of 0.395 kN/m² and for the concentrated configuration as a pressure load of 

17.872 kPa acting on a circular surface with a diameter of  70 mm. 

Extra attention was paid to the location around the connector where refinement 

of the mesh pattern was introduced since stress concentrations were expected to 

occur here. To avoid mesh singularities in the centre of the circular connector a 

square mesh pattern was inserted inside the circular pattern. The mesh refinement 

around the connector and the square pattern are illustrated in Figure 6.4. The tie-

constraint between glass-rubber and metal-rubber was modelled as a master-slave 

surface, with the rubber each time as the slave surface. A convergence study 

demonstrated that the best results are obtained when the mesh of the rubber is 

three times finer than the glass and steel mesh. This refinement also allowed to 

investigate the stresses that occur in the adhesive layer.  

 
FIGURE 6.4:  MESH PATTERN OF THE NUMERICAL MODEL WITH MESH REFINEMENT AROUND 

THE CONNECTORS FOR THE CONFIGURATION WITH SIX 50 MM. POINT-FIXINGS. 
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A convergence study was performed to determine which element type and element 

size gives the most accurate results with the lowest CPU-time. The convergence 

study yielded C3D20 elements for the glass panel and the connectors, and C3D8H 

for the rubber, which are depicted in Figure 6.5. C3D20 elements have the 

property of quadratic interpolation, which means there are 27 integration points. 

C3D8H elements have the property of linear interpolation, which means only 8 

integration points are available. The more integration points, the more accurate, 

but the longer the calculation time for a same mesh patron. Due to the nearly 

incompressibility of the rubber, hybrid (H) formulation is used for the adhesive 

layer. 

  
FIGURE 6.5:  LINEAR (C3D8-LEFT) AND QUADRATIC (C3D20-RIGHT) HEXAHEDRON ELEMENT 

(ABAQUS 2014) .  

The element types and sizes are summarized in Table 6.3. The number of elements 

is the number of elements along the circumference of the connection. For a 

connector diameter of 50 mm, the element size in the centre of the connection is 

5 mm for the glass and the steel and 1.67 mm for the rubber. This ensures that at 

least 3 elements are in the thickness of the rubber. The dimensions of an element 

along the edge and of an element in the centre of the adhesive layer is depicted in 

Figure 6.6. The maximum advised ratio of 1/2 has not been exceeded (ABAQUS 

2014). General, static step-by-step numerical analyses are performed by means of 

the implicit Abaqus solver.  

TABLE 6.3:  ELEMENT SIZE AND TYPE FOR THE THREE MATERIALS.  

Material Element type Number of elements  

Glass C3D20 16 

Steel C3D20 16 

Rubber C3D8H 48 
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FIGURE 6.6:  DIMENSIONS OF AN ELEMENT ALONG THE EDGE AND OF AN ELEMENT IN THE 

CENTRE OF THE ADHESIVE LAYER (ALL DIMENSIONS ARE IN MM.) 

6.4. Validation of the total model 

As mentioned above, 25 strain gauges were used to calculate the occurring stresses 

on the top surface of the glass panel. These calculated stresses form four stress 

paths and four LVDTs also form one path along the long axis. These paths are 

depicted in Figure 5.8 in Chapter 5, with the rectangles representing the strain 

gauges and the crossed circles the LVDTs. For certain configurations the 

displacement Uz (2) is measured on an alternative position instead, denoted as Uz* 

(2). 

The numerical stresses were obtained for the predefined four stress paths. All 68 

configurations that were tested were compared with the numerical model. A few 

selected comparisons are given in Figure 6.7 to Figure 6.9, with the four 

representing the stress paths and the lower two the deformation paths. The dots 

represent the experimentally measured stresses and deformations and the full line 

are the stresses and deformations from the finite element model. Furthermore, on 

the graphs the considered path is depicted in the upper right corner of each graph. 

The legend for all comparison graphs is clarified in Table 6.4. Other configurations 

are given in Appendix C. 
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TABLE 6.4: LEGEND FOR THE COMPARISON GRAPHS FOR THE FULL SCALE NUMERICAL 

MODEL 

Edge distance [mm] Numerical values Experimental values 

35   

70   

105   

175   

245   

 

 

 
FIGURE 6.7:  CONFIGURATION WITH ASYMMETRICAL CONCENTRATED LOAD AND SIX 50 MM 

FIXED POINT-FIXINGS. 
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FIGURE 6.8:  CONFIGURATION WITH SYMMETRICAL UNIFORM LOAD AND FOUR 30 MM FIXED 

POINT-FIXINGS.   
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FIGURE 6.9:  CONFIGURATION WITH SYMMETRICAL UNIFORM LOAD AND SIX 50 MM HINGED 

POINT-FIXINGS. 

Despite a certain small difference between the experimental and numerical results, 

a good agreement between the numerical and experimental results is achieved. A 

potential cause for the small differences can be the limited number of strain gauges 

along a stress path. This is also visible in the graphs, where the numerical results 

demonstrate stress peaks which were not measured in the experimental values. 

However, due to the high number of measured values, i.e. 25 strain gauges and 

five LVDTs, no more DAQ channels were available and consequently measuring 

more points was not possible. The values for the deformation from FEA are 

reasonably close to the experimental values.  
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The good correspondence between the numerical and experimental values 

demonstrates that the numerical model is reliable and, hence, could be used to 

model glass panels supported by adhesive point-fixings with other geometric and 

material characteristics than used in the experiments. It also substantiates the 

assumption that a flexible adhesive under compression could be replaced by a 

rubber. 

The highest stresses are obtained with a support configuration of four point-

fixings, a symmetrical uniform load with a fixed boundary condition and a small 

edge distance and connector diameter, i.e. 35 mm and 30 mm, respectively. 

Logically, four point-fixings will introduce higher stresses than six point-fixings 

since each connection will receive higher loads with the former configuration. The 

symmetrical uniform load configuration is the configuration with the highest total 

load on the glass panel and hence will introduce the highest stresses. Higher 

stresses are reached with the fixed connection due to the more restricted boundary 

condition. Due to the fixed rotation of the fixed connection system, lower 

displacements are also observed with the fixed connection system than with the 

hinged connection system. The numerical results demonstrate stress peaks which 

were not visible in the experimental values, illustrating the benefit of FEA. With a 

smaller corner distance stress peaks will be more prominent. In contrast, the 

stresses will be more uniform with larger distances. A smaller diameter will support 

the glass panel over a smaller surface, resulting in higher stresses and deformations. 

6.5. Parametric study 

The validated numerical model now enables to investigate more thoroughly the 

geometrical and material aspects of a glass panel supported by adhesive point-

fixings. This paragraph describes the parametric study that was performed. Firstly 

the influence of the corner and edge distance was studied, defined as A and B for 

the corner distance and C for the edge distance as in Figure 6.4. Next, the diameter 

of the connection with the thickness of the glass, adhesive thickness together with 

the young’s modulus of the adhesive and the width of the panel was investigated. 

Then the influence of the viscoelastic material parameters of laminated glass panels 

was investigated and finally a comparison between adhesive and bolted point-

fixings is made. The investigated parameters and their values are summarized in 

Table 3.5. 
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TABLE 3.5:  THE INVESTIGATED PARAMETERS AND THEIR VALUES. 

Parameter Symbol and 

unit 

Values 

Edge distance A A [mm] 35, 70, 105, 140, 175, 210, 245, 

280, 315 

Edge distance B B [mm] 35, 70, 105, 140, 175, 210, 245, 

280, 315 

Edge distance C C [mm] 35, 70, 105, 140, 175, 210, 245, 

280, 315 

Connector diameter ϕ  [mm] 30, 50, 70 

Glass thickness tglass  [mm] 4, 8, 10, 14, 19 

Adhesive thickness tadhesive  [mm] 1, 2, 5  

Adhesive Young’s modulus Eadhesive  [MPa] 10, 100, 1000, 10 000, 100 000 

Adhesive Poisson’s ratio νadhesive  [-] 0.47, 0.48, 0.49, 0.495, 0.499 

Interlayer  [-] SG – PVB 

Load duration  [s] 1h – 1d 

Corner and edge distance  The maximal value for the maximal principal stress σ1 

on the glass panel was determined to investigate the influence of each parameter. 

Indeed, the maximal principal stress is typically used as a failure criterion for 

structural glass (Haldimann et al. 2008). Figure 6.10 illustrates the combinations 

that were studied with a glass panel of 2 m x 1 m x 10 mm, a connector diameter 

of 50 mm and a symmetrical uniform load of 397.3 Pa. In Figure 6.11 the 

maximum value of the maximal principal stress for every combination is illustrated. 

Each distance was first separately studied while the other distances were kept at 

105 mm (Figure 6.11a). Secondly, the influence on each other was studied by 

keeping one distance constant at 105 mm (Figure 6.11b, c and d). The corner 

distance B had the largest influence on the maximal principal stress. In contrast, 

the corner distance A had the lowest influence. This is in good agreement with the 

findings of previous research (Klinkenberg et al. 1998). An optimal edge distance 

could be found between 175 mm and 245 mm while the other distance were kept 

constant at a distance of 105 mm. The maximal value of the maximal principal 

stress was located at the middle connections. However, the location changed to 

the corner connections when the corner or edge distance was larger than 280 mm.   
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FIGURE 6.10:  INDICATION OF THE INFLUENCE OF EACH INDIVIDUAL EDGE DISTANCE (TOP) 

AND TWO VARYING DISTANCES (BELOW).  

a) b) 

c) d) 

FIGURE 6.11 :  INFLUENCE OF THE EDGE AND CORNER DISTANCE ON THE MAXIMAL 

PRINCIPAL STRESS σ I FOR A) EACH DISTANCE, B) EQUAL DISTANCES FOR B AND C,  C) EQUAL 

DISTANCES FOR A AND C AND D) EQUAL DISTANCES FOR A AND B .  

The maximal deflection of the glass panel was also determined for the same 

combination as described above. The results for the maximal deflections are 

depicted in Figure 6.12. In Figure 6.12a, an increase of deflection occurred when 

the corner distance B was equal to 245 mm (A = C = 105 mm). The position of 

maximal deflection then changed from the centre of a half panel to the edge of 

the panel, as depicted in Figure 6.13. This is also visible in the other figures. Based 

on the maximal deformation, an optimal combination of two distances could be 

found when the third distance was fixed.  
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a) b) 

c) d) 
FIGURE 6.12:  INFLUENCE OF THE EDGE AND CORNER DISTANCE ON THE MAXIMAL 

DEFORMATION FOR A) EACH DISTANCE, B) EQUAL DISTANCES FOR B AND C,  C) EQUAL 

DISTANCES FOR A AND C AND D) EQUAL DISTANCES FOR A AND B .  

a)  

b)  
FIGURE 6.13:  CONTOUR PLOT OF THE DEFORMATION FOR CONFIGURATION WITH A) A = B = 

C = 105 MM AND B) A = C = 315 MM AND B = 105 MM. 
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Connection diameter and glass thickness  The influence of the glass thickness 

of the connection was studied for values between 4 and 19 mm, the minimal and 

maximal thickness of structural glass used in buildings. The diameter varied 

between 30 and 70 mm. The corner and edge distances were fixed at a value of 

105 mm. The maximal value of the maximal principal stress and deflection is 

depicted in Figure 6.14a and b. An increasing diameter had a positive effect on the 

stresses and the deflections. A larger diameter will support the glass panel over a 

larger surface, resulting in lower stresses and deformations. However, a larger 

diameter will have a less visual appearance. The increase in thickness of the glass 

will increase the moment of inertia of the glass panel. As expected, the increase of  

the rigidity of the panel will result in lower stresses and deformations.  

a) b) 
FIGURE 6.14:  INFLUENCE OF THE GLASS THICKNESS AND THE CONNECTION DIAMETER FOR 

A) MAXIMAL OCCURRING MAXIMAL PRINCIPAL STRESS AND B) MAXIMAL OCCURRING 

DEFORMATION. 

Adhesive thickness and Young’s modulus  Recent experimental research on 

local adhesive point-fixings has shown that the Young’s modulus of the adhesive 

has a significant influence (Dispersyn et al. 2014). Relatively stiff adhesive will 

mostly be applied with a small thickness and relatively flexible adhesive with a 

larger thickness. The influences of these two parameters are illustrated in Figure 

6.15a and b for the maximal value of the maximal principal stress and deflection. 

With increasing young’s modulus of the adhesive, the maximum principal stress in 

the glass panel will rise (Figure 6.15a), and the maximum deflection will decrease 

(Figure 6.15b). This phenomenon was also visible with decreasing adhesive 

thickness. In contrast, thick and flexible adhesive layers will increase the 

deformation capacity of the glass panel but the stresses in the glass panel will 

reduce due to the higher mobility of the connection. In contrast to thinner and 

stiffer adhesive layers which locally strengthen the connection and thus restrict the 

movement of the connection and introduce higher stresses and smaller deflections. 
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a) b) 
FIGURE 6.15:  INFLUENCE OF THE ADHESIVE YOUNG’S MODULUS AND THICKNESS FOR A) 

MAXIMAL OCCURRING MAXIMAL PRINCIPAL STRESS AND B) MAXIMAL OCCURRING 

DEFORMATION. 

Width of the glass panel  For the influence of the width of the glass panel, the 

length was kept constant at a value of 2 m. The maximal stress and deflection is 

depicted in Figure 6.16 for four different corner and edge distances. As expected, 

the stresses and deformation increased with an increase of the glass width. The 

location of the largest stresses moved also from the connection to the field for a 

width of 3000 mm since the span is significantly enlarged.  

a) b) 
FIGURE 6.16:  INFLUENCE OF THE WIDTH FOR A) MAXIMAL OCCURRING MAXIMAL PRINCIPAL 

STRESS AND B) MAXIMAL OCCURRING DEFORMATION. 

Laminated glass Due to increasing safety demands, laminated glass is often 

required in construction. Because of this, the validated numerical model was 

modified to a laminated glass FEA model. Among the most used commercial 

polymeric films, polyvinyl butyral (PVB) and ionomers, e.g. Sentryglas® (SG), are 

the most commonly used. Ethylene vinyl acetate (EVA) is also commonly used, 

but its viscoelastic properties are similar to those of PVB (Galuppi & G. Royer-

Carfagni 2012a) and therefore it was not considered here. The shear modulus of 

linear viscoelastic material can be modelled by a Prony’s series, as given in Eq. 

(6.1). This series represents a relaxation model with multiple Maxwell elements, 

where G0 represents the instantaneous shear modulus and the terms Gi and τi, are 

the relaxation shear moduli and the relaxation times of the i-th Maxwell element. 
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𝐺(𝑡) = 𝐺0 −∑𝐺𝑖 (1 − 𝑒−
𝑡
𝜏𝑖⁄ )

𝑁

𝑖=1

 (6.1)  

The considered material parameters for a temperature of 20°C are reported in 

Table 6.6 for PVB and SG (Belis 2006; Callewaert 2012; Galuppi & G. Royer-

Carfagni 2012a; Bennison et al. 1999; D’Haene & Savineau 2007). These data are 

specific of a particular type of polymer, temperature and also for a specific range 

of strain rate, and may vary within the same category (PVB or SG). Therefore, 

these data should not be considered as universal values for design. 

TABLE 6.6:  ASSUMED TERMS OF THE PRONY’S SERIES FOR A PARTICULAR TYPE OF PVB (G0 = 

471 MPA) (BELIS 2006; BENNISON ET AL. 1999; GALUPPI & ROYER-CARFAGNI 2012A) AND FOR 

A PARTICULAR TYPE OF SG (G0 = 150 MPA) (CALLEWAERT 2012).  

Term 

index 
Gi/G0 τi [s] 

 Term  
index 

Gi/G0 τi [s] 

1 0.1606000 3.256E-11  1 5.9320E-01 6.5173E-02 

2 0.0787770 4.949E-09  2 1.1220E-01 9.6690E-01 

3 0.2912000 7.243E-08  3 -5.1988E-03 8.2310E+01 

4 0.0711550 9.864E-06  4 4.9333E-02 4.4630E+02 

5 0.2688000 2.806E-03  5 2.0831E-02 5.6480E+03 

6 0.0895860 1.644E-01  6 6.1392E-02 6.5132E+04 

7 0.0301830 2.265E+00  7 4.3697E-02 5.0406E+05 

8 0.0076056 3.536E+01  8 5.0251E-02 4.9084E+06 

9 0.0009634 9.368E+03  9 2.9005E-02 3.3452E+07 

10 0.0004059 6.414E+05  10 1.9283E-02 5.2363E+08 

11 0.0006143 4.135E+07  11 7.3690E-03 7.7396E+09 

    12 5.4495E-03 1.2613E+11 

The mesh of the interlayer was chosen 5 times finer than the mesh of the glass, as 

the top and bottom surface were defined as a slave surface for the glass panels. 

The mesh of the adhesive, connector and both glass plates was the same as 

previously described. The thickness of the interlayer was set to 0.76 mm. The 

investigated configuration consisted of a glass panel with a symmetrical uniform 

load supported on four hinged point-fixings with a diameter of 50 mm and an 
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edge distance of 105 mm. Due to the viscoelastic behaviour of the interlayer, the 

load duration had an influence and was set to one hour and one day. The used 

mechanical behaviour was obtained for a temperature of 20°C. Figure 6.17 shows 

these two load durations for the two considered interlayers, i.e. SG-1h, SG-1d, 

PVB-1h and PVB-1d, for four glass thickness configurations, i.e. 4+4 mm, 6+6 

mm, 8+8 mm and 10+10 mm. As expected, the highest stresses occurred in the 

glass panel with the thinnest glass thickness configuration, i.e. 4+4 mm. The 

influence of the interlayer type is also clearly distinguishable, with the more flexible 

interlayer PVB the stresses and deformation were higher than when using the more 

stiff interlayer SG. This is also visible in the load duration, the interlayers will 

behave more stiffly for shorter load durations. The stresses and deformations 

increased slightly for one day. As expected, the effect of interlayer type and load 

duration was smaller for thicker glass thickness configurations. 

a) b) 
FIGURE 6.17:  INFLUENCE OF INTERLAYER TYPE, LOAD DURATION AND GLASS THICKNESS 

CONFIGURATION ON A) THE MAXIMAL PRINCIPAL STRESS IN THE GLASS PANEL AND ON B) 

THE MAXIMAL DEFORMATION. 

The influence of asymmetric glass thickness configurations is depicted in Figure 

6.18, with each line representing a thickness of the upper panel. The investigated 

configuration is the same as above. For the interlayer only a load duration of 1 

hour was taken into account. As excepted, stresses and deformations decreased 

with increasing top and bottom glass thicknesses. The larger the bottom panel 

thickness, the less the effect of increasing the top panel thickness and vice-versa. 

The highest stresses occurred in the bottom panel, giving more influence in 

increasing the bottom thickness than increasing the top thickness. For example, 

the configuration 4-6 mm (with 4 mm the thickness of the bottom panel and 6 

mm the thickness of the upper panel) gave a maximal stress of 16.16 MPa and a 

maximal deformation of 19.19 mm, the configuration 6-4 mm gave 14.68 MPa and 

18.4 mm. The stress and deformation can thus be limited by placing the thickest 

glass panel at the bottom, at the tension side of the panel. 
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a) b) 

c) d) 
FIGURE 6.18:  INFLUENCE OF ASYMMETRIC GLASS THICKNESS CONFIGURATIONS ON 

STRESSES AND DEFORMATIONS FOR A-B) A PVB INTERLAYER AND C-D) A SG INTERLAYER.  

Note that it is possible to model the laminated panel as a monolithic panel with 

the same mechanical properties as the laminated panel by means of the effective 

thickness method. With this method the shear coupling between the panels 

through the polymer is taken into account. Several effective thickness methods 

exist (prEN 16612 2013; NEN 2608 2014; Callewaert 2012; Bennison et al. 2009; 

Galuppi & Royer-Carfagni 2012b; Galuppi & Royer-Carfagni 2012c). The 

effective thickness must be calculated separately for the determination of the 

occurring deformations and occurring stresses because their definitions are 

different. With the enhanced effective thickness (EET) method, developed by 

Galuppi & Royer-Carfagni (2012b), the effective thickness for the determination 

of the deformation, i.e. the deflection-effective thickness ℎ̂𝑒𝑓𝑓,𝑤 , can be 

determined with Eq. (6.2). The effective thickness for the determination of the 

occurring stress in the i-th glass panel, i = 1,2, i.e. the stress-effective thickness 

ℎ̂𝑖,𝑒𝑓𝑓,𝜎 , can be determined with Eq. (6.3) and (6.4). 

ℎ̂𝑒𝑓𝑓,𝑤 =
√

1

𝜂
ℎ1
3 + ℎ2

3 + 12𝐼𝑠
+

1 − 𝜂
ℎ1
3 + ℎ2

3

3
 (6.2)  
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ℎ̂1,𝑒𝑓𝑓,𝜎 =
√

1

2𝜂ℎ𝑠,2
ℎ1
3 + ℎ2

3 + 12𝐼𝑠
+

ℎ1
ℎ̂𝑒𝑓𝑓,𝑤
3

 
(6.3)  

ℎ̂2,𝑒𝑓𝑓,𝜎 =
√

1

2𝜂ℎ𝑠,1
ℎ1
3 + ℎ2

3 + 12𝐼𝑠
+

ℎ2
ℎ̂𝑒𝑓𝑓,𝑤
3

 
(6.4)  

With  - η the parameter as a non-dimensional quantity, tuning the behaviour 

from the 

 - layered limit (η = 0, i.e. shear modulus of the polymeric interlayer Ginter→ 

0) to - the monolithic limit (η = 1, i.e. Ginter→ ∞), 

 - hi the thickness of the i-th glass panel, 

 - 𝐼𝑠 =
ℎ1∙ℎ2

ℎ1+ℎ2
∙ 𝐻2, 

 - 𝐻 =
ℎ1+ℎ2

2
+ 𝑡𝑖𝑛𝑡𝑒𝑟 (with tinter the thickness of the interlayer), 

 - ℎ𝑠,𝑖 =
𝐻∙ℎ𝑖

ℎ1+ℎ2
. 

Bolted connection A comparison between a glass panel supported by adhesive 

point-fixings and bolted point-fixings was numerically investigated. There are 

several different geometries for bolted point-fixings. The geometry of the bolted 

point-fixing chosen in this numerical research is based on the work of Siebert 

(2007). Siebert mentions the advantages of using a raised head fixture instead of a 

countersink fixture. According to Siebert (2007) the raised head fixture has a better 

residual resistance than the countersink fixture. Therefore, the raised head fixture 

was used. The selected bolted point-fixing was a V2105 fixed bolt type of Sadev 

(2015), with the different components depicted in Figure 6.19a. The dimensions 

of the point fixing were obtained from the technical data-sheet provided by Sadev. 

The outer diameter is equal to 50 mm, and the diameter of the borehole in the 

glass is 28.8 mm, as depicted in Figure 6.19b. The material of the different 

components is given in Table 6.7, together with their Young’s modulus E and 

Poisson's ratio ν. A fixed connection was considered by applying a fixed boundary 

condition on the threaded axle in Abaqus®. The length of the threaded axle was 

chosen so that that the fixed boundary condition for both bolted and adhesive 

point-fixing had the same coordinates.  
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a) b) 
FIGURE 6.19:  A) COMPONENTS OF A RAISED HEAD BOLTED POINT FIXING AND B) THE 

DIMENSIONS (SADEV 2015) (ALL DIMENSIONS ARE IN MM). 

TABLE 6.7:  DESIGNATION OF PARTS OF BOLTED POINT FIXING (SADEV 2015).  

No

. 

Name Material E [MPa] ν [-] 

1 Body Stainless steel (AISI 316L) 200 000  0.30 

2 Threaded axle Stainless steel (AISI 316L) 200 000  0.30 

3 Bushing Aluminium (AW-1050A) 70 000  0.33 

4 Contact washer Polyethylene 110  0.46 

5 Glass nut Stainless steel (AISI 316L) 200 000  0.30 

6 Nut DIN 934 Stainless steel (AISI 316L) 200 000  0.30 

A mesh study was performed on the model similarly to the mesh study in the case 

of the adhesive point-fixings. As high stress concentrations at the point-fixing 

were expected, a finer mesh was introduced near the point-fixing, as illustrated in 

Figure 6.20. Contact surfaces were defined between the glass and the bolted point-

fixing. The convergence study showed that 80 elements along the circumference 

of the borehole gave the most adequate results in terms of correct 

stresses/deformations and calculation time. The investigated configuration 

consisted of a single glass panel of 10 mm thickness with a symmetrical uniform 

load supported on four bolted point-fixings for the five considered edge distances 

in Table 6.2. 

 
FIGURE 6.20:  DENSER MESHPATERN AROUND BOLT HOLE.  



150  

The numerical results of the bolted point-fixing were compared with adhesive 

point-fixings for four paths: σx, σx’, Uz (1) and Uz (2). The diameter of the adhesive 

point-fixings is set equal to the outer diameter of the bolted point-fixings, i.e. 50 

mm. The comparison is depicted in Figure 6.21 with the legend for the graphs 

given in Table 6.8. The peak stresses were much higher for bolted point-fixings 

than for adhesive point-fixings (a factor 20 for edge distance 35 mm). The stresses 

in the centre of the plate were lower for bolted than for adhesive point-fixings. 

Due to the more restricted boundary condition with bolted point-fixings, the 

displacements are lower for the latter (a factor 4 for edge distance 245 mm). The 

high stress concentrations in the glass panel with bolted point-fixings and the 

absence of these with adhesive point-fixings substantiates the advantages of 

adhesive point-fixings over bolted point-fixings. 

TABLE 6.8: LEGEND FOR THE COMPARISON GRAPHS FOR THE FULL SCALE NUMERICAL 

MODEL. 

Edge distance [mm] Adhesive point-fixings Bolted point-fixings 

35   

70   

105   

175   

245   

 

 

FIGURE 6.21 :  COMPARISON OF STRESSES AND DEFORMATIONS FOR PATHS σX ,  σX’,  UZ (1) AND 

UZ (2) BETWEEN GLASS SUPPORTED BY ADHESIVE AND BOLTED POINT-FIXINGS.  
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6.6. Summary and conclusions 

In this chapter, the total model for the SLG-method was experimentally validated. 

A transversally loaded glass panel was experimentally investigated by means of a 

modular test frame for a glass panel of 1 m by 2 m supported by adhesive point-

fixings. The experimental results demonstrated that the highest stresses were 

reached with the smallest edge distances. This was also shown in the research in 

the steel area (Rex et al. 2003; Duerr & Asce 2006)  and the research on bolted 

point-fixings (Klinkenberg et al. 1998; Overend 2005; Maniatis 2006a; Maniatis 

2006b; Nielsen et al. 2009; Amadio et al. 2008; Overend et al. 2013). With a small 

edge distance the stresses in the field were much higher compared to a larger edge 

distance, where the field stresses were more uniform. However, stress peaks 

occurred at the connection. As expected the deformations were significantly larger 

with small edge distances compared to higher edge distances. The highest 

deformation occurred in the centre of a half panel. The rigidity of the connection 

was also investigated. It was demonstrated that higher glass stresses were reached 

with a fixed connection compared to a hinged connection. 

The experimental results of 68 combinations were used to validate a numerical 

model. The numerical results corresponded very well with the experimental values. 

However, the numerical analyses yielded stress peaks which were not visible in the 

experiments. This highlights the benefits and necessity of numerical investigation. 

With a smaller corner and edge distance stress peaks were more prominent. In 

contrast, the stresses were more uniform with larger distances. The difference 

between the fixed and hinged connection system was also clear: the fixed system 

introduced larger stresses in the glass panel. In contrast, the deformation was 

smaller with the fixed system. As also the experiments showed, varying the corner 

and edge distance had a greater influence on the stress distribution with fixed 

connections than with hinged connections. 
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The validated numerical model was used to investigate the geometrical and 

material aspects more thoroughly. The results from this parametric study pointed 

out that the maximal occurring stresses will increase with a decrease of the glass 

thickness, the diameter of the connection, adhesive thickness and with an increase 

of the adhesive stiffness and width of the glass panel. Furthermore, the maximal 

deformation of the glass panel could be reduced by increasing the glass thickness, 

the connection diameter, adhesive stiffness and by decreasing the adhesive 

thickness and width of the glass panel. 

The behaviour of laminated glass panels depends on the stiffness of the interlayer, 

the load duration and the glass thickness. Increasing the load duration corresponds 

to a decrease in interlayer stiffness. Increasing the interlayer stiffness and glass 

thickness will decrease the maximal principal stress and the maximal deformation. 

Compared to adhesive point-fixings, bolted point-fixings give higher peak stresses 

at the connection, but lower stresses and deformation at the centre of the plate.  
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Chapter 7: SLG-method 

Look up at the stars and not down at your feet.  

Try to make sense of what you see,  

and wonder about what makes the universe exist.  

Be curious. 

Stephen Hawking 

7.1. Introduction 

The suitability of the SLG-method for adhesive point-fixings will be discussed in 

detail in this chapter. The validation of the SLG-method for adhesive point-fixings 

will consist of a FEA comparison between the stress distributions conducted by 

the SLG-method on the one hand, i.e. the superposition of a global and local 

components, and on the other hand by the total component. The latter is already 

described and validated in Chapter 6, the local components in Chapter 4 and the 

global component in Chapter 5. The aim of this chapter is to validate the 

superposition, as indicated in Figure 7.1.  

 

FIGURE 7.1 :  SLG-METHOD FOR ADHESIVE POINT-FIXINGS.  
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7.2. Combined component 

Based on the principle of Saint-Venant, Beyer (2007) assumed that changing 

geometrical characteristics of the point-fixing will only have an influence on the 

stress distribution in a local region around the joints, while the influences decrease 

further away from the connection. This principle allows the separation of the 

entirety from the connections (the global component), and the connections from 

the entirety (the local component). From the global model the stresses at the 

boundary between the global and local component are determined, which is 

referred to as the global stress σglobal. Furthermore, from the global model the 

support reactions of the point fittings (Fz, Fxy, M) are determined. The glass plate 

around the borehole and the connection are modelled in detail representing the 

local component. By applying the reaction forces and moments on the connection 

derived from the global component, the reaction stresses σFz, σFxy and σM are 

determined. The sum of these stresses and the global stresses multiplied with a 

stress concentration factor k must be less than the critical stress σR according to 

Eq. (7.1). The stress concentration factor is derived from FEA, in which a plate 

with the exact borehole geometry is modelled and subjected to bending.  

𝜎𝐹𝑧 + 𝜎𝐹𝑥𝑦 + 𝜎𝑀 + 𝑘 ∙ 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 ≤ 𝜎𝑅 (7.1)  

The purpose of this chapter is to reconstruct the total stress distribution based on 

the stress distributions of the global and the local component. Due to the absence 

of a borehole, the stress concentration factor k will be equal to unity. The 

validation of the SLG-method for adhesive point-fixings will be performed as 

given in Eq. (7.2).  

𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜎𝐹𝑧 + 𝜎𝐹𝑥𝑦 + 𝜎𝑀 (7.2)  

7.3.1. Glass stress distribution at the rear side 

The considered configuration consisted of a glass panel of 2 m by 1 m and a glass 

thickness of 10 mm. The panel is considered to be connected vertically as a facade 

element. The applied forces were the dead weight of the panel as a shear load and 

a wind load of 2 kPa as a surface load. The wind load was first applied as wind 

suction, causing the connection to be loaded in tension, the most severe condition. 

Total model (Chapter 3) 
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The diameter of the adhesive connection was 50 mm and 3M as the adhesive type. 

Four edge distances were considered, i.e. 35 mm, 105 mm, 175 mm and 245 mm, 

with two different boundary conditions, i.e. hinged and fixed. Also two different 

number of point-fixings were tested, i.e. four and six point-fixings. The 

configuration is depicted in Figure 7.2. Also in Figure 7.2, the path on the rear side 

of the panel is depicted along which the stress S22 was derived for the validation. 

This path goes through the point-fixings, so the position of the path depends on 

the edge distance. The point-fixings along the path are numbered for an easy 

reference. The configuration with six pinned point-fixings and an edge distance of 

245 mm will be explained as an example.  

 

FIGURE 7.2:  SLG VALIDATION CONFIGURATION FOR WIND SUCTION AT A) THE FRONT OF 

THE GLASS PANEL AND THE PATH AT B) THE  REAR SIDE OF THE GLASS PANEL. 

Note that the depicted configuration in Figure 7.2 does not correspond with real-

life applications, as on all connections shear forces will be applied. This is not the 

case in real-life applications, where only the top connections will take up vertical 

shear forces. For bolted point-fixings, the connections at the bottom of the glass 

panel will be slotted or oversized to allow in-plane deformation of the glass panel. 

This is to avoid thermal stresses in the glass panel; as the panel will expand with 

increasing temperature, deformation is allowed by the oversized connections. This 
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principle is depicted in Figure 7.3 and in Figure 7.4 for a spider connection. For 

flexible adhesives this configuration is unnecessary as the deformation of the 

adhesive can take up the thermal deformation of the glass. For stiff adhesives, the 

principle of oversized connections will have to be implemented. The investigated 

configuration in this dissertation does not take this into account, however, the aim 

of the investigation is to compare two stress distributions to validate the SLG-

method rather than to determine the stress distribution itself. 

 
FIGURE 7.3:  SLOTTED AND OVERSIZED CONNECTIONS TO AVOID THERMAL STRESSES. 

CONNECTIONS ARE OVERDIMENSIONED DEPICTED. 

 
FIGURE 7.4:  OVERSIZED CONNECTION HOLES IN A SPIDER (SADEV 2015)  

In Figure 7.5 the S22 stress distribution is depicted for the total model from 

Chapter 6. As mentioned before, this total model is modelled with the glass panel 

and the connections in detail. The local zones where the global model is deemed 

not reliable, are defined as the circular area around the connector with a diameter 

equal to six times the diameter of the connection. With a connection diameter of 

50 mm, the local area diameter was 300 mm. These local zones are depicted in 

Figure 7.5 in grey and marked by dotted lines.  
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FIGURE 7.5:  STRESS S22 DISTRIBUTION OF THE TOTAL  MODEL. 

The global stress S22 distribution from Chapter 5 along the path is depicted in 

Figure 7.6. Indeed, at the connections the global stress distribution is different 

from the total stress distribution. At the intersection of the global stresses and the 

local area, the global stresses σglobal are derived; they are equal to 2.53 MPa, 3.06 

MPa and 2.14 MPa for point-fixing 1, 2 and 3, respectively. 

 
FIGURE 7.6:  STRESS S22 DISTRIBUTION OF THE GLOBAL  MODEL. 

The reaction forces and reaction moments for each point-fixing are derived from 

this global model and are given in Table 7.1. Due to the hinged configuration, no 

reaction moments were registered at the support. The influence of the applied 

shear load can be seen by the difference in magnitude between point-fixing 1 and 

3. Point-fixing 1 will take more shear load and as the shear force is opposite to the 

membrane force, the total load and stress will be lower for point-fixing 1. As in 

the total model, the connection has a height of 30 mm, these membrane forces 

will introduce a bending moment due to the leverage.  
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TABLE 7.1 :  REACTION FORCES FOR THE CONSIDERED CONFIGURATION OBTAINED FROM 

THE GLOBAL MODEL. 

Rx (Shear) Ry (Shear) Rz (Tension) 

1 468.04 N 1 -357.92 N 1 -589.14 N 

2 -83.96 N 2 -365.81 N 2 -819.79 N 

3 -634.03 N 3 -352.83 N 3 -590.93 N 

The reaction forces are applied on the local models from Chapter 4 and the local 

stresses S22 are derived. As depicted in Figure 7.7 for point-fixing 1, the acting 

shear loads, Fx and Fy, will introduce a bending moment due the eccentricity. The 

latter is equal to the height of the connector, i.e. 30 mm. Hence, the shear loads 

can be separated in pure shear components, Fx and Fy, and bending moment 

components, Mx and My. The local stresses from the five acting forces and 

bending moments on point-fixing 1 are depicted in Figure 7.8. The tensile force 

will introduce the largest stresses in the glass panel. The local stresses from the 

forces and bending moments perpendicular on the stress path, Fy and My, are small 

compared to the forces and bending moments parallel to the stress path, Fx and 

Mx. From the latter, the bending moment Mx will introduce higher stresses than 

the shear force Fx. 

 
FIGURE 7.7:  ACTING FORCES ON POINT-FIXING 1 FOR WIND SUCTION. 

 
FIGURE 7.8:  STRESS DISTRIBUTION S22 OF THE LOCAL  STRESSES FOR POINT-FIXING 1.  
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The sum of these local stresses and the global stress replace the global stress 

distribution in the local zones, as depicted in Figure 7.9.  Figure 7.10 gives the 

comparison between the stress distribution obtained from the total model and the 

SLG-method. The SLG-method describes the stresses in the field well, also the 

discontinuous distribution at the connection is visible in the SLG-method.  

 

FIGURE 7.9:  STRESS S22 DISTRIBUTION WITH THE SLG-METHOD, COMBINING GLOBAL (G) 

AND LOCAL (L) STRESSES.  

 
FIGURE 7.10:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD FOR SIX HINGED POINT-FIXINGS WITH A CONNECTOR DIAMETER OF 50 

MM. 

Comparison between the total stress distribution and the SLG-method for four 

point-fixings is given in Figure 7.11 and for six point-fixings in Figure 7.12. The 

peak stresses were always higher when calculated with the SLG-method than with 

the total model. Hence, the SLG-principle will give conservative stress 

distributions. 
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FIGURE 7.11 :  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED AT THE REAR FOR FOUR POINT-FIXINGS FOR WIND SUCTION. 
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FIGURE 7.12:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED AT THE REAR FOR SIX POINT-FIXINGS FOR WIND SUCTION. 

Despite small deviations, the SLG-method predicts conservatively and accurately 

the occurring stresses. Due to the limited deflection of the glass panel with six 

point-fixings, i.e. a maximal deflection of 0.70 mm for the hinged configuration 

with an edge distance of 245 mm, the membrane forces are limited. In contrast, as 

the maximal deflection for the same configuration but with four point-fixings is 

equal to 8.35 mm, the membrane forces increased with a factor of over 20, 

explaining the higher peak stresses for the configurations with four point-fixings. 
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The influence of the edge distance is also clearly distinguishable. The stresses 

decrease when the edge distance is increased. Furthermore, the small influence of 

the boundary condition is also visible. As the rotation of the glass panel is 

prevented with the fixed boundary condition, the stresses become higher. This 

effect is only noticeable for small edge distances, as for larger edge distances the 

rotation of the glass panel will be small at the support. 

7.3.2. Glass stress distribution at the front. 

The stress at the front of the glass panel is also verified. The path, along which the 

stress S22 was derived, is depicted in Figure 7.13. As with the previous path, the 

position depends on the edge distance. The reaction forces are the same as for the 

previous configuration. Contrary to the previous configuration, the local stresses 

were determined at the front side of the glass panels. The comparison for four 

point-fixing is given in Figure 7.14 and for six point-fixings in Figure 7.15. 

 
FIGURE 7.13:  SLG VALIDATION CONFIGURATION FOR WIND SUCTION AND THE PATH AT A) 

THE FRONT OF THE GLASS PANE. 
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FIGURE 7.14:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED AT THE FRONT FOR FOUR POINT-FIXINGS FOR WIND SUCTION. 
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FIGURE 7.15:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED AT THE FRONT FOR SIX POINT-FIXINGS FOR WIND SUCTION. 

Also for the stress at the front panel side, the SLG-method gives good and 

conservative values compared with the stress from the total model. Here the 

influence of the number of point-fixings and of the edge distance is also clearly 

visible.  
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7.3.3. Adhesive stress distribution  

The comparisons above demonstrate that the SLG-method is an adequate method 

to determine the stress distribution in a glass panel supported by adhesive point-

fixings. However, glass failure is only one type of failure for glass panels supported 

by adhesive point-fixings, i.e. adhesive failure can also occur. To predict failure in 

the adhesive layer, the stress distribution in the adhesive layer must be known. The 

verification of obtaining the stress distribution in the adhesive layer with the SLG-

method is described in this paragraph. The location of the stress distribution S22 

path is located in the middle of the adhesive layer, as depicted in Figure 7.16.  

 

The stress distribution with the SLG-method in the adhesive layer consists only 

of the sum of the local stresses. The stress distribution obtained from the total 

model and obtained with the SLG-method for an edge distance of 35 mm and 105 

mm is depicted in Figure 7.17 for four point-fixings and in Figure 7.18 for six 

point-fixings. In the title of each graph the edge distance is mentioned together 

with the number of the considered support. Also here, the stress perpendicular to 

the path is considered, i.e. S22. The local stresses are derived from the multi-axial 

model with the magnitude, angle and eccentricity of the resulting force derived 

with Eq. (4.3), (4.4) and (4.5) from Chapter 4. For an edge distance of 175 mm 

and 245 mm, the comparison is given in Appendix D. 
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FIGURE 7.16:  SLG VALIDATION CONFIGURATION FOR THE ADHESIVE LAYER WITH WIND SUCTION 

AND THE PATH IN THE ADHESIVE LAYER (NOT TO SCALE).  
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FIGURE 7.17:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED IN THE ADHESIVE LAYER FOR FOUR POINT-FIXINGS FOR 

WIND SUCTION. 
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FIGURE 7.18:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED IN THE ADHESIVE LAYER FOR SIX POINT-FIXINGS FOR WIND 

SUCTION. 

The deviation between the stress distribution in the adhesive layer obtained with 

the SLG-method and from the total model is small. The shape and order of 

magnitude of the SLG-curve are close to the curve of the total model. Furthermore, 

the SLG-method gives generally larger stress peaks than the total model, resulting 

in slightly conservative stress distributions. As expected, the stress peaks are larger 

for small edge distances and are slightly higher for the clamped condition. The 

above comparisons were done for wind suction. The situation with wind pressure 

is summarized in Appendix E. 

7.3. Deformation 

In the design for bolted point-fixings, the maximum deformation in the field of 

the global model is determined and compared to the allowed deformation for glass 

panels. As the maximum occurring deformation is determined from the global 

model, this deformation will be larger than the actual occurring deformation, since 

the influence of the connector is not taken into account. The connection will 

locally prevent deformation of the glass panel. Hence, the deformation obtained 

from the global model will be conservative and safe. In this paragraph, the latter 

is investigated for adhesive point-fixings. The deformation along the path depicted 

in Figure 7.19 obtained from the global model is compared to the occurring 

deformation in the total model. 
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FIGURE 7.19:  SLG VALIDATION CONFIGURATION FOR WIND SUCTION AND THE PATH AT A) 

THE FRONT OF THE GLASS PANE. 

The deformation for the total model is obtained for three different diameters, i.e. 

30 mm, 50 mm and 60 mm. The comparison between the deformation obtained 

with the total model and the global model is depicted in Figure 7.20 for four point-

fixings and in Figure 7.21 for six point-fixings. As expected, the deformations from 

the global model are higher than from the total model. Hence, the deformation 

obtained from the global model will be conservative and safe. As also showed in 

Chapter 6, the smaller the diameter, the higher the deformation.  
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FIGURE 7.20:  COMPARISON BETWEEN THE DEFORMATION OF THE TOTAL MODEL AND THE 

GLOBAL MODEL FOR FOUR POINT-FIXINGS FOR WIND SUCTION. 
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FIGURE 7.21 :  COMPARISON BETWEEN THE DEFORMATION OF THE TOTAL MODEL AND THE 

GLOBAL MODEL FOR SIX POINT-FIXINGS FOR WIND SUCTION. 
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7.4. Summary and conclusions 

The general conclusion of this chapter is that the SLG-point method applied on 

adhesive point-fixings gives accurate and conservative stress distributions. 

Different configurations were evaluated using the SLG-method. By applying this 

method the calculation of large glass plates connected with adhesive point-fixings 

can be done about 1000 times faster than when the glass plate is built up with a 

fine mesh pattern and about 100 times faster for smaller plates. Despite small 

deviations, the SLG-method predicts the occurring stresses in a glass panel 

supported by adhesive point-fixings conservatively and accurately. In addition, the 

SLG method gives much more accurate results compared to the global model. The 

stress distribution in the adhesive layer can also be determined with the SLG-

method. For the latter, as the stress distribution consists of only the sum of the 

local stresses, these stresses were derived from the multi-axial model. The 

deviation between the SLG-method and the total model is small. Moreover, the 

SLG-method generally gives slightly larger stress peaks than the total model, giving 

conservative stress distributions. From the validation, a clamped boundary 

condition introduces slightly higher stresses than a pinned boundary condition. 

However, this effect is less pronounced for larger edge distances. 
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Chapter 8: Failure criterion 

The more that you read, the more things you will know.  

The more that you learn, the more places you'll go.  

Dr. Seuss 

8.1. Introduction 

As with other civil structures, it is necessary for the design of an adhesive 

connection to calculate its strength and stiffness. By means of a failure criterion 

this strength can be assessed. For a given geometry, the occurring stresses and 

deformations are first calculated on the basis of a stress or deformation analysis. 

Secondly, the assessment of the adhesive strength needs a failure criterion, which 

subsequently allows to define the failure load. Next, any necessary adjustment of 

the geometry may further optimize the connection. As such, the design is an 

iterative process, which requires a stress analysis and a failure criterion to 

determine the optimal connection, as depicted in Figure 8.1. In this chapter, the 

aim is to determine an appropriate failure criterion for adhesive point-fixings 

between glass and metal.  

 

FIGURE 8.1 :  PROGRESS OF THE DESIGN OF AN ADHESIVE CONNECTION. 

Geometry 
adhesive 

connection

Stress 
analysis

Failure 
criterion

Failure load
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The determination of the occurring stresses and deformations can be performed 

with either an analytical method or a numerical method. Regarding the former, 

various methods are developed to determine the shear or normal stresses in a 

single lap joint (SLJ) under shear. The theory of Volkersen (1938) is the most basic 

analytical method for this configuration, and several other analytical methods have 

been proposed based on this theory (Goland & Reissner 1944; Hart-Smith 1974; 

Ojalvo & Eidinoff 1978; Bigwood & Crocombe 1989; Adams & Mallick 1992). As 

these analytical methods are out of the scope of this thesis, a reference is made to 

the work of da Silva et al. (2009; 2009) for a complete overview of the different 

analytical methods for a SLJ. As demonstrated in previous chapters, the 

determination of the occurring stresses and deformations in this thesis are 

performed with FEA. 

For the design of an adhesive connection, a distinction has to be made between 

the different failure modes. The following five failure modes, or a combination of 

them, can occur in an adhesive point-fixing. They are illustrated in Figure 8.2. 

- Substrate failure; 

• Metal failure; 

• Glass failure; 

- Adhesive failure: failure at the interface between the adhesive layer and 

one of the substrates; 

• Adhesive failure interface adhesive-glass; 

• Adhesive failure interface adhesive-steel; 

- Cohesive failure: failure within the adhesive layer. 

Criteria for the following four main loading conditions exist and thus failure 

criteria differ between the load types of the adhesive joints. The experiments in 

this thesis were performed with a static load, hence the focus lies on the first kind 

of criterion. 

- Criterion for static/impact loadings: predicts the load bearing capacity of 

the connection; 

- Criterion for fatigue loading: predicts the lifetime of the connection under 

a cyclically varying load in terms of cycles to failure; 

- Criterion for creep loading: predicts the lifetime of the connection under 

a constant load in terms of time to failure. 
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FIGURE 8.2:  VISUALISATION OF THE POSSIBLE FAILURE MODES OF AN ADHESIVE POINT-

FIXING 

8.2. Substrate failure 

8.2.1. Metal failure 

As illustrated in Figure 8.2, failure in a substrate can be divided in metal failure and 

glass failure. For metal failure, the von Mises yield criterion is a frequently used 

failure criterion (Kazimi 2001; Mises 1913; Singh 2007; Leckie & Bello 2009). The 

von Mises yield criterion stated that the metal will fail when the von Mises stress 

σv induced in the metal exceeds the yield strength σy of the metal. The expression 

for this criterion is given in Eq. (8.1) in function of the principal stresses. 

