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Recent advances in transportation geography demonstrate the ability to compute a metropolitan scale metric of
social interaction opportunities based on the time-geographic concept of joint accessibility. The method we put
forward in this article decomposes the social interaction potential (SIP) metric into interactions within and be-
tween social groups, such as people of different race, income level, and occupation. This provides a novel metric
of exposure, one of the fundamental spatial dimensions of segregation. In particular, the SIP metric is disaggre-
gated into measures of inter-group and intra-group exposure. While activity spaces have been used to measure
exposure in the geographic literature, these approaches do not adequately represent the dynamic nature of the
target populations. We make the next step by representing both the source and target population groups by
space–time prisms, thusmore accurately representing spatial and temporal dynamics and constraints. Addition-
ally, decomposition of the SIPmetricmeans that each of the group-wise components of the SIPmetric can be rep-
resented at zones of residence, workplace, and specific origin–destination pairs. Consequently, the spatial
variation in segregation can be explored and hotspots of segregation and integration potential can be identified.
The proposed approach is demonstrated for synthetic cities with different population distributions and daily
commute flow characteristics, as well as for a case study of the Detroit–Warren–Livonia MSA.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Residential segregation refers to the sorted patterning of population
groups into different neighborhoods, and measures of segregation
attempt to quantify the degree of separation between two ormore pop-
ulation groups (Massey and Denton, 1988). Decades of research have
shown that residential segregation is associatedwith spatial inequalities
in service provision causing racial disparities in health (Williams and
Collins, 2001), economic outcomes (Massey et al., 1987), educational
achievement of youth (Card and Rothstein, 2006), and spatialmismatch
between the locations of low-wage workers and employment opportu-
nities (Kain, 1968). Measuring the degree to whichminority groups are
concentrated in their own neighbourhoods (i.e. ghettoization) is an ap-
propriate way to quantify segregation if the research goal is to identify
the existence of segregation or to determine whether it is statistically
associated with socioeconomic and health inequalities. For this reason,
the Duncan Dissimilarity Index (DI) was the most commonly applied
method for measuring racial segregation for many decades (Duncan &
Duncan, 1955). The DI is interpreted as the percentage of the minority
), okelly.1@osu.edu
ugent.be (T. Neutens).

. This is an open access article under
population that would need to relocate in order to perfectly integrate
the residential distributions in a region. In addition to individual or
neighbourhood level outcomes, segregation is also theorized to be asso-
ciated with societal outcomes of the region like social cohesion (Tumin,
1953; Wilkinson, 2002). Defined as the degree to which different
members of society work together for their common good (OECD,
2011), social cohesion depends on bridging network relations across
social groups, requiring the existence of opportunities for communi-
cation and social interaction (Forrest and Kearns, 2001). Notwith-
standing the societal implications of bridging social interactions,
social networks may also be of interest for their production of social
capital (Coleman, 1988). In either case, exposure has evolved as a di-
mension of segregation that is better suited to the measurement of
interaction opportunities.

Following a decade of heightened criticism of the DI and the de-
velopment of more than 20 new segregation indices, Massey and
Denton (1988) determined that segregation could be explained by
a set of five principal dimensions: evenness, exposure, concentra-
tion, centralization and clustering. Of these, we highlight the partic-
ular salience of exposure in this research. It “refers to the degree of
potential contact, or the possibility of interaction, between minority
and majority group members within geographic areas of a city”
(Massey and Denton, 1988, 278).
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 Palmer computes a proximity index using a sample of GPS trajectories. The index is a
sample estimate of the true population index that could only be computed if we had tra-
jectories for the entire population of the city. Palmer shows that as the sample size gets
larger and larger, the difference between the sample estimate and population index
shrinks, and for samples of several hundred respondents, there is essentially no bias in
the estimate.
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The interaction index is the archetypical measure of exposure cited
in the literature (Bell, 1954; Lieberson, 1981). Massey and Denton elo-
quently describe it as “the minority-weighted average of each spatial
unit's majority proportion” (Massey and Denton, 1988, 288). Borrowing
notation fromWong and Shaw (2011) we can measure the exposure of
group a to group b as:

Pa�b ¼
Xn
i¼1

ai
A

� � bi
ti

� �
ð1Þ

where ai, bi and ti are the population counts of the two groups and the
total population in zone i respectively, A is the total population of
group a in the region, and n is the number of residential zones in the re-
gion. This interaction index evaluates the contact probability of thema-
jority to the minority group within each residential zone, ignoring the
potential for contact with members of the majority group living and
working in different zones as people go about their daily activities.
Importantly, this index is extendable to three or more population
groups, and reversible, so that measures of isolation can also be obtain-
ed. A number of authors have sought to expand potential interaction
spaces to areas outside of the residential zone by fusing segregation
measures with spatial statistics (Morgan, 1983; Wong, 1993; Wong,
2002; Reardon andO'Sullivan, 2004), or by adoptingmore explicit activ-
ity–space approaches to measuring segregation (Schnell and Yoav,
2001; Wong and Shaw, 2011) and there is now a call for research that
continues to move beyond measuring segregation within residential
neighbourhoods to better capture people's experience of segregation
over the course of their daily lives (Kwan, 2009, 2013).

