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The Discrete-Time Gated Vacation Queue Revisited

Dieter Fiems, Joris Walraevens, and Herwig Bruneel

Abstract: We consider the discrete-time gated multiple-vacation
queue. Vacations are modeled as independent random variables
with distributions depending on the number of the immediately
preceding vacations. Using a probability generating function ap-
proach, we focus on various performance measures such as mo-
ments of queue contents and customer delay in equilibrium. These
measures are functions of a constant value which we obtain numer-
ically.

Keywords: Discrete-time queue, Vacation, Gate

1. Introduction

Vacation models [1, 2] have proven to be a useful ab-
straction of server unavailability in cases where classes of
customers contend for a single resource such as polling
systems [3] and priority systems [4], or in cases where this
resource is unreliable, e.g., maintenance models [5] and
ARQ-systems [6].

The current contribution investigates the gated mul-
tiple-vacation queue in discrete time. Our generalized
multiple-vacation queueing model allows to capture per-
formance of amongst others, the multiple-vacation, the
single-vacation and the limited multiple-vacation gated
queueing systems. The model under consideration extends
the results from [7] both regarding arrival and vacation
process and regarding the performance measures under
consideration.

Gated vacation systems are thoroughly investigated
by Takagi in his excellent monograph [2]. Some other
variants are studied by amongst others, Leung and Eisen-
berg [8] and Alfa [9] who consider gated vacation sys-
tems with a time-limit between vacations as well as by
Boxma and Yechiali [10] who investigate a gated va-
cation system with feedback. Related is also our con-
tribution [11] in which we extend the results from [7]
by allowing customer arrivals in the primary queue (see
further).

The outline of this contribution is as follows. In the
next section we describe the queueing system under con-
sideration in more detail. The analysis is then presented
in Sections 3 and 4, whereas some special cases are
considered in Section 5. Numerical examples illustrate
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our results in Section 6 and conclusions are drawn in
Section 7.

2. Model

We assume that time is divided into fixed length inter-
vals (slots) and that service is synchronized with respect
to slot boundaries, i.e., service of a customer cannot start
during this customer’s arrival slot. Both the number of
customers arriving in the consecutive slots and the service
times (in slots) of these consecutive customers constitute
series of i.i.d. random variables with common probability
mass functions an (n ≥ 0) and sn (n > 0) respectively and
with corresponding probability generating functions A(z)
and S(z) respectively.

There are 2 queues, separated by a gate, as depicted
in Fig. 1. Arriving customers first wait in the queue be-
fore the gate and move in batch to the queue after the gate
whenever the latter opens. This happens at the end of the
last slot of a vacation period (see further). We refer to the
queues before and after the gate as the secondary and the
primary queue respectively, i.e., customers arrive in the
secondary queue, move to the primary queue when the
gate opens and are then served – in order of arrival (FIFO)
– before leaving the system. Both primary and secondary
queues have an infinite capacity.

A vacation starts when the primary queue empties,
(i.e., since the end of the last vacation) and the gate opens
at the end of each vacation. If there are no customers
present in the primary queue upon returning from a vaca-
tion, the server immediately takes another vacation. This
continues until the primary queue is no longer empty, i.e.,
we consider a multiple-vacation policy.

The consecutive vacation lengths (in slots) are mod-
eled by means of a series of independent random variables
with probability mass functions vi(n) (n > 0) and corres-
ponding probability generating functions Vi(z) depending
on i, the number of immediately preceding vacations. We
assume there exists a finite upper bound L such that,
Vk(z) = VL(z) for all k ≥ L.

Fig. 1. Gated queueing system.
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3. Queue contents

The system under consideration alternates between busy-
periods – the system serves a customer – and vacation-
periods – the system takes (possibly multiple) vacations.
A cycle is defined as a busy period followed by a vacation
period. During a busy period, all customers in the primary
queue are being served, while the secondary queue is fill-
ing with the newly arriving customers. At the end of the
busy period, the server enters the vacation period and at
the end of the latter, all customers in the secondary queue
are transferred to the primary queue. Clearly, the number
of customers present in the system – i.e., in the primary
and secondary queue – immediately after a cycle, equals
the number of customers that arrived during this cycle as
a vacation is only taken when all customers that arrived
before the start of the cycle, are served.