𝜎𝑦 ≤ 𝜎𝑣 = √
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2

2
 (8.1)  

        

  

        

  

        

  

        

  

  

      
      

  

  

        
      

  

  

Substrate failure Failure in the adhesive 

Cohesive failure Steel failure Glass failure Adhesive failure 
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8.2.2. Glass failure 

The theoretical tensile glass strength based on molecular forces is very high and 

may reach 32 GPa (Haldimann et al. 2008). However, from the manufacturing and 

processing of the glass, defects are induced in the glass surface. These defects 

occur as mechanical flaws, almost invisible to the naked eye. Most of these flaws 

have dimensions between 30 μm and 300 μm (Haldimann et al. 2008). During the 

float process the glass surface is damaged by the rollers of the annealing process, 

and the strength is determined by the induced mechanical flaws. The research of 

Overend and Zammit (2012) shows the influence of the flaw size and load 

duration on the glass strength; the larger the flaw size, the smaller the failure stress 

(Figure 8.3). Also, it can be seen that the longer a stress is present, the lower is the 

glass strength.  

 
FIGURE 8.3:  FAILURE STRESS VS.  STRESS DURATION FOR A RANGE OF INITIAL FLAW SIZES 

FROM 50 TO 10000 𝜇M (OVEREND & ZAMMIT 2012).  

For glass failure, the existing failure criteria can be divided in two large groups, i.e. 

based on fracture mechanics and based on the classic material strength. In the 

former, the theory of linear elastic fracture mechanics (LEFM) describes the 

relation between the tensile strength and the flaw parameters, i.e. the flaw 

geometry and the flaw depth (Vandebroek 2014). For the use of fracture 

mechanics, the initial critical flaw depth has to be known.  
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To avoid the determination of the initial critical flaw depth, failure criteria 

according to the classical material strength can be used. More information about 

failure criteria for glass failure based on fracture mechanics can be found in 

Appendix F. For the classical material strength, the 5% characteristic surface 

tensile strength with a 95% confidence level is given in standards and literature 

(prEN 16612 2013; EN 12150-1 2015; ÖNORM B 3716-1 2009; NEN 2608 2014; 

DIN 18008 2010; EN 14179-1 2007; EN 1863-1 2012).  

The design value of strength for annealed glass fd,k can be calculated with Eq. (8.2) 

and with Eq. (8.3) for prestressed glass fd,k, where 45 MPa, 70 MPa and 120 MPa 

are the characteristic values of the bending strength of annealed glass fg,k, heat 

strengthened glass and fully tempered glass fb,k, respectively. These equation are 

still under discussion in the new technical specification (TS) for the future 

Eurocode about glass design. Therefore, these equations should not be considered 

as universal equations for glass design. 

  

fg,d =
kmod ∙ ksp ∙ fg,k

γM,a
 (8.2)  

 fg,d =
kmod ∙ ksp ∙ fg,k

γM,a
+

kv ∙ (fb,k − fg,k)

γM,v
 (8.3)  

 

With: 

 

- fg,k the characteristic value of the bending strength of glass; 

- fb,k the characteristic value of the bending strength of 

prestressed glass; 

- γM,a the material partial factor for glass, which is 1.8; 

- γM,v the material partial factor for prestressed glass, which is 

1.2; 

- ksp the factor for glass surface profile, which is 0.6 for 

sandblasted glass and 1.0 for ‘as produced’ glass; 

- kv the factor for strengthening of prestressed glass, which is 

1.0 for horizontal toughening and 0.6 for vertical toughening; 

- kmod the factor for load duration. In standard buildings, kmod has 

a maximal value of 1.0 and a minimum of 0.25.  
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8.3. Failure in the adhesive 

As illustrated in Figure 8.2, failure in the adhesive can be divided into two main 

groups, i.e. adhesive failure and cohesive failure. The former occurs when the 

location of failure is located at the interface between the adhesive layer and the 

substrate and can occur at the interface adhesive-glass or at the interface adhesive-

steel. To explain adhesion, the interaction in the contact surface must be known. 

A distinction can be made between physical and chemical connections (Kinloch 

1983; Van Straalen 2001; Habenicht 2009). The weaker physical connections are 

created by Van der Waals forces, dipole forces, and hydrogen bonds. These types 

of connections are established by an electrostatic attraction between the molecules. 

The stronger chemical connections are ionic, covalent and metallic bonds between 

different reactive chemical groups in the substrate and the adhesive layer. Some 

theories give a more advanced definition of adhesion (Bach et al. 2000; Ghani 2007; 

FME-CWM 2008). These theories suggest that adhesion is based on a combination 

of mechanical interlocking and diffusion. Mechanical interlocking occurs when the 

adhesive can enter in the seams and pores of the substrate. When the adhesive 

cures, this creates an anchoring of the adhesive into the substrate. With diffusion, 

the polymer chains of the adhesive molecular bonds with the molecules of polymer 

substrates. Hence, the latter will not occur with glass or metal substrates. 

As most studies are about techniques of how to prevent adhesive failure and not 

the working of adhesion, little is known about the physical and mechanical 

behaviour of the adhesive at the location of the contact surface. Most designers 

also argue that the adhesive failure should not occur in a well-executed connection 

and that substrate and cohesive failure will primarily occur (Puller & Sobek 2008). 

With cohesive failure, the location of the failure initiation is situated in the adhesive 

layer. This failure initiation occurs by a local crack which further branches until 

the connection fails (Crocombe et al. 1995). Because adhesives consist primarily 

of synthetic and organic material, the cohesive behaviour can be explained by 

means of polymer technology. Polymers are macromolecules formed from the 

reaction of smaller molecules, i.e. monomers. The polymers can be divided into 

four groups according to their molecular structure, namely linear structure, 

branched structure, cross-linked structure and network structure, as depicted in 

Figure 8.4. 
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A linear structure is composed of long chains of molecules that are only bounded 

by means of physical forces, i.e. Van der Waals forces. The branched polymers 

have side-branches, but the chains are still bounded only by weak physical forces. 

When these branches are also connected to other chains by means of strong 

chemical forces, a cross-linked structure is obtained. These interconnections occur 

only in one plane. This in contrast to a network structure, where the connections 

are three-dimensionally positioned. The latter structure is by means of the many 

chemical bonds the strongest structure. Most adhesives are cross-linked or 

network polymers. 

 
FIGURE 8.4:  THE FOUR STRUCTURE GROUPS OF POLYMERS: A) LINEAR, B) BRANCHED, C) 

CROSS-LINKED AND D) NETWORK STRUCTURE 

As for glass, failure criteria for adhesive connections can be divided in two main 

groups: one according to fracture mechanics and one according to continuum 

mechanics. As mentioned in previous paragraph, the former assumes that the 

structural joint fails by progressive crack growth. Within the domain of fracture 

mechanics, two subdivisions exist: linear elastic fracture mechanics (LEFM) and 

elastic plastic fracture mechanics (EPFM). The former assumes that when the 

crack propagates, the energy reduction in the material is only a consequence of the 

increased fracture. The latter assumes that plastic deformations will occur at the 

crack tip. A summary of failure in the adhesive based on fracture mechanics is 

given in Appendix F.  

However, in practice a continuum mechanics approach is often preferable. 

Continuum mechanics assumes that the material is continuously distributed and 

filling the entire volume that it occupies. The material is fully homogeneous and 

a) 

c) 

b) 

d) 
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no cracks or discontinuities are present. According to this approach, the joint 

connection will fail cohesively when a critical stress or strain is reached in the 

adhesive. Several failure criterion based on this hypothesis have been suggested 

and applied to adhesive connections (Crocombe et al. 1995; McCarthy 1996; 

Crocombe & Kinloch 1994): 

- Maximum shear stress; 

- Maximum shear strain; 

- Peak maximum principal strain; 

- Maximum plastic energy density; 

- Maximum von Mises equivalent stress; 

- Peak maximum principal stress; 

Most of these proposed failure criteria have been tested on single-lap joints (SLJ) 

(Figure 8.5). The ability to predict the strength of single-lap joints can provide the 

necessary insights in the behaviour of adhesive connections under a variety of 

loading conditions and allows to make conclusions for adhesive point-fixings.  

 
FIGURE 8.5:  PRINCIPLE OF A SINGLE-LAP JOINT (SLJ).  

8.3.1. Failure criteria models in literature 

Greenwood, Boag, and McLaren (1969) tried to predict the shear strength of 

single-lap joints (Figure 8.5) under a large range of loading conditions. A closed 

form analysis was used and the maximum shear stress was found to occur at an 

angle of 45◦ through the adhesive layer. Upon comparing the test results of the 

joint with the shear stresses obtained from a tensile test of the bulk adhesive, the 

predicted strength was found to be about 14% too low. 

 

P 

P 
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The maximum peel stress criterion was firstly introduced by Hart-Smith (1973) 

for a single-lap joint. More recently, Crocombe and Tatarek (1985) have adapted 

this criterion by performing a simple linear closed form analysis that modelled the 

peel stresses in the adhesive. Strength predictions were done for variously loaded 

T-joints by bonding steel plates with a thickness of 3 mm using an AY103/956 

(epoxy resin) adhesive. From bulk tensile test data, the maximum adhesive tensile 

strength was found to be equal to 69 MPa which served as a critical value of the 

peel stress. This resulted in strength predictions within 6% for two different 

configurations but errors of 90% were observed in the configuration where 

substrate yielding was noted.  

The maximum shear or peel strain criterion for shear or peel failure in the 

adhesive in lap joints was also firstly proposed by Hart-Smith (1973). Equations 

for the maximum peel stress have been derived for both single- and double-lap 

joints. For small adhesive thicknesses, peel stresses appeared not to be a problem. 

However, for standard adhesive thicknesses, the peel stresses were the determining 

factor for failure.  

A failure criterion for tubular lap joints in torsion has been proposed by Lee and 

Lee (2006). In this research cohesive failure occurred for thin adhesive layers and 

interfacial failure for thicker adhesive layers (which included shear and peel strain). 

The former was governed by a maximum strain criterion while the latter was 

associated with a maximum reduced stress criterion. The torque capacity of the 

connection could be predicted accurately. Chai (1993) has noticed that the critical 

shear strain indeed decreases with increasing adhesive thickness.  

In the research of Harris and Adams (1984), reasonable strength predictions have 

been obtained for single-lap joints using the principal strain criterion in con-

junction with a non-linear FEA. The existing analytical approaches focus on the 

shear deformation of the adhesive, which can lead to significant errors since the 

behaviour in shear of an adhesive will be much more ductile than its behaviour in 

a connection. A criterion based on the uniaxial tensile properties of an adhesive is 

therefore more applicable than one based on the response of the material in pure 

shear. For two untoughened adhesives, brittle failure occurred in the joint and a 

maximum stress criterion was appropriate. For two toughened adhesives, a 

maximum strain criterion was found to be appropriate (Harris & Adams 1984).  
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The maximum effective uniaxial plastic strain criterion has been used for 

failure prediction in peel joints by using a large displacement elastoplastic FEA. 

Crocombe and Adams (1982) state that this strain is highly dependent on the mesh 

size. For different substrates bonded by the same adhesive, different critical strains 

had to be used in order to obtain reasonable failure predictions. This could be 

explained by differences in plastic zone sizes. 

For the failure prediction of SLJ with varying geometry, the maximum plastic 

energy density criterion was used by Adams and Harris (1987). They combined 

a plastic energy density criterion with an elastoplastic FEA. The location of failure 

initiation in adhesive lap joints depends strongly on the geometry of the spew fillet 

of the overlap. The configurations considered are depicted in Figure 8.6. Note that 

it is specific to numerical approaches that the prediction of the joint strength is 

extremely dependent on local mesh refinement because of the existence of 

singularities in the stress or strain fields at critical points. In adhesive joints, these 

singularities arise at the corners between the adhesive and the substrate material 

as a result of the squareness of the model (Adams & Harris 1987). 

 
FIGURE 8.6:  TEST CONFIGURATION OF THE ADHESIVE LAP JOINT (ADAMS & HARRIS 1987) 

A continuation of the work of Adams and Harris (1987) was performed by Zhao 

and Adams (1989), who stated that the plastic energy density criterion is not able 

to predict the joint strength in case of sharp corners and that an arbitrary rounding 

of twice the adhesive thickness (double of the proposed rounding suggested by 

(Adams & Harris 1987)) should always be used to analyse normal joints. The 

degree of rounding has a high influence on the maximum energy density and thus, 

extensive parametric testing was required. 

Ikegami et al. (1990) used the von Mises equivalent stress criterion to predict 

the strength of the adhesive connection between glass reinforced plastic (GRP) 

and metal scarf joints by means of an FEA. The von Mises stress provides an 

equivalent adhesive stress that can be related to the uniaxial yield stress. A 

disadvantage of this approach is that the criterion neglects the hydrostatic 
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component of stress which significantly affects the yield and deformation 

behaviour of polymers. The strength laws of the steel adherents and the adhesive 

layer are given by the von Mises conditions (Eq. (8.1)), and the strength law of the 

GRP is given by Hoffmann’s criterion (Hoffman 1967). Note that for isotropic 

materials (which is assumed for the metal adherents as well as for the adhesive 

layer), the Hoffmann yield criterion reduces to the von Mises condition 

(Schellekens & Borst 1990). The applied stress value which causes failure in the 

material element was evaluated. The stress concentration in the adhesive layer and 

the adherent was the most pronounced at the adhesive edge and the effect of the 

adhesive length on failure strength is more pronounced in joints with short 

adhesive lengths than in joints with long adhesive lengths. 

Castagnetti, Dragoni, and Spaggiari (2010) also used the von Mises equivalent 

stress criterion to determine numerically the failure load of a T-connection, as it 

was easier to implement in Abaqus. The tests were performed for two types of 

substrate, i.e. aluminium and steel, different substrate thicknesses and different 

overlap lengths. The numerical failure loads were compared to the experimental 

failure loads. The difference between the numerical and experimental failure loads 

differ from 0.6% to 16.4%. Castagnetti, Dragoni, and Spaggiari (2010) conclude 

that the used criterion is applicable to determine the failure load of a bonded 

connection. Note that in case of symmetry, where one dominant normal stress 

component exists, the von Mises criterion is almost equivalent to the maximum 

principal stress criterion that would be more appropriate to describe brittle failure 

(Castagnetti et al. 2010). 

Amijima and Fujii (1989) used the von Mises yield criterion in order to 

determine which zones of the adhesive layer will yield, while the failure of the 

adhesive layer is given by the Mohr-Coulomb failure criterion. This failure 

criterion is expressed in Eq. (8.4), where k0, k1 and k2 are experimentally 

determined constants. With a four-point bending load, progressive failure was 

introduced in the specimen. Small differences occur between the calculated values 

and the experimentally determined values during the failure processes. According 

to Amijima and Fujii (1989), these differences are caused by the simplified stress-

strain curve of the adhesive. 

𝐹(𝜎𝑦,𝑎 , 𝜏𝑥𝑦,𝑎) = 𝑘0 + 𝑘1𝜏𝑥𝑦,𝑎 + 𝑘2𝜏𝑥𝑦,𝑎
2 − 𝜎𝑦,𝑎 = 0 (8.4)  
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Also in the research of Hua et al. (2008) the von Mises equivalent stress 

criterion is used to determine the failure load of adhesive connections exposed to 

a humid and warm climate, with a relative humidity of 95.8% and a temperature 

of 50°C. The numerical failure loads corresponded well with the experimental 

failure loads.  

To determine the strength of a single lap joint and a T-connection in function of 

the cure depth, Ashcroft, Comyn, and Tellwright (2009) used a FEA to determine 

the stresses in the adhesive. The stress peaks decreased in the connection as the 

cure time increased. Stress singularities at the location of the edges of the adhesive 

layer were avoided by using the "stress at a distance" approach. This approach uses 

the stresses that occurs at a certain distance from the stress singularity at the edge. 

Two distances were selected, i.e. half of the adhesive thickness (0,5t) and a quarter 

of the adhesive thickness (0,25t). The von Mises stress and maximum principal 

stress were determined at these locations. The critical von Mises σv,cr and maximum 

principal stress σI,cr were determined by an uniaxial tensile test. The failure load was 

determined as the load when the von Mises or the maximum principal stress 

reaches their critical value. The numerical and experimental failure loads for the 

single lap joint at 25°C and 2°C are depicted in Figure 8.7. The numerical failure 

loads are close together and it can be concluded that the failure loads are almost 

independent of the applied failure criterion and distance. Also, the scattering of 

the experimental values makes it difficult to determine a correct failure criterion. 

 
FIGURE 8.7:  NUMERICAL AND EXPERIMENTAL FAILURE LOADS AT (A) 25°C AND (B) 2°C.  
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As mentioned above, two solutions for the problem of stress or strain singularities 

are the use of the stress or strain at a given distance from the point of singularity 

and a critical value averaged over a given region (Adams & Harris 1987; Zhao & 

Adams 1989; Ashcroft et al. 2009; Crocombe & Kinloch 1994). The former was 

first used in the composites field by Whitney and Nuismer (1974) to deal with the 

effect of stress concentrations in composites. The approach has been developed 

since then and works well over a limited data range (Crocombe & Kinloch 1994).  

John, Kinloch, and Matthews (1991) stated that the shear stress reaches a critical 

value at a given normalized distance from the overlap end for bonded double lap 

joints with varying overlap lengths. However, in practice, this means that the 

critical distance varies with the overlap length and thus is not a unique parameter.  

Zhao (1991) used an average value over a distance to predict failure in single lap-

joints with fillets and various degrees of rounding on the embedded corner for 

two types of adhesive, i.e. a brittle epoxy and a rubber toughened epoxy. An 

averaged stress failure criterion had to be applied for the sharp corner and small 

radius configuration whilst a maximum stress criterion had to be used with the 

larger radii. The ultimate tensile stress obtained from bulk tests was used to predict 

the failure load.  

Crocombe, Richardson, and Smith (1995) have considered numerous components 

of stress and strain from both elastic and elastoplastic finite element analyses of 

cracked and non-cracked untoughened epoxy joints subjected to various modes 

of loading. Good results were found by using a critical peel stress of about 20 

MPa at around 0.3 mm from the singularity. However, this stress appears to have 

little physical significance and the distance is rather large, i.e. larger than the 

adhesive layer thickness, to characterize the singularity.  

Clark and McGregor (1993) have used a slightly modified approach in that they 

postulate that the connection will fail if the maximum principal stress exceeds 

the ultimate tensile stress of the adhesive over a finite zone. The size of this zone 

is measured perpendicular to the maximum principal stress. This size was 

determined using a combination of experiment and FEA. For two different 

toughened epoxy adhesives and three joint types (single lap, double strap and 

flange joint), the criterion was able to predict the failure load within 5% with zones 

sizes of 1 and 0.68 mm and corresponding critical values of 67 and 70 MPa. 
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However, there is no physical justification for these zone sizes. They also showed 

that a criterion based on the ultimate tensile stress at a point produces a significant 

under-prediction of the strength due to stress singularities. The maximum 

principal stress in a material is defined as the maximum of Eq. (8.5), (8.6) or (8.7) 

with 𝜙 defined in Eq. (8.8). 
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𝐼1

3
+

2

3
(√𝐼1

2 − 3𝐼2) ∙ 𝑐𝑜𝑠𝜙 (8.5)  
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2

3
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2(𝐼1
2 − 3𝐼2)3/2

) 
(8.8)  

This criterion has been used extensively by Adams and Harris (1987) in their study 

of the influence of the local geometry on the strength of adhesive joints but they 

first mentioned this criterion in 1984 (Harris & Adams 1984). Using a non-linear 

FEA, the application of the maximum principal stress criterion predicted the 

strength of single-lap joints with an accuracy of about 10%. In this work, four 

epoxy adhesives and three types of aluminium adherents were used. For each 

adherent/adhesive combination, a batch of 6 single-lap joints was manufactured. 

Parallel with the experimental test, a FEA was performed.  

Dean et al. (2004) used rubber toughened adhesives to determine a failure criterion. 

These ductile adhesives have a large non-linear distortion before failure and were 

modelled as elastoplastic models in a FEA model. The study was performed for 

three adhesive connection configurations, i.e. a single lap joint, a T-connection and 

a scarf connection. Five different failure criteria were considered, i.e. maximum 

principal stress, hydrostatic stress, effective von Mises stress, maximum 

principal strain and volumetric strain. Depending on the applied failure 

criterion, the location of stress/strain peaks alters. By comparing the location of 

these peaks to the location of crack initiation, a conclusion was made about which 

failure criterion best indicates the location of crack initiation. Figure 8.8 indicates 

the location of crack initiation for the three different connection configurations. 

The maximum principal stress was the only criterion that predicted the location of 
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crack initiation for all three connection configurations correctly. Dean et al. (2004) 

also compared the numerical values of the peak stresses/strains for the different 

criteria at failure with their critical value. These critical values have been 

determined by a tensile test on bulk samples of the adhesive. This comparison 

showed that the maximum principal stress at failure in the connections only differs 

by 4% with the maximum principal stress at failure in the bulk sample. 

a)   b)   c)  
FIGURE 8.8:  FAILURE LOCATION FOR A) SINGLE LAP JOINT, B) T-CONNECTION AND C) SCARF 

CONNECTION (DEAN ET AL. 2004)  

Also in the research of Crocombe, Bigwood, and Richardson (1990), the 

maximum principal stress predicted the failure load the best. In this research 

two test configurations were set up, i.e. peel test and shear test, with three adhesive 

types, ESP (a two component epoxy), E27 (a one-component epoxy adhesive), 

and VOX (an acrylic-epoxy adhesive), and two substrate thicknesses, i.e. 3 mm 

and 4.75 mm. For each 12 connection configuration 15 samples were tested. Each 

experimental failure load was then applied to a FEA model and the stress and 

strain distributions were studied. They concluded that with a suitable failure 

criterion, which is based on a peak value of the stress or strain, this peak value 

must be the same for the thick and the thin adherents. In other words, the smaller 

the standard deviation of the peak values, the higher the accuracy of the failure 

criterion. According to this, the maximum principal stress gave a good indication 

of the strength of the connection. Also the peak values of the numerical maximum 

principal stress at failure was in a good agreement with the experimental measured 

maximum principal stresses in the bulk samples. 

Christensen (2013) has altered the von Mises criterion to obtain a criterion 

which is valid over a large range of brittle and ductile materials. Failure is 

considered in an inclusive sense as both yielding and complete rupture. The theory 

is proposed in a three dimensional way which applies to full density materials of 

which the tensile strength is less than or equal to the compressive strength. This 

means that Eq. (8.9) can be designated as a generalized failure criterion, with T 

and C the respective tensile and compressive loadbearing capacity of the material. 
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Note that when T=C, Eq. (8.9) simplifies to the von Mises expression. For brittle 

failure, it has been postulated that the maximum principal stress will indeed be 

critical, as expressed by Eq. (8.10), with σI the maximum principal stress 

(Christensen 2013). The second criterion is only necessary when the tensile 

strength of the material is less than half the compressive strength. Both criteria 

should be checked simultaneously and whichever is more limiting will determine 

the failure load. These expressions have the advantage to be applicable over a 

larger range of material types.  

(
1

𝑇
−

1

𝐶
) (𝜎11 + 𝜎22 + 𝜎33) +

1

2𝑇𝐶
[(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2] 

+
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𝑇𝐶
(𝜎12

2 + 𝜎23
2 + 𝜎31

2 ) ≤ 1 

(8.9)  

𝜎𝐼 ≤ 𝑇 𝑤ℎ𝑒𝑛 𝑇 ≤
𝐶

2
 (8.10)  

More complex failure criteria have also been developed in the past few years. Like 

the four-dimensional generalized triaxial model (GTM) developed by 

Santarsiero (2015) for the adhesives SentryGlas® and TSSA in laminated adhesive 

connections (Santarsiero 2015; Santarsiero & Louter 2016). The model accounts 

for a generic stress state by a governing equation expressed as a function of the 

stress tensor element, the strain rate and the temperature. It was noted that the 

experimental observations were in line with the model predictions, for varying 

temperature and hydrostatic angle.   

