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Introduction
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Chapter 1. Introduction

A prominent characteristic of human cognition is its versatility. We are

capable of rapidly adapting to the changing internal and external environ-

ments that we perpetually encounter. We can swerve to avoid an unobser-

vant driver, hit a baseball, make mental calculations to split a bill in a noisy

restaurant, and maintain focus while taking an exam. This versatility is be-

lieved to depend on certain neural processes that dynamically tune sensory,

perceptual, motor, and other internal mechanisms to assist in completion

of internalized objectives. It involves the regulation, coordination, and se-

quencing of thoughts and actions (Braver, 2012) - and is known as cognitive

control. Cognitive control is pervasive to adaptable human behavior, and as

such is conceptually broad, encompassing multiple cognitive domains. These

include, but are not limited to, updating and maintaining of contextually

relevant information, attentional allocation, monitoring of performance, and

activation or inhibition of appropriate or inappropriate behaviors (Miller and

Cohen, 2001; Verbruggen et al., 2014).

In this introductory chapter, I expand upon this concept of cognitive

control as arising from two di↵erent modes of control; reactive and proac-

tive. Next we introduce response inhibition as a core mechanism in cognitive

control research. We focus on response inhibition because it is an impor-

tant facet of human cognition and is further implicated in a diverse range of

cognitive dysfunctions, diseases, and disorders (e.g., Parkinson’s disease, de-

pression, attention deficit hyperactivity disorder (ADHD), substance abuse,

and a variety of anxiety disorders - Chambers et al., 2009; Bari and Robbins,
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Chapter 1. Introduction

2013). Further, I discuss the relationship between motivation and attention

in response inhibition - a traditionally overlooked aspect. Lastly, I explain

some of the the di�culties involved in researching proactive control as it re-

lates to response inhibition and the methodologies that we used to overcome

these di�culties to arrive at meaningful conclusions.

1.1 Reactive and proactive control

Cognitive control is typically investigated using response conflict paradigms

such as the Stroop (Stroop, 1935), flanker (Eriksen and Eriksen, 1974), or

Simon (Simon and Rudell, 1967) tasks. These tasks influence the necessity

of control by artificially creating situations in which attaining a task-relevant

goal is easily disrupted by task-irrelevant distractors. For example, in the

Stroop task, color words such as “green” or “red” are presented to a partici-

pant in various ink colors, and subjects must name the ink color. The target

stimulus (ink color) can correspond either to the same response as the target

(congruent trials; e.g., red ink and the word “red”) or to the alternative re-

sponse (incongruent trials; e.g., red ink and the word “green”). Incongruent

trials (but not congruent trials) elicit conflict likely due to the automaticity

with which we read words, and enhanced control is required to override the

tendency of responding with the printed color name in order to deliver a

response of the ink color. If, for example, the authorities switched the red

“don’t walk” signs to green “don’t walk” signs and vice versa overnight, it

3



Chapter 1. Introduction

would not be a good morning for pedestrians.

One dominant proposal in the field is that such cognitive control processes

involve two broadly-defined components; the monitoring for conflict and re-

sponse implementation (Botvinick et al., 2001; Botvinick and Cohen, 2014).

Monitoring for conflict is a process in which higher-level goals (“respond to

the ink color”) are in juxtaposition with irrelevant (“respond to the word”)

response tendencies that need to be detected quickly and filtered accordingly.

This process can, in one sense, be described as a “reactive” control process,

such that control is engaged in reaction to the detection of conflict (Botvinick

et al., 2001; Braver, 2012). Control may also be enacted “proactively” by

a top-down goal directed strategy, and this is associated with stimulus ex-

pectancy and hence response expectancy, and might possibly operate (in

some circumstances) independently of conflict monitoring. For example, a

top-down attentional bias signal could focus attention on the ink color in

a Stroop task, thus enabling subjects to name the ink color instead of (in-

correctly) reading the word. Such biasing signals that direct performance

based on a current task set or goal is an essential component of cognitive

control. The proactive and reactive frameworks described above build upon

models that distinguish between early expectation signals and late corrective

processes (e.g., Braver, 2012), and are aimed at fully encompassing the rich

complexity of cognitive control.

4



Chapter 1. Introduction

1.2 Basics of response inhibition

Another related hallmark of cognitive control research is response inhibition,

and this is not without reason. Response inhibition can broadly be defined as

the process by which a prepotent, routine, or dominant response is withheld.

It is a key component of successful cognitive control due to its suppressive

nature. Adaptive and contextually appropriate motor functioning requires

complex coordination between motor activation and inhibition networks. In-

hibitory mechanisms specifically play a fundamental role in typical cogni-

tive functioning, development, and are implicated in a range of neurological

and psychiatric conditions (Chambers et al., 2009). For example, obsessive-

compulsive disorder (OCD) is a dysfunction in which su↵erers are unable to

defocus intrusive thoughts or inhibit compulsive behaviors, and they further

show deficits in response inhibition tasks.

In a laboratory setting there are multiple tasks used to study response

inhibition. The most influential paradigms are the go/no-go task (Drewe,

1975), the anti-saccade task (Hallett, 1978), and the stop-signal task (Logan

and Cowan, 1984; Verbruggen and Logan, 2009a). To properly engage a

response inhibition process, a task must require the cancellation of a move-

ment that is prepotent and/or already initiated (Aron et al., 2014; Bari and

Robbins, 2013). This is achieved in di↵erent ways in the di↵erent tasks.

In the go/no-go task, frequent go trials and a regular fast pace of the task

strongly emphasize the execution of a response, which is then prepotent also
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Chapter 1. Introduction

during no-go trials, leading to a significant number of errors of commission.

In the antisaccade task, the prepotency of an inappropriate relies on the au-

tomatic nature in which our eyes are drawn to a peripheral stimulus, which

participants have to look away from. Yet, here we will focus on the stop-

signal paradigm as it arguably can modulate motor prepotency in the most

controlled fashion and has been highly successful in quantifying the latency

and e�ciency of response inhibition, and to investigate its underlying neural

processes (e.g., Aron, 2011; Huster et al., 2013), which has made it a vastly

popular tool both in basic as well as in clinical research (Kenemans, 2015;

Verbruggen and Logan, 2008).

In the stop-signal task, a go-stimulus requiring a rapid choice-reaction

(respond with one button to stimulus A and with another for stimulus B)

is infrequently followed in rapid succession by a stop-stimulus, signaling the

participant to halt the initiated response (see Chapters 2 and 3 for a proto-

typical example). There are (for now) two critical (and related) observations

to be made in such a task; (i) subjects can inhibit their responses to a go-

signal if the stop-signal arrives close in time relative to the go-signal, and

(ii) subjects cannot inhibit their responses if the stop-signal arrives at a time

further from the go-signal (and hence closer to response execution). These

observations are critical as they put constraints on the types of mathematical

models that can account for the data. A very influential model was proposed

in Logan and Cowan (1984), and is known as the independent horse-race

model. This model assumes that a race between a go process (triggered

6



Chapter 1. Introduction

by the go-signal) and a stop process (triggered by the stop-signal) occurs,

and that the relative finishing times of the processes are determinants of

inhibitory behavior in a given trial. The stop-process latency (“stop-signal

response time”; SSRT) is covert, but can be recovered by assuming such a

stochastic model (Verbruggen and Logan, 2009a). Specifically, the duration

of the stop-process can be derived from the proportion of successful stop trials

and the distribution of response times on go-trials (Verbruggen et al., 2013).

However, as is noted in Elchlepp et al. (2016) and Verbruggen and Logan

(2015), SSRT is not purely reflective of a unitary motor-related inhibitory

process, but necessitates the involvement of other cognitive systems, which

previews a central theme in this dissertation.

1.3 Neural components of reactive response

inhibition

The neural underpinnings of response inhibition have been studied exten-

sively, in particular in human neuroimaging, animal models, and in human

brain dysfunction. To expand on the latter point, inhibitory deficits are

well recognized in patients with frontal lobe trauma (e.g., Stuss and Alexan-

der, 2000), and neuroimaging studies suggest that these response inhibition

deficits in OCD are underpinned by physiological abnormalities within fronto-

striatal circuits (e.g., Herrmann et al., 2003). Furthermore, patients with

frontotemporal dementia show impairments associated with response inhibi-
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Chapter 1. Introduction

tion (Rubia et al., 1999), and activation is sometimes attenuated in patients

with attention deficit hyperactivity disorder (ADHD) and addictions (Seeley

et al., 2009).

Most research has focused on reactive response inhibition, and so we will

briefly discuss the major components thought to be involved in reactive re-

sponse inhibition (Chambers et al., 2009). Ample evidence has been put

forth using functional magnetic resonance imaging (fMRI) that the right

inferior frontal cortex (rIFC) is critical for inhibitory behavior (e.g., Bari

and Robbins, 2013; Chikazoe, 2010), and further with electrocorticography

(ECoG) that such activity is present before the stop-process ends (Swann et

al., 2013). See Swick et al. (2008) and Levy and Wagner (2011) for a discus-

sion of the possible subregions of the rIFC that are thought to be activated.

It has been proposed (Aron et al., 2004) that the rIFC signals inhibition

directly via the subthalamic nucleus (STN), and possibly acts by increasing

� synchronization between the two areas (based partially o↵ evidence from

deep brain stimulation in Parkinson’s disease patients - Kühn et al., 2004;

Schall and Godlove, 2012). It is further suggested that there exist di↵erent

pathways for the go-signal and the stop-signal in relation to movement acti-

vation (striatum) and inhibition (STN). Some of the strongest evidence for

this is seen in a rodent study (Schmidt et al., 2013) in which they demon-

strate that two key basal ganglia pathways for action control resemble a race

between a go-process and a stop-process. Downstream target neurons that

project to systems important for control of orienting movements showed both
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Chapter 1. Introduction

movement-related pauses (provoked by the striatum - direct pathway) and

rapid increases in firing rate following stop-signals (provoked by the STN -

hyperdirect pathway), which corresponded to outright stopping success. In

this sense it is thought that the hyperdirect pathway cancels the movement

initiated by the direct pathway. While there is a strong focus on the rIFC-

STN axis, it is important to note that the presupplementary motor area

(preSMA) is also implicated in stopping (Duann et al., 2009). The preSMA

is functionally and structurally connected with the rIFC, and it is not yet

clear whether the rIFC triggers the STN directly, or via the preSMA.

1.4 Specificity of response inhibition network

It has been suggested that inhibitory theories of rIFC are over-specified be-

cause they do not explain the contributions that the inhibitory module makes

to broader cognition (e.g., Hampshire and Sharp, 2015b; Schall and Godlove,

2012). A possible limitation for the inhibitory perspective of rIFC function

is that the tasks used do not control for potentially confounding cognitive

demands. Thus, the possibility exists that activations seen in inhibitory

paradigms do not equate to proof of an involvement in neural inhibitory pro-

cesses, and could be explained by other mechanisms. Numerous studies iden-

tify rIFC with functions other than response inhibition (e.g., Erika-Florence

et al., 2014; Corbetta et al., 2008; Hampshire and Sharp, 2015a). rIFC is

consistently implicated in stimulus driven attentional capture (Asplund et
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Chapter 1. Introduction

al., 2010) and this activation scales with the degree of stimulus unexpected-

ness (Shulman et al., 2009). In general, rIFC is often implicated as part of

a network involved in orienting attention toward salient stimuli. Specific to

the stop-signal task, activation of rIFC may be caused by cognitive functions

such as attentional capture (Hampshire et al., 2010) or violations of event

expectations (Zandbelt et al., 2013). However, it has also been argued (Aron

et al., 2014) that any stimulus that is surprising, salient, or infrequent will

recruit motoric inhibition, in that the tasks might have hidden inhibitory de-

mands - and that this might be very fluid across di↵erent situations and tasks

that invoke a wide range of unexpectedness, in turn causing a suppressive

e↵ect that is inherent to behavioral and even cognitive functioning (Wessel

and Aron, 2017).

1.5 Proactive inhibition

To add to this complexity, a growing amount of interest in proactive response

inhibition has recently been seen, which describes the tendency of slowing

down responses when outright stopping might be required. Proactive re-

sponse inhibition is often considered potentially more ecologically relevant

given that it relates to a common phenomenon of response caution in uncer-

tain environments rather than exclusively on imperative stimuli that might

not always be available in everyday life (Aron, 2011). Proactive response

inhibition likely relates to di↵erent modes of response caution in typical ev-

10



Chapter 1. Introduction

eryday situations and is probably related to expectation of event occurrence.

For example, Go-trial response times are known to slow after a stop-trial

(e.g. Ray Li et al., 2006) and furthermore recent computational work us-

ing hidden Markov models has shown that response time on go-trials scales

with the trial-wise computation of a “subjective” stop-expectancy (Ide et

al., 2013). Consistently, more proactive response inhibition is observed, the

higher the proportion of stop-stimuli in a given task (e.g., Jahfari et al., 2010;

Logan and Burkell, 1986). Further theoretical modeling has related this ef-

fect to an increased decision threshold of the go-process (e.g., Verbruggen

and Logan, 2009b), and a range of fMRI studies have implicated the (reac-

tive) response-inhibition network in this process as implementing “gradated”

response inhibition (Aron et al., 2014). It has further been proposed that

proactive inhibition involves an additional basal ganglia circuit (e.g. Frank

et al., 2007).

1.6 Attention and motivation in proactive re-

sponse inhibition

Given the role that attention plays in other cognitive control paradigms

(Braver, 2012), it is not unlikely that it might play a part in response in-

hibition. Indeed, recent behavioral research has highlighted a possible role

of earlier sensory processes in response inhibition (Bari and Robbins, 2013;

Logan and Cowan, 2014; Verbruggen et al., 2014; Huster et al., 2014; Elch-

11



Chapter 1. Introduction

lepp et al., 2016). Consistent with such notions, di↵erences in the attentional

processing of stop-stimuli have been found to contribute to the behavioral

outcome in the stop-signal task, with increased attention to the stop-stimulus

being associated with successful (assumed to be reactive) response inhibition

(e.g. Bekker et al., 2005; Boehler et al., 2009; Bengson et al., 2012), see

Kenemans (2015) for a review.

Findings furthermore suggest that attentional processes may also be im-

plicated in proactive response inhibition. Given that attention plays such an

important role in other domains of proactive control, this seems quite natural.

The same magnetoencephalograpic data that reported an increase in atten-

tional processing (indicated by the event-related N1 component, believed to

index the level of attentional discrimination of a visual stimulus (Hopf et al.,

2002), of the stop-stimulus when successful, additionally suggested that the

attentional processing of the go-stimulus in a stop-trial is enhanced when

response inhibition is ultimately unsuccessful (Boehler et al., 2009). This

di↵erential processing of the go-signal took place before the processing of the

stop-signal, suggesting that stopping success relies, at least partially, already

on the perceptual processing of the go-stimulus. Due to the lack of an imper-

ative stimulus about response inhibition, this e↵ect likely reflects a proactive

process that already plays out in go-stimulus processing, and suggests a role

of controlled attentional processing also in proactive response inhibition.

The question of how motivational factors may influence proactive pro-

cesses, as is noted in Schall and Godlove (2012), is particularly interesting,

12



Chapter 1. Introduction

due to possible motivational e↵ects on attentional processes. Recently a se-

ries of studies was reported in which associating reward with one of two

possible stop-stimulus colors also led to shorter SSRTs, despite the fact that

any di↵erence in global preparation was precluded since reward-related tri-

als were presented in a random sequence together with all other trial types

(Boehler et al., 2012; Boehler et al., 2014). In an EEG version of this exper-

iment, it was demonstrated that enhanced attention to the reward-related

color seems to play a role in bringing about the reward-related SSRT benefit

(Schevernels et al., 2015). This experiment featured task blocks that were

devoid of any reward associations. Using these trials as a comparison, it was

demonstrated that the sensory/attentional N1 component to the go-stimuli

of stop-trials was enhanced throughout the reward-related block. Given that

reward was exclusively related to stop-stimuli, this e↵ect on the go-stimuli

(of stop-trials) was considered a context e↵ect in the sense that attention is

increased globally (Jimura et al., 2010). This set of findings highlights that

reactive response inhibition is amenable to motivational manipulations, with

the EEG data suggesting that this might be achieved through attentional

mechanisms. Given the e↵ect also on go-stimulus processing, these e↵ects

seem to again be partly proactive in nature.

13
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1.7 Outline

The literature review above paints a multifaceted picture of response inhi-

bition, with clues that both reactive and proactive response inhibition also

depend on a↵erent processes pertaining to the level of attentional deploy-

ment to the task stimuli, and to motivational factors. Given the central

role that response inhibition (deficits) play in basic research and in common

brain-related disorders, a better understanding of the full process structure

seems important. The research presented in this thesis aims to extend our

knowledge about the relationship between attention, motivation, and proac-

tive response inhibition. The inferential approaches we applied can be split

into two general strategies. The first strategy was to examine the go-locked

N1 component and its relationship with response time in stop-signal tasks

with di↵ering task contexts. In Boehler et al. (2009) the attentional process-

ing of the go-stimulus in a stop-trial was enhanced when response inhibition

was unsuccessful. This implies that varying attentional processing of the go-

stimulus is behaviorally relevant, yet this work was limited with respect to

the study of proactive response inhibition. It involved only a small subset

of trials (i.e., stop-trials) that could have been a↵ected by the overlapping

processing of stop-stimuli in trials where those were presented particularly

rapidly after the onset of the go-stimulus. Further, it was not clear whether

participants actively engaged di↵erential attentional processing strategically.

This earlier work might have identified randomly oscillating variations in
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attentional focus towards the go-stimuli, and not strategically deployed lev-

els of attention. In Chapter 2 we use EEG and address these issues by

examining go-trials and their relationship with response time in a multi-

level single-trial approach, using the relationship between response time and

stopping-success to strengthen the argument. This was done in a standard

relevant-stop context and contrasted with an irrelevant-stop context, i.e. ig-

nore the stop-signals. In this sense, this created a baseline, and di↵erences

between relevant and irrelevant are bound to be caused by proactive control

processes in go-trials.

In Chapter 3 we adopt this same basic strategy to both replicate the

study in Chapter 2 and to further explore proactive control under a di↵er-

ent motivational context. We investigated contextual e↵ects of rewarding

successful reactive response inhibition on proactive inhibition by posting a

monetary reward on some stop-trials. We anticipated to replicate our ear-

lier results for the standard relevant-stop context. For the reward-stop con-

text, however, we hypothesized two di↵erent possible patterns of results: (i)

The relationship between response times and N1 amplitudes could be simi-

lar or even more pronounced, or (ii) the global attentional increases driven

by reward context (as seen in Jimura et al., 2010) might interfere with the

relationship between visual attention and response speed.

One thing to note about the first strategy is that it at least partly sets up

a reverse inference (Poldrack, 2006), in that within-context fluctuations in

brain activity measures are used to infer a cognitive process (varying levels
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of attention in di↵erent trials). The second general strategy was aimed at

counter this limitation by explicitly manipulating the proportion with which

response-inhibition trials were presented, and by lateralizing stimuli and ex-

amining pretarget alpha oscillations in a stop-signal task and a go/no-go

task. The manipulation of expectation by a cue is similar in spirit to Zand-

belt et al. (2013) and Verbruggen and Logan (2009a) but with the extension

of looking at pre-target attentional processes. In spatial attention tasks, cued

attention to a location has been repeatedly associated with increased alpha

band activity over ipsilateral regions, and decreased alpha activity over con-

tralateral regions prior to stimulus presentation (e.g., Vollebregt et al., 2015;

Bengson et al., 2012). That these modulations happen prior to stimulus

presentation, means that they are by definition target-independent, and sug-

gests that they are driven by top-down processes (see, Romei et al., 2008;

Capotosto et al., 2009; Capotosto et al., 2012, for further evidence suggesting

it is top-down). In Chapter 4 we record EEG data while participants com-

plete a lateralized-go and centralized-stop stop-signal task with explicit cues

about the probability of the centralized-stop occurring. We analyze posterior

alpha oscillations as in between the cue and the go-target to look at possible

spatial attention modulations across the cue levels. In Chapter 5 we extend

this same logic to a go/no-go task (similar to Bengson et al., 2012). Addi-

tionally, in this task the uncued hemifield always had a distractor, and the

cues were high or low pitch tones. In this manner, the task was more in line

with the previous spatial attention tasks examining pretarget alpha oscilla-
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tions, in that it had distractors (see, Slagter et al., 2016, for a discussion),

and was not as temporally complex (i.e., there was no second signal) as the

experiment in Chapter 4. In Chapter 5 we follow this up by looking at mid-

frontal theta power. Theta has been shown (Cohen and Donner, 2013) to be

a robust power modulation that is non-phase-locked and more closely linked

to conflict and behavior than it’s phase-locked counterpart (i.e., the ERP

waveform). Theta-band oscillations are modulated during action monitoring

tasks, specifically in tasks that elicit conflict between competing responses

(e.g., Cohen, 2016; Cohen and Donner, 2013; Huster et al., 2013; Oehrn et

al., 2014). Recent research has highlighted that midfrontal theta is a signa-

ture of the engagement of a system that responds flexibly to errors and the

possibility of errors (Cavanagh et al., 2014; Cohen, 2014; Cohen, 2016). In

Chapter 5 we apply this logic to a go/no-go task and examine midfrontal

theta as a function of both expectation and behavior.

Both inferential strategies employed in this thesis are aimed at modeling

the complexity involved in proactive control and response inhibition, and are

unique contributions to the field. That is to say, we are either looking at

single-trial relationships to understand proactive processes at a finer level (a

method that is not normally used in the literature), or we are investigating

(what we believe to be) a clear marker of proactive processes using data

that occurs before any relevant inhibitory stimuli (an index that has not

received much attention). We further, in Chapters 2-4, model the behavioral

response time and accuracy data in a sequential sampling framework to detail

17



Chapter 1. Introduction

the complexity involved in decision-making processes in such tasks.
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Abstract

E�ciently avoiding inappropriate actions in a changing environment is cen-

tral to cognitive control. One mechanism contributing to this ability is the

deliberate slowing down of responses in contexts where full response can-

cellation might occasionally be required, referred to as proactive response

inhibition. The present electroencephalographic (EEG) study investigated

the role of attentional processes in proactive response inhibition in humans.

To this end, we compared data from a standard stop-signal task, in which

stop signals required response cancellation (stop-relevant), to data where

possible stop signals were task-irrelevant (stop-irrelevant). Behavioral data

clearly indicated the presence of proactive slowing in the standard stop-signal

task. A novel single-trial analysis was used to directly model the relationship

between response time and the EEG data of the go-trials in both contexts

within a multilevel linear-models framework. We found a relationship be-

tween response time and amplitude of the attention-related N1 component in

stop-relevant blocks, a characteristic that was fully absent in stop-irrelevant

blocks. Specifically, N1 amplitudes were lower the slower the response time,

suggesting that attentional resources were being strategically down-regulated

to control response speed. Drift di↵usion modeling of the behavioral data

indicated that multiple parameters di↵ered across the two contexts, likely

suggesting the contribution from independent brain mechanisms to proac-

tive slowing. Hence, the attentional mechanism of proactive response control

we report here might coexist with known mechanisms that are more directly
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tied to motoric response inhibition. As such, our study opens up new research

avenues also concerning clinical conditions that feature deficits in proactive

response inhibition.
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2.1 Introduction

Adaptive motor behavior requires a complex coordination of motor activation

and inhibition. Inhibitory mechanisms play a fundamental role in everyday

behavior, in cognitive development, and in a range of neurological and psychi-

atric conditions, including attention-deficit hyperactivity disorder (ADHD),

Parkinson’s disease, and substance abuse (Chambers et al., 2009). In a lab-

oratory setting the stop-signal paradigm has often been used to quantify

the latency and e�ciency of response inhibition (Logan and Cowan, 1984),

and to investigate its underlying neural processes (Aron, 2011; Huster et al.,

2013).

