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Abstract 

Delivery of small interfering RNA (siRNA) is recently gaining tremendous attention for the 

treatment of ovarian cancer. The present study investigated the potential of different liposomal 

formulations composed of (2, 3-Dioleoyloxy-propyl)-trimethylammonium (DOTAP) and 1, 2-

Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) encapsulating siRNA (hydration 

method) for their ability to knockdown luciferase (Luc) activity in human ovarian cancer 

SKOV-3 cells. Fluorescence Single Particle Tracking (fSPT) and fluorescence correlation 

spectroscopy (FCS) in human undiluted ascites fluid obtained from a peritoneal carcinomatosis 

patient revealed that cationic hydra-lipoplexes (HYDRA-LPXs) and HYDRA-LPXs decorated 

with stable DSPE-PEG (DSPE HYDRA-LPXs) showed high stability during at least 24 hours. 

HYDRA-LPXs decorated with sheddable C8 and C16 PEG-Ceramides (Cer HYDRA-LPXs) 

resulted in rapid and premature release of siRNA already in the first hours. Despite their role in 

preventing aggregation in vivo, liposomes decorated with stable PEG residues resulted in a poor 

transfection compared to the ones decorated with sheddable PEG residues in reduced serum 

conditions. Yet, the transfection efficiency of both Cer HYDRA-LPXs significantly decreased 

following 1 hour of incubation in ascites fluid due to a drastic drop in the cellular uptake, while 

DSPE HYDRA-LPXs are still taken up by cells, but too stable to induce efficient gene 

silencing.  

Keywords: siRNA delivery, siRNA encapsulation, peritoneal metastasis, sheddable PEG, 

ascites  
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Introduction 

Small interfering RNA (siRNA) therapeutics hold great potential for the treatment of 

different diseases, such as neurodegenerative pathologies, genetic and metabolic disorders and 

cancer [1, 2]. To ensure their therapeutic activity, siRNA-based medicines should be delivered 

into the cytoplasm of the target cell where the natural RNAi machinery could be engaged. 

Towards this goal, complexation or encapsulation of siRNA within nano-sized particles is being 

utilized to protect the siRNA from blood nucleases and other extracellular components with the 

aim to increase the fraction that enters into cells following administration. Apart from protection 

of the siRNA against nucleases , these nano-carriers should also (i)  be resistant to the formation 

of large aggregates while circulating in the extracellular biofluids, (ii) prevent premature release 

of the siRNA before reaching the target cell [3], and (iii)  (sufficiently) interact extracellularly 

with the plasma membrane and intracelluarly with the endosomal membrane, an interaction 

which is essential for therapeutic activity of siRNA [3, 4]. 

Over the last decade, both polymeric and lipid nanoparticles (LNPs) were employed for 

siRNA delivery [2, 5]. Due to the negative charge of the siRNA, cationic lipid-based and 

polymeric NPs are widely used to obtain spontaneous electrostatic interactions and protect the 

siRNA from degradation [6-8]. The most important difference between the lipid-based and 

polymeric vehicles is that the majority of the cationic polymers do not contain a hydrophobic 

tail, and thus are completely soluble in water. Also, cationic polymers can be synthesized in 

different molecular weights and shapes (linear versus branched) and can be more easily tuned 

with functional groups, to influence, for example, the intracellular trafficking of the vehicles 

and their biological activity [8, 9]. Generally speaking, LNPs contain a lipid bilayer-disrupting 

lipids that are activated by low endosomal pH, whereas polymers are very easy to modify and 

control their structure in a way that they become positively charged in acidic endosomes in 

order to enhance endosomal escape of siRNA [10].     
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 Lipid nanoparticles (LNPs) have been extensively investigated as candidates for siRNA 

delivery in cancer therapy [11]. Currently, LNPs represent the most promising platform for 

systemic delivery of siRNAs, with lipid-based formulations in clinical trials for the treatment 

of different diseases [2, 5]. Despite major advances with LNPs for siRNA delivery, the main 

challenge remains their colloidal stability within the fluids of the body. In this context, grafting 

LNPs with polyethylene glycol (PEG) is the most common strategy to prevent aggregation and 

prolong their half-life in the circulation [12]. PEGylation, however, has been associated with 

poor biological activity of siRNA [12]. It is speculated that PEG chains significantly decrease 

the uptake of LNPs by cells and disrupt their interaction with the endosomal membrane [4, 13]. 

For instance, increasing the PEGylation of siRNA-lipoplexes (siRNA-LPXs) from 2 to 5 mol% 

dramatically diminished the siRNA gene silencing in vivo [14]. Furthermore, it has been 

postulated that multiple administration of stabilized PEGylated lipid particles (SPLP), induced 

a strong immune response against PEG, resulting in accelerated blood clearance [15-17]. Worth 

mentioning also is that PEG residues interfere with the electrostatic interactions between 

negatively charged siRNA and positively charged lipids resulting in a low 

complexation/encapsulation efficiency. Also, we observed that PEGylation leads to the rapid 

premature release of the siRNA from the surface of the liposomes in different biological fluids 

[18-20].  