The goal of this article is to draw on research developments in mea-
suring metropolitan scale social interaction potential (Farber et al.,
2012) and to quantify exposure using a time-geographic approach
(Hägerstrand, 1970). Moreover, we are interested in developing a met-
ric that is readily computable and comparable between regions so that
hypotheses regarding the impacts of the spatial structure of regions
(i.e. the patterns of where people live, work, and conduct their daily ac-
tivities) on social contact opportunities can be explored. Specifically, we
would like to extend this line of inquiry into an improved understand-
ing of the relationship between spatial structure of regions and opportu-
nities for between-group and within-group interaction potentials.

The rest of the article is organized as follows. First, we review the re-
cent advances in segregation research, focusing on activity-based mea-
surement approaches. Next we put forward our proposed measure of
exposure that is based on the concept of social interaction potential.
Following this, we describe the results of a simulation experiment
designed to test the behaviour of the new metric with respect to its
input parameters. After, the metric is applied in an empirical case
study focussing on Detroit, Michigan, the most residentially segregated
city in theUS according to a recent study (Logan and Stults, 2011). Final-
ly, we discuss the results, contextualize the knowledge gained through
this research, and provide our thoughts on future research in this area.

2. Literature review

Our paper is part of a wider discourse aimed at using daily activity
patterns to address the Uncertain Geographic Context Problem
(UGCoP) which states that relationships between neighbourhood
units and individual behaviours and outcomes are inherently fraught
with errors associated with the unknown definitions of relevant spatial
and temporal contexts (Kwan, 2012b, 2012a). By using activity patterns
of individuals in a city, we are more succinctly defining a relevant spa-
tiotemporal context in which to measure opportunities for social inter-
action between social groups.

Although this line of inquiry is recent, there has been a flurry of re-
search activity using activity patterns tomeasure aspects of segregation.
The existing research can be grouped into three categories. First are the
papers that describe and visualize activity spaces belonging tomembers
of different social groups in order to discover evidence of isolation,
limited mobility, and ethnic partitions of activity spaces. For exam-
ple, Lee and Kwan (2011) developed four visual methods to identify
and describe socio-spatial isolation amongst South Koreans living in
Columbus, Ohio. Similar work investigates three-way separation be-
tween activity spaces belonging to Palestinians, secular Jews and
ultra-orthodox Jews living in Jerusalem (Greenberg Raanan and
Shoval, 2014). Wang et al. (2012), for their part, visualize activity
spaces of residents of different urban enclaves in Beijing and find sta-
tistical differences between spatiotemporal characteristics of activi-
ty patterns. These works are based on relatively small samples and
are primarily visual and descriptive in nature. Importantly, there is
no attempt to generalize findings into a replicable or transferable
measure of segregation or exposure.

The second category of work in this area includes attempts at mea-
suring exposure by better defining individuals' geographic context
using travel behaviour data, andmeasuring exposure through the inter-
section of the derived activity spaces of individuals with static census-
based residential population counts. Wong and Shaw (2011) evaluated
individual-level exposure measures using the collection of administra-
tive zones visited by respondents of a travel diary survey. Each individ-
ual in the survey was considered potentially exposed to the residential
population in the administrative zones visited. From this, an index of
white–black exposurewas built on the propensity of white respondents
to visit zones in which black populations reside. Farber and Páez (2012)
extend this approach by implementing a model-based activity space,
and by placing the exposure measurement within a statistical inferen-
tial framework based on the Gi

⁎ local statistic (Getis and Ord, 1992).
While both approaches use sophisticated conceptualizations of the ac-
tivity space, neither of them adequately represents the dynamic nature
of the target population. In both cases, themeasure of exposure is based
on a simple static target population aggregated to zonal centroids. In
other words, while activity spaces are used to generate more realistic
representations of the geometries of the geographic context a person
is exposed to, the context itself is still merely attributed with static res-
idential population counts.

A third group of papers address this shortcoming by representing
both source and target populations with detailed spatiotemporal activ-
ity patterns. In amethodologically innovative study, mobile phone loca-
tion data was used to build activity spaces for ethnic Russians and
Estonians living in Estonia (Silm and Ahas, 2014a, 2014b). Using loca-
tion data of nearly half of the country's population, over a three-year pe-
riod, the researchers developed a time series of Russian and Estonian
concentrations in neighbourhoods throughout Estonia. This data was
then analyzed for temporal shifts in segregation on daily, weekly, and
seasonal scales. The research identified that workday levels of segrega-
tion are far lower than evening and weekend levels, when people have
more discretion to self-sort themselves into households and discretion-
ary activity locations. In a similar vein, Palmer (2014) developed a spa-
tial proximity index for grouped GPS trajectory data. Importantly,
through spatial Monte Carlo simulations, it was demonstrated that the
small sample bias of the proximity estimator disappears when the sam-
ple of trajectories approaches several hundred.1

Analyzing spatio-temporal activity patterns usingmobile phone and
GPS data allows very accurate measurement of the spatiotemporal con-
texts of both source and target populations. However, these data are
often semantically poor. Mobile phone and GPS trajectory data are
seldom associated with socioeconomic attributes of the phone's owner
or user. One could quite readily establish the phone's home location,
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and from that infer some neighbourhood socioeconomic data, but doing
so within the context of a segregation study will almost certainly re-
quire the researcher to commit an ecological fallacy. Due to the phone
users' selection of language used to communicate with the phone com-
pany in Estonia, the Estonian teamhas at least one identifier of ethnicity
in their dataset. But this is not the norm for mobile phone based
datasets, and, given the lack of spatial consistency in how mobile
phone data are obtained and the types of social identifiers that are at-
tached to observations, it is not currently possible to conduct rich socio-
economic investigations of mobile phone trajectories in a comparative
study of segregation in cities.