In the stop-signal task, a go-stimulus requiring a rapid choice-reaction is

infrequently followed by a stop-stimulus, signaling the participant to halt the

initiated response. Task behavior can be characterized as a race between a

process that triggers (go-process) and cancels (stop-process) a motor action.

The stop-process latency (stop-signal response time; SSRT) is covert, but

can be recovered by assuming a stochastic model, such as the Independent

Race Model (Verbruggen and Logan, 2009b).

Traditionally, the research focus was on processes related to this reactive

form of inhibition (triggered by the stop-stimulus), which has been found

to be related to a response-inhibition network involving the right inferior

frontal gyrus, the pre-supplementary motor area, and the subthalamic nu-

cleus (Aron et al., 2014; see also Cai et al., 2014). Recently, however, proac-
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tive response inhibition has received increasing attention. Proactive response

inhibition is considered potentially more ecologically relevant, in that it de-

scribes the tendency of slowing down responses when outright stopping might

be required, which likely relates to response caution in everyday situations

(Aron, 2011). Mathematical modeling has mostly related this e↵ect to an

increased decision threshold of the go-process (e.g., Verbruggen and Logan,

2009a), and a range of experimental studies have implicated the (reactive)

response-inhibition network in this process as implementing gradated instead

of complete response inhibition (Aron et al., 2014).

Although the core neural processes of reactive and probably also proactive

inhibition likely reside within the response-inhibition and extended motor

network, recent behavioral research and theorizing has highlighted a possible

role of earlier sensory/attentional processes in response inhibition (Bari and

Robbins, 2013; Logan et al., 2014; Verbruggen et al., 2014b; Huster et al,

2014). Consistent with such notions, di↵erences in the attentional processing

of stop-stimuli have been found to contribute to the behavioral outcome

in the stop-signal task, with increased attention to the stop-stimulus being

associated with successful response inhibition (Bekker et al., 2005; Boehler

et al., 2009; Kenemans, 2015).

Yet, some recent findings suggest that attentional processes may also

play a role in proactive response inhibition; specifically, we have reported

magnetoencephalograpic data showing that the attentional processing of the

go-stimulus in a stop-trial is enhanced when response inhibition is ultimately
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unsuccessful (Boehler et al., 2009; see also Knyazev et al., 2008). While

this implies that varying attentional processing of the go-stimulus is behav-

iorally relevant, this earlier work was limited in important ways with respect

to the study of proactive response inhibition. Specifically, it involved only

a small subset of trials (i.e., stop-trials), which furthermore could theoret-

ically have been a↵ected by the overlapping processing of Stop-stimuli in

trials where those were presented particularly rapidly after the onset of the

Go-stimulus. Additionally it was not clear whether participants actively en-

gaged di↵erential attentional processing as a means of strategic proactive

inhibition. Rather, this earlier work might have identified the influence of

randomly oscillating variations in attentional focus towards the go-stimuli,

and not strategically deployed levels of attention driven by task-relevant stim-

uli. Here, we address these questions by (i) using EEG measures for which

we adopt a single-trial framework to model electroencephalographic activ-

ity during go-trials as a function of response slowing (Pernet et al., 2011),

and (ii) by including additional task blocks in which stop-stimuli were task-

irrelevant to provide a baseline condition which should be devoid of proactive

response inhibition.
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2.2 Methods

2.2.1 Participants

Sixteen healthy right-handed subjects (mean age 24.7 years, SD 5.0, 8 males)

took part in the study. All subjects were neurologically intact and had normal

or corrected-to-normal visual acuity.

2.2.2 Stimuli

On each trial a tra�c light symbol was presented above a central fixation

dot on a gray background. The tra�c symbols were green go-signs, directed

to either the LEFT or the RIGHT, and red stop-signs. The LEFT-pointing

go-sign required a button press with the right index finger, and the RIGHT-

pointing one required a button press with the right middle finger. In contrast

to our earlier related work (e.g., Boehler et al., 2009) the target stimuli

were presented in isolation without additional distractor items. This choice-

reaction stimulus either lasted for the full stimulus duration (go-trial) or was

rapidly followed by a stop stimulus (stop-trial). Two block types were used:

stop-relevant and stop-irrelevant (see Schmajuk et al., 2006 and Boehler et

al., 2010, for similar task designs that used stop-irrelevant stop-trials as a

sensory baseline condition to investigate reactive response inhibition). In

stop-relevant blocks subjects were instructed to withhold their response when

a stop-stimulus was encountered, whereas in stop-irrelevant blocks subjects

were instructed to ignore the stop-stimulus completely and to always respond
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LEFT or RIGHT to the go-stimulus, see Figure 1. Participants were told not

to slow down their response strategically. Still, proactive slowing is typically

observed in such settings (Verbruggen et al., 2005).

Figure 2.1: Paradigm. Participants performed a standard (stop-relevant)
stop-signal task (a) and a stop-irrelevant version (b) in separate blocks. Re-
sponse inhibition was required upon presentation of a stop-stimulus in the
stop-relevant but not the stop-irrelevant blocks.

2.2.3 Procedure

Go-trials accounted for 75 percent of all trials, and stop-trials for the re-

maining 25 percent. There were twelve experimental blocks each consisting

37



Chapter 2. Strategic down-regulation

of approximately 90 trials. At the midpoint there was a small break and in-

structions were changed (e.g., stop-relevant to stop-irrelevant), with the next

run having the opposite sequence. In total, there were 285 stop-trials and 846

go-trials, equally distributed across the stop-relevant and stop-irrelevant task

blocks. Given the fast ABBA sequence of di↵erent block types, the actual

block order was not further counterbalanced across participants. The overall

duration of stimulus presentation was 700 ms for each trial, and trials were in-

terleaved by intertrial intervals that varied randomly between 1000 and 1400

ms. For go-trials in both stop-relevant and stop-irrelevant blocks the visual

display was constant for the 700 ms duration, whereas for stop-trials the go-

stimulus was replaced by a stop-sign after a certain stop-signal delay (SSD),

which would then stay on screen until the end of the 700 ms duration. For rel-

evant stop trials an adaptive staircase procedure was used to control stopping

performance by incrementing (after a successful stop trial) or decrementing

(after an unsuccessful stop trial) the stop-signal delay by 17 ms. This proce-

dure enabled the reliable calculation of the stop-signal response time (SSRT),

which reflects the time required to inhibit a motor response. As a matched

routine, we took the end value of the adapted stop-signal delay from stop-

relevant blocks as the initial value in subsequent stop-irrelevant blocks and

then randomly alternated it by 17 ms on each subsequent irrelevant trial.
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2.2.4 Recording and Analysis

Basic Behavioral Analyses. All response time analyses were performed

using repeated-measures analysis of variance (rANOVA). Di↵erences in accu-

racy for go-trials were tested between blocks using a non-parametric �2 test

of di↵erences in proportions. To estimate the SSRT the integration approach

was used. This approach defines the SSRT = (nth rank-ordered RT) - (mean

stop-signal delay), with n equal to the number of RTs in the go-trial RT

distribution multiplied by the overall probability of responding given a stop

signal. Simulations showed that under most circumstances the integration

approach yields consistent and unbiased estimates of the SSRT (Verbruggen

et al., 2013). Note, however, that stop-trial data were only of peripheral in-

terest here, as the main analyses focus on the go-trials from the two di↵erent

task blocks2.

Drift Di↵usion Models. Drift di↵usion models are a description of a bi-

nary choice process defined by three main parameters (Ratcli↵, 1978), and

have been used frequently in the study of proactive inhibition (e.g., Ver-

bruggen and Logan, 2009a). These parameters are the response threshold

(a), the mean rate of approach to a threshold, known as drift rate (v), and

processes that precede and succeed the actual decision process and give rise

2Note that the assumptions of the independent race model were nevertheless tested in
order to evaluate whether the SSRT could reliably be estimated. Specifically, (1) the SSD
was longer during unsuccessful than successful Stop-trials, t(15) = 7.65, p < 0.001; (2)
that go-trial RT was slower than RTs on unsuccessful Stop-trials, t(15) = 8.94, p< .001;
and (3) to show that RT on unsuccessful stop trials increase as a function of SSD we tested
a correlations di↵erence from zero (r = 0.34, t(779) < 0.001)).
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to a nondecision time (t0). Hierarchical Bayesian estimation was used to

model the parameters using the Hierarchical Drift Di↵usion Model (HDDM)

software (Wiecki et al., 2013). Model fit was assessed using the deviance

information criterion (Spiegelhalter et al., 2002; DIC, with smaller DIC indi-

cating better fit). Five nested candidate models were fit to the data; a null

model (model 0), a full model (model 1, including a, v, and t0), and 3 reduced

models; a model without t0 (model 2), a model without v and t0 (model 3),

and a model without a and t0 (model 4). These models were chosen to test

for di↵erences in the parameters in a principled sequential manner, and for

alignment with previous modeling e↵orts (Verbruggen and Logan, 2009a).

20,000 posterior samples were drawn for each model using Markov-Chain

Monte Carlo methods. We used a burn-in of 5,000 and a thinning factor of

3. Each model was checked for convergence using the Gelman-Rubin diag-

nostic (Gelman and Rubin, 1996). Furthermore, posterior-predictive checks

were made as an added assurance of proper fit. After model selection, pos-

terior distributions were probed to determine di↵erences directly in the pa-

rameters between the stop-relevant and stop-irrelevant task contexts. This is

accomplished by examining the proportion of posterior samples falling above

or below the two estimated posterior distributions of any specific parameter,

resulting in a probability that one posterior distribution is greater or less than

the other (see Kruschke, 2010 for an overview of Bayesian methodology).
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EEG Recording EEG was recorded from 64 electrodes mounted in a

custom-designed electrocap (Electro-Cap International, Eaton, Ohio), refer-

enced to the right mastoid during recording (SynAmps amplifiers from Neu-

roscan; El Paso, TX). Additionally, horizontal and vertical EOG electrodes

recorded blinks and eye movements, for which participants were addition-

ally monitored online via a video camera in the EEG chamber. Electrode

impedances were kept below 2⌦ for the mastoids, below 10⌦ for the electro-

oculogram (EOG) electrodes, and below 5⌦ for all the remaining electrodes.

All EEG channels were continuously recorded with a band-pass filter of 0.01-

100 Hz at a sampling rate of 500 Hz per channel.

EEG Preprocessing EEG data were algebraically re-referenced to the

average-mastoid o✏ine. A coarse (visual) inspection was performed on the

continuous data of each subject to exclude stretches of data with common

EEG artifacts. This was followed by an Ocular-correction ICA analysis using

the vertical EOG as the blink marker channel in Brain Vision Analyzer 2

(Brain Vision analyzer software, Brain Products GmbH, Munich, Germany).

The correct responses of the go-trials from the two task blocks were then

epoched from -200 to 1200 ms and corrected using the pre-stimulus baseline

prior to further analysis. In the end, 97.8% of the data epochs were preserved.

Go-locked event-related potential (ERP) analyses. In order to focus on the

inferoposterior visual N1 component, an averaged topography was plotted

across both block types and used to define 10 posterior electrodes, 5 on the
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right and 5 on the left, as well as the time-range of interest, determined

as 130 ms to 190 ms, to represent the visual N1 elicited by the Go-signal.

This time-range and set of electrode averages was then also used for the

statistical analysis (see e.g., Vogel and Luck, 2000, for similar a similar choice

of channels and time-range). It is important to note, however, that the

ERP analysis here is of peripheral interest, given that the between-block

comparison is rather unspecific.

Single-trial ERP data The main analysis of interest investigated the

relationship between single-trial ERP data and response speed on go-trials

in the two di↵erent task blocks. To this end, single-trial ERP analysis was

carried out using the software package LIMO EEG (Pernet et al., 2011; also

see Gaspar et al., 2011). Single-trial analysis fits a general linear model of

the form

y

e,s

= X�

e,s

+ noise (2.1)

to trials of EEG data (y), for all analyzed electrodes (e) and sampling points

(s) in the N1 time window. The five predictors in the design matrix X were

the categorical stop-relevant and stop-irrelevant go-trial types, the single-

trial normalized (per subject, per condition) response times, and a noise

variable. Below, we describe some more details of the statistical analysis, as

implemented in LIMO EEG (see Pernet et al., 2011 for more details). A gen-

eralized Moore-Penrose pseudo-inverse algorithm was used to estimate the

beta parameters for each subject. Model fit was assessed per individual by
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examining R

2, the amount of variance explained in the EEG by the design

matrix. These coe�cients were tested using a restricted intercept-only model

to develop an F-test that determines the amount of variance being explained

over this restricted model with the full model. This results in F-values for

each sampling point and electrode considered in the model, with degrees of

freedom dependent on total number of predictors in the restricted model (i.e.

number of predictors in the full model - 1) and trial number. At the second

level of the analysis each of the subjects’ five estimated beta coe�cients were

synthesized to probe for statistical significance using nonparametric (boot-

strapping) methods. The general linear model allows directly testing for the

covariation of single-trial ERPs with response time using a bootstrap-t ap-

proach. This determines the significance and direction of beta parameters

per sample point. We used a robust one sample t-test that tests if the average

e↵ect significantly di↵ers from zero. The observed t-values were first com-

puted. The data were then centered and five-thousand bootstraps were made.

Subjects were drawn randomly with replacement. For every bootstrap, a one-

sample t-test was performed on the bootstrap sample, subsequently storing

the t-value. These bootstrapped t-values provide an approximation of the

t-distribution under H0. The p-values are then computed by comparing the

observed t-values to the bootstrapped t-distribution. Since tests are per-

formed on multiple electrodes and sampling points, as is typical for this

approach (e.g., Pernet et al., 2011; Gasper et al., 2011), testing will give rise

to false positives. To account for multiple comparisons, we used temporal
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clustering by which only clusters with a mass (sum of t values) bigger than

the 95% percentile of the null distribution are considered significant. In this

case, the null distribution corresponds to the maximum cluster value across

electrodes measured at each bootstrap computed on nullified data (Pernet

et al. 2015). In a similar vein, for a repeated-measures ANOVA, the ob-

served F-values were first calculated. Following this, an F-table under H0

was made. First, the data was centered for each condition so that each cell

of the ANOVA had a mean of zero. Second, the centered data was used to

estimate F-distributions under H0. Subjects were sampled with replacement

and the associations between observations were kept. Five-thousand boot-

straps were made. P-values were obtained by comparing the observed and

bootstrapped F-values, and multiple comparison corrections were handled in

the same manner as the 1-sample t-tests.

2.3 Results

2.3.1 Behavioral Performance

The average response times to go-stimuli in the stop-relevant blocks were

466.7 ms (SD 116.6), which were slower than (F(1,15) = 50.37; p < .0001)

those in the stop-irrelevant blocks 402.3 ms (SD 85.2). This result indicates

that participants were employing proactive response slowing in the stop-

relevant blocks, as expected. Overall, accuracy in go-trials was high: in the

stop-relevant blocks it was 98.9 percent, but slightly lower (�2 = 8.12, p =
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Figure 2.2: Hierarchical drift di↵usion model results. Drift rate (top),
response threshold (middle), and non-decision time (bottom) posterior prob-
ability densities for both the irrelevant and relevant conditions of Model 1.

0.004) in the stop-irrelevant blocks at 98.3 percent. The SSRT was calculated

using the integration method yielding an estimate of 242.8 ms (SD 37.5), a

value in line with previous research.

The DIC-based model selection procedure evidenced that the full model

(model 1, DIC = -25009.1) best accounted for the data. The next closest

candidate model was the reduced model 2 (DIC = -24915.6), followed by

model 3 (DIC = -24782.1), model 4 (DIC = -24658.7), and the model 0

(DIC = -22925.4). Based on this selection criteria and posterior predictive

checks, model 1 was chosen for further analysis. Two of the three estimated

main parameters showed significant di↵erences between block types. In par-
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ticular, robust e↵ects were observed for a raised response threshold (a) and

lower drift rates (v) in the stop-relevant blocks. Posterior distributions of

the three main parameters are shown in figure 2. With respect to the re-

sponse threshold, the p(a
relevant

> a

irrelevant

) = 0.94, showing that indeed

the response threshold is raised in the relevant blocks. The drift rate is lower

in the relevant blocks, p(V
irrelevant

> V

relevant

) = 0.92. As seen in Figure

2, non-decision time did not show evidence of being di↵erent between the

blocks, p(t0
irrelevant

< t0
relevant

) = 0.46. Overall, the results evidence a more

conservative response process in the stop-relevant blocks, and the fact that

the e↵ects were seen on two parameters suggests that this was brought about

by multiple processes. Indeed, it is possible that model 2 (full model sans t0)

is the better fitting model, given that DIC is known to be somewhat biased

towards a model with greater complexity (Plummer, 2008). However, the

parameter estimates of model 1 and model 2 are similar, so interpretation of

the other two parameters remains exactly the same.

2.3.2 Go-locked N1 ERP Analysis

The average topography between 130 and 190 ms post Go-stimulus is shown

in Figure 3a for correct Go-trials collapsed across the stop-relevant and stop-

irrelevant blocks. Channel locations and time range for further analysis were

selected based on this average across both block types. The N1 electrodes

were separately averaged in the left and right hemisphere (see black dots in

Fig. 3a) and a rANOVA was used to test for di↵erences between block type
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(stop-relevant vs. stop-irrelevant) and laterality (left vs. right hemisphere)

for the data averaged between 130 and 190 ms post go-stimulus. Both block

type (F(1, 15) = 5.60, p = 0.032, ⌘2 = 0.004) and laterality (F(1, 15) =

6.12, p = 0.026, ⌘2 = 0.049) showed significant di↵erences, but there was

no significant interaction between the two (F(1, 15) = 1.19, p = 0.29, ⌘2

= 0.0002). Note, that laterality was only of peripheral interest, that we

had no clear expectations, and that the main e↵ect only indicates that N1

amplitudes were generally larger over one hemisphere. The mean amplitudes

of the stop-relevant N1 were slightly more negative than in the stop-irrelevant

condition. Thus, a simplistic mapping between response speed and mean N1

amplitudes did not hold3. Yet, these e↵ects are, as indicated by the e↵ect

size, quite small. Indeed, this between-block comparison is necessarily quite

unspecific, and our a-priori analysis plan was to investigate the relationship

between response time and N1 amplitudes within the two di↵erent block

types, for which we applied the single-trial-based analysis presented below.

2.3.3 Systematic Variation in Sensory Processing of

Go-signals

Single Subject Analysis and Model Fit. For each participant, all ten

inferoposterior N1 electrodes were individually taken into an analysis with

the EEG signal modeled as a linear function of the response time to inves-

3In fact, in our further linear models N1 analyses there were no categorical di↵erences
between block type in a similar (the models also included RT, an error term, and were
bootstrap tests) repeated measures ANOVA
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Figure 2.3: ERP results. Topography for go-trials averaged between 130
and 190 ms collapsed across the two task blocks on the top left, and sensors
chosen to represent visual N1 on the right. Sensor plots from the average
of the five electrodes averaged on the left and the right are displayed at the
bottom (plotted using a 30-Hz low-pass filter for displaying purposes)

tigate relationships to go-stimulus processing across sampling points. Only

correct go-trials were taken into consideration. For the first-level statistical

analysis, single-trial ERPs were estimated for each individual at each of the

10 electrodes selected above between 130 and 190 ms. This resulted in beta

coe�cients for the categorical block parameters, response time parameters,

and noise, for each of these 10 electrodes and for each sample point.

As expected, there was variation between individuals, electrodes, and

sampling points modeled in terms of the estimated R

2. The F-values were

queried for a maximum value F-statistic across individuals and sampling
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points. The maximum F-values had a range from 4.14 to 16.18 over all

individuals, with a mean of 8.35 (SD = 3.8). For each participant the max

F-values were found to be significantly di↵erent from a restricted model,

using number of linear predictors in the restricted model and participant

trial numbers to calculate the appropriate degrees of freedom. Given that

each individuals model had sample points within the N1 range that were

significantly explained by the design matrix, it was concluded that the model

fit was adequate to continue testing at the second level.

Second Level Analyses. Group-level di↵erences in the stop-relevant blocks

of the RT beta parameters were tested using a bootstrapping 1-sample t-test

procedure to synthesize individuals. Within the N1-related electrodes chosen

for analysis, a generalized pattern of N1 attenuation emerged as RT increased.

Estimated t-values peaked with significant e↵ects that were centered roughly

on 160 ms. Seven of the 10 electrodes showed significant e↵ects using uncor-

rected t-tests and an ↵ ± level of 0.05. Electrodes started to show RT e↵ects

in the relevant beta parameters capturing the relationship between RT and

EEG amplitude starting at 138 ms and lasting until 190 ms. A 1-dimensional

temporal cluster analysis was further run on the model to correct for mul-

tiple comparisons. This analysis evidenced 3 electrodes, 2 confined to the

right posterior, and 1 to the left at a corrected p = 0.05 alpha level. The

bootstrapped mean Betas and 95% confidence interval for each of the three

electrodes that survived temporal cluster correction are plotted in Figure 4.

49



Chapter 2. Strategic down-regulation

This shows the mean change in mV per standard deviation unit of RT for

the stop-relevant blocks to further illustrate this relationship.

Figure 2.4: Bootstrap mean Beta and 95% Confidence Intervals.
Evolution of mean Beta parameter for the three electrodes that survived
multiple comparison correction in the 1-sample t-test of the stop-relevant
block. Sampling points that survived correction are marked as red dots.

Di↵erences in Slowing Between Blocks A rANOVA was used to di-

rectly test the di↵erences between the stop-relevant and stop-irrelevant trials

and their relationship to response slowing. The purpose of testing the di↵er-

ence between the blocks was to ensure that the di↵erences seen in the relevant

blocks was not simply due to response time fluctuations that would be seen

in an arbitrary forced choice task. Five thousand bootstrapped F-statistics

were used in the analysis. Significant di↵erences were found to begin at 155
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ms, and continue until 175 ms post stimulus dependent on electrode, peaking

at 164 ms, which is clearly within the time course seen for the 1-sample t-test.

As in the 1-sample test, 7 of the 10 electrodes were found to be di↵erent be-

tween the two beta parameters in the uncorrected tests, and these di↵erences

overlapped between the tests. Three electrodes were found to be significant

at ↵ = 0.05 using the same clustering correction technique used in the 1-

sample test. Two of these cluster-corrected electrodes overlapped with the

previous 1-sample cluster-corrected analysis, both in the right hemisphere.

Thus, to summarize, Go-trials in stop-relevant blocks displayed a systematic

positive relationship between N1 amplitudes and RTs, and this relationship

was significantly stronger than in the stop-irrelevant blocks, for which no

clear relationship was found.

2.4 Discussion

The present EEG study investigated the neural processes underlying proac-

tive response inhibition during the stop-signal task in human subjects, fo-

cusing on early attentional mechanisms. Based on a comparison of go-trials

from di↵erent trial blocks in which stop-stimuli were either task-relevant or

not, we found that participants indeed employed proactive response slow-

ing in the relevant blocks, and a hierarchical drift di↵usion model indicated

that this mostly relied on a combination of di↵erences in decision thresholds

as well as in drift rates. This e↵ect was accompanied by a significant rela-
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tionship between the single-trial amplitudes in the visual N1 component in

the stop-relevant but not the stop-irrelevant task blocks. Given that the N1

component is believed to index the level of attention paid to the go-stimulus,

these results seem to reflect a down-regulating strategic process that proac-

tively slows go-stimulus processing when the response to this stimulus might

have to be canceled.

