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Abstract
High speed rotating machinery, with an operating speed above the first c ritical s peed o r a bove t he first 
resonance frequency, is sensitive to instability. In this research, the robustness of an experimental procedure 
to predict the stability threshold speed in rotating machinery is discussed. The single degree of freedom 
model that is used in the experiments is discussed and the procedure is experimentally validated on a rotating 
damping setup. In this setup, the rotating damping is varied by means of tightening and loosening a flexible 
coupling. It is shown that it is possible to predict the stability threshold speed experimentally and that the 
rotor becomes unstable above this speed.

1 Introduction

Rotating damping instability is a phenomenon caused by internal damping in rotors that operate above the 
first critical speed or above the first resonance fr equeny. Since this type of instability was reported in 1924 
by Kimball [1], as a potential source of instabilities in high speed rotating machinery it has always been 
a design concern. Although hydrodynamic bearing instability, such as oil whirl and whip [2], was more 
important in those days rotating damping is still a major concern in the design phase of rotors. This is mainly 
because instability or self-excited vibration may not always be diagnosed as the main cause for breakdown 
or failure, but it is a root cause in many cases [3]. Especially under the influence of the aerospace industry, 
rotating damping research became more important [4,5]. In the 70s, stability problems caused by Space 
Shuttle main engines were a direct cause for a boost in the research efforts on rotating damping [6]. More 
recently, important contributions are reported toward the rotating damping instability with some 
experimental techniques. In [7] the potential of shrink fits to cause instability is described, in [8] the 
behaviour of shaft material and in [9,10] the influence on the frequency response functions [11,12]. 
However, there are some major problems in the experimental prediction of rotating damping. Rotating 
damping is not only a speed dependent phenomenon, causing speed dependent poles in the system, but 
it also results in asymmetric system matrices. Both the speed dependency and the asymmetry have a major 
influence on the experimental procedures. In a[13], the author proposes a procedure to estimate the decay 
rate of a rotor by measuring on a single location . By doing this, the stability threshold speed, or the speed at 
which the rotor becomes unstable, can be predicted experimentally. In this research, the robustness of the 
experimental method is tested. The rotating damping in a setup is changed by tightening and loosening a 
flexible c oupling. Consequently, the friction between the coupling and the shaft is changed which results 
in a different rotating damping. It is shown that, for three situations, it is possible to predict the stability 
threshold speed. In section two, the single degree of freedom equivalent model used in the experimental 
procedure is discussed. Chapter three describes the rotating damping setup. In chapter four, the 
measurement procedure and the results are reported and discussed and the conclusions are summarized in 
section five.
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2 The single degree of freedom equivalent

The experimental procedure that is validated in this research is described in [13]. In the following section,
this procedure is described. First, the linear speed dependent model is derived which is decoupled into
modal parameters. Because of the energy exhibited by rotatging damping a single degree of freedom model
is proposed. This equivalent model is useful in an experimental procedure.

2.1 The linear speed dependent model

The class of rotating machinery discussed in this research are machines that show lateral flexibility within
the operating conditions. The equations of motion contain a mass matrix M, a damping matrix C, and a
stiffness matrix K. Due to rotation, some of these properties change periodically in time resulting in time
dependent matrices [14].

M(t)q̈ + C(t)q̇ + K(t)q = f(t), q(t), f(t) ∈ Rn (1)

with n, the degrees of freedom. The vector of generalized coordinates, q is

q =
[
uxi φyi uxi+1 φyi+1 . . . uyi φxi uyi+1 φxi+1 . . .

]ᵀ (2)

with uxi translation in the x-direction, uyi translation in the y-direction, φyi rotation around the x-axis and
φxi rotation around the y-axis. In case of isotropic rotating elements, which accounts for the majority of
rotating machinery, the time dependency can be narrowed down to a dependency upon the operating speed
Ω

M(Ω)q̈ + C(Ω)q̇ + K(Ω)q = f, q(t), f ∈ Rn (3)

The most important effects that cause dependency upon the operating speed are the gyroscopic effect and the
rotating damping. Both effects cause an asymmetry in the system, which can be written as

[
M 0
0 M

]
q̈ +

([
Cn + Cr 0

0 Cn + Cr

]
+ Ω

[
0 G

-G 0

])
q̇+([

K 0
0 K

]
+ Ω

[
0 Cr

-Cr 0

])
q = f (4)

with G and Cr respectively the gyroscopic matrix and the rotating damping matrix and Cn the non-rotating
damping matrix. Due to the choice of the generalized coordinates in equation (2), both the gyroscopic effect
and the rotating damping cause a coupling between the x- and y-coordinates.

2.2 Decoupling of the linear speed dependent model

By taking into account equation (2) and (4), the equations of motion can also be written as

{
Mxq̈x + (Cnx + Crx) q̇x + ΩGyq̇y + Kxqx + ΩCryqy = fx
Myq̈y + (Cny + Cry) q̇y − ΩGxq̇x + Kyqy − ΩCrxqx = fy

(5)
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The advantage of this equation is that all matrices are symmetric. The mass, damping and stiffness matrices
are half the size as in (4) and the coupling is achieved by the generalized coordinates qx and qy which
correspond to the x- and y-coordinates in (2). Because, in stability analysis, the behaviour of the poles
is important, it is interesting to describe the system in a single mode. Suppose that X is an undamped
eigenvector of the first equation. These eigenvectors can be used to pre- and postmultiply the equations in
(5)

{
XᵀMxXq̈x + Xᵀ (Cnx + Crx) Xq̇x + ΩXᵀGyXq̇y + XᵀKxXqx + ΩXᵀCryXqy = XᵀfxX
XᵀMyXq̈y + Xᵀ (Cny + Cry) Xq̇y − ΩXᵀGxXq̇x + XᵀKyXqy − ΩXᵀCrxXqx = XᵀfyX

(6)

In case of light damping and an axisymmetrical system, the behaviour is described by

{
m̂ẍ+ (ĉn + ĉr)ẋ+ Ω ĝẏ + kx̂+ Ω ĉry = f̂x

m̂ÿ + (ĉn + ĉr)ẏ − Ω ĝẋ+ k̂y − Ω ĉrx = f̂y
(7)

ˆ(•) means that these are modal parameters. m̂ and k̂ are the modal mass and stiffness, ĝ is the gyroscopic
effect, ĉn and ĉr respectively representing the modal nonrotating and rotating damping and Ω the rotating
speed. This system can be solved by assuming a harmonic solution of a free damped forward mode

x = reσt cos(ωt) ; y = reσt sin(ωt) (8)

with σ the decay rate and ω the critical speed. Two new equations are derived by separating sine and cosine:

{
m̂
(
σ2 − ω2

)
+ (ĉn + ĉr)σ − Ω ĝω + k̂ = 0

2m̂ωσ + (ĉn + ĉr)ω − Ωgσ − Ω ĉr = 0
(9)

From the second equation σ is derived

σ =
Ω ĉr − (ĉn + ĉr)ω

2mω − Ω ĝ
(10)

This equation represents the decay rate of a single mode. In absence of the gyroscopic effect, ω is indepen-
dent of the operating speed and ĝ is zero. Therefore, the decay rate is an increasing straight line. At standstill
σ is negative and it becomes positive at the stability threshold speed.

2.3 The energy of rotating damping

Although rotating damping appears as a stiffness term, the asymmetry has a particular effect on the energy
distribution in the system. The force caused by rotating damping acts as a nonconservative force and causes
a dissipation of energy. The work done by the displacement term or apparent stiffness term of the rotating
damping is expressed as [3][15]

dw = −Ω

[
0 cr
−cr 0

]{
x
y

}{
dx dy

}
= Ω (−crydx+ crxdy) ≡ fxdx+ fydy

∴
∂fx
∂y

= −Ωcr and
∂fy
∂x

= Ωcr (11)
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Because ∂fx/∂y 6= ∂fy/∂x, dw is no exact differential, leading to a nonconservative force. This means
that the rotating damping appearing as a stiffness term actually dissipates energy. Together with the regular
damping, the sum of the nonconservative forces, P , of the rotating system can be written as

{
Px
Py

}
= −

[
cn + cr 0

0 cn + cr

]{
ẋ
ẏ

}
− Ω

[
0 cr
−cr 0

]{
x
y

}
(12)

If the rotor is operated at a speed Ω and whirling at ω, the expression of the whirling is a harmonic motion
in x and y direction, x = X sin(ωt+ φx) and y = Y sin(ωt+ φy). The energy per cycle that is exchanged
due to these forces can be expressed as

Ecyc =

∮
Pxdx+ Pydy =

2π/ω∫
0

(Pxẋdt+ Pyẏdt) (13)

or

Ecyc = −π
[
ω (cn + cr)

(
X2 + Y 2

)
− 2ΩXY sin (φx − φy)

]
(14)

This expression proofs that the appearance of rotating damping can lead to a positive energy per cycle or
instablity. Whenever the whirling ω occurs in the same direction as the rotation Ω, which is called a forward
mode, sin(φx − φy) > 0. As Ω increases the influence of the second term in (14) is growing and instability
can occur. For backward modes, sin(φx − φy) < 0, the effect of the second term is always stabilizing.

2.4 The single degree of freedom model

The rotating damping, appearing as both a damping and a stiffness term entirely acts as a nonconservative
force. Therefore, this physically is an apparent damping. Similarly, the gyroscopic effect is a conservative
force, or an apparent mass. Combining these conclusions leads to an equivalent single degree of freedom
model

(m̂− Ω ĝ2) ẍ+ (ĉ1 − Ω ĉ2)ẋ+ k̂x = 0 (15)

in which the damping decreases as a function of the rotating speed. By proposing a harmonic solution

x = reσt cos(ωt) (16)

this leads to

{
−ĉ2Ωσ + m̂(σ2 − ω2)− Ω ĝ2(σ2 − ω2) + ĉ1σ + k̂ = 0

(2m̂ω − 2Ω ĝ2ω)σ + ĉ1ω + Ω − ĉ2ω = 0
(17)

and σ
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σ =
Ω ĉ2ω − ĉ1ω

2m̂ω − 2Ω ĝω
(18)

by comparing (7) and (15), ĉ1 and ĉ2 are

ĉ1 = ĉn + ĉr (19)

ĉ2 =
ĉr
ω

(20)

ĝ2 =
ĝ

2ω
(21)

This equivalent system is convenient for the measurements. Classical techniques allow to estimate the pa-
rameters of this single degree of freedom model. The resulting model proofs that a simplified procedure can 
be used to estimate the stability threshold speed.

3 The rotating damping setup

The rotating damping setup has already been used in [13,16,17]. The key concept is a rotating shaft that is 
placed on bearings which are stiff in translation and rotation. The parts and properties are shown in Table 1. 
A schematic representation and a picture is shown in Figure 1 and 2. The shaft is excited during operation 
by means of an impact hammer and the response is measured by eddy current probes at different discrete 
rotating speeds. From these measurements, an approximation of the frequency response is made and used to 
estimate the poles. In this research, the main purpose is to change the rotating damping without changing 
the other properties of the rotor. The solution is found in the flexible c oupling. By s lightly adjusting the 
clearance in the left bearing, some tolerance is added to the coupling. By tightening or loosening of the 
screw, that fixes the coupling, the friction between the coupling and the shaft is altered.

Figure 1: Schematic representation of the rotating damping setup

Figure 2: Picture of the rotating damping setup
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Part Type/properties
Shaft Steel CF 53 - ∅ 0.01m - length 1.115 m
Disk Aluminium - ∅ 0.15m - thickness 0.015 m
Bearings FAG B7000-E-2RSD-T-P4S-UL - back to back - two at each side
Coupling KTR-ROTEX 19
Motor Siemens 1FK7042-5AK71-1UG0
EC probe Monitran MTN/EP200
Impact hammer Dytran 5800B2T

Table 1: Parts and properties of the rotating damping setup

4 Measurements

By exciting the shaft with the automated impact hammer and measuring the resulting displacement with
the eddy current probes, a frequency response function is measured. This is performed at several operat-
ing speeds and in the three different situations of the coupling. The poles are extracted with a half power
bandwidth method.

4.1 Measurement procedure

Figure 3 describes the measurement procedure that is used. At first the rotor is operated at a low speed.
Standstill is not used because in practise, there is a small difference between the dynamic behaviour of the
rotor at standstill and at a certain low speed. This effect is mainly caused by the motor. Second, the rotor is
operated at an operating speed below the critical speed. At this operating speed, the rotor is stable and safe
conditions are guaranteed. Consequently, by focussing on the first peak, the poles are extracted (Figure 4)
and the decay rate plot is constructed. By gradually increasing the operating speed and keep monitoring the
decay rate, a decay rate plot is obtained and the stability threshold speed is predicted.

Figure 3: Flowchart of the measurement procedure
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Figure 4: Approximation of the FRF by a single degree of freedom system

4.2 Results

The results for the decay rates are shown in Table 2 and plotted in Figure 5. On the graph, a linear fit is
made for the low, medium and high damping. The measured critical speed occurs at 1056 rpm. As expected,
the predicted stability threshold speed for the high damping is the lowest, 2430 rpm. The medium damping
leads to 2647 rpm and the low damping leads to 5143 rpm. It is seen that there is some difference between
the actual decay rates and the linear fit. This is mainly caused due unavoidable errors in the measurement.
However, the predicted stability threshold speed can be validated. By increasing the speed until the stability
threshold speed and monitoring the displacement, unstable behaviour can be detected. In Figure 6-8 the
resulting instabilities are shown for low, medium and high damping. For each graph it is seen that there is a
gradual increase of the magnitude. The measurement was stopped when the magnitude became to high and
touched the chassis. It is seen that the dominant period equals 0.057s, which corresponds to 17,54 Hz or
1052 rpm, which is close the first critical speed. For the high damping, the rotor becomes unstable at 2400
rpm, slightly lower then the predicted stability threshold speed. For the medium and the low damping this
is respectively 2600 rpm and 5100 rpm, also slightly lower. This small deviation (< 2%) is caused by the
slight errors on the decay rates.

Soft Medium Hard
rpm decay rate rpm decay rate rpm decay rate
100 -1,7 100 -1,375 100 -1,4
700 -1,15 700 -0,945 800 -0,93

1900 -0,4 1000 -0,8 2000 -0,65
1900 -0,425 4000 -0,36
2000 -0,22
2300 -0,27

Table 2: Resulting decay rates at different operating speeds and low, medium and high damping
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Figure 5: Comparison of the measured decay rate plot between low, medium and high damping

Figure 6: Unstable behaviour of the shaft for high damping at an operating speed of 2400 rpm

984 PROCEEDINGS OF ISMA2016 INCLUDING USD2016



Figure 7: Unstable behaviour of the shaft for medium damping at an operating speed of 2600 rpm

Figure 8: Unstable behaviour of the shaft for low damping at an operating speed of 5100 rpm

5 Conclusion

The present study was designed to determine the robustness of a procedure to predict the stability threshold
speed in rotating machinery. The experimental procedure, described in a previous study, was tested for differ-
ent values of rotating damping. It was expected that, for high rotating damping, the stability threshold speed
would be low and for high rotating damping, it would be high.For three different situations: low, medium
and high damping, the decay rate plot was extracted from measurements. The resulting plots confirm the
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hypothesis as the high damping leads to the lowest predicted stability threshold speed and the low damping
leads to the highest. By operating the rotor near this predicted stability threshold speed, it is shown that the
rotor actually becomes unstable. From the decay rate plots it can be seen that the prediction of the stability
threshold speed is highly dependent upon the errors on the decay rates at the different operating speeds.
Future research might explore the possibility to increase the reliability of these measurements which would
lead to an even higher accuracy of the predicted stability threshold speed.

References

[1] A. L. Kimball. Internal friction theory of shaft whirling. General Electric Review, 27:224–251, 1924.

[2] B. L. Newkirk, H. D. Taylor. Shaft whipping due to oil action in journal bearings. General Electric 
Review, 28(8):559–568, 1925.

[3] M. L. Adams. Rotating machinery vibration: from analysis to troubleshooting. CRC Press/Taylor & 
Francis, 2009.

[4] F. F. Ehrich. Shaft Whirl Induced by Rotor Internal Damping. Journal of Applied Mechanics, 31:279, 
1964.

[5] E. J. Gunter, P. R. Trumpler. The Influence of Internal Friction on the Stability of High Speed 
Rotors With Anisotropic Supports. Journal of Engineering for Industry, 91(4):1105, nov 1969.

[6] D. W. Childs. The Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability 
Problem. Journal of Engineering for Power, 100(1):48, jan 1978.

[7] M. A. Kandil. On Rotor Internal Damping Instability. PhD thesis, Imperial College London, 2004.

[8] S. M. M. Jafri. Shrink fit effects on rotordynamic stability: Experimental and theoretical study. PhD 
thesis, Texas A&M University, 2007.

[9] E. Chatelet, O. Montagnier, G. Jacquet-richardet. Dynamic Instability Analysis of Internally 
Damped Rotors. In Proceedings of GT2007, number 1, pages 1–10, 2007.

[10] O. Montagnier, C. Hochard. Dynamic instability of supercritical driveshafts mounted on dissi-
pative supportsEffects of viscous and hysteretic internal damping. Journal of Sound and Vibration, 
305(3):378–400, aug 2007.

[11] M. Chouksey, S. V.  Modak, J. K. Dutt. Influence of rotor-shaft material damping on modal and 
directional frequency response characteristics. In Proceedings of ISMA 2010, pages 1543–1558, 2010.

[12] M. Chouksey, J.K. Dutt, S.V. Modak. Modal analysis of rotor-shaft system under the influence of 
rotor-shaft material damping and fluid film forces. Mechanism and Machine Theory, 48:81–93, feb 
2012.

[13] B. Vervisch, S. Derammelaere, K. Stockman, P. De Baets, M. Loccufier. On the experimental 
prediction of the stability threshold speed caused by rotating damping. Journal of Sound and Vibration, 
375:63–75, aug 2016.

[14] I. Bucher, D. J. Ewins. Modal analysis and testing of rotating structures. Philosophical Transactions of 
the Royal Society A: Mathematical, Physical and Engineering Sciences, 359(1778):61–96, jan 2001.

[15] M. L. Adams, J. Padovan. Insights into linearized rotor dynamics. Journal of Sound and Vibration, 
76(1):129–142, 1981. 

986 PROCEEDINGS OF ISMA2016 INCLUDING USD2016



[16] B. Vervisch, S. Derammelaere, K. Stockman, M. Loccufier. Frequency response functions and 
modal parameters of a rotating system exhibiting rotating damping. In Proceedings of ISMA 2014 - In-
ternational Conference on Noise and Vibration Engineering and USD 2014 - International Conference 
on Uncertainty in Structural Dynamics, pages 2837–2850, 2014.

[17] B. Vervisch, K. Stockman, M. Loccufier. Experimental Validation of Modal Parameters in Rotating 
Machinery. In IMAC XXXIII conference, volume 6, pages 171–178, 2015.

DYNAMICS OF ROTATING MACHINERY 987