From the above literature, the von Mises stress and the maximum principal stress 

are the most frequently used failure criteria in the continuum mechanics approach 

to predict cohesive failure in an adhesive connection. Furthermore, two solutions 

exist to solve the problem of stress singularities, i.e. the stress at a certain distance 

from the point of singularity or an averaged stress value over a given region. In 

the next paragraph several of the mentioned failure criteria are examined in the 

prediction of the failure load for cohesive failure in adhesive point-fixings. 
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8.4. Determination of failure criterion for cohesive  

failure in adhesive point-fixings 

To determine the failure criteria for cohesive failure in adhesive point-fixings, a 

FEA model was created and validated with experiments to determine the 

occurring stresses and strains. Five failure criteria will be studied, in order to verify 

if they can predict the failure load for cohesive failure in adhesive point-fixings for 

the two selected adhesives. 

 Test configuration 

Ten test specimens were fabricated for each adhesive. These specimens were 

tested in a pure tensile test with a displacement rate of 1 mm/min until failure. 

One could assume that only tensile forces would be present in the adhesive layer 

with this test configuration. However, where the two materials join, the lateral 

strain is limited by the stiffer adherent. This constraint will cause large radial shear 

stresses in the adhesive at the interface due to the Poisson effect. These radial 

shear stresses together with the tension will introduce complex stresses in the 

adhesive (Adams et al. 1997). This was also shown  in the research of Jeandrau 

(1991); FEA demonstrated that the adhesive layer in a tensile butt joint was in a 

complex state of stress. 

The tests were performed with the two selected adhesives (SO and 3M) and a 

connector diameter of 30 mm with a connector height of 30 mm. For the 

determination of a failure criterion for cohesive failure in adhesive point-fixings, 

the main focus is on the adhesive layer as such; not on the entire connection. This 

means that the support of the adhesive point-fixings described in this chapter was 

not at 6 times the connector diameter as it was in Chapter 4. The glass plate had a 

length of 250 mm, a width of 100 mm and a thickness of 12 mm. For SO, annealed 

glass and for 3M, fully tempered glass was used since high stresses were expected 

with the latter. SO was applied with a thickness of 2 mm while 3M was applied 

with a thickness of 0.2 mm. Before testing, the 20 specimens were stored for four 

weeks in a climate chamber at a constant temperature of 20°C and a relative 

humidity of 60% without any UV-radiation. 
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The glass plate was placed on top of a base plate. The top side of the glass panel 

was clamped on two sides at a distance of 75 mm from the edges. As such, a ’free’ 

square of 100 x 100 mm emerged. All metal parts which were in direct contact 

with the glass panel were provided with a Teflon® layer in order to ensure good 

and safe contact between the glass and metal parts. The test setup is illustrated in 

Figure 8.9. The base plate was bolted onto a universal testing machine (UTM) with 

a load cell of 10 kN for the MS-polymer and a load cell of 50 kN for the epoxy. A 

threaded rod which introduces the tensile force, is screwed in the connector at one 

end and clamped in the UTM at the other end. Special effort was made to align 

the connector with the rod to eliminate parasitic forces and bending moments. 

a)  

b)  
FIGURE 8.9:  TENSILE TEST CONFIGURATION: A) VIZUALISATION AND B) ACTUAL 

CONFIGURATION. 

To determine the occurring stresses and strains in the adhesive layer, a finite 

element model was constructed. Although the used FEA model is based on the 

numerical tensile local model of Chapter 4, the strains on the glass panel and the 

deformation of the glass panel were measured using strain gauges and a LVDT, 

respectively. Three strain gauges were placed on each test specimen to measure 

the radial strains. The gauges were located at 30 mm from the centre of the plate, 

as depicted in Figure 8.10 together with the position of the LVDT.  
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FIGURE 8.10:  LOCATION OF STRAIN GAUGES AND LVDT.  

The mean failure load for cohesive failure of SO was 1062 (± 183) N and 12766 

(± 530) N for 3M. A typical cohesive failure of SO and 3M is depicted in Figure 

8.11. For SO rupture started at the interface with the connector and then 

continued in the adhesive. The starting point is visible in the top left at the 

connector in Figure 8.11a. A thin film of epoxy remained when cohesive failure 

occurred with 3M (Figure 8.11b); this phenomenon is also known as the thin-layer 

cohesive (TLC) failure pattern (Lee et al. 2009). 

a)       b) 
FIGURE 8.11 :  FRACTURE SURFACES OF COHESIVE FAILURE WITH A) SOUDASEAL 270 HS AND 

B) 3MTM SCOTCH-WELDTM 9323 B/A.  

 Numerical model 

As mentioned above, the numerical model is based on the numerical tensile model 

described in Chapter 4. Due to symmetry only a quarter of the glass plate was 

modelled. Local refinement of the mesh pattern around the connection was 

introduced. The adhesive layer was connected to the glass and the metal connector 

by means of a tie-constraint, with the adhesive layer each time as the slave surface. 

The build-up of the model is depicted in Figure 8.12. The force was applied on a 

reference point, tied by means of a multiple-points-constraint to the borehole 

surface in the connector. 
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FIGURE 8.12:  BUILD-UP OF THE NUMERICAL MODEL (ALL DIMENSIONS IN MM.).  

The element type and mesh size for each component are summarized in Table 8.1. 

The given mesh size is the length of an element in the square at the centre of the 

considered component. The number of elements along the adhesive thickness is 

set on 16 for the FEA model with SO and 5 with 3M.  The ratio of the height to 

the width of an element in the centre of the adhesive layer is 1/1 and 1/1.6 for 

SO and 3M, respectively. A maximum of a ratio 1/2 is advised (ABAQUS 2014). 

A visualisation of these ratios is given in Figure 8.13.  

TABLE 8.1 :  ELEMENT SIZE AND TYPE FOR THE THREE MATERIALS.  

Material 
Element 

type 
Element size [mm] 

  SO 3M 

Glass C3D20R 0.5 0.1 

Steel C3D20R 0.5 0.1 

MS-polymer  C3D20H 0.125 / 

2c-epoxy C3D20 / 0.025 

a)     b) 
FIGURE 8.13:  RATIO OF AN ELEMENT  IN THE ADHESIVE LAYER FOR A) SO AND B) 3M.  
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The material properties of the two selected adhesives were determined in Chapter 

3 and also used in Chapter 4. For SO, the stretch based phenomenological material 

model developed by Ogden (1973) gave the best results. The mathematical 

expression of the Ogden material model is given by Eq. (8.11). The obtained 

material constants μ1 and α1 are equal to 0.781 and 3.889, respectively. For 3M, the 

material characteristics were determined and were equal to 2267.37 MPa and 0.39 

for the Young’s modulus and the Poisson’s ratio, respectively. The adherents were 

modelled using linear elastic behaviour, using the material properties given in 

Table 8.2.  

𝑊 = ∑
2𝜇𝑖

𝛼𝑖
(𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3)

𝑁

𝑖=1

 (8.11)  

TABLE 8.2:  MATERIAL PROPERTIES OF THE ADHERENTS.  

 Young’s modulus E  

[MPa] 

Poisson’s ratio ν  

[-] 

Stainless steel EN10088-1 

1.4404 

195000 0.30 

Annealed float glass 70000 0.23 

 Validation 

As mentioned above, the numerical model was validated by means of the strain at 

three locations and the deformation at one location. The comparison between the 

experimental and numerical values is given for three strain paths (S1, S2 and S3) 

and one deformation path (U1), as depicted in Figure 8.10. The validation is 

obtained for a tensile force of 0.5 kN for SO and 3 kN for 3M.  The comparison 

for SO is depicted in Figure 8.14, where the full line represents the numerical 

values and the bullets the experimental values. The deformation of the glass panel 

was too small to measure accurately with the LVDT. The comparison for 3M is 

depicted in Figure 8.15. Although a certain scatter occurs on the experimental 

values, in general the numerical and experimental values correspond well. From 

the latter combined with that the FEA model is based on the validated numerical 

tensile model of Chapter 5, it can be concluded that the model is validated.  
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FIGURE 8.14:  COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL VALUES FOR SO. 

 
FIGURE 8.15:  COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL VALUES FOR 3M. 
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 Determination failure criterion 

The considered failure criteria were maximal principal stress, von Mises stress, 

shear stress, strain and shear strain. The numerical failure load was set as the load 

at which the stress or strain reaches a critical value. These critical values were 

obtained from the small-scale tests on bulk material in Chapter 3 and are given in 

Table 8.3. The experimental and numerical failure loads according to the failure 

criteria are given in Table 8.4. 

TABLE 8.3:  CRITICAL VALUES FROM BULK MATERIAL 

 SO 3M 

σ [MPa] 4.6  (± 0.57) 34.6  (± 1.3) 

ε [-] 0.97  (± 0.028) 0.021  (± 3.2 E-3) 

τ [MPa] 2.5  (± 0.061) 22.4  (± 0.36) 

γ [-] 0.90  (± 0.034) 0.060  (± 5.3 E-3) 

TABLE 8.4:  EXPERIMENTAL AND NUMERICAL FAILURE LOADS FOR THE MAXIMAL 

STRESS/STRAIN 

 SO 3M 

Experimental 1062 (± 183) N  12766 (± 530) N  

Maximal principal stress 1628 (± 202) N  1276 (± 46) N  

von Mises stress 3769 (± 468) N  2115 (± 76) N  

Shear stress 3718  (± 92) N  6697 (± 186) N  

Strain 1812  (± 54) N  2624 (± 392) N  

Shear strain 1081 (± 41) N  15664 (± 2400) N  

The numerical failure loads for SO all overestimate the experimental failure load, 

except for the failure load obtained with the failure criterion shear strain. The 

latter even predicts the experimental failure load with a difference of 2%. With a 

load of 1081 N, the maximum occurring shear strain in the numerical model is 

equal to 0.90. This is the maximum shear strain from the TAST. Also the location 

of the maximum shear strain in the numerical model corresponds with the failure 

location in the experiments, i.e. the top of the adhesive, as depicted in Figure 8.16. 

For the 2c-epoxy almost all failure criteria underestimate the experimental failure 

load. As expected, this is due to the stress/strain singularities in the numerical 

model between the adhesive and the substrate material as a result of the squareness 

of the model. These concentrations are clearly visible in Figure 8.16 for the failure 

criterion of maximum principal stress.  
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FIGURE 8.16:  NUMERICAL RESULTS FOR THE SHEAR STRAIN IN SO AND THE MAXIMAL 

PRINCIPAL STRESS FOR 3M. 

As discussed above, one of the two ways to deal with stress or strain singularities 

is to consider the stress or strain values at a certain distance of the maximal 

occurring stress or strain (Adams & Harris 1987; Zhao & Adams 1989; Ashcroft 

et al. 2009; Crocombe & Kinloch 1994; Whitney & Nuismer 1974; Clark & 

McGregor 1993; AD Crocombe et al. 1995; Zhao 1991; John et al. 1991). In this 

study, the distance was set to half the thickness of the adhesive and to the full 

thickness of the adhesive. The failure loads obtained when the numerical stress or 

strain at a distance of half the adhesive thickness from the stress or strain 

singularity is equal to the critical value are given in Table 8.5 and in Table 8.6 for 

a distance equal to the full adhesive thickness. As the stress or strain decreases 

away from the stress or strain singularity, the failure loads will increase. For the 

2c-epoxy 3M only the shear stress failure criterion with the stress considered at a 

distance equal to the adhesive thickness predicts the experimental failure load. 

Taking into account the uncertainties of the experimental failure load and the 

critical values from bulk material, it can be concluded that this failure criterion 

predicts the failure load for stiff adhesives conservatively.  

TABLE 8.5:  EXPERIMENTAL AND NUMERICAL FAILURE LOADS AT A DISTANCE OF HALF OF 

THE ADHESIVE THICKNESS FROM THE MAXIMAL OCCURRING STRESS/STRAIN 

 SO 3M 

Experimental 1062 (± 183) N  12766 (± 530) N  

Maximal principal stress 1621 (± 201) N  3450 (± 125) N  

von Mises stress 7548 (± 937) N  5005 (± 181) N  

Shear stress 7195 (± 178) N  9303 (± 276) N  

Strain 4325 (± 128) N  6590 (± 985) N  

Shear strain 2103 (± 80) N  21987 (± 8040) N  
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TABLE 8.6:  EXPERIMENTAL AND NUMERICAL FAILURE LOADS AT A DISTANCE OF THE 

ADHESIVE THICKNESS FROM THE MAXIMAL OCCURRING STRESS/STRAIN 

 SO 3M 

Experimental 1062 (± 183) N  12766 (± 530) N  

Maximal principal stress 1628 (± 202) N  3546 (± 128) N  

von Mises stress 7927 (± 984) N  5520 (± 199) N  

Shear stress 7547 (± 187) N  11894 (± 329) N  

Strain 4502 (± 133) N  7079 (± 1058) N  

Shear strain 2198 (± 84) N  26012 (± 2432) N  

A general conclusion is formulated in Figure 8.17. For stiff adhesives, the failure 

load can be determined when the shear stress at a distance equal to the adhesive 

thickness from the maximum shear stress equals the maximum shear stress from 

bulk material. For more flexible adhesives, the failure load can be determined when 

the maximum numerical shear strain is equal to the maximum shear strain from 

bulk material. Between these types of adhesives, both failure criteria must be 

applied; the lowest failure load will be the actual failure load. 

 
FIGURE 8.17:  PROPOSED FAILURE CRITERIA FOR ADHESIVES FOR ADHESIVE POINT-FIXINGS. 
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8.5. Parametric study and experimental 

comparison 

Together with the validated numerical tensile, shear and multi-axial local models, 

the obtained failure criteria enables a thorough investigation of the load 

eccentricity and multi-axial angle. The study was performed for the two selected 

adhesives, multi-axial angles of 0°, 22.5°, 45°, 67.5° and 90° and load eccentricities 

of 0 mm, 15 mm, 30 mm and 45 mm. The normal and transverse components of 

the force were determined for a maximum principal stress equal to 45 MPa in the 

glass. Also the components of the force were determined for a shear strain equal 

to 0.897 in the adhesive layer for the MS-polymer and for a shear stress of 22.42 

MPa at a distance equal to the adhesive thickness from the maximum occurring 

shear stress for the 2c-epoxy. Furthermore the components of the force were 

determined for a maximum deformation of 4.5 mm of the glass, i.e. the span 

divided by 65 with the span equal to 300 mm (prEN 16612 2013). The outcome 

of this parametrical study is depicted in Figure 8.18. A comparison between the 

obtained numerical failure loads and the experimental failure loads from Chapter 

5 is given in Table 8.7. Taking into account the sometimes large spread of the 

experimental results, the numerical model can predict the experimental failure 

loads mostly conservatively and accurately. From Figure 8.18, the stiff adhesive 

will locally strengthen the glass, causing a higher failure load for glass failure in 

tension. However, in shear the stiff adhesive will introduce higher stress 

concentrations in the glass than the flexible adhesive, causing lower failure loads 

for glass failure in shear. For failure in the adhesive, the flexible adhesive performs 

much better under tension than under shear. The opposite is true for the stiff 

adhesive as long as the eccentricity is not larger than 30 mm. With eccentricities 

larger than 30 mm, the peel stresses will be more dominate due to the increased 

bending moment. These peel stresses cause faster failure than in tension. For a 

similar deformation, larger forces are needed for the stiff adhesive compared to 

the flexible adhesive. This effect is due to the restrained glass deformations under 

the connector with the stiff adhesive. The glass will remain plane under the 

connector, while with the flexible adhesive the glass can deform freely which 

results in a larger deformation of the glass for the same load or in other words a 

lower load for the same deformation. This was also notable in the experiments 

(cfr. Figure 4.16 and Figure 4.17). 
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FIGURE 8.18:  FAILURE LOADS COMPONENTS FOR GLASS FAILURE, COHESIVE FAILURE AND 

MAXIMAL DEFORMATION.  
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TABLE 8.7:  COMPARISON BETWEEN EXPERIMENTAL FAILURE LOADS AND NUMERICAL 

FAILURE LOADS.  

Type Configuration Exp. failure load [N] Num. failure load [N] 

SO Tension 

Glass failure 

Ftension = 3161 

 (±547.9) 

Ftension = 2924 

SO Tension 

Cohesive failure 

Ftension = 3354 

 (±520.1) 

Ftension = 3494 

SO Shear 

Cohesive failure 

Fshear = 1531 

 (±169.0) 

Fshear = 1650 

SO Ecc. = 15 mm; 

θ = 45° 

Cohesive failure 

Ftension = Fshear = 1048  

(±102.5) 

 

Ftension = Fshear = 886 

3M Tension 

Glass failure 

Ftension = 4697 

 (±1345.0) 

Ftension = 3908 

3M Tension 

Cohesive failure 

Ftension = 3510  

(±489.5) 

Ftension = 2900 

3M Ecc. = 15 mm;  

θ = 45° 

Glass failure 

Ftension = Fshear = 4035  

(±546.6) 

Ftension = Fshear = 3297 
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8.6. Summary and conclusions 

In this chapter, the failure criteria for glass panels supported by adhesive point-

fixings were determined.  

For glass and adhesive failure, existing failure criteria were divided in two large 

groups, i.e. based on fracture mechanics or based on the classic material strength. 

In the former, the initial critical flaw depth has to be known. Non-destructive and 

destructive methods for the determination of the size of a flaw in a material are 

rather time consuming and expensive. To avoid the determination of the initial 

critical flaw depth, failure criteria according to the classical material strength can 

be used. For glass failure, in several standards, the 5% characteristic surface tensile 

strength with a 95% confidence level is given, where 45 MPa, 70 MPa and 120 

MPa are the characteristic values of the bending strength of annealed glass, heat 

strengthened glass and fully tempered glass, respectively. 

Also for failure in the adhesive in practice, a continuum mechanics approach is 

therefore often preferable. The existence of singularities in the stress or strain 

fields at critical points followed from literature. In a stiff adhesive connection, 

these singularities arise at the corners between the adhesive and the substrate 

material as a result of the squareness of the model. This was also noted in the FEA 

modelled with 3M. Two solutions exist to solve the problem of stress singularities, 

i.e. considering the stress at a certain distance from the point of singularity or an 

averaged stress value over a given region. To determine the failure criteria for 

adhesive point-fixings, an FEA model was modelled and validated with 

experiments to determine the occurring stresses and strains. The considered failure 

criteria were the maximum principal stress, the von Mises stress, the shear stress, 

the strain and the shear strain. The numerical failure load was set as the numerical 

stress or strain reaching a critical value. These critical values were obtained from 

the small-scale tests on bulk material in Chapter 3. 
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The failure load obtained from the failure criterion shear strain predicted the 

experimental failure load with a mere difference of 2% for SO. Due to the stress 

singularities in the adhesive layer with 3M the "stress at a distance" approach was 

applied for this adhesive. Only the shear stress failure criterion with the stress 

considered at a distance equal to the adhesive thickness from the stress singularity 

predicted the experimental failure load. It can be concluded that this failure 

criterion predicts the failure load for stiff adhesives conservatively. These criteria 

were also applied on the local FEA models from Chapter 4 to determine the 

numerical failure loads. The obtained failure criteria predicted the experimental 

failure loads conservatively and accurately. A general conclusion was formulated. 

For stiff adhesives, the failure load can be determined when the shear stress at a 

distance equal to the adhesive thickness from the maximum shear stress equals the 

maximum shear stress from bulk material. For more flexible adhesives, the failure 

load can be determined when the maximum numerical shear strain is equal to the 

maximum shear strain from bulk material. Between these types of adhesives, both 

failure criteria must be applied; the lowest failure load will be the actual failure load. 
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Chapter 9: Design method 

Look at situations from all angles,  

and you will become more open. 

Dalai lama 

 Introduction 

Before glass panels supported by adhesive point-fixings can be constructed, the 

glass panel and the adhesive connection have to be designed. In this design, for a 

given load, the different geometry and material parameters are assessed, such as 

the glass thickness, the connector diameter, adhesive type, etc. The design is an 

iterative process, as depicted in Figure 8.1. 

 Design method 

9.2.1. Flowchart 

For the design of glass panels supported by adhesive point-fixings, a flowchart is 

proposed, as depicted in Figure 9.1. The flowchart consists of several different 

steps, which are explained in the following paragraph.  
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Design of glass panels supported 

by adhesive point-fixings 

Determine acting loads 

Build-up global model 

Determine reaction forces 

Build-up local model 

σloc, adh ≤ σr, adh 

Change: - Diameter 
Change:  - Adhesive type 
Change:  - Adhesive thickness  
Change:  - Eccentricity 
 

Glass design OK  Adhesive design OK 

True 

False 

True 

True 

False 

False 

Change: - Edge distance 
Change:  - Hinged/fixed 
Change:  - Number of point-fixings 
Change:  - Glass thickness 
Change:  - Panel size 

Determine σglobal 

σ1 ≤ σr  
Uz ≤ Umax 

(Eq. 7.3) 

σglobal + σloc, glass≤ σr, glass 

(Eq. 7.3) 

FIGURE 9.1 :  FLOWCHART FOR THE DESIGN OF GLASS PANELS SUPPORTED BY ADHESIVE POINT-

FIXINGS. 
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9.2.2. Steps 

The design flowchart in Figure 9.1 contains several steps that have to be carried 

out to achieve a valid design. These steps are clarified below. 

 
With this flowchart the design of glass panels supported by adhesive 

point-fixings can be completed. The flowchart is divided in two parts, i.e. 

the design of the glass panel and the design of the adhesive layer. 

  
The first step in the design is the determination of the acting loads on the 

glass panel. Depending on the configuration, the most frequent occurring 

loads will be the dead load of the glass panel, wind load and/or snow load. 

The order of magnitude of these loads can be determined with EN 1991-

1-1, EN 1991-1-4 and EN 1991-1-3, respectively. Depending on the 

configuration and required specifications, other loads must be also taken 

into account, e.g. thermal loads, impact loads, etc. 

 
The global model is a very general model, with the connections modelled 

as discrete points. As the connection can be pinned or clamped to the 

underlying structure, the point-fixing can be modelled in several ways, 

depending on the specific degrees of freedom, i.e. hinged or moment-

resisting. These two boundary conditions are depicted in Figure 6.2. The 

geometrical parameters used in this model are the glass thickness, the 

number of point-fixings, the edge distance, the panel size and the 

boundary condition, i.e. hinged or fixed. For laminated glass panels, the 

EET method, described in Chapter 3, can be used to determine the 

effective glass thickness, i.e. Eq. (3.2) for the deflection-effective thickness 

and Eq. (3.3) for the stress-effective thickness. 

For this type of model, shell elements are an obvious option. However, 

previous research has shown that shell elements in comparison with 

volumetric elements do not reduce the calculation time significantly and 

in some cases even increase the calculation time (De Jaegher 2014; Devos 

Design of glass panels supported 

by adhesive point-fixings 

Determine acting loads 

Build-up global model 
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2014; Tournoy 2014). Also shell elements did not give a good 

correspondence with the experimental values in Chapter 5. Following 

from this, the element type C3D20R is suggested with three elements over 

the glass thickness. A mesh refinement must be applied around the 

discrete supports, as depicted in Figure 5.7, with three elements between 

the panel edge and the point-fixing. This is equal to the number of 

elements that was proposed in Beyer's (2007) design-method.  

