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Abstract. In actual damage detection methods, localization and severity estimation can be 

treated separately. The severity is commonly estimated using fracture mechanics approach, 

with the main disadvantage of involving empirically deduced relations. In this paper, a damage 

severity estimator based on the global stiffness reduction is proposed. This feature is computed 

from the deflections of the intact and damaged beam, respectively. The damage is always 

located where the bending moment achieves maxima. If the damage is positioned elsewhere on 

the beam, its effect becomes lower, because the stress is produced by a diminished bending 

moment. It is shown that the global stiffness reduction produced by a crack is the same for all 

beams with a similar cross-section, regardless of the boundary conditions. One mathematical 

relation indicating the severity and another indicating the effect of removing damage from the 

beam. Measurements on damaged beams with different boundary conditions and cross-sections 

are carried out, and the location and severity are found using the proposed relations. These 

comparisons prove that the proposed approach can be used to accurately compute the severity 

estimator. 

1.  Introduction 

Integrity assessment of structures involving vibration-based techniques has got an increased attention 

in last decades. The core of these techniques is the vibration measurement, which provides information 

in real time regarding the structure’s parameter changes, in this way making possible the detection of 

damage occurrence [1]. In the last few years, many research reports on vibration-based damage 

detection techniques have been published [2-9]. In respect to the geometry and orientation, damages 

can be differently classified. This study is limited to analyze the dynamic behavior of Euler-Bernoulli 

beams with transverse cracks. The rigidity of such beams is clearly diminished by the cracks, and also 

the mass is reduced. Among many past studies, two main crack ranges raised up: open cracks 

assuming the loss of rigidity and mass, and breathing cracks acting just on the rigidity [10].  

In the case of open cracks, no contact between the crack edges is present, thus the vibration 

evolution is considered as linear. In all applications, single degree of freedom (SDOF) models are used 

for these systems. In the case of breathing cracks, the open and the closed stages alternate. The inertial 

forces compress the crack and close it. In the next stage, the forces act in the opposite direction and  

open the crack. This mechanism is known as breathing [11]. Studied papers, see for instance [12] and 

http://creativecommons.org/licenses/by/3.0
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[13], presented the SDOF models as always useful for the beams with breathing cracks and proposed 

bilinear model for nonlinearity. As a consequence, the vibration is considered nonlinear.  

Severity estimation for both damage types is usually performed by means of the fracture mechanics 

approach [14-17]. For each damage geometry, cross-section shape combinations are necessary an 

individual analysis. This paper deals with the limitations of the above-mentioned approaches and 

proposes a new behavioral model that globally characterizes the damaged beam’s dynamic behavior. 

In this model, the modal stored energy is introduced as a measure of the natural frequency and the 

damage severity is found from the decrease of the stored energy due to crack. The energy is evaluated 

from the beam deflection, which indicates an energy loss when it increases. 

2.  Actual models of cracked beams 

It is largely recognized that, for open cracks, the beam rigidity equally decreases in both senses in 

transverse directions, e.g; from k  in the healthy state to k  in the damaged one. Therefore, the 

vibration signal is a sinusoid, having decreased frequency in comparison with that of the original intact 

beam. If the intact and damaged beams are excited with the same amount of energy, a larger deflection 

is expected for the damaged ones. The behavior of a beam with an open crack close to the beam center 

is presented in figure 1. The blue line indicates the deflection achieved by the damaged beam, while 

the dashed line represents the case of the intact beam excited with the same amount of energy.  

 

 

 

 

Figure 1. Maximum elongation of a beam with 

open crack near the center. 

 Figure 2. Maximum elongation of a beam with 

breathing crack near the center. 

 

The behavior of a beam with a breathing crack is described in figure 2. One observes that, for the 

open stage the beam with a breathing crack behaves similar to the beam with an open crack, while in 

the closed stage it behaves like the healthy beam. For both stages, the amplitude is marked with blue 

color, the dashed line again representing the case of the intact beam. As a consequence, for a beam 

with a breathing crack, the stiffness depends on whether or not the crack is closed. In fact, it takes two 

different values, depending on the bending moment’s sign [11]. Usually, the stiffness function ( )k z is 

defined as: 

 
if 0

( )
if 0

C

O

k k z
k z

k k z

 
 

 
 (1) 

where z is the transversal direction. 

