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Heterogeneous Catalysis: a Multiscale process    
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Reactive intermediates

in reaction mechanism

spectroscopic 
studies 

Ultra high vacuum
0.01-1 kPa

Temporal Analysis 
of Products

Sub millisecond time 
resolution experiments for 
insight  into  reaction 
mechanism

Bench scale
micro-reactors 

Pilot plants Industrial reactor

Low-moderate pressure
5-30 kPa

Moderate –high  pressure
500-30000 kPa

Reaction kinetics study for 
obtaining reaction rate 
coefficients

Demonstration

Commercial 
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Theory and Experiment 

chemical kinetics based on 
elementary steps

conservation laws, including
transport phenomena

kinetic
LABORATORY data
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Ab initio CALCULATIONS

Process and product
DESIGN

Multi-scale modeling: la voie royale

M.-F. Reyniers & G.B. Marin, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 563
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First-principles based kinetic modeling

55

Statistical 
thermodynamics
H(T), S(T), G(T)

Reactor Model

Thermo & Kinetics
K, k+, k−

� Guidelines process conditions

� Guidelines catalyst  design/screening

Vibrational analysis
frequencies

Geometry optimization 
electronic energy (0 K)

� Conversion and Selectivity

� Reaction path analysis

VASP 5.3
PAW method
GGA: PBE-D2

Plug flow reactor 
Fin

Fout

Isothermal 

Reaction network
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Acid catalyzed ethanol conversion
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Ethanol

DEE

Ethylene Light olefins

C5+ hydrocarbonsH-ZSM-5
pEtOH,0= 20 kPa : W/FEtOH,0 = 8 kg s mol-1
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Ethanol conversion to higher HC
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H-ZSM-5, T = 573 K, pEtOH,0 = 30 kPa

C2H5OH

C2H5OH

C2H5OC2H5

C2H4

H2O
C2H5OH

H2O C2H4

C4H8
Path A Path D

Van der Borght et al., Angew. Chem., in press
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Overview
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• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

• Experimental validation

• Reaction-path analysis

• Effect of zeolite

• Industrial reactor scale

• Conclusions
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Alcohol adsorption in zeolites
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• van der Waals:

• dipole-dipole

• dipole-induced dipole

• dispersive

• H-bonding

• electrostatic interactions

Ethanol physisorption in H-ZSM-5
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H-bonding and protonation: chemisorption
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Alcohol adsorption & reaction in zeolites

12
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Chemisorption: effect of chain length

13Nguyen et al., J. Catal. (2015) 322,91-103
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• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

• Experimental validation

• Reaction path analysis

• Effect of zeolite

• Industrial reactor scale

• Conclusions

• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

� Ethanol dehydration

Overview

14
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Ethanol to Ethene: H-ZSM-5
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B: 2EtOH(g) → DEE(g) + H2O(g)
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• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

� Butanol dehydration: idem

Overview
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Dehydration : dominant mechanisms 

20M. John et  al., J. Catal. 330 (2015) 28
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Dehydration: MARI’s
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A B C

(1) BuOH(g) + ∗ ↔ M1 1 1 0

(2) M1 ↔ M2 1 0 0

(3) M2↔  Butene*+ H2O(g) 1 0 0

(4) Butene* ↔ Butene(g) + ∗ 1 0 1

(5) M1 + BuOH(g) ↔ D1 0 1 0

(6) D1 ↔ D2 0 1 0

(7) D2 ↔  DBE* + H2O(g) 0 1 0

(8) DBE* ↔ DBE(g) + ∗ 0 1 -1

(9) DBE* ↔  C1 0 0 1

(10) C1 ↔ Butene*+ BuOH(g) 0 0 1

Path A BuOH(g) ↔ Butene(g) +H2O(g)

Path B BuOH(g)+BuOH(g) ↔ DBE(g) +H2O(g)

Path C DBE(g) ↔ Butene(g) +BuOH(g)

MARI's and Rate-Determining Steps
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All reaction paths 

involving all the 

suggested mechanisms 

are included in the 

microkinetic model
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Effect of alkyl chain length on Arrhenius parameters 

23

Surface species 

M1
Chemisorbed alcohol 
monomer

D1
Chemisorbed alcohol 
dimer

Ether*
Adsorbed Ether
(DEE/DBE)

