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ABSTRACT 

Objective: We performed meta-analyses of randomized controlled trials to examine the effects of 

neurofeedback on attention-deficit/hyperactivity disorder (ADHD) symptoms and 

neuropsychological deficits in children/adolescents with ADHD. Method: We searched Pubmed, 

Ovid, Web of Science, ERIC and CINAHAL through August 30, 2015. Random-effects models 

were employed. Studies were evaluated with the Cochrane Risk of Bias (RoB) tool. Results: We 

included 13 trials (520 ADHD participants). Significant effects were found on ADHD symptoms 

rated by assessors most proximal to the treatment setting, i.e., the least blinded outcome measure 

(Standardized Mean Difference [SMD]: ADHD total symptoms=0.35, 95% CI=0.11-0.59; 

inattention=0.36, 95% CI=0.09-0.63; hyperactivity/impulsivity=0.26, 95% CI=0.08-0.43). Effects 

were not significant when probably blinded ratings were the outcome or in trials with active/sham 

controls. Results were similar when only Frequency Band Training trials, the most common 

neurofeedback approach, were analysed separately. Effects on laboratory measures of inhibition 

(SMD=0.30, 95% CI= -0.10-0.70) and attention (SMD=0.13, 95% CI= -0.09-0.36) were not 

significant. Only four studies directly assessed if learning occurred after neurofeedback training. 

The risk of bias was unclear for many RoB domains in most studies. Conclusions: Evidence from 

well-controlled trials with probably blinded outcomes currently fails to support neurofeedback as an 

effective treatment for ADHD. Future efforts should focus on implementing standard 

neurofeedback protocols, ensuring learning and optimizing clinically relevant transfer. 
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Introduction  

 

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder 

characterized by age-inappropriate and impairing inattention and/or hyperactivity/impulsivity 1, 2. 

Among currently available treatment options, psychostimulant and non-stimulant medications are 

efficacious, at least in the short-term, and widely used 3. Non-pharmacological interventions - both 

dietary and psychological – have been also extensively investigated 4-7.  Among non-

pharmacological approaches, neurofeedback has been considered a promising ADHD treatment 

strategy since the early 1970s 8-10. When applied to ADHD, neurofeedback is intended to reduce 

ADHD symptoms by targeting aberrant patterns of brain activity thought to underpin the condition. 

Neurofeedback is implemented through the training of self-regulation using operant reinforcement 

procedures; learning of self-regulation is thus a key mechanism. To achieve this aim, 

electroencephalogram (EEG) indices of interest are converted into visual or acoustic signals and fed 

back automatically in real time to the patient. For instance, cortical activity may be represented by 

the height or speed of a ball, plane or cartoon character presented using animation on a computer 

screen. In this case, learning occurs when the object rises, falls, or advances more quickly in 

response to patients’ regulated changes in brain activity. Two general neurofeedback approaches 

have been used to treat ADHD: Frequency Band Training (FBT) and Slow Cortical Potential 

training (SCP). When applied to ADHD, the former is intended to target alterations of cortical 

electrical oscillations thought to be associated with ADHD, namely elevations of slow, relative to 

fast, brainwave activity - especially in the frontal lobes (e.g., theta versus beta frequency 11). The 

latter aims to regulate cortical excitation thresholds by focusing on activity generated by external 

cues (similar to event-related potentials), focusing primarily on EEG components registered in the 

late latency range, i.e., several seconds after the cue. For instance, this form of training has been 

used to target the contingent negative variation (CNV) which occurs during this time window and is 

involved in effective preparation, decision-making and time estimation, which have all been found 

to be deficient in individuals with ADHD, or at least in subgroups of them 12, 13.  
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The efficacy of non-pharmacological treatments for ADHD, including neurofeedback, has 

been subject to a number of earlier meta-analytic reviews 14-16. However, these have sometimes 

been difficult to interpret because of the inclusion of studies with weak experimental designs (e.g., 

no control arm, non-random allocation or the use of unblinded measures), as discussed in Sonuga-

Barke et al. 17. On behalf of the European ADHD Guidelines Group (EAGG), Sonuga-Barke et al. 17 

attempted to address these limitations through a meta-analysis of non-pharmacological interventions 

which included only randomised controlled trials (RCTs). It also addressed the issue of blinding by 

comparing outcomes rated by individuals judged to be most proximal to the therapeutic setting 

(often parents poorly blinded and invested in the therapeutic outcome) and those provided by 

reporters judged to be probably blinded. They found that the effects of neurofeedback on ADHD 

total symptoms based on most proximal ratings were highly significant (SMD=0.59, 95% CI=0.31-

0.87). However, when only probably blinded measures were employed, the effects became non-

significant (SMD=0.29; 95% CI= -0.02-0.61). More recently, Micolaud-Franchi and colleagues 18 

followed a similar approach, focusing their analyses on ADHD core symptoms, but with a smaller 

set of studies (n=5) limited to trials with particular control conditions. As in Sonuga-Barke et al. 17, 

they found a significant, positive effect of neurofeedback on ADHD core symptoms when 

considering most proximal raters. Probably blinded scores were attenuated and were significant 

only for symptoms of inattention.  