 
From the global model, the maximum principal stress and maximum 

deflection in the field are determined and are compared to the maximum 

classical material strength of glass and the maximum allowed deformation 

for glass panels. For the classical material strength, the 5% characteristic 

surface bending strength with a 95% confidence level is given in standards 

and literature (prEN 16612 2013; EN 12150-1 2015; ÖNORM B 3716-1 

2009; NEN 2608 2014; DIN 18008 2010; EN 14179-1 2007; EN 1863-1 

2012). The design value of strength for annealed glass can be calculated 

using Eq. (7.2) and (7.3) for prestressed glass, where 45 MPa, 70 MPa and 

120 MPa are the characteristic values of the bending strength of annealed 

glass, heat strengthened glass and fully tempered glass, respectively.  As 

the maximum occurring deformation is determined from the global model, 

this deformation will be larger than the actual occurring deformation, 

since the influence of the connector is not taken into account. The 

connection will locally prevent deformation of the glass panel. Hence, the 

deformation obtained from the global model will be conservative and safe. 

 
When the occurring maximum principal stress and/or maximum 

deformation is larger than the maximum glass strength of glass or the 

maximum allowed deformation, the glass strength can be improved, by 

using e.g. heat strengthened glass or fully tempered glass, or the geometry 

can be altered to reduce the occurring stresses and/or deformation. As 

Change: - Edge distance 
Change:  - Hinged/fixed 
Change:  - Number of point-fixings 
Change:  - Glass thickness 
Change:  - Panel size 

σ1 ≤ σr  

Uz ≤ Umax 
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depicted in Figure 8.1, this will be an iterative process.  To reduce the 

stress or deformation of the glass panel following actions can be taken, in 

decreasing order of influence: 

- Increase the number of connections; 

- Decrease the panel size; 

- Increase the edge distance; 

- Increase the glass thickness; 

- Change the boundary condition to pinned (for reducing the 

stress); 

- Change the boundary condition to clamped (for reducing the 

deformation). 

 
When the occurring maximum principal stress and/or maximum 

deformation is smaller than or equal to the glass strength or the maximum 

allowed deformation, the reaction forces and reaction moments (Fz, Fx, 

Fy, Mx and My) on the connection can be obtained from the global model. 

These reaction forces and moments will be used in the next step. 

 
With the reaction forces and moments from the previous step the local 

model can be modelled. The numerical model is constructed with a more 

complex and dense mesh pattern than the global model. The local 

component is the glass panel with a diameter six times the diameter of the 

connector, as depicted in Figure 9.2 for a tensile force with simple 

supports along the circular support line. The material behaviour for more 

stiff adhesives can be modelled in a linear elastic manner, while for more 

flexible adhesives this linear behaviour will not be adequate. Elastic-plastic 

material modelling or even hyperelastic material behaviour imposes itself. 

The steel connector and the glass panel can be modelled assuming linear 

elastic behaviour. 

Determine reaction forces 

 

Build-up local model 
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FIGURE 9.2:  VISUAL REPRESENTATION OF THE LOCAL COMPONENT. 

The forces acting on the local model are depicted in Figure 9.3. Due to 

the eccentricity in the hinged type, the shear forces Fx and Fy will introduce 

bending moments Mx and My., as depicted in Figure 9.4. The magnitude 

of these moments is equal to the respective shear forces multiplied by the 

eccentricity. The resulting shear forces and bending moments can be 

derived from Eq. (9.1) and (9.2), respectively. 

 
FIGURE 9.3:  APPLIED FORCES ON THE LOCAL MODEL 

   
FIGURE 9.4:  APPLIED FORCES AND BENDING MOMENT ON THE LOCAL MODEL 

𝐹𝑥𝑦 = √𝐹𝑥
2 + 𝐹𝑦

2 (9.1)  

𝑀𝑥𝑦 = √𝑀𝑥
2 + 𝑀𝑦

2 (9.2)  
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The normal reaction forces Fz can be applied on the numerical tensile 

model from Chapter 4, the resulting shear force Fxy on the numerical shear 

model and the resulting bending moment Mxy on the numerical moment 

model. These forces and the bending moment can also be applied on one 

model, i.e. the multi-axial model. As shown in Chapter 4, the applied force 

F, multi-axial angle θ and eccentricity e can easily be determined from Eq. 

(4.3), (4.4) and (4.5), respectively. This superposition is shown in Figure 

4.40. 

 
From the global model the global stress σglobal is also obtained. This stress 

is the maximum occurring stress along the circumference around the 

point-fixing with a diameter equal to six times the connection diameter.  

 
As the design is based on the SLG-method, the design consists of the 

superposition of the global and local component. From the local models, 

the occurring maximum principal stress in the glass panel in each model 

is determined. The sum of these local maximum principal stresses and the 

global stress must be lower than or equal to the maximum glass strength, 

as given in Eq. (9.3).  

𝜎1,𝐹𝑧
+ 𝜎1,𝐹𝑥𝑦

+ 𝜎1,𝑀 + 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 ≤ 𝜎𝑟,𝑔𝑙𝑎𝑠𝑠 (9.3)  

As stated above and in Chapter 5, the tensile model, shear model and 

moment model can be replaced by the multi-axial model. The sum of the 

occurring stresses in the tensile, shear and moment models is equal to the 

occurring stress in the multi-axial stress, as given in Eq. (9.4). Hence, Eq. 

(9.3) can be replaced by Eq. (9.5). The latter states that the sum of the 

occurring maximum principal stress in the multi-axial model and the 

global stress must be lower than or equal to the glass strength. This 

approach requires only two models, i.e. the global model and the multi-

axial model. 

Determine σglobal 

σglobal + σloc, glass  

         ≤ σr, glass 
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𝜎𝐹𝑧
+ 𝜎𝐹𝑥𝑦

+ 𝜎𝑀 = 𝜎𝑚𝑢𝑙𝑡𝑖 (9.4)  

𝜎1,𝑚𝑢𝑙𝑡𝑖 + 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 ≤ 𝜎𝑟,𝑔𝑙𝑎𝑠𝑠 (9.5)  

 
When the occurring stress in the glass panel at the connection exceeds the 

glass strength, the glass strength can be improved, by using e.g. heat 

strengthened glass or fully tempered glass or geometrical and material 

parameters can be changed. The same parameters as in the previous step 

where the global stress is examined, can be altered, i.e. the number of 

connections, the panel size, the edge distance, the glass thickness and the 

boundary condition. However, changing one of these parameters implies 

a new global model and new reaction forces.  

The parameters affecting the local models can also be altered. For 

reducing the stress in the glass panel following actions can be taken, in 

decreasing order of influence: 

- Decrease the eccentricity; 

- Increase the connector diameter; 

- Decrease the Young’s modulus of the adhesive; 

- Increase the adhesive thickness; 

- Decrease the Poisson ratio of the adhesive. 

 
When the occurring stress in the glass panel at the connection does not 

exceed the glass strength, the glass panel will withstand the applied forces 

and the design for the glass panel is completed. 

 
To determine if the occurring stresses in the adhesive layer are lower than 

or equal to a critical value, the stress distribution in the adhesive layer must 

be known. As demonstrated in Chapter 6, the stress distribution with the 

Change: - Diameter 
Change: - Adhesive type 
Change: - Adhesive thickness  
Change: - Eccentricity 
 

Glass design OK 

σloc, adh ≤ σr, adh 
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SLG-method in the adhesive layer can be obtained by only the local 

models. Furthermore, the local stresses can be derived from the multi-

axial model with the magnitude, angle and eccentricity of the resulting 

force derived from Eq. (5.3), (5.4) and (5.5). The critical stress values are 

obtained from small-scale tests on bulk material of the adhesive. Which 

failure criterion has to be considered is formulated in Figure 7.18. For stiff 

adhesives, the adhesive will fail when the shear stress at a distance equal 

to the full adhesive thickness from the maximum shear stress exceeds the 

maximum shear stress from bulk material. For more flexible adhesives, 

failure will occur when the maximum numerical shear strain is equal to 

the maximum shear strain from bulk material. Between these types of 

adhesives, both failure criteria must be applied, both stresses have to be 

smaller than the corresponding critical value. 

Safety coefficients should be applied to the characteristic values of the 

adhesive material properties, i.e. the critical values. An overall safety 

coefficient can be determined with available standards and guides, e.g. 

“The Structural Use of Adhesives” drawn up by the Institution of 

Structural Engineers (ISE) (1999). This standard gives an overall material 

safety coefficient, given by Eq. (9.6), in function of the type of loading, 

environment conditions, etc. The values of the various factors in Eq. (9.6) 

are given in Table 9.1. For adhesive connections subjected to long-term 

loading, the overall γm should not be less than 4.  

𝛾𝑚 = 𝛾𝑚1𝛾𝑚2𝛾𝑚3𝛾𝑚4𝛾𝑚5 (9.6)  

The reduction with a factor of 2 for environmental conditions was also 

obtained for adhesive point-fixings exposed to moisture. The effect of 

moisture, temperature and UV-radiation on adhesive point-fixings is 

summarized in Appendix G 
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TABLE 9.1 :  RECOMMENDED VALUES FOR PARTIAL SAFETY COEFFICIENTS FOR 

ADHESIVE PROPERTIES (INSTITUTION OF STRUCTURAL ENGINEERS (ISE) 1999).  

Source of the adhesive properties γm1 

 Typical or textbook values 1.5 

 Values obtained by testing 1.25 

Method of adhesive application γm2 

 Manuel application, no adhesive thickness control 1.5 

 Manuel application, adhesive thickness control 1.25 

 Established application procedure with repeatable and 

controlled process parameters 1.0 

Type of loading γm3 

 Long-term loading 1.5 

 Short-term loading 1.0 

Environmental conditions γm4 

 Service conditions outside test conditions 2.0 

 Adhesive properties determined for the service conditions 1.0 

Fatigue loading γm5 

 Loading basically static 1.0 

 Adhesive subjected to significant fatigue loading See Table 9.2 

TABLE 9.2:  PARTIAL COEFFICIENT γm5 FOR FATIGUE STRENGTH. 

Degree of inspection applications γm5 

Periodic inspection, good access 1.5 

Periodic inspection, poor access 2.0 

No inspection/maintenance 2.5 

 
 When the considered stress in the adhesive layer exceeds the critical value, 

the adhesive strength can be improved, by using e.g. acrylics or 2c-epoxies 

or geometrical and material parameters must be changed. The same 

parameters as in the previous step where the global glass strength is 

examined, can be altered, i.e. the number of connections, the panel size, 

the edge distance, the glass thickness and the boundary condition. 

Change: - Diameter 
Change: - Adhesive type 
Change: - Adhesive thickness  
Change: - Eccentricity 
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However, changing one of these parameters implies a new global model 

and new reaction forces.  

The parameters affecting the local models can also be altered. For 

reducing the stress in the adhesive layer following actions can be taken, in 

reducing order of influence: 

- Decrease the eccentricity; 

- Increase the connector diameter; 

- Decrease the Young’s modulus of the adhesive; 

- Increase the adhesive thickness; 

- Decrease the Poisson ratio of the adhesive. 

 
When the considered stress in the adhesive layer does not exceed the 

critical value, the adhesive connection can withstands the considered loads. 

Together with the glass design, a complete and safe design is obtained. 

 Design example 

To demonstrate the design of adhesive point-fixings between glass and metal, an 

example will be given below. Next configuration is considered: 

- A vertical facade panel on the north-side of the building attached at an 

altitude of 100 m; 

- Two tempered glass panels with a length of 2 m, width of 1 m and 

thickness of 8 mm laminated with PVB-interlayer of 0.76 mm; 

- Four pinned adhesive point-fixings with a diameter of 50 mm, height of 

15 mm and a corner distance of 50 mm; 

- A stiff adhesive with a Young’s modulus of 2000 MPa and Poisson ratio 

of 0.4; 

- The adhesive thickness is 0.5 mm and has a critical shear stress of 20 MPa; 

- The point-fixings are placed on the inside of the building and are sealed 

from moisture. 

A visualisation of the considered configuration is depicted in Figure 9.5. 

Adhesive design OK 
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FIGURE 9.5:  CONSIDERED CONFIGURATION FOR THE DESIGN EXAMPLE (NOT ON SCALE).  

Note that with the above configuration, the outer glass panel is only attached with 

the interlayer to the inner glass panel. This is not common practice, as mechanical 

self-weight support will mostly be applied for this configuration. However, for the 

ease of the example and to demonstrate that mechanical self-weight supports can 

be omitted, mechanical self-weight supports were not considered. Furthermore, 

IGUs will mostly being used for façade elements. However, for the ease of the 

example the IGU functioning is being neglected, i.e. the loads applied on the outer 

panel of the IGU are considered to be on the laminated panel. The first step in the 

design of adhesive point-fixings in structural glass is the determination of the 

acting loads. The self-weight of the panel can be determined with the density of 

soda lime silica glass equal to 2500 kg/m3 (Haldimann et al. 2008). As tension is 

more severely for adhesive point-fixings, wind suction is considered. The 

magnitude of the wind pressure acting on the internal surfaces of a structure wi can 

be determined with Eq. (9.7) (EN 1991-1-4). 

𝑤𝑖 = 𝑐𝑝𝑖 ∙ 𝑞𝑝(𝑧𝑖) (9.7)  
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cpi is the pressure coefficient for the internal pressure. Worst case scenario is 

assumed, i.e. the area of the openings at the dominant face is at least 3 times the 

area of the openings in the remaining faces. The pressure coefficient for the latter 

scenario can be calculated with Eq. (9.8). 

𝑐𝑝𝑖 = 0.9 ∙ 𝑐𝑝𝑒 (9.8)  

cpe is the pressure coefficient for the external pressure and is equal to 1 for the 

given configuration. In Eq. (9.7), qp(zi) is the peak velocity pressure and can be 

determined with Eq. (9.9) with zi the reference height for the internal pressure. 

The latter is equal to the reference height for the external pressure ze and is equal 

to 100 m. 

𝑞𝑝(𝑧𝑖) = 𝑐𝑒(𝑧) ∙ 𝑞𝑏 (9.9)  

ce(z) is the exposure factor and is equal to 2.92 according to Figure 4.2 in (EN 

1991-1-4) for h = 100 m, c0 = 1 (as no slope is considered, the orography factor 

will be 1), kl = 1 (recommended value for the turbulence factor) and for terrain 

category IV, i.e. an area in which at least 15 % of the surface is covered with 

buildings and their average height exceeds 15 m. Furthermore, qb is the basic 

velocity pressure and can be determined with Eq. (9.10). 

𝑞𝑏 =
1

2
∙ 𝜌 ∙ 𝑣𝑏

2 (9.10)  

ρ is the air density and the recommended value is 1,25 kg/m3. vb is the basic wind 

velocity and is considered to be equal to 25 m/s. With the above mentioned 

equations and values, the the wind pressure acting on the internal surfaces of the 

glass panel is equal to 1027 Pa. The characteristic values are multiplied with a 

partial safety coefficient of 1.35 for permanent load and a partial safety coefficient 

of 1.5 for variable load, this results in a design value of 3375 kg/m3 for the density 

and 1540 Pa for the wind load in ULS. 

The next step in the design is the construction of the numerical global model. The 

effective thickness is determined with Eq. (6.2) for the deflection-effective 

thickness and Eq. (6.3) for the stress-effective thickness. The non-dimensional 

parameter η is considered to be equal to 0.85. The values for the deflection-

effective thickness and the stress-effective thickness are given in Eq. (9.11) and 

(9.12), respectively. 
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ℎ̂𝑒𝑓𝑓,𝑤 = √
1

0.85
2 ∙ 83 + 12 ∙ 137.09

+
1 − 0.85
2 ∙ 123

3
= 10.98 𝑚𝑚 (9.11)  

ℎ̂1,𝑒𝑓𝑓,𝜎 = ℎ̂2,𝑒𝑓𝑓,𝜎 = √
1

2 ∙ 0.85 ∙ 3.38
2 ∙ 83 + 12 ∙ 976.91

+
8

10.983

= 22.90 𝑚𝑚 (9.12)  

As stated in Chapter 6, to avoid thermal stresses in the glass panel, only one point-

fixing is fixed, as the other point-fixings are slotted or oversized. As no borehole 

are present, the allowed deformation is accomplished by the connectors. The used 

configuration is depicted in Figure 9.6. 

 
FIGURE 9.6:  CONSIDERED BOUNDARY CONDITIONS FOR THE DESIGN EXAMPLE.  

The maximum allowed deformation can be set as the span divided by 65 (prEN 

16612 2013), i.e. a maximum deformation of 13.85 mm. As the standard prEN 

16612 is under consideration for the new Eurocode for glass design, this maximum 

allowed deformation should applied cautiously. The maximal occurring 

deformation in the global numerical model is equal to 14.70 mm, as depicted in 

Figure 9.7. The occurring deformation is larger than the maximum allowed 

deformation. Geometrical and/or material parameters have to be changed to 

decrease the occurring deformation.  
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FIGURE 9.7:  DEFORMATION OF THE GLASS PANEL (SCALE FACTOR OF 10).  

The designer decides to increase the glass thickness to 12 mm and the corner 

distance from 50 mm to 100 mm. The effective glass thicknesses are given in Eq. 

(9.13) and (9.14). The maximal occurring deformation is now only 3.54 mm, as 

depicted in Figure 9.8, a reduction of more than a factor of four, compared to the 

first configuration. 

ℎ̂𝑒𝑓𝑓,𝑤 = √
1

0.85
2 ∙ 123 + 12 ∙ 976.91

+
1 − 0.85
2 ∙ 123

3
= 21.59 𝑚𝑚 (9.13)  

ℎ̂1,𝑒𝑓𝑓,𝜎 = ℎ̂2,𝑒𝑓𝑓,𝜎 = √
1

2 ∙ 0.85 ∙ 6.38
2 ∙ 123 + 12 ∙ 976.91

+
12

21.593

= 22.90 𝑚𝑚 (9.14)  

To examine the maximal occurring stresses in the field, a thickness of 22.90 mm 

is applied for the global model. The glass strength is calculated with Eq. (7.3) and 

is equal to 81 MPa as given in Eq. (9.15), assuming short multiple wind gusts (kmod 

= 0.74). The maximum occurring maximum principal stress in the field of the glass 

panel is equal to 6.82 MPa smaller than the glass strength. 
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FIGURE 9.8:  DEFORMATION OF THE GLASS PANEL WITH SIX POINT-FIXINGS (SCALE FACTOR 

OF 50).  

fg,d =
0.74 ∙ 1 ∙ 45

1.8
+

1 ∙ (120 − 45)

1.2
= 81 𝑀𝑃𝑎 (9.15)  

The next step in the design is the determination of the reaction forces of the point-

fixings and the determination of the global stress around the point-fixings from 

the global model. The reaction forces for the point-fixings numbered as in Figure 

9.5 and Figure 9.6 are summarized in Table 9.3, together with the maximum 

occurring stress along a perimeter with a diameter of 300 mm around the point-

fixings. 

TABLE 9.3:  REACTION FORCES AND GLOBAL STRESSES. 

 Rx (Shear) [N] Ry (Shear) [N] Rz (Tension) [N] σglobal [MPa] 

1 -768.30  2.03  -774.92  4.20  

2 -777.43  0.0  -775.04  4.21  

3 0.0  -2.03  -761.34  4.11  

4 0.0  0.0  -761.22  4.11  

These reaction forces are subsequently applied on the local models. The resulting 

shear force Fxy can be determined from the values in Table 9.3 and with Eq. (9.1). 

As mentioned above and in Chapter 5, only one local model can be considered, 

i.e. the multi-axial model. The applied force F, multi-axial angle θ and eccentricity 
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e can easily be determined with Eq. (5.3), (5.4) and (5.5), respectively. The 

considered resulting shear force Fxy, applied force F, multi-axial angle θ and 

eccentricity e are given in Table 9.4. As the considered configuration is pinned, no 

reaction moments are at the connections. Hence, the eccentricity is the height of 

the connector. Otherwise, the eccentricity was the sum of the height of the 

connector and the eccentricity by Eq. (5.5). 

TABLE 9.4:  RESULTING FORCE, MULTI-AXIAL ANGLE AND ECCENTRICITY FOR THE MULTI-

AXIAL MODEL. 

 Fxy [N] F [N] θ [°] e [mm] 

1 768.3  1091.2  44.8  15  

2 777.4  1097.8  45.1  15  

3 2.0  761.3  0.15  15  

4 0  761.2  0  15  

For the glass design, the sum of the maximum value for the maximum principal 

stress in the multi-axial model and the global stress must be less than the glass 

strength. The glass strength is already determined and is equal to 81 MPa as given 

in Eq. (9.15). Table 9.5 summarise the sum for the four point-fixings. Since the 

sum for any point-fixing exceeds the glass strength, the glass design is verified. 

TABLE 9.5:  SUM OF THE GLOBAL STRESS AND THE MAXIMUM VALUE FOR THE MAXIMUM 

PRINCIPAL STRESS.  

 σglobal [MPa] σ1 [MPa] σglobal + σ1 [MPa] 

1 4.20  7.24  11.44  

2 4.21  7.24  11.45  

3 4.11  6.55  10.66  

4 4.11  6.52  10.63  

The considered adhesive is a stiff adhesive. Hence, the failure criterion to be used 

is the shear stress at a distance equal to the adhesive thickness from the maximum 

shear stress. The latter must be lower than the critical design value. The critical 

characteristic value for the shear stress is 20 MPa. With the overall safety 

coefficient described by the Institution of Structural Engineers (ISE) (1999), the 

design value can be obtained. The overall safety coefficient γm is equal to 3.52 as 

given with Eq. (9.16). However, for adhesive connections subjected to long-term 

loading, the overall γm should not be less than four. Hence, the critical design value 

is equal to 5 MPa. In Table 9.6 the occurring shear stress in the adhesive layer at a 
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distance equal to the full adhesive thickness from the stress singularity for the four 

considered point-fixings is summarised. As the considered shear stress in the 

numerical model does not exceed the adhesive strength, the adhesive design is 

verified. Hence, the considered configuration can withstand the considered loads 

without glass or adhesive failure. 

𝛾𝑚 = 1.25 ∙ 1.25 ∙ 1.5 ∙ 1 ∙ 1.5 = 3.52 (9.16)  

TABLE 9.6:  OCCURRING SHEAR STRESS IN THE ADHESIVE LAYER AT A DISTANCE EQUAL TO 

THE FULL ADHESIVE THICKNESS FROM THE STRESS SINGULARITY. 

 τ [MPa] 

1 1.23  

2 1.24  

3 0.50  

4 0.50  

 Summary and conclusions 

For the design of glass panels supported by adhesive point-fixings, a method was 

proposed in this chapter by means of a flowchart. The design is based on the SLG-

method, a method developed by Beyer (2007) for glass panels supported by bolted 

point-fixings. In the flowchart, the design is divided in two parts, i.e. the glass 

design and the adhesive design. In the former, the glass panel is separated in a 

global component and a local component. The stress and deformation in the field 

are examined by means of the global model. The stresses in the vicinity of the 

connection are examined by the sum of the global stress and the maximum 

principal stress in the local models. For the adhesive design, only one local model 

can be considered, i.e. the multi-axial model. By applying the failure criteria from 

Chapter 7 the adhesive layer can be examined for the considered loads. The 

occurring stress in the glass panel and in the adhesive layer can be altered by 

chancing geometrical parameters and material parameters. When both design parts 

results in satisfactory values of the stresses and deformations, the design of glass 

panels supported by adhesive point-fixings for the considered configuration is 

completed. 
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Chapter 10: Conclusions and  
Chapter 10: future research 

 “The Answer to the Great Question... 

Of Life, the Universe and Everything... 

Is... 

Forty-two” 

said Deep Thought, with infinite majesty and calm. 

Douglas Adams, The Hitchhiker’s Guide to the Galaxy 

10.1. Introduction 

Previous chapters have led to a design method for glass panels supported by 

adhesive point-fixings. The experimental studies in this dissertation focused on 

the validation of the numerical models (the total model, the local model and the 

global model) and the validation of the material models (linear elastic and hyper-

elastic behaviour). Experiments were also conducted for the determination of a 

failure criterion and the determination of the influence of environmental 

conditions (humidity, temperature and UV-radiation). The experimental and 

numerical work performed in this work resulted in several conclusions, which are 

described in detail in the following paragraphs. Furthermore, suggestions for 

future research are given. 
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10.2. Conclusions 

The literature review in Chapter 2 showed several advantages of adhesive point-

fixings compared to bolted point-fixings;  

- Stress redistributing ability with flexible adhesives; 

- No weakening or residual stresses in the glass due to glass perforation; 

- Use of regular annealed glass possible; 

- Prevention of thermal bridges. 