The parameter   is called the stiffness ratio and takes values in the range of 0 to 1. For the 

stiffness ratio 1  , the system is linear, else it is stepwise linear. The two states correspond to the 

stages of the breathing mechanism: a) in the closed stage, indicated by index C, the stiffness ratio is 

equal to the unit and b) in the open stage, marked with O, the stiffness ratio is less that 1. Figures 3, 4 

and 5 present the SDOF models of the intact beam, the beam with open crack and closed crack, 

respectively.  
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If involving the stiffness from equation (1) to describe the two distinct stages of breathing, the 

signal displays a half-period 
CT  similar to that of the intact beam, followed by an increased half-period 

OT , for which the decreased rigidity is responsible. Larger amplitude for the open stage is observed. 

 

 

 

 

 

Figure 3. SDOF model for 

the intact beam. With crack 

 Figure 4. SDOF model for the 

beam with an open crack. 
 Figure 5. SDOF model for the 

beam with a breathing crack. 

 

In [12], the solutions for the angular frequencies are: C C /k m   for the closed crack, 

and O O /k m   for the open crack. The frequency D of the bilinear oscillator in free vibration, the 

so-called bilinear frequency, satisfies the condition O D C    , and is derived as: 

 C O
D

C O

2 


 



. (2) 

Apparently, the phenomenon is well-described, but some inadvertencies are observed by a deeper 

analysis [18]. These arise if the analysis is made by means of energetic methods and will be 

demonstrated in the next section.  

3.  Derivation of damage severity 

Given that the law of conservation of energy is valid, the maximum strain energy in the open and 

closed stage is the same. In addition, the kinetic energy at the rest position should also be equal to 

these values. This can be formalized as: 

 O Cmax max max const.TE EP EK EP      (3) 

Where TE is the total energy, OEP and CEP are the strain energy in open and closed stages, 

respectively, and EK is the kinetic energy.  

3.1.  The frequencies of the intact cantilever beam 

For a uniform cantilever beam, the kinetic energy of a given mode i is derived as: 

  
2

0
( , )

2

L

i i

m
EK X x t dx   (4) 

where ( , )iX x t is the velocity of a point located at distance x from the origin (left beam end), m A  

is the distributed mass, E is the Young’s modulus, I is the moment of inertia and t stays for time. If 

( , )iX x t  is the beam deflection in transversal direction, and assuming a sinusoidal displacement law, 

( , )iX x t  can be written as: 

 ( , ) ( ) sin( )i i iX x t x t    (5) 

Here ( )i x  denotes the mode shape at maximum elongation and i  the angular frequency of 

vibration mode i. Thus, the highest kinetic energy at the rest position is given as: 

m 

αk 

k 
z 

m 

αk 

αk 
z 

m 

k 

k 
z 
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    (6) 

The potential energy is:  

  
2

0
( , )

2

L

i i

EI
EP X x t dx   (7) 

Thus, the pick value is obtained for the extreme positions of the beam as: 

  
2

0
max ( )

2

L

i i

EI
EP x dx   (8) 

From equations (6) and (8), the angular frequency is calculated as: 

 
 

 

2

2 0

2

0

( )

( )

L

i

i
L

i

EI x dx

m x dx












 (9) 

It is known that the mode shape for the cantilever beam is: 

  
cos cosh

( ) cosh cos sinh sin
sin sinh

i i
i i i i i

i i

L L
x x x x x

L L

 
    

 


   


 (10) 

and the modal curvature is: 

  2 cos cosh
( ) cosh cos sinh sin

sin sinh

i i
i i i i i i

i i

L L
x x x x x

L L

 
     

 

 
     

 
 (11) 

where is a dimensionless parameter reflecting the boundary conditions. Substituting these 

expressions in equation (9), one obtains the angular frequency of the i-th mode, as: 

 

 

 

2

4

0
2

2

0

cos cosh
cosh cos sinh sin

sin sinh

cos cosh
cosh cos sinh sin

sin sinh

L
i i

i i i i i

i i

i
L

i i
i i i i

i i

L L
EI x x x x dx

L L

L L
m x x x x dx

L L

 
    

 


 
   

 

 
   

 


 
   

 





 (12) 

In [19], it is proved that the functions under the two integrals provide the same result 20.25L , 

where δ is the free end deflection. After substitution and reduction, the angular squared frequency 

becomes: 

 
4

2 40.25

0.25

i
i i

EI L EI

m L m


 


 


 (13) 

Hence, the well-known expression of the natural frequency of a beam for the bending modes is 

obtained as: 

 
2

42 2

i i
i

EI
f

mL

 

 
   (14) 

with / L   derived from the beam’s characteristic equation. For the cantilever, this equation is: 

 cos cosh 1 0     (15) 
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One can easily observe in Eq. (14) that the term under the square is inversely proportional to the 

beam deflection at the free end if only dead weight is acting, i.e.: 