The role of visual attention in response inhibition. Go-stimuli elicited

a classic inferoposterior N1 component. This component has been found to

be larger the more attention that is paid to a stimulus, which is thought to

index the selective attentional processing of the visual stimulus in mid- and

high-level visual areas (Vogel and Luck, 2000), and which has been found to

ramify into di↵erences in response speed in attentional tasks (e.g., Talsma

et al., 2007). The traditional ERP analysis did not find evidence for an

inverse link between overall N1 amplitude and response speed, given that

the condition with slower responses had slightly larger N1 amplitudes (and

a very small e↵ect size). Yet, given the di↵erence in task requirements this

between-block comparison is necessarily quite unspecific (see also below) and

our main interest was to look at the relationship between fluctuations of re-

sponse times and EEG activity within the respective blocks. In line with our

expectation, a multilevel single-trial EEG framework indicated that such a

link does exist when looking at fluctuations within the stop-relevant condi-

tion. Specifically, this analysis demonstrated that as response time increased,
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the N1 component attenuated, but only in the stop-relevant blocks.

In general, the role of attention and other perceptual mechanisms has

mostly been neglected in the response inhibition literature (although see e.g.

Sharp et al., 2010 for a discussion concerning whether response-inhibition-

related fMRI activity might not in fact reflect activity in the ventral atten-

tional system). Yet, in order to cancel a pre-potent response it is clear that

first all relevant external stimuli need to be detected. The overarching view

is to attribute di↵erences in stopping latencies solely to di↵erences seen in

the e�cacy of a single centralized response-related inhibitory control process

(Verbruggen et al., 2014a). The current research suggests a clear role for early

perceptual/attentional modulations in the stop-signal task. In this vein, the

attenuation of N1 amplitudes as responses slow can be considered as an in-

dex of the discrimination dedicated to the go-stimulus. A down-modulated

go-stimulus processing therefore appears to be advantageous for later inhibi-

tion via the positive relationship between successful inhibitory behavior and

longer response times in the independent race model. While our inference

is in principle a reverse one (inferring that attention was a↵ected by looking

at a neurophysiological marker without explicitly modulating it through our

task design), we point to the tight and rather specific link between the N1

component and attention.

Crucially, the present data indicate that the relationship between response

slowing and attentional processing of the go-stimulus is indeed under proac-

tive control. An alternative notion would have been that attentional go-
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stimulus processing randomly fluctuates (e.g., as a function of general atten-

tiveness). Yet, under a random-fluctuation account one would expect similar

modulations also in a task context when Stop-stimuli are not task-relevant,

which is counter to what we found here. Although this between-block com-

parison might by itself not rule out non-strategic contributions, our notion

dovetails with recent work on Bayesian dynamic belief models, which have

found a very strong relationship between Go-trial response time and the in-

ferred subjective probability of a stop-stimulus, which was also interpreted

as being strategic in nature (Ide et al., 2013). Although perceptual mecha-

nisms are usually neglected in response-inhibition studies, there is still some

supporting evidence that attention to go-stimuli plays a role in adjusting re-

sponse tendencies. Previous MEG work has shown that the go-stimulus N1

component was less pronounced in successful stop-trials as opposed to unsuc-

cessful stop trials, suggesting that paying less attention to the Go-stimulus

slows down responding, which in turn makes successful inhibition more likely

(Boehler et al., 2009; see also Knyazev et al., 2008). Furthermore, when per-

ceptual distractors in a stop-signal task were presented over whole trials,

inhibitory behavior was impaired, and this impairment scaled with the de-

gree of discrimination di�culty (Verbruggen et al., 2014b). To add to this,

using pre-stimulus oscillatory EEG it was shown that a failure to lateral-

ize occipital alpha activity in response to an attentional cue was predictive

of false alarms (Bengson et al., 2011). Taken together, these studies suggest

that the way in which sensory systems are adjusted to detect relevant stimuli
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is an important aspect of response inhibitory behavior.

Turning from go- to stop-stimulus processing, related studies have shown

that the attentional processing of the stop-stimulus plays an important role

in determining behavioral outcome, with enhanced attention for successful

stop-trials (e.g. Dimoska and Johnstone, 2008; Bekker et al., 2005; see also

Salinas and Stanford, 2013 for a related finding in a countermanding saccade

task, and Kramer et al., 2013), or alternatively with the N1 as a marker

of visual attention already reflecting an inhibitory mechanism (Kenemans,

2015). One interesting question here relates to the relationship between

these modulations of the attentional processing of the go-stimulus vs. stop-

stimulus in a given stop-trial, with one suggestion being that attentional

resources need to be shared across these di↵erent components (Boehler et al.,

2009; Pessoa, 2009). Given that at the moment of go-stimulus presentation

participants cannot know yet that a given trial will be a stop-trial, this implies

that such “anticipatory” resource sharing with a potentially upcoming stop-

stimulus should also happen on regular go-trials. Yet, on the basis of the

present data we cannot decide whether the observed e↵ects relate to the

anticipation of possible (relevant) Stop-stimuli or whether the attentional

processing of go- and stop-stimuli proceed largely independently.

Although go-stimulus processing naturally precedes stop-stimulus pro-

cessing, this does not necessarily imply that such e↵ects are the earliest in

time that possible mechanisms contributing to proactive slowing could be

occurring. For example, a number of studies have related proactive response
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slowing to neural activity that precedes a given stop-trial altogether (Cai et

al., 2011; Majid et al., 2013; Zandbelt et al., 2013). Similarly, it is likely

that attentional control settings are implemented before the presentation of

a given trial. Such preparatory e↵ects may in fact be particularly likely in the

present case in a blocked strategic way because of the non-selective nature of

our manipulation. In contrast, other work investigating proactive inhibition

has employed selective stopping paradigms in which, for example, one of two

possible go-responses might have to be inhibited (Aron, 2011), which might

require a more refined and selective mechanism than in our case where a

global mechanism of slowing down all responses is likely applied.

Relationship to motor-level inhibition and drift di↵usion models.

Given the wealth of existing research linking proactive slowing to parts of the

response-inhibition network (see, e.g., Zandbelt and Vink, 2010; Van Belle

et al., 2014; Boehler et al., 2011; Jahfari et al., 2010; Chikazoe et al., 2009;

Lavallee et al., 2014), we do not consider the present e↵ect as the only mecha-

nism underlying proactive response slowing. Rather, we assume that di↵erent

mechanisms co-exist, and that neurophysiological measures might be more

sensitive to the transient e↵ect described here (but see an fMRI study by Li

et al., 2009 for possible involvement of sensory areas in response slowing, as

well as van Belle et al., 2014, for the involvement of dorsal attentional control

areas in proactive response inhibition; and Jahfari et al., 2015, for the inter-

play between the prefrontal cortex and basal ganglia system with perceptual
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systems in response inhibition), but which may be less sensitive than fMRI to

mechanisms that act more directly on the motoric level. Consistent with this

notion of multiple mechanisms, our di↵usion drift model of the behavioral

data indicated that more than one parameter was a↵ected. Specifically, we

replicated an e↵ect on decision thresholds that has been described previously

(Verbruggen and Logan, 2009a), but we also found a pronounced e↵ect on

drift rates. The latter has also been reported before, but was found to be

di�cult to interpret (Logan et al., 2014; but see, White et al., 2014). One

possible explanation is that decision-threshold adjustments are implemented

within the stopping network, whereas drift rate reflects the attentional mech-

anism we describe here. The latter seems to intuitively fit well, given that

the attentional processing of a task stimulus clearly relates to the speed with

which it is being discriminated. It seems possible that the balance between

these di↵erent mechanisms is adjusted based on strategy di↵erences, as well

as possibly being related to specific features of a given task. In the present

study, we have focused a-priori on attentional processes. Additionally, pos-

sible subsequent mechanisms in frontal or even subcortical areas that might

be more directly related to adjusted decision thresholds might be di�cult to

pick up with EEG due to anatomical reasons (but see, O’Connell et al., 2012;

Twomey et al., 2015). Another aspect in which the drift di↵usion data seems

relevant concerns the fact that the comparison between the stop-relevant and

the stop-irrelevant blocks is necessarily somewhat unspecific. Specifically, it

is likely that more than just proactive inhibition di↵ered between the blocks.
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The fact that the stop-relevant blocks featured the possibility of having to

cancel a response creates a dual-task situation (and as far as representing

this task rule, this is also true for Go-trials), which has been suggested as an

additional contributing factor to response time di↵erences (Verbruggen and

Logan, 2009a; see Zandbelt and Vink, 2010 for an attempt to circumvent this

problem by parametrically varying the expectation of Stop-trials). Yet, the

fact that non-decision time appears to not exert its e↵ect between blocks in

the response process indicates that a dual-task hypothesis is not very likely

to account significantly for the observed data (see Verbruggen and Logan,

2009a for an extended discussion related specifically to the stop-signal task).

Consistent with this, the faster response times in stop-irrelevant blocks were

accompanied by lower accuracy, in line with a generally faster response mode

that comes at some cost for response accuracy. Still, the comparison prob-

ably su↵ers from some global di↵erences between the blocks, which in our

opinion might in part have given rise to the N1 di↵erences in the ERP be-

tween blocks, which featured larger N1s in the stop-relevant blocks and might

reflect the generally increased task requirements of the stop-relevant blocks.

In contrast to that, we consider it a major strength of the single-trial-based

approach, which was the main analysis of interest here, that such global dif-

ferences should play less of a role as far as di↵erences in behavior and EEG

activity across trials within the di↵erent blocks is concerned. Given that the

task requirements remain stable across those trials, we believe that our main

finding of a single-trial-based covariation between response time and the N1
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component should be mostly una↵ected by global block di↵erences.

Conclusion. In the current report we present evidence that strategic mod-

ulations of the attentional processing of go-stimuli in a stop-signal task relate

to the degree of proactive response slowing on a single-trial level. Specifi-

cally, an inverse relationship between single-trial amplitudes of the visual N1

component and response speed during go-trials was found in a context that

might require response inhibition, while no such relationship existed when

response inhibition was never required. This is in accordance with recent

results suggesting a strong dependency between go-trial behaviors and stop-

ping (White et al., 2014). The present attention-related e↵ect likely coexists

with additional proactive inhibition mechanisms. Our findings specifically

emphasize the role of proactive attentional modulations in inhibitory con-

trol, thus contributing to a more multifaceted view of proactive control. Yet,

integration of these disparate parts will be important to better understand

inhibitory deficiencies in the future.
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Abstract

Motoric inhibition is ingrained in human cognition and implicated in perva-

sive neurological diseases and disorders. The present electroencephalographic

(EEG) study investigated proactive motivational adjustments in attention

during response inhibition. We compared go-trial data from a stop-signal

task, in which infrequently presented stop-signals required response cancel-

lation without extrinsic incentives (“standard-stop”), to data where a mon-

etary reward was posted on some stop-signals (“rewarded-stop”). A novel

EEG analysis was used to directly model the covariation between response

time and the attention-related N1 component. A positive relationship be-

tween response time and N1 amplitudes was found in the standard-stop con-

text, but not in the rewarded-stop context. Simultaneously, average go-trial

N1 amplitudes were larger in the rewarded-stop context. This suggests that

down-regulation of go-signal-directed attention is dynamically adjusted in

the standard-stop trials, but is overridden by a more generalized increase

in attention in reward-motivated trials. Further, a di↵usion process model

indicated that behavior between contexts was the result of partially oppos-

ing evidence accumulation processes. Together these analyses suggest that

response inhibition relies on dynamic and flexible proactive adjustments of

low-level processes and that contextual changes can alter their interplay. This

could prove to have ramifications for clinical disorders involving deficient re-

sponse inhibition and impulsivity.



Chapter 3. Motivational context

3.1 Introduction

Successful motor control is dependent on the interacting dynamics of activa-

tion and inhibition mechanisms. The latter mechanisms play a fundamen-

tal role in typical and in atypical cognitive functioning, e.g. in attention-

deficit hyperactivity disorder (ADHD), schizophrenia, and Parkinson’s dis-

ease (Chambers et al., 2009). The stop-signal task is a highly influential

response-inhibition paradigm, which has been developed to characterize the

behavioral components of motor inhibition, in particular the stop-signal re-

sponse time (SSRT, Logan and Cowan (1984)), and to investigate the neural

processes involved (Aron et al., 2007).

Research has focused mainly on mechanisms triggered by the stop-stimulus,

dubbed reactive stopping, for which a network of brain areas has been iden-

tified as being relevant. The most influential instantiations of this network

recruit the right inferior frontal gyrus, the pre-supplementary motor area,

and the subthalamic nucleus (Aron et al., 2014; Chambers et al., 2009), and

are stop stimulus activated. A parallel line of research has shifted focus to-

wards preparatory inhibitory mechanisms, in part because of their ecological

relevance (Aron et al., 2014; Verbruggen and Logan, 2009b; Aron, 2011), and

possible derailment in disorders such as ADHD (Bhaijiwala et al., 2014). The

hallmark of this proactive form of inhibition is in delayed response times in

situations where outright stopping might be required. A delayed response to

a go-stimulus increases the probability of successful inhibition for any given
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trial (Verbruggen and Logan, 2009a) and preparatory processes are gener-

ally believed to benefit reactive inhibition (Chikazoe et al., 2009). More-

over, it has been shown that response speed can be adjusted on a very short

time scale (Verbruggen and Logan, 2009b) and that it is possibly related

to the computation of a trial-wise (subjective) expectation of encountering

a stop-signal in the upcoming trial (Ide et al., 2013). Experimental studies

have suggested that proactive response inhibition recruits the same reactive

response-inhibition network as described above, which then implements par-

tial instead of complete inhibition (Aron et al., 2014; Jahfari et al., 2015;

Wessel and Aron, 2013). Given the wealth of converging evidence, this is one

likely explanatory mechanism in the variation seen in proactive inhibition,

but not necessarily the only explanation, or the sole mechanism involved

(Belle et al., 2014; Jahfari et al., 2015; Li et al., 2009; Huster et al., 2014).

It is typically assumed that in both reactive and proactive inhibition be-

havior ultimately depends on the action of a central response-inhibition mod-

ule (Stuphorn, 2015). Yet, computational work suggests that a large portion

of the time needed to implement response inhibition is taken up by non-

inhibitory processes related to the processing of the stop-stimulus (Boucher

et al., 2007; Salinas and Stanford, 2013; Verbruggen et al., 2014), and some

recent experimental work has varied inhibition demands while controlling

for such processes (Erika-Florence et al., 2014; Hampshire, 2015) (suggest-

ing a less modular system, e.g. Hampshire and Sharp (2015)). Parallel

to reactive control (Bekker et al., 2005; Kenemans, 2015), in the domain
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of proactive inhibition the involvement of attentional processes has recently

been emphasized (Elchlepp et al., 2016; Verbruggen et al., 2014; Dimoska and

Johnstone, 2008; Jahfari et al., 2015). In a first relevant study, magnetoen-

cephalographic data showed that the attentional processing even at the level

of the go-stimulus of a stop-trial varies in a way that a↵ects behavior, in that

it is enhanced when response inhibition is ultimately unsuccessful (Boehler

et al., 2009). In this same vein, a recent electroencephalographic (EEG)

study of ours showed evidence that for go-trials the inferoposterior N1 com-

ponent (an index of selective attentional processing (Luck et al., 2000)) was

being systematically down-regulated as response times were slowed, but only

when outright stopping was contextually relevant (Langford et al., 2016).

Since this work focused on go-trials, it clearly relates to proactive response

inhibition, meaning that the respective fluctuations in RT and attention are

cautionary and preparatory in nature, rather than being related to outright

inhibition.

In addition to the involvement of attention in response inhibition, there is

a growing body of evidence implicating early attentional processes in reward-

related processes (Kiss et al., 2009; Hickey et al., 2010; Hopf et al., 2015;

Donohue et al., 2016), as well as in their interaction (Greenhouse and Wes-

sel, 2013). Consistent with this convergence on early attentional processes,

it has recently been shown that reward can also play a modulatory role, in

particular in measures of reactive response inhibition (Scheres et al., 2001;

Rosell-Negre et al., 2014). We have recently reported a series of studies in
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which associating reward with one of two possible stop-stimulus colors also

led to shorter SSRTs, despite the fact that any di↵erence in global prepa-

ration was precluded since reward-related trials were presented in a random

sequence together with all other trial types (Boehler et al., 2012; Boehler

et al., 2014). In an EEG version of this experiment, we have demonstrated

that enhanced attention to the reward-related color seems to play a role in

bringing about the reward-related SSRT benefit (Schevernels et al., 2015).

Furthermore, this experiment featured task blocks that were devoid of any

reward associations. Using these trials as a comparison, we demonstrated

that the sensory/attentional N1 component to the go-stimuli of stop-trials

was enhanced throughout the reward-related block. Given that reward was

exclusively related to stop-stimuli, we considered this e↵ect on the go-stimuli

(of stop-trials) a context e↵ect in the sense that attention is increased glob-

ally (Jimura et al., 2010). Currently we investigated contextual e↵ects of

rewarding successful reactive response inhibition on proactive inhibition; al-

though this is a indirect as far as motivational e↵ects on proactive inhibition

goes, it circumvents the problem that simply rewarding a cautious response

mode will lead to rather trivial response slowing.

The present study used single-trial EEG analyses to model the covariation

of the visual N1 with response time framed within the context of proactive

response inhibition. We focused on go-trials and the relationship between

the sensory/attentional N1 component and response time in rewarded-stop

(RS) and standard-stop (SS) task blocks (see Figure 3.1c). For the SS blocks,
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we anticipated to replicate our earlier results of a systematic relationship be-

tween single-trial response times and N1 amplitude (Langford et al., 2016).

For the RS context, however, we hypothesized two di↵erent possible pat-

terns of results: (1) The relationship between response times and N1 ampli-

tudes could be similar or even more pronounced, given that we consider it a

marker of proactive response inhibition, which is generally a useful process

when trying to successfully inhibit a response (Chikazoe et al., 2009), and

could hence be more strongly engaged in a task context in which successful

inhibition can be rewarded. (2) The global attentional increases driven by

reward context(Schevernels et al., 2015; Jimura et al., 2010) might interfere

with or abolish the relationship between visual attention and response speed.

This might be particularly relevant here because of the rapid temporal suc-

cession of go- and stop-stimuli, which might preclude a fully specific reward

e↵ect on stop-stimuli without simultaneously also enhancing the processing

of go-stimuli presented at the same spatial location. We further modeled

the behavioral data as an evidence accumulation process to pick apart the

perceptual decision making dimensions that are relevant for di↵erentiating

between the SS and RS task blocks (see, Logan and Cowan (2014), Ver-

bruggen and Logan (2009b), and Jahfari et al. (2015) for further motivation

related to response inhibition, and see (White et al., 2014) specifically for

the relationship between RT and stopping behavior in a drift-di↵usion frame-

work). Specifically, we were interested to see whether evidence accumulation

would proceed faster in a reward context, which would be consistent with an
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attentional increase to go-stimuli.

3.2 Methods

The analysis in the current manuscript is based on previously reported data

(Schevernels et al., 2015). In the present manuscript, we focus on procedures

and methods pertinent only to the current analyses, which largely focus on

go-trials from a task context in which successful inhibition in stop-trials would

yield a reward vs. one where this was not the case, which were not analyzed

for the previous report.

3.2.1 Participants

Twenty healthy right-handed students participated in the experiment (6

males, age = 22). All participants had normal or corrected-to-normal vision

and no history of psychiatric or neurological disorders. Written informed

consent was obtained from all participants. The study was conducted in ac-

cordance with the Declaration of Helsinki and was approved by the Ethical

Committee of the Faculty of Psychology and Educational Sciences at Ghent

University. Participants received a base compensation of 20 euros and an

additional performance-dependent bonus described in the next section. Be-

cause of a considerable number of missed and incorrect go-trials (16.5%, with

a range of 1% and 9% for the remaining participants), the data of one par-

ticipant were excluded from all analyses as already done in the earlier report
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using this dataset (Schevernels et al., 2015).

3.2.2 Stimuli and Procedure

Throughout the experiment a black rectangular box and a white fixation dot

were presented on a grey background at the center of the screen. Go stimuli

were green tra�c light symbols pointing to the left or to the right. The

target go stimulus was presented centrally above the fixation dot, and was

additionally surrounded by two green tra�c symbols on both sides that were

balanced in congruency (i.e., directly next to the target was one stimulus

with the same orientation and one with the opposite, again flanked by their

respective mirror image) and had to be ignored. This exclusively served

to globally increase the attentional load of the task, without varying the

congruency level. Participants were asked to respond rapidly with the index

finger (left mouse button) or middle finger (right mouse button) of their

right hand according to the orientation of the central go tra�c sign. A

don’t-walk tra�c sign was used as a stop stimulus. The color of this signal

could either be blue or pink with equal proportions. In both go and stop

trials the total stimulus presentation duration was 600 ms, followed by a

randomly-distributed inter-stimulus interval of 1000 to 1400 ms. Participants

completed two blocks, a reward block and a no-reward block, and block order

was counterbalanced across participants.

Participants started with a short practice run, including 34 go trials and

20 stop trials with 10 blue stop signals and 10 pink stop signals. In stop trials
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the interval between a go and stop stimulus (go-stop delay) was constantly

adapted to create and maintain a 50 percent rate of correct stopping. A

staircase procedure was implemented that increased the go-stop delay by 34

ms after a successful stop trial (SST) and decreased it by 34 ms after an

unsuccessful stop trial (UST), with a minimum of 34 ms and a maximum

of 567 ms delay (starting value: 200 ms). Pink and blue stop trials shared

the same staircase, which hence controlled the stopping-success rate over all

stop trials within a block. Reward was only assigned to one of the stop signal

colors at the start of the reward block, i.e. immediately after training for

half of the participants (for whom the reward contingency was then explicitly

removed at the end of the block) and after the no-reward block for the other

half. Block order and the color of reward-predictive stop signals (pink or

blue) were counterbalanced across subjects. Two long blocks were used to

minimize possible carry-over e↵ects related to reward-related colors(Hickey

et al., 2010; Libera and Chelazzi, 2009).

Both experimental blocks consisted of 5 runs of 100 trials each, yielding

a total of 320 go trials and 180 stop trials (90 trials for each color) per block.

In the reward block participants could win points for successful response

inhibition in reward-related stop trials, but not in reward-unrelated stop

trials. At the end of every run the amount of points gathered in that run was

shown. Participants were also informed that these points would be added up

at the end of the block, yielding an extra bonus of between 0 and 6 euro based

on a specified transformation from points to money. Subjects were asked to
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respond as fast as possible and not to slow down their responses during

the experiment, which is important when evaluating stopping performance

(Verbruggen et al., 2013). Additionally, to further prevent such slowing,

participants were told that the collected points in a run would be set to zero

in case they significantly slowed down their responses. Since this procedure

turned out to be quite e↵ective, this correction was never actually used.

3.2.3 Recording and Analysis

EEG recording

EEG data was collected with a 64 channel Biosemi ActiveTwo system (Biosemi,

Amsterdam, Netherlands) using a standard 10-20 system, sampling data at

256 Hz. External electrodes were attached to the left and right mastoid

and at the outer canti of both eyes and directly above and below the left

eye. Data were re-referenced o✏ine to the average of the left and right mas-

toid and a low-pass FIR filter was applied at 30 Hz (-6 dB attenuation at

33.7 Hz). Blinks were removed using independent component analysis. Go-

locked epochs were made with a time window from -200 to 1000 ms, using

the pre-stimulus period for baseline correction. Automatic artifact rejection

was performed on these epochs with a subsequent visual inspection to reject

missed artifacts. Automatic rejection removed trials with values that fell

outside of -/+150 mV. Furthermore, epochs including horizontal eye move-

ments were detected by a step function in the bipolar eye channel (with a
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threshold of 60 mV, window size of 400 ms and window step of 10 ms). After

all rejection techniques were applied an average of 94.6 percent of epochs

remained.