Increase in alcohol chain 
length has marginal 

influence on activation 
enthalpy but leads to 
significant increase in 

activation entropy 

M1     →  TS-3

D1      →  TS-8

Ether* → TS-10

M1     →  TS-3

D1      →  TS-8

Ether* → TS-10
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Overview
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• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

• Experimental validation

• Reaction-path analysis

• Effect of zeolite

• Industrial reactor scale

• Conclusions
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Experimental procedures and conditions

25

Properties

Si/Al 15 40

cH+(mol kg-1) 0.77 0.36

BET (10³ m² kg-1) 430 436
Vmicro(10-5 m³ kg-1) 1.1 1.1

HZSM-5

Experimental conditions
Temperature (K) 453 – 523
pEtOH,in (kPa) 8 – 50
W/FEtOH,in (kg s mol-1) 1.5 – 17.0
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Reactor model equations

26

Reactor continuity equations for each gas-phase component i
with PSSA for the surface species k:

Fi =Fi,0 at W=0

• Fi molar flow rate of component i (mol s-1)
• W catalyst mass (kg)  
• Ct acid site concentration (mol H+ kg-1)
• Ri net production frequency of component i

(molecules site-1 s-1 = mol molH+-1 s-1)
• rj turnover frequency of elementary step j 

(molecules site-1 s-1 = mol molH+-1 s-1)
• kj rate coefficient of elementary step j 
• � coverage of surface species k
• pi partial pressure of gas phase component i
• νji stoichiometric coefficient of component i

in the elementary step j

���
�� = ���� = �� 
 �����

�

� = 
 �� ��
�

= 0

�!" + 
 � 
 

= 1

with %. '. �� = (�� )�
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Wcat/FEtOH,0 = 6.5 kg s / mol

PEtOH,0 = 24 kPa

Conversion and selectivities
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Effect of water
Wcat/FEtOH,0 = 8.3 kg s / mol

PEtOH,0 = 29 kPa

T = 503 K
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Parity diagrams
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• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

• Experimental validation

• Reaction-path analysis

• Effect of zeolite

• Industrial reactor scale

• Conclusions
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H-ZSM-5, pEtOH,0 = 10kPa, XEtOH = 10 %
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Reaction path analysis: Effect of water 

33
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Equilibrium coefficients for adsorption @ 450K
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Overview
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• Introduction

• Dehydration of bioalcohols on zeolites

• First principles kinetic model development

• Experimental validation

• Reaction-path analysis

• Effect of zeolite: activity

• Industrial reactor scale

• Conclusions
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Zeolite Frameworks
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Chemisorption

37Nguyen et al., J. Catal. (2015) 322,91-103
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TS stabilization: vdW & hydrogen bonds

3912-MR (FAU; MOR) < 10-MR (ZSM-5; ZSM-22)
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TS 8 stabilization: electrostatic interactions 
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Effect of Zeolite: reaction  path analysis

43

PBuOH,0 = 10 kPa
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Effect of zeolite: path B and  C

44
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Caveat: effect of reaction conditions
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Low High
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Conversion (X) A  / B A  / C
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Dehydration of 1-butanol to butene isomers 

46
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Path D



Dehydration of 1-butanol to 2-t-butene 
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Butanol dehydration: Temkin table 
Path A Path B Path C

Mechanism # m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
R1 1-BuOH(g) + ∗ ↔ M1 1 1 1 1 1 1 1 1 0 0

