
Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 Page 325–344 325

An Electronic Healthcare Record Server
Implemented in PostgreSQL

Tony Austin1*, Shanghua Sun2, Yin Su Lim1, David Nguyen2,
Nathan Lea1, Archana Tapuria1 and Dipak Kalra1

1Centre for Health Informatics and Multiprofessional Education (CHIME),
University College London, London, UK

2Helicon Health Ltd., London, UK

Submitted February 2015. Accepted for publication June 2015.

ABSTRACT
This paper describes the implementation of an Electronic Healthcare Record server inside a
PostgreSQL relational database without dependency on any further middleware infrastructure.
The five-part international standard for communicating healthcare records (ISO EN 13606) is
used as the information basis for the design of the server. We describe some of the features that
this standard demands that are provided by the server, and other areas where assumptions about
the durability of communications or the presence of middleware lead to a poor fit. Finally, we
discuss the use of the server in two real-world scenarios including a commercial application.

1. INTRODUCTION
Electronic Healthcare Records (EHRs) are increasingly perceived as the only
mechanism to ensure capture of detailed clinical information over the lifetime of every
citizen, and the availability of this information at any moment [1]. Paper records are
liable to be misunderstood or unavailable at the moment of need and do not support
sufficient care quality [2]. However, an EHR repository is more than just a database. It
must exhibit properties of security and auditability that reassure patients and users that
their data are not abused [3]. It must of course also be accessible so that the clinical
benefits may be realised.

1.1. ISO EN 13606
A suitable representation for the EHR has required significant international research.
Starting with European framework programme projects such as the Good European
Health Record [1] and Synapses [4], the requirements for EHR architectures are then
documented in national projects (e.g., [5]), academic work (e.g., [6]), and international
standards including the most complete internationally agreed set of requirements so
far [7].

*Corresponding author: Tony Austin, Centre for Health Informatics and Multiprofessional Education
(CHIME), University College London, 222 Euston Road, London NW1 2DA, United Kingdom. Phone: +44
(0)20 3549 5300. Fax: +44 (0)20 7679 8002. E-mail: tonyaustin@heliconhealth.co.uk . Other authors: post-
master.electronsea@gmail.com; y.lim@ucl.ac.uk; d.nguyen@ucl.ac.uk; n.lea@ucl.ac.uk;
a.tapuria@ucl.ac.uk; d.kalra@ucl.ac.uk; d.kalra@ucl.ac.uk

326 An Electronic Healthcare Record Server Implemented in PostgreSQL

The earliest European interoperability standard, ENV 12265 [8] was published in
1995 and defined the core information properties of an EHR. ENV 13606 [9] (published
in 1999) updated this and was the first complete information model standard. The latest
evolution, ISO EN 13606, is the current approved standard at European and ISO levels
for the meaningful exchange of clinical information between systems. It is designed as
an interoperability standard to which existing EHR systems will transform legacy data.
However the requirements met and architectural approach also make it a good
information basis for the architecture of an EHR server. The authors used this standard
as the basis for two previous generations of EHR server [3,10].

The standard has five parts, published between 2007 and 2010. It uses what is called
the “twin model” approach. Recognising that it is impossible to describe the whole of
clinical medicine but that it is possible to definitively establish certain features of
sensible server design, two models are offered to implementers that inform different
aspects of the process. Part 1 [11] establishes the set of “global truths” that are not
dependent on the clinical domain being modelled. For example, it does not matter if the
application is for the management of asthma or diabetes, all entries in either domain
must be dated and recorded with the specifics of the clinician who observed them. In
contrast, the knowledge that a thing called a “Blood Pressure” always includes further
things called “Systolic” and “Diastolic” values is unique to clinical domains related to
the circulatory system. Each of these individual clinical domain knowledge aggregates
is what Part 2 [12] of ISO EN 13606 refers to as an “Archetype”.

Further parts describe a set of vocabularies and reference archetypes to ensure a
consistent mapping between EN 13606 and other key standards [13]; a framework for
communicating the EHR disclosure wishes of patients and for communicating the audit
history of who has accessed a particular patient’s health record [14]; and interfaces
between requesting and responding processes or systems to enable EHR
communication [15]. The standard is maintained through a four-yearly technical
revision process which is taking place now.

Nevertheless, the standard publishes an information viewpoint for the EHR, but does
not provide the practical details necessary to implement a well-performing and secure
EHR repository from which conformant extracts may be taken. This paper provides a
validated example of the way in which EN 13606 may be used in practice to deliver a
robust repository and services.

1.1.1. University College London (UCL) Server
The standard describes a document architecture. It provides parts such as a
“Composition”, a medico-legally whole contribution to the record, a “Section”
(heading) and an “Entry” (which groups real data values as would a paper form). This
aggregational data representation is somewhat at odds with the real-world penetration
of relational (tabular) format databases into the healthcare enterprise.

The authors have produced two previous generations of server based on the evolving
European and International standards described above. Both adopted the “twin model”
approach. The first generation [3] predated many if not all of the modern turnkey
Object-Relational Mapping (ORM) middleware tools and needed significant amounts

of hand-crafted code to marshal and de-marshal the hierarchical data from the tabular
storage. Internally, the structure was a wide table populated as necessary. This could be
searched quickly but was not an obvious architecture when used for queries outside the
controlled environment, necessitating further bespoke code.

Object-Relational Model (ORM) and Web toolkits were much more advanced by the
time of the second server [10] and it was felt that an implementation using HibernateTM,
now a part of JBossTM, itself implementing Enterprise Javabeans (EJB) was
appropriate. Hibernate provides more than one candidate for internal storage including
the wide table previously chosen. However, rather than having identical fields with an
“archetype identifier” slot populated with the desired clinical concept as in the first
server, on this occasion, there were real classes for each concept that Hibernate then
instantiated in the database. This meant that queries had a more natural feel, being based
on tables with names and columns that made sense to domain experts. Sadly, there is an
upper limit on the number of tables that may be used in an exhaustive query plan in
PostgreSQL, and consequently, we used a hybrid arrangement where the reference
model data was represented predominantly by a wide table, but with non-Elements
(data containers) also having a table each to store their inter-object indexes. This
allowed the number of tables in the query to be reduced.