Therefore, when tailoring LNPs for in vivo siRNA delivery, a delicate balance between 

avoiding (i) aggregation, (ii) premature release, (iii) immune responses and realizing efficient 

intracellular release of siRNA in the cytoplasm of cells should be installed to overcome PEG-

associated problems. In this respect, an interesting approach could be the use of ‘exchangeable’ 

PEG-derivatized lipids, also called “sheddable PEG”, which diffuse out of LPXs upon contact 

with biological membranes, depending on the length of the acyl) chain of the lipid anchor. 
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Among the most used sheddable PEG-lipids are ceramides (Cer-PEG) and diacylglycerols 

(PEG-S-DAGs) [21, 22]. 

Ovarian cancer leads to more than 140,000 deaths annually in women around the world 

[23]. In the majority of the cases, ovarian cancer often migrates to the peritoneal cavity forming 

fatal peritoneal carcinomatosis. Interestingly, intraperitoneal (i.p.) administration of different 

drugs has recently shown some advantages to treat peritoneal tumors when compared to 

intravenous administration, mainly due to high concentrations of drug at the tumor site 

following i.p. administration [24-26]. Also, the delivery of siRNA to ovarian cancer cells using 

different nano- sized carriers is recently gaining increasing attention in cancer therapy [27-30]. 

It has been reported that the co-delivery of chemotherapeutic agents with siRNA is an efficient 

strategy to enhance tumor killing effect and overcome resistance of cancer cells when compared 

to delivery systems carrying either siRNA or chemotherapeutics alone [31-33]. First of all, 

siRNAs can specifically silence cancer associated genes, causing less side effects in non-cancer 

cells. Moreover, siRNA is not limited to target receptors that are expressed on the surface of 

cancer cells, but can also silence genes associated with intracellular targets [34]. 

 

 In this study, we investigate the suitability of different liposomes (cationic, PEGylated 

and grafted with diffusible Cer-PEG) composed of DOTAP and DOPE (as lipids) encapsulating 

siRNA within the aqueous core (prepared by the hydration method) [18, 35] to knockdown 

luciferase in the human ovarian cancer cell line SKOV-3. Initially we employ advanced 

fluorescence microscopy techniques, such as fluorescence correlation spectroscopy (FCS) and 

fluorescence single particle tracking (fSPT) [36, 37] to follow the release and aggregation of 

the LPXs in ascites fluid obtained from a peritoneal carcinomatosis patient. Additionally, we 

test the uptake, toxicity and silencing efficiency of all the formulations. We hypothesized that 
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liposomes encapsulating siRNA and decorated with diffusible Cer-PEG may be an attractive 

strategy to target tumors confined within the peritoneal cavity following i.p. adminstration, as 

they represent a fine balance between PEGylation and de-PEGylation [38].   
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Materials and Methods  

Materials 

(2,3-Dioleoyloxy-propyl)-trimethylammonium-chloride (DOTAP) and 1,2-Dioleoyl-sn-

glycero-3-phosphoethanolamine (DOPE) were purchased from Corden Pharma LLC (Liestal, 

Switzerland). 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] 

(DSPE-PEG), N-palmitoyl-sphingosine-1-{succinyl[methoxy(polyethylene-glycol)2000]} 

(C16 mPEG 2000 Ceramide), N-octanoyl-sphingosine-1-{succinyl[methoxy(polyethylene 

glycol)2000]} (C8 mPEG 2000 Ceramide) were purchased from Avanti Polar Lipids  

(Alabaster, AL, USA). Chloroform, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 

sodium chloride (NaCl) were purchased from Sigma Aldrich (Bornem, Belgium).  

Penicillin-Streptomycin (5000 U/ml), L-Glutamine (200 mM), 0.25% Trypsin-EDTA (1X) 

Phenol Red, McCoy's 5A (Modified), Opti-MEM® and 1,1'-dioctadecyl-3,3,3',3'-

tetramethylindodicarbocyanine perchlorate (DID) (λex= 644 nm, λem= 665 nm) were 

purchased from Invitrogen (Merelbeke, Belgium). Luciferase Assay Substrate was purchased 

Promega (Madison, WI, USA). Fetal Bovine Serum (FBS) was purchased from HyClone® 

Thermo Scientific (Cramlington, UK). Passive Lysis Buffer and Luciferase Assay Kit were 

purchased from (Promega, Leiden, Netherlands).  