More generally, it is possible to place segregationmeasures on a con-
tinuum of place vs. people based measures of segregation (Fig. 1)
(Kwan, 2009), akin to the dichotomies drawn in accessibility research
and GIScience (Miller, 2005b, 2007). On the one side, place based mea-
sures take advantage of readily available census data, are easy to calcu-
late and usually quite straightforward to interpret. However, they
ignore the UGCoP and for this reason do not offer theoretically valid
measures of personal experience. On the other side, people based mea-
sures, while being far more theoretically valid, suffer from issues of re-
producibility and transferability due to the costs of collecting primary
data and the lack of consistency associated with commercially available
data. This is a particular concern with respect to our research goal of
comparing segregation across cities in order to better understand the
role of spatial structure of different places. So, we call for development
in the middle ground; a measurement approach that is readily inter-
pretable and calculable across a wide array of regions, but at the same
time takes the UGCoP into consideration by basing the measurement
on activity patterns. Our solution is proposed in the next section.

3. A social interaction potential (SIP) based measure for potential
exposure

3.1. The roots of SIP in time geography

Social interaction potential is a time geographical approach to mea-
sure opportunities for social contact between people in a region (Farber
et al., 2012). Based on the concept of joint-accessibility (Neutens et al.,
2007a, 2007b; Neutens et al., 2008) and the principles of time geogra-
phy that govern interaction opportunities (Miller, 2005a), SIP is a com-
putation of the average space–time prism intersection volume between
all pairs of people in a region. The space–time prism is a geometric ap-
proximation of the set of all space–time paths an individual could po-
tentially traverse between a pair of fixed anchors in space–time
(Hägerstrand, 1970). The volume of the prism is traditionally
interpreted as ameasure of potential accessibility, as it intrinsically cap-
tures the amount of time an individual could participate at each oppor-
tunity location (Burns, 1979; Lenntorp, 1976; Miller, 1991, 1999).
Following on this, the volume of intersection between two people's
Fig. 1. Place vs. people
prisms can be interpreted as ameasure of potential interaction opportu-
nity between them (Farber and Páez, 2011). These concepts are further
illustrated in Fig. 2 below. The space–time path in 2A depicts the move-
ment of a person as they conduct their daily activities. In 2B, we present
a space–time prism, which is anchored at two locations in space–time;
in this case, the anchors are the results of bundling and authoritative con-
straints (Hägerstrand, 1970) that dictate when the individual is free to
leave work, and what time they are required back at home to conduct
mandatory household activities. The difference in time between these
anchors is denoted as the person's discretionary time budget which
when coupledwith the individual's mode and speed of travel (an exam-
ple of Hägerstrand's capacity constraints) results in the space–time
prism, a volume representing the amount of time a person can conduct
an activity at each reachable location, given one's time-geographical
constraints. For two space–time prisms belonging to two different indi-
viduals, the volume captured by their intersection represents the
amount of time twopeople can jointly conduct an activity at each jointly
reachable location, given each person's constraints.

Provided this understanding of the fundamentals of time geography,
Farber et al. (2012) show that averaging over all pairs of prism intersec-
tions in a region, we can obtain a global, regional measure of SIP:

SIP ¼
XP
s

XP
t≠s

Vst � P P−1ð Þ½ �−1 ð2Þ

where Vst is the prism intersection volume between persons s and t and
P is the total number of people in the region. This formula denotes the
theoretical (and wholly unobtainable) value of SIP in a region based
on individual space–time prisms. In practice, save for several highly de-
tailed, but small sample datasets, individual level data are not available
in the construction of personalized space–time prisms for a region's
population, but origin–destination (OD) transportation datasets can be
used to represent the most fundamental space–time constraints on
the typical individual: their home and work locations. An OD matrix is
an N × N matrix containing the number of people who live and work
in each of the N zones in a region. We can therefore approximate SIP
using zonal OD data with the following:

SIP ¼
XN
i

XN
j

XN
q

XN
r
VijqrPijPqr ð3Þ

where Vijqr is the intersection volume between two prisms anchored at
home and work zones Zi/Zj and Zq/Zr respectively, and Pij is the percent-
age of the region's population that lives at Zi and works at Zj. The nested
summations are used to iterate over all pairs of OD pairs in the region.
Note that for the reflexive flows, Pii is the percentage of people who
live and work in the same zone, plus the percentage of people living
in Zi who do not go to work. Our measure therefore attempts to include
based segregation.



Fig. 2.Depictions of A) a space–time path, B) a space–time prism and C) the intersection of two space time prisms, forming the basis of the social interaction potential (SIP)metric (Source:
(Farber et al. 2012)).
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the experiences and impact of the non-working population. With this
approximation, we assume that on a typical day, people are constrained
by their work and home locations, and in the SIPmodel, which is clearly
an abstraction and simplification of the far more heterogeneous activity
patterns of people in a region, we quantify the potential opportunities
for social contact subject to these constraints.

For computational reasons, the precise estimation of Vijqr is very dif-
ficult to obtain. Our approach to computing an accurate approximation
of the true intersection volume is to divide the study region into a
regular grid. Then, by invoking the same principals used in Simpson's
approximation to numerical integration, we find that:

Vijqr ¼ lim
K→∞
sk→0

XK
k

Ak
ijqrsk ð4Þ

where Aijqr
k is the amount of time a person travelling from Zj to Zi will

have to participate in an activity at grid location kwith a person travel-
ling from Zr to Zq, sk is the area of a grid cell, and there are k=1. .K grid
cells in the region. When the number of grid cells approaches infinity,
and the area of each grid cell approaches 0, our numerical approxima-
tion in (4) approaches the theoretical value of Vijqr in (3). In practice,
sensitivity analysis has shown that a grid cell of 2.5 km provides an ac-
curate approximation to Vijqr when tested for a variety of regions across
the United States (Li, 2015).

Finally, to explain how Vijqr is computed, wemust also define the ac-
tivity time at location k as:

Ak
ijqr ¼ max 0; min b–tki; b–tkq

� �
−max tjk; trk

� �� �
if Ak

ij;A
k
qr ≥0

0 otherwise

�
ð5Þ

where b is an exogenous parameter representing the duration of
the evening after-work time budget, tki is the travel time from k to i,
max(tjk, trk) is the beginning of the overlapping time period,
min(b– tki,b– tkq) is the ending of the overlapping time period, and the
max(0, -) function excludes the case where the two individuals have
non-overlapping time availabilities at k. In practice, travel times in the
region can be computed using a geographic information system (GIS)
or extracted from a transportation model, and travel times for different
modes of travel can be used to more accurately represent capability
constraints. Simply put, for any location k, Aijqr

k is the amount of time
two individuals can spend together there provided they need to travel
there from their work locations and return to their homes before their
discretionary time budgets expires. If the combination of their travel
times and discretionary time budgets do not allow for an activity to
take place, we set the value to 0.

3.2. Extending SIP into measures of exposure and isolation

So far, everything described in this section on the derivation of the
SIP measure has been review, and is already published in the following
articles (Farber et al., 2012; Neutens et al., 2013; Farber and Li, 2013; Li,
2015). Next,we introduce the adjusted SIPmeasure that can account for
potential interactions within and between social groups. The guiding
principle of this measure is that total SIP can be decomposed into inter-
action potential within groups and between groups. Without loss of
generality, suppose the population of a city is bifurcated into only two
groups, A and B. Then:

SIP ¼ SIPA=A þ SIPB=B þ SIPA=B ð6Þ

such that the total SIP of a region, is the sum of the contributions of
within-group social interaction potentials (SIPA/A and SIPB/B) and the
between-group interaction potentials (SIP A/B). This identity is quite
similar to Lieberson's isolation and interaction indices adding to 1
(Lieberson, 1981).

More explicitly, given the group specific OD probabilities, PijA and Pij
B,

where Pij=Pij
A+Pij

B, the SIPmetric in (3) can be decomposed into group
specific contributions as follows:

SIP ¼
XN
i; j;q;r

VijqrPijPqr

¼
XN
i; j;q;r

Vijqr P A
ij þ PB

ij

� �
PA
qr þ PB

qr

� �
¼
X
i; j;q;r

V P A
ij P

A
qr

� �
þ
X
i; j;q;r

V PB
ij P

B
qr

� �
þ
X
i; j;q;r

V P A
ij P

B
qr

� �
þ PB

ij P
A
qr

� �h i
¼ SIPA=A þ SIP B=B þ SIP A=B

ð7Þ

where the subscripts on Vijqr have been omitted for ease of reading. Es-
sentially, by decomposing the weights in the summation by each social
group, we obtain the amount of interaction potential for each pair of
population groups in the region.

The decomposition of the OD matrix into group-specific flows gives
rise to three global measurements of potential exposure:

1. SIP A/A—Potential exposure of A's to A's.
2. SIP B/B—Potential exposure of B's to B's.
3. SIP A/B—Potential exposure between A's and B's.

Each of these is easily decomposed into localmeasurements of expo-
sure by holding locations of home, work or activity constant during the
summations. This procedure is elaborated elsewhere (Farber et al.,
2012; Neutens et al., 2013). Combined, we herewith refer to this family
of potential exposure measurements as SIPSEG measurements.

3.3. Deriving expected values of SIPSEG under conditions of perfect
integration

Importantly, under certain conditions, the expected values of the
global exposure scores relative to the total SIP score can be derived.
Let P(A) denote the percentage of the regional population in group A.
Then P(B)=1-P(A) is the percentage of the population in group B. Sup-
pose that the flow between each OD pair in the city is split amongst
groups according to the global split defined by P(A) and P(B). This



2 One additional and unexpected finding is that the contribution of SIPA/Bto total SIP
peaks at higher levels of %Bwhen B travels slower. This is a result of the interplay between
relative population sizes and travel speeds, the exact nature of which cannot be explored
analytically, but this is precisely why simulation studies are useful in this research.
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implies that PijA=P(A)Pij and Pij
B=P(B)Pij for all OD pairs. This type of

group distribution epitomizes complete integration; the various com-
muter flows are evenly distributed amongst the two groups according
to their global shares of the regional population. Under these conditions,
the DI for both the residential andworkplace population distributions is
equal to zero. In this scenario the relative contributions of the SIPSEG
components to the total are:

SIP A=A

SIPT

 !�
¼
X

i; j;q;r
V P A

ij P
A
qr

� �
X

i; j;q;r
V PijPqr
� � ¼

X
i; j;q;r

V PijPqr
� �

P Að ÞP Að ÞX
i; j;q;r

V PijPqr
� � ¼ P Að Þ2 ð8Þ

SIPB=B

SIPT

 !�
¼
X

i; j;q;r
V PB

ijP
B
qr

� �
X

i; j;q;r
V PijPqr
� � ¼

X
i; j;q;r

V PijPqr
� �

P Bð ÞP Bð ÞX
i; j;q;r

V PijPqr
� � ¼ P Bð Þ2 ð9Þ

and

SIPA=B

SIPT

 !�
¼
X

i; j;q;r
V P A

ij P
B
qr

� �
þ
X

i; j;q;r
V PB

ij P
A
qr

� �
X

i; j;q;r
V PijPqr
� �

¼
X

i; j;q;r
V PijPqr
� �

P Að ÞP Bð Þ þ P Bð ÞP Að Þ½ �X
i; j;q;r

V PijPqr
� � ¼ 2P Að ÞP Bð Þ:

ð10Þ

Since the expected values are derived under the assumption of
perfect integration, they can be used as best-case benchmarks against
which empirical realizations of component contributions will be
compared.