Considerable effort was expended for the second server ensuring that the accessor
Application Programming Interface (API) could not be subverted by (for example)
requesting data for an inaccessible subject of care as part of a request for legitimate
data, or maliciously rewriting identifiers prior to a database update to change the wrong
record. This meant that the syntax made available for queries was much less rich than
EJB Query Language (EJB-QL) would normally have permitted. This ultimately
proved a problem in two ways: firstly, because we had too little control over the order
in which queries were optimised and could not resort to native queries to overcome this;
and secondly, because the syntax used was subsequently deprecated by Hibernate and
we could not upgrade without major rewriting.

A third architecture was thus investigated that dispensed with the middleware sitting
between the database (considered only as a dumb repository) and the client application.
In this new version, the client and database would be expected to share the functions of
the former middleware layer in the hope of reducing infrastructure and development
complexity, and increasing performance through a reduction in data exchange.

1.2. PostgreSQL
We chose Hibernate at least in part because it freed us from having to require the use of
a specific database. OracleTM and SQL ServerTM are commercial databases deployed
widely in this locale. However, on no occasion have we been asked to migrate to
another database from our default of PostgreSQL. This is because of cost issues of
course but also because partners could then reasonably expect to benefit from our
continued developments. It was therefore easy to conclude that giving up support for
multiple databases was acceptable if greater control over queries could be obtained.

PostgreSQLTM [16] is a cross-platform open-source object-relational database
management system originally developed at the University of California, Berkeley,

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 327

USA, as a successor to the Ingres database. It complies fully with the principles of
Atomicity, Consistency, Isolation and Durability (ACID), the transactional principles
that guarantee database modifications are processed reliably. The original Postgres was
commercialised but in 1995 what was to become PostgreSQL began again as an open-
source project. The database continues under active development adding many new
features with each annual iteration. It is of course only one such database but the local
team has considerable experience with it and it is a natural choice.

PostgreSQL has been used previously in healthcare, especially to provide type
systems suitable for use with HL7 [17] and with ISO EN 13606 [18]. Khushi found that
PostgreSQL exhibits favourable performance compared to other open-source databases
in the related field of genomics [19]. PostgreSQL and indeed the relational database
management system approach itself is of course only one possibility and object-
oriented and XML databases are equally reasonable [3]. A comparison with NoSQL
databases is offered in [20].

Since middleware by definition does not include a database, it must follow that
storing the output from a middleware computation requires one. If the results of the
middleware computation are ISO EN 13606 extracts, it must follow that it is possible
for a database to store ISO EN 13606 extracts because that is what the middleware asks
of it. By asking a client to emit data in an identical fashion, the same result will be
achieved without middleware.

Of course, asking a client to perform the storage is potentially insecure and in any
case will result in a data schema that is highly atypical. The more interesting questions,
and the ones that the remainder of this paper applies itself to, are whether this can be
done securely and whether it will result in a schema that would be recognisable to a
database manager grounded in relational theory but not necessarily in EHRs.

2. METHOD
In order to create and deploy the database, a number of database “creation” scripts have
been written that group modifications logically. Four of these scripts are publicly
accessible [20] and represent directly the types, termlists, demographic entities and
record model implied by the standard. However these are by no means enough and
further scripts are needed for security and audit, and to support external clinical data
modelling and versioned record storage. Key aspects of these are described below.

2.1. Patterns
The standard defines a methodology for modelling the structure of a record known as
the “Archetype”. Archetypes can inform a variety of formalisms including XML [22]
but do not address quality issues directly [23]. The development of servers and clients
can require the modelling of more than simply the structure of the record [24,25], and
in the previous version of the server, all modelling was provided in the Hibernate Java
classes using Java class-file annotations. This has been formalised in the current version
as the “Pattern”, literally a model for collections of Java annotation-like [26] statements
from which an application can be derived. Healthcare applications lend themselves to
Model-Driven Development and for example, OntoCRF [27] is also model-driven; this
time grounded in the Web Ontology Language and targeted initially at research.

328 An Electronic Healthcare Record Server Implemented in PostgreSQL

Patterns are defined in tools separately from a Record Server and grouped in
“Distributions”. An example of a Pattern from a public repository is shown in Figure 1.
It comprises a collection of statements that must be true of a semantic concept.
A Distribution comprises a collection of Patterns in specific versions and in theory,
inclusion of a Distribution identifier should be enough to permit them to be
dereferenced from a knowledge environment. The database schema should then
embody that associated information model.

Because detailed Pattern information appears in the knowledge environment, and in
particular children of a Composition appear there, it is not necessary to repeat this
information in the database. The need is simply to:

1. tell a client what Patterns are supported in the database (via the Distribution
identifier and version);

2. permit a view to elide inappropriate values (based on a Pattern identifier and
sensitivity);

3. enable an audit trail to include which Pattern definition an inclusion was
derived from; and

4. enable schema evolution to occur semi-automatically based on knowledge of
how data for a Pattern is stored.

Versioning and sensitivity information are centred on the Composition and so only
information relating to that content type are replicated. In order to determine that there
is more than one variant of a Pattern in the database, and where the data for each may
be located, a join table is necessary. It ensures that results removed from a query based
on inclusion in a specific distribution are not removed if they appear in another one for
which response is permitted.

2.2. Security and Login
Front-line anti-virus and firewall protection falls to the host operating system.
PostgreSQL also has a perimeter defence of its own, which is configured with the file
“pg_hba.conf” inside the cluster data directory. Configuration options include those to
prevent access outright to individual databases from certain users or IP-address ranges
or to require SSL to encrypt connections. While the latter is less important when an
application server and the database are executing on the same device, it is more
warranted if a network conversation is needed.

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 329

Clinic Code
shanghua $117 r1 2012-04-02 PUBLISHABLE

@DateLastVerified(TIMESTAMP verification = "2012-03-14")
@DateOfIncorporation(TIMESTAMP verification = "2012-03-14")
@DefinitionProvidedBy(STRING author = "Shanghua Sun, CHIME, UCL, UK")
@Description(STRING language = "en_GB", STRING description = "A code representing a specific clinic.")
@EN13606()
@Element()
@LibraryPath(STRING path = "clinical.clinics")
@MaxLength(INTEGER length = 255, BOOLEAN inclusive = true)
@PatternIdentifier(STRING identifier = "ClinicCode")
@PatternName(STRING name = "Clinic Code")
@PublicationStatus(ORDINAL publicationstatus = DRAFT)
@StringWithLanguage()
@Version(INTEGER version = 1)

Figure 1. An example Pattern for “Clinic Code”.