Preparation and characterization of the HYDRA LPXs 
 
Liposomes corresponding to 5 mM of DOTAP and 5 mM of DOPE lipids were prepared by 

mixing the appropriate amount of each lipid in a round bottomed flask before evaporation.  

PEGylated liposomes were prepared by adding the desired amounts of DSPE-PEG, or C8 Cer-

PEG or C16 Cer-PEG dissolved in chloroform (corresponding to 5 mol% the total lipids) to 
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the lipids before evaporation. A lipid film was formed by rotary evaporation of the chloroform 

at 40°C.  

To obtain the so named ‘HYDRA lipoplexes’, the dried lipid film was hydrated with a siRNA 

solution in HEPES buffer (20 mM, pH 7.4) resulting in LPXs with a charge ratio of ± 8. Finally, 

the obtained solution was sonicated using a probe sonicator (Branson Ultrasonics Digital 

Sonifier®,Danbury,USA).We showed previously that this method results in the encapsulation 

of 50% of the complexed siRNA inside the liposomes and 50% bound to the outer surface of 

the liposomes [35]. The average size and zeta potential of all formulations were measured 

using Zetasizer Nano-ZS (Malvern, Worcestershire, UK).   

Fluorescence single particle tracking (fSPT) 

Fluorescence Single particle tracking (fSPT) is a fluorescence microscopy technique which is 

used to characterize the diffusion of nanoparticles. Briefly, fSPT makes use a fast CCD camera 

and wide-field laser illumination to obtain movies of single, fluorescently labeled particles in 

biological media. The movies are then analyzed by using in-house image processing software 

[36], where the motion trajectories and subsequently the diffusion coefficient of each individual 

particle is calculated. Based on the trajectories of all the particles, it is possible to make a 

distribution of diffusion coefficients, which is then converted into size distribution using the 

Stokes-Einstein equation given the viscosity of the biofluid at which the experiment was 

performed is known. Finally, the distribution is refined by the maximal entropy method [36]. 

We showed previously that fSPT is ideally suited to characterize the size (and thus the extent 

of aggregation) of nanoparticles in biological fluids like human serum, ascites fluid, human 

plasma, and blood [3, 20, 36]. The main advantage of fSPT over the widely used sizing 

techniques such as Dynamic Light Scattering (DLS), is the ability to perform sizing 

measurements in undiluted biological fluids, without the influence of the proteins present in 

these fluids [3].  
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fSPT measurements were performed on the HYDRA-LPXs (Cationic, 5% DSPE-PEG, 5% C8 

Cer-PEG, 5% C16 Cer-PEG) labeled with the lipophilic dye DID, that labels the lipid bilayer 

of the liposomes). LPXs were dispersed in biofluids as follows. First, formulations were diluted 

400 times in HEPES buffer. Then 5 µl was added to 45 µl of biofluid (~90 vol% of ascites 

fluid), and incubated for 1, 2 and 3 h at 37°C in a 96-well plate (Greiner bio-one, Frickenhausen, 

Germany). fSPT-videos of the different formulations in the biofluids were recorded with the 

NIS Elements software (Nikon) driving the EMCCD camera (Cascade II:512, Roper Scientific, 

AZ, USA) and a TE2000 inverted microscope equipped with a 100_ NA1.4 oil immersion lens 

(Nikon) as previously described [3, 20] using the following values of viscosity at room 

temperature: 1.39 cP for human ascites fluid and 0.94 for HEPES buffer [3]. Human ascites 

fluid was obtained from a patient diagnosed with peritoneal carcinomatosis at the Medical 

Oncology Department of Ghent University Hospital (approved by the Ethics Committee of the 

Ghent University Hospital (no. 2013/589)).  

Videos were recorded at room temperature (22.5 °C) with the NIS Elements software (Nikon) 

driving the EMCCD camera (Cascade II: 512, Roper Scientific, AZ, USA) and a TE2000 

inverted microscope equipped with a 100_ NA1.4 oil immersion lens (Nikon). 

Fluorescence Correlation Spectroscopy on HYDRA LPXs 

FCS is a microscopy-based technique that monitors the fluorescence intensity fluctuations of 

molecules diffusing in and out of the focal volume of a confocal microscope [3]. When free 

fluorescently labeled siRNA molecules pass through the focal volume, a fluorescence baseline 

with an intensity that corresponds to the concentration of the free labeled siRNA molecules is 

obtained. When the siRNA is complexed/encapsulated within a carrier, the concentration of 

free siRNA drops and subsequently, a drop in the baseline intensity of the fluorescence signal 

occurs, accompanied with fluorescence fluctuations (i.e. peaks) each time a complex passes the 

focal volume. Release of siRNA, on its turn, results in an increase in the fluorescence baseline. 
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An important advantage of FCS is the low volume of samples needed to perform the 

experiments (~50 µl).  Our group showed before that FCS is ideally suited to measure the 

amount of siRNA that is released/associated from/with nano-sized carriers in various types of 

biofluids [3,4,15]. FCS measurements were carried-out on HYDRA-LPXs containing 30% Cy-