 
4

8

mgL

EI
   (16) 

where g denotes the gravitational acceleration. From equations (14) and (16), the natural frequencies 

in respect to the free end deflection are achieved under dead weight as: 

 
2

2 8 ( )

i
i

g
f

L



 
  (17) 

3.2.  The frequencies of a cantilever beam with a breathing crack 

Let us now consider the cracked beam vibrates, and in open stage, the free end achieves amplitude *  

similar to the deflection of the intact beam under dead weight. Because of energetic equilibrium, a 

smaller amplitude   is achieved in the closed stage. In figure 6, both open and closed states are 

depicted on the same side, in order to permit a facile comparison. The shape in the open state is 

marked with a blue line and that in the closed state with a gray dashed line. Note that the same 

quantity of strain energy is stored in both states since the larger deflection occurs just due to a 

supplementary rotation in a narrow slice subjected to damage. In all other damaged beam slices, the 

same energy is stored as in the intact beam. This is reflected in figure 7 by the squared modal 

curvature. The strain energy for the open and closed stages are both represented with bold blue line, 

the single difference between the two distribution consisting in the small hill present in the slice where 

supplementary rotation is possible. 
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Figure 6. Mode shape of the beam with 

breathing crack in open state (blue line) and 

closed state (gray dashed line) and substituted 

intact beam (gray line). 

 Figure 7. Square of the mode shape curvature 

for the damaged beam in open and closed stage 

(bold line) respectively the surrogate intact 

beam (thin line). 

 

The above presented example shows that stored energy and deflection ratio must be considered in 

the analysis. Now, we can replace the damaged beam with a healthy one with decreased rigidity and 

achieving similar deflection as the damaged in open stage. This will store, according to Castigliano’s 

second theorem, which is applicable to the stepwise linear system under analysis, the same energy as 

the damaged beam. Let this beam, nominated herein as surrogate beam, have the pick deflection *  

and the subsequent rigidity ( )DEI c . It is worth to mention that the distributed mass m  is maintained 

  

*  
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similar with that of the intact original beam. Also, the surrogate rigidity ( )DEI c  is influenced by the 

damage position c; the closer the damage to the fixed end, the lower the surrogate rigidity is.  

The squared modal curvature for the surrogate beam, represented in figure 7 with thin blue line, 

achieves larger amplitude as the damaged beam in closed stage, due to the decreased rigidity. The ratio 

is defined by deflections *  and  , their values being deductible from equation (19). 

The rigidity ( )DEI c  is derived from the deflections of the original and surrogate beams at the free 

end, which are: 

 
4 4

* and
8 ( ) 8D

mgL mgL

EI c EI
    (18) 

thus 

 
*

( )DEI c EI



  (19) 

For the intact and surrogate beam, respectively, the angular frequencies i and i D   are 

deductible from: 

    
 

 

2

2 0

2

0

( )

( )

L

i

i
L

i

EI x dx EI

m
m x dx







 




           and         

 

 

2

2 0

2

0

( ) ( ) ( )

( )

L

D i D
D

i D
L

i D

EI c x dx EI c

m
m x dz













 




    (20) 

Hence, the frequency of a cracked beam in closed state is 

 
*

( )D
i D i i

EI c
f f f

EI




    (21) 

and the dimensionless frequency is 

 
*

i D
i D

i

f
f

f






    (22) 

The deflection ratio, * 1r     , presented in equations (21) and (22) merits a special remark. 

Since just the inertial forces act on the beams and no large deflections occur (introducing 

nonlinearities), this ratio depends only on the damage position c and its depth a.  

Now, we change the initial condition. The analysis is made for the free end of the cracked beam 

removed with a distance   in such a way that the crack closes. By releasing the free end, the beam 

vibrates, in the opposite position achieving a larger deflection * . The case becomes similar with that 

of the closed crack presented in subsection 3.2. The same surrogate beam results, and the same 

frequency as indicated in equations (21) and (22) are obtained. 

3.3.  Some considerations regarding the vibration of cracked beams 

A conclusion from this study is that the two half-periods TO and TC are identical for the free vibration 

of beams subjected to breathing cracks. Also, it results that the frequency of the damaged beam can be 

found involving equation (21), basing on the intact beam frequency and the beam deflection in intact 

respectively damaged state.  

If a given damage is located in a slice where the curvature achieves maxima, i.e. the fixed end for 

the cantilever beam, the lowest value for ratio r is achieved. Here, the lowest deflection ratio and 
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surrogate rigidity are achieved. This beam is nominated herein as equivalent beam and the rigidity as 

equivalent rigidity eqEI .  