Without loss of generality, if the population is partitioned into
more than two social groups, the SIPSEGmeasures and their expect-
ed contributions can be easily derived. If G is the set of social groups
in a region, then these expected contributions are easily extended
to the case where there are |G |N2 social groups. In the general
case for |G |N2, and given any pair of population groups, g1 ,g2∈G,
we have:

SIPT ¼
X
g1∈G

P g1ð Þ2 þ
X
g1∈G

X
g2∈G
g1≠g2

P g1ð ÞP g2ð Þ ð11Þ

and

SIPg1=g2

SIPT

 !�
¼ P g1ð ÞP g2ð Þ if g1 ¼ g2

2P g1ð ÞP g2ð Þ if g1≠g2

�
ð12Þ

4. Analysis of SIPSEG measures: numerical experiments

In this section we design and describe the results of a simulation ex-
periment aimed at improving our understanding of how the SIPSEG
metrics behave under controlled scenarios. For these scenarios, we de-
signed a city of 1,000,000 people living and working in a city composed
of 9 zones in a 3 by 3 grid. Each home and workplace zone is 12 km by
12 km, resulting in a 36 kmby 36 km region. The social interaction loca-
tions consist of 81 zones in a 9 by 9 grid covering the same city region. In
all scenarios, the home and workplace distributions are monocentric by
design, and the OD flow matrix was fitted using a doubly-constrained
gravitymodel. We control and test three parameters in the experiment.
First, the percentage of the population that is of type B, P(B), is adjusted
from0% through to 100% in 5% increments. Second, the time budget, b, is
tested at 0.5 h through to 2 h in 30min increments. And third, the travel
speed of people of type B is tested at 15 km/h to 60 km/h in 15 km/h in-
crements. The travel speed of type A is set to 60 km/h and it is assumed
that people travel between locations in the city in straight lines
from zone centroid to centroid. This results in 336 combinations of
parameter values for which the SIPSEG measurements are computed.
It is important to note that for all of these scenarios, PijA=P(A)Pij and
Pij
B=P(B)Pij. In other words, the Duncan Index (DI) which assesses the

evenness of the racial distributions, computed on either the residential
or workplace distributions, is equal to zero, and the expected values of
SIPSEG contributions found in 8–10 above should be obtained in the
simulation whenever people of type B travel at the same speed as
those of type A.

Fig. 3 contains graphical depictions of the experiment results. The
two columns of plots are for scenarios with 30 and 120 min budgets re-
spectively. The results for the intermediate time budgets have been
excluded for the sake of brevity. The three rows of plots are for SIPA/A,
SIPB/B, and SIPA/B calculations respectively. For each plot, the vertical
axis is the percentage of the total SIP contributed by the SIPSEG compo-
nent for that row, and the horizontal axis is the percentage of the pop-
ulation that is of type B (%B). Each distinct curve pertains to scenarios
where type B are travelling at the four different tested speeds: 15 km/h,
30 km/h, 45 km/h and 60 km/h. Recall that type A always travels at
60 km/h. One reason for including this variable in the experiment is
that future empirical investigations may include multi-modal transport
networks so that SIPSEG can be computed along divisions in users of
different transport modes.

The plots tell several interesting stories. First, the scenarios where B
travels at 60 km/h, denoted by the mustard curves, attain the expected
values for SIPSEG contributions derived in Eqs. 8–10. When the two
groups travel at the same speed, we obtain values predicted by
Eqs. 8–10 because these scenarios epitomize perfect spatial integration
of the populations both at home and the workplace. However, for each
component, and especially for the 30min time budget cases, decreasing
the speed of group B results in reductions in total SIP and large shifts in
relative shares of between-group andwithin-group interactions. In par-
ticular, when B's speed decreases we find that the relative contribution
of A/A potential interactions increases while the share of B/B interac-
tions decreases. Similarly, we also find that the share of A/B interactions
drops below expected values except for several scenarios with very
high values of %B. This indicates that the social opportunities in a city
are most significantly held within groups with faster travel speeds,
that groups with reduced travel speeds contribute very little towards
the total number of social opportunities in a city, and that between
group interaction is dramatically hampered by a reduction in speed of
one of the groups.2

Finally, a comparison of plots between columns (30 min versus
120min time budgets) reveals that increasing free time for social activ-
ities ameliorates the effect of declining velocity in all but the most ex-
treme velocity-deprivation scenarios. This implies that time-use
policies designed to create more opportunities for discretionary activity
participation may improve levels of social cohesion in a region. Impor-
tantly, the SIPSEGmeasures are able to detect discrepancies in the levels
of between and within-group potential exposure despite that DI = 0 in
all cases.