For a record server, it is necessary not only to provide a username and password at
login, but also the care setting that restricts the scope of a patient search and a role that
limits the sensitivity of records that may be accessed. All four must be known; a user is
not the superset of all their roles, even if they qualify for more than one. Consider that
a consultant may also be involved in research and may have legitimate access to a
record for the purposes of clinical care but may be denied it explicitly if a patient does
not consent to the research. The nature of the access to a record will be indelibly marked
with the purpose for which it was accessed.

The server’s security model was described in a previous paper [10] and is
reproduced in Figure 2. An “Account” defines a clinical care setting and groups Users

330 An Electronic Healthcare Record Server Implemented in PostgreSQL

siteName: String [1..1]

subjectOfCareld: String [1..1]

accountName: String [1..1]
accountDescription: String [1..1]
enabled: Boolean [1..1]
organisation: Organisation [0..1]

Sensitivity:
CARE_MANAGEMENT,
CLINICAL_MANAGEMENT,
CLINICAL_CARE,
PRIVILEGED_CARE,
PERSONAL_CARE

ApplicationRights:
PATIENT,CARER,USER,
RESEARCHER,
ADMINISTRATOR

Carer permits a patient to
name a user who can take
a named role in their record

subjectOfCare, device, and
healthcareProfessional are
included here in case this
user is also represented in
those demographics tables

roleName: String [1..1]
roleDescription: String [1..1]
enabled: Boolean [1..1]
sensitivity: Ordinal [1..1]
applicationRights: Ordinal [1..1]

title: String [0..1]
firstName: String [1..1]
surname: String [1..1]
username: String [1..1]
password: String [1..1]
emailAddress: String [0..1]
smsCapableTelNumber: String [0..1]
enabled: Boolean [1..1]
subjectOfCareld: String [0..1]
deviceld: String [0..1]
healthcareProfessionalld: String [0..1]

Site

Account

Role

Carer

User

user

p
o

ss
ib

le
R

o
le

s

p
o

ss
ib

le
A

cc
o

u
n

ts

role
1

1

1

1

1

1

∞

∞

Figure 2. The model for Users [10]. (Reproduced with permission).

and Patients. Patients are visible to Users that share the logged-in Account. A “Role”
describes the reason that a record is accessed and, in practical terms, sets the sensitivity
level (from five) of records that may be retrieved.

All logged-in Users have “Application Rights” that define at a coarse granularity
what they are permitted to do. These rights are the following:

Administrator may create users, and has access to demographic data (only) for
patients in order to bulk-assign accounts;

User is a regular clinical user with access to record and demographic data for
patients in their logged-in account;

Researcher is the inverse of an administrator, having access to global record data
for population queries but not to demographic data with which he/she might identify
individuals;

Carer has similar access privileges to a user, but only with respect to those patients
with whom the carer shares an account and has been nominated as carer by a patient;

Patient has universal access to his/her own data (only).
The record server does not provide dynamic roles. Such roles are associated with sets

of permissions at run time by an administrator and govern what tables (and rows) may
be accessed. Unfortunately for a record server, a database does not record what
permissions were available to a role at any time, so that it is not possible to recover the
set of available data to a user at a later date. Nonetheless, it is still necessary to be able
to vary the rights of a record accessor from the default values in certain circumstances.
The server permits those variations to be recorded in a version-historied format, and for
them to inform the views from which the data release occurs. The server:

1. provides a space where documentation describing reasons for variance from
default behaviour may optionally be provided.

2. provides a versioned trail of global sensitivity variances.
3. provides a versioned trail of patient consent preferences

a. which can vary the default create, amend, access rights on a per-Role, per-
Account and per-User basis,

b. where in addition, specific Compositions, Patterns or Distributions can be
always included or excluded where they are found,

c. ensuring users and patients cannot view or change each other’s provisions.
An administrator may vary sensitivities for patients in the entire database (2 in the

list immediately above). This is important because if the database holds data for
Distributions of significantly varying sensitivity then disclosure will occur. Consider a
hypothetical database containing sensitive drug rehabilitation data and less sensitive
influenza data. For users of the addiction database, a default sensitivity of 3 might be
appropriate with respect to their own data cohort. Likewise, a default sensitivity of 3
would be fine for the users of the influenza data. However, it would not be appropriate
for users of the application for influenza to treat the addiction data as of sensitivity 3.
The global_sensitivity_variances provide a means by which an administrator can
declare overriding default sensitivities for roles with respect to Distributions (in other
words, a way of attaching an optional role default sensitivity to cohorts of data in
addition to the global default one).

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 331

As well as overriding the sensitivity evaluation, a result may be blurred so that a
recipient either:

• must be given this value if it appears in a result set irrespective of its sensitivity;
• must not be given this value even if it appears in a result set irrespective of its

sensitivity;
• can be given this value if it appears in a result set and is insensitive enough but it

should be disguised in some way.
Of course, in the absence of an identifier, variance results will be presented

unchanged as their sensitivities suggest.

2.3. Audit
One of the key features that sets a record server apart from a “normal” database is its
ability to record what actions are performed using it. This is desirable because research
shows if users know that their actions are being recorded, then they are less likely to
abuse the trust they have been given and use the data inappropriately [28].

For those connections that pass perimeter defences, PostgreSQL provides a logging
facility that produces a durable record of the queries actioned on the server. This is
usually forwarded to a different machine from that being logged, to prevent tampering,
and discharges a widespread legal requirement to record actions performed on a
database holding sensitive personal information. The log can be re-imported into the
database for analysis.

Unfortunately, this fine grained logging cannot explain why a select was performed.
In a middleware-oriented record server, it is easy enough to provide functions on the
server-side which write a line to an audit table whenever they are called. This constrains
what users are able to do (i.e., they can only accomplish what there exists a function
for) but also provides a context that helps explain what action is being taken. For
example, “getSubjectOfCare(String identifier)” is a function that limits accessibility of
a subject to that which matches a provided identifier, but also enables an internal
request “select * from subject_of_care where id = identifier” to be explained in terms
of the call that preceded it. Providing direct access to the database removes restrictions
on user requests, but in the process loses the context that enabled the auditing to occur.
Any actions requiring a subject could cause the same select to be executed, but without
an API call, there is nothing to label them with.

This implementation provides a new explain_log table to overcome the loss of
context and forces clients to explain themselves while taking retrieval actions.
Provision is made for audits on role (and associated behaviours), subject of care, and
records, in an effort to ensure anything that might affect data retrieval is noted. The
basic procedure is as follows:

1. The client begins a new transaction and writes a row in the explain_log table
with the explanation. This is committed with the transaction identifier
automatically.

2. The client then executes their SELECT.
3. The database receives the request and invokes a trigger on the table which

looks for the explain_log row with which it shares the transaction identifier
and throws an exception if one can’t be found.

332 An Electronic Healthcare Record Server Implemented in PostgreSQL

4. A “proceedings” table is updated to show that the database performed an
action (for example, “select CLIN_Remarks”).

5. The client can continue to perform additional actions that are conceptually part
of the same activity.

6. Finally, the client commits the transaction in preparation for the next activity.
The database refuses to perform an action unless there is an explanatory row in the

explain_log and only one log entry is permissible per transaction. If the transaction
identifier were not the primary key of the audit table, a client would have to supply one
and this would have to be via some sort of session variable since both the client and the
tables need to be able to independently find the same row.

Note that addition of record data and subsequent change (e.g., after noticing an error)
can both be unambiguously audited even without an explain_log as they only apply to
one named table at a time. But select queries may span tables and deliver arbitrary
results, and it is these that must be explained. Used in conjunction with PostgreSQL’s
own logging facility, the explain_log can ensure compliance both with the desire to
make usage information available to applications, and with the legal requirement to log
usage data to an external machine.

2.4. Record Structure
Adding versioning to Record Components is arguably the most complex part of the
server development. It will be instructive to consider the standards-mandated
requirements for this. For the sake of argument only, the server in the single-version
case could be rendered in one sparse, fixed-width “record_components” table where
each row below the Composition level is provided with a foreign key reference to its
immediate parent. According to the standard, any attempt to update one of these rows
must necessarily invalidate not only the row updated, but every row “above” it in the
aggregation hierarchy. Moreover, it must be apparent that any content that was not
changed remains the same in the revised container.

To illustrate, consider a Composition with identifier C, an Entry with identifier E,
and two Elements with identifiers e1 and e2, respectively. These have been established
in the record server, but it is later found that Element e1 was entered in error and is to
be revised with a corrected version. “Relationally”, an UPDATE to e1 would be
expected, giving rise to e1’. However, this is not sufficient. Since the container of e1
now contains new data, E must become E’, and likewise C becomes C’. But, since e2
did not change, the new contents of E’ are e1’ and the original e2. Moreover, the rows
must be protected from subsequent edit. Once E’ has been established, it cannot be
possible that another Element e3 is added later (i.e. with a foreign key to E’) without
there having been an “official” revision made.

There are no perfect realisations of this versioning requirement that both behave
relationally and yet preserve the standard’s semantics. Many options were considered,
a full treatment of which is beyond the scope of this paper. Eventually, we elected to
simplify the standard itself. This imposes a document-orientation on something that is
not itself necessarily an aggregate structure. Most screens would naturally be
represented as a single table (corresponding to the Entry) with columns for the values
(Elements). The Cluster provides only reuse value if individual Elements within it can

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 333

be flattened and provided as Elements inside the Entry without it. Likewise, the Section
provides a useful grouping at the UI level but has no persistence implication beyond the
irrelevant need to store its ID. So long as an export tool can manufacture appropriate
IDs repeatably when needed, there is no necessity for their storage.

A hybrid solution (shown in Figure 3) is therefore taken with a genuine Composition
table that stores generic sensitivity and audit information but with other distinct tables
unique to a domain-specific representation (such as an “allergy” table) each with
columns that are meaningful in the domain (e.g., “reaction”). These then have
appropriate table constraints that prevent data being updated after their original commit.
Note that the domain-specific tables and views are derived directly from the Pattern
definitions by automated code generators.

In its current version the server comprises 26 PostgreSQL scripts, in total about half
a megabyte in size not including default imports for UK NHS demographic entities. The
scripts include just over 11,000 lines of code including comments but not including
additional test code that executes externally within the Play Framework.

3. RESULTS
The server has been used in two distinct clinical domains, underpinning one academic
and one commercial Web application.

3.1. Cortext
Approximately ten years ago within the Dementia Research Centre in London, a
Microsoft AccessTM database was created to facilitate both clinical and research data

334 An Electronic Healthcare Record Server Implemented in PostgreSQL

Houses generic accessibility information
such as the sensitivity of a component

and version information such as the
reason something was revised

composition

compositionidentifier

explain_log

Provides a trail of creation,
modification, and access, of
all demographics and record
entries in the system

transaction
identifier

Materialised view for the fixed-width tables significantly improves performance

Domain-specific _details
backing table has columns

representing values of interest

name reaction treatment

clin_allergy_details allergy

clinical
condition

regular drug

PostgreSQL schema for each
Composition which has views for each

Entry to perform audit and row removal
based on role and component sensitivity

... ...

...

...

cl
in

_m
ed

ic
al

su
m

m
ar

y

co
m

po
si

tio
n_

lif
ec

yc
le

Figure 3. The Record Architecture.

recording. Since then, the data requirements changed significantly but the database
design did not remain up to date. As a result, user communities developed their own
local solutions. Recently, funds became available to decommission the Access database
in favour of a new Web-based solution based on the server described in this paper.

The application (shown in Figure 4) is designed to support ongoing dementia
research studies conducted by the Centre, receiving patient data from neighbouring
neurological institutions where consent for this has been obtained. As well as the
security that would naturally be expected of such an application, the ability of the server
to store complete version histories of all records was seen as an important generic
feature. The application provides for the following:

Consent The application enables capture of consent for general contact, for research,
for specific studies, and also suitability for studies.

Studies The application can define the properties of studies including a visit
schedule for patients, and records reimbursement for visits made.