Single-trial EEG analysis of the inferoposterior N1 and exploratory

extension to later time-ranges

The inferoposterior N1 locations were chosen to be closely aligned with pre-

vious work (Vogel and Luck, 2000). These included 6 posterior electrodes, 3

on the right and 3 on the left of a standard 10/20 EEG system (specifically,

O1, O2, PO7, PO8, P7, P8). The 6 electrodes were used in further analyses

to examine the visual N1 with the time range defined between 130 ms and

190 ms after the onset of a go-signal. Such inferences in principle are reverse

inferences (inferring that attention was a↵ected by looking at a neural marker

without explicit modulation), yet there is a highly specific link between the

N1 component and attention.

The analysis of interest investigated the relationship between single-trial

EEG data and response speed on go-trials in the SS and RS blocks. To this

end, single-trial EEG analyses were carried out using the package LIMO EEG

(Pernet et al., 2011). At the first-level single-trial analysis fits a general linear

model of the form y

e,s

= X�

e,s

+ noise to trials of EEG data (y), separately

for all analyzed electrodes (e) and sampling points (s) in the N1 time window

(130 ms to 190 ms post go-stimulus). The five predictors in the design matrix

X were the categorical SS and RS go-trial types, the single-trial normalized
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(per subject, per condition) reaction times, and a noise variable.

Two types of tests were run on the group level data as implemented in

LIMO EEG: (1) We used robust one sample t-test that tests if the average

e↵ect (mean of � values) significantly di↵ers from zero. This determines the

significance and direction of � parameters per sample point in each context,

individually. In this approach, subject beta weights are drawn randomly with

replacement to provide an approximation of the t-distribution under the null

hypothesis (i.e. bootstraps on centered data). (2) In a similar manner we

computed paired samples t-tests to generate a null distribution of t-values

to test � di↵erences between contexts. To account for multiple comparisons,

we used temporal clustering by which only clusters with a mass (sum of t

values) bigger than the 95th percentile of the null distribution are considered

significant. In this case, the null distribution corresponds to the maximum

cluster value across electrodes measured at each bootstrap computed on the

nullified data (pernet2015).

Following these analyses, we determined the electrode for each subject

individually that maximized model fit based on R

2. This vector of maxi-

mized R

2 electrodes was then used to run another 1-sample t-test on the �

parameter of the RT predictor in the SS condition. To visualize this e↵ect we

plotted the model predictions by normalizing the max R

2 electrodes for each

individual, aligning by response time, and averaging over all individuals.

While we had strong hypotheses about the visual N1 based on past re-

search, a more exploratory analysis was undertaken to probe other later
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e↵ects known to be attention related. In this analysis we used the same pro-

cedure as with the N1 but with a broader time window (200-600 ms post-go

presentation) and the full electrode montage. The same 1-sample t-tests and

paired samples t-tests from the N1 analysis were used to determine di↵erences

in the population.

Behavioral analysis

Behavioral data was analyzed concerning standard response-time and accu-

racy parameters before (Schevernels et al., 2015), which we reproduce here

when needed. Additionally, we ran drift di↵usion models. Drift di↵usion

models encapsulate a mathematical description of a binary choice process

and are defined by three central parameters (Ratcli↵, 1978), that have also

have been used to quantify the decision processes of proactive inhibition (Ver-

bruggen and Logan, 2009b; Jahfari et al., 2010; Logan and Cowan, 2014).

These parameters are the response threshold (a), the rate of approach to the

threshold, known as drift rate (v), and processes that precede and succeed

the actual decision process giving rise to nondecision time (t0).

Bayesian estimation was used to model the parameters using the Hierar-

chical Drift Di↵usion Model (HDDM) software (Wiecki et al., 2013). Seven

candidate models were fit to the data; a null model, a full model (including

a, v, and t0), and 5 reduced models; a model without t0, a model without

a, a model with only a, a model with only v, and a model with only t0.

40,000 posterior samples were taken for each model, with a burn-in of 10,000
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samples, and a thinning factor of 3. Five percent of the behavioral data was

assumed to come from a uniform distribution that is not adequately explained

by drift di↵usion processes (e.g., physiological interruption, task unrelated

distractions (Ratcli↵ and Tuerlinckx, 2002)). Each model was checked for

convergence using the Gelman-Rubin diagnostic(Gelman and Rubin, 1996).

Model fit was assessed using the deviance information criterion, DIC

(Spiegelhalter et al., 2002). DIC penalizes how well the model fits the data,

as well as the number of parameters used to explain the data. Furthermore,

posterior-predictive checks were made on each model to assess the perfor-

mance and reasonableness of the model estimates and to check the models

ability to reproduce the observed data. After model selection, posterior dis-

tributions were probed to determine di↵erences directly in the parameters

between the SS and RS task contexts. This is accomplished by examining

the proportion of posterior samples falling above or below a two specified pos-

terior distributions, resulting in a probability that one posterior distribution

is greater or less than the other (Kruschke, 2010).
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3.3 Results

3.3.1 Single-trial EEG analyses

Attentional covariation with response time

As a first exploration the average of all N1-related electrodes were plotted

as a function of individually normalized response time in Figure 3.1a. These

data were time-locked to the onset of the go-signal of correct go-trials. A clear

N1 e↵ect is seen within the analysis window (130 to 190 ms). This N1 e↵ect

visibly dampens as RT increases in the SS context, but is sustained across

RT in the RS context. To explore this quantitatively a robust multilevel

single-trial EEG methodology was applied in two separate steps. This is an

optimal method as it can account for both categorical (context) e↵ects and

parametric (RT) e↵ects within a unitary model. In the first-level statistical

models regression parameters were estimated for each individual at each of

the inferoposterior N1 electrodes for each time-sample between the defined

time window. These included linear predictors for the categorical RS and

SS factor, continuous response time per context, and noise, for each of the 6

electrodes and for each sample point.

Standard-stop go-trials and response time

Covariational RT and EEG di↵erences within the SS context were tested us-

ing a bootstrapping 1-sample t-test procedure to ‘synthesize’ individuals’ �
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Figure 3.1: Response Time E↵ects. a. Averaged N1 EEG electrodes (O1,
O2, PO7, PO8, P7, P8) data plotted by normalized (per individual) response
times in the standard-stop context (top) and rewarded-stop (bottom). b.
Uncorrected p-values for the standard-stop (SS, top) 1-sample t-test, reward-
stop (RS, middle) 1-sample t-test, and paired-sample t-test (bottom) for six
electrodes. Significant temporally corrected values at ↵ = 0.05 are overlaid.
c. Stimuli and paradigm (flanking stimuli are not shown) showing go-trials,
stop-trials, and potential payouts for stop-trials in both the SS and RS blocks.
The color coupled to reward (blue in the example) for a successful inhibition
was instructed before the block began.

parameters for statistical testing at the second level of analysis. This is a test

that probes the relationship between RT and N1 amplitudes. Within the N1

electrodes chosen for analysis, a clear pattern emerged in the SS trials. As

RT slowed in the SS context the inferoposterior N1 voltages systematically

became less negative across all individuals. Note that while the analysis is

performed separately for multiple time-points, correcting for multiple com-
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parisons using a 1-dimensional temporal cluster correction showed evidence

that such an e↵ect was indeed present in all analyzed electrodes and peaked

around 160 ms (see �

SS

of Figure 3.1b).

Further testing was done by constructing an optimized electrode vector

from each individual’s electrodes using the maximal r2 as the decision crite-

ria for inclusion (see(Rousselet and Pernet, 2011) for the motivation behind

optimized averaging in EEG research). The same 1-sample t-test was run on

this optimized vector of electrodes to support the previous finding. Cluster-

corrected significant di↵erences were found from⇠148 ms until⇠167 ms. The

model was then inverted and the predicted voltages given by this optimized

electrode vector were normalized for each individual and subsequently col-

lapsed across individuals to develop a predicted-voltage plot of RT * post-go

time * voltage to visualize the e↵ect (see Figure 3.2). Included in Figure 3.2

is an overlay that depicts the relationship between RT and the probabilities

of either successful or unsuccessful inhibition (as predicted using the horse

race model(Logan and Cowan, 1984)).

Rewarded-stop go-trials and response time

Go trials from the RS blocks were submitted to the same second level co-

variational approach used to test the � parameters in the SS blocks. The

N1 attenuation e↵ect as a function of RT seen in the SS task was completely

absent from the RS blocks. The p-values for the 1-sample t-test are shown in

the middle plot (�
SS

) of Figure 3.1b. This indicated that there was a lack of
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evidence for a covariational relationship between RT and the N1 at a single

trial level (i.e., accept null � = 0, even in the absence of multiple comparison

corrections).

Figure 3.2: Model Prediction. Predicted voltages individually normalized
and then averaged across individuals plotted by response time and time since
go presentation. Electrode plotted for each individual was the electrode from
the optimized r

2 vector. Significant cluster from 1-sample t-test overlaid on
top. To the right the relationship between SSRT, SSD, and p(inhibit|signal)
are shown in relation to go-RT and the single trial N1.

RT di↵erences between contexts

To test that the relationship between RT and N1 amplitude seen in the

1-sample t-tests are more than qualitatively di↵erent between SS and RS

contexts, a paired-samples bootstrapping t-test was applied to the RT beta

coe�cients. Four of the six electrodes were shown to be di↵erent between
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the RS and SS contexts using the same 1-dimensional temporal cluster cor-

rection method, as shown in the bottom panel (�
SS

- �
RS

) of Figure 3.1b. To

summarize the covariational RT e↵ects we observed a relationship between

single-trial N1 amplitude and response speed, with longer response times be-

ing related to slower behavioral responses, similar to what we have observed

in an earlier study in a standard stopping context (Langford et al., 2016).

Importantly, this relationship was exclusive to the SS and absent in the RS

context.

Categorical di↵erences between contexts

Group-level di↵erences in the categorical factors RS and SS were tested using

the same paired samples bootstrapping t-test. This is generally related to a

standard ERP, but controlling for RT, and additionally modeling noise. For

reference to a common (ERP) analytic scheme, the standard ERP is shown

averaged over the 6 N1 electrodes in Figure 3.3a. For the paired samples t-

test all 6 of the electrodes tested showed more negative amplitudes in the RS

N1 at an uncorrected threshold of ↵ = 0.05, as is seen in Figure 3.3b. After

controlling for multiple comparisons using a 1-dimensional cluster correction,

3 of the 6 were found to be di↵erent (specifically PO7, P8, and PO8). These

e↵ects started at ⇠140 ms post-stimulus and continued (for some electrodes)

until the end of the tested interval of 190 ms. Go-trials in the RS blocks had

more negative amplitude than in the SS context. This result extends our

earlier observation in this dataset of an enhanced N1 ERP amplitude for the
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go-stimuli presented during stop-stimuli (Schevernels et al., 2015).

Figure 3.3: Categorical E↵ects. a. Standard ERP of all 6 N1 electrodes
averaged with 95% confidence interval. b. Time course of p-values from
the paired samples t-tests with the tested range of 130 to 190 ms post-go
presentation for the categorical � parameters of the SS and RS blocks.

N2-P3 complex

While the N1 component was our explicit a-priori focus of interest, we tem-

porally extended our analysis of possible EEG-response-time covariation in

the same fashion to identify the possible involvement of later neurocognitive

mechanisms. The same model was applied to the full scalp in the window of

200-600 ms after the go-signal in correct go-trials separately for the SS and

RS task context. Cluster-corrected 1-sample t-tests of the RT parameters

showed evidence of a covariational e↵ect peaking around ⇠320 ms in both
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the SS and RS blocks, and a later e↵ect peaking around ⇠ 400 ms in the RS

blocks. The earlier component in both blocks was a negative wave (N2) and

had a fronto-central scalp distribution (Figure 3.4b), and became more neg-

ative with increased RT. The later RS component was a positive-going wave

(P3) with a central-posterior scalp distribution (Figure 3.4b), and became

more positive with increasing RT. A paired-samples t-test was done on both

the categorical and RT � parameters to test for di↵erences between the SS

and RS contexts. No di↵erences were found after cluster correction for either

paired-samples test. Therefore, as opposed to the N1 component, neither the

go-locked N2 nor P3 were sensitive to reward availability for stopping, while

also showing some relationship to RT that was largely independent of the

two di↵erent task contexts.

3.3.2 Behavioral Analysis

Standard analysis

Correct go-trial mean RTs were similar in the RS block (426.5 ± 9.5 ms)

compared to the SS block (420.3 ± 8.6 ms). Go-trial accuracy in the RS

block (96.6 ± 1.1%) was also similar to the SS block (96.9 ± 0.6%). The

average stop-signal delay in the SS blocks was 229.3±9.4 ms, and the average

SSRT in the SS blocks was 177.3 ± 4.2 ms (reproduced here for Figure 3.2,

see (Schevernels et al., 2015) for further details related to SSRT, stop-trial

behavior, and other calculations not pertinent to the current analyses).
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Figure 3.4: 1-sample t-test on EEG-response-time relationship be-
tween 200 and 600 ms. t-values from 1-sample RT � t-tests averaged
within the significant cluster corrected time ranges for both the early and
late components. The data indicate a negative relationship between RT and
EEG data in the N2 range, and a positive one in the P3 range, albeit only
for the RS context after multiple-comparison correction

Hierarchical Drift Di↵usion Model

Drift-di↵usion models incorporate a framework for forced choice decisions

that can be used to account for accuracy and response times in a given trial.

Models were fit using a hierarchical Bayesian estimation scheme to sample

from parametric distributions corresponding to the rate of sensory/perceptual

accumulation of go-stimulus information (drift, v), level of response caution

(response threshold, a), and the combined time needed for nondecision pro-

cesses (nondecision time, t0). Model selection for the HDDM started by

fitting a null model, i.e. ignoring di↵erences between go-trials from the SS

and RS contexts. SS and RS di↵erences in response threshold, drift, and

nondecision time were then successively added to the model, and in combi-
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nation (by taking away the initial constraints of equality across SS and RS).

Table 4.1 reports the improvement in model fit of Deviance Information Cri-

terion (DIC) for the three best hypothetical models considered, as well as

the null model. Based upon DIC, the model with all parameters included

was selected for further analyses.

As seen in the bottom of Table 4.1, the di↵erences between the parameter

distributions in the RS and SS are di↵erent (as seen in the high probabilities

that the sampled distributions are dissimilar) for the model that includes

all parameters. The RS blocks, relative to the SS blocks, have a raised

response threshold, a steeper drift, and also a smaller amount of time devoted

to nondecision processes (t0). Notably, the standard mean and accuracy

analyses above had indicated very similar go-trial behavior in the two task

blocks. The DDM analysis indicates that this is brought about in di↵erent

ways, in which in RS blocks short nondecision times and faster drift-rates

are compensated for by a raised response threshold in order to maintain a

similar response speed, as participants were instructed to do.

3.4 Discussion

The current EEG study investigated neural processes underlying proactive

response inhibition during the stop-signal task in human subjects and focused

on early attentional mechanisms. The analysis was based on a comparison

of go-trials from di↵erent trial blocks in which successful response inhibition
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model DIC

difference

Null –
a, v -145
v, t0 -101

a, v, t0 -229

a v t0

SS 2.57(0.29) 5.05(0.39) 0.18(0.01)
RS 3.06(0.32) 5.52(0.40) 0.15(0.02)
Group Variation 1.36(0.21) 1.58(0.20) 0.06(0.01)
p(high > low) 0.90 0.81 0.92

Table 3.1: Top Di↵erences in DIC of tested model from the null model (lower
DIC is better). Bottom Parameter estimates from (a,v,t ) model, group
variability, and the probability that the greater value between SS and RS is
indeed greater for each of the parameters (i.e. p(a

RS

> a

SS

); p(v
RS

> v

SS

);
p(t0SS > t0RS)).

was either explicitly motivated by reward prospect, or not, thereby probing

for di↵erences due to motivational context. We found a significant relation-

ship between the single-trial amplitudes in the attention-related visual N1

component and response speed in the standard stop-signal task, but not in

the rewarded-stop task blocks. This was accompanied by an overall more

pronounced N1 in the reward context. Additionally, we found evidence for

relationships between RT and EEG in the N2 and P3 time-ranges, which

however did not di↵erentiate clearly between the two motivational task con-

texts. Finally, despite overall mean behavior being highly similar across

blocks, we observed di↵erential results of a drift di↵usion analysis, in which
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the mere di↵erence in context led to di↵erences in all key parameters. Specif-

ically, a stop-trial-related reward context modulated go-trials to have higher

drift rates and lower nondecision times, together with a elevated decision

threshold.

Visual attention in a standard stop signal task The classic inferopos-

terior N1 component is thought to index the selective attentional processing

and discrimination of the visual stimulus in mid- and high-level visual areas,

and to generally indicate how much attention is paid to a visual stimulus

(Vogel and Luck, 2000; Luck et al., 2000). The single-trial ERP analysis

demonstrated that as response times increased, the amplitudes of this com-

ponent decreased, albeit only in the SS block. The damping of N1 amplitudes

as responses slow is likely an indication of a down-regulated discrimination

of the go-stimulus. Mathematical modeling of the stop-signal task predicts

that the slower the response the more probable successful stopping is to occur

(Verbruggen and Logan, 2009a). Therefore, a down-modulated go-stimulus

processing, as measured by the N1 component, is arguably advantageous for

later inhibition. Consistent with this notion, an analysis of stop-trials in this

same dataset had indicated that the N1 to go-stimuli was larger for trials

that ultimately were not successfully inhibited (Schevernels et al., 2015).

These results in the SS block of the present study replicates our recent

report, in which we found the same relationship between N1 amplitudes and

response times for go-trials in a standard stop-signal task (Langford et al.,
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2016). Additionally, this earlier work indicated that this relationship is likely

under proactive top-down control because it was absent in control blocks in

which stop-stimuli were task-irrelevant, which abolishes any need not just

for outright inhibition but also for strategic response slowing. Notably, in

this previous report this absent relationship coincided with a slightly atten-

uated average N1 ERP component for this stop-irrelevant task context. The

present findings are important not least as a replication because our previous

report was the first description of this relationship between single-trial N1

amplitudes and go-trial response times. Additionally, some factors were dif-

ferent in the present work, which therefore do not seem to be critical for this

relationship to arise. In particular, in the present work, the target stimulus

was always flanked by four distractor items, thereby increasing the need for

selective attention, whereas our earlier work (Langford et al., 2016) did not

feature such distractors. Simultaneously, the present comparison between

task blocks is arguably more specific than in our earlier work, in that the

two blocks were very similar in many regards, and still yielded di↵erent re-

sults. Most notably, go-trial performance was extremely similar across the

two blocks, so that the present di↵erential results arise in an absence of any

clear overt behavioral di↵erence. Additionally, the two blocks did not di↵er

strongly in task requirements. Specifically, our earlier comparison between

stop-relevant and stop-irrelevant blocks compared tasks that di↵ered quite

fundamentally in requirements, in that a regular stop-signal task sets up a

dual-task situation (with opposing requirements to go or stop) that the stop-
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irrelevant blocks did not have(Verbruggen and Logan, 2009b). Based on

drift-di↵usion modeling we argued that it was not the dual-task nature that

drove behavior in the stop-relevant blocks, in particular not on a single-trial

level. The present data corroborates that the presence of the relationship

between N1 amplitudes and response time is not majorly dependent on such

task requirements, because those were highly comparable across blocks in the

present study.

Another important aspect relates to the relationship between the categor-

ical/ERP di↵erences across conditions (SS vs. RS) and the within-condition

variation. A very recent related report investigated the role of visual at-

tention in proactive (inhibitory) control (Elchlepp et al., 2016). These au-

thors found that attention to the go-stimulus is enhanced if this stimulus

might change into a stop-stimulus (or an additional control condition re-

quiring a double response). This was interpreted as reflecting the involve-

ment of attentional processes in proactive control, albeit not necessarily in an

inhibition-specific fashion. In addition, those authors found that attentional

modulations of go-stimulus processing disappeared when stop-stimuli were

auditory rather than visual. These results could be interpreted as represent-

ing an e↵ect of monitoring a stimulus for a relevant change, much like in

our paradigm. We see our categorical reward-context modulation of the N1

as a related process, in which attentional monitoring is generally ramped up

in order to optimally detect a reward-relevant stimulus. In our mind, such

categorical e↵ects are highly relevant, but suggest that the within-condition
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variation is the aspect that is more closely linked to behavior.

Extending the analysis window beyond the planned N1 time- and electrode-

range, we found evidence for a relationship between RT and EEG activity

in the N2 and P3 time-range, both of which were enhanced (N2 more nega-

tive, P3 more positive) as RT increased. While the P3 e↵ect only survived

multiple-comparison correction for the RS context, there was no evidence

for a real di↵erence between the contexts for either time-range. The results

therefore seem to suggest that also later processes scale with RT, without

clearly di↵erentiating between the two motivational contexts. A specific in-

terpretation of these relationships seems di�cult, given that they concern

simply go-trials. Yet, given the context of the stop-signal task, one could

speculate about a link to components that are typically found in response

inhibition, where N2 and P3 components play a prominent role both in the

Go/Nogo task and the stop-signal task (Enriquez-Geppert et al., 2010). Hav-

ing a related signature in slow-vs-fast go-trials might speak towards addi-

tional neurocognitive processes that deliberately slow down responses. Yet,

this interpretation is naturally speculative at this point.

Prospect of reward The main contribution of the present study is delin-

eating the e↵ect of a reward context (for successful stop-trials) on the above

relationship between attention and response time in go-trials. This contex-

tual modulation had two clear e↵ects. (1) The average N1 amplitude was

enhanced for go-trials from the reward-relevant task context, probably indi-
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cating a generally increased level of attention. (2) There was no covarying

relationship between the N1 and response time on the single-trial level. This

pattern is consistent with the second hypothesis raised in the introduction,

namely that a context e↵ect of RS stop-trials generally increased the amount

of attention paid also to the go-stimuli, and that this process simultaneously

overrides any fine-grained relationship between attention and response speed.

Concerning the behavioral data, one thing to note in particular is that the

mean response times were nearly identical in the two task contexts. Over-

all go-trial response time is typically a bit artificial in the stop-signal task

since it strongly relies on the instruction given to the participants (and their

compliance to it), i.e. if successful stopping would be the only priority, sim-

ply refraining from a button press would be the most successful strategy

(typically discouraged by instruction). Along similar lines we instructed par-

ticipants not to slow down their responses during RS blocks compared to

the SS blocks. Yet, despite this high degree of similarity in behavior, the

reward context had an e↵ect on go-trial ERPs as well as on the single-trial

relationship between RT and the N1 amplitude. This is interesting not least

because reward e↵ects often take highly specific forms of benefitting precisely

and exclusively the rewarded task aspect, and since stopping performance in

this task was specifically enhanced for reward-related stop-trials and not

for randomly intermixed no-reward stop-trials that di↵er only in the color of

the stop-stimulus (Schevernels et al., 2015). As indicated above, these e↵ects

likely represent context e↵ects in the sense that a reward-anticipation-related
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increase in attention to possible stop-stimuli automatically entails enhanced

attention to the go-stimuli that always rapidly precede them (in stop-trials)

or are presented in isolation (in go-trials) (Elchlepp et al., 2016). While this

seems plausible, given the tight temporal succession of events in stop-trials,

it should be noted that we and others have also speculated in the past that

there is a sharing of attentional resources between go- and stop-stimuli in a

given stop-trial (Boehler et al., 2009; Pessoa, 2009). Moreover, it is often

found that attention away from a stimulus that might interfere with ob-

taining a reward is generally considered a feasible mechanism e.g. in delayed

gratification context (O’Connor et al., 2012). It seems possible that a reward

context also changes these relationships.