5. Empirical case study: Detroit–Warren–Livonia MSA

In this section, potential exposure within and between racial groups
in the Detroit–Warren–Livonia MSA is explored using the new SIPSEG
measurements. The Detroit MSA is selected due to the rich study of
racial segregation there (Kain, 1968; Farley et al., 1994; Darden and
Kamel, 2000; Galster, 2012) and because it was recently found to be
the most residentially segregated city in the United States with a DI of
79.6 between black and white populations (Logan and Stults, 2011).
This means that 80% of the black population would need to relocate



Fig. 3. SIPSEG contributions under controlled conditions.
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in order to homogenize the residential mixing of races within
neighbourhoods. The Detroit–Warren–Livonia MSA is a six county re-
gion of 3.7 million inhabitants. The racial divisions in Detroit are made
clear in Fig. 4, where each dot of a different colour represents 25 inhab-
itants of a different race. There is a sharp north–south divide at the infa-
mous 8 Mile line separating the inner city's predominantly black
population (blue dots) from the suburban white population (red).
Small pockets of Hispanic (orange) and Asian (green) can also be seen
in the city.

The empirical SIPSEG measurements were computed using OD
datasets obtained from the Census Transportation Planning Package
(CTPP) 2006–2011 5-year average sourced from the American Commu-
nity Survey (ACS). The non-working population was drawn directly
from the same vintage ACS. Both theworking and non-working popula-
tions are provided in the ACS for those aged 16 years and older. The
study area covered the six counties in the region and the OD data
were obtained at the census tract level of geography. Through a process
of ODmatrix disaggregation (more on this below), the resultant ODma-
trix contained race-specific flows between all pairs of census tracts in
the region. Our definition of race follows Logan and Stults (2011)
which accounts for multiple race responses in the census. In the end,
our OD flows were disaggregated as White, Black, Hispanic, Asian, and
Other.

The computation of SIPSEG requires the selection of input parame-
ters and the creation of input data products. In the parameter case, we
compare evening time budgets of 30 min to 120 min. The required
data inputs include travel time matrices and the disaggregate flow ma-
trix so thatAijqrk can be calculated. Two travel timematrices are required:
Tw→k is the travel time fromplace ofwork to grid cell locations and Tk→h

is the travel time from grid cell locations to place of residence. Here,
places of work and residence are represented by census tract centroids,
and the places of activity, k, are represented by the centroids of a square
raster of grid cells with 2.5 km edge length. All travel times were based
on computations of free-flow shortest paths by car using the Esri
ArcMap Network Analyst extension and the StreetMap USA dataset.
An additional travel time matrix from census tracts to census tracts
was needed in the generation of the OD flow matrix.

The ODmatrix needed to compute SIPSEGmust be disaggregated by
social groups, however, theOD data available from the CTPP is not avail-
able in this disaggregate form. We therefore employ the information
minimizing trip distribution model developed by O'Kelly and Lee
(2005) to synthesize the disaggregate OD matrix using known racial
breakdowns at zones of residence and workplace. This method has
been used by Kim et al. (2012), Sang et al. (2011), Lee (2012), and
Jang and Yao (2014) in socioeconomic studies of commuting. More
recently, the procedure has undergone quite substantial validation
testing using the Longitudinal Employer-Household Dynamics dataset
with results indicating an extremely high level of accuracy in repro-
ducing known disaggregate OD flows using only marginal constraints
(Niedzielski et al., 2015).

With the travel time and OD matrices in hand, the last step in
the SIPSEG computational process is to actually calculate the prism
intersections. Due to the existence of five nested loops over
i ' s , j ' s ,q ' s , r ' s , and k ' s, for large regions such as Detroit, the computa-
tion of SIPSEG scales rather poorly. In fact, computing SIPSEG, as with
other versions of SIP metrics, requires that we exploit the parallel



Fig. 4.Racial dotmap of Detroit and its surrounding area. Each dot represents 25 inhabitants: blue dots for the black population, red dots forwhite, orange dots for Hispanic and green dots
for Asian. (Source: Eric Fischer, “Eric Fischer's Photostream,” Flickr, 12 December 2014, Data from Census 2010. Base map © OpenStreetMap, CC-BY-SA).
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structure of the computational problem. Specifically, because the com-
putations required to calculate intersection volumes for different pairs
of prisms are independent, we are able to adopt a divide and conquer
computation strategy to achieve massive runtime improvements. In
this case, the CHPC developed code to compute SIPSEG in their cluster
computing environment. The code was written so that each social
group in a region is defined by a unique OD matrix, travel time matrix,
and timebudget parameter. Thismeans that in future studieswe can in-
vestigate questions of mobility-induced segregation between users of
cars and public transit, or time–pressure based causes of segregation
which are hypothesized to cause gender-based inequalities. In any
event, for the present case study assuming equal travel speeds between
races, one run through the Detroit MSA case study took two hours to
compute using 160 simultaneous processors. What we computed in
2 h would take roughly two weeks to compute on a single processor.

The origins and destinations per census tract for thewhite, black and
Hispanic populations appear in Fig. 5. It is convenient to think of these as
the nighttime and daytime populations of census tracts since the desti-
nations in this case also include adults who did not travel to work,
roughly 50% of the adult population in the MSA. This explains the strik-
ing similarities between thedaytime andnighttimepopulation distribu-
tions. Fig. 6 shows the change between night and day, better capturing
the spatial and racial dynamics in commuting patterns. We observe
that white commuters tend to travel from the suburbs into commercial
areas downtown, the surrounding inner city, and severalwhite employ-
ment enclaves in farther out places. The black population leaves the
inner city for downtown and inner suburb workplaces, and we observe
less commuting to the more distant suburban employment centers.
Finally, the Hispanic population leaves its residential enclave in
southwestern Detroit for workplaces similar in distribution to the
black population.