5 siRNA and 70% non-labeled siRNA, with a charge ratio of ± 8. 5 µl of LPXs were diluted to 

a final volume of 50 µl in respectively HEPES buffer or ascites fluid (~ 90 vol%) and FCS 

measurements were done (i) immediately after diluting the LPXs (in HEPES or ascites fluid), 

(ii) 1 h and (iii) 24 h after incubation with the biofluids at 37°C. FCS measurements were 

performed on a C1si laser scanning confocal microscope (Nikon, Japan), equipped with a time-

correlated single photon counting (TCSPC) data acquisition module (Picoquant, Berlin, 

Germany). The laser beam was held stationary and focused through a water immersion 

objective lens (Plan Apo 60, NA 1.2, collar rim correction, Nikon, Japan) at ~ 50 µm above the 

bottom of the glass-bottom 96-well plate (Grainer Bioone, Frickenhausen, Germany), which 

contained the fluorescent LPXs. The 633 nm laser beam was used to record fluorescence 

intensity fluctuations using SymPhoTime (Picoquant, Berlin, Germany).  

Cell culture 

The human ovarian cancer cell line SKOV-3 which stably expresses firefly luciferase was used 

for in vitro experiments. Cells were cultured in McCoy's 5A medium supplemented with FBS, 

Penicillin-Streptomycin and L-Glutamine. Cells were cultured until 80% to 90% confluency 

and detached from tissue culture dishes with 0.25% trypsin. Cells were maintained in an 

incubator at 37°C in a humidified atmosphere with 5% CO2.   

Cell viability assay 

The MTT assay was used as a measure of cell viability following incubation of the studied 

formulations with a final negative control siRNA concentration of 10, 15 and 20 nM. SKOV-3 
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cells were cultured on 24-well tissue culture plates (35,000 cells per well). On the next day, 

cells were incubated for 4 h with 500 µl Opti-MEM® containing the LPXs of interest or 30% 

of ethanol as positive control. Then, cells were washed and incubated with McCoy's 5A medium 

for an additional 24 h. Thereafter, 100 µl of MTT stock solution (5 mg/ml MTT in PBS) in 

McCoy's 5A was added to each well and incubated for 3 h. After aspirating the medium, 500 

µl of DMSO was added to each well in order to dissolve the formazan crystals. The plates were 

covered with aluminum foil, placed on an orbital shaker for 10 min and the absorbance of the 

formed formazan crystals was determined at 590 nm with reference at 690 nm using a Wallac 

EnvisionTM multilabel reader (PerkinElmer, Zaventem, Belgium). Percentages of cell viability 

for each sample were calculated as follows: (absorbance of the sample/absorbance of the 

negative control) x 100%.   

 

 

Internalization of siRNA into SKOV-3 cells 

SKOV-3 cells were plated on 24-well plates (35,000 cells in each well) and allowed to grow in 

an incubator for 24 h. Cells were incubated with the formulations containing 10% Alexa Fluor-

488 siRNA at a final siRNA concentration of 15 nM for 4 h at 37°C. At the end of the 

incubation, cells were washed extensively with warm growth medium and PBS, then detached 

using trypsin and analyzed by FACS (FACSCalibur Flow Cytometer, BD Biosciences, USA). 

Uptake experiments were done with LPXs administered in Opti-MEM® or with LPXs which 

were first incubated for 1 h in human ascites fluid, as previously described [20]. Uptake 

experiments in the ascites fluid were performed by incubating 300 µl of each of the studied 

formulations with 700 µl of ascites fluid for 1 h at 37°C. Then, 300 µl of the mixture were 

added in triplicates to 700 µl of Opti-MEM® in each well of a 24 well-plate. After 4 h of 

incubation at 37°C, cells were washed, detached and analyzed as described above.  
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Transfection efficiency  

SKOV-3 cells were cultured on 24-well plates (35,000 cells/well) in 500 µl of medium 

containing 10% FBS 24 h prior to the transfection. Cells were incubated with HYDRA-LPXs 

at a final siRNA concentration of 15 nM respectively in Opti-MEM®  or following 1 h of pre-

incubation in ascites fluid as previously explained [20]. After 4 h incubation, the transfection 

medium was replaced by culture medium and cells were returned to the incubator for 24 h. 