Applying the same meta-analyses protocol used in recent EAGG reviews of behavioural 

interventions 5 and cognitive training4, we here extend the focus of meta-analytic evidence relating 

to neurofeedback for ADHD in a number of ways. First, we included, among the outcomes, not only 

specific ADHD behavioral dimensions (i.e., inattention and impulsivity/hyperactivity) but also 

ADHD-related neuropsychological deficits such as inhibitory dysfunction. The latter may be 

important as they may take us closer to neural mediators of the behavioural effects of 

neurofeedback 9. Second, we addressed the relative efficacy of different types of neurofeedback by 

restricting sub-analyses to specific types of treatment protocols, i.e., FBT. Third, we examined the 
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impact of different aspects of trial design (e.g., use of a sham/placebo design) or pragmatic  

“dosage” characteristics of neurofeedback implementation (i.e., number of sessions). Fourth, we 

addressed the crucial question of whether neurofeedback-related learning at the neural level was 

investigated and/or demonstrated in available trials 9. Fifth, we examined whether the 

neurofeedback protocols employed in these studies could be considered “standard” in terms of the 

criteria discussed by Arns et al. 19, which include elements related to EEG bands/measures, 

electrode placement and type and feedback following learning. Finally, we applied, for the first time 

in a meta-analysis of neurofeedback for ADHD, a rigorous assessment of study bias, i.e., the 

Cochrane risk of bias tool (RoB) 20. 

 

Method 

The EAGG protocol was originally registered on the International Prospective Register of 

Systematic Reviews PROSPERO (http://www.crd.york.ac.uk/PROSPERO, protocol number: 

CRD42011001393). As in 5 and 4, the original protocol was adapted to take account of the broader 

scope of this systematic review/meta-analysis. Most crucially, given that the scope of this analysis 

included neuropsychological measures, the mandatory requirement for studies to have ADHD 

symptoms-related outcome no longer applied (i.e., we included also studies presenting only 

neuropsychological outcomes).  

Inclusion and Exclusion Criteria 

To ensure high levels of methodological adequacy as recommended by the Cochrane group 

and to avoid the inevitable bias caused by dependence on investigators agreeing to provide data 

from unpublished studies 20, only published studies were included. Only RCTs using neurofeedback 

training were retained. Participants in the trials were required to be between 3 and 18 years of age, 

and to have a diagnosis of ADHD diagnosis (any subtype) or Hyperkinetic Disorder (HKD), or 

meet accepted cut-offs on validated ADHD symptom rating scales. Trials that selected children with 

ADHD who had rare comorbid disorders (e.g., fragile X syndrome) were excluded. Control 
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conditions allowed were “treatment as usual,” “wait list,” “active” or “placebo/sham” (i.e., 

involving other forms of alternative training regimen). As per the EAGG protocol, trials where 

neurofeedback was compared only with optimised medication or where the additional effects of 

neurofeedback when added to optimized medication were excluded. Trials where medication was 

part of background normal clinical provision in either the control or the active arm were included.  

Search Strategy 

Details about the search strategy/syntax for each database are reported in Supplemental  

Text 1, available online. The final search was updated on August 30, 2015. Independent searches 

were conducted by Samuele Cortese and Maite Ferrin, leading to the same number of references. 

Outcome Measures 

To provide analytical robustness and in line with previous EAGG meta-analyses 4, 5, 17, 20, 

analyses of outcome domains were only considered reliable if at least five RCTs were available. 

The planned outcomes included: ADHD symptoms (total ADHD and inattention and 

hyperactivity/impulsivity symptoms separately), neuropsychological laboratory-based measures, 

measures of academic functioning, and rating of severity of symptoms of comorbid conditions (e.g., 

oppositional defiant disorder or anxiety disorders).  

Study Selection 

Retrieved references were independently screened and blindly double-coded for eligibility 

by Samuele Cortese and Maite Ferrin. Any disagreement was resolved by a senior author (Edmund 

Sonuga-Barke).  