Furthermore, almost all design methods that have been developed over the years 

for bolted point-fixings in structural glass, make use of FEA. It is obvious that 

these methods require a significant computation time and consequently have a 

great cost, especially for complex geometries. Therefore Beyer developed the time-

efficient SLG-method for the design of bolted point-fixings. Due to the separation 

into one global component that can be built up with a less dense mesh pattern and 

one local component that is built up with a more complex and dense mesh pattern, 

the stress distribution can be determined in a very time-efficient manner. This 

method appeared to offer a very appealing basis for the design of glass plates with 

adhesive point-fixings.  

In Chapter 3 the mechanical behaviour of a rubber-like adhesive (MS-polymer 

Soudaseal 270 HS) and a though adhesive (two-component epoxy 3M™ Scotch-

Weld™ 9323) was obtained. Two-component epoxies and acrylates are 

thermosetting adhesives. The behaviour of these materials is typically elastic until 

failure and will fail at relatively small strains by the initiation and propagation of a 

crack. However, many adhesives are rubber-like materials, such as silicones and 

MS-polymers. Local deformations of the small-scale test specimens were 

measured through 3D-DIC. The comparison between the data from the test 

machine and the DIC-output revealed major differences between the measured 

deformations. This confirms that the use of DIC is needed to accurately measure 

the occurring strains during the small-scale tests. For Soudaseal 270 HS, the 

Poisson’s ratio was determined to be 0.49. Consequently, the material is near to 

incompressible. After comparison of the numerical displacements with the 

experimental, it appeared that from the 98 calibrated hyper-elastic material models, 

the models calibrated by shear tests or by a combination of shear tests yielded the 

best results for Soudaseal 270 HS. In contrast to what is argued in literature, it is 
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not always advantageous to use and combine test data from as many experimental 

set-ups as possible. No optimal model was achieved, however, the material model 

developed by Ogden, calibrated by results from only shear tests or from a 

combination of tensile and compressive tests, predicted the experimental results 

the best based on the initial stiffness and deformation. For 3M™ Scotch-Weld™ 

9323, the Young’s modulus is equal to 2267.4 MPa, the Poisson’s ratio to 0.39 and 

the shear modulus to 767.0 MPa and 723.9 MPa for the V-notched specimens and 

U-notched specimens, respectively.  

These material models were used to validate the numerical local model in Chapter 

4 for different geometrical properties (three glass thicknesses and three diameter 

connectors), different material properties (two adhesive types) and three different 

load conditions (tension, shear and multi-axial load). By supporting the glass panel 

along a circumference with a diameter equal to six times the connector diameter, 

the deformation of the glass panel was also taken into account. This deformation 

causes important stress concentrations in the adhesive layer. For pure tension, it 

can be concluded from the experiments that the connector diameter is more 

determinative for more flexible adhesives and the glass thickness for rather stiff 

adhesives. The location of maximal strain was at the centre of the glass panel for 

the configuration with the flexible adhesive and at the outside of the connector 

with the stiff adhesive. This was also observed by the location of the glass crack 

initiation. For shear, the experiments demonstrated that the occurring strains are 

higher in case of a stiff adhesive and for a larger eccentricity. The multi-axial model 

showed that larger multi-axial angles will increase the bending moment acting on 

the glass panel. However, with increasing multi-axial angle the strains decrease 

more as the connection is loaded in shear instead of in tension. Shear forces will 

introduce lower strains in the glass panel than tensile forces will. Furthermore, the 

multi-axial local model can be used to directly determine the sum of the local 

stresses σFz, σFxy and σM. 

In Chapter 5, the global model for the SLG-method is experimentally validated. 

A transversally loaded glass panel was experimentally investigated by means of a 

modular test frame for a glass panel of 1 m by 2 m supported by discrete point-

fixings. The experimental results of four different edge distances were used to 

validate the numerical model. The numerical results corresponded very well with 

the experimental values 
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The total model for the SLG-method is experimentally validated in Chapter 6. 

The experimental results demonstrated that the highest stresses were reached for 

the smallest edge distances. This was also shown in the research in the steel area 

and the research on bolted point-fixings. As expected the deformations are 

significantly larger for small edge distances. The highest deformation occurs in the 

centre of the panel. The numerical analyses yield stress peaks which were not 

measured in the experiments. This highlights the benefits and necessity of 

numerical investigation. With a smaller corner and edge distance stress peaks are 

more prominent. The results from the parametric study point out that the 

maximum occurring stresses will increase with a decrease of the glass thickness, 

diameter of the connection, adhesive thickness and with an increase of the 

adhesive stiffness and width of the glass panel. Furthermore, the maximum 

deformation of the glass panel can be reduced by increasing the glass thickness, 

connection diameter, adhesive stiffness and by decreasing the adhesive thickness 

and width of the glass panel. The behaviour of laminated glass panels depends on 

the stiffness of the interlayer, the load duration and the glass thickness. Increasing 

the load duration corresponds to a decrease in interlayer stiffness. Increasing the 

interlayer stiffness and glass thickness will decrease the maximum principal stress 

and the maximum deformation. Compared to adhesive point-fixings, bolted point-

fixings give higher peak stresses at the connection. 

The suitability of the SLG-method for adhesive point-fixings was examined in 

Chapter 7. This validation of the SLG-method consisted of a FEA comparison 

between the stress distributions conducted on the one hand by the SLG-method 

and on the other hand by a FEA model in which the total glass plate with the 

adhesive connections is built up in detail with volumetric elements. Despite small 

deviations, the SLG-method predicted the occurring stresses in a glass panel 

supported by adhesive point-fixings conservatively and accurately. The stress 

distribution in the adhesive layer could also be determined with the SLG-method. 

For the latter, as the stress distribution consists of only the sum of the local stresses, 

these stresses were derived from the multi-axial model. The general conclusion 

was that the SLG-point method applied on adhesive point-fixings gives accurate 

and safe stress distributions. By applying this method the calculation of large glass 

plates connected with adhesive point-fixings can be done about 1000 times faster 

than when the glass plate is built up with a fine mesh pattern and about 100 times 

faster for smaller plates. 
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As with other civil structures, it is necessary for the design of an adhesive 

connection to calculate the strength of the connection. By means of a failure 

criterion this strength can be determined. In Chapter 8 the failure criteria for the 

two selected adhesives were determined. The failure load obtained from the failure 

criterion shear strain predicted the experimental failure load with a mere difference 

of 2% for the MS-polymer Soudaseal 270 HS. Due to the stress singularities in the 

adhesive layer with the 2c-epoxy 3M™ Scotch-Weld™ 9323 B/A the "stress at a 

distance" approach was applied for this adhesive. Only the failure criterion shear 

stress with the stress considered at a distance from the stress singularity equal to 

the adhesive thickness predicted the experimental failure load. It could be 

concluded that this failure criterion predicts the failure load for stiff adhesives 

conservatively. The obtained failure criteria predicted the experimental failure 

loads in Chapter 5 conservatively and accurately. For adhesives between flexible 

adhesives and stiff adhesives, both failure criteria must be applied and the lowest 

failure load will be the actual failure load. 

For the design of glass panels supported by adhesive point-fixings, a design 

method was proposed in Chapter 9 by means of a flowchart. In the flowchart, the 

design is divided in two parts, i.e. the glass design and the adhesive design. In the 

former, the glass panel is separated in a global component and a local component. 

The stress and deformation in the field are examined by means of the global 

model. The stress in the vicinity of the connection is examined as the sum of the 

global stress and the maximum principal stress in the local models. For the 

adhesive design, only one local model can be considered, i.e. the multi-axial model. 

By applying the failure criteria from Chapter 7 the adhesive layer can be examined 

for the considered loads. The occurring stress in the glass panel and in the adhesive 

layer can be altered by chancing geometrical parameters and material parameters, 

i.e. the number of connections, panel size, edge distance, glass thickness, boundary 

condition, eccentricity, connector diameter, Young’s modulus of the adhesive, 

adhesive thickness and Poisson ratio of the adhesive. When both designs are 

completed, the design of glass panels supported by adhesive point-fixings for the 

considered configuration is fulfilled. 

  



228 

10.3. Future research 

Throughout this dissertation several issues were addressed. However, some 

questions remain. Future research can help to give an answer to these questions. 

The failure criteria obtained in Chapter 8 were determined for one loading 

configuration on one geometry. Although the failure criteria were also examined 

for the failure loads for the experiments in Chapter 4, a thorough investigation for 

other loading configurations on small-scale tests is recommended. The proposed 

tests consist of different geometrical parameters, such as different diameter 

connectors. Furthermore, the obtained failure criteria for adhesive point-fixings 

are based on the experimental results of only two adhesive types, so tests with 

more adhesive types may yield a more generally applicable criterion for a larger 

spectrum of adhesives.  

The material models determined in Chapter 3 were obtained for ambient 

conditions. However, the results in Appendix G demonstrated that environmental 

conditions have a large influence on the mechanical behaviour of the adhesives. 

Material models developed by means of aged small-scale specimens will give a 

better understanding of the mechanical behaviour of aged adhesive connections. 

Also, these aged small-scale specimens will provide aged critical values and with 

these values it is possible to determine the failure load of aged adhesive 

connections.  

As the experiments conducted in this dissertation were performed quasi-static with 

a certain displacement rate, long-term effects were not investigated. It would be 

interesting to investigate the long-term behaviour of adhesive point-fixings by 

means of creep tests, especially for ductile adhesives, with the applied loads in 

these creep tests in function of the failure load. Creep tests at ambient conditions 

will already give a better understanding. However, creep tests combined with 

artificial ageing will represent real-life applications even better, as environmental 

conditions and creep will occur simultaneously. Furthermore, in real-life 

applications the load will fluctuate, causing fatigue in the connection. Specimens 

where the load is applied in cycles and failure expressed in the number of cycles 

will provide information about the resistance of adhesive point-fixings against 

fatigue.  
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The conducted experiments in Appendix G revealed that moisture degraded the 

adhesive layer the most severely. The test specimens were exposed to 100% RH 

for two weeks, submerged for three weeks or six weeks. To be sure that the 

adhesives are completely saturated in these exposure periods, longer exposure 

periods for moisture are suggested. Furthermore, failure tests at elevated 

temperatures and lowered temperatures are also recommended, as the mechanical 

behaviour of adhesives changes significantly for temperatures below or above their 

glass transition temperature. 

The safety coefficients for the characteristic values of the adhesive material 

properties, i.e. the critical values, given in Chapter 9 are derived from literature, i.e. 

“The Structural Use of Adhesives” drawn up by ISE (1999). This standard gives 

an overall material safety coefficient, given by Eq. (9.6), in function of the type of 

loading, environment conditions, etc. With the performed experiments and the 

experiments described above, a calibration of these safety coefficients will be 

possible and interesting, as not many standards are available to determine the 

safety coefficients for adhesive material properties. 

As will be stated in the future Eurocode about glass, a glass consequence class 

(GCC) will have to be applied for glass design in the future. For non-structural 

glass components that cannot harm people when they fail, only service limit state 

(SLS) and ultimate limit state (ULS) have to verified. However, for structural glass 

components or glass components that can harm people, the situation during and 

after failure also have to be considered. For the post-fracture situation, two 

situations have to be verified, i.e. one panel has failed and all the panels have failed. 

The research of Belis et al. (2012) demonstrated that the tested adhesive point-

fixings could take the impact of a 4 kg ball drop from 3 m, however, for the post-

fracture situation the tempered glass configuration failed due to thin layer failure 

of the glass, and not to failure of the adhesive bond. These promising results 

demonstrate that more investigation is needed into the behaviour of adhesive 

point-fixings during impact or fracture and for post-fracture situations. 
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Stiff adhesive point-fixings in the Ciudad Financiera del Banco Santander 

in Boadilla del Monte (Madrid) constructed by Bellapart 

© Bellapart 
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Appendix A:  Material models  

 
In this appendix, the 14 considered material models of Chapter 3 are presented. 

Rivlin (1948) proposed a phenomenological theory, with the assumption that 

elastomers with elastic behaviour are isotropic and quasi incompressible. The 

elastic properties are expressed by the strain energy function W. The polynomial 

formulations of the strain energy function in terms of strain invariants or principal 

extension ratios is given in Eq. (A.1). His theory was based on the previous 

phenomenological theory of Mooney (1940). This elastic theory is also the starting 

point of several other developed material models (Chang et al., 1991; Yeoh & 

Fleming, 1997; Boyce, 2000; Arruda, 2000; Pucci & Saccomandi, 2002; Duarte & 

Achenbach, 2003). The models relying on the strain energy function assumed 

initially that there is no compressibility possible. With the latter assumption, I3 is 

equal to 1. With the infinite sum replaced by a finite sum of N terms, the 

polynomial model of the strain energy function for incompressible materials is 

obtained, given by Eq. (A.2). The number of coefficients to be determined 

depends on the degree N of the polynomial. This value rarely exceeds three, 

because otherwise too many parameters have to be determined (Dias, 2012). 

 𝑊 = ∑ 𝐶𝑖𝑗𝑘  (𝐼1 − 3)𝑖

∞

𝑖+𝑗+𝑘=1

. (𝐼2 − 3)𝑗(𝐼3 − 1)𝑘 (A.1)  

 𝑊 = ∑ 𝐶𝑖𝑗 (𝐼1 − 3)𝑖

𝑁

𝑖+𝑗=1

. (𝐼2 − 3)𝑗 (A.2)  

A.1. Mooney-Rivlin 

The Mooney-Rivlin model is a specific form of the basic (polynomial) model, in 

which the degree of the polynomial N is set equal to 1 (Mooney, 1940; Rivlin, 

1948). The strain energy function for the Mooney-Rivlin material model is given 

in Eq (A.3). C10 and C01 are the material parameters (Marckmann & Verron, 2006). 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) (A.3)  
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A.2. Neo-Hooke 

The phenomenological model of Neo-Hooke is a simplified form of the Mooney-

Rivlin model, where C01 is equal to zero, as can be seen in Eq (A.4) (Treloar, 1943). 

The strain energy function is only in function of the first invariant I1. The Neo-

Hooke model is the simplest hyper-elastic model, and is suitable when there is 

little test data available, for example, from only one load configuration. The 

characteristic S-shape of the stress-deformation diagram cannot be obtained with 

this model, as the model is too simple to be able to model a difference in curvature 

at large deformations. However for small deformations (λ < 1.5), the model 

provides sufficient accuracy (Steinmann, Hossain & Possart, 2012). 

𝑊 = 𝐶10(𝐼1 − 3) (A.4)  

A.3. Gent-Thomas 

The phenomenological model proposed by Gent and Thomas is similar to the 

Mooney-Rivlin model, with the only difference that the natural logarithm is taken 

from the second term (Gent & Thomas, 1958). The formulation of the strain 

energy function of the Gent-Thomas model is given in Eq. (A.5). The remarks on 

this model are the same as for the model of Neo-Hooke. The model is not able to 

correctly predict large deformations because no higher terms of I1 are present, but 

on the other hand it gives a good approximation for the behaviour at small strains 

(Steinmann, Hossain & Possart, 2012; Beda, 2007). 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01ln (
𝐼2

3
) (A.5)  

A.4. Hart-Smith 

Hart-Smith (1966) and Crisp (1967) also proposed a strain energy function and 

tried to achieve an even better accuracy. The Hart-Smith model is expressed with 

Eq. (A.6), (A.7) or with (A.8), with C10, C1 and C01 material parameters. Research 

by Hossain and Steinmann (2012) showed that the model of Hart-Smith gives 

better approaches and predictions than the Mooney-Rivlin model. This is due to 

the fact that the latter has only two material parameters, while the Hart-Smith 

model uses three. In addition, the logarithmic term provides a more accurate 

approximation of the stiffness at small strains. 
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𝜕𝑊

𝜕𝐼1
= 𝐶10exp (𝐶1[𝐼1 − 3]2) (A.6)  

 
𝜕𝑊

𝜕𝐼2
=

𝐶10 𝐶2

𝐼2
 (A.7)  

or  

𝑊 = 𝐶10 [∫ exp(𝐶1[𝐼1 − 3]2) 𝑑𝐼1 + 𝐶2ln (
𝐼2

3
)] (A.8)  

A.5. Ogden 

Although this phenomenological model is also expressed by the strain energy 

function, this function is directly expressed in function of the principal extension 

ratios λ1, λ2 and λ3 for the Ogden model (Ogden, 1972). The strain energy function 

according to Ogden is given by Eq. (A.9), with λi the principal extension ratios 

according to the main axes. μi and αi are the material parameters and have to be 

determined by means of test results. In order to meet the stability condition, the 

product of μi and αi must be positive (Hosseini & Steinmann, 2012). It is stated 

that this strain energy function with the number of terms equal to three (N = 3), 

gives a sufficiently accurate approximation of the S-shaped behaviour of the 

material (Shariff, 2000; Marckmann & Verron, 2006). The model is able to simulate 

the behaviour at large deformations and will become even more accurate with 

more data from a variety of experimental tests.  

𝑊 = ∑
𝜇𝑖

𝛼𝑖
(𝜆1

̅̅̅𝛼𝑖 + 𝜆2
̅̅ ̅𝛼𝑖 + 𝜆3

̅̅ ̅𝛼𝑖 − 3)

𝑁

𝑖=1

 (A.9)  

With N = 1 and α1 = 2 in the Ogden model, the Neo-Hooke model is obtained, 

directly expressed in function of the principal extension ratios (Bol & Reese, 2006). 

The latter is expressed by Eq. (A.10) where the material parameter C10 is equal to 

μ1/2. The models of Ogden and Neo-Hooke give for a given set of material 

parameters, theoretically the same expression, although they have a different 

structure. Besides Ogden others also develop their own model based on existing 

models, where the strain energy function is written as a function of the principal 

extension ratios (Shariff, 2000; Attard & Hunt, 2003, 2004). 

𝑊 =
𝜇1

2
(𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3) = 𝐶10(𝐼1 − 3) (A.10)  
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A.6. Reduced polynomial model - Yeoh 

The phenomenological model according to Yeoh is based on the polynomial 

model, in which the influence of the second invariant is assumed irrelevant (Yeoh, 

1990). The strain energy function without I2 is given in Eq. (A.11). The model is a 

reduction of the polynomial model and is thereby also called the reduced 

polynomial model (Peeters & Kussner, 1999). The Yeoh model is obtained by 

aborting the infinite sum after three terms. The mathematical expressing is given 

in Eq. (A.12). This model is used quite a lot, as it provides the opportunity to 

describe large deformations. In addition, the model is able to predict the behaviour 

of different load configurations with test data from only one test configuration. 

 𝑊 = ∑ 𝐶𝑖0 (𝐼1 − 3)𝑖

∞

𝑖=1

 (A.11)  

 𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)2 + 𝐶30(𝐼1 − 3)3 (A.12)  

In order to achieve an even better prediction of the mechanical behaviour, Yeoh 

(1993) modified the model, adding a correction term to the expression for the 

strain energy function, as given by Eq. (A.13). The parameters A and B are two 

additional material parameters. The modified model Yeoh consists of two 

mechanisms where one mechanism (first term) mainly dominates small strain, 

while the second mostly models large deformations (Yeoh & Fleming, 1997). 

𝑊 =
𝐴

𝐵
[1 − 𝑒−𝐵(𝐼1−3)] + ∑ 𝐶𝑖𝑗 (𝐼1 − 3)𝑖

∞

𝑖=1

 (A.13)  

A.7. Gent 

Gent proposes a material model, which also uses only the first invariant (Gent, 

1996), as expressed by Eq. (A.14). In this expression Jm is a value for the finite 

extension of the polymer chains and μ represent the shear modulus. The model 

has a very good validity for large deformations, but is inadequate for small 

deformations (Pucci & Saccomandi, 2002). 

𝑊 = −𝐽𝑚.
𝜇

2
ln (1 −

𝐼1 − 3

𝐽𝑚
) (A.14)  
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A.8. Yeoh-Fleming 

The Gent model can be combined with the correction term by Yeoh, allowing 

better approximations at small strains. The extended Yeoh model is called the 

Yeoh-Fleming model (Yeoh & Fleming, 1997). The formulation of the latter is 

given by Eq. (A.15). Note that the material parameters increases from two to four.  

𝑊 =
𝐴

𝐵
[1 − 𝑒−𝐵(𝐼1−3)] − 𝐶(𝐼𝑚 − 3) ln (1 −

𝐼1 − 3

𝐼𝑚 − 3
) (A.15)  

With: 

- 𝐶 =
𝜇

2
 ; 

- 𝐽𝑚 = 𝐼𝑚 − 3. 

A.9. Pucci-Saccomandi 

Pucci and Saccomandi add an extra term to the strain energy formulation of the 

model of Gent, so that it also depends on the second invariant, as given by Eq. 

(A.16) (Pucci & Saccomandi, 2002). Due to the addition of the second invariant 

in a logarithmic form, the initial high stiffness for small strains can be modelled 

much better than when using the model of Gent (Steinmann et al., 2012).  

𝑊 = − 𝐽𝑚

𝜇

2
ln (1 −

𝐼1 − 3

𝐽𝑚
) +𝐶2ln (

𝐼2

3
) (A.16)  

A.10. Lopez-Pamies 

Lopez-Pamies proposes a phenomenological model that also only depends on the 

first invariant, as the Neo-Hooke, Yeoh and Gent model. The number of material 

parameters is kept as small as possible in the model (Lopez-Pamies, 2010).  The 

strain energy function for the Lopez-Pamies material model is given in Eq. (A.17). 

Validation of the model shows that a good approximation of the material 

behaviour is obtained, i.e. the characteristic S-shape of the stress-strain diagram is 

well approximated at large deformations. Even more important is the good 

simulation of the high initial stiffness at small strains (Steinmann et al., 2012). 

𝑊 = ∑
31−𝛼𝑖

2𝛼𝑖
𝜇𝑖(𝐼1

𝛼𝑖 − 3𝛼𝑖)

𝑁

𝑖=1

 (A.17)  



238 

A.11. Van der Waals 

The phenomenological model of Van der Waals is also known as the Kilian model, 

where the polymer is considered to be an ideal gas and the polymer chains are 

simulated as particles. The strain energy function is a function of the generalized 

invariant 𝐼 and is expressed by Eq. (A.18) (Kilian, 1980), with η, a, λm and β the 

material parameters. The model has micromechanical foundations, but with the 

introduction of the phenomenological parameter β, the model is still considered 

as phenomenological (Kaliske & Rothert, 1997; Marckmann & Verron, 2006). 

Recent research shows that the model with four parameters is not more accurate 

than the Lopez-Pamies model (Hossain & Steinmann, 2012). In addition, the 

model is only applicable for deformations that are smaller than the locking stretch 

(Peeters & Kussner, 1999). 

𝑊 = −𝜇[𝜆2
𝑚 − 3][ln(1 − 𝜂) + 𝜂] −

2

3
𝑎𝜇 (

𝐼 − 3

2
)

3
2

 
(A.18)  

With: 

- 𝐼 = 𝛽𝐼1̅ + [1 − 𝛽]𝐼2̅ , 

- 𝜂 = √
𝐼−3

𝜆²𝑚−3
 , 

- 𝜆𝑚 = locking stretch. 

The 11 models discussed above are some of the phenomenological models. This 

list is not finite, but provides a summary of the most used models. These 11 

models were calibrated and validated by the finite element model in Chapter 4. 

Furthermore, the three most common micro-mechanical models were also 

considered, given a total of 14 material models. The three considered micro-

mechanical models are cited below. 

The basis of the statistical (micromechanical) theory is described by Treloar (1975). 