Then, cells were lysed with Passive Lysis Buffer and analyzed for firefly luciferase expression 

using the luciferase assay kit (Promega). The bioluminescence (Relative Light Units, RLU) was 

measured using a GloMax Luminometer (Promega). The percentage of luciferase 

downregulation was determined by the following equation:  

% transfection = 100 – (100 x RLUluc/RLUctrl), where RLUctrl is the mean for control siRNA 

and RLUluc is the mean for luciferase siRNA. Transfection experiments were performed in 

triplicates on three different days. For transfections in the ascites fluid, 300 µl of each HYDRA-

LPX (of each formulation) were incubated with 700 µl ascites fluid and incubated for 1 h at 

37°C. Thereafter, 300 µl of the mixture was added to 700 µl of Opti-MEM® in each well of a 

24 well-plate. Then, the medium was replaced with growth medium and cells were returned to 

the incubator for 24 h, as described above.  

  Statistical analysis 

Statistical analysis on the transfection data (Figure 5) was performed using GraphPad Prism 6. 

Data are presented as means ± SD. Statistically significant differences were calculated by using 

an analysis of variance (ANOVA) at a 0.05 significance level, followed by Sidak’s post-test. 

For each formulation, transfection experiments carried out in Opti-MEM® were compared to 

these in ascites fluid.  
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 Results  

Characterization of the studied LPXs 

Table 1 shows the size and zeta potential of the different used formulations. In the 

hydration method, formulations were prepared by hydrating the lipid film with siRNA directly. 

This results in liposomes in which the siRNA is also encapsulated inside the aqueous core of 

the resulting LPXs, as well as being complexed to the outer surface of the liposomal 

formulations. As depicted in table 1, all the studied formulations resulted in nano-sized 

vesicles, as determined by dynamic light scattering (DLS). When compared to empty 

liposomes, the size increased for all formulations when LPXs were formed, except for the 5% 

C16 Cer HYDRA-LPXs. 

As expected, both PEGylation and the addition of siRNA influenced the charge of the 

liposomes. Introducing PEG chains on the surface of the liposomes results in shielding of the 

positive charge from about 56 mV for the cationic liposomes to about 17-20 mV for the 

PEGylated ones. Encapsulation of siRNA resulted in a further decrease of the charge, except 

for the 5% C16 Cer HYDRA-LPXs.   

 

Aggregation of the formulations in undiluted ascites fluid 

In our previous study we have shown that DLS is not an ideal technique for 

characterizing aggregation of nanoparticles in biological fluids, simply due to scattering that 

results from e.g. the proteins in the biofluids [3]. fSPT has proven to be superior over DLS for 

this purpose [3, 36]. Figure 1a shows the size distributions of the HYDRA-LPXs as measured 

by fSPT. In agreement with the DLS outcomes in Table 1, HYDRA-LPXs have an average size 

around 100 nm when measured in HEPES buffer (Figure 1a, black curve). Following 1 h of 

incubation in ascites fluid, the size distribution is shifted to the right (red curve), with a peak 

diameter around 200 nm. Upon longer times in ascites fluids, aggregation of the HYDRA-LPXs 
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seemed somehow to continue, resulting in HYDRA-LPXs with a peak diameter of 300 nm 

(Figure 1a, blue curve). After 3 h of incubation, the size distributions did not further change, 

indicating the aggregation reached an equilibrium already after 2 h (Figure 1a, green curve).  

Next, we were interested if PEGylation would further inhibits the aggregation of HYDRA-

LPXs. Two types of PEGylation were tested, namely the incorporation of respectively stable, 

non-exchangeable DSPE-PEG chains, and exchangeable PEG-Ceramides. In the case of the 

DSPE-PEG HYDRA-LPXs (Figure 1b), initially a minor aggregation was observed following 

incubation in ascites fluid when compared to the distribution in HEPES buffer (~ 150 nm). 

Then, the PEGylated complexes remained stable, resulting in particles of about 250 nm in 

diameter. For the 5% C8 Cer HYDRA-LPXs, the size in HEPES buffer was around 100 nm 

(Figure 1c) and increased to 200 nm after 1 h of incubation in ascites fluid. Surprisingly, further 

incubation in ascites fluid for 2 and 3 h resulted again in smaller 5% C8 Cer HYDRA-LPXs of 

150 nm and less. The SPT data in Figure 1D for the C16 Cer HYDRA-LPXs exhibit a similar 

behavior to the C8 Cer HYDRA-LPXs, with an equilibrium reached after 1 h of incubation in 

ascites fluid, and a peak diameter of about ~250 nm. Taken together, all the formulations 

seemed sufficiently stable in the ascites fluid:  no micrometer-sized aggregates were observed 

and the size of all LPXs remained sufficiently small to allow endocytosis by cells.  