Study bias assessment 

Study quality was assessed independently by pairs of raters from the authorship group using 

the Cochrane RoB 20. RoB domains included: selection bias, performance bias, detection bias, 

attrition bias, and other bias. Any disagreement was resolved through consensus. 

Data Extraction and Statistical Analysis  
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Trial information was entered into RevMan 5.3 21. Data extraction was independently 

performed and cross-checked by the first two authors. SMD was calculated as mean pre- to post-

treatment change in the intervention group minus the mean pre- to post treatment change in the 

control group, divided by the pooled pre-test standard deviation with a bias adjustment 22. SMDs for 

each trial were combined using the inverse variance method. Given the inherent heterogeneity of 

studies, random effects models were used. The I2 statistic was calculated to estimate between-trial 

SMD heterogeneity. When multiple measurements were available for an outcome, the most 

frequently reported outcome across trials or the outcome that was judged to better tap the core of 

the construct was selected. To be consistent with the EAGG protocol, we considered as probably 

blinded those outcomes rated by an individual who was likely unaware of treatment allocation. 

Most proximal ratings were based on assessors close to the therapeutic setting and often unblinded. 

These ratings typically constituted a trial’s own primary outcome measure and were therefore the 

assessment most available for analysis.  

Selection of most proximal and probably blinded ratings was based on independent 

judgements and consensus of three authors (Samuele Cortese, Maite Ferrin, Edmund Sonuga-

Barke). Where two or more probably blinded ratings were available (which was sometimes the case 

on sham controlled trials) what was deemed the best probably blinded outcome was selected for 

analysis, as in Cortese et al. 4. When there were two or more neuropsychological outcome measures, 

the one most frequently reported across the relevant trials was selected. Four sensitivity analyses 

were conducted. The first included only trials employing an active or sham control. The second was 

restricted to FBT trials. The third examined the effect of co-treatment with medication and was 

restricted to studies with no/low levels of medication (< 30% of participants on medication, as per 

EAGG protocol). The final sensitivity analysis included only studies meeting the criteria defining a 

standard neurofeedback methodology described by Arns et al. 19 (see Supplemental Text 2, 

available online). Meta-regression was conducted to assess the effects of number of training 

sessions. Publication bias was assessed with funnel plots and Egger’s tests. Analyses were 
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conducted using RevMan 5.3 21 and STATA 13.1 23.  

Results 

Thirteen trials 24-36  met entry criteria. Figure 1 presents the PRISMA selection flowchart. 

Supplemental Table S1, available online, provides a list of excluded papers with reasons for 

exclusion. Retained studies included a total of 520 ADHD subjects. Table 1 gives information about 

the characteristics of the retained trials. Results of all analyses are summarized in Table 2. There 

were less than five studies available to examine some of the planned outcomes such as working 

memory, parent ratings of executive functioning (e.g., Behaviour Rating Inventory of Executive 

Function 37), academic functioning (e.g., reading or arithmetic ability), or comorbid conditions (e.g., 

ODD, anxiety). Therefore, we did not perform analyses for such outcomes. 

When most proximal assessments were the outcome, there was a small-to-moderate (SMD < 

0.5) but significant effect on inattention, impulsivity/hyperactivity and total ADHD symptoms 

(Figure 2). In sensitivity analyses considering only trials with an active/sham control, the effects 

dropped to non-statistically significant levels for total ADHD and inattention symptoms. The effect 

was significant for hyperactivity/impulsivity but with a small effect size (SMD=0.25) and the 95% 

CI was wide (CI=0.03-0.47). When probably blinded outcomes were analysed, effects sizes for 

ADHD outcomes dropped further and none were significant (Figure 3). Results were also not 

significant when considering only probably blinded measures from trials with active/sham control 

(Table 2). When considering only trials with FBT, results were significant for ADHD total 

(SMD=0.37, 95% CI=0.09-0.64) and hyperactive/impulsive symptoms (SMD=0.26, 95% CI=0.06-

0.46) from most proximal raters, but not for ADHD inattentive symptoms or any ADHD symptoms 

rated by probably blinded assessors. There were insufficient trials (n=230, 32) for an analysis focused 

on SCP training (two studies also used both SCP and FBT 31, 33). When pooling only trials with 

no/low medication, results were significant only for ADHD inattentive symptoms, most proximal 

(SMD=0.59, 95% CI=0.31-0.88) and hyperactive/impulsive symptoms, most proximal (SMD=0.32, 

95% CI=0.06-0.58). 
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When the analysis was restricted to only the seven trials that met Arns et al. 19 criteria for 

use of standard protocol, the SMDs increased for most proximal outcomes although the 95% CIs 

were wide (Table 2). There were only three trials 27, 30, 31 that both employed a standard protocol and 

had probably blinded measures. In an exploratory analysis with these three trials, the effect on total 

ADHD symptoms was significant (SMD=0.36), although the 95% CI was large (0.04-0.69).  

