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Rising healthcare costs and an aging population are placing ever higher stress and demands on 

European healthcare systems. As the surgery department is one of the largest cost categories in 

hospitals (estimated as high as 40%; Macario et al, 1995), it is a frequent target in the search for 

efficiency gains. Creating robust schedules is a key component here, as the planning for elective 

(scheduled) patients is often disarrayed once emergency patients arrive. 

To address the problem of operating room scheduling, we expand on the Break-In-Moment (BIM) 

problem first proposed in Essen et al, 2011. It relates to a common procedure in hospitals: as all 

operating rooms are often being utilized when emergency patients arrive, they must be treated in 

the first room that becomes available after the emergency patients arrives; “breaking into” the 

elective schedule. Each surgery end time is thus a potential break-in-moment (BIM), and the distance 

between two consecutive end times is referred to as the break-in-interval (BII). 

As time is of the essence for emergency patients, it makes sense to spread these BIMs over the 

schedule in such a way as to minimize their expected waiting time. In the case where arrivals are 

time-independent, this means seeking to spread the BIMs as uniformly as possible. This leads to the 

basic BIM problem statement: how should one schedule a certain set of surgeries, so that the 

maximum BII in the schedule is minimized. 

Previous work focused on a deterministic ILP formulation of the problem and proposed a variety of 

heuristics and local search methods; a validation of these results in a stochastic environment (with 

uncertain surgery times) was also shown. In contrast, we fully reformulate the problem in stochastic 

terms (yielding the Stochastic BIM problem; SBIM), taking into account the uncertainty of surgery 

times from the start. This increases the complexity of the problem, but it also makes it more robust 

by analyzing a variety of scenarios. As surgery times tend to show significant variance (often 

following lognormal distributions), this can be a strong advantage. 

To solve the computationally more involved SBIM, we employ the Sample Average Approximation 

(SAA), a two-stage optimization technique. Rather than drawing a large amount of samples from 

distributions of surgery lengths and solving to optimality for this large set (infeasible in our case), SAA 

first solves M smaller replications of the problem, and then estimates the true optimal solution based 

on the M candidate solutions. 

In addition, we propose heuristics to solve the SBIM problem in an acceptable timeframe. 