R2 M1 ↔ W + 1-Butene(g)
1 0 0 0 0 0 0 0 0 0

R3 W ↔ H2O(g) + * 1 1 0 0 0 0 0 0 0 0

R4 M1 ↔ C1 0 1 0 0 0 0 0 0 0 0

R5 C1 ↔ W + 1-Butene(g)
0 1 0 0 0 0 0 0 0 0

R6 M1 ↔ M2 0 0 1 1 0 0 1 1 0 0

R7 M2↔ 1-Butene*+ H2O(g)
0 0 1 0 0 0 0 0 0 0

R8 1-Butene*↔ 1-Butene(g) + ∗ 0 0 1 1 0 0 1 1 1 1

R9 M2↔ Butoxy + H2O(g)
0 0 0 1 0 0 1 1 0 0

R10 Butoxy ↔ 1-Butene* 0 0 0 1 0 0 0 0 0 0

R11 M1 + BuOH(g) ↔ D1 0 0 0 0 1 1 0 0 0 0

R12 D1 ↔ D2 0 0 0 0 1 1 0 0 0 0

R13 D2↔ C2+1-Butene(g)
0 0 0 0 1 0 0 0 0 0

R14 C2 ↔ M1 + H2O(g)
0 0 0 0 1 0 0 0 0 0

R15 D2 ↔ DBE* + H2O(g)
0 0 0 0 0 1 0 0 0 0

R16 DBE* ↔ DBE(g) + ∗ 0 0 0 0 0 1 1 1 -1 -1

R17 Butoxy + BuOH(g) ↔ C3 0 0 0 0 0 0 1 1 0 0

R18 C3↔ DBE* (Sn2) 0 0 0 0 0 0 1 0 0 0

R19 C3↔ DBE* (Sn1) 0 0 0 0 0 0 0 1 0 0

R20 DBE* ↔ C4 0 0 0 0 0 0 0 0 1 0

R21 C4 ↔ 1-Butene*+ BuOH(g)
0 0 0 0 0 0 0 0 1 0

R22 DBE* ↔ DBE2 0 0 0 0 0 0 0 0 0 1

R23 DBE2↔ 1-Butene*+ BuOH(g)
0 0 0 0 0 0 0 0 0 1

TOFA = 
TOFm1+ TOFm2+ 
TOFm3+ TOFm4+ TOFm5

TOFm1= TOFR2

TOFm2= TOFR4

TOFm3= TOFR7

TOFm4= TOFR9

TOFm5= TOFR13

������	=∑ �����	��

All reaction paths 

involving all the 

suggested mechanism 

are included in the 

microkinetic model

PhD Public Defence, LCT, 13th  Oct , 2
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Reaction path analysis 

50
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Butene isomer selectivity: Effect of zeolite type

51
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Industrial dehydration reactor

53

adiabatic 
reactor

bio-ethanol (aqueous ethanol solution)

adiabatic 
reactor

ethylene

Design specifications1

T0 (K) 673
P0 (kPa) 590
Ethylene production (kT y-1) 220
Ethanol content (wt.%) 26
Catalyst mass (ton) 6

C2H5OH → C2H4 + H2O ∆H = 46 kJ/molEtOH

2 C2H5OH → (C2H5)2O + H2O   ∆H = −12 kJ/molEtOH

(C2H5)2O → C2H4 + C2H5OH     ∆H = 70 kJ/molEtOH

1 US Patent 2013/0090510 A1 assigned to IFP Energies Nouvelles and Total 
Research & Technology
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Reactor model equations

Fi =Fi,0 at W=0

• Fi molar flow rate of component i (mol s-1)
• W catalyst mass (kg)  
• Ct acid site concentration (mol H+ kg-1)
• Ri net production frequency of component i

(molecules site-1 s-1 = mol molH+-1 s-1)
• rj turnover frequency of elementary step j 

(molecules site-1 s-1 = mol molH+-1 s-1)
• kj rate coefficient of elementary step j 
• � coverage of surface species k
• pi partial pressure of gas phase component i
• νjk stoichiometric coefficient of component k 

in the elementary step j
• T temperature (K)
• cp specific heat capacity (J kg-1 K-1)
• G mass flow rate (kg s-1)

• ∆WX,� enthalpy of formation of component i (J mol-1)

• De,i effective diffusion coefficient (m² s-1)
• Ci concentration inside the catalyst pellet (mol m-3)
• + position coordinate within catalyst pellet 

• �� net production rate

in case of diffusion limitations (mol molH+-1 s-1)
• ρZ density of the fluid (kg m-3)
• ρ[ density of the pellet (kg m-3)
• ρ\ density of the bed (kg m-3)

• d^ pellet diameter (m)

T =T0 at W=0��
�� = 1
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Conclusions I

60

• Adsorption strength increases with alkyl chain length of
alcohols

• Increase of alkyl chain length leads to an increase of
∆So‡ and explains higher reactivity of large chain alcohols

• Dispersive interactions and H bonding plays a key role in
stabilization of adsorbed species and transition states

• “Compensation effect” can be important: dispersive
interaction and steric hindrance both increasing with
decreasing pore size

• Stronger adsorption of alcohol and ether as compared to
alkenes (limit consecutive reactions) and water (no
significant inhibition effect)
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Conclusions II

61

• Detailed reaction network can be constructed with limited a
priory assumptions

• Kinetic parameters can be calculated ab initio with chemical
accuracy i.e. allowing to describe conversion and selectivity at
relevant conditions

• Interaction of functional groups with catalyst can be described
accurately as well as the effect of catalyst framework

• Dominant reaction path depends strongly both on conditions
and catalyst framework

• Selection of optimal catalyst based on reaction path/sensitivity
analysis based on microkinetics
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Glossary

• Molecular Dynamics (MD): a technique by which one 
generates the atomic trajectories of a system of N 
particles by numerical integration of Newton’s equation 
of motion, for a specific interatomic potential, with certain 
initial and boundary conditions.