Given these trends in commuting, we expect that the commute to
work should help increase opportunities for social interaction between
racial groups, since workplace distributions are less segregated than the
residential distributions (DI for residential distribution is 0.78 and for
workplace distribution it is 0.65). At the same time, the white popula-
tion is travelling great distances from the outer suburbs to their work-
places, suggesting that the time associated with their travel may
actually hinder opportunities for interaction. Next we explore these
types of effects in the SIPSEG results.

Fig. 7 summarizes the results of the global SIPSEG measures. For the
sake of clarity, and in recognition that the two dominant racial groups in
this region are white (68%) and African–American (23%), the rest of our
discussion focusses just on these two groups, and lumps the remaining
races and their interaction potentials into an “Other” category. The first
column in Fig. 7 displays the expected contributions of each type of



Fig. 5. Origins and destinations by race in the Detroit MSA.

Fig. 6. Population change from nighttime to daytime.
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Fig. 7. Expected versus observed global SIPSEG measures relative to total SIP.
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between-group and within-group interaction potential under the
hypothetical case of perfect integration. Given that the white popula-
tion makes up 68% of the total, we expect to see the white/white
interaction potential contribute 46% (i.e. 0.682) of the total. Similarly,
we expect that the black/black SIP would contribute about 5% (i.e.
0.232) of the total, and that white/black SIP would contribute 31%
(i.e. 2[0.68 × 0.23]) of the total. The remaining 18% is due to interaction
with and among “others”. The second and third columns indicate the
observed SIPSEG contributions under the scenarios with 120 and
30 min time budgets respectively. The most striking finding is that the
level of segregation heavily depends on the time budget selected.
Thus, we must interpret our results with respect to this important
input parameter. In the very flexible case of 120 min, there are few dis-
crepancies between the observed and expected levels of SIPSEG contri-
butions. However, there are large differences in the 30 min case. We
observe a large decrease in white/white SIP due to that population's
large degree of residential dispersion in the suburbs, and large increase
in black/black SIP due to that population's concentration in the inner
city. There is only a minor decrease in white/black SIP, indicating that
the relative level of interaction potential between these groups is not
very sensitive to varying time budget constraints. It is of crucial
Fig. 8. Average prism interse
importance to keep inmind that these results pertain to relative contri-
butions of SIPSEG measures. There is an extremely large difference in
total SIP and SIPSEG measures between scenarios in absolute terms.
This is further investigated next.

Fig. 8 shows the average prism intersection volume for different
combinations of race for the two time budgets investigated. This
shows us the typical amount of SIP between pairs of people of the
different races. First, and quite remarkably, we see a three order-of-
magnitude difference between the total SIP for 120 min and 30 min.
This is quite striking, and speaks to the near elimination of social contact
opportunities when time budgets do not allow for much else than the
daily commute. Next, we see that white/white intersection volumes
are smaller than average, again a result of this population being very
geographically dispersed. We also see that black/black intersections
are much larger than average, a result due to the intensive clustering
of this population. Moreover, we see that black/black SIP is far more
resilient to the drop in time budget, also due to the clustering of this
population in the inner city. While the overall prism intersection vol-
ume declines by three orders-of-magnitude, the black/black volume
only declines by two orders. In terms of inter-group interactions, we
see that the average white/black exposure drops by three orders-of-
ction volumes by race.
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magnitude, and in relative terms declines more than average. This
result shows that declining time budgets will impact opportunities for
between-race interaction potentials much more than black/black
potentials. This is again largely driven by the dispersion of the white
population who travel farther distances to work and therefore have
less free time for social interactions amongst themselves or with people
of other races.

Next we turn to the local indicators of SIPSEG to explore the spatial
patterns in social contact opportunities. Fig. 9 displays the decomposi-
tion of the SIPSEGmeasures over the grid cells in the region. The colour
of each grid cell represents the aggregate volume of prism intersections
occurring at each grid location, k. For the 30 min time budget case, we
observe that areas with high opportunities for black/black interactions
are more spatially concentrated in the inner city, while white/white
opportunities are more dispersed and peaking to either side of the
inner city. The pattern for white/black interactions appears to be a mix
of the other two with a high concentration in the inner city, but also
spreading further out from the city. In general, the 120min time budget
smoothes out the interaction potential surfaces, leaving little ability to
discern separate spatial patterns between the three types of opportuni-
ties mapped. For this reason, we limit our investigation to the 30 min
scenario for the next two types of social interaction local
decompositions.

Figs. 10 and 11 contain the home andwork-based SIPSEG opportuni-
ty maps. Here, areas are coloured by the interaction opportunity associ-
ated with living in or working in each area from the perspective of a
particular racial group. Keep in mind that these maps depict contribu-
tions to total SIPSEG scores, and are therefore dependent on the source
population density in each zone. So, the top-left map in Fig. 10 depicts
the opportunities for white people to interact with other white people
provided their home residential zone. The pattern is one that demon-
strates the importance of centrality in providing social contact opportu-
nities. At the same time, because there are fewwhite people living in the
inner city, this region appears as a white/white cold-spot in the map.
The top-right map depicts opportunities for whites to intersect with
Fig. 9. Locations of social interaction potential, SIPSEG
blacks, and we see that the pattern, while similar to the white/white
map, is far more concentrated in areas closer to the inner city. This indi-
cates a positive, integrative effect of compact urban form. The bottom-
left map shows where blacks live with the highest levels of opportunity
to socialize with whites. Thus, the black/white map is concentrated in
the inner city, where the most black people live, but is more spread
out in comparison to the black/black map, which is more concentrated
in the inner city. In all cases, the work-based interaction potentials in
Fig. 11 show similar but more centrally concentrated patterns to the
home-based maps in Fig. 10. This is clearly due to the greater degree
of spatial concentration of workplaces in the downtown and inner sub-
urbs surrounding the urban core.