Clinical Record Although not aimed at clinical use, some relevant clinical data such
as cognitive assessments and a medications summary may be made available. Familial
relationships may be defined to indicate mutations that may be in common.

Imaging Images may be requested and results may be obtained through the
application interface. In addition, the location of tissue samples may be recorded.

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 335

Figure 4. The Cortext Application.

Neuropsychology Tests may be defined in the application and grouped into one of
several “batteries” for administration to patients.

Post Mortem Reports from a post-mortem may be recorded, and any wish for brain
donation can be registered.

3.2. HeliconHeart
As well as academic partnership, the server is available to license as part of a
commercial venture. The first such licensee is Helicon Health Limited. They are using
the server to underpin their flagship cardiovascular application HeliconHeartTM. This
delivers support for clinical practitioners involved in anticoagulation prescribing and
atrial fibrillation with the intent to reduce the incidence of stroke or major
complications from medication.

This application (shown in Figure 5) is focussed on clinical care of the patient (and
to some extent on the day-to-day management of a clinic) rather than research. It
presently underpins a distributed anticoagulation service [29] in North London
(including the catchment areas of five Clinical Commissioning Groups). The distributed
service there includes not only hospital-based clinics but also General Practices and
secondary prescribers. The service has been recognised personally by the British Prime

336 An Electronic Healthcare Record Server Implemented in PostgreSQL

Figure 5. The HeliconHeart Application.

Minister as delivering the highest level of customer service excellence and the
application has been CE accredited as an in-vitro medical device according to the
relevant European directive [30]. The application includes the following:

Clinical Record Many generic data capture options are available, including those
for correspondence with and about the patient, key people in the patient’s wider care
team, allergies, concomitant conditions, medications and educational interventions.

Service Delivery Some patient data relating to delivery of the service can be stored,
such as referrals, complications that have arisen during care, and appointments not
attended. In addition, Standard Operating Procedures are available for download and
are stored with a date by which they must be re-validated.

Decision Support Decision Support for the administration of Vitamin-K
Antagonists (specifically, warfarin) is provided on-screen. The advice has previously
been shown to be effective in raising the competence of all practitioners to that of an
established expert in a randomised controlled trial [31].

Scoring Well known cardiovascular risk scores are provided and populated directly
from the record.

Other Advice The application features collapsible panes that appear during data
capture to aid new users, as well as charts and tables that provide ready access to
historic data. Alerts are given for imminent plan closure and overdue annual review.

Clinical Governance The effectiveness of each care setting and the service as a
whole can be monitored in real time using an anonymised report that plots a histogram
of divergence from a target International Normalised Ratio (INR).

3.3. Performance
Performance of the implementation has been tested with a mid-sized departmental
record database consisting of data for approximately 15,000 patients with a combined
500,000 record entries of all types. In the sample application domain, one clinical pane
is populated for all patients more frequently than any others and about 250,000 record
entries are of this type. To obtain the data for a single subject of care having a large
number of record entries of this type (72, over a median of 13) takes approximately 350
ms. The example result is obtained using a default installation of PostgreSQL 9.2 on a
modern 16GB laptop equipped with an encrypted Solid State Disk.

4. DISCUSSION
The work described in this paper takes the ISO EN 13606 standard as its information basis
in particular. The usefulness of these results is therefore somewhat limited to users of that
standard, although a document-oriented record architecture-based approach of a similar
type is increasingly noticeable even among other standards (for example [32,33]).

4.1. Interpretation of the Standard
It is axiomatic that the ISO EN 13606 model can represent in transit any clinical data and
it therefore follows that a server capable of storage using this model could store any
clinical data as well. Obviously, data represented using other models would need
translation into the standard model first. However, to achieve this generality, ISO EN

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 337

13606 permits infinite nesting of Sections and Clusters and this makes for a sub-optimal
relational equivalent. We reject such nesting and therefore cannot assert that all possible
valid EN 13606 instances can be directly represented in the server. The usefulness of these
results is therefore also potentially limited to those prepared to refactor their clinical
requirement into a suitable model subset. In practice, this has always been possible so far.

Although the standard suggests that two different entities may be referred to by the
same extract_identifier in different extracts, this implementation makes clear that the
identifier is globally unique. It is in general not possible to update entity data reliably if
the updated set does not reuse the same identifiers (because it will not be possible to
locate the originals in the existing tables).

If a mandatory value is not provided, it should either have a “DRAFT” version status
or a reason for revision. This caters for two scenarios: An emergency scenario, where a
doctor rushes out of his/her office to attend to a patient but needs to save (or have saved)
his/her work up to that point (where DRAFT status enables mandatory checking to be
bypassed) and an inappropriateness scenario, for example, where an ankle check is
mandatory on a screen but the patient is an amputee and can’t be checked (here, the
reason can be used to explain the absence of the value but the screen as a whole can
be FINISHED and not a DRAFT). This replaces the “null_flavour” provision in the
standard whose value choices are questionable [18].

Translations of provided Compositions may be made into several languages using
several possible units. The standard took the position that data types should be
responsible for translations but such types are not typical in engineering environments
and this makes use of the standard unnecessarily complex in code. In theory, a String
gives rise to further versions and also further translations, which can themselves be
versioned. To simplify this, translations exist within the version history and a version
status of “TRANSLATION” indicates which modifications did not change the source
data. All translations are assumed to apply to the most recent version and are (probably)
invalidated by subsequent versions in the same language. Advanced clients can select
which Compositions to view based on the territory of use and whether a compatible
translation exists in the revision history.

The first part of the standard describes a significant number of attributes that may be
applied to classes in the record hierarchy. For example, the “Subject of Information
Category” attribute may be provided to an Entry class. However, the first part of the
standard provides a generic model and so the attributes are assumed to be available for
every instance of their class. There is no attention given as to whether the recording makes
sense in a given context. If the context is a “Cardiovascular Check”, then the subject will
be the “PATIENT” in all cases, and it is redundant to record this in the database every
time. In this implementation, the Pattern defining the clinical model calls for the Subject
of Information attribute if desired. This simplifies the resulting relational model which
only needs to record values and not associated attributes that mostly remain empty.