For a beam with an open crack, the damage expansion on the longitudinal axis increases the 

deflection due to the weak segment between the crack edges. This has as a consequence an additional 

frequency decrease in comparison with that produced by a breathing crack with a similar depth. The 

frequency is still deductible from equation (21).   

Because the mode shapes and modal curvatures are reduced in equation (20), the equation (21) can 

be used for deriving the frequencies for damaged beams with other boundary conditions. Obviously, 

the intact beam’s frequencies for the given boundary conditions must be involved.  

4.  A simple damage severity estimator 

As shown in previous section, the damage depth is one of the parameters affecting the natural 

frequencies. The second parameter is the damage position. Let us firstly consider the damage at the 

fixed end, and take as variable the damage depth a. In open stage, the deflection at the free end is 

O (0, )a , where 0  indicates the damage location, i.e. 0c  , and /a a h  is the dimensionless 

damage depth. If the deflection of the intact beam is  , the frequency shift for a beam with rigidity 

decrease can be calculated as: 

 
2 2 2

O O

8 8 8 8

2 2 (0, ) 2 (0, )

i i i
i D i i Df f f

g g a g g a

  

      
 

 
        

 

 (23) 

Hence, the relative frequency shift, obtained by normalizing the frequency of the intact beam if , 

becomes: 

 

2

O O

2

O

8 8

2 (0, ) (0, )
(0, )

8 (0, )

2

i

i i D
i D

i i

g g a af f
f a

f a

g



    


 

 




 
     

      (24) 

The absolute damage severity (0, )a  indicates the biggest effect, which a given damage can 

produce on the cantilever beam, being valid for all bending vibration modes. It can be simply 

calculated from the deflection of the beam with a breathing crack in intact and damaged state. Based 

on this damage evaluator, the frequency of a damaged beam with a breathing crack at the fixed end 

can be found as:  

  
(0, ) ( )

1 1 ( )
(0, )

O
i D i i i D i i

O

a L
f f f f f f a

a

 



 

 
       

  

 (25) 

Let us now consider the crack located elsewhere on the beam, for instance at normalized distance 

/c c L  from the fixed end. Obviously, the deflection of the damaged beam will be smaller. We take 

now advantage of introducing the surrogate beam. This is concretized in distributing the real rigidity 

decrease of one beam element onto all elements, as depicted in figure 8 for the second vibration mode. 

In figure 8.a, the element near the fixed end has a reduced rigidity due to the crack. If this is located on 

another element, the effect will be decreased in function of the energy stored in that element, thus in 

respect to 
2

( )i c 
  . In this way, the effect of damage location upon the severity is introduced. Now, 

we can write the damage severity as: 

 
2

( , ) (0, ) ( )ic a a c        (26) 
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Figure 8. Normalized square of the modal curvature corresponding to bending vibration mode two: 

(a) damaged beam; (b) equivalent beam. 

The natural frequency of a beam with a breathing crack with depth a  and position c  is 

   2
1 ( ) ( )i D i if f a c 

    (28) 

This simple mathematical relation can be used to develop damage scenarios in order to create 

databases usable in damage detection procedures. For open cracks, in case of a fine tuning, the mass 

loss should also be taken into consideration [20].  

5.  Numerical examples 

The robustness of the proposed damage severity indicator was proved by numerical experiments on 

steel beams with length 600mmL   and three different cross-sections shapes: square, hexagonal and 

circular. The cross-section dimensions were chosen as following: the square edges 12mmSh  , the 

circle diameter 12mmd   and the distance between the parallel sides of the hexagon 12mmHh  . All 

simulations were made by means of the ANSYS package, the mechanical characteristics being that of 

the structural steel from the dedicated library. The medium size of the tetrahedral elements, used for 

meshing, was fixed to 0.5mm. 

The damage, in form of a breathing crack, was positioned near the fixed end. Several crack depths 

were used in the simulations. First a static analysis in order to find the deflections was performed. 

Afterward, the modal analysis was used to find out the natural frequencies. The achieved results are 

presented separately for each cross-section shape in tables 1 to 3. Percentile error was contrived, to 

evaluate the damage severity precision. 

