

Development of a 1D simulation model for a steam cracker convection section

P. Verhees, <u>I. Amghizar</u>, J. Goemaere, A. R. Akhras, K. M. Van Geem, G. B. Marin, G. J. Heynderickx

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

CHISA 2016, Prague, Czech Republic, 30/08/2016

Steam cracking

atozforex.com; pnnl.org; districtenergy.org; scade.fr; schmidt-clemens.de; Linde Group

Steam cracking

Convection section

4

Heat transfer mechanisms

Single phase

- Convective flow over horizontal tube bank (Flue gas)
- Forced convection (all banks except FPH)

Two phase

- Flow boiling (FPH)
 - Empirical model
 - Mechanistic model

Numerical model: Flue gas side

$$Q = \dot{m}_{fg} c_p \left(T_{fg,out} - T_{fg,in} \right)$$

Numerical model: Process side

$$Q_{j} = \begin{cases} \dot{m}_{total} c_{p,mix} (T_{f,j} - T_{f,j-1}) \\ \Delta \dot{m}_{l} \Delta H_{latent} \end{cases}$$

Important to be computed accurately !

Convective flow over horizontal tube bank

Convective flow over horizontal tube bank

- Empirical model: Zukauskas¹
- Analytical model: Khan et al.²

Imposed fixed T_{wall} profile

Both models performs equally well

2. W. A. Khan, J. R. Culham, M. M. Yovanovich, International Journal of Heat and Mass Transfer 2006, 49 (25–26), 4831-4838. DOI: 10.1016/j.ijheatmasstransfer.2006.05.042.

Single phase forced convection

Single phase forced convection

- Dittus-Boelter¹
- Sieder-Tate²
- Gnielinski³

Imposed fixed T_{wall} profile

Simulation results hardly differ when applied correlation changes

^{2.} E. N. Sieder, G. E. Tate, Industrial & Engineering Chemistry 1936, 28 (12), 1429-1435. DOI: 10.1021/ie50324a027.

^{3.} V. Gnielinski, International Journal of Chemical Engineering 1976, 16 (2), 359-368.

Two phase flow boiling: Empirical model

Two phase flow boiling

- Empirical model
- Mechanistic model

- 1. Single-phase liquid
- 2. Saturated flow boiling
- 3. Partial dry-out
- 4. Mist flow

0

5. Single-phase vapor

Gnielinski¹ Gungor-Winterton² Interpolation between ● and ▼ Adapted Groeneveld³ Gnielinski¹

1. V. Gnielinski, International Journal of Chemical Engineering 1976, 16 (2), 359-368.

2. K. E. Gungor, R. H. S. Winterton, Chemical Engineering Research and Design 1987, 65 (2), 148-156.

3. L. Wojtan, T. Ursenbacher, J. R. Thome, International Journal of Heat and Mass Transfer 2005, 48 (14), 2970-2985. DOI: 10.1016/j.ijheatmasstransfer.2004.12.013.

4. L. Wojtan, T. Ursenbacher, J. R. Thome, International Journal of Heat and Mass Transfer 2005, 48 (14), 2955-2969. DOI: 10.1016/j.ijheatmasstransfer.2004.12.012.

5

Two phase flow boiling: Mechanistic model

- 1. L. Wojtan, T. Ursenbacher, J. R. Thome, International Journal of Heat and Mass Transfer 2005, 48 (14), 2955-2969. DOI: 10.1016/j.ijheatmasstransfer.2004.12.012.
- N. Kattan, J. R. Thome, D. Favrat, Journal of Heat Transfer 1998, 120 (1), 156-165. DOI: 10.1115/1.2830039.
- 3. S. C. De Schepper, G. J. Heynderickx, G. B. Marin, Chemical Engineering Journal 2008, 138 (1), 349-357

Two phase flow boiling: Mechanistic model

- Stratified flow (St)
- Stratified-wavy flow (St-W)
- Slug flow (SI)
- Intermittent flow (I)
- Annular flow (A)
- Wavy flow (W)
- Mist flow (M)
- Dryout flow (D)

Heat transfer coefficient is calculated as a function of the parameters D, δ , θ_{dry} and $\theta_{stratified}$

- 1. L. Wojtan, T. Ursenbacher, J. R. Thome, International Journal of Heat and Mass Transfer 2005, 48 (14), 2955-2969. DOI: 10.1016/j.ijheatmasstransfer.2004.12.012.
- 2. N. Kattan, J. R. Thome, D. Favrat, Journal of Heat Transfer 1998, 120 (1), 156-165. DOI: 10.1115/1.2830039.
- 3. S. C. De Schepper, G. J. Heynderickx, G. B. Marin, Chemical Engineering Journal 2008, 138 (1), 349-357

Two phase flow boiling: Mechanistic model

Extension to multicomponent feeds

Composition of vapor and liquid changes through the evaporation process and hence properties change affecting the flow pattern map

Naphtha represented by 30 pseudo components

100

Two phase flow boiling: Model evaluation

Two phase flow boiling

- Empirical model
- Mechanistic model

Imposed fixed T_{wall} profile

Case	Naphtha G kg/(m² s)
1	250
2	100

Two different trajectories in flow pattern map

- 1. L. Wojtan, T. Ursenbacher, J. R. Thome, International Journal of Heat and Mass Transfer 2005, 48 (14), 2955-2969. DOI: 10.1016/j.ijheatmasstransfer.2004.12.012.
- N. Kattan, J. R. Thome, D. Favrat, Journal of Heat Transfer 1998, 120 (1), 156-165. DOI: 10.1115/1.2830039.
- 3. S. C. De Schepper, G. J. Heynderickx, G. B. Marin, Chemical Engineering Journal 2008, 138 (1), 349-357

Case 1

- Results correspond qualitatively
- Increasing trend until mist flow is encountered
- Shift from angular to mist at vapor quality of approximately 0.77

Case 2

- Other flow regimes are encountered compared to previous case
- Results do not correspond qualitatively
- Empirical model can not capture these flow regimes correctly
- Incomplete evaporation can lead to fouling in lower banks

Conclusions

- CONVEC-1D has been developed for complete steam cracker convection section simulation
- Flexible tool in terms of feedstock and geometry
- Accurate estimation of heat transfer coefficient is important for accurate simulations (fouling)
- Flow boiling is challenging to model and hence urging for more detailed models
 - Empirical model captures the trends for sufficient high mass fluxes for lower mass fluxes simulation results shows important discrepancies
 - Mechanistic model describes well the evaporation of HC-mixtures for broad range of conditions
 - Current commercial well-know heat transfer simulation software packages use empirical models for evaporating flow in tubes and hence urging caution when used

Acknowledgements

The Long Term Structural Methusalem Funding

Long Term Structural Methusalem Funding of the Flemish Government

Development of a 1D simulation model for a steam cracker convection section

P. Verhees, **I. Amghizar**, J. Goemaere, A. R. Akhras, K. M. Van Geem, G. B. Marin, G. J. Heynderickx

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

CHISA 2016, Prague, Czech Republic, 30/08/2016