4.2. Login
Part 4 of the standard [14] provides security-related constructs including audit. That
work devotes much effort to describing a shared policy model intended to inform

338 An Electronic Healthcare Record Server Implemented in PostgreSQL

downstream servers of the relevant information governance for data that have been
shared. In the meantime, very little effort is spent describing how to log in to a remote
server to retrieve the policy model in the first place. Nevertheless, work has been done
to realise an access control model based on the standard [34].

For our database-centric approach, there were several implementation strategies to
choose from. In one, just a single global username is provided and all potential users of
the record first connect to the database with that global name. The “real” contextual
account, role and username are then established after login using a separate table. This
approach is very advantageous for an application server, which would like to open
multiple connections and recycle them for efficiency. However, it does mean that the
database cannot participate in perimeter security at all. All access must be allowed and
the “pg_hba.conf” file is redundant. The database would also not be able to
automatically audit activity as it would have no useful “session_user”. Nevertheless,
this approach does work and is very common among high-throughput Web applications.

A slightly more database-centric approach is to login with a database username and
password and then “set role” in order to get access to any data. A disadvantage of the
approach is that using real database users limits scalability to that of the database itself.
We have tested the system at the departmental scale of the order of hundreds of users,
not so far at institutional or regional scale where user numbers might be in the
thousands or higher. It is not possible in PostgreSQL to limit database roles to
“precisely two”, for the account and the role, but it is possible to limit the database roles
to “precisely one” via the noinherit attribute. Therefore, it is necessary to establish
combination database roles involving both aspects (for example, “set role
MYHOSPITAL_NURSE”). These can be attached to groups representing the
application rights so that database grants work in a natural way. Unfortunately, the
User-Account-Role join table that attaches users might diverge from the corresponding
database roles. An administrator with “createrole” privilege could delete database roles,
and although a delete trigger on such a join table could remove database roles if a row
was removed, the inverse is not possible. The solution is to deny all roles (even
administrator) the ability to modify database roles and have this happen on their behalf
using triggers on the accounts and roles tables.

Further scoping of accounts could be possible by associating them with “domains”.
These account groupings would allow one server to host networks of linked local clinic
settings. A SUPER_ADMIN application right would be needed to create domains and
admins for them. For the time being, the same effect is obtained by having multiple
servers, at the cost of it being harder to transfer records between domains.

4.3. Exceptions
In more recent versions of PostgreSQL, it is possible to supply a SQLSTATE code
among the results of an exception. However, this will be the single response from a
validation and does not allow for the possibility that more than one field was in error
simultaneously. Since our validity checking is “looser” than that of the database’s own
(for example, we allow a “non-null” field to be null if the contribution as a whole is a
DRAFT), we must implement validations as separate functions. This has the additional

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 339

advantage of being available even prior to an actual attempt to commit. The function
can supply the complete cohort of failures as a single set that can be highlighted on-
screen. A client needs to know what values were in error, along with codes that support
localisation of the response message. If the exception is with the contribution as a
whole, we adopt a convention where we nominate the identifier as the field in error
(since problems with identifiers would be a client bug and not a failure to validate
user input).

4.4. The “explain_log” Entry
The explain_log has proven particularly tricky to write. Recall that an explain_log row
is provided by a caller and then rows in a separate proceedings table are provided by
the database as evidence that it really performed actions amounting to the stated
objective. The two-table arrangement is needed because in PostgreSQL 9.2, it is not
possible to defer the check for column not null to close of transaction, only the non-
fulfilment of a foreign key constraint. The separate table enables the proceedings to be
completed in subsequent steps but still exception if the transaction completes with
apparently no actions taken.

The explain_log requires some fields (such as the transaction identifier and the
committing user) to be computed rather than provided. For this reason, the table is
updated via a function “initialise_explain_row”. Because this function writes to a table
with no public grant, it must be declared “security definer”. That means the
“current_user” will be that of the superuser that created the function, not that of the user
that called it subsequently. That in turn means that the function requires the current_user
to be passed to it on execution. Table triggers that could call this function would also
have to be declared security definer to use it and would therefore also not have the
current_user. A PostgreSQL rule does allow parameters to be provided, but this cannot
be attached to a table as strongly as a trigger for the purposes of permissions checking
and will always remain available to execute independently. This is a problem because
we would rather reserve “created” and “updated” audits to the database as a side effect
of a real modification (for example, “SUBJECTOFCARE_CREATED”) and not permit
end-users to add them manually without an appropriate corresponding change.

There is another important limitation of explain use in a transaction where rolling
back will also roll back the explain_log entry. This is less important for INSERT,
UPDATE and DELETE where the relevant activity will not then have happened either.
But for SELECT, it is important because the data will still have been revealed. To
prevent this happening, commercial databases use “Autonomous Transactions” inside
transactions with a larger scope that can commit irrespective of the commit status of
their container.

4.5. Demographics
Two table representations are applicable to demographic entities corresponding to those
provided by ISO EN-13606 part 1. A normalised layout has the greatest congruence
with the published standard and is the obvious choice. However, a means by which
entities are updated is not described by the standard. More than one piece of

340 An Electronic Healthcare Record Server Implemented in PostgreSQL

information with the same type can be received for the same entity, and normally this
would cause previous instances to be overwritten. This is not the standard’s intent but
rather, such an occurrence implies the existence of a new version of the information.
A normalised layout makes versioning quite complicated.

In this implementation, each of the demographic tables is self-contained, except for
a link to a separate table storing the global extract identifier. One row in each table is
sufficient to describe all the attributes of each demographics entity. Persons (Healthcare
Professionals and Subjects of Care) may have a multiplicity of identifiers defined for
them but this is represented using a PostgreSQL array type (with a GIN index) to avoid
the need for a related table. Storage of multiple historical values is then simply a matter
of adding dates of obsolescence to each table via ALTER TABLE commands.

4.6. Folders
In this implementation, sub-folders are removed. Folders hold a set of identifiers for
Compositions like “tags” pointing to photos in a photo-sharing application. Sub-folders
do permit a namespace to be defined for the “tags”, but also make it complex to merge
records for two subjects of care, since it is in general not possible to determine which
was the “correct” folder containment arrangement from the merge candidates.

In practice, there’s actually no need for a Folder to even be for a specific patient
record. A globally unique name can be given to the Folder and a set of Compositions
related to it from any subject of care. A client can retrieve the Folder contents for a
specific subject, or for all subjects, knowing that the view will omit any of those not
permissible to see in the same way as if the Compositions had been requested directly.