 

Table 1. Results achieved for the hexagonal beam. The absolute damage severity 

and the relative frequency shift are indicated together with the contrived error.  

a  

[mm] 

δO 

[mm] 

γ 

[%] 

f1 

[Hz] 

RFS 

[%] 

Error 

[%] 

0 0.62271 0 24.82598 0 0 

1 0.62572 0.240813 24.76592 0.241942 0.466644 

2 0.63387 0.884216 24.60571 0.887279 0.345255 

3 0.64781 1.956435 24.33850 1.963586 0.364182 

4 0.66976 3.576406 23.93435 3.591538 0.42134 

5 0.70426 5.967841 23.33672 5.998789 0.515904 

6 0.76214 9.608927 22.42499 9.671274 0.644665 
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Table 2. Results achieved for the circular beam. The absolute damage severity 

and the relative frequency shift are indicated together with the contrived error.  

a  

[mm] 

δO 

[mm] 

γ 

[%] 

f1 

[Hz] 

RFS 

[%] 

Error 

[%] 

0 0.69271 0 23.53858 0 0 

1 0.69431 0.115289 23.51134 0.115736 0.386 

2 0.70192 0.658224 23.38283 0.661669 0.520 

3 0.71569 1.618542 23.15626 1.624223 0.349 

4 0.73936 3.206153 22.78038 3.221107 0.464 

5 0.77817 5.650743 22.20134 5.681056 0.533 

6 0.84435 9.423721 21.30601 9.484736 0.643 

 

Table 3. Results achieved for the prismatic beam. The absolute damage severity 

and the relative frequency shift are indicated together with the contrived error.  

a  

[mm] 

δO 

[mm] 

γ 

[%] 

f1 

[Hz] 

RFS 

[%] 

Error 

[%] 

0 0.51890 0 27.19549 0 0 

1 0.52218 0.314563 27.10972 0.315372 0.256585 

2 0.53077 1.124509 26.88894 1.127184 0.237287 

3 0.54527 2.448032 26.52740 2.456623 0.349687 

4 0.56779 4.402185 25.99316 4.421045 0.426585 

5 0.60257 7.202114 25.22600 7.241957 0.550169 

6 0.65810 11.20349 24.12754 11.28109 0.687906 

 

To calculate the damage severity, the equation (24) was used, where the input terms are the beam 

deflections. Also equation (24) is used to find the relative frequency shifts, herein the input data 

consists of the first natural frequencies of the beams.  
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Figure 9. Damage severity and the relative frequency shift for damage depth evolution. 

 

The curves plotted in figure 9 present good similarity with that presented in the literature, see [14-

17]. Even more significant is the extremely low error level found between the damage severity and 

relative frequency shifts. As it was calculated in percentage, the values are indicated in the last column 

of tables 1 to 3. One can observe that the errors are less than 1%, meaning that the proposed relation to 

contrive the damage severity is reliable. This can be also concluded from figure 9, where the perfect fit 

between the compared values is observable. 
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6.  Conclusion 

This paper introduces a robust damage severity evaluator that predicts the frequency decrease occurred 

in a cantilever beam due to a breathing crack. It can be simply calculated using the deflections 

produced by the dead mass to the intact beam and the beam with a crack in the open state respectively. 

This introduces the important advantage that evaluator can be used for any cross-section shape. A 

particular case of this feature is the absolute damage severity, which is derived for the crack located in 

a slice where the bending moment achieves maxima. Thus, it indicates the biggest effect, which a 

given damage can produce on the frequencies, and it is unique for all bending vibration modes. In 

contrary, the damage severity takes, for a given crack, different values in respect to the position on the 

beam and the vibration mode number. The ratio between the damage severity and the absolute damage 

severity is actually the normalized squared modal curvature of the intact beam at the crack location. 

An important conclusion resulted from this study, which permits a correct interpretation of the 

vibration of beams with breathing cracks, is that the two half-periods TO and TC are identical. This 

happens because the frequencies are proportional to the stored energy which is the same in the open 

and closed stage. Therefore, the estimator can be involved for a beam with an open crack as well. The 

single difference here is the damage expansion on the longitudinal axis, producing an increased 

deflection due to the weak segment between the crack edges. This has as result an additional 

frequency decrease in comparison with that produced by a breathing crack with similar depth; it is 

proportional to the deflection increase. In the mathematical relations used to calculate the deflection 

for different boundary conditions just the numerical value is different. Thus, the deflection ratio r is 

identical for beams with any support type, because this value is reduced in the ratio. As a consequence, 

the deflection ratio r for the cantilever beam can be used for any beam configuration. It is the most 

convenient case, since here the largest deflections are expected and so reduced errors are presumed. 

Remarkable is the fact that the absolute damage severity estimator permits predicting the frequencies 

of the damaged beam by involving only the intact beam frequency and the damage depth and its 

location (in order to calculate the normalized square of the modal curvature for the intact beam). This 

means that the frequency for damaged beams with any boundary conditions is derivable knowing the 

crack location and depth.  
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