 The analysis of neuropsychological outcomes required the pooling of diverse 

neuropsychological measures within general domains (Table 1). Effects on laboratory measures of 

inhibition (SMD=0.30, 95% CI= -0.10-0.70), and attention (SMD=0.13, 95% CI= -0.09-0.36) were 

not significant. 

Direct evidence that neurofeedback training led to learning was gathered in only four trials 

27, 29, 33, 36 and was positive for just one 27. In one study 29 there was a partial learning effect. In 

Heinrich et al. 32 there was indirect evidence of learning: the increase of the contingent negative 

variation (a slow cortical potential) suggests that children learned what was trained. 

Studies varied considerably in terms of risk of bias (Supplemental Figures S1 and S2, 

available online). For approximately half of the RoB domains across studies, the level of risk was 

unclear. For those categories that could be determined, eight trials were rated as having a high risk 

of bias in at least one domain. In general, the major concern (i.e., high risk of bias) related to 

blinding of participants, personnel, and assessors. Among “other bias”, funding was not clearly 

stated in a sizable portion of studies.  

Funnel plots and Egger test results (Supplemental Figures S3-S4, available online) 

suggested little evidence of publication bias although the number of trials was insufficient to 

establish a reliable estimate. Finally, meta-regression analyses did not support a relationship 

between number of training sessions and most proximal or probably blinded outcomes 

(Supplemental Figures S5 and S6, available online).  

 

Discussion  
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The rationale for the use of neurofeedback for ADHD rests on the idea that promoting 

normalization or self-regulation of brain activity will translate into improved cognitive and 

behavioural control that is deficient in individuals ADHD. A previous meta-analysis 17, based on a 

limited number of trials (n=8), was inconclusive with regard to the efficacy of neurofeedback for 

ADHD symptoms. Although there were moderate but highly significant effects (SMD=0.59; 95% 

CI=0.31-0.87) for ADHD outcomes rated by most proximal assessors, these were not significant 

when only probably blinded outcomes were considered (SMD=0.29; 95% CI: -0.02 -0.61). The 

current meta-analysis, including an additional five RCTs, provides what is likely to be a more 

reliable estimate of the effects of neurofeedback for ADHD. Importantly, the additional statistical 

power also allowed us to explore the impact of neurofeedback type, the effect of type of control, the 

impact of number of NF sessions, and the value of using standard neurofeedback procedures. 

Although it does not provide a definitive statement as to the value of neurofeedback, the current 

analysis has clarified a number of issues. 

In general, the effect size estimates in the current analysis are substantially smaller 

compared to the previous one by Sonuga-Barke et al. 17. This is due to the smaller effect sizes 

reported in the most recent trials, not included in Sonuga-Barke et al. 17. For instance, SMDs 

dropped for most proximal and probably blinded total ADHD outcomes by 41% and 49%, 

respectively – although the analysis based on most proximal ratings of ADHD core symptoms 

remained significant. Crucially, as in the previous meta-analysis 17, when the risk of biased effect 

size estimates was reduced either by selecting probably blinded outcomes or limiting analysis to 

trials with a high-quality control arm (sham or active), effects were no longer significant. 

Importantly, and in contrast to previous meta-analyses 15, 18, there was no evidence for a particular 

benefit with regard to inattention symptoms – which have previously been hypothesized to be more 

amenable to neurofeedback. This was also reflected in our failure to find effects on laboratory 

measures of attention such as the continuous performance test.  
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 Previously, Sonuga-Barke et al. 17 have argued that the substantial drop in SMDs between 

most proximal and probably blinded analyses is likely to be result of biases in perception in favour 

of the active treatment when one relies on observations by raters aware of treatment allocation.  

However, there are some other explanations. For instance, it is possible that probably blinded 

ratings are, for some reason, less sensitive to change than most proximal measures – perhaps either 

because of the instruments used or the person rating. Teachers, for instance, may be less sensitive to 

change than parents. However, essentially the same questionnaires were completed by both these 

types of raters. It is also possible that proximal ratings accurately reflected real improvements in the 

setting where the treatment was delivered but these effects failed to generalise to more distal 

settings where blinded measures were recorded. This explanation seems unlikely as probably 

blinded measures were collected in the treatment setting also for some trials and these followed the 

same pattern. The type of neurofeedback protocol implemented in the trials did not seem to be an 

important factor in determining the results. When we restricted the analysis to trials using some 

form of FBT such as that focusing on alteration of the ratio between slow theta and faster beta 

oscillations, there was no increase in the effects of treatment. There was an insufficient number of 

trials (n=2) 30, 32 using SCP training exclusively to state any firm assertion about this approach. The 

results raise the question of whether current training protocols have the appropriate treatment target. 