Let ck denote the slot following the k-th cycle and let
Ui denote the number of customers in the primary queue
at the beginning of slot i, then, one easily establishes,

Uck+1 =
Uck∑
i=1

Si∑
j=1

Aij + Wk+1, (1)

where Si denotes the service time of the i-th customer
served during the k-th cycle, where Aij denotes the num-
ber of arrivals during the j-th service slot of this customer
and where Wk+1 denotes the number of arrivals during
the vacation period in the (k +1)-th cycle. Note that there
are no customers present in the secondary queue at the
beginning of a cycle. Let Uck (z) denote the probability
generating function of the number of customers in the sys-
tem at the end of the k-th cycle, some standard z-transform
manipulations then yield,

Uck+1(z) = Uck (S (A (z))) W0(z)

+ Uck (S (a0)) (W0(z)− W0(z)), (2)

where W0(z) and W0(z) denote the probability generating
functions corresponding to the number of arrivals during
the vacation period of a random cycle given that there are
no customers or given that there is at least one customer
in the system at the end of the slot preceding the vacation
period respectively.

As the presence of customers before the start of the
vacation period implies the presence of customers at the
end of the first vacation, the server takes only a single va-
cation, i.e., W0(z) = V0(A(z)). If there are no customers
in the system, the server keeps on taking vacations until
there is at least one arrival. Conditioning on the number of
necessary vacations then yields,

W0(z) =
L−1∑
i=0

(Vi(A(z))− Vi(a0))

i−1∏
j=0

Vj(a0)

+ VL(A(z))− VL(a0)

1 − VL(a0)

L−1∏
j=0

Vj(a0). (3)

Let Uc(z) = limk→∞ Uck (z) denote the probability
generating function corresponding to the number of cus-
tomers at the end of a cycle in equilibrium. Similarly as
in [7], one can prove that the latter exists whenever,

ρ = S′(1) A′(1) < 1, (4)

where ρ denotes the system load. Under the assumption of
equilibrium, Eq. (2) yields,

Uc(z) = Uc(S(A(z))) W0(z)+ K (W0(z)− W0(z)), (5)

where K = Uc(S(a0)) denotes the probability that the sec-
ondary queue is empty at the beginning of a vacation
period. The former functional equation allows implicit de-
termination of the various derivatives of Uc(z) evaluated
in z = 1 once K is determined.

The unknown K can be determined numerically as fol-
lows. Consider the series zi = S(A(zi−1)), z0 = 0, i > 0.
Given ρ < 1, one easily proves that this series converges
to 1. Let yi = K/Uc(zi), substitution of z = zi in Eq. (5)
then yields,

yi+1 = W0(zi) yi

1 + (
W0(zi)− W0(zi)

)
yi

. (6)

Further, note that y1 = 1. Starting the recursion with
y1 = 1, allows us to determine K = limi→∞ yi numer-
ically.

Given the system contents at the end of a random
cycle, we can now easily retrieve the joint probability gen-
erating functions of the numbers of customers in the pri-
mary and secondary queue at other epochs. Let Ud(z1, z2)
denote the joint probability generating function of the
number of customers in the primary and secondary queue
at the beginning of a slot following a departure, then,

Ud(z1, z2) = E
[
z

Ud,1
1 z

Ud,2
2

]

= 1

U ′
c(1)

E

[
Uc∑

k=1

zUc−k
1 z

∑k
i=1

∑Si
j=1 Aij

2

]

= S(A(z2))
Uc(S(A(z2)))−Uc(z1)

U ′
c(1) (S(A(z2))− z1)

, (7)

where Ud,1 and Ud,2 denote the number of customers in
the primary and secondary queue at a random departure
epoch respectively and where Uc denotes the number of
customers in the system at the end of a random cycle.

Let Us(z1, z2) denote the joint probability generating
function of the number of customers in primary and sec-
ondary queue at the beginning of a slot where a customer
starts service, then, one easily verifies,

Us(z1, z2) = z1

S(A(z2))
Ud(z1, z2), (8)

as the customers arriving during this customer’s service
are stored in the secondary queue and as the customer it-
self leaves the primary queue after being served.
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The joint probability generating function of these
quantities at the beginning of random busy slots Ub(z1, z2),
is then given by,

Ub(z1, z2) = 1

S′(1)
E

[
S∑

k=1

z
Us,1
1 z

Us,2+∑k−1
i=1 Ai

2

]

= Us(z1, z2)
S(A(z2))−1

S′(1) (A(z2)−1)
, (9)

where Us,1 and Us,2 denote the number of customers in
primary and secondary queue at the beginning of a slot
where a random customer starts service and where Ai de-
notes the number of arrivals in the system during the i-th
slot of this customer’s service time S.