According to Treloar, elastic rubber-like materials are defined as follows: 

- The material contains flexible molecules consisting of long chains, 

- The chains are connected together by weak intermolecular forces, 

- The network is formed by cross-linking of the individual molecular chains 

at various locations along the length of the chains. 
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The theory assumes that the molecular chains are Gaussian distributed. The strain 

energy function of the material is given by Eq. (A.19), with N the number of 

network chains per unit volume, k the Boltzmann constant and T the absolute 

temperature. Note that this strain energy function is similar to the 

phenomenological Hooke-Neo model, given by Eq. (A.20) (Achenbach & Duarte, 

2003). Although the statistical models generally predict the mechanical behaviour 

well, they appear to be valid only for small strains up to 30%. Discrepancies arise 

especially between prediction and reality, when different loading conditions are 

combined (Yeoh & Fleming, 1997). 

 𝑊 =
1

2
𝑁𝑘𝑇(𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3) (A.19)  

 𝑊 = 𝐶10(𝐼1 − 3) = 𝐶10(𝜆1
2 + 𝜆2

2 + 𝜆3
2 − 3) (A.20)  

A.12. Arruda & Boyce 

The micromechanical model according to Arruda and Boyce is a physical model 

based on the behaviour of a network of molecular chains (Arruda & Boyce, 1993). 

A general strain energy function is still considered, as given in Eq. (A.21). In this 

equation the following constants are applied: 𝐶2 =
1

20
;  𝐶3 =

11

1050
;  𝐶4 =

19

7000
;  𝐶5 =

519

673750
; and where G is equal to the shear modulus and λm represents 

the locking stretch. The strain energy function is equal to the sum of the strain 

energies of the individual molecular chains. These chains are randomly orientated 

in space (Raoult et al., 2005). Although the second invariant is excluded, the model 

allows accurate approximations for smaller deformations (Seibert & Schoche, 

2000). Since the strain energy function is considered to be independent of the 

second invariant, only one single test configuration is required in order to predict 

the behaviour of the material. Therefore, the model cannot accurately predict the 

behaviour for different load configurations, in contrast to models with multiple 

invariants. Despite this, an acceptable approach is obtained and the model is easy 

in use (Marlow, 2003). 

𝑊 = 𝐺 ∑
𝐶𝑖

𝜆𝑚
2𝑖−2

(𝐼1
𝑖 − 3)

5

𝑖=1

 (A.21)  
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A.13. 3-chain model 

The micromechanical 3-chain model is based on a polymer network consisting of 

three chains, according to the three main directions (James & Guth, 1943; Wang 

& Guth, 1952). The model assumes that the chain at micro level is divided into a 

certain number of segments. The strain energy function is obtained by Eq. (A.22). 

Recent research shows that the model can only properly predict the behaviour of 

the load situation for which it is calibrated (Hossain & Steinmann, 2012). 

𝑊 =
𝜇𝑁

3
∑ [�̅�𝑖 𝜆𝑟,𝑖 + 𝑙𝑛 (

�̅�𝑖

sinh�̅�𝑖 
)]

3

𝑖=1

 (A.22)  

with: 

- μ = shear modulus, 

- N = number of segments per chain, 

- 𝜆𝑟,𝑖 =
1

√𝑁
𝜆𝑖, the relative elongation of the chain, 

- �̅�𝑖  =  ℒ−1(𝜆𝑟,𝑖) ≈ 𝜆𝑟,𝑖
3−𝜆𝑟,𝑖

2

1−𝜆𝑟,𝑖
2, the inverse of the Langevin function. 

A.14. 8-chain model 

The 8-chain model is based on the micromechanical Arruda & Boyce model, 

where the latter is reformulated. It provides a better approach for the ultimate 

elongation of the polymer network, i.e. larger deformations. In this model, 8 chains 

are considered at micro level. As given in Eq. (A.23), again only two material 

parameters are needed, the shear modulus μ and the number of segments per chain 

N. The relative elongation of the chain λr is a function of the first invariant I1 and 

γ is the inverse of the Langevin function. The model is less sensitive to the locking 

stretches of the chains than the 3-chain model, making the model usable for both 

small and large deformations (Hossain & Steinmann, 2012). 

𝑊 = 𝜇𝑁 [𝜆𝑟  + 𝑙𝑛 (
𝛾

sinh 𝛾 
)] (A.23)  
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Appendix B:  Validation multi- 
                    axial model 

  

 

In  this appendix, the results are presented for the validation of the multi-axial 

model for the three strain paths of Figure 4.28c. The graphs are always constructed 

in the same way, with the dots representing the experimentally measured strains 

and the full line the numerical strain. Four test configurations are given in Chapter 

4, the other 14 configurations are depicted from Figure B.1 to Figure B.7. As 

expected, a certain scatter in the experimental results occurred. Despite this, a 

good agreement between the numerical and experimental results is achieved.  
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FIGURE B.1 :  ECCENTRICITY OF 30 MM AND MULTI-AXIAL ANGLE OF 22.5°.  
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FIGURE B.2:  ECCENTRICITY OF 45 MM AND MULTI-AXIAL ANGLE OF 22.5°.  
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FIGURE B.3:  ECCENTRICITY OF 15 MM AND MULTI-AXIAL ANGLE OF 45.0°.  
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FIGURE B.4:  ECCENTRICITY OF 30 MM AND MULTI-AXIAL ANGLE OF 45.0°.  
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FIGURE B.5:  ECCENTRICITY OF 45 MM AND MULTI-AXIAL ANGLE OF 45.0°.  
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FIGURE B.6:  ECCENTRICITY OF 15 MM AND MULTI-AXIAL ANGLE OF 67.5°.  
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FIGURE B.7:  ECCENTRICITY OF 30 MM AND MULTI-AXIAL ANGLE OF 67.5°.  
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Appendix C: Validation total  
Appendix C: model 

 

 

 

In this appendix, the comparison between the numerical and experimental values 

are given for 54 from the 68 configurations for the total model. In Table C.1 the 

configurations that were tested are depicted. The 14 configurations that are already 

compared in Chapter 3 are put in bold. The comparisons are depicted in Figure 

C.1 to Figure C.11. Despite a certain small difference between the experimental 

and numerical results, a good agreement between the numerical and experimental 

results is achieved. 

TABLE C.1 :  TESTED CONFIGURATIONS FOR THE TOTAL MODEL IN FUNCTION OF THE 

DIAMETER (D), THE EDGE DISTANCES (E), THE UNIFORM LOAD (U), THE POINT LOAD (P), THE 

SYMMETRICAL LOAD (S), THE ASYMMETRICAL LOAD (A), FOUR POINT-FIXINGS (4), SIX POINT-

FIXINGS (6), HINGED BOUNDARY CONDITION (H) AND FIXED BOUNDARY CONDITION (F).  

 

D [mm] 

30 50 70 

E [mm] E [mm] E [mm] 

35 70 105 175 245 35 70 105 175 245 35 70 105 175 245 

U 

S 

4 
H X X X X X X X X X X X X X X X 

F X X X X X X X X X X X X X X X 

6 
H      X  X X X      

F      X  X X X      

A 

4 
H      X X X X X      

F      X X X X X      

6 
H                

F      X X X X X      

P 
S 4 H X X X X X      X X X X X 

A 6 F      X X X X X      

 

 



250  

 

 

 
FIGURE C.1 :  SYMMETRICAL POINT LOAD AND FOUR 30 MM HINGED POINT-FIXINGS. 

  

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 200 400 600 800 1000

σ 
[MPa]

Distance on path [mm]

σx

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0 100 200 300 400 500 600 700

σ 
[MPa]

Distance on path [mm]

σx'

-1,6

-1,2

-0,8

-0,4

0

0,4

0 100 200 300 400 500

σ 
[MPa]

Distance on path [mm]

σy (1)

-0,4

-0,2

0

0,2

0,4

0 100 200 300 400 500

σ 
[MPa]

Distance on path [mm]

σy (2)

-2

-1.5

-1

-0.5

0

0.5

0 500 1000 1500 2000

U 
[mm]

Distance on path [mm]

Uz (1)

-2

-1.5

-1

-0.5

0

0.5

0 500 1000 1500 2000

U 
[mm]

Distance on path [mm]

Uz (2)



 
Appendix C: Validation total model  251 

 

 

FIGURE C.2:  SYMMETRICAL POINT LOAD AND FOUR 70 MM HINGED POINT-FIXINGS. 
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FIGURE C.3:  ASYMMETRICAL UNIFORM LOAD AND FOUR 50 MM FIXED POINT-FIXINGS. 
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FIGURE C.4 ASYMMETRICAL UNIFORM LOAD AND SIX 50 MM FIXED POINT-FIXINGS.  
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FIGURE C.5:  ASYMMETRICAL UNIFORM LOAD AND FOUR 50 MM HINGED POINT-FIXINGS  
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FIGURE C.6 SYMMETRICAL UNIFORM LOAD AND FOUR 50 MM FIXED POINT-FIXINGS  
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FIGURE C.7:  SYMMETRICAL UNIFORM LOAD AND SIX 50 MM FIXED POINT-FIXINGS  
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FIGURE C.8:  SYMMETRICAL UNIFORM LOAD AND FOUR 70 MM FIXED POINT-FIXINGS  
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FIGURE C.9:  SYMMETRICAL UNIFORM LOAD AND FOUR 30 MM HINGED POINT-FIXINGS  
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FIGURE C.10:  SYMMETRICAL UNIFORM LOAD AND FOUR 50 MM HINGED POINT-FIXINGS  
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FIGURE C.11 :  SYMMETRICAL UNIFORM LOAD AND FOUR 70 MM HINGED POINT-FIXINGS 
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Appendix D:  SLG-verification in 
                     the adhesive layer 

 

 

The comparisons between the stress distribution in the adhesive layer obtained 

from the total model and from the SLG-method in Chapter 7 are only given for 

an edge distance of 35 mm and 105 mm. In this appendix the comparison is given 

for an edge distance of 175 mm and 245 mm in Figure D.1 for four point-fixings 

and in Figure D.2 for six point-fixings. 
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FIGURE D.1 :  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED IN THE ADHESIVE LAYER FOR FOUR POINT-FIXINGS FOR 

WIND SUCTION. 
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FIGURE D.2:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED IN THE ADHESIVE LAYER FOR SIX POINT-FIXINGS FOR WIND 

SUCTION. 
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Appendix E:  SLG-verification  
                     for wind pressure 

The comparisons between the stress distribution obtained from the total model 

and from the SLG-method in Chapter 7 were assumed wind suction. Obviously, 

wind pressure will also occur. Hence the verification of the SLG-method was also 

performed for the situation with wind pressure for the stress distribution on the 

glass and in the adhesive layer, and is summarized in this appendix. 

E.1. Glass stress distribution at the rear side  

The configuration is illustrated in Figure E.1, with the used path at the backside 

of the glass panel. The comparisons for four point-fixings are depicted in Figure 

E.2 and in Figure E.3 for six point-fixings. 

 

FIGURE E.1 :  SLG VALIDATION CONFIGURATION FOR WIND PRESSURE AND THE PATH AT THE 

BACKSIDE OF THE GLASS PANEL. 
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FIGURE E.2:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL 

AND THE SLG-METHOD MEASURED AT THE BACK FOR FOUR POINT-FIXINGS FOR WIND 

PRESSURE. 
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FIGURE E.3:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL 

AND THE SLG-METHOD MEASURED AT THE BACK FOR SIX POINT-FIXINGS FOR WIND 

PRESSURE. 

For the configuration with six point-fixings and small edge distances, the global 

stress deviates more from the stress from the total model, compared to larger edge 

distances. However, the stresses are overestimated by the global model, giving a 

conservative and safe stress distribution. 
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E.2. Glass stress distribution at the front  

As for wind suction, the stresses were also derived from the front of the glass 

panel for wind pressure. As with the previous path, the position of this path 

depends on the edge distance and is depicted in Figure E.4.  The comparisons 

between the stress distributions obtained with the SLG-method and from the total 

model are given in Figure E.5 for four point-fixings and in Figure E.6 for six point-

fixings. 

 

FIGURE E.4:  SLG VALIDATION CONFIGURATION FOR WIND PRESSURE AND THE PATH AT 

THE BACKSIDE OF THE GLASS PANEL. 
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FIGURE E.5:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED AT THE FRONT FOR FOUR POINT-FIXINGS FOR WIND 

PRESSURE. 
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FIGURE E.6:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED AT THE FRONT FOR SIX POINT-FIXINGS FOR WIND PRESSURE. 

Again it is noticeable that for small edge distances, the global stress deviates more 

from the stress obtained from the total model. However, the stresses are still 

overestimated by the global model, giving a conservative and safe stress 

distribution. 
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E.3. Adhesive stress distribution with wind pressure 

The SLG-method for the stress distribution in the adhesive layer is also verified 

for wind pressure. The investigated configuration is depicted in Figure E.7. The 

comparison between the stress distribution of the total model and obtained with 

the SLG-method for four point-fixings is given in Figure E.8 for the two point-

fixings and in Figure E.9 for the three point-fixings of glass panels with six point-

fixings. The local stresses are obtained from the multi-axial model. 

 

FIGURE E.7:  SLG VALIDATION CONFIGURATION FOR THE ADHESIVE LAYER WITH WIND 

PRESSURE AND THE PATH IN THE ADHESIVE LAYER (NOT TO SCALE).  
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FIGURE E.8:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED IN THE ADHESIVE LAYER FOR FOUR POINT-FIXINGS FOR 

WIND PRESSURE. 
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FIGURE E.9:  COMPARISON BETWEEN THE STRESS DISTRIBUTION OF THE TOTAL MODEL AND 

THE SLG-METHOD MEASURED IN THE ADHESIVE LAYER FOR SIX POINT-FIXINGS FOR WIND 

PRESSURE. 

Again it can be seen that the deviation between the stress distribution in the 

adhesive layer obtained with the SLG-method and from the total model is 

relatively small. The shape and order of magnitude of the SLG-curve are close to 

the curve of the total model. Also here, the SLG-method generally gives larger 

stress peaks than the total model, giving conservative stress distributions. As 

expected, the stress peaks are larger for small edge distances and are slightly higher 

for the clamped condition. 
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Appendix F:  Fracture mechanics  
 

In this appendix, a small summary is given about failure criteria based on fracture 

mechanics for glass and adhesive failure.  

F.1. Fracture mechanics for glass failure 

Since Griffith (1921) demonstrated that flaws determine the strength of glass, and 

as glass shows a perfectly elastic behaviour up till failure, linear elastic fracture 

mechanic (LEFM) theory is generally accepted in glass design. According to the 

theory of LEFM, at inert conditions, i.e. when no water vapour affects the flaws, 

the stress intensity factor K characterizes the amount of the elastic stresses and 

strains around a crack (Irwin 1957). This factor is dependent on 

- Crack length and width; 

- Crack configuration (continuous, at the surface or hidden); 

- Geometry of the structural element; 

- The three different fracture modes (depicted in Figure F.1); 

• Mode I: opening or tensile mode (fracture surfaces normal to the 

load); 

• Mode II: sliding or in-plane shear mode (crack surfaces slide over 

one another in the direction perpendicular to the leading edge of 

the crack); 

• Mode III: tearing or out-of-plane shear mode (fracture surfaces 

move relatively parallel to each other and away from each other). 

 
Mode I Mode II Mode III 
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FIGURE F.1 :  FRACTURE MODES I , II AND III (LAWN 1993).  

In the study of brittle materials, mode I and II are the most important and mode 

I is even more prominent for glass. For mode I the stress intensity factor KI for an 

infinite plate with a crack length 2a in the centre, can be determined with Eq. (F.1), 

where σ is the normal stress in the plate as illustrated in Figure F.2. 

𝐾𝐼 = 𝜎√𝜋𝑎 (F.1)  

 

FIGURE F.2:  INFINITE PLATE WITH A CENTRAL CRACK LENGTH 2A.  

The definition of the stress intensity factor KI according to Eq. (F.1) is only valid 

for an infinite plate with a central flaw. For other configurations, this factor will 

be different. For a plate with a finite thickness t, a geometry factor 𝑓(�̅�) will be 

introduced, which takes into account the crack geometry, location of the crack and 

width of the plate. The stress intensity factor with the geometry factor is given in 

Eq. (F.2). 

𝐾𝐼 = 𝑓(�̅�) ∙ 𝜎√𝜋𝑎 (F.2)  

The parameter �̅� is defined as  

�̅� =
2𝑎

𝑡
 (F.3)  

For a central crack, the geometry factor 𝑓(�̅�) can be estimated with following 

formulas 

 𝑓(�̅�) = 1 + 0,256�̅� + 1,152�̅�2 + 12,2�̅�3 (F.4)  

 𝑓(�̅�) = √sec(𝜋�̅�) (F.5)  

2a 

σ σ 
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 𝑓(�̅�) =
1

√1 − (2�̅�)²
 (F.6)  

For a crack through the edge, as depicted in Figure F.3, the geometry factor is 

equal to Eq. (F.7). When the crack length is negligibly small with respect to the 

width of the plate, the shape factor is equal to 1.12, and the stress intensity factor 

can be expressed by Eq. (F.8). 

𝑓(�̅�) = 1,12 − 0,231 ∙ �̅� + 10,55 ∙ �̅�2 − 21,72 ∙ �̅�3 + 30,39 ∙ �̅�4 (F.7)  

𝐾𝐼 = 1,12 ∙ 𝜎√𝜋𝑎 (F.8)  

 

FIGURE F.3:  CRACK THROUGH THE EDGE  

The stress intensity factor can be used as a failure criterion, i.e. instantaneous 

failure will occur when the stress intensity factor reaches a critical stress intensity 

factor or fracture toughness KI,cr (Griffith 1921; Irwin 1957; Haldimann et al. 2008; 

Vandebroek 2014). 

𝐾𝐼,𝑐𝑟 = 𝑓(�̅�) ∙ 𝑓𝑐𝑡,𝑖𝑛𝑒𝑟𝑡√𝜋𝑎𝑐𝑖 (F.9)  

where KIc = 0.75 MPa.m1/2 is a good practical value for the fracture toughness of 

modern soda-lime silica glass (Haldimann et al. 2008; Overend & Zammit 2012); 

fct,inert is the inert strength corresponding to a constant loading and aci is the initial 

critical flaw depth, i.e. the depth of the crack which caused failure but measured 

before loading the specimen (Vandebroek 2014).  

a 

t 
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Under the combined influence of water vapour and an applied load, small surface 

flaws grow continuously until failure. This phenomenon is called stress corrosion. 

The relation between the crack propagation speed v and the stress intensity factor 

KI in region I (Figure F.4) is given by Eq. (F.10), with v0 the crack propagation 

speed when KI = KIc  (Wiederhorn 1967; Lawn 1993; Haldimann et al. 2008; 

Vandebroek 2014). 

𝑣 = 𝑣0 ∙ (
𝐾𝐼
𝐾𝐼𝑐

)
𝑛

 (F.10)  

Since structural elements are generally expected to be in service for several years, 

only region I (Figure F.4) is taken into account. Haldimann (2006) assumes that in 

laboratory conditions, a value of v0 = 0.01 mm/s is an appropriate value for a 

surface strength model. 

 

FIGURE F.4:  RELATIONSHIP BETWEEN CRACK PROPAGATION SPEED AND STRESS INTENSITY 

(WIEDERHORN 1967; LAWN 1993;  HALDIMANN ET AL. 2008; VANDEBROEK 2014)  

For the use of fracture mechanics, the initial critical flaw depth has to be known. 

The determination of the size of a flaw in a material can be done in a non-

destructive way, e.g. ultrasonic measurements, digital shearography and X-ray 

radiography (Toh et al. 1991; Steinchen et al. 1997; Hung 1982; Arias & 

Achenbach 2004; Steiner et al. 1995; Maslov 2000; Cloetens et al. 1997; Buffiere 

et al. 2010).  The initial critical flaw depth can also be determined in a destructive 

manner, by looking at the mirror zone after failure. The critical flaw is located at 

the centre of the mirror zone. The mirror zone depth can be measured according 

to ASTM C1678 - 10 (2015) and is about 10 times larger than the critical flaw 

depth (Rodichev et al. 2007). However, these non-destructive and destructive 

methods are rather time consuming and expensive.  
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F.2. Fracture mechanics for failure in the adhesive 

As for glass, the stress intensity factor can also be used as a failure criterion for an 

adhesive connection. Failure will occur when the stress intensity factor reaches a 

critical stress intensity factor or fracture toughness. The critical stress intensity 

factor KI,cr is given in Eq. (F.9). This critical stress intensity factor is a material 

parameter, and the determination for adhesives can be accomplished by prescribed 

tests, common used test configurations are depicted in Figure F.5 (ASTM D3433 

2012; ISO 25217 2009). 

 

FIGURE F.5:  COMMON USED TEST SETUPS FOR THE DETERMINATION OF K I ,CR :  A) THE 

DOUBLE CANTILEVER BEAM (DCB) WITH LOAD-BLOCKS, B) THE DOUBLE CANTILEVER BEAM 

(DCB) WITH DRILLED HOLES AND C) THE TAPERED DOUBLE CANTILEVER BEAM (TDCB).  

For the double cantilever beams, the stress intensity factor KI,cr can be determined 

by Eq. (F.11), where b is the width of the specimen and P the applied load. When 

KI,cr is determined, the critical stress and flaw size can be derived from Eq. (F.12) 

and (F.13), respectively. The higher the value for KI,cr; the higher the occurring 

stresses and flaw sizes have to be in order to result in failure of the material. 

𝐾𝐼,𝑐𝑟 =
2𝑃𝑐𝑟
b

√
3𝑎2

𝑡𝑠
3 +

1

𝑡𝑠
 (F.11)  

𝜎𝐼,𝑐𝑟 =
𝐾𝐼,𝑐𝑟

√𝜋𝑎
 

(F.12)  

𝑎𝑐𝑟 = (
𝐾𝐼,𝑐𝑟
𝜎

)
2

∙
1

𝜋
 

(F.13)  
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Another commonly used parameter in LEFM is the energy release factor G. The 

energy release factor is a measure for the energy dissipated during fracture per unit 

of created fracture surface area. This quantity is central to fracture mechanics 

because the energy that must be supplied to a crack tip for it to grow must be 

balanced by the amount of energy dissipated due to the formation of new surfaces 

and other dissipative processes such as plasticity. As such, the energy release factor 

is defined as in Eq. (F.14), with U the potential energy available for crack growth, 

V the work associated with any external forces acting, and A the interfacial crack 

area (crack length for two-dimensional problems). The relationship between the 

energy release factor G and the stress intensity factors K for the three modes for 

general loading in plane strain is given in Eq. (F.15), µ being the shear modulus 

and ν the Poisson coefficient. Eq. (F.15) can be rewritten to Eq. (F.16). An 

advantage of the energy release rate is the fact that the mechanical energy released 

during incremental crack extension is independent of the loading configuration. 

Both cases of constant force (dead-weight loading) or constant displacement 

(fixed-grips loading) result in the same U and hence in the same energy release 

factor G (Lawn 1993). As such, the constant displacement configuration can 

always be considered without the loss of generality which defines the strain energy 

release rate per unit width of the crack front. 

𝐺 =
𝜗(𝑈 − 𝑉)

𝜗𝐴
 (F.14)  

𝐺 = 𝐾𝐼
2 (

1 − 𝜈2

𝐸
) + 𝐾𝐼𝐼

2 (
1 − 𝜈2

𝐸
) + 𝐾𝐼𝐼𝐼

2 (
1

2𝜇
) (F.15)  

𝐺 =
𝐾𝐼
2

𝐸
+
𝐾𝐼𝐼
2

𝐸
+
𝐾𝐼𝐼𝐼
2 (1 + 𝜈)

𝐸
 (F.16)  

Since an adhesive point-fixing is mainly subjected to a tensile load, the main stress 

components in the adhesive layer will be mostly tensile. This will result in a 

dominant effect of the energy release factor of mode I failure. The critical energy 

release factor GI,cr for mode I can be determined with the same test configurations 

for the determination of KI,cr (Figure F.5) (Blackman et al. 2003). During the tests, 

for each value of crack length, the corresponding values of load and displacement 

are measured. In order to obtain the energy release factor from this data, three 

different analysis methods can been used, namely the simple beam theory (SBT), 
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the corrected beam theory (CBT) and an experimental compliance method (ECM) 

(Mostovoy et al. 1967; Blackman et al. 2003; Cotterell et al. 2006; Williams 1989; 

Berry 1960). All these approaches essentially stem from the Irwin-Kies equation 

(Kanninen & Popelar 1985) in which the adhesive fracture energy GI,cr is deduced 

directly from Eq. (F.17), with P the applied load, B the width of the joint, C the 

compliance and a the crack length. The compliance is defined as the ratio of 

vertical displacement δ to the applied load P, as given in Eq. (F.18). 