For instance, the developmental stability of EEG frequency band alterations in ADHD from 

childhood into adulthood have been questioned 11, 38, 39, while the most commonly observed ADHD 

effects with regard to evoked brain responses relate to early rather than later components not 

targeted in current neurofeedback protocols. Therefore, the rationale for theta-beta feedback have 

been very critically discussed (e.g., 9, 40).  

The value of a treatment meta-analysis is of course constrained by the methodology of the 

trials they include. It is, therefore, possible that the results of our meta-analysis reflect the 

methodological weaknesses of the included studies rather than the weakness of neurofeedback as 

such. Indeed, the current set of 13 trials, taken as whole, had a number of methodological short-



 

 

13 

comings. First, only four studies tested 27, 29, 33, 36, and then just one 27 reported directly and 

positively, whether neurofeedback training had actually led to learning as indexed by 

changes/improvement at the electrophysiological level. In the one positive trial 27, the mediating 

role of changes in the electrophysiological signature leading to changes at symptom level was not 

investigated. This is a crucial point because if neurofeedback cannot bring about the expected 

changes at the neural level, then treatment effects are more likely to be artifacts of some other non-

specific aspect of the training. Such a situation may be similar to cognitive training targeting but not 

improving working memory, or to a drug with an established neurotransmitter profile not reaching 

the corresponding neural target system in the patient's brain. On the other hand, tests for learning of 

neural self-regulation, and addressing relations between learning and  clinical improvement, would 

also need to consider more complex models and alternative mechanisms, for example allowing for 

initial, delayed, and nonlinear types of learning and translation 41, before concluding that effects are 

non-specific. Further research should address whether possible neuronal modifications underpin 

putative behavioral changes in ADHD symptoms following neurofeedback.  

A number of groups have defined what constitutes a standard neurofeedback protocol in 

terms of the number of training sessions, the reinforcement parameters operating, the EEG montage 

etc. (see Vernon et al. 2004 42 for a justification). Interestingly only 54% of the studies in the 

current analysis met such a threshold. When we restricted the analysis to that subset of trials our 

results were somewhat mixed – the effect size for total ADHD and inattention increased by about 

20%; however, for all most proximal outcomes, 95% CIs were wide and close to non significance. 

Unfortunately, there were only three studies with a standard protocol including probably blinded 

ratings 27, 30, 31, so that firm conclusions on the value of standardised protocols as defined by Arns et 

al. 19 cannot be drawn. In addition, the level of methodological rigour specifically related to RCT 

conduct, as explored by the RoB, was in general unclear. The level of blinding was unclear or 

insufficient in many studies. Additionally, one particularly striking omission in the majority of trials 

was the report of possible potential conflicts of interest. This would seem to be a major oversight in 
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the current literature, given the growing presence of neurofeedback training companies in the 

commercial treatment marketplace. Given these limitations, it seems that without evidence for the 

learning of self-regulation and given the wide spread use of non- standard neurofeedback protocols 

it is hard to draw definitive conclusions about the ultimate value of neurofeedback approaches.  

EAGG have also recently completed meta-analyses for behavioural interventions and 

cognitive training using the same core protocol as used here 4, 5. There are striking similarities but 

also some differences between the results of the present meta-analysis and those from these recent 

EAGG meta-analyses. In terms of effects on ADHD symptoms, neurofeedback, cognitive training 

and behavioural interventions show almost identically sized positive and statically significant 

effects on total ADHD symptoms scores rated by most proximal assessors (SMD: behavioural 

interventions=0.35; cognitive training=0.37; neurofeedback=0.35). Furthermore, in all three cases, 

the effects drop substantially to non-significant levels when probably blinded outcomes are used. 

This is more evident for behavioural interventions where the effects drop to zero but is also 

substantial for neurofeedback and cognitive training (SMD=0.15 and 0.20 respectively). However, 

one quite striking difference between the three meta-analyses is that both behavioural interventions 

and cognitive training had predictable positive effects on outcomes other than ADHD. For instance, 

for working memory training, there were highly significant effects on neuropsychological measures 

of working memory, while behavioural interventions improved parenting rated by independent 

observers and had positive effects on probably blinded measures of conduct problems. By contrast, 

we did not find evidence for effects of neurofeedback on neuropsychological outcomes.  

