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Preface

}I thank you for those items that you sent me
The monkey and the plywood violin

I practiced every night, now I’m ready~

— I’m Your Man, Leonard Cohen (1988)

Volgens aloude traditie wordt het voorwoord van een thesis gebruikt om een aantal
mensen te bedanken. Meer specifiek degenen die bijgedragen hebben aan de tot-
standkoming van dit werk, alsook degenen die niet rechtstreeks bijgedragen hebben,
maar die toevallig in de buurt waren en bovendien degenen die niet in de buurt
waren, maar die de auteur niettemin van de lopende werken wisten af te leiden op-
dat hij met een frisse blik zou terugkomen. Kortom, het volledige entourage van de
promovendus.

Teneinde de geijkte volgorde te respecteren, vangt de lofzang aan bij de promotor, 
degene die toezicht houdt op de vooruitgang van de arbeid: Philippe, bedankt voor 
alle hulp en de vele uitstekende ideeën, gaande van de projectaanvraag, het 
uitvoeren van het onderzoek zelf tot het afwerken en insturen van artikels. 
Erkentelijkheid komt je toe voor de vrijheid die ik heb kunnen genieten bij het 
exploreren van wetenschapsoorden die niet erg voor de hand lagen en voor het 
vertrouwen dat ik krijg bij mijn onderwijsopdrachten die ik overigens met veel 
vreugde uitvoer. Je genegenheid voor de wetenschap en het communiceren ervan 
naar de buitenwereld werkt erg aanstekelijk. Dirk, dankzij jou is het nooit 
kleurloos of stil op LumiLab en je verbeten enthousiasme weet bijzonder te 
motiveren. Ik dien je mijn dankbaarheid te betuigen voor je kritische 
wetenschappelijke houding en taalvaardigheid die menig artikel verbeterd hebben.

Wat absoluut niet verzuimd mag worden, is de enkelingen bedanken die dit boek
gelezen hebben. Naast Philippe en Dirk zijn dit de achtenswaardige leden van de
examencommissie. Zij worden niet enkel gelauwerd voor hun volharding, maar
eveneens voor hun waardevolle commentaren die bijzonder op prijs gesteld werden
en bijgedragen hebben aan de huidige vorm van dit werk.

De lofzang gaat verder en huldigt diegenen die in dezelfde modderige put ploeteren
dan de promovendus, evenzeer op zoek naar een knook om aan te kluiven, de overige
drie man en paardenkop die zich in dezelfde nauwe en diepe spelonk van gespe-
cialiseerde kennis bevinden en helpen om de daar heersende meedogenloze een-
zaamheid te gerieven. Met name zijn dit Katleen, Koen, Ang, Anthony, Hajieh,
Heleen, Iolanda, Jiaren, Katrien, Lisa, Olivier, Reinert, Simon. Zij die talloze uren
doorgebracht hebben in dezelfde ruimte als ondertekende hebben daarnevens recht
op de hoogste egards voor de koenheid waarmee zij dit lot ondergingen. Andreas,
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David, Jonas, Nursen en Sofie, het was een plezier om met jullie lief en leed te delen.
Van ons heen gegaan, maar evengoed gedenkwaardig en derhalve bedankt zijn JB en
Katrien, ambtsbroeders van het eerste uur, spitsbroeders tot op heden.

Bijwijlen komt het voor dat men de kans krijgt een blik over de haag te werpen, om
zich even te laten zakken in een andere spelonk van kennis. In dit geval bevond deze
spelonk zich op het CMM, de wereld der zwarte computerschermen met witte let-
ters. Hiervoor werd bereidwillig bijstand geboden door Kurt en Karen die daarvoor
uitdrukkelijk bedankt worden.

Aan ieder hierboven, het heeft mij steevast verblijd om de wetenschappelijke queeste
met jullie te ondernemen.

Des avonds, wanneer de wetenschapper zijn modderlaarzen aan de haak hangt, be-
gint het tweede leven, het leven waarvan de protagonisten de ultieme strofes van 
deze lofzang invullen. Prominente rollen worden ingenomen door zij die deel 
uitmaken van onze Fanfare van Honger en Dorst, zij die hun avondleven op onge-
dwongen wijze slijten in aanwezigheid van de auteur. Aan gewichtigheid zal het hen 
evenwel niet ontbreken zoals blijkt uit de roemrijke annalen van de Trappers van 
Alaska. Deze annalen zouden er niet zijn zonder Gertjan, Thomas, Tim, Sam en 
Renaat. Tevens dienen ook Annelise, Philippe en Kwinten gehuldigd te worden voor 
de gedeelde momenten.

Vervolgens arriveert de lofzang bij zijn laatste halte, daar waar degenen zijn verza-
meld die doorgaans geen keuze hebben, degenen die noodgedwongen een deel van
hun bestaan doorbrengen in de aanwezigheid van de auteur. In het bijzonder is er
dank verschuldigd aan de ouders, zij die verkeerdelijk dachten dat het vertrek van
ondertekende naar de grote stad plaats zou maken voor tijd en rust. Zij worden be-
dankt voor de goede zorgen waarop kennelijk geen afstand staat.

De laatste noten van deze lofzang worden besteed aan de voornaamste vondst van de
jarenlange zoektocht in de modder, het staaltje serendipiteit dat de auteur ten beurt
viel en zijn leven verreikend veranderde. Sofie, ik bedank je voor deze opwaardering
en de leuke jaren die we tezamen doorbrachten terwijl ik uitkijk naar de jaren die
aan de horizon liggen.

Blijmoedig dat aan de aloude traditie kