

Modelling self-healing: a solid gear in a collaborative multidisciplinary framework

David Garoz, Francisco A. Gilabert and Wim Van Paepegem

Ghent University - Group of Mechanics of Materials and Structures

Motivation

Develop models for self-healing cementitious and polymer materials, in order to:

- describe the phenomenology of the experiments
- complement the material characterization and understand experimental set-up
- parameterize the self-healing behavior

Validate models with experimental data, based on crucial collaboration with the different research groups in SECEMIN and SEPOCOM

Valorization

- Strong collaboration between the different research groups.
- New acquired knowledge in fracture mechanics, solid-fluid problems, and design of new experimental set-ups.
- Numerical models expandable to other research scopes.
- Spill-over: M3Strengh and Nanoforce projects.

Mechanical characterization of:

Elasticity and strength of concrete

• FE models of the experimental set-ups. Mechanical properties fitted with experiments.

Glass-concrete interface

• New set-up based on 4 points bending test to improve the interface measurements.

Interaction crack-capsules

Bending test

- Crack propagation simulations.
- Model with XFEM and cohesive surfaces.
- Validate models with the experiments.

ABO MAGNEL

OOR BETONONDERZOEK

Leakage of healing agent from capsules in concrete

Before breakage

UGC⁻

- After breakage
- dynamic model. New specific set-up to observe the leakage with micro-CT scan.

3D fluid

Experiments and simulations are in good agreement.

SECEMIN

SIN

SEPOCOM

Mechanical characterization of polymer with microcapsules

Crack propagation in TDCB for self-healing polymers

M_eMC

Leakage of healing agent from micro-capsules in polymers

Department of Materials Science & Engineering

MMS

• Representative model of capsule-matrix based on XFEM • Mechanical properties decrease when the microcapsule volume fraction increases. • Simulations compared with experimental data.

Reference

[1] E. N. Brown et al. *Journal of Materials Science* **39** (2004) 1703-1710.

Acknowledgements

Thank you to the researchers Eleni Tsangouri, Xanders K. D. Hillewaere, Kim Van Tittelboom, Elke Gruyaert, Jianyun Wang, Jeroen Van Stappen, Hannelore Derluyn, Jose A. Ramos; with your experimental data the models have landed into the real world.

Conclusions

- Research projects with strong collaboration between different research groups enhance the final results.
- Modelling is a gear that speeds up the research mechanism, improving the experiments and adding scientific knowledge.