6. Conclusions

In this article, the social interaction potential metric is extended to
capture within-group and between-group interaction potentials. This
is framed as a novel method for measuring exposure (and its mirror
measurement, isolation) based on basic commuting patterns readily
available for cities around the world. The behaviour of the metric is ex-
plored using controlled simulations and an empirical case study and it is
found to be sensitive to activity locations, travel times, and the spatial
organization of homes andworkplaces. Importantly, themeasurements
are comparable between study areas, or between uses of different time
budget parameters given the ability to analyse absolute and relative
contributions of within-group and between-group interaction poten-
tials. The relative contributions are furthermore comparable to expected
values which are derived analytically, and shown only to depend on the
global breakdown of the population into different groups.

At the beginning of this article, we argued that SIP-based measures
of potential exposure achieve a middle-ground balance between tradi-
tional place-based measurements, and the current state-of-the-art
activity based approaches. The advantage over place-based measures
are clear, SIPSEG provides a way to augment exposure measures
with basic spatiotemporal population dynamics, while keeping the
K, for within-race and between-race interactions.



Fig. 10. Home-based SIPSEG opportunities for 30 min time budget.
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reproducibility benefits associatedwith place-based approaches. Froma
UGCoP perspective, SIPSEG better established the ecological boundary
of a person's daily life in comparison to zonal and neighbourhood
Fig. 11.Work-based SIPSEG opportu
approaches, and at the same time, attributes the individual's activity
space using dynamic target populations. However, while sharing in
the positive aspects of activity-based approaches, SIPSEG is clearly only
nities for 30 min time budget.
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taking advantage of a modest portion of the detailed time-use and activ-
ity patterns typically considered in activity modelling. In particular, we
are not utilizing anythingmore than an individual's home andwork loca-
tions and free-flowautomobile travel speeds to formulate our knowledge
of their space–time constraints. This is a far cry from the sophisticated
small-sample time-geographical analyses of individual level characteris-
tics, attitudes, and activity patterns used in modern travel demand
modelling. This may be unsatisfying to some, but our approach is not
intended to help us better understand how policies will impact activity
behaviour, as is the case for activity modelling, but rather to help identify
differences in social interaction opportunities and the causes of those dif-
ferences. As transportation and land use planners, it is often the opportu-
nities for interaction that we can produce or remove with our policies,
and previous work on SIP has established that social interaction activities
aremore likely to occurwhen levels of SIP are higher (Farber et al., 2014).

Another potential criticism of the SIP approach is that it does not di-
rectly deal with the materiality of space. The measurement of interac-
tion potential is based solely on the concept of joint accessibility,
which can be understood as the minimum threshold to face-to-face in-
teraction potential. Layered on top of this are subjective interactions be-
tween space and the individual (e.g. whether there are appropriate
facilities available to engage in social activities and whether there are
social constructions of space that are conducive to interactions) that
modify whether space–time opportunity will translate into heightened
likelihood of interaction. Clearly, there is room for future research in
both of these directions. Through an attraction parameter for activity lo-
cations, the SIP framework is poised to incorporate new measures of
materiality such as Silver's (2011) scenescapes. This kind of extension
is in line with the quantitative, aggregate qualities of SIP, and seems
far more feasible than trying to account for subjective and individual-
based attitudes towards space. More detailed qualitative approaches
are clearly more suited to the latter.

The broader directions for further research are largely empirical. We
would like to compute SIP-basedmeasures of segregation for the largest
cities across the United States, and compare these to traditional place-
based measures. We anticipate that our metric, because it relies on the
basic spatial structure of activity patterns, will portray a more nuanced
story of experienced segregation in cities across the US, while aggregate
enough to easily compute scores for a large set of places. By computing
SIPSEG measures for many cities, we should be able to identify particu-
lar trends in spatial structure, such as compactness or urban sprawl, that
lead to higher or lower levels of social integration. And, similarly, we
would like to see whether higher and lower levels of segregation are re-
lated to social characteristics of regions, such as social cohesion or polit-
ical polarization.

Although SIPSEG has been framed in terms of a social segregation
measure, it is feasible to think of other economic interpretations by
computing SIPSEG for workers in the various industrial sectors in a re-
gion. Higher levels of within-sector interaction potential should theo-
retically be associated with higher levels of productivity, which may
be captured bymeasures of gross regional product (GRP) orwages. Sim-
ilarly, from social equity perspectives, we could try to better understand
the disparities in SIP among people with different mobility capabilities
(i.e. car drivers versus transit users), or among those with different
time-budget constraints (i.e. workers versus non-workers or workers
with and without children). All of these investigations should be possi-
ble given the current levels of data availability in the CTPP and our up-
dated tools for synthesizing socially disaggregated OD matrices.
Moreover, the interplay between spatial structure and time availability
and its effect on SIPSEG will be an important avenue to explore in any
future empirical work.
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