• Radial Distribution Function (RDF): a pair correlation 
function, which describes how, on average, the atoms in 
a system are radially packed around each other. 

• Vibrational Density Of States (VDOS): the Fourier 
transform of the velocity-velocity time-correlation function

64
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Glossary

65

• Electrostatic potential: evaluated from the interaction 
between a negative unit charge and the local charge 
density. This factor is critical in stabilizing positively 
charged adsorbed complexes and especially transition 
states in the zeolite.

• Elementary step: a reaction in which reactants are 
transformed into products without passing through 
another reaction intermediate

• Transition state theory for reaction rate coefficie nts:
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immobile surface species

(apart from Ethene* where a 2D translation and 1D rotation is assumed) 
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Glossary

66

• van der Waals interactions: the attractive or repulsive 
interactions between molecular entities (or between 
groups within the same molecular entity) other than 
those due to bond formation or to the electrostatic 
interaction of ions or of ionic groups with one another or 
with neutral molecules. The term includes: dipole–dipole, 
dipole-induced dipole and dispersive (instantaneous 
induced dipole-induced dipole) interactions.

• Dispersive interactions: attractive interactions between 
any pair of molecules, including non-polar atoms, arising 
from instantaneous induced dipole-induced dipole forces
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Glossary

67

• E1 reaction (elimination, unimolecular) – In this reaction, the 
rate determining step involves a heterolytic cleavage of the 
bond between the leaving group and the carbon atom leading 
to formation of a carbenium ion. The second step involves 
deprotonation of an adjacent hydrogen by a base.
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Glossary

68

• E2 reaction(elimination, bimolecular) –E2 reaction is a 
concerted reaction involving a synchronous deprotonation and 
departure of the leaving group. E2-type elimination requires the 
atoms or groups involved in the reaction to be in the same 
plane with a torsional angle θ = 180°, i.e. antiperiplanar 
orientation of the leaving group (LG) and the β-hydrogen 
(hence also called as anti-elimination).
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Glossary

69

• Syn elimination – This is a concerted elimination mechanism, 
where the leaving group (LG) and the hydrogen atom are in the 
same plane and have a syn coplanar orientation (torsional 
angle θ≈ 0°; eclipsed or near eclipsed conformation)
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Glossary

70

• SN1 (substitution, unimolecular) –In this reaction, the rate 
determining step involves a heterolytic cleavage of the bond 
between the leaving group and the carbon atom leading to 
formation of a carbenium ion which undergoes a substitution 
reaction with the nucleophile. 

• SN2 (substitution, bimolecular) is a concerted reaction 
involving simultaneous bond breaking (between the carbon 
atom and leaving group) and bond formation(between carbon 
atom and the attacking nucleophile). The transition state for a 
SN2 type substitution involves a penta-coordinated carbon 
atom with a trigonal bipyramidal geometry with the incoming 
nucleophile and the leaving group occupying the axial positions 
(bond angle Nu--C--LG ≈ 180°)
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Glossary: Rate-determining step

71

quasi-equilibrated: r1+≈ r1− ⇒ A1 ≅ 0

global reaction rate
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Glossary

72

•  Sensitivity analysis: normalized sensitivity
coefficient (NSCi,j) of response Rj to pre-exponential 
factor Ai of reaction i:

w~��,� = �(�B��)
�(�Bd�) = d����

���d�
where Rj can correspond to conversion of reactants, 
turnover frequency, or selectivity to a product j

•  Reaction-path analysis: analyzes the reaction 
rates that contribute to the rate of production or   
disappearance of a selected species, which allows to  
determine actual reaction path to form intermediates 
and products

“Innovation techniques in chemistry, petrochemistry, and refining” Sint-Petersburg, 20-21 October 2016 