Caution is required when interpreting these findings given a number of limitations, in 

addition to the issues raised with regard to the nature of the trials above. First, effects size estimates 

may be inflated because of the failure to report intention to treatment analyses in most trials. 

Second, there were insufficient trials measuring important outcomes such as working memory task 

performance, academic skills, general functional impairment, IQ and other mental health problems 

such as conduct problems. Third, few trials included long-term outcomes (see Table 1) to allow an 
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evaluation of the extent to which effects on clinical symptoms grew over time or effects on 

neuropsychological processes persisted. Fourth, no trial recruited subjects based on the presence of 

ADHD-related deficits in EEG signature (i.e., altered theta-beta ratio). This may limit the chance 

for neurofeedback related improvements in symptoms. Fifth, it was necessary to pool data from 

diverse measures from different tasks to have sufficient trials to analyse neuropsychological 

functions. Although in principle the pooled measures tapped the same neuropsychological domain, 

this inevitably was a somewhat arbitrary process which likely increased SMD heterogeneity. 

Additionally, ADHD is a pathophysiologically heterogeneous disorder and distinct EEG subtypes 

have been described (e.g., cortical hyperarousal vs. hypoarousal subtypes). Patients might require 

more specific and tailored training targeting different deficits associated with ADHD. Combining 

different neuroimaging approaches with NF training might be a useful approach in the future.

 Finally, the range of number of sessions across studies may have been too restricted to allow  

the detection of possible effect of session number. 

 In summary, the current meta-analysis shows that evidence from well controlled and with 

probably blinded outcomes does not support neurofeedback as an effective treatment for ADHD– 

either in terms of ADHD symptoms or other cognitive correlates. Future research should focus on 

(i) identifying the most appropriate electrophysiological treatment target; (ii) increasing the use of 

standard EEG and learning protocols (iii) developing new methods to optimise the chances that 

neurofeedback leads to learning at the brain level and (iv) identifying predictors of treatment 

response for individual patients or at least in distinctive subgroups of children.  
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Table 1. Characteristics of studies included in the meta-analysis. Studies are listed in alphabetical order.  

TRIAL A DESIGN TRAINING SAMPLE OUTCOMES 

 Control 
Type 

NF 

Standard 

Protocol  B 

N 

sessions 

Follow-

up 

(months) 

N C 

t 

c 

meds (%) 

t 

c 

age 

(mo.) 
ADHD symptoms     Neuropsychological outcomes 

 
    

    
M- 

PROX 

P- 

BLIND 

Inhibitory  

control 
Attention 

Arnold 

(2012) 26 

 

Sham 

placebo D 

 

FTB E no 40  

 

2 

 

25 

11 

0  

0 
72-144 Parent Teacher  

 

        BRC 

Bakhshayesh 

(2011) 27 

 EMG 

biofeedback 
  FTB  yes  30  

 

6 F 

 

18 

17 

22 

18 

 

72-168  
Parent Teacher 

CPT 

(commission) 

 

CPT (omission) 

Beauregard 

(2006) 28 

 No 

treatment 
 FTB G yes  

 

40  

 

 

N/S 

 

15 

5 

0 

0 
96-144  Parent  

Counting 

Stroop 

(interference) 

CPT (integrated 

visual and 

auditory) 

Bink  

(2014) 29  
 TAU FTB H no 

 

37  

 

 

12 

 

45 

26 

 44.4 

 61.5 

193.2 

±39.6 

(T) 

194.4 ± 

40.8(C) 

Parent  
Colour Stroop 

(Interference) 

D2 attention 

(total correct) 

Christiansen  

(2014) 30 

 

 Self-manag. SCP  yes  30  

 

     12 

 

 

58 

(tot.) 

23 I, L 101.04 

± 16.08  
Parent Teacher  

 

 

 

Gevensleben  

(2009) 31  

 

AT 

SCP 

plus 

FTB M 

yes  

 

36 

 

 

6  

 

59 

35 

8.5 

2.9 

118 

±15 (T) 

112 ± 

14 (C) 

Parent Teacher 

ANT, 

Orienting  

(data from 46, 

that refers to 

the same 

sample of 31) 

ANT,  

Conflict 

(data from 46, 

that refers to the 

same sample of 
31)  
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Heinrich  

(2004) 32  

  

WL 

 

SCP N yes 

 

25 

 

 

N/S 13 

9 

46.1 

44.4 

 

90-165 

 

Parent  
CPT 

(commission) 

 

CPT (omission) 

Holtmann 

(2009) 25 
 AT O FTB N 

 

yes 

 

 

20 

 

 

N/S 
20 

14 
79.4 P 

123.6± 

14.4 

mean  

Parent  
Stop Signal 

Task  

 

 

 

Linden 

(1996) 24 
 WL FTB  yes 

 

40 

 

 

N/S 
8 

6 

0 

0 

 110 

(mean) 
Parent   

 

Maurizio 

(2014) 33 

EMG 

biofeedback 

SCP 

plus 

FTB Q 

no 

 

36 

 

 

N/S 
13 

12 

7.6 I 

8.3 I 

102 -

154.8  

 

Parent Teacher  
D2 attention 

(total score) 

Steiner 

(2011) 34 R 
 AT O, WL  S FTB H no 

 

23 

 

 

N/S 
9 

11 
60 

148.8±

10.8 
Parent Teacher  

 

Steiner 

(2014) 35 

 

CT, WL S 

 

FTB H no 

 

40 

 

 

6 T 

 

34 

34 

44.1 

41.1 

100.8±

13.2 

(T) 

106.8±

12.0 
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Parent BOSS  

 

VanDongen 

(2013) 45 

Vollebregt  

(2014) 36, U 

  

Placebo NF 

 

FTB  V 

 

no 

  

 

30 

 

 

6 Z 

 

22 

19 

54.5 

73.7 

126.0±

26.4 

(T) 

128.4±

27.6 (C 

Investi

gator 
Teacher  
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NOTES:  

ANT: Attention Network Test; AT: attention training; BOSS: Behavioral Observation of Students in Schools; BRC: brain resource center computer 

based normed neuropsychological test; C: Control Group; CPT: continuous performance test; CT: cognitive training; EMG: electromyography; 

FTB; frequency theta/beta; NF: neurofeedback; SCP: Slow Cortical Potential; SMR: sensory motor rhythm; SST: Stop Signal Test; TAU: Treatment 

As Usual; WL: waiting list 

 
A In alphabetic order, followed by study reference number; B Standard methodology described in 19; C N is the number of individuals in the 

Treatment (T) and Control (C) conditions; D Equal intensity and duration; E  Cz vs ears; F Results of the follow-up were not published in this paper; G 

SMR+beta; ; H SMR; I Children were off medication 48 h prior to all the assessments; L Number in each group not specified; M SMR+beta  Cz-ears; 
N Calculated from Cz vs mastoids; O standard computer format; P A total of n=27 were medicated (not indicated how many in each group); Q 

B=beta, LORETA Tomography; R  We used Parent#1 since parent #2 measures were available for a smaller sample (n=9 for parent #1 and n=5 for 

parent #2 in NF and n=11 for parent #1 in n= 9 for parent #2 in the waiting list group); for a discussion of the outcomes selected from this study, 

please see 47 and 48;  S: The WL arm was used as comparator in the analyses;  T The results of the follow-up phase were published in 43; U These two 

papers refers to the same study and present analyses on different outcomes; V Individualized, mainly T/B, B=SMR; Z data only reported at endpoint 

(15 weeks) 
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Table 2. Summary of results. Pooled standardized mean differences (SMD) for each outcomes. 

Positive SMDs indicate that neurofeedback is more efficacious than control condition. 

Outcome 

Trials 

included 

Measure 

Number 

of trials 

Effect of Intervention Heterogeneity 

    SMD 95% CI p I2 p 

ADHD symptoms 

Total 

All 
MPROX 13 0.35 0.11, 0.59 0.004 41 0.06 

PBLIND 8 0.15 -0.08, 0.38 0.20 0 0.74 

Active/sham  
MPROX 7 0.22 -0.08, 0.52 0.14 35 0.16 

PBLIND 6 0.20 -0.05, 0.45 0.12 0 0.66 

FBT 
MPROX 9 0.37 0.09, 0.64 0.01 36 0.13 

PBLIND 5 0.03 -0.29, 0.35 0.84 0 0.76 

Low 

medication 

MPROX 7 0.39 -0.01, 0.79 0.05 48 0.08 

PBLIND 5 0.26 -0.01, 0.54 0.06 0 0.76 

Standard 

Protocol 
MPROX 7 0.45  0.02, 0.88 0.04 53 0.05 

inattention 

All 
MPROX 11 0.36 0.09, 0.63 0.009 43 0.07 

PBLIND 7 0.06 -0.24, 0.36 0.70 41 0.12 

Active/sham 
MPROX 6 0.26 -0.10, 0.63 0.16 49 0.08 

PBLIND 5 0.21 -0.09, 0.50 0.17 16 0.31 

FBT 
MPROX 9 0.33 0.00, 0.67 0.05 51 0.04 

PBLIND 5 -0.04 -0.37, 0.28 0.79 19 0.29 

Low 

medication 
MPROX 6 0.59 0.31, 0.88 0.0001 0 0.63 

Standard 

Protocol 
MPROX 5 0.55 0.01, 1.09 0.05 58 0.05 
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hyper/imp 