4.7. Record Architecture
The ISO EN 13606 standard assumes that middleware will be required for
implementation and in particular that this will use an object-oriented, not relational,
engineering approach. This sometimes makes for a sub-optimal relational model, so we
limit the open-ended EN 13606 aggregation possibilities to those that result in sensible
relational outputs as follows:

• a Composition containing an Entry,
• a Composition containing several Entries, each of which must be unique in the

Composition scope, and
• a Composition containing one or more non-nested Sections, each of which must

be unique in the Composition scope and containing one or more Entries, each of
which must also be unique in the Composition (not Section) scope.

Within this containment structure, the following clinical data constructs may appear:
• a (possibly very long) list of non-repeating (that is, cardinality 0..1 or 1..1)

Elements,
• a list of non-repeating Elements that includes one or more non-nested, non-

repeating Clusters that themselves contain a list of non-repeating Elements,
• a list of Elements, some of which repeat, and
• a list of Elements, some of which repeat, that includes one or more non-nested

Clusters that also repeat which contain a list of non-repeating Elements.

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 341

PostgreSQL provides a schema feature that naturally lends itself to
compartmentalisation of data within a database. By default, PostgreSQL does not really
like long names, having a 64 char total limit. With the Composition and Entry names in
the title, this is easily exceeded with untidy truncation as the consequence. On the
assumption that an Entry cannot appear more than once inside a Composition (even
within a Section), it is now instead converted in general to the form
CLIN_CompositionIdentifier.EntryIdentifier using the first part as a PostgreSQL
schema identifier to double the possible name length. The EntryIdentifier refers to the
view on the real table that can remove data inappropriate for the caller to see. The real
table of course has a permission arrangement that prevents direct access.

Clusters that do nothing but group basic Elements, that is those that do not
themselves repeat and contain no Elements that repeat, are inserted into the Entry table
with the Cluster name prepended (for example, a column name of
“blood_pressure_systolic”). Repeating values (that is, cardinality 0..* or 1..*) need a
downstream table. Ordinarily, a relational structure based only on a foreign key from a
downstream table might allow new values to be manifested inappropriately after
creation, but in PostgreSQL, it is possible to use an array in the upstream table for
reference instead. It then does not matter what inserts are made to the downstream table,
the Composition is immutable.

All imported components should be stored with the original IDs, but this
implementation cannot do so. Fortunately, we are able to store the Composition ID itself
in the explain_log table, and since a standards-compliant query cannot request any data
below that level, it does not matter that sub-identifiers cannot be stored.

5. CONCLUSION
The authors have created record servers based on the ISO EN 13606 standard using
three different development architectures. The implementation in PostgreSQL
described in this paper offers great flexibility, requiring only the support for relational
databases offered by most engineering environments. It offers this flexibility while still
retaining all of the auditing and non-repudiation features expected of a full-featured
record server. However, delivering these features is difficult and requires some novelty
in practice, for example when explaining the purpose of queries, and the server omits
some less critical features of the standard such as the infinite nesting of headings.

Of course, future versions of PostgreSQL will simplify or make possible some
features that are presently prohibitively difficult to achieve. For example, if and when
introduced, autonomous transactions will prevent it from being possible to roll back
explanations of SELECTs.

The approach detailed in this paper also simplifies provision of clinical data for
research use. This is usually based on the actions of a curator who creates a physical
subset of data imported and collated from primary EHR sources. The database
described herein already performs data release on the basis of specific permissions. By
manipulating the permissions in place, it would be possible to grant access for
researchers to the actual source EHRs, knowing that only data for which consent had
been obtained would be visible. This will form the basis of future work.

342 An Electronic Healthcare Record Server Implemented in PostgreSQL

ACKNOWLEDGEMENT
The authors would like to thank the Dementia Research Centre for their support of the
development of the Cortext application. They would also like to thank Helicon Health
Ltd. for permission to use screenshots from their application in this paper. Finally, they
would like to thank the current and previous PostgreSQL developers for their
contributions to a product that has brought them so much fun.

CONFLICT OF INTEREST
The authors wish to make known their association with the following organisations and
projects: The EuroRec Institute, The European EHR4CR project, The European EMIF
project, The European Discipulus project, The European SemanticHealthNet project,
and the UK-based RAFT project. The lead author, Tony Austin, is a co-founder and
shareholder of Helicon Health. UCL CHIME received payment from the Dementia
Research Centre for the development of the Cortext application.

REFERENCES
[1] Lloyd D, Kalra, D, Beale T, Maskens A, Dixon R, Ellis J, Camplin D, Grubb P, and Ingram D, (Eds.),

The GEHR final architecture description. The good European health record project: deliverable 19,
250 pages. European Commission, Brussels, 1995. https://www.ucl.ac.uk/chime/research/
gehr/deliverable-19.pdf. Accessed January 2015.

[2] Grimson J, Grimson W, Berry D, Stephens G, Felton E, Kalra D, Toussaint P, and Weier OW,
A CORBA-based integration of distributed electronic healthcare records using the synapses approach.
IEEE Trans. Inf. Technol. Biomed. 1998, 2(3):124–138.

[3] Austin T. The Development and Comparative Evaluation of Middleware and Database Architectures for
the Implementation of an Electronic Healthcare Record. (Ingram D Ed.). CHIME, UCL, London, 2004.

[4] Grimson J, Grimson W, Berry D, Stephens G, Felton E, Kalra D, Toussaint P, and Weier OW.
A CORBA-based integration of distributed electronic healthcare records using the synapses approach.
IEEE Trans Inf Technol Biomed. 1998, 2(3):124–138.

[5] Introducing computer based patient records: prerequisites and requirements. Swedish Institute for
Health Services Development (SPRI), Sweden; 1998; Report number 477; ISSN 0586–1691.

[6] Kalra D. Clinical Foundations and Information Architecture for the Implementation of a Federated
Health Record Service. PhD Thesis. University of London, 2002. http://discovery.ucl.ac.uk/1584/.
Accessed January 2015.

[7] ISO 18308: 2011 Health informatics Requirements for an electronic health record architecture.

[8] Hurlen P (ed). ENV 12265:1995. Electronic Healthcare Record Architecture, 1995. Brussels CEN
Technical Committee/251.