𝐺𝐼,𝑐𝑟 =
𝑃2

2𝐵

𝑑𝐶

𝑑𝑎
 (F.17)  

𝐶 =
𝛿

𝑃
 (F.18)  

The dominance of mode I failure has been explained by Anderson (2005) as 

follows. A propagating crack seeks the path of least resistance (or the path of 

maximum driving force) which is not necessarily confined to its initial plane. If the 

material is isotropic and homogeneous, the crack will propagate in such a way as 

to maximize the energy release rate. What follows is an evaluation of the energy 

release rate as a function of propagation direction in mixed-mode problems. 

Consider for example Figure F.6, which illustrates a more typical scenario for an 

angled crack introduced by a combination of mode I and mode II. When fracture 

occurs, the crack tends to propagate orthogonally to the applied normal stress, i.e., 

the mixed-mode crack becomes a mode I crack. Moreover, if mode II or mixed-

mode cracks occur, expressions for the critical energy release factor have also been 

derived for mode II (Baziard et al. 1995; Kim & Lee 2009) and for a combination 

of mode I and II (Marannano et al. 2008; Azari et al. 2009; Zhang et al. 2013; Zhou 

et al. 2014). 



284 

 

FIGURE F.6:  TYPICAL PROPAGATION FROM AN INITIAL CRACK THAT IS NOT ORTHOGONAL 

TO THE APPLIED NORMAL STRESS (BASED ON (ANDERSON 2005)) . 

As mentioned above, the stresses are increased in the vicinity of the crack tip. 

Elastic plastic fracture mechanics assumes that these stresses will locally exceed 

the material’s yield stress σy which results in the formation of a plastic zone. This 

induces a redistribution of the stresses within this zone. The magnitude of the 

yielding zone ry and plastic zone rp are depicted in Figure F.7 and can be determined 

using Irwins method (Irwin 1957) and are given for mode I failure in case of plane 

stress in Eq. (F.19) and (F.20), respectively.  

a)  b) 

FIGURE F.7:  A) SCHEMATIC REPRESENTATION OF THE DISTANCE TO YIELDING ry AND B) 

REPRESENTATION OF THE PLASTIC ZONE rp  

 

β 

Fracture path 
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 𝑟𝑦 =
1

2𝜋
(
𝐾𝐼
𝜎𝑌
)
2

 (F.19)  

 𝑟𝑝 =
1

𝜋
(
𝐾𝐼
𝜎𝑌
)
2

= 2 ∙ 𝑟𝑦 (F.20)  

The crack tip opening displacement (CTOD) can be used in order to postulate a 

first failure criterion according to the elastic plastic fracture mechanics (EPFM). 

The CTOD can be calculated with Eq. (F.21). Irwin (1957) argued that the 

occurrence of plasticity makes the crack behave as if it were longer than its physical 

size (the displacements are longer and the stiffness is lower than in the elastic case). 

When using Irwins method, the distance of the yielding zone ry should be added 

to the crack length a in order to work with the effective crack length, as given in 

Eq. (F.22) (Irwin 1957). This length is visualized in Figure F.8. From Eq. (F.22), 

the crack opening at the following specific locations can be calculated; for x = a 

with Eq. (F.23) and for x = 0 with Eq. (F.24) (Denys 2010). Other expressions for 

CTOD have also developed by other researchers (Burdekin & Stone 1966; 

Dugdale 1960; Barenblatt 1962). 

𝐶𝑇𝑂𝐷 = 𝛿 = 2 ∙ 𝑣𝑡𝑖𝑝 = 2
2𝜎√𝑎² − 𝑥²

𝐸
 (F.21)  

𝐶𝑇𝑂𝐷𝐼𝑟𝑤𝑖𝑛 =𝛿𝐼𝑟𝑤𝑖𝑛 =
4𝜎

𝐸
√(𝑎 + 𝑟𝑌)² − 𝑥² (F.22)  

𝛿𝑡𝑖𝑝,𝐼𝑟𝑤𝑖𝑛 =
4𝜎

𝐸
√𝑟𝑌

2 + 2𝑎 ∙ 𝑟𝑌 (F.23)  

𝛿𝑐𝑒𝑛𝑡𝑟𝑎𝑙,𝐼𝑟𝑤𝑖𝑛 =
4𝜎

𝐸
(𝑎 + 𝑟𝑌) (F.24)  



286 

 

FIGURE F.8:  VISUALISATION OF THE CRACK TIP OPENING DISPLCAMENT (CTOD) (BASED 

ON(DENYS 2010)) 

The J-integral can be used in order to postulate a second failure criterion according 

to EPFM. This integral is almost identical to the energy release factor proposed in 

LEFM which expresses the amount of energy needed to induce crack propagation. 

Contrary to the energy release factor, the J-integral takes the size of the plastic 

zone into account. The J-integral can be calculated along a path Γ which encloses 

the crack tip and with the start and end point on the two crack surfaces. The acting 

forces and moments at the crack tip with a path Γ is depicted in Figure F.9. 

Mathematically, the J-integral is expressed in Eq. (F.25), where Γ is the path, W 

the strain energy density, T the tensile vector, u the displacement vector and ds an 

infinitely small distance along the aforementioned path. The strain energy density 

W and the tensile vector T are given by Eq. (F.26) and (F.27), with n the normal 

unity vector perpendicular to the perimeter.  

𝐽 = ∫ [𝑊𝑑𝑦 − 𝑇
𝑑𝑢

𝑑𝑥
𝑑𝑠]

Γ

 (F.25)  

𝑊 = ∫𝜎𝑑𝜀 (F.26)  

𝑇 = 𝜎𝑛 (F.27)  

a 

x 

y v(x) 

δ=2v (x=a) 

a+r
y
 

Tough crack growth 
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A simplified J-integral in function of the acting forces and moments at the crack 

tip of an adhesive bond is developed by Fernlund (Fernlund et al. 1994; Fernlund 

& Spelt 1991). Comparison between the failure load predicted by the energy 

release factor and the J-integral, showed almost no difference between those two 

(Abdel Wahab et al. 2001). 

 
FIGURE F.9:  ACTING FORCES AND MOMENTS ON THE CRACK TIP (BASED ON (FERNLUND ET 

AL. 1994)).  

As a general conclusion it can be stated that the critical energy release factor is the 

most widely used failure criterion in fracture mechanics for adhesive connections. 

Failure loads determined from this criterion give good agreement with 

experiments. This criterion is also largely standardized which simplifies the use. 

Furthermore, Yuan and Xu (2008) have shown that the effective stress occurring 

at the location of the crack tip by adhesive connection is not higher than the yield 

strength of the material. Causing the plastic zone around the crack tip to be small 

and the energy input for plastic deformation negligible, which means that the use 

of linear elastic fracture mechanics is substantiated. 

In the use of the fracture mechanics, it is also necessary to know the size of defects 

in the adhesive layer for the determination of the ultimate load. Common defects 

in an adhesive layer are shown in Figure F.10.  
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a)       b) 

FIGURE F.10:  A) ACTUAL DEFECTS IN AN ADHESIVE LAYER (HADJ-AHMED ET AL. 2001) AND 

B) VISUALISATION OF TYPICAL ADHSIVE DEFECTS (BASED ON (ADAMS & WAKE 1984) AND 

(TAVROU ET AL. 2010)) 

It is possible to determine the flaw size in a non-destructive way by means of 

ultrasonic testing (e.g. ultrasonic measurements, digital shearography and X-ray 

radiography) on specimens with a thickness of several millimetres. The inherent 

complexity and cost of these tests, combined with the uncertainty about material 

properties makes fracture mechanics unfavourable. In practice, a continuum 

mechanics approach is often preferable. 
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Appendix G: Ageing 
 

 

G.1. Introduction 

The material safety coefficient of 2 for environment conditions in Chapter 9 for 

the reduction of the adhesive strength, indicates that environment conditions such 

as humidity, UV-radiation and thermal cycling, can cause degradation of the 

mechanical adhesive properties. The aim of this chapter is to determine this 

degradation for the two selected adhesives. Determination of reduction factors in 

function of environment conditions is out of the scope of this chapter, as long-

term ageing testing on more than two adhesives is required for this. However, the 

results of the artificial ageing will indicate how adhesive point-fixings will behave 

in environment conditions. 

In this chapter first an artificial ageing schedule is proposed for adhesive point-

fixings based on available standards and guidelines. In this scheme, the most 

important environmental factors are included, i.e. moisture, temperature and UV-

radiation. Next, the two selected adhesives are examined for their durability by 

imposing the proposed artificial ageing procedures. For these, the effects of 

individual and combined influential factors on the mechanical properties were 

assessed by performing experimental tests. The results described in this appendix 

have already been published in Van Lancker et al. (2016b). Hence, this chapter is 

generally based on this publication. 
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G.2. Artificial ageing 

During their service life, adhesive connections are subjected to various 

environmental and operational conditions (Wolf 1999; Dillard 2010; Silva et al. 

2011; Pethrick 2015). The external environment of a facade exposes structural 

adhesives to humidity, water absorption, temperature, thermal cycles, daily thermal 

movements, UV-radiation, cleaning products, etc. Knowledge regarding the long-

term behaviour and durability of structural adhesive connections used in building 

construction is important, to ensure the minimum service lifetime of 20 to 25 years. 

Therefore, artificial ageing is often used to determine the effects of environmental 

conditions on the mechanical properties of adhesive connections in a relatively 

short time period. Under laboratory conditions, specimens are subjected to ageing 

procedures that accelerate the deterioration of their mechanical properties and 

afterwards tested to quantify these. To be able to estimate the service life of an 

adhesive or adhesive connection, it is necessary to correlate the artificial ageing 

time to real in-service time. Nevertheless, this extrapolation of the mechanical 

properties to longer periods than tested, is not obvious as other authors already 

pointed out (Wolf 1999; Adams et al. 1997; Ebnesajjad & Landrock 2014).  

An excess of durability standards and technical guidelines has become manifest 

throughout the years. The performance-based specifications for adhesives and 

adhesive connections developed by standard organisations, such as CEN, ISO, 

ASTM, DIN, etc. need to have a wide applicability and need to represent actual 

service conditions (Broughton & Mera 1997). Hence, to perform research on the 

durability of adhesive connections for certain applications, it is important to first 

select relevant and useful standards and technical guidelines for the considered 

application. Next, an artificial ageing schedule can be designed based on these 

documents with, if necessary, adaptations to confirm the long-term performance 

of the adhesive or adhesive connection. The proposed artificial ageing schedule to 

study the individual effects and the sum of degrading effects of the environmental 

factors moisture, temperature and radiation on the long-term behaviour of 

adhesive point-fixings is depicted in Figure G.1. The crosses in this figure 

represent a test phase during which particular mechanical properties of a series of 

test specimens were determined. Reference tests on unaged specimens (Series A) 

enabled the comparison with aged specimens and therefore the evaluation of the 

long-term behaviour of structural adhesive glass-metal connections.  
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FIGURE G.1 :  PROPOSED ARTIFICIAL AGEING SCHEDULE (THE CROSSES AND 

CORRESPONDING LETTERS REPRESENT A TEST PHASE).  

G.3. Experimental programme 

Using the proposed artificial ageing schedule, an extensive experimental program 

was conducted to investigate the effect of a number of environmental parameters 

on the long-term behaviour of adhesive point-fixings. A stainless steel connector 

with a diameter and a height of 30 mm was adhesively bonded to a 250 mm by 

100 mm monolithic glass panel with a thickness of 12 mm. In case of the MS-

polymer, annealed float glass was used whereas for the stiff epoxy, fully tempered 

float glass was used, the same test configuration as in Chapter 8. For each series 

(Series A to Series H) of both the MS-polymer and the epoxy, five samples were 

produced. After production at ambient RH and temperature, the specimens were 

stored in a climatic chamber with a temperature of 20°C and a RH of 60% for 

four weeks. Subsequently, the reference series (Series A) was tested, while all other 

series (Series B to Series H) underwent the artificial ageing procedures as depicted 

in Figure G.1.  

As in Chapter 7, tension was considered. Therefore, displacement-controlled axial 

tensile tests on the adhesive point-fixings were performed with a displacement rate 

of 1 mm/min. The test ended when either the adhesive layer fails or the glass panel 

broke. The test setup is illustrated in Figure G.2. 
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FIGURE G.2:  SCHEMATIC TEST SETUP (DIMENSIONS IN MM) AND ACTUAL TEST SETUP FOR 

THE TENSILE TESTS (VAN LANCKER ET AL. 2016A).  

G.4. Results 

G.4.1. Soudaseal 270 HS (SO) 

After the artificial ageing procedures investigating moisture or thermal cycling, no 

visual degradation of the adhesive layer was observed. However, after exposure to 

UV-radiation (Series F-SO and Series H-SO), yellowing of the MS-polymer had 

occurred. This yellowing is depicted in Figure G.3. Failure, for the reference series 

(Series A-SO) as well as for all aged series (Series B-SO to Series H-SO), presented 

itself in cohesive failure or in a combination of adhesive and cohesive failure. At 

the peak load, cracks appeared at the top of the adhesive layer, after which they 

propagated throughout the adhesive with an increasing vertical displacement. At 

some points, the adhesive simply detached gradually further from the steel, causing 

partial adhesive failure of the connection. 
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FIGURE G.3:  YELLOWING OF SO, PICTURES FROM BEFORE AND AFTER UV-RADIATION. 

Ductile behaviour was observed for SO, due to its hyperelastic material nature. 

The relationship between the applied force and the displacement of the adhesive 

layer was used to derive a stress-strain curve for the adhesive. Based on Dispersyn 

et al. (2014), the ratio of the difference in stress Δσ for the corresponding 

difference in strain Δε equal to 0.2, as written in Eq. (G.1), was defined as the 

stiffness K. 

𝐾 =
∆𝜎

∆𝜀
 (G.1)  

A summary of the calculated values for the initial stiffness and the measured failure 

loads is presented in Table G.1. A graphical representation of the results, 

normalised with respect to the reference series (Series A-SO), is provided in Figure 

G.4. Immersion in water for three weeks (Series B-SO) decreased the stiffness and 

strength substantially. After six weeks of immersion (Series C-SO) the stiffness no 

longer decreased significantly. Strength, however, did increase compared with 

three weeks immersion, but remained below the reference values of the unaged 

series. Exposure to a RH of 100% (Series D-SO) also deteriorated the stiffness 

and strength, but less than in case of immersion in water. Thermal cycling (Series 

E-SO) resulted in a stiffer and stronger connection. Additionally, exposure to UV-

radiation (Series F-SO) further increased strength and stiffness. Combining 

thermal cycling with humidity (Series G-SO) gave rise to a similar stiffness as for 

thermal cycling alone (Series E-SO), although the strength was lower. The effect 

of humidity, thermal cycling and exposure to UV-radiation (Series H-SO) 

increased strength, and stiffness. The additional exposure to UV-radiation 

increased the average stiffness, however, dispersion on the results were largest for 

these series. 
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TABLE G.1 :  STIFFNESS AND FAILURE LOAD OF UNAGED AND AGED SPECIMENS WITH SO. 

Series 
Ageing  

procedure 

Stiffness Failure load 

K [N/mm2] Pf [kN] 

A-SO REF 4.285 ± 0.597 0.93 ± 0.13 

B-SO 3W H2O 2.256 ± 0.347 0.40 ± 0.07 

C-SO 6W H2O 2.209 ± 0.095 0.49 ± 0.03 

D-SO 2W 100% R.H. 3.520 ± 0.386 0.79 ± 0.02 

E-SO ΔT 5.807 ± 0.647 1.43 ± 0.15 

F-SO ΔT+UV 8.311 ± 1.521 1.75 ± 0.05 

G-SO 2W 100% R.H. +ΔT 5.676 ± 0.638 1.27 ± 0.10 

H-SO 2W 100% R.H. +ΔT+UV 6.007 ± 1.176 1.32 ± 0.05 

 
FIGURE G.4:  NORMALISED STIFFNESS AND NORMALISED FAILURE LOAD OF UNAGED AND 

AGED SPECIMENS WITH SOUDASEAL 270 HS.  

The applicability of SO for adhesive point-fixings can be reasoned from a 

durability point of view. Although the resistance against moisture is limited, for 

the practical application in facades this is less important. Under the considered 

thermal cycling conditions, whether or not combined with exposure to humidity 

and/or UV-radiation, mechanical properties even improve. As such, it can be 

important to take into account an increased stiffness and strength from a 

mechanical point of view during the design as the overall structural behaviour of 

the adhesive point connection could change. 
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G.4.2. 3M™ Scotch-Weld™ 9323 B/A (3M) 

After all ageing procedures, except for four weeks of thermal cycling (Series E-

3M), visual degradation in terms of a discolouration of the adhesive layer was 

clearly visible. The state of the adhesive layer is depicted in Figure G.5.  

    
Series A-3M Series B-3M Series C-3M Series D-3M 

    
Series E-3M Series F-3M Series G-3M Series H-3M 

FIGURE G.5:  DEGRADATION OF 3M.  

The exposure to moisture (Series B-3M to Series D-3M) resulted in a darkening of 

the bulk adhesive material. After two weeks of exposure to a RH of 100% (Series 

D-3M), the outer perimeter had a lighter colour than the remainder of the adhesive 

layer. Three weeks of immersion in water (Series B-3M) led to the origination of a 

thin circumferential band at the outer perimeter, which expanded significantly to 

the centre after another three weeks of immersion (Series C-3M). Although no 

visual degradation was discoverable after four weeks of thermal cycling (Series E-

3M), the fracture pattern after testing had a foamy texture as illustrated in Figure 

G.6, which was also the case for the other ageing procedures including thermal 

cycling (Series G-3M and Series H-3M). Combining thermal cycling with exposure 

to UV-radiation (Series F-3M) changed the colour of the adhesive from pink-

orange to yellowish. Humidity combined with thermal cycling (Series G-3M) 

caused similar deterioration as for the exposure to a RH of 100% solely.  
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FIGURE G.6:  FOAMY FRACTURE PATTERN FOR SERIES E-3M. 

Failure of the adhesive happens in a very brittle manner. Either failure in the 

adhesive occurred or the glass substrate failed and brittle cohesive substrate failure 

was detected. The strength of the connections which resulted in glass failure 

represent a lower boundary of the inherent strength of the adhesive interlayer. The 

durability of the adhesive layer was the main interest; therefore specimens that 

experienced substrate failure were not considered for strength analysis. From the 

stress-strain curve, the stiffness K was calculated. Table G.2 contains the values 

for the average stiffness and average strength of the adhesive layer for the unaged 

and aged test series (Series A-3M to Series H-3M). Figure G.7 contains a graphical 

representation of the obtained results of the mechanical properties of the aged 

series relative to the reference series. 

The exposure to moisture of the 2c-epoxy led to significant damage of the 

adhesive layer resulting in a decrease in stiffness and strength. The effect of 

immersion in water for three weeks (Series B-3M) resulted in a significant decrease 

in stiffness and strength compared to the reference series. The failure mode of 

most specimens of this series was almost pure adhesive failure at the glass substrate, 

resulting in very low failure loads. Two weeks of exposure to a RH of 100% (Series 

D-3M) resulted in a loss of stiffness comparable to the loss in stiffness after six 

weeks of immersion in water. Exposure to thermal cycling (Series E-3M) 

decreased stiffness and strength, although the dispersion on the results was rather 

high.  For subsequent exposure to UV-radiation (Series F-3M), the failure load 

remained approximately equal, but again the scatter on the results was relatively 

high. The stiffness, nevertheless, increased again. Exposure to four weeks of 

thermal cycling after two weeks of exposure to humidity (Series G-3M) overall 

decreased stiffness and strength. Compared to Series D, the additional thermal 

cycles increased stiffness and strength again.  
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TABLE G.2:  STIFFNESS AND FAILURE LOAD OF UNAGED AND AGED STRUCTURAL ADHESIVE 

POINT-FIXINGS WITH 3M. 

Series 
Ageing  

Procedure 

Stiffness Failure load 

K [N/mm2] Pf [kN] 

A-3M REF 2.084 ± 0.172 18.48 ± 3.15 

B-3M 3W H2O 1.895 ± 0.140 4.11 ± 1.04 

C-3M 6W H2O 1.599 ± 0.055 9.03 ± 0.31 

D-3M 2W 100% R.H. 1.581 ± 0.153 11.26 ± 0.73 

E-3M ΔT 1.769 ± 0.160 14.93 ± 3.29 

F-3M ΔT+UV 2.034 ± 0.172 14.46 ± 2.03 

G-3M 2W+ΔT 1.654 ± 0.040 14.03 ± 0.13 

H-3M 2W+ΔT+UV 1.294 ± 0.069 10.65 ± 1.75 

 
FIGURE G.7:  NORMALISED STIFFNESS AND NORMALISED FAILURE LOAD OF UNAGED AND 

AGED SPECIMENS WITH 3M.  

The two-component epoxy 3M™ Scotch-Weld™ 9323 B/A demonstrates good 

resistance against thermal cycling, whether or not combined with exposure to UV-

radiation. However, moisture can lead to significant damage of the adhesive layer, 

which can be aggravated by exposure to UV-radiation. Nevertheless, for the 

application of point-fixings in facades, moisture is of less importance as the 

connection is exposed to an interior environment which can be controlled easily. 

Hence, from a durability point of view, this adhesive is a good alternative for the 

considered application.  
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G.5. Summary and conclusions 

From the abundance of available standards, technical specifications and guidelines 

regarding the durability of structural adhesives and structural adhesive 

connections, an appropriate artificial ageing schedule for adhesive point-fixings 

was derived. The most important environmental factors, i.e. moisture, temperature 

and UV-radiation were emphasized in this scheme. Next, adhesive point-fixings 

were tested after being subjected to the procedures from the schedule. Axial tensile 

tests were performed on the point-fixings to assess the effect of the different 

artificial ageing procedures on the stiffness and strength.  

The resistance of the MS-polymer SO against immersion in water and exposure to 

humidity was limited as both stiffness and strength decreased significantly. 

Thermal cycling meliorated the mechanical properties of the connection. 

Exposure to UV-radiation had no significant influence on the mechanical 

properties. Although an increase in the mean strength and stiffness after thermal 

cycling was observed, there was no effect of UV-radiation after subsequent 

exposure to humidity and thermal cycling. 

The exposure to moisture, either as vapour (humidity) or as liquid (immersion), 

led to significant damage of the adhesive layer of 2c-epoxy 3M resulting in a 

decrease in stiffness and strength. This epoxy showed good resistance against 

thermal ageing, although there was a small decrease in stiffness. The strength of 

the connection was not significantly affected by this artificial ageing procedure. 

UV-radiation aggravated previous damage caused by moisture, which was not so 

in case of previous exposure to thermal cycling. 

From the investigated environmental parameters, exposure to moisture is proven 

to be the most severely. As stated in Table 8.1. in Chapter 8, when it is not possible 

to eliminate moisture, by applying a sealant or placing the point-fixing on the inside 

of the structure, a reducing factor of 2 has to be applied. From the experiments in 

this chapter, moisture indeed reduced the failure load by a factor of 2. It will be 

important to take exposure to moisture in the design of adhesive point-fixings, 

regardless of the adhesive type. Furthermore, temperature and UV-radiation will 

reduce the adhesive strength for stiff adhesives.  
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