All 
MPROX 10 0.26 0.08, 0.43 0.004 0 0.80 

PBLIND 7 0.17 -0.05, 0.39 0.13 0 0.59 

Active/sham 
MPROX 6 0.25  0.03, 0.47 0.03 0 0.92 

PBLIND 5 0.15 -0.11, 0.41 0.26 0 0.80 

FBT 
MPROX 8 0.26 0.06, 0.46 0.01 0 0.62 

PBLIND 5 0.15 -0.15, 0.44 0.33 6 0.37 

Low 

medication 
MPROX 5 0.32 0.06, 0.58 0.02 0 0.44 

Neuropsychological Test Performance 

attention  
All objective 8 0.13 -0.09, 0.36 0.26 0 0.72 

FBT objective 5 0.11 -0.16, 0.38 0.43 0 0.76 

inhibition  All objective 6 0.30 -0.10, 0.70 0.15     56 0.05 

 

NOTES:  

Significant effects are bolded 

There were insufficient ( n < 5) trials for: standard NF, PBLIND tot (n=3), PBLIND In (n=3); 

Standard protocol, MPROX, hyp/imp (n=4) and PBLIND (tot, In, hyper/imp) (n=3); FBT, 

inhibition (n=4 trials); low medication, Inattention, PBLIND (n=4) and Hyp/imp, PBLIND, (n=4). 

“All” = all trials meeting inclusion criteria with available measures; “active/sham” = only trials with 

an active/sham control arm; CI: confidence interval; FBT = trials using a version of frequency band 

training including theta-beta ratio training. MPROX: most proximal rater; PBLIND: probably 

blinded rater; SMT: Self-management Therapy; TAU: treatment as usual  
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FIGURES TITLES  

Figure 1. PRISMA flow diagram of selection of studies (last search updated on August 30th, 

2015). 

NOTE A  Reasons for exclusion of each paper are reported in Table S1 ; B Four papers in the search 

(29, 35,  36, 46) refer to the same sample of other 4 (44, 43, 45, 31, respectively)  

 

Figure 2. Forest plots for meta-analysis of effects on ADHD core symptoms assessed by most 

proximal (MPROX) raters. 

NOTE a: ADHD total symptoms; b: inattentive symptoms; c: hyperactive/impulsive symptoms 

SMD: standardized mean difference 

 

Figure 3. Forest plots for meta-analysis of effects on ADHD core symptoms assessed by 

probably blinded (PBLIND) raters. 

NOTE a: ADHD total symptoms; b: inattentive symptoms; c: hyperactive/impulsive symptoms 

SMD: standardized mean difference 
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SUPPLEMENTAL FIGURES TITLES  

 

Figure S1. Cochrane risk of bias tool: Graphic output 

Figure S2 . Cochrane risk of bias tool: characteristic of included studies 

Figure S3. Funnel Plots and Egger’s Tests for Meta-Analyses of Effects of Neurofeedback on 

Attention-Deficit/Hyperactivity Disorder (ADHD) Core Symptoms (Most Proximal and Probably 

Blinded Measures): Most Proximal Measures (MPROX) 

 

Figure S4. Funnel Plots and Egger’s Tests for Meta-Analyses of Effects of Neurofeedback on 

Attention-Deficit/Hyperactivity Disorder (ADHD) Core Symptoms (Most Proximal and Probably 

Blinded Measures): Probably blinded measures (PBLIND) 

 

Figure S5. Results of the Meta-Regression Analysis to Assess the Relationship Between Number of 

Neurofeedback sessions and Standardized Mean Difference (SMD) for Most Proximal and Probably 

Blinded Assessment of Attention-Deficit/Hyperactivity Disorder (ADHD) Core Symptoms: Most 

Proximal Measures (MPROX) 

 

Figure S6.  Results of the Meta-Regression Analysis to Assess the Relationship Between Number of 

Neurofeedback sessions and Standardized Mean Difference (SMD) for Most Proximal and Probably 

Blinded Assessment of Attention-Deficit/Hyperactivity Disorder (ADHD) Core Symptoms: 

Probably Blinded Measures (PBLIND) 

 

 