Let U(z1, z2) denote the joint probability generating
function of primary and secondary queue contents at ran-
dom slot boundaries, then, as the primary queue is empty
during vacations,

U(z1, z2) = U ′
c(1) S′(1)

C′(1)
(Ub(z1, z2)−Uv(z2))+Uv(z2)

(10)

where Uv(z2) denotes the probability generating function
of the number of customers in the secondary queue at the
beginning of a random vacation slot and where C′(1) de-
notes the mean cycle length. The cycle length C equals the
sum of the lengths of the busy and vacation periods,

C =
Uc∑
j=1

Sj + V, (11)

where V denotes the vacation length. Some standard
z-transform manipulations then yield,

C(z) = Uc(S(z)) N0(z)+Uc(S(a0 z))
(
N0(z)− N0(z)

)
,

(12)

where C(z) denotes the probability generating function
corresponding to the cycle length and where N0(z) and
N0(z) denote the probability generating functions of the
length of the vacation period given that there is at least
a customer in the system before the start of the vacation
period or given that this is not the case respectively. Simi-
larly as for the number of arrivals during a vacation period
we get, N0(z) = V0(z), and,

N0(z) =
L−1∑
i=0

(Vi(z)− Vi(a0 z))
i−1∏
j=0

Vj(a0 z)

+ VL(z)− VL(a0 z)

1 − VL(a0 z)

L−1∏
j=0

Vj(a0 z). (13)

The first derivative of Eq. (12) for z = 1 then yields an
explicit expression for the mean cycle length.

As the system under consideration is a single-server
one with an i.i.d. arrival process, system contents at depar-
ture epochs and at random slot boundaries are related as
follows [12],

Ud(z, z) = A(z)−1

A′(1) (z −1)
U(z, z). (14)

Eqs. (10) – evaluated for z1 = z2 = z – and (14) then allow
determination of Uv(z),

Uv(z) = C′(1) A′(1)

C′(1)−U ′
c(1)S′(1)

z −1

A(z)−1
Ud(z, z)

− U ′
c(1)S′(1)

C′(1)−U ′
c(1)S′(1)

Ub(z, z). (15)

Substitution of the former equation in Eq. (10) then yields
an expression for the joint probability generating function
of steady-state the number of customers before and after
the gate at random slot boundaries.

4. Customer delay

Customer delay is defined as the number of slots between
the end of the slot a customer arrives in a queue and the
end of the slot where that customer leaves the queue. As
the customer only leaves the primary queue after being
served, the delay in the primary queue includes the cus-
tomer’s service time.

As in [13], we first consider an alternative system
where all arrivals in a slot are grouped to form a “batch-
customer”, i.e., we consider a system with Bernoulli
“batch-customer” arrivals. Probability generating func-
tions of the number of batch-customer arrivals per slot
A∗(z) and their service times S∗(z) are then given
by,

A∗(z) = a0 + (1 −a0) z,

S∗(z) = A(S(z))−a0

1 −a0
. (16)

Let U∗
d (z1, z2) denote the probability generating function

of the primary and secondary system contents at depar-
ture epochs for this alternative system. I.e., the latter
is given by Eq. (7) given the arrival and service prob-
ability generating functions of Eq. (16). Now, consider
a random batch-customer and let D∗(z1, z2) denote the
joint probability generating function of its delay in pri-
mary and secondary queue. All batch-customers that ar-
rive during its delay in the secondary queue are moved
to the primary queue along with the batch-customer
under consideration, i.e., when the gate opens. Fur-
thermore, all batch-customers that arrive during its de-
lay in the primary queue are present in the secondary
queue at its departure. As a result the probability gen-
erating functions of batch-customer delay and queue
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contents at batch-customer departure epochs, are easily
related,

D∗(A∗(z2), A∗(z1)
) = U∗

d (z1, z2). (17)

We can now relate the delay of a customer to the de-
lay of its batch. Clearly, delay in the secondary queue
of a customer equals the delay of its batch as they en-
ter and leave this queue at the same time. Let waiting
time of a customer denote the number of slots between
the end of its arrival slot and the beginning of the slot
where this customer starts service. Waiting time in the
primary queue of a customer then equals the sum of
the waiting time of its batch, and the service times of
all customers that arrived during the same slot as, but
prior to the customer. Finally customer delay in the pri-
mary queue equals its waiting time augmented by its
service time. Keeping these observations in mind, one
gets,

D(z1, z2) = S(z1) (A(S(z1))−1)

A′(1) (S(z1)−1)

U∗
d

(
z2−a0
1−a0

,
z1−a0
1−a0

)
S∗(z1)

.

(18)

Taking the appropriate derivatives of Eqs. (18) and
(10), one easily confirms the discrete-time equivalent of
Little’s result [14, 15] for both the primary and secondary
queue and for the complete system.

5. Special cases

As noted in the introduction, the model under consid-
eration allows to capture performance of more specific
models, a.o., the gated single- and multiple-vacation sys-
tems as well as the limited-multiple gated vacation sys-
tem.