Multiplicity of influences on drift di↵usion processes As highlighted

in the previous section, standard go-trial performance was highly similar

across the two task contexts. Yet, looking at drift di↵usion modeling, we

found that there were in fact subtle changes in the sub-processes of evidence

accumulation that jointly determine behavioral outcome. Specifically, both

drift rate increased and decision threshold increased, while nondecision time

decreased in the RS blocks. A decrease in nondecision time and increase

in drift rate leads to quicker response processes, whereas the raised decision

threshold led to slower, more conservative responding. Therefore, it seems

that the decision threshold compensates for the changes in the other two pa-

rameters. While the reason for this might be a bit artificial, in that it likely
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relates to the instruction not to slow down responses across the two task

contexts, it still illustrates nicely a fine-grained process structure, in which

even near-identical mean behavior can arise from di↵erent constellations of

di↵erent drift di↵usion parameters (i.e. modeling RT distributions and ac-

curacy is more powerful than summary measures). This finding is generally

reminiscent of results from a stop-signal task that used stimuli with di↵erent

image quality, where it was found that reduced drift rate and increased non-

decision time for low-quality images was compensated for by an increased

decision threshold (Jahfari et al., 2015). It seems likely that our presented

results are strongly related, just the source of variation in stimulus process-

ing is internal rather than external, and likely strategically employed. When

speculating about the relationship of these parameters to our electrophysio-

logical results, it seems reasonable to link the N1 modulations to di↵erences

in drift rate and possibly nondecision time, in that early attentional processes

plausibly map onto both the rate of and starting time of evidence accumu-

lation, which might furthermore relate to anticipatory attentional processes

that precede the actual trial (e.g., (Bengson et al., 2012)). The increased de-

cision threshold, in turn, might relate to a process more linked to the motor

output level, which we did not capture in our analysis of the EEG data (see,

O’Connell et al. (2012), Elchlepp et al. (2016), and Dippel and Beste (2015)

for a broad discussion of candidate neural signatures). Given the fact that

for obtaining reward going slow would be beneficial (but was explicitly dis-

couraged), the changes in drift rate and nondecision time might also reflect a
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non-instrumental context e↵ect, which is then counteracted by an increased

decision threshold.

Conclusion The current manuscript provides new evidence of a strate-

gic and dynamic modulation in the attentional processing of go-stimuli in

a standard stop-signal task using single-trial ERP analysis. Go-trial am-

plitudes were dampened the more delayed a response. This confirms our

previous work using the same general methodology (Langford et al., 2016),

and is in line with work using both a di↵erent analysis strategy (comparing

go-stimulus N1 amplitudes for stop-trials in which inhibition was ultimately

successful vs. not) and neuroimaging modality (MEG) (Boehler et al., 2009).

Yet, under a motivational context in the form of reward for successful re-

sponse inhibition, this modulation was not evident, though attention was in

fact generally increased by the mere presence of the probability of a reward.

This went along with subtle changes in the relationship between di↵erent

drift di↵usion parameters that overall still resulted in near-identical mean

behavior. Together, it appears that a reward context, even if not directly

relevant for the processes studied, can introduce changes in a global atten-

tional state, perhaps towards a sustained strategic proactive control mode

(Locke and Braver, 2008; Jimura et al., 2010), thereby having an impact on

all stimuli and trials that are comprised in this environment. More generally,

it furthermore explicitly links di↵erences in proactive slowing to (contextual)

motivational factors, hence suggesting additional possible pathological mech-
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anisms for patient populations with deficits in proactive response inhibition

like ADHD (Bhaijiwala et al., 2014).
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Abstract

Response inhibition is required for contextually appropriate behavior, and

is implicated in numerous cognitive dysfunctions. The current electroen-

cephalographic (EEG) study investigated proactive adjustments of attention

in a lateralized cued stop-expectancy task in order to extend previous work

suggesting a role of attentional modulations in proactive response inhibition.

In this task participants are given a cue indicating the probability of the cur-

rent trial containing a delayed centralized stop-signal, as well as a directional

cue indicating the hemifield of a delayed go-signal. Prestimulus alpha power

was modulated by the stop-expectancy in the delay period between the cue

and the lateralized go-signal, with greater lateralization of alpha power as

stop-expectancy increased. This was accompanied by response time slowing

and a larger attention-related N1 component as stop-expectancy increased.

Further a drift-di↵usion process model indicated that as stop-expectancy in-

creased participants employed di↵erent evidence accumulation processes and

a more cautious response model. Together this pattern of results speaks

towards a highly flexible proactive response inhibition process that recruits

di↵erent systems to achieve the goal of inhibiting responses. Yet, the direc-

tion of this e↵ect seems to depend substantially on exact task requirements

and expectation, and speaks against a simple notion directly binding down-

modulated attention to proactive inhibition in a way that generalize across

cued expectations of the probability of response inhibition being necessary.



4.1 Introduction

Motor control requires interacting cortical networks that issue both activation

and inhibition signals to produce contextually appropriate output. Dysfunc-

tion of inhibitory networks is implicated in multiple neurological pathologies

and disorders, such as Alzheimer’s disease and attention-deficit hyperactivity

disorder (Chambers et al., 2009). While these inhibitory networks have been

extensively researched there remains debate about their specificity (Hamp-

shire and Sharp, 2015; Aron et al., 2015), as well as how sensory and percep-

tual processes come to bear on behavioral outcomes.

The stop-signal task has been used to determine both the timing and ef-

ficiency of inhibitory processes, and to clarify the neural signatures involved.

In the stop-signal task, a go-stimulus requiring a rapid perceptual judgment

is infrequently followed by a stop-stimulus, signaling a need to inhibit the re-

sponse. Behavior in the stop-signal task is usually modeled as a race between

two competing processes - a go- and a stop-process. The stop-process latency

(the presumed time the stop-process wins) can be estimated (stop-signal re-

sponse time - SSRT) by assuming a stochastic model. The research focus

has been on processes initiated by the stop-stimulus. This line of research -

reactive inhibition - has implicated a specific “response-inhibition network”

involving the right inferior frontal cortex (Aron et al., 2014; Cai et al., 2014).

Yet, computational work suggests that a large portion of the time needed to

implement response inhibition is taken up by non-inhibitory processes related
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to the processing of the stop-stimulus that would likely precede activity in

this network (Boucher et al., 2007; Salinas and Stanford, 2013; Verbruggen

et al., 2014; Erika-Florence et al., 2014; Hampshire, 2015; Hampshire and

Sharp, 2015).

Proactive inhibition, a concept related to preparatory processes and re-

sponse caution, has emphasized the involvement of attentional processes in

response inhibition (Elchlepp et al., 2016; Verbruggen et al., 2014; Dimoska

and Johnstone, 2008; Boehler et al., 2009; Kenemans, 2015). Two recent

electroencephalographic (EEG) studies of ours provided evidence that for

go-trials the inferoposterior N1 component (Luck et al., 2000) was being

strategically down-regulated as response times (RT) were slowed when out-

right stopping was contextually relevant (Langford et al., 2016a), and was

further modulated by motivational context (Langford et al., 2016b). Given

that these analyses exclusively looked at go-trials (i.e., no stop-stimuli were

presented in these trials, hence not triggering outright inhibition), di↵erences

were arguably impelled by proactive processes, with fluctuations in RT and

attention being preparatory in nature, and not outright inhibition.

Importantly, this earlier research technically entailed at its core a reverse

inference, since we used variations in the N1 component across trials related

to RT in order to interpret this finding as reflecting attention. In the cur-

rent study we aimed to directly modulate preparatory processes in a fashion

similar to Zandbelt et al. (2013) and Verbruggen and Logan (2009) in order

to provide more direct evidence for an attentional involvement in proactive
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inhibition. We used a lateralized stop-signal task with a probabilistic stop-

expectation cue to manipulate preparatory attentional processes. Further,

we focused on a clearly preparatory time-frequency signal that has been used

extensively in cueing tasks to examine spatial attention. Cued attention to a

location has been associated with increased alpha band activity over ipsilat-

eral regions, and decreased alpha activity over contralateral regions prior to

stimulus presentation (e.g., Vollebregt et al., 2015; Bengson et al., 2012). We

analyzed alpha-band activity prior to the onset of a cued lateralized go-signal

that could be expected to be followed by a centralized stop-signal at di↵erent

occurrence rates.

4.2 Materials and Methods

4.2.1 Participants

19 participants (aged 18-26, 6 male) behavioral and EEG data were collected

from the Ghent University subject pool. 3 participants were removed from all

analyses because of data quality over the whole scalp, leading to substantial

data loss.

4.2.2 Stimuli and Procedure

Participants were seated 80 cm from a computer screen. Experimental con-

trol and visual presentation were done using Neurobehavioral Systems Pre-
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Figure 4.1: Paradigm. In this task participants were to respond as fast as
possible to the orientation of the grating in a go-trial, while also stopping
their response when a delayed stop-signal (black circle) appeared. The stop-
signal was controlled using an adaptive procedure to ensure stopping rates
of 50%. The cue indicated the side (Links vs. Rechts) of the upcoming go-
signal, and also explicitly states the percentage of trials that are stops in the
specific condition (10, 25, or 50%).
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sentation software. The task reported in this manuscript had blocks that

were interleaved with another similar task that presented go-stimuli cen-

trally. Trial sequence proceeded with a visual cue consisting of a directional

cue, either “Links” (left) or “Rechts” (right), below a level cue consisting of

integers “10” (Lo), “25” (Mid), or “50” (Hi) above a central fixation cross.

Visual cues were left on the screen for 400 ms. Directional cues and level cues

both appeared randomly and in equal proportions. After the cue there was

a randomly selected 1000-1500 ms interval between cue o↵set and the first

target onset. The first target was a go-signal, these consisted of either verti-

cal or horizontal gratings presented in the cued hemifield. Participants were

to respond with their right and left index fingers using the ’z’ key or the ’m’

key depending on the orientation of the go-signal. Participants completed

half of the blocks using one response mapping, and the second half using the

opposite (which was counterbalanced across subjects, and practice trials were

given after the switch). The level cue was used to represent the percentage

of trials, in the upcoming trial, that consisted of not only the go-signal, but

also a second stop-signal. The stop-signal was a gray circle presented at the

location of the central fixation cross for 100 ms. The instructions given to

the participants were to respond as fast as possible to the go-signal, but to

not respond in trials which had a stop-signal. A subject-specific staircase

procedure was adapted online to control the timing of the second signal to

produce roughly equal stop-trial failures and successes. For the initial esti-

mates participants first completed a short trial block and were told to ignore
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the gray dots (before task instructions) and only to respond to the vertical

and horizontal gratings. These response times were then averaged and the

initial estimates of the staircase procedure were set to one standard devi-

ation below the mean. There were separate staircases for all combinations

of hemifield and response hand and all percentage levels of the level cue. If

participants responded slower than 3 standard deviations above the initial

estimates for any go-trial, they were given a 200 ms feedback after the trial

indicating that they went too slow. There were 8 blocks of 45 trials, preceded

by 1 practice block and task instructions. After each block participants took

a self-timed break and received feedback regarding the response time and

the percentage of correct stop-trials out of the total in the preceding block.

Eye movements were monitored online using a video camera placed above the

computer monitor and participants were discouraged from making horizontal

eye movements.

4.2.3 Behavioral Analyses

Repeated measures ANOVA (rANOVA) were used to test for di↵erences in

response time using factors cue level, response side, and hemified of presen-

tation. This same procedure was done on the proportion of correct stop-trial

data to check if the adaptive-SSD procedure was successful at keeping all

levels at roughly 50% stopping rates. To estimate the SSRT the integra-

tion approach was used at each of the cue levels. This approach defines the

SSRT = (nth rank-ordered RT) - (mean stop-signal delay), with n equal to
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the number of RTs in the go-trial RT distribution multiplied by the over-

all probability of responding given a stop signal. Simulations showed that

under most circumstances the integration approach yields consistent and un-

biased estimates of the SSRT (Verbruggen et al., 2013). The SSRT was then

tested using a rANOVA with cue level as a factor. For multiple compari-

son correction given a significant omnibus test in any of the rANOVAs we

used Bonferroni-Holmes corrected p-values in pairwise paired samples t-tests

(denoted as p
bh

).

Drift-di↵usion models are a description of a stochastic binary choice pro-

cess defined by three main parameters (Ratcli↵, 1978). These parameters are

the response threshold (a), the mean rate of approach to a threshold, known

as drift rate (v), and processes that precede and succeed the actual deci-

sion process and give rise to a nondecision time (t0). Hierarchical Bayesian

estimation was used to model the parameters using the Hierarchical Drift

Di↵usion Model (HDDM) software (Wiecki et al., 2013). Model fit was as-

sessed using the deviance information criterion (Spiegelhalter et al., 2002;

DIC, with smaller DIC indicating better fit). 5000 posterior samples were

drawn for each model using Markov-Chain Monte Carlo methods. We used

a burn-in of 1,000 and a thinning factor of 3. To account for individual dif-

ferences in overall performance in this set of models we separately estimated

v, a, and t0 as within-subject factors. These models take into account that a

subject whose performance in, for example, the Lo condition is better than

another subject, that also this might transfer to the Hi condition. Given that
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only level played a role in the standard analysis of response times, we sim-

plified the analyses and did not consider hemifield, nor response hand in the

DDM. In these models we chose the Lo condition as the baseline and mod-

eled the three parameters relative to the estimate of Lo. Each model was

checked for convergence using the Gelman-Rubin diagnostic (Gelman and

Rubin, 1996) and by looking at the autocorrelation of the sampled chains.

Since we modeled the baseline condition as Lo, di↵erences were probed by

taking into account how many sampling points in the other conditions fell

above or below zero. This resulted in a probability estimate that one poste-

rior estimate is greater or less than the baseline Lo condition (see Kruschke,

2010 for an overview of Bayesian methodology). When needed, to further

test between Hi and Mid, we simply looked at how many sampled points in

one estimate were greater or less than the other.

4.2.4 EEG Acquisition and Analyses

EEG data were acquired at 512 Hz using a 64 channel Actichamp system with

locations placed according to a standard international 10-20 system. The

montage included two horizontal EOG (HEOG) channels and two mastoid

channels. Data was imported into EEGLAB (Delorme and Makeig, 2004)

using Cpz as the reference, which was then recovered algebraically. Bad elec-

trodes were removed after importing and continuous data was prepared for

Independent Component Analysis (ICA). Data were high-pass filtered at 1

Hz and split into ICA-appropriate go-locked epochs from -2000 ms to 1000
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ms. First, epochs with data outside of ± 500 µV were rejected, and then

followed by a further visual inspection for nonstationary epochs. Extended

infomax ICA was then run on these epochs and subsequently the IC weight

and sphere matrices were transferred back to the unfiltered continuous raw

data. Artifactual components containing blink artifacts or other artifacts

clearly distinguishable from brain-derived EEG signals were removed from

the continuous data. Artifact-free continuous data were high-pass filtered

at 0.5 Hz. Previously removed bad electrodes were interpolated, and seg-

mented into 360 time-frequency appropriate epochs from -2500 ms to 2000

ms surrounding the target. Trial rejection was then done in four steps. (1)

Trials with more than one response were removed. (2) Trials in which the

participant responded faster than 100 ms, or received post-trial feedback in-

dicating that they responded too slow were removed. (3) Trials containing

bipolar HEOG (low-pass filtered at 20 Hz) ± 50 µV from the start of the

cue to the start of the target, were removed. (4) EEG channels with data

values exceeding ± 100 µV from the start of the cue to 500 ms after target

onset were removed. Average percentage of trials after all rejection steps

93% of the total collected trials. The trial-averaged EOG channel was then

visually inspected for fluctuations outside of ± 2 µV to detect individuals

with consistent horizontal eye movements between cue and target over the

whole experiment.
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EEG time-frequency decomposition

The stimulus-locked epoched EEG times series were decomposed into their

time-frequency representation by convolving them with a set of complex Mor-

let wavelets.

e

i2⇡tf
e

�t

2
/2�2

(4.1)

Where i is the complex operator, t is time, f is frequency from 2 to 50 Hz

in 30 logarithmically spaced steps, and � defines the width of each wavelet

(x\2⇡f), where x increased logarithmically from 4 to 10. Following convolu-

tion data were reshaped back into individual trials. From the complex signal

an estimate of condition specific power at each time point was calculated.

Pre-target ↵

To determine location and timing of pre-target alpha lateralization the se-

lection procedure was independent of possible conditional di↵erences. Scalp

topographies collapsed over condition of raw power at 10 Hz were first plotted

over the period preceding the go-signal for both left and right cues. Based

upon the alpha activity in these topographies two clusters of five electrodes

each were chosen for subsequent analysis. In the left posterior cluster elec-

trodes O1, PO3, P5, P7, and PO7 were chosen, and in the right posterior

cluster electrodes O2, PO4, P6, P8, and PO8 were chosen. These clusters

were then averaged and time frequency power for each possible lateralization

combination (left cue-left cluster, left cue-right cluster, right cue-right clus-
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ter, and right cue-left cluster) were computed and subsequently collapsed to

compute ipsilateral and contralateral time-frequency maps for each individ-

ual. These maps were used to examine pre-target power activity. The time

range from -600 ms to -100 ms and frequency range from 8-13 Hz were chosen

as the testing window because of the high pre-target alpha activity. For each

subject and cue level (Hi, Mid, and Lo) separately a lateralization index was

then computed.

↵LI =
↵

contralateral

� ↵

ipsilateral

↵

ipsilateral

+ ↵

contralateral

(4.2)

in which raw alpha power in each hemisphere is expressed relative to the total

alpha power at both sites. To determine if alpha power lateralization was

modulated by cue level a rANOVA was performed within the predefined time

window using the ↵LI. We used the Bonferroni-Holmes p-value correction

when necessary to test pairwise di↵erences.

Early sensory evoked components

To examine early attention-related ERPs the data were first low-pass filtered

at 30 Hz and then a -200 ms to 1000 ms period around the target stimuli

was defined. Given that the SSD was rather long (i.e., possible stop-stimuli

were presented relatively late during go-stimulus processing; see Results) we

used all trials to calculate the ERP waveforms to characterize go-stimulus

processing across the di↵erent experimental conditions.. Data were baseline
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corrected from -200 ms to 0 ms before the target. Topographical maps were

made in the typical time ranges that the P1 and N1 visual evoked components

are seen for left and right presented targets, independent of condition. Based

on these maps, it was decided that the post target ERPs included all of

the same electrodes as in the alpha analyses. The time domain waveforms

were then plotted averaged over individuals and conditions for ipsilateral and

contralateral electrode sites. Based on these waveforms the P1 was defined

in the range of 100 ms to 140 ms, and from 180 ms to 220 ms for the N1.

The mean voltage of each participant was included in a rANOVA ran with

condition (Lo, Mid, Hi), hemifield of presentation (left and right), as well as

hemisphere (contralateral and ipsilateral) as within-subject factors. As with

the behavioral analyses we used the Bonferroni-Holmes p-value correction to

control for multiple comparisons.

4.3 Results

4.3.1 Behavioral Analyses

rANOVA with factors cue level, response side, and hemifield was used to

test for di↵erences between correct go-trial response times (see Table 4.1 for

a summary of behavioral data). Only cue level was significant, F(2,30) =

9.62, p < 0.001 (all other F’s < 1). Post-hoc pairwise paired t-tests were

done over the three di↵erent cue levels. Hi was significantly slower than

Mid (t(15) = 2.62, p
bh

= 0.029 and slower than Lo (t(15) = 3.55, p
bh

=
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0.009), and furthermore Mid was slower than Lo (t(15) = 2.70, p
bh

= 0.037),

after correcting for multiple comparisons. The same analyses was run on

the proportion of correct go-trials out of all go-trials for each individual, and

there was no evidence that go-accuracy was di↵erent over and of the factors

(all F’s < 1).

The proportion of successful stops over cue level was 0.48 (0.04) for Hi,

0.45 (0.07) for Mid, and 0.48 (0.10) for Lo. Stopping accuracy over cue level,

response side, and hemifield was assessed using a repeated measures ANOVA

on the proportion data. This analyses suggested that the adaptive procedure

held the proportion of stops roughly equal over the cue levels, F(2,30) =

2.48, p =0.10. There were no further interactions between the factors in the

analysis. A rANOVA was used to test the di↵erences between failed stop-

trials and correct go-trials, as expected failed stop-trials (559.8 (94.4)) were

faster than go-trials. Furthermore, a rANOVA was used to test if there were

di↵erences in the SSRT over cue level, and there were not F(2,30) = 0.18, p

= 0.83. The mean SSRT was 196.8 (80.72).

The mean drift rate of the Lo condition was 2.51 (0.21). The group level

estimate of Hi drift was much lower with no samples being greater than zero

(p(Hi > Lo) = 0), with a mean -0.30 (0.08) below the Lo condition. The esti-

mates of the Mid condition were marginally lower than the Lo group (p(Mid

> Lo) = 0.12), with a mean estimate of -0.08(0.07) lower than the Lo con-

dition. That is to say as the probability of a stop signal became greater the

drift rate became lower. This same pattern held for the response threshold,
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go-RT±sem SSRT±sem SSD±sem go-Accuracy±sem

Lo 563±23 200±33 332±21 0.92±0.06
Mid 573±21 204±16 353±30 0.92±0.07
Hi 596±22 187±12 406±29 0.91±0.07

a±sd v±sd t0±sd

Lo 1.50±0.09 2.51±0.21 0.32±0.04
Mid

diff

0.07±0.03 -0.08±0.07 0.005±0.002
Hi

diff

0.12±0.03 -0.30±0.08 0.005±0.003

Table 4.1: Top. Means and standard error of the means for behavioral results.
Bottom. Drift-di↵usion model parameters. Mid and Hi are reported as a
di↵erence from the baseline Lo condition.

except in the opposite direction. As stop-trials became more probable the

response threshold was raised. The Lo condition had a response threshold of

1.50 (0.09). For the Hi threshold the estimate again had no samples contain-

ing zero (p(Hi < Lo) = 0), with a mean estimate of 0.12(0.03) above the Lo

condition. The Mid condition was also greater than the Lo condition (p(Mid

< Lo) = 0.003), with a mean of 0.07 (0.03) greater than the Lo condition.

Nondecision time was estimated to be 0.32(0.04) in the Lo condition. Both

the Mid (p(Mid < Lo) = 0.05, mean = 0.005(0.002)) and Hi (p(Hi < Lo)

= 0.06, mean = 0.005(0.003)) were slightly higher than the Lo nondecision

time, but the Hi and Mid factors were similar (p(Mid > Hi) = 0.52).
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4.3.2 Pretarget alpha lateralization

To test for di↵erences in pre go-stimuli alpha power we first plotted the

condition-averaged and subject-averaged contralateral and ipsilateral power

from -1500 ms to 500 ms surrounding the target, see Figure 5.2. Following

this we computed the alpha lateralization index for each condition and indi-

vidual separately and submitted this to a rANOVA. The rANOVA rejected

the hypothesis that there were no di↵erences in the alpha lateralization in-

dex, F(2,30) = 5.67, p = 0.008. Pairwise t-tests were then computed on

all combinations of cue level using Bonferroni-Holms correction of p-values.

This showed that Lo was greater than both Mid (t(15) = 2.74, p
bh

= 0.023),

and Lo was greater than Hi (t(15) = 2.95 p

bh

= 0.022). However, there was

no significant di↵erence between Hi and Mid (p
bh

= 0.56). We further tested

if the Lo condition was di↵erent than zero using a one-sample t-test, which

indicated that it was not, t(15) = 0.62, p = 0.55.