 

Release of siRNA from the formulations in undiluted ascites fluid 

As demonstrated previously, FCS is a suitable method to follow the release of siRNA 

from different types of formulations in undiluted biological fluids [3, 19, 20]. Figure 2 displays 

the complexation efficiency of the studied formulations. HYDRA-LPXs show a high 

complexation efficiency with about 80% of the siRNA complexed with the liposomes 

immediately after preparation in HEPES buffer (Figure 2, white bars) and during 24 h (grey 

and green bars). Following 1 h of incubation (Figure 2, blue bars), a burst release was observed 
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leading to about 40% complexed siRNA (60% of free siRNA). This release is highly likely 

ascribed to the siRNA which is bound on the surface of the liposomes and not actually 

encapsulated inside. No substantial further release was noted after 24 h of incubation in ascites 

fluid, demonstrating that eventually about 35% of the siRNA was encapsulated within the 

aqueous core of the liposomes (magenta bars). PEGylation clearly influenced the complexation 

efficiency and release profile of the studied formulations. For DSPE HYDRA-LPXs, only 50% 

of the siRNA is complexed immediately after preparation, suggesting that PEGylation lowers 

the siRNA complexation efficiency (white bars). This 50% of siRNA, however, can be retained 

in the DSPE HYDRA-LPXs for the complete 24 h incubation period and is therefore most likely 

encapsulated inside the liposomes (Figure 2, magenta bars). For the Cer HYDRA-LPXs, the 

effect of PEGylation was even more pronounced, with 75% and 85% of free siRNA (e.g. 

uncomplexed) as such in HEPES buffer for the 5% C8 Cer and 5% C16 Cer HYDRA-LPXs 

respectively. Following 24 h of incubation in ascites fluid, both Cer HYDRA-LPXs resulted in 

around 90% of free siRNA (Figure 2, magenta bars).  

 

Cytotoxicity of the studied formulations 

The toxicity of the formulations was assessed on SKOV-3 human ovarian cancer cells 

using a MTT assay. As can be seen in Figure 3, the formulations did not exhibit any severe 

decrease in the metabolic activity of the cells, with maximum 20% mortality for the highest 

siRNA concentrations of 20 nM. A decrease in the cell viability was observed with increasing 

siRNA concentrations. To stay within the non-toxic range of concentrations, we decided to 

perform uptake and transfection experiments with a final concentration of 15 nM.  
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Cellular Uptake and transfection efficiency of the formulations by SKOV-3 cells 

To evaluate the ability of the different formulations to knockdown the expression of a specific 

gene, SKOV-3 cells stably expressing luciferase were incubated with the formulations 

containing siRNA against luciferase (luc siRNA). To verify the knockdown specificity, luc 

siRNA formulations were compared to the same formulations loaded with a scrambled negative 

control siRNA.  

We have recently proven the importance of performing uptake experiments of formulations 

carrying siRNA in the relevant biofluid [20]. Uptake is a key feature in siRNA delivery, since 

naked siRNA cannot internalize into cells due to its negative charge and hydrophilicity. To test 

whether the formulations are capable of delivering siRNA into cells, we incubated SKOV-3 

cells with fluorescently labeled LPXs and followed their uptake with flow cytometry. The 

outcomes of the uptake experiments shown in Figure 4 indicate that all the formulations are 

internalized into SKOV-3 cells at 37°C when incubated in serum reduced media (i.e. Opti-

MEM®), represented by high percentage of positive cells (Figure 4, white bars). Following 1 h 

of incubation in ascites fluid (Figure 4, grey bars), however, all the formulations completely 

lose their ability to be taken up by cells, except for the DSPE-HYDRA LPXs where cellular 

uptake still occurs. 

 

Figure 5 depicts the transfection efficiency of the studied formulations in Opti-MEM® (white 

bars) and following 1 h of incubation in ascites fluid (grey bars). In Opti-MEM®, it can be seen 

that only DSPE HYDRA-LPXs resulted in a very poor transfection efficiency (37%). All other 

formulations demonstrated high and significant downregulation of 70% for the HYDRA-LPXs, 

73% for the 5% C8 Cer HYDRA-LPXs and 80% for the 5% C16 Cer HYDRA-LPXs. Following 

incubation in ascites fluid, however, all the formulations lost their ability to silence luciferase, 

when compared with the situation in Opti-MEM®. 
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Discussion  

Choice of the study  

The final goal of this study is to assess the suitability of liposomal-based formulations 

loaded with siRNA via the hydration method and possessing different surface modifications in 

undiluted ascites fluid obtained from a peritoneal carcinomatosis patient for siRNA delivery. 