Upon returning from a vacation, the single-vacation
system does not take a new vacation but waits for the
following customer to arrive. Substituting L = 1 and
V1(z) = z in our analysis – V0(z) denotes the probabil-
ity generating function of the single vacation – easily
gives the result for this system. Note that in this case, we
consider the idle-period (the system waits for the first ar-
rival batch following a vacation) as a part of the vacation-
period.

The system with multiple vacations keeps on taking
vacations (which are mutually independent) until there is
at least one customer in the system upon returning from
a vacation. Putting L = 0 (V0(z) denotes the probability
generating function of all vacations) in our analysis, we
get the results for the multiple-vacation system. One can
show that in the case of multiple vacations, expressions
for the moments of queue contents at various epochs and
for the moments of the customer delay are independent
of K , implying that one does not need numerical deter-
mination of K .

In the system with limited-multiple vacations, the
server keeps on taking vacations when there are no cus-
tomers in the system upon returning from a vacation

and as long as a maximal number M of vacations is
not reached. After this maximum number of vacations,
the server waits for the first arrival, similarly as the
single vacation system. We get L = M, and VM(z) = z
whereas Vi(z) = V0(z) for 0 ≤ i < M, i.e., V0(z) is the
probability generating function of the first M vacation
periods. Clearly, the single-vacation policy corresponds to
M = 1, whereas the multiple-vacation policy corresponds
to M = ∞.

6. Numerical example

In some numerical examples, we show gated vacation
systems with single, multiple and limited multiple va-
cations and compare them. We assume that the number
of arrivals during the consecutive slots are a series of
Poisson-distributed random variable whereas the service
times of the consecutive customers are assumed to be
a series of geometrically distributed random variables,
i.e.,

A(z) = eλ (z−1), (19)

S(z) = z

θ + (1 − θ) z
, (20)

where λ denotes the mean number of arrivals per slot,
and where θ denotes the mean service time of a customer.
We further assume deterministic vacation lengths of l
slots,

V0(z) = zl, (21)

and an upper limit M for the maximal number of vacations
in case of the limited vacation policy.

Fig. 2 depicts the mean total system contents – the
number of customers in both queues – versus the maxi-
mal number of vacations M. Clearly, M = 1 corresponds
to the single vacation system whereas M = ∞ corres-
ponds to the multiple-vacation system. For all curves the

Fig. 2. Mean total system contents µ vs. vacation limit M.
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arrival rate λ equals 0.1 whereas the mean customer ser-
vice time θ equals 5 slots. The length of the vacation
periods l varies from curve to curve as depicted. For all l,
mean queue contents quickly converges for increasing
M to the multiple-vacation value implying that perform-
ance gain by limiting the maximal number of vacations is
small.

Fig. 3 depicts the correlation between the number
of customers in primary and secondary queue versus
the arrival rate λ. The mean customer service time θ
equals 5 slots whereas the vacation lengths vary for
the different curves as depicted. We consider both the
multiple-vacation as the single-vacation system. For more
heavily loaded systems, correlation is negative, i.e., one
can expect small secondary queue sizes if the primary
queue is heavily loaded and vice versa. This is expected
as for the system under consideration, the secondary
queue size increases while the primary queue size de-
creases and vice versa. For smaller loads, and in par-
ticular for shorter vacation lengths, correlation is small
and positive as both queues remain empty for longer
periods.

Fig. 4 depicts the mean customer delay in primary
(µD1) and secondary (µD2 ) queue for the single- and
multiple-vacation system. The mean customer service
time θ equals 5 slots whereas the vacation length equals
50 slots. Consider in particular the mean secondary queue
length for the single-vacation system. Clearly, for low
load, the probability that a customer arrives during an idle
period (the system waits for the first arrival after a va-
cation) increases. For such a customer, secondary delay
equals 0 (since the gate opens at the end of its arrival slot)
which explains the strong decrease of the secondary delay
for decreasing λ. For low loads in the multiple-vacation
system, the server is most probably on vacation, and there-
fore mean delay converges to (l − 1)/2 for λ → 0, i.e.,
the mean waiting time until the end of a vacation. For in-
creasing load, the probability to find the system empty at
the end of a vacation decreases, and as a consequence,
curves for multiple-vacation and single-vacation systems
converge.

Fig. 3. Correlation between queue contents vs. arrival rate λ.

Fig. 4. Mean customer delay vs. arrival rate λ.

7. Conclusions

We considered the gated vacation system in discrete-time.
We analyzed the joint system-contents and joint customer-
delay in both queues of the system. The flexibility of the
vacation process under consideration allowed to model
a.o., the single- and multiple-vacation gated queueing sys-
tems as well as the gated limited multiple-vacation sys-
tem.
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