Early sensory evoked components

The P1 component showed no main e↵ect of level in the tested interval,

F(2,30)=1.66, p=0.21. However, there was a significant main e↵ect of hemi-

sphere and level, F(2,30) = 5.04, p = 0.013. Splitting this data to test for

simple e↵ects did not result in any significant e↵ects (all t’s < 1.43). The

trend however was that for Lo and Mid the ipsilateral P1 was slightly higher

than contralateral, and for Hi it was exactly the same. For the N1, there was

a main e↵ect of level, F(2,30) = 5.09, p = 0.012, but there were no other
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00 7
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Lo Mid Hi

Alpha Lateralization Index

Figure 4.2: Alpha lateralization. Top left. Contralateral alpha power and
ipsilateral alpha power plotted around the go-signal from -1500 ms to 500
ms for all conditions combined. Right. Contralateral and ipsilateral alpha
power split by level. Bottom left. Alpha lateralization index split by level.
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significant main e↵ects. Pairwise t-tests were then used to compare across

levels using Bonferroni-Holmes correction. This showed that Lo had higher

amplitudes than Hi (t(15) = 4.02), p
bh

< 0.001, and Mid also had higher

amplitudes than Hi (t(15) = 2.48, p
bh

= 0.023, however mid was not lower

than Lo (t(15) = -1.94, p
bh

= 0.056. There was also a significant interaction

between hemisphere and level, F(2,30) = 3.77, p=0.34. Examining simple

e↵ects it was seen than in the Hi level ipsilateral N1 amplitudes were more

negative than contralateral, t(15) = -2.42, p = 0.028, however this was not

the case for the Lo or Mid level. The trend for the N1 is that the higher the

probability that a stop signal occurs the more pronounced the amplitudes,

overall.

4.4 Discussion

In this study we looked at pre-stimulus alpha lateralization as a function

of a cued expectation for the current trial to have a second stop-stimulus.

We found that as cued expectation for a stop-trial went up response times

slowed. Drift-di↵usion modeling of the go-trial data suggested that speed and

accuracy came to fruition in di↵erent manners for the di↵erent expectation

cues. Specifically, as the probability of a stop trial rises, drift rate falls, re-

sponse threshold rises, and non-decision time becomes longer. Furthermore,

there was a clear trend in the lateralization of alpha power over the di↵erent

levels of expectation; as expectation for a stop-trial became higher the lat-
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eralization index became lower. This was accompanied by a N1 e↵ect over

the di↵erent levels of expectation. As the probability of a stop-trial became

higher, the N1 became more pronounced.

Over all conditions ipsilateral power is seen to be higher. However, this is

clearly a mixture that is modulated by expectancy of a stop-signal. Specifi-

cally, when looking at the ↵ lateralization index, which normalizes for total

↵ power, we report that in the Lo condition contralateral power is greater

than ipsilateral power, whereas in the Mid and Hi condition ipsilateral power

is greater than contralateral power. This is interesting because in the Lo

condition we see an almost “flipped” lateralization than what would be ex-

pected based on research on pre-stimulus alpha power (thought it is actually

an absent lateralization). This was a pattern seen in Slagter et al. (2016), in

which the side of target appearance was always fixed, instead of randomly

appearing in di↵erent hemifields (e.g., Thut et al., 2006). Of course, in the

current study, target hemifield was not fixed over the experiment, and varied

randomly, yet we still observed this flipped lateralization when the probabil-

ity of a temporally delayed central stop-stimulus (a “distractor” relative to

the go-signal, but not to the task) was low (presented on only 10% of trials).

However, when the probability of the central stop-stimulus was raised we saw

a clear lateralization in the other direction; ipsilateral power was higher than

contralateral. This pattern of results is not easily reconciled with the cur-

rent literature on prestimulus ↵ lateralization. However, a stop-signal task

is temporally more complex (unless the SSD=0, similar to a go/no-go task)
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than a simple Posner-like cueing task used in most studies, yet we do report

a clear modulation by expectation.

The visual N1 component was also modulated by level of expectation.

In both Langford et al. (2016a) and Langford et al. (2016b) we report on

two completely centralized stop-signal tasks and the relationship between

the same N1 component and response time. Both studies showed that as

response time slowed the N1 component dampened. What we see here is

quite di↵erent. While manipulating the expectancy in this experiment we

see a bilateral N1 component that is more pronounced as expectancy goes

up, and this is accompanied by systematically slowed responses. So, slower

response times in this case are (at a categorical level) related to a more

negative N1 component. The real di↵erence in this case is that participants

were possibly able to adapt a di↵erent strategy when the go-stimuli were

lateralized, as opposed to centralized. This is quite possibly also the reason

for the “flipped” alpha asymmetry described above.

Behavioral performance was in line with previous research and race-model

predictions. The SSRT was not modulated by level of expectation and was

furthermore similar to SSRT estimates in similar tasks (e.g., Verbruggen and

Logan, 2009; Zandbelt et al., 2013). The probability of a successful stop-trial

was held roughly equal across levels using an adaptive staircase procedure,

and failed stop-trials were faster than go-trials. As expected RT on correct

go-trials slowed as expectation of a stop-trial went up. There were no ac-

curacy di↵erences seen in a simple rANOVA analysis of go-trial proportions
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between cue level. However, in a possibly more interesting modeling approach

of both RT and accuracy we see that there are clear di↵erences. Specifically,

as stop-expectancy increases, we report an increase in response threshold, a

decrease in drift rate, and a slight increase in nondecision time. In Langford

et al. (2016a) we report the same types of drift-di↵usion models only using

an uncued stop-relevant (respond to the stop-signal) and stop-irrelevant (ig-

nore the stop-signal) blocks. When participants were in the stop-relevant

block they had an increase response threshold and a decrease in drift rate, as

we also report here. In a very broad sense, this means that as participants

expect a stop-signal they take on a more cautious response mode.

Proactive response inhibition has recently implicated the role of atten-

tional processes as an explanatory factor (e.g., Elchlepp et al., 2016), though

it is argued that di↵erences seen in response inhibition are related solely to

response inhibition. This contribution strengthens the former argument in

multiple ways; (i) we have used a clear proactive component of allocation

of spatial attention that occurs before any go- or stop-signal is presented.

(ii) We show that this component is modulated directly by a cue that rep-

resents the probability of a stop-trial, arguably mimicking sequence e↵ects

seen in normal stop-signal tasks. (iii) We have replicated our previous find-

ings using sequential sampling models, and have shown that while keeping

the (arguably) same behavioral response mode patterns, participants adapt

a qualitatively di↵erent strategy of information gathering based solely on

the di↵erence in stimuli presented (centralized vs. lateralized). This can be
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seen in both the modulation of alpha lateralization e↵ect and the N1 com-

ponent. This pattern of results speaks towards a highly flexible proactive

response inhibition process that recruits di↵erent systems to achieve the goal

of inhibiting responses; and is clearly not purely inhibitory in nature.
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Abstract

The current electroencephalographic (EEG) study investigated adjustments

of attention in a lateralized cued-expectancy go/no-go task. In this task par-

ticipants were presented with an audiovisual cue that represents both the

hemifield of the relevant stimuli (visual) and the odds of the stimuli requir-

ing inhibitory behavior (auditory). Cued attention to a location has been

associated with increased alpha-band activity over ipsilateral (irrelevant) re-

gions, and decreased alpha activity over (relevant) contralateral regions prior

to stimulus presentation. Prestimulus alpha power was modulated by ex-

pectancy in the delay period between the cue and the target stimuli. At high

odds of no-go trials less alpha power was observed in the contralateral than

in the ipsilateral hemisphere, whereas at low odds contralateral and ipsilat-

eral power were similar. In addition, a larger bilateral attention-related N1

component in the high odds condition further indicated that sensory process-

ing of the stimuli was heightened. This was accompanied by response time

slowing indicating a more cautious response mode when the expectancy of

an inhibition trial was high. Shifting to oscillatory activity that represents

the recruitment of a dynamic action monitoring system, we observed that

midfrontal theta activity in successful inhibition trials was increased when

the odds of an inhibition trial was low. These results indicate a dynamic

system of preparatory attention, action monitoring, and ultimately response

inhibition, that is modulated by expectancy and jointly contributes to the

ultimate behavioral output.
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5.1 Introduction

Recent electroencephalography (EEG) and magnetoencephalography (MEG)

research have shown that behavioral states that require top-down control (e.g.

top-down attention, information retention) are accompanied by modulations

in alpha-band oscillatory power. Cortical regions that are task-irrelevant

typically see increases in alpha power, and regions that are task-relevant see

decreases in alpha power. Observations supporting this have been made over

multi-modality studies (e.g., Frey et al., 2014), in working memory tasks

engaging either dorsal or ventral processing streams (Jokisch and Jensen,

2007), and in spatial attention tasks (e.g., Rihs et al., 2007). One theoretical

account for these modulations posits that alpha fluctuations reflect the cor-

tical flow of information, engaging in targeted inhibition of task-irrelevant

(competing) networks and simultaneous disinhibition of task-relevant net-

works(Jensen and Mazaheri, 2010; Klimesch et al., 2007). This, in turn,

would encourage maintenance and/or amplification of relevant sensory stim-

uli, while suppressing distracting stimuli.

Specific to visuospatial attention tasks, cued attention to a location has

been repeatedly associated with increased alpha-band activity over ipsilat-

eral regions, and decreased alpha activity over contralateral regions prior to

stimulus presentation (e.g., Vollebregt et al., 2015; Frey et al., 2015). That

these oscillations are specifically involved in the orienting of spatial attention

is supported in part by studies showing a modulation in alpha-band power
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by cue reliability (Gould et al., 2011; Dombrowe and Hilgetag, 2014), its

sensitivity over a broad range of experimental manipulations (e.g., Haegens

et al., 2011), and work showing that TMS pulses at alpha frequencies im-

paired visual detection contralateral to the occipital and parietal stimulation

sites (Romei et al., 2008), consistent with a spatially specific suppressive role

of alpha-band activity. However, there are disparate findings regarding the

alpha-band modulation in relation to the (clear) presence or absence of com-

peting distractors in the uncued hemifield (e.g., Rihs et al., 2007), which con-

flicts with the claim of targeted inhibition when a network is task-irrelevant

(see Slagter et al., 2016, for a discussion).

Another related line of research has further shown that prior perceptual

expectations about forthcoming content also a↵ects sensory processing (Sum-

merfield and Koechlin, 2008; Fischer et al., 2011; Fründ et al., 2014). For

example, prior knowledge about the direction and velocity of moving targets

enhances their detectability (Alink et al., 2010) and aids in object recogni-

tion (Kleinschmidt et al., 2002). Alpha oscillations have been also linked

to expectation - they are suggested to entrain to predictable sequences of

stimuli, amplifying stimulus evoked responses (Rohenkohl et al., 2012), and

content-based predictions of letters lead to modulations in prestimulus alpha-

band power(Mayer et al., 2016). Furthermore, alpha-band power has recently

been suggested to be involved in balancing speed-accuracy tradeo↵s in a time-

pressure task (Limbach and Corballis, 2016), which might further be involved

with stimulus prediction / expectation (as discussed below). The possibility
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of reconciling these e↵ects with accounts of alpha oscillations is an appeal-

ing notion because of the (pre-stimulus) temporality involved and suggested

links with attentional biasing.

In the response inhibition literature multiple studies have implicated at-

tentional processing of the stimuli involved in di↵erent tasks as an explana-

tory factor (Elchlepp et al., 2016; Verbruggen et al., 2014; Dimoska and

Johnstone, 2008; Jahfari et al., 2015; Boehler et al., 2009; Zandbelt et al.,

2013; Vink et al., 2015). Modeling suggests that a large portion of the time

needed to implement response inhibition is taken up by processes related

to the accumulation of appropriate sensory evidence for a given behavior

(Boucher et al., 2007; Salinas and Stanford, 2013; Verbruggen et al., 2014).

Relevant recent work has demonstrated a direct link between the selective

attention / visual discrimination N1 ERP component and go-trial response

time in a stop-signal task on a single-trial level, suggesting that attentional

processing is strategically regulated (Langford et al., 2016a), and further

modulated by contextual factors (Langford et al., 2016b).

In such tasks the variation seen in response time (and hence the single-

trial N1 ERP) seems to partially be driven by a continual tracking of trial his-

tory (Ide et al., 2013) informing subjective expectations about likely trial con-

tents, thereby predicting upcoming stimuli. This underlying hidden Markov

model of prior expectations were furthermore found to be highly predictive

of response times in inhibition tasks. In this sense, a prior-trial judgment

about forthcoming stimulus-identities (and hence the appropriate behavior)
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is taken into consideration, a↵ecting response time, which in turn corre-

lated with attentional sensory processing in our earlier work (Langford et

al., 2016a). Conceiving of perceptual decisions as processes that stochasti-

cally accumulate sensory information towards a decision bound, this work

found context-dependent, arguably expectation-based, biasing e↵ects on the

accumulation processes that determine decision times and outcomes (i.e. in-

volved in negotiating speed-accuracy tradeo↵s).

Tying these lines of attentional alpha-power modulations and response

inhibition together, past research has investigated pre-stimulus alpha later-

alization in a go/no-go task by comparing successes and failures in signal-

inhibit trials (Bengson et al., 2012). This work evidenced a greater lateraliza-

tion of alpha power in successful inhibition trials. Here, we extend this work

to di↵erent probability levels of cued no-go expectation. This also ties in

with our earlier work suggesting that attention is actively modulated in the

service of response inhibition, at least in a stop-signal task (Langford et al.,

2016a; Langford et al., 2016b). In addition to alpha-power asymmetry, we

were also interested in target processing, focusing on early attentional com-

ponents (P1 and N1), as well as midfrontal oscillatory activity in the theta

range thatis a sensitive marker for the recruitment of an action monitoring

system. (e.g. Cohen, 2016; Yamanaka and Yamamoto, 2010).
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5.2 Materials and Methods

5.2.1 Participants

22 participants (aged 18-34, 5 male). Two of them were removed from all

analyses, one because of data quality over the whole scalp, and another

because of data quality in the main analysis electrodes and because of a

consistent HEOG movements.

5.2.2 Stimuli and Procedure

Participants were seated 80 cm from a computer screen. Experimental con-

trol and visual presentation were done using PsychoPy (Peirce, 2007). The

trial sequence proceeded with an audiovisual cue consisting of either a low-

frequency (LoF) 500 Hz or high-frequency (HiF) 1000 Hz tone generated from

a bilateral speaker arrangement. These 100 ms auditory cues were presented

simultaneously with a directional (left of right) visual arrow cue that lasted

250 ms. LoF and HiF tones and left and right arrow cues were all randomized

across trials but in equal proportions. After the audiovisual cue there was a

randomly selected 1700-2000 ms interval between cue o↵set and target onset.

Targets were the integers 1 through 5 and subtended 2� of visual angle. They

were presented 11� horizontal to, and 3� vertically below screen center for

100 ms. Subjects were instructed to respond to the numbers 1, 2, 4, and 5

(go), but not respond to the number 3 (no-go). The right index finger was

used on right cue trials, and the right middle finger for left cued trials. This
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procedure basically cued which button to use for go trials, and hence still

represents a basic detection task (i.e., the target stimulus does not need to

be discriminated beyond whether it is a go or a no-go stimulus); this was

implemented in order to ensure that participants were attending the cued

side (see (Bengson et al., 2012), where the lack of such information was con-

sidered a possible problem). In the LoF cued trials the no-go target would

appear randomly with a frequency of 1 out of 10, and in the HiF cued trials

the no-go target would appear randomly with a frequency of 1 out of 2. The

target was followed by a 1000 ms response period followed by a randomly

chosen inter-trial interval between 450 and 750 ms. There were 9 blocks

of 80 trials, preceded by 1 practice block and task instructions. After each

block participants took a self-timed break and received feedback regarding

the response time and the percentage of correct rejections in the preceding

block.

5.2.3 EEG Acquisition and Analyses

EEG data were acquired at 512 Hz using a 64 channel Biosemi ActiveTwo

system (Biosemi, Amsterdam, Netherlands) with standard electrode loca-

tions according to the international 10-20 system. External electrodes were

attached both to the left and right mastoids, at the outer canthi of both

eyes (HEOG), and directly above and below the right eye (VEOG). Bad

electrodes were removed after recording and continuous data was prepared

for Independent Component Analysis. Data were high-pass filtered at 1 Hz
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Figure 5.1: Trials stared with an audiovisual cue. Participants were to re-
spond when the digits on the cued side (arrow) were 1,2,4, or 5, but to not
respond when the digit was a 3. The auditory tone either cued a low odds
of a 3, or a high odds of a 3.

(see Winkler et al. (2015) for a discussion) and split into ICA-appropriate

target-locked epochs from -2500 ms to 1000 ms. First, epochs with data out-

side of ± 500 muV were rejected, and then a probability rejection was used

to reject improbable data (kurtosis rejection function in EEGLAB (Delorme

and Makeig, 2004), with single-channel limits set at 6 standard deviations

and all-channel limits set at 3 standard deviations), followed by a further

visual inspection for nonstationary epochs. Extended infomax ICA was then

run on these epochs and subsequently the IC weight and sphere matrices

were transferred back to the unfiltered continuous raw data. Artifactual

components containing blink artifacts or other artifacts clearly distinguish-

able from brain-derived EEG signals were then removed from the continuous

data. Artifact-free continuous data were then high-pass filtered at 0.5 Hz
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and average referenced. Previously removed bad electrodes were interpo-

lated, and segmented into 720 time-frequency appropriate epochs from -3000

ms to 2000 ms surrounding the target. Trial rejection was then done in

four steps. (1) Trials where the incorrect response finger was used and no-

response go-trials were removed. (2) Trials with response times faster than

100 ms and slower than 800 ms were removed. (3) Trials containing bipolar

HEOG (low-pass filtered at 20 Hz) ± 50 muV from the start of the cue to

the start of the target, were removed. (4) EEG channels with data values

exceeding ± 100 muV from the start of the cue to 500 ms after target onset

were removed. Average trial count after all rejection steps was 654 ± 71, or

91% of the total collected trials. The trial-averaged EOG channel was then

visually inspected for fluctuations outside of ± 2 muV to detect individuals

with consistent horizontal eye movements between cue and target over the

whole experiment; based on this criteria one participant was excluded from

all further analyses, as already noted in the Participants section. In a final

step a surface Laplacian transform was then applied to the scalp channels

(see, Perrin et al., 1989; Cohen, 2014b, for details and motivation).

EEG time-frequency decomposition

The stimulus-locked epoched EEG times series were decomposed into their

time-frequency representation by convolving them with a set of complex Mor-

let wavelets.

e

i2⇡tf
e

�t

2
/2�2

(5.1)
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Where i is the complex operator, t is time, f is frequency from 2 to 50 Hz

in 40 logarithmically spaced steps, and � defines the width of each wavelet

(x\2⇡f), where x increased logarithmically from 4 to 10. Following convolu-

tion data were reshaped back into individual trials. From the complex signal

an estimate of condition specific power at each time point was calculated.

Pre-target ↵

To determine location and timing of pre-target alpha lateralization, we used

a selection procedure that was orthogonal to possible conditional di↵erences.

Scalp topographies collapsed over condition of raw power in the alpha band

(8-13 Hz) were first plotted over the period preceding the target in 100 ms

steps for both left and right cues. Based upon the alpha activity in these to-

pographies two clusters of three electrodes each were chosen for subsequent

analysis. In the left posterior cluster electrodes O1, PO3, and PO7 were

chosen, and in the right posterior cluster electrodes O2, PO4, and PO8 were

chosen. These clusters were then averaged and time-frequency power for each

possible lateralization combination (left cue-left cluster, left cue-right cluster,

right cue-right cluster, and right cue-left cluster) were computed and sub-

sequently collapsed to compute ipsilateral and contralateral time-frequency

maps for each individual. The ipsilateral maps were then subtracted from

the contralateral maps to examine pre-target alpha-power lateralization. The

time range from -1100 ms to -100 ms was chosen as the testing window be-

cause of the high pre-target alpha activity throughout this period. For each
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subject and cue level (HiF and LoF) separately a lateralization index was

then computed.

↵LI =
↵

contralateral

� ↵

ipsilateral

↵

ipsilateral

+ ↵

contralateral

(5.2)

in which raw alpha power in each hemisphere is expressed relative to the

total alpha power at both sites. To determine if alpha power lateralization

was modulated by cue level, a paired samples t-test was performed within the

predefined time window using the ↵LI. Subsequently, in the HiF condition

the no-go data were split by behavioral outcome (failed and successful no-go

trials) and tested using the ↵LI in the same time and frequency window.

For midfrontal theta power we first decibel normalized the data using the

period from -200 ms to 0 ms before the cue. Next, we plotted theta power

collapsed across condition from -500 to 1000 ms surrounding the go-signal and

further plotted a scalp topography of theta power averaged around the time

of the peak alpha power (see Results). From these plots it was determined

that the electrode FCz would be appropriate for our analyses, as well as the

time range from 350 to 500 ms following the go-signal. Data was then split by

cue level and behavioral type. Given that in the Lo condition there were, for

some people, very few no-go-trials that were also failures, we did not consider

to test failures. We then tested go-trials against successful no-go-trials, and

further go and no-go trials over cue level. In all cases we used simple paired

samples t-tests after equalizing trial numbers per individual by the lowest
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observed number between the two variables tested.

Early stimulus-evoked components

To examine early attention-related ERPs the data were first low-pass filtered

at 30 Hz and then a -200 ms to 1000 ms period around the target stimuli

was defined. Data were then baseline corrected from -200 ms to 0 ms before

the target. Topographical maps were made in the normal time ranges that

the P1 and N1 visual evoked components are typically seen for left and right

presented targets, independent of condition. Based on these maps, it was

decided that the post target ERPs were centered around the same electrodes

used in the post-target alpha analyses, but were not as spatially confined (see

results). To account for this four more electrodes were considered in the ERP

analyses, in addition to the ones also included in the alpha analysis. Specif-

ically, the left cluster included O1, PO3, PO7, P5, and P7, while the right

cluster included O2, PO4, PO8, P6, and P8. The time domain waveforms

were then plotted averaged over individuals and conditions for ipsilateral and

contralateral electrode sites. Based on these waveforms the P1 was defined

in the range of 100 ms to 140 ms, and from 180 ms to 220 ms for the N1.

The mean voltage of each participant was included in a repeated-measures

ANOVA ran with condition (HiF and LoF), hemifield of presentation (left

and right), as well as hemisphere (contralateral and ipsilateral) as within-

subject factors.
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5.3 Results

5.3.1 Behavior

Repeated-measures ANOVA (rANOVA) was used to test for di↵erences in

response time in the go-trials using presentation side and cue level as factors.

As expected, there was a main e↵ect of cue level with LoF cues produc-

ing significantly faster responses, F(1,19) = 13.24, p=0.002. There were no

significant di↵erences for hemifield F(1,19) = 2.04, p=0.17; and no signifi-

cant interaction between cue level and hemifield, F(1,19) = 0.49, p = 0.49.

Accuracy in the no-go-trials was assessed using cue level and hemifield as

factors in a rANOVA. Similar to the response time data, there was a signif-

icant main e↵ect of cue level; no-go-trials following HiF cues were inhibited

in greater proportions, F(1,19) = 12.77, p = 0.002 than following LoF cues.

Neither hemifield (F(1,19) = 0.56, p = 0.46) nor the interaction between

hemifield and cue level (F(1,19 = 0.51, p = 0.48) were significantly di↵erent.