As a follow up of our previous study [3] and towards enhancing the stability of LPXs and 

maximizing their biological activity, we focused on two main aspects: 1) the siRNA loading 

method and 2) the PEGylation strategy. On the level of loading, we used the hydration method 

[18, 35], while on the level of PEGylation we decided to evaluate the stable DSPE-PEG, 

diffusible C8 and C16 Cer-PEG. The different PEG-chains were chosen to understand whether 

Cer-PEGylation can still play a role in preventing aggregation in the extracellular IP fluid, while 

the diffusion of the PEG-chains out of the liposomal formulations upon interaction with 

biological membranes would enhance the cellular uptake and endosomal escape on the 

intracellular level.  In this context, Cer-PEG with shorter C8 acyl chain lipids (C8) seems to be 

best candidates for local intraperitoneal delivery, due to the rapid exchange rate of the Cer-PEG 

from the surface of the liposomes, compared to the longer acyl chains (C20) [39]. Additionally, 

C8 Cer-PEG were successfully exploited to deliver plasmid DNA for regional gene therapy 

[40].  

 

Influence of PEGylation on encapsulation efficiency  

It is of interest to point out the differences between the hydration technique used in this 

study and the widely used complexation technique. With the conventional complexation 

technique, liposomes are prepared by hydrating the lipid film with a buffer solution. Then, 

LPXs are prepared by the simple mixing of siRNA and the preformed liposomes, taking 
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advantage of the electrostatic interactions between the negatively charged siRNA and the 

cationic liposomes. In this case the siRNA binds on the surface of the liposomes, and is not 

encapsulated into the aqueous core. We have previously demonstrated, however, that the 

surface bound siRNA in this classic complexation protocol is easily displaced when the 

liposomes are dispersed in biofluids such as human serum or ascites fluid, especially when 

PEGylated liposomes are used [3].  

We hypothesized that when using the hydration protocol [35], which ensures an even 

distribution of the negatively charged siRNA over the inner and outer core of a cationic lipid, 

the premature release of siRNA in the ascites fluid could be overcome [35]. Indeed, only the 

surface bound siRNA is expected to be released from the LPXs in the biofluids, while the 

siRNA encapsulated in the aqueous core is protected from premature release. Figure 2 

demonstrated that this hypothesis was valid to some extent. We have previously shown that 5% 

DSPE-PEG LPXs prepared with the classic complexation method, release the majority of the 

complexed siRNA immediately after incubation with ascites fluid [3]. For DSPE HYDRA-

LPXs, however, 50% of the siRNA is still encapsulated within the liposomes following 24 h of 

incubation in ascites fluid (Figure 2). This agrees with our assumption that with the hydration 

method, the siRNA within the aqueous core of the liposomes is protected from the external 

environment, and thus the negatively charged proteins (mainly albumin) which compete for 

binding to the liposomes. Also the non-PEGylated HYDRA-LPXs retain about 35-40% of the 

complexed siRNA within the aqueous core after 24 h of incubation in ascites fluid, following 

the initial burst release of the siRNA which is complexed on the surface of the liposomes and 

exposed to the proteins in the ascites fluid. Unfortunately, the high stability of the HYDRA-

LPXs and DSPE HYDRA-LPXs was not observed for the formulations containing C8 and C16 

Cer-PEG chains. Both formulations resulted in the formation of complexes with a low 

complexation efficiency of siRNA. Also, the majority of siRNA that was complexed, is released 



19 
 

almost immediately following incubation in ascites fluid. This rapid and premature release most 

likely stems from a re-organization on the level of the lipid bilayer upon introducing the C8 and 

C16 Cer-PEG chains within the lipid bilayer, resulting in a smaller aqueous core and 

consequently lower complexation efficiency where most of the siRNA is free or attached to the 

surface of the complexes.  

 

Influence of stability on biological activity  

While extracellular stability is one of the major concerns when designing siRNA delivery 

systems, the internalization and intracellular interactions with the different organelles are key 

factors to ensure maximal biological activity. The size and the charge of the studied 

formulations (Table 1) suggest that these complexes can cross biological membranes and 

deliver the siRNA into cells (Figure 4). Also, all PEGylated formulations used in this study 

succeeded in preventing the aggregation of the liposomal formulations for at least 3 hours when 

incubated in ascites fluid (Figure 1). Therefore, each PEGylation strategy seems suitable to 

stabilize the formulations and to assure the presence of nano-sized formulations for a 

sufficiently long time to warrant cellular uptake. Following internalization, endosomal escape 

is essential to ensure delivery of siRNA in the cytoplasm and to induce efficient silencing of 

the target gene [4]. For the HYDRA-LPXs and Cer HYDRA-LPXs, substantial luciferase 

inhibition was observed when the incubation took place in Opti-MEM® (Figure 5, white bars), 

except for the DSPE HYDRA-LPXs formulation. In the case of the HYDRA-LPXs, the cationic 

charge facilitates the interaction and destabilization of the endosomes, leading to fusion and 

eventually release of the siRNA into the cytosol. The fusion is further enhanced when a 

fusogenic “helper lipid” is incorporated within the liposomal formulation, such as DOPE in this 

case. It has been shown that upon acidification of the endosomal compartment DOPE triggers 

a conformational change from the stable lamellar phase into the highly unstable inverted 
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hexagonal phase, which is thought to destabilize the endosomal membrane and release the cargo 

into the cytosol [41] . This conformational transition is not possible in the DSPE HYDRA-

LPXs [42]. This explains the relatively low transfection efficiency of this formulation when 

compared with other formulations (Figure 5).  

When PEGylation is performed with sheddable Cer-PEG instead of stable DSPE-PEG chains, 

it can be seen that both Cer-PEG HYDRA-LPXs result in high transfection efficiency. The 

transfection efficiency of the Cer-PEG formulations is highly likely ascribed to the “de-

PEGylation” that occurs upon interaction of the Cer-PEG formulations with the cell membrane 

[42], and consequently, similar interaction with the endosomes as the one described above for 

the HYDRA-LPXs is expected.  

Since the final goal of this study is to determine the biological activity of the studied 

formulations in a relevant undiluted biofluid, we tested the transfection efficiency of all the 

formulations following incubation in ascites fluid obtained from a peritoneal carcinomatosis 

patient. (Figure 5, grey bars). We are convinced that undiluted ascites fluids better resembles 

the in vivo peritoneal situation, not only in terms of stability, but also biological activity [20].  

The drop in the transfection efficiency observed upon incubation in ascites fluid can be 

discussed on two levels: 1) cellular uptake of the studied formulations and 2) intracellular 

trafficking of the DSPE HYDRA-LPXs specifically following internalization. In particular, the 

HYDRA-LPXs and Cer HYDRA-LPXs are not internalized into SKOV-3 cells following 1 h 

of incubation in ascites fluid (Figure 4). Consequently, the cargo (i.e. siRNA) is not delivered 

into the cytoplasm of the cell where it should be further processed by the RNAi machinery, 

leading eventually to the absence of biological activity depicted in Figure 5.  

Based on the stability data in Figure 1 and Figure 2, DSPE HYDRA-LPXs are protected from 

aggregation in the presence of ascites fluid and are able to keep the siRNA encapsulated for a 

sufficient long time to allow internalization into the cells. Therefore, the poor transfection 
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efficiency observed for the DSPE HYDRA-LPXs is mainly due to the poor interaction with the 

endosomes, as also observed for the transfections in Opti-MEM®. The poor transfection 

efficiency of the DSPE-PEG formulation stands in line with recently published data, where 

DOTAP/cholesterol pDNA LPXs with 2% DSPE-PEG diminished the transfection compared 

to the non-PEGylated LPXs in vitro [43]. Additionally, DOTAP DOPE LPXs loaded with 

survivin siRNA and grafted with 1% DSPE-PEG successfully downregulated the activity of 

survivin in cultured cells, but lost its activity in peritoneal tumors in vivo [33].  

Taken together, the findings of this study provide an evidence of the sensitive interplay that 

exists between extracellular stability, cellular uptake and biological activity when developing 

nano-sized siRNA formulations in protein-rich biological fluids. An optimal formulation 

designated for in vivo applications should fulfill all the requirements of colloidal stability, 

interaction with biological barriers, and intracellular trafficking in the relevant biofluid. One 

should keep in mind that formulations that show good stability and transfection characteristics 

in protein-free conditions such as Opti-MEM®, do not necessarily translate in potent 

formulations when transfections are being performed in the relevant biological fluids. For the 

formulations tested in this study, cellular uptake was the bottleneck for obtaining efficient gene 

knockdown, whereas poor intracellular processing was most probably the reason for the low 

gene knockdown observed with the only formulation taken up by the cells following incubation 

in undiluted ascites fluid (i.e. DSPE HYDRA-LPX).The cellular uptake in this case was not a 

problem, since this formulation exhibited low transfection efficiency (Figure 5) even in protein-

free conditions (i.e. Opti-MEM®), where efficient internalization occurred.  

 

Conclusions  

In this study we tested the stability of different liposomal formulations for i.p. siRNA delivery 

based on the hydration technique and different types of PEGylation in human undiluted ascites 
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fluid, as well as, the transfection efficiency in the SKOV-3 ovarian cancer cell line. We 

hypothesized that liposomes encapsulating siRNA and grafted with Cer-PEG chains would be 

an ideal platform for i.p. siRNA delivery. Nonetheless, our findings revealed that these carriers 

are not taken up by SKOV-3 cells in protein-rich conditions (i.e. ascites fluid). On the contrary, 

liposomes encapsulating siRNA and coated with stable DSPE-PEG are endocytosed by SKOV-

3 cells in protein-rich conditions, but are associated with poor biological activity highly likely 

due to insufficient intracellular processing.   
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