[9] Kay S and Marley T (eds). EHCR Communications: Part 1 Electronic Healthcare Record Architecture.
ENV 13606. CEN, Brussels, 1999.

[10] Austin T, Lim YS, Nguyen D, & Kalra D, Design of an Electronic Healthcare Record Server Based on
Part 1 of ISO EN 13606. Journal of Healthcare Engineering, 2011, 2:143–160. http://multi-
science.metapress.com/content/121507. Accessed January 2015.

[11] ISO. (2007). BS ISO EN 13606 part 1 (No. EN 13606). (Kalra D & Lloyd D Eds.) 2007, Vol. 1:1–103.

[12] ISO. (2009). BS ISO/IEC 19770 part 2 (No. 19770) 2009, Vol. 2: 1–112.

[13] ISO. (2008). BS ISO EN 13606 part 3 (No. EN 13606). (Kalra D & Lloyd D Eds.) 2008, Vol. 3:1–47.

[14] ISO. (2009). ISO EN 13606 part 4 (No. EN 13606). (Kalra D & Lloyd D Eds.) 2009, Vol. 4: 1–52.

[15] ISO. (2010). BS ISO EN 13606 part 5 (No. EN 13606). (Kalra D & Lloyd D Eds.) 2010, Vol. 5: 1–21.

[16] PostgreSQL Consortium. History. http://www.postgresql.org/about/history. Accessed January 2015.

Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 343

[17] Havinga Y, Dijkstra W and de Keijzer A. Adding HL7 version 3 data types to PostgreSQL, 2010.
http://arxiv.org/abs/1003.3370v1 17. Accessed February 2015.

[18] Sun S, Austin T, and Kalra D. A Data Types Profile Suitable for Use with ISO EN 13606. Journal of
Medical Systems. 2012, 36(6):3621-3635. doi:10.1007/s10916-012-9837-z.

[19] Khushi, Matloob. Benchmarking Database Performance for Genomic Data. Journal of Cellular
Biochemistry 116:877–883 (2015). doi: 10.1002/jcb.25049.

[20] Ercan MZ, Lane M. Evaluation of NoSQL databases for EHR systems. 25th Australasian Conference
on Information Systems. 8th-10th Dec 2014, Auckland, New Zealand. http://aut.research
g a t e w a y. a c . n z / b i t s t r e a m / h a n d l e / 1 0 2 9 2 / 8 1 3 4 / a c i s 2 0 1 4 0 _ s u b m i s s i o n _ 11 7 . p d f ?
sequence=1 Accessed February 2015.

[21] Centre for Health Informatics and Multiprofessional Education. Latest ISO EN 13606 Reference
Schema. http://www.ehr.chime.ucl.ac.uk/code/schema_3.0.4/. Accessed February 2015.

[22] Kobayashi S, Bosca D, Kume N and Yoshihara H. Reforming MML (Medical Markup Language)
Standard with Archetype Technology. (Basu A Ed.) Official Organ of Indian Journal of Medial
Informatics. 8:2014, 8:57-60. ISSN 0973-0379.

[23] Kalra D, Tapuria A, Austin T, & de Moor G. Quality requirements for EHR Archetypes. (Mantas J,
Andersen SK, Mazzoleni MC, Blobel B, Quaglini S, & Moen A Eds.), Pisa, Italy: Quality of Life
through Quality of Information - Proceedings of MIE2012, 2012, 180:48–52.

[24] van der Linden H, Austin T, Talmon J, Generic screen representations for future-proof systems, is it
possible? There is more to a GUI than meets the eye, Comput Methods Programs Biomed. 2009, 95:
213–226.

[25] Sánchez-de-Madariaga R, Muoz A, Caceres J, Somolinos R, Pascual M, Martínez I, et al. ccML, a new
mark-up language to improve ISO/EN 13606-based electronic health record extracts practical edition.
Journal of the American Medical Informatics Association. 2012, 1-7. http://jamia.oxfordjournals.org/
content/20/2/298. Accessed January 2015.

[26] Rajiv Mordani (ed). Common Annotations for the Java Platform. April 19, 2006. http://download.
oracle.com/otn-pub/jcp/caj-1.0-fr-eval-oth-JSpec/com_annotations-1_0-fr-spec.pdf. Accessed March
2015.

[27] Lozano-Rub R, Pastor X and Lozano E. OWLing Clinical Data Repositories With the Ontology Web
Language. JMIR Med Inform. 2014, 2(2):e14. doi:10.2196/medinform.3023 [33] http://www.
postgresql.org/docs/9.2/static/auth-pg-hba-conf.html. Accessed January 2015.

[28] Safran C, Rind D, Citroen M, Bakker AR, Slack WV, and Bleich HL, Protection of confidentiality in
the computer-based patient record. MD Computing. May-Jun 1995, 12(3):187–192.

[29] Austin T, Kalra D, Lea N, Patterson D, & Ingram D, Analysis of Clinical Record Data for
Anticoagulation Management within an EHR System. The Open Medical Informatics Journal, 2009,
3:56–64.

[30] Directive 98/79/EC In vitro diagnostic medical devices. 27 October 1998.

[31] Vadher B, Patterson DLH, Leaning MS, Evaluation of a decision support system for initiation and
control of oral anticoagulation in a randomised trial. BMJ 1997; 314: 1252–1256.

[32] Beale T, Heard S (eds). openEHR Architecture - Architecture Overview revision 1.1.1. 13 November
2008. http://www.openehr.org/releases/1.0.2/architecture/overview.pdf. Accessed March 2015.

[33] Health Level Seven International. A basic overview of CDA. http://www.hl7.org.uk/repository/
uploads/565/1/A%20basic%20view%20of%20CDA%20v3.doc. Accessed March 2015.

[34] Calvillo-Arbizu J, Romn-Martnez I and Roa-Romero LM. Standardized access control mechanisms
for protecting ISO 13606-based electronic health record systems. IEEE-EMBS International
Conference on Biomedical and Health Informatics (BHI) 1-4 June 2014, Valencia, Spain, 539-542,
IEEE DOI: 10.1109/BHI.2014.6864421.

344 An Electronic Healthcare Record Server Implemented in PostgreSQL

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