A rANOVA showed that the proportion of correct go-responses (i.e. left-cue

responses made with index finger or right-cue responses made with middle

finger) did not vary over cue level (F(1,19) = 0.001, p = 0.97), and further

there were absolutely no incorrect responses made on no-go trials that elicited

a response (no-go-fail). A 1-sample t-test was used to test if the proportion

of correct go-responses was di↵erent from 1, which did not reach statistical

significance (t(19) = -1.72, p = 0.1). The analyses of behavioral data show

evidence that in the HiF trials participants gave slower responses in go-trials,
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Figure 5.2: Top left: median (over subjects) di↵erence between contralateral
and ipsilateral power. Top right: Median HiF di↵erence. Middle right:
Median LoF di↵erence. Bottom left: topography of raw alpha power split
between contralateral and ipsilateral averaged over -1100 ms and -100 ms
before target. Bottom right: Mean ↵LI with standard error of the mean.
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and were more accurate in not responding in no-go-trials. Given the pattern

of correct responses in go and no-go-fail trials, missed cues (resulting in at-

tentional orienting to the wrong hemifield) are highly unlikely to account for

any di↵erences seen in either the behavioral or EEG data.

5.3.2 Pre-target ↵ lateralization

To inspect alpha lateralization preceding the targets, raw power in the ip-

silateral hemisphere (e.g., channel PO8 when the cue pointed right) and

in the contralateral hemisphere (e.g., channel PO8 when the cue pointed

left) were first plotted as scalp topographies (seen averaged over laterality

in Figure 5.2b, with analysis electrodes marked) averaged over conditions.

Subsequently, raw power data for each participant were averaged over the

marked electrodes and ipsilateral power spectra were then subtracted from

the contralateral power and the median (over participants) was plotted, see

Figure 5.2a. For each participant and cue level the alpha lateralization index

from 8-13 Hz and -1100 ms to -100 ms before target presentation for the

mean of the three channels marked in Figure 5.2b was then calculated. A

paired samples t-test was then used to test for di↵erences between the HiF

and LoF cue levels. This test showed a strong e↵ect of cue level on the ↵LI,

t(19) = -4.29, p = 0.0004 (d = -0.96, 95% CI -1.66 -0.26). As can be seen in

Figure 5.2c in the HiF condition there is a sustained negative contralateral-

minus-ipsilateral power di↵erence preceding the target that is nearly absent

in the LoF condition.
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Figure 5.3: Top: mean topographies in the tested areas for the P1 and the N1.
Black dots indicate the hemifield that the stimuli were presented in. Bottom:
mean ERP waveform for both contralateral and ipsilateral hemispheres for
the electrodes included in the analyses.
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To test for di↵erences in the ↵LI in relation to inhibitory behavior, we

compared no-go-success and no-go-fail trials. Due to the low trial count for

LoF no-go-fail trials for some participants, this analysis was confined to the

HiF condition, in which we furthermore matched the number of the condi-

tions by randomly selecting trials to match the trial counts to the condition

with fewer trials. Following a similar logic as before, a paired samples t-test

showed that the ↵LI was significantly more negative for no-go-success trials

compared to no-go-fail trials, t(19) = -2.72, p = 0.013 (d = -0.61, 95% CI

-1.28 0.06), see Figure 5.2d.

Early evoked components

To examine early evoked stimulus processing we submitted the subject-

specific P1 and N1 components to a rANOVA using hemisphere (contralateral

and ipsilateral), hemifield (left and right), and condition level (HiF and LoF)

as within-subject factors. We observed an N1 e↵ect that showed that the N1

was more pronounced in the HiF condition, F(1,19) = 4.72, p = 0.042. There

was also a main e↵ect of hemisphere, with the N1 being more negative in

the ipsilateral hemisphere, F(1,19) = 8.49, p = 0.009. However, there was no

interaction between any the factors. There was no main e↵ect of condition

for the P1, F(1,19) = 2.76, p = 0.11. The P1 amplitudes were higher in

the contralateral hemisphere, F(1,19) = 18.90, p < 0.001. There were no

interaction e↵ects seen in the analyses. See Figure 5.3 for plots of both the

P1 and the N1.
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Figure 5.4: Top left: Total decibel normalized theta power averaged from
350-500 ms over all conditions. Bottom left: Theta plotted averaged over all
conditions. Tested area is marked with a white square. Right: Theta power
split by condition and trial behavior.
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5.3.3 Post-target ✓

Theta power was examined after the target from 350-500 ms between 4-8 Hz.

All tests equalized trial numbers across conditions by random selection. No

di↵erences were found between go-trials over cue level, t(19) = �1.12, p =

0.27. Collapsing over cue level a large e↵ect was found between no-go-success

and go-trials, t(19) = �8.1, p < 0.001( d = -1.79, 95% CI -2.57 -1.012),

with higher theta band activity for no-go-success trials. Further, a di↵erence

was found between no-go-successes over cue level, t(19) = �3.19, p = 0.005

(d = -0.71, 95% CI -1.39, -0.04) meaning theta power was higher during

a no-go-success trial in the low-expectation condition relative to the high

expectation. No di↵erences were evident between no-go-success and no-go-

fail trials t(19) = 0.71, p = 0.32. no-go-fail trials were not tested across

expectation level because of low trials numbers in the LoF cell for some

participants.

5.4 Discussion

The main focus of the current EEG study was the lateralization of posterior

alpha-band oscillations preceding target stimuli in a go/no-go task, whose

identities were stochastically predicted by an auditory expectation cue. This

manipulation both slowed response times and raised the proportion of correct

inhibition trials in high expectation trials. We found a significant increase in

the lateralization of alpha power when the cue predicted that the forthcoming
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stimulus has a high likelihood to require response inhibition (the number ’3’).

In regards to early sensory processing, we observed a more pronounced N1

component in the high expectation trials and no di↵erences in the P1. Addi-

tionally, we found increases in midfrontal theta power in signal-inhibittrials

vs. signalrespond trials, and further observed an increase in successful signal-

inhibit trials in the low expectation trials vs. hi expectation trials.

Alpha lateralization e↵ects are often reported based on post-hoc analy-

ses of behaviorally identical trials (e.g. hits and misses). This implies that

trial-by-trial performance may be determined by a (possibly) random oscil-

latory state (i.e. not really a top-down driven state, but a necessary one for

a given behavioral outcome). In the current study the spatial cue was always

predictive of the relevant hemifield, and the opposite hemifield was always

irrelevant to the response. The auditory tones, however, where only stochas-

tically predictive at di↵erent levels of the stimuli. In this manner, we manip-

ulated expectancy and were able to use all trials over the di↵erent levels, as

well as look at fail and success trials. We observed that expectancy clearly

modulates posterior alpha oscillations in a manner that is consistent with a

spatially specific suppressive role of alpha-band activity, and further lends

support to the idea that these alpha modulations are driven by content-based

expectations. Such oscillations for example, entrain to predictable sequences

of stimuli, amplifying stimulus-evoked responses (Rohenkohl et al., 2012),

and content-based predictions of stimuli have been seen to modulate pres-

timulus alpha-band power (Mayer et al., 2016). In the current manuscript we
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show that this can be driven by a more cognitive-based task that is thought

to depend on the relationship between attentional components and the nego-

tiation of speed-accuracy tradeo↵s (see, Limbach and Corballis, 2016, for a

similar discussion in a response pressure task). This argument is supported

by recent research in inhibitory tasks, which we will now detail.

Shifting to the relationship between attention and response inhibition,

recent research in such inhibitory tasks has shown that response time scales

on a single-trial level with the visual evoked N1 component in tasks where

inhibiting a response might be required, but not when a simple decision is

made, or when attention was generally triggered strongly by a reward context

(Langford et al., 2016a; Langford et al., 2016b). Given the positive correl-

ative relationship between response time and the probability of inhibiting a

response, this N1 e↵ect is arguably driven by predictions about stimuli in

the upcoming trial (see, Ide et al., 2013, for a further discussion) - which

creates a speed-accuracy tradeo↵. In the present work, there was a more

prominent bilateral N1 ERP in trials with a high expectation cue, however

no evidence for a di↵erence in the visual P1 was found. While this N1 e↵ect

might seem to be in conflict with our past research - in the sense that the

high expectation condition had slower responses - the categorical di↵erence

across probability levels might reflect more cognitive operations, more gener-

ally linked to expectation and attention, in a way that is possibly not directly

mapped onto response speed in an instrumental way for response inhibition.

Yet, at the very least, attentional orienting and processing is responsive to
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our task manipulations, signifying a role of attention at least in the global

sense.

A possibility suggested in a similar study was that these alpha e↵ects

could possibly be due to the misperception of a cue (Bengson et al., 2012)

Given that the response mapping in the present study was consistent with

the cued side, and the amount of incorrect (left respond right-right respond

left) responses in inhibition-fail trials was zero, it is highly unlikely that any

behavioral or electrophysiological result could be attributed to a mispercep-

tion of the cue. While there was a significant increase in lateralization in the

high predictive condition, the cue that was predictive of a low signal-inhibit

probability showed nearly a complete absence of lateralized alpha activity.

However, it should be noted that in Bengson et al. (2012) the directional cue

was 150 ms shorter than the currently reported cue, so we can only rule out

that the misperception of the cue did not play a role in the current study.

We further observed a higher lateralization index in successful versus unsuc-

cessful inhibition trials, which is in direct alignment with this earlier work

(Bengson et al., 2012). Given that this past research only analyzed alpha

power as a function of behavioral outcome, related to our previous point, it

was an open question if the observed di↵erences were specifically top-down

control of attention, or possibly random fluctuations. Given the di↵erences

seen between the expectation levels this is not likely the case for the current

study.

Midfrontal theta has been shown (Cohen and Donner, 2013) to be a
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robust power modulation that is non-phase-locked and more closely linked

to conflict and behavior than it’s phase-locked counterpart (i.e., the ERP

waveform).Theta-band oscillations in medial prefrontal cortex are modulated

during action monitoring tasks, specifically in tasks that elicit conflict be-

tween competing responses (e.g., Cohen, 2016; Cohen and Donner, 2013;

Huster et al., 2013; Oehrn et al., 2014). Recent research has highlighted

that midfrontal theta is a signature of the engagement of a dynamic sys-

tem that responds flexibly to errors and the possibility of errors (Cavanagh

et al., 2014; Cohen, 2014a; Cohen, 2016). Here, we look at the modula-

tion of midfrontal theta as a function of expectation and behavior, reporting

increases in power in correct signal-inhibit trials when the trial was unex-

pected to be an inhibition trial. We found a direct link between expectation

of an action before stimuli appear and midfrontal theta. In this manner the

expectation cue creates situations that are more consistent with proactive

control (high-expectancy) and reactive control (low-expectancy). Previous

studies have shown that frontal EEG responses are stronger during trials

that require reactive control (Bartholow et al., 2005; Folstein and Van Pet-

ten, 2008), and the current results are in line with this finding. In both

expectation levels a signal-respond trial is expected as it never drops be-

low a fifty-percent frequency, and this is probably the reason that we only

see the theta modulations over expectation in signal-inhibit trials, and not

signal-respond (something which could be explored in the future).

In the current manuscript we have ruled out the idea that di↵erences seen
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in earlier work (Bengson et al., 2012) in the lateralization of pre-target alpha

power linked to subsequent behavior were due to random fluctuations and/or

misallocation of attention to the uncued side. Instead it was shown that they

are driven by a clearly top-down process that was related to expectation of

trial content. This increased lateralized alpha e↵ect when expectation was

high was also followed by an increase in sensory processing of the stimuli as

evidenced by N1 amplitudes. Future work should be aimed at linking these

two components together in similar tasks. Furthermore, we have demon-

strated a link between a dynamic action monitoring system and expectation

as shown in increases in midfrontal theta power
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As presented in this thesis, response inhibition is a key component of suc-

cessful cognitive control due to the fact that a changing environment often

requires inhibiting an automatic or otherwise prepotent response on short

notice. While the research interest has traditionally been focused on reac-

tive processes, which refers to response inhibition that is triggered by an

explicit sensory stop-stimulus, interest in proactive response inhibition has

recently seen a steep rise. Proactive inhibition describes the tendency of

slowing down responses when outright inhibition might be required (Aron,

2011) usually resulting in a slower response as opposed to reactive processes

yielding outright inhibition. Yet, research thus far has mostly focused on

a central motoric inhibition mechanism without acknowledging the possible

role of a↵erent processes like the attentive processing of task-relevant stim-

uli. Attention plays a dominant role in other cognitive control paradigms

(Braver, 2012) and it is not unlikely that it also plays a part in response

inhibition. Indeed, recent research has highlighted a possible role of earlier

attentional processes in response inhibition (e.g. Bari and Robbins, 2013; Lo-

gan and Cowan, 2014; Verbruggen et al., 2014; Huster et al., 2014; Elchlepp

et al., 2016; Bekker et al., 2005; Boehler et al., 2009; Kenemans, 2015). Fur-

ther detailing how these attentional processes relate to proactive inhibitory

processes is the focal point of this thesis.

In this Discussion I will first give a brief tour of the more important

methodological background, emphasizing some innovative aspects over pre-

vious work. Following this I will focus on the specific findings of the re-
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search presented in thesis, and their relationship to past research in the field.

Though I will already talk about the results of the sequential sampling mod-

els in this overview, I will expand upon the concept in a separate section,

in which I detail the commonalities across the studies. These models play

an important role in the first three studies; most notably as they don’t just

describe response time and accuracy as summary measures (and random

noise), but as a specific process that unfolds over a trial (and experiment).

Following this, I will further discuss the relationship between the presented

research and cognitive dysfunctions. Inhibitory mechanisms are heavily im-

plicated in cognitive and neurological dysfunction (Chambers et al., 2009),

and while the research presented in the thesis is very basic and fundamen-

tal, it likely speaks towards these disorders. Lastly, I will discuss the future

research outlook in proactive control and response inhibition.

6.1 Methodological background

6.1.1 Multilevel single-trial EEG analyses

In both Chapter 2 and Chapter 3 we used a novel multilevel single-trial

electroencephalography (EEG) approach to investigate attentional compo-

nents involved in response inhibition. Given it plays a central role in the

thesis I will briefly touch upon the general logic and purpose behind the

method. Single-trial analyses refer to methods that model some type of vari-

ance within subjects, and they are not traditionally used in neuroimaging
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research. Traditional techniques have focused on demonstrating di↵erences

between means calculated over experimental conditions. By studying vari-

ability across trials, single-trial analyses can allow us a di↵erent view of

cortical processes in EEG research. This modeling approach, for example,

can be used to make a systematic mapping between a stimulus quality and

brain activity (e.g, Rousselet and Pernet, 2011). In this thesis we specifically

focus on modeling EEG activity and behavioral (response time) variability.

As discussed in Chapter 1 and throughout the thesis response time and re-

sponse inhibition have a a relationship that is grounded in both theoretical

and empirical work. These single-trial models enabled us to look at covari-

ation between EEG measurements and response times, which allows us to

further strengthen arguments related to attention and response inhibition.

6.1.2 Visual N1 ERP

Though I will discuss the findings of the single trial approach further below,

here I will present the basics of the inferoposterior N1 component that was

the focus of both chapters (and indeed also presented in Chapter 4 and

Chapter 5). The visual N1 is a negative-going component that is generally

seen in the time range of 150-200 ms (though this time range does vary) after

any visual stimulus, and is seen most clearly in posterior occipito-temporal

areas. A corpus of research has focused on factors that modulate the am-

plitude of the visual N1. These studies provide evidence suggesting that,

while the visual N1 is a sensory component evoked by any visual stimulus,
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it also reflects a benefit of correctly allocating attentional resources. Ampli-

tude e↵ects on the N1 are absent during simple reaction time tasks, which

only require subjects to make a rapid response to stimuli (Luck et al., 2000;

Mangun and Hillyard, 1991) - which is a finding that suggests that the N1 is

linked to visual discrimination processes (see also, Hopf et al., 2002).

6.1.3 Preparatory ↵-band power

As will be discussed below, in Chapter 4 and Chapter 5 we switch focus

from the visual N1 to a time-frequency signal that is thought to be involved

in preparatory attention. Past EEG research has provided evidence of a

preparatory signal in alpha-band oscillatory power in states that require top-

down control. Regions that are task-irrelevant see increases in alpha power,

and regions that are task-relevant see decreases in alpha power. Evidence

supporting this has been made over multi-modality studies (e.g., Frey et al.,

2014), in working memory tasks engaging either dorsal or ventral process-

ing streams (Jokisch and Jensen, 2007), and in spatial attention tasks (e.g.,

Rihs et al., 2007). Specific to visuospatial attention tasks, cued attention to

a location has been repeatedly associated with increased alpha-band activ-

ity over ipsilateral regions, and decreased alpha activity over contralateral

regions prior to stimulus presentation (e.g., Vollebregt et al., 2015; Frey et

al., 2015). That these oscillations are specifically involved in the orienting

of spatial attention is supported in part by studies showing a modulation in

alpha-band power by cue reliability (Gould et al., 2011; Dombrowe and Hilge-
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tag, 2014), its sensitivity over a broad range of experimental manipulations

(e.g., Haegens et al., 2011), and work showing that transcranial magnetic

stimulation (TMS) pulses at alpha frequencies impair visual detection con-

tralateral to the occipital and parietal stimulation sites (Romei et al., 2008),

consistent with a spatially specific suppressive role of alpha-band activity.

There has also been further work aimed at detailing the links between

the prefrontal cortex (PFC) and the ↵ oscillations that we are interested

in examining. A series of studies, starting with Capotosto et al. (2009),

recorded simultaneously EEG and TMS in simple spatial attention tasks and

found that stimulation of core regions of the dorsal attention network (DAN,

specifically the frontal eye fields, intraparietal sulci) modify prestimulus al-

pha power in posterior cortices, suggesting a role for prefrontal and parietal

regions of the DAN in alpha modulations. In another line of inquiry Marshall

et al. (2015) di↵usion imaging data that quantifies the white matter tracts

(medial superior longitudinal fasciculus, SLF) that connect frontal cortices

to parietal areas further supports the notion of frontal control over posterior

alpha oscillations. To note, the medial SLF projects to areas overlapping

with the dorsal attention network and other control-related prefrontal regions

(e.g. dorsolateral PFC-dlPFCm, which is central to the next section). They

demonstrated a relationship between hemispheric asymmetry of the SLF in

individuals and their ability to exert top-down control of alpha oscillations.

Specifically, subjects with a stronger SLF volume in the right compared to

the left hemisphere had a better ability to modulate right compared to left
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Standard-stop  Reward-stop (1 stop-color rewarded)  Irrelevant-stop 

Study 1 Study 2 

Figure 6.1: Commonalities between the experimental paradigm in the first
two chapters. In these two studies a standard visual stop-signal task was
used, along with two di↵erent contextual changes. In Study 1 an irrelevant-
stop task was used, in which participants were given the same stimuli in the
standard-stop task, but they were to ignore the stop-stimuli and to respond
only to go-stimuli. In Study 2 there was a defined color on the stop-stimuli
(blue in the figure) in some blocks that rewarded successful inhibition of a
response.

hemisphere oscillations. All of this taken together suggests that such alpha-

band oscillations are driven by prefrontal areas that are generally thought

to be involved in cognitive control, and are arguably a marker of proactive

allocation of spatial attention.

6.2 Overview of empirical findings

In Chapter 2 we specifically investigated single-trial ERPs and the re-

lationship with response time in one standard form of a stop-signal task

(relevant-stop context), and a sensory baseline in which participants were to

ignore the stop-signals (irrelevant-stop context) with a focus on the visual

N1 component, see Figure 6.1 for an overview. We made a comparison be-

178



Chapter 6. Discussion

tween go-trials from these di↵erent trial blocks. Given the focus on go-trials

we argue that our analyses were clearly picking up a proactive process (as

far as any link to response inhibition is concerned), since stop-stimuli were

not available for processing. Further, the contrasts between relevant- and

irrelevant-stopping contexts supports this argument. We found that partici-

pants employed proactive response slowing in the relevant blocks, relative to

the irrelevant blocks. Hierarchical drift di↵usion models indicated that this

slowing of responses mostly relied on a combination of decision thresholds

as well as in drift rates (more on this in the next section). This slowing ef-

fect coincided with a positive relationship between the single-trial amplitudes

in the visual N1 component in the stop-relevant context. Put simply, this

means as response times slowed, the visual N1 went closer to zero µV, but

was still present as a negative wave. This was not the case in stop-irrelevant

task blocks, in which the visual N1 stayed constant over response time. As

discussed above, the N1 component is believed to index the level of attention

paid to a stimulus discrimination process. As the relationship between the

N1 and response time holds only in the relevant-stop context, we argued that

this pattern of results reflects a strategic damping process that proactively

slows go-stimulus processing when the response to this stimulus might have

to be canceled (see Figure 6.2 for an illustration of the results of this study

reflecting the modeled results of the analysis). It is interesting to note as well

that there appears to be no strong di↵erences in the visual N1 between the

two contexts in a categorical sense, at least when we took into account re-
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sponse time. What happens in this case is that the relationship between the

fluctuations in response time and the N1 in the irrelevant-stop context are

centered in the middle of the positive relationship seen in the relevant-stop

context. In a simple case of a comparison between the visual N1 between

contexts by taking the traditional method of averaging all trials, you would

find only a very weak relationship, which however disappears when taking

response-time variation across trials into consideration. This fact highlights

a real strength of the single-trial methodology that we applied.

The study in Chapter 3 was similar in spirit to the previous chapter, and

investigated the same visual N1 component underlying proactive response in-

hibition during the stop-signal task. The analysis was based on a comparison

of go-trials from di↵erent trial blocks in which successful response inhibition

in stop-trials was either explicitly motivated by reward prospect, or not (see

Figure 6.1 for an overview, and the overlap with Chapter 3). In this sense the

context was changed to probe for di↵erences due to an explicit motivation of

reactive response inhibition; yet, what we probed was the influence of such

a context on proactive inhibition in go-trials. We found a significant posi-

tive relationship (� > 0) between the single-trial amplitudes in the visual N1

component and response speed in the standard-stop context, but not in the

rewarded-stop context. However, there was an overall more pronounced N1

in the reward context suggesting a global increase in attentional processing

when reward was a possibility. This is still at its core related to proactive

response inhibition given we only looked at go-trials. The standard-stop con-

180



Chapter 6. Discussion

4 

2 

0 

-2 

-4 -8 

0 

2 

-2 

-4 

-6 

175 
160 

145 
130 

190 

90 0 

360 270 180 

-8 

0 

2 

-2 

-4 

-6 

175 
160 

145 

130 

190 

90 0 

360 270 180 

Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) 

b. a. 

-8 
0 

2 

360 
-8 

0 

2 

360 Rank Ordered RT Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Po
te

nt
ia

l (
µV

) 

Stop-relevant Stop-irrelevant 
4 

2 

0 

-2 

-4 -8 

0 

2 

-2 

-4 

-6 

175 
160 

145 
130 

190 

90 0 

360 270 180 

-8 

0 

2 

-2 

-4 

-6 

175 
160 

145 

130 

190 

90 0 

360 270 180 

Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) Rank Ordered RT 
Po

te
nt

ia
l (

µV
) 

Time (ms) 

b. a. 

-8 
0 

2 

360 
-8 

0 

2 

360 Rank Ordered RT Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Po
te

nt
ia

l (
µV

) 

Stop-relevant Stop-irrelevant 

4 

2 

0 

-2 

-4 -8 

0 

2 

-2 

-4 

-6 

175 
160 

145 
130 

190 

90 0 

360 270 180 

-8 

0 

2 

-2 

-4 

-6 

175 
160 

145 

130 

190 

90 0 

360 270 180 

Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) 

b. a. 

-8 
0 

2 

360 
-8 

0 

2 

360 Rank Ordered RT Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Po
te

nt
ia

l (
µV

) 

Stop-relevant Stop-irrelevant 

4 

2 

0 

-2 

-4 -8 

0 

2 

-2 

-4 

-6 

175 
160 

145 
130 

190 

90 0 

360 270 180 

-8 

0 

2 

-2 

-4 

-6 

175 
160 

145 

130 

190 

90 0 

360 270 180 

Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Time (ms) 

b. a. 

-8 
0 

2 

360 
-8 

0 

2 

360 Rank Ordered RT Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

Po
te

nt
ia

l (
µV

) 

Stop-relevant Stop-irrelevant 

c. 

Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

360 0 
-8 

2 

Rank Ordered RT 

Po
te

nt
ia

l (
µV

) 

360 0 
-8 

2 

Figure 6.2: A di↵erent view of the results in Chapter 2. In this figure we see
the predicted values plotted over response time, potential, and time from the
go-stimulus in the (a) stop-relevant and (b) stop-irrelevant contexts from one
posterior electrode (c). These are then rotated to show the di↵erences only
over response time. This is very similar to Figure 1 seen in Chapter 3, and
the general pattern is the stop-relevant condition shows the same pattern as
the standard-stop condition in Chapter 3.
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text results were a replication of the findings reported in Chapter 2 in the

relevant-stop context, whereas the reward context likely created a context

in which attention is generally increased for all task-relevant stimuli (likely

related to the fast succession of go- and stop-stimuli in a stop-trial) that

might not have left room for subtle relationships between response speed

and N1 amplitude (see Figure 6.2). In contrast to the clear di↵erence on

the N1, we also saw non-zero relationships between response time and EEG

in the N2 and P3 time-ranges that did not di↵erentiate clearly between the

two contexts. While it did not di↵erentiate between motivational context,

it very well might be interesting to analyze this finding in tasks similar to

the study in Chapter 2, which we had originally refrained from given a very

clear a-priori hypothesis concerning the N1 based on earlier work (Bekker

et al., 2005; Boehler et al., 2009). Finally, in Chapter 3, despite overall mean

response time and go-accuracy being similar across blocks, we observed dif-

ferential results of a drift di↵usion analysis. Specifically, a stop-trial-related

reward context drove go-trials to have increased drift rates and decreased

nondecision times, together with an elevated decision threshold. These re-

sults also suggest an overall context e↵ect of reward that extends to go-trial

processing (despite go-trial performance not being directly relevant for ob-

taining reward), where enhanced attention to the go-stimulus likely results

in the faster drift rate and (at least partly) the shorter non-decision time,

whereas the elevated threshold likely reflects the ambition of keeping the re-

sponses in a similar RT range as in the standard-stop context (not least to
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comply with instructions).

Although we consider the use of single-trial RT information to analyze

the EEG data both novel and highly informative, the research in Chapter

2 and Chapter 3 technically entailed a reverse inference (Poldrack, 2006).

Specifically, we used variations in the N1 component across trials related

to response time in order to interpret this finding as reflecting attention,

but did not try to manipulate attention directly. The mathematical models

used in the stop-signal literature (Independent Horse Race models) have

specific empirically-validated model predictions for go-trial response time

distributions in such tasks (which our data all met), and with the further use

of a well-validated EEG component known to be reflective of discriminatory

processing, we feel that the conclusions regarding attention and response

time in the previous chapters are firmly grounded and correctly interpreted.

However, partially driven by the fact we were modeling a reverse inference,

in Chapter 4 and Chapter 5 we aimed to directly modulate preparatory

processes in a fashion similar to Zandbelt et al. (2013) and Verbruggen and

Logan (2009) to provide more direct evidence for attentional involvement

in proactive inhibition. To further this, we switched focus from the visual

N1 component to a neurophysiological signal that is present even prior to

the presentation of any target stimuli, specifically alpha-power lateralization,

using a cue-target sequence with lateralized go-stimuli (e.g., Rihs et al., 2007).

This research was directly driven by both our past findings, the past findings

of others, as well as mathematical modeling work on expectations in the
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stop-signal task. We will first briefly discuss the modeling work, and finally

move on to the specific findings in each of the chapters.

Part of the motivation for the research in Chapter 4 and Chapter 5 is

the role that expectation plays in recent mathematical models of the stop-

signal task (e.g. Shenoy and Yu, 2011; Ide et al., 2013; Yu and Cohen, 2009).

These models are hidden Markov models (Baum and Petrie, 1966) that pre-

dict the probability of a stop-trial given past observations, and accumulation

of evidence (in some sense similar to a drift-di↵usion process). In Shenoy

and Yu (2011) it was shown that this class of models could account for clas-

sic stopping behavior in a stop-signal task, specifically that the stop failure

rate grew with an increasing stop-signal delay, and that there are faster stop

failures than correct go-trials. Further, these models could account for se-

quence e↵ects, i.e., slowing on go-trials after runs of stop trials and speeding

of go-trials after runs of go-trials with the model predicting actual RT on

Go-trials with very high precision. While these models are clearly not the

full story when it comes to response inhibition behavior (e.g., they do not

speak directly to the implementation of response inhibition, except if it is

framed exclusively as a decision), they do explain a lot of variance seen in

the stop-signal task, and are interesting in that they are, in many senses, a

model of expectation and hence proactive processes.

In Chapter 4 we examined the pre-stimulus alpha lateralization as a

function of a cued expectation for the current trial to have a second stop-

stimulus. The task was one in which the cue carried two sources of infor-
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mation. It was explicit in the frequency/probability at which the current

trial would include a centralized stop-signal (10%, 25%, 50%), and was al-

ways predictive of the hemifield in which the go-signal would be presented.

We found that as cued expectation for a stop-trial went up response times

slowed, as expected. Drift-di↵usion modeling of the go-trial data suggested

that response time distributions came about in di↵erent manners for the dif-

ferent expectation cues. Specifically, as the probability of a stop trial rises,

the drift rate lowered, response thresholds raised, and non-decision times be-

came longer. This was accompanied by a clear trend in the lateralization

of alpha power over the di↵erent levels of expectation; as expectation for a

stop-trial became higher, the lateralization index became lower. This was

accompanied by a larger bilateral visual N1 e↵ect over the as expectation

became higher.

The prediction going into Chapter 4 was that as response time slowed

(stop-signal expectation became higher) we would see a smaller go-locked

N1, and a lower lateralization in alpha-band power before the go-stimulus

across the di↵erent probability conditions. This prediction was based o↵

of the results in Chapter 2 and Chapter 3. However, as described above,

this is not what the results indicated at all. There is, in this case, a very

clear modulation of both alpha-band power and the visual N1 going in the

opposite direction. As touched upon in the Introductory chapter the dual-

mechanisms of control account (Braver, 2012) posits the idea that subtle

di↵erences between otherwise similar tasks might lead to significant changes
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in preferred cognitive control strategy. These di↵erences could be expected to

result in shifts in both behavioral performance and also in neurophysiology.

In our task the behavioral performance appears to be in line with a standard

stop-signal task, however a possible reason for the unexpected di↵erences in

the EEG signals is simply that the go-stimuli in Chapter 4 were presented in a

lateralized fashion but stop-stimuli centrally (hence also requiring monitoring

this central position), and this fact a↵orded participants a di↵erent strategy

to arrive at the same behavior. Furthermore, the stop-signal task is both

spatially and temporally more complex than the usual cued Posner tasks used

to examine spatial attention and alpha-band lateralization, adding another

layer to the interpretation.

In Chapter 5 the main focus was again the lateralization of posterior

alpha-band oscillations, and this was partially due to the unexpected out-

come seen in Chapter 4. In this study we used go/no-go task and similar to

Chapter 4 the cue carried two types of information. An auditory expecta-

tion cue stochastically predicted the identity of the upcoming stimuli (either

a go, or a stop signal), and a spatial cue was fully predictive of the rele-

vant side. The main di↵erences to Chapter 4 is that go/no-go task is less

complex temporally (no second-signal) and we further included distractors

in the irrelevant hemifield - which could make a di↵erence in alpha later-

alization (Slagter et al., 2016). This expectation manipulation both slowed

response times and raised the proportion of correct inhibition trials in high

expectation trials. We found a significant increase in the lateralization of al-
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pha power when the cue predicted that the forthcoming stimulus had a high

probability to require response inhibition. We furthermore observed a more

pronounced N1 component in the high expectation trials. Additionally, we

found increases in midfrontal theta power in no-go trials vs. go trials, and

further observed an increase in successful no-go trials in the low expectation

trials vs. high expectation trials.

6.3 Sequential sampling models

A common theme in Chapter 1, Chapter 2, and Chapter 3 is a formulation of

a sequential sampling model known as a drift-di↵usion model (DDM). DDMs

are decision making models of two-choice (it can be extended, however) tasks

(see Figure 6.3 for a simple graphical depiction of a DDM). Each possible

choice is represented as an upper and lower boundary, specifically to our

case these boundaries are defined as a correct-go (upper) and an incorrect-go

(lower) response. Each decision is modeled as an accumulation (a Wiener

process) of noisy information indicative of one choice or the other, with se-

quential evaluation of the accumulated evidence at each time step (Ratcli↵

and Rouder, 1998; Smith and Ratcli↵, 2004). The rate at which the accumu-

lation process approaches the upper or lower boundaries is called the drift-

rate (v) and represents the relative strength of accumulating evidence for or

against a particular boundary. The distance between the two boundaries is

the threshold (a) and determines how much evidence must be accumulated
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until a boundary is passed and hence a response is made. The smaller the

distance between the upper and lower boundaries the faster a response is in

general (holding other parameters constant), however this will also lead to a

greater influence of noise and hence could make crossing a boundary easier

based purely on noise, leading to errors. Basic sensory perception, move-

ment initiation, and response execution are all aggregated in the models by

a single non-decision time parameter (t). The finishing times of this process

gives rise to the distributions of response times for both correct and incorrect

choices. Given the involvement of multiple reactive and proactive processes

in forming behavior in the stop-signal task we believe that these models (and

similar formulations) are integral to understanding the full complexity of re-

sponse inhibition. They are particularly interesting when contextual changes

are made, because participants might dynamically change response modes.

In Chapter 2 we replicated an e↵ect on response thresholds that was

previously described (Verbruggen and Logan, 2009), with thresholds being

higher in the relevant-stop context. We also found an e↵ect on drift rates,

with drift rate being higher in the irrelevant-stop context. The drift-rate

e↵ect has also been reported before, but was found to be di�cult to interpret

(Logan and Cowan, 2014). The di↵erences seen in these parameters suggest

that in the relevant-stop context participants employed a more conservative

response mode (i.e., go responding was less susceptible to a noisy response),

and we suggested that the dynamically modulated level of attention towards

the go-stimulus is related to drift rate, whereas other, likely more motor-level
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Figure 6.3: Graphical depiction of a drift-di↵usion model. In a drift-di↵usion
process evidence is accumulated stochastically (v) towards one of two bounds,
which define the response threshold (a). In the cases seen in this thesis the
boundaries are either a correct-go or an incorrect-go response. As evidence
accumulation crosses a boundary a response is executed. The nondecision
time (t0) defines all processes that are not part of the decision process. z is
the starting point in the process, and can be biased based upon the paradigm
(in our modeling we assume that there is no bias).
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processes probably account for di↵erences in threshold.

In Chapter 3 under motivational changes in context both the drift rate

increased and the decision threshold increased, while nondecision time be-

came smaller in the rewarded-stop blocks. A decrease in nondecision time and

increase in drift rate leads to quicker response processes, whereas the raised

decision threshold leads to slower, more conservative responding. Therefore,

it seems that the decision threshold compensates for the changes in the other

two parameters. A decrease in nondecision time and increase in drift rate

leads to quicker response processes, whereas the raised decision threshold led

to slower, more conservative responding. Therefore, it seems that the decision

threshold compensates for the changes in the other two parameters. While

the reason for this might be a bit artificial, in that it likely relates to the

instruction not to slow down responses across the two task contexts, it still

illustrates nicely a fine-grained process structure, in which even near-identical

mean behavior can arise from di↵erent constellations of distinguishable drift

di↵usion parameters (i.e. modeling RT distributions and accuracy is more

powerful than summary measures). This finding is generally reminiscent of

results from a stop-signal task that used stimuli with di↵erent image quality,

where it was found that reduced drift rate and increased nondecision time for

low-quality images was compensated for by an increased decision threshold

(Jahfari et al., 2015). It seems likely that our presented results are strongly

related, just the source of variation in stimulus processing is internal rather

than external.
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It seems likely that our presented results are strongly related. When

speculating about the relationship of these parameters to our electrophysio-

logical results, it seems reasonable to link the N1 modulations to di↵erences

in drift rate and possibly nondecision time, in that early attentional processes

plausibly map onto both the rate of and starting time of evidence accumu-

lation, which might furthermore relate to anticipatory attentional processes

that precede the actual trial (e.g., Bengson et al., 2012). The increased de-

cision threshold, in turn, might relate to a process more linked to the motor

output level, which we did not capture in our analysis of the EEG data (see,

O’Connell et al. (2012), Elchlepp et al. (2016), and Dippel and Beste (2015)

for a broad discussion of candidate neural signatures).

Chapter 4 gave evidence that as stop-expectancy increases there is an

increase in response threshold, a decrease in drift rate, and a slight increase

in nondecision time. In a very broad sense, this means that as participants

expect a stop-signal they take on a more cautious response mode, which is in

line most clearly with Chapter 2. Indeed, this was actually the prediction of

the di↵usion process when the experiment was designed, and further moti-

vates the role of expectation in response inhibition research. However, it does

indicate that we should possibly be a bit more cautious in the interpretation

of electrophysiological signals and their relation to di↵usion processes, be-

cause it is clearly not the whole story when comparing results from Chapter

2 and Chapter 4 - given that we arrive at seemingly di↵erent EEG interpre-

tations. A more powerful method would be to relate the EEG components
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directly to the DDM parameters on a single trial level (see Cavanagh et al.

(2011) for an example).

6.4 Possible clinical relevance

A host of neurological and cognitive disorders and diseases are known to be

associated with general cognitive control dysfunction as well as response in-

hibition dysfunction. Cognitive control functions appear to be diminished in

clinical populations with Huntington’s and Parkinson’s diseases (e.g Brown

and Marsden, 1990; Sawamoto et al., 2008; Lawrence et al., 1996), depression

(e.g. McIntyre et al., 2013), as well as patients with frontal lobe damage (e.g.,

Roca et al., 2010), to name a few. Specific to reactive response inhibition,

it has been demonstrated to be implicated multiple times in patients with

ADHD (e.g., Overtoom et al., 2002; Chambers et al., 2009; Senderecka et al.,

2012; Alderson et al., 2007), obsessive compulsive disorder (e.g., Chamber-

lain et al., 2006; Menzies et al., 2007), Parkinson’s Disease (e.g., Vriend et

al., 2015; Alegre et al., 2013). Furthermore, motivational di↵erences are seen

between healthy participants and clinical populations, and the overlap is sub-

stantial; e.g., Parkinson’s disease (e.g., Pagonabarraga et al., 2015), ADHD

(e.g., Cubillo et al., 2012), depression (e.g. Yang et al., 2014),and Alzheimer’s

disease (e.g. Landes et al., 2001). In the current thesis we have demonstrated

that proactive control processes are heavily influential in response inhibition

and that gaining a richer understanding will surely depend on understand-
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ing the proactive involvement of sensory and attentional processes. We have

further demonstrated how motivational modulations come to bear on such

attentional processes, altogether sketching a multifaceted picture of di↵erent

and possibly interacting determinants of response inhibition behavior. As

such, it will be critical in the future to further distinguish deficits in a core

motoric inhibitory function from related deficits in more general proactive

control and attention, as well as motivational impediments, when considering

related deficits as a diagnostic tool, and when devising clinical interventions.

6.5 Outlook

Taken together, we believe that the research presented in this thesis points

towards a highly flexible control system that is involved in response inhibi-

tion. One of the strengths of this thesis is in its novel use of nontraditional

methodology. We have shown that response time and visual attention co-

vary in response inhibition on a single-trial level, and that this covariation

can be modulated by contextual changes. This is a finding that can only be

seen by using methods that go beyond simple condition-wise averages across

all trials. Further, using drift-di↵usion models we have shown that these

response time distributions are driven by di↵erent processes under di↵erent

contexts. These two methodologies allowed us to find slight di↵erences that

an orthodox approach would not allow, and we would argue should be ap-

plied more often in the literature. In another line of research, turning to
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pre-target alpha-power lateralization, we specifically used a marker of what

we would argue is quite related to the idea of proactive control given the

pre-target temporality involved, finding further corroboration of a general

involvement and relevance of attention in proactive response inhibition. As

is clear in both the present EEG analyses and in the drift-di↵usion models

response inhibition is a dynamic and flexible process that unfolds on a very

fast scale and di↵ers across trials in a meaningful way (and generally in line

with recent conceptual work seen in Elchlepp et al. (2016)) This dynamic

and varying nature is, in our view, an important feature that needs to be

integrated more systematically also in future work, both on the topic of the

present thesis, as well as likely also in a wider context of cognitive functions.
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Chapter 7. Nederlandse samenvatting

Een opvallend kenmerk van de menselijke cognitie is zijn veelzijdigheid.

We kunnen ons snel aanpassen aan een continu veranderende interne en ex-

terne omgeving. We zijn bijvoorbeeld in staat om snel uit te wijken om

een botsing te voorkomen met een niet-oplettende bestuurder, een honkbal

te raken met een knuppel, mentale berekeningen te maken wanneer we een

rekening moeten splitsen in een druk restaurant, en ons te concentreren ter-

wijl we een moeilijk examen maken. Deze veelzijdigheid is afhankelijk van

bepaalde neurale processen die zich dynamisch afstemmen op sensorische,

perceptuele, motorische en andere interne mechanismen en ons zo helpen bij

het bereiken van onze interne doelstellingen. Het gaat om de regelutatie,

cordinatie, en het ordenen van gedachten en handelingen (Braver, 2012), en

wordt cognitieve controle genoemd. Cognitieve controle is belangrijk voor

menselijk adaptief gedrag, en is een breed concept dat meerdere cognitieve

domeinen omvat zoals: het bijwerken en beheren van contextueel relevante

informatie, het sturen van aandacht, het bijhouden van prestaties, en de ac-

tivering of inhibitie van gepaste of ongepaste gedragingen (Miller and Cohen,

2001; Verbruggen et al., 2014).

Responsinhibitie is een belangrijke component van succesvolle cognitieve

controle. Een veranderende omgeving vereist vaak dat een automatische of

anderszins overheersende reactie op korte termijn onderdrukt of geinhibeerd

kan worden. Alhoewel traditioneel onderzoek vooral heeft gekeken naar re-

actieve processen, waarbij inhibitie wordt getriggerd door een expliciete sen-

sorische stop-stimulus, is er recentelijk meer belangstelling voor proactieve
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responsinhibitie. Proactieve inhibitie is de neiging om reacties te vertragen

wanneer een regelrechte stop nodig is Aron, 2011 wat meestal resulteert in een

langzamere reactie in tegenstelling tot algehele inhibitie zoals bij reactieve

processen. Onderzoek heeft zich tot nu toe vooral gericht op een centraal

motorisch inhibitie mechanisme zonder rekening te houden met de mogeli-

jke rol van andere processen, zoals aandachts verwerking bij taakrelevante

stimuli. Aandacht speelt een belangrijke rol in andere cognitieve controle

taken (Braver, 2012) en het is dus niet onwaarschijnlijk dat dit ook een rol

speelt bij responsinhibitie. Recent onderzoek heeft inderdaad de mogelijke

rol van vroegere aandachtsprocessen bij responsinhibitie gevonden (Bari and

Robbins, 2013; Logan and Cowan, 2014; Verbruggen et al., 2014; Huster

et al., 2014; Elchlepp et al., 2016; Bekker et al., 2005; Boehler et al., 2009;

Kenemans, 2015). Hoe aandachtsprocessen en proactieve inhibitie processen

precies aan elkaar gerelateerd zijn is de focus van dit proefschrift.

In hoofdstuk 2 onderzochten we single-trial ERP’s en de relatie met re-

actietijden in een standaard vorm van de stop-signaal taak (stop-relevante

context), en een zintuiglijke basislijn waarbij deelnemers geinstrueerd werden

om de stop-signalen te negeren (stop-irrelevante context). Specifiek keken

we naar de visuele N1 component. De vertraagde reactietijden vielen samen

met een positieve relatie tussen de single-trial ERP amplitudes in de visuele

N1 component in de stop-relevante context. In hoofdstuk 3 onderzochten

we dezelfde visuele N1 component onder gelegen aan pro-actieve responsin-

hibitie tijdens de stop-signaal taak. De resultaten van de standaard-stop
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taak waren een replicatie van de bevindingen in de stop-relevante context

gerapporteerd in hoofdstuk 2, terwijl een belonings conditie een algemene

verhoging van aandacht voor alle taak-relevante stimuli creerde. In hoofd-

stuk 4 onderzochten we pre-stimulus alpha lateralisatie in functie van een

gecuede verwachting dat de huidige taak een tweede stop-stimulus zou be-

vatten. Er was een duidelijke trend in de lateralisatie van alpha power over de

verschillende niveaus van verwachting; als verwachting voor een stop-signaal

hoger werd, werd de lateralisatie index lager. In hoofdstuk 5 onderzochten we

opnieuw de lateralisatie van posterieure alpha-band oscillaties, en gebruikten

we een go/no-go taak. Vergelijkbaar met hoofdstuk 4 werd er een cue gepre-

senteerd die twee soorten informatie kon bevatten, spatiale en verwachtings

informatie. We vonden een aanzienlijke toename van de lateralisatie van al-

pha power wanneer de cue voorspelde dat het zeer waarschijnlijk was dat de

volgende stimulus een responsinhibitie zou vereisen.

Bij elkaar genomen, zijn wij van mening dat het onderzoek beschreven

in dit proefschrift laat zien dat het systeem dat betrokken is bij respon-

sinhibitie zeer flexibel is. We hebben aangetoond dat reactietijd en visuele

aandacht covariren in responsinhibitie op een single-trial niveau en dat deze

covariatie kan worden gemoduleerd door contextuele veranderingen. Deze

bevinding kan enkel worden gevonden door gebruik te maken van werkwi-

jzen die verder gaan dan het eenvoudig condition-wise middelen over alle

trials. Met betrekking op pre-stimulus alpha-power lateralisatie, hebben we

een specifieke marker gebruikt waarvan we beweren dat deze is gerelateerd
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aan proactieve controle gezien de pre-target timing, waardoor we verdere

bevestiging vinden van een algemene betrokkenheid en relevantie van aan-

dacht in proactieve responsinhibitie. Zoals blijkt in zowel de huidige EEG

analyses en de drift-di↵usion modellen is responsinhibitie een dynamisch en

flexibel proces dat zich in een zeer snelle tijd ontvouwt en verschilt per trial

op een zinvolle manier. Dit is een belangrijk kenmerk dat systematisch moet

worden gentegreerd in toekomstig onderzoek, zowel in het onderwerp van dit

proefschrift, evenals in een bredere context van cognitieve functies.
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. 
  - [ ] other files. Specify: ...

    
* On which platform are these other files stored? 
  - [X] individual PC
  - [ ] research group file server
  - [ ] other: ...    

* Who has direct access to these other files (i.e.,
 without intervention of another person)? 
  - [X] main researcher
  - [ ] responsible ZAP
  - [ ] all members of the research group
  - [ ] all members of UGent
  - [ ] other (specify): ...    

4. Reproduction 
===================================================
========
* Have the results been reproduced independently?: 
[ ] YES / [X] NO

* If yes, by whom (add if multiple):
   - name: 



   - address: 
   - affiliation: 
   - e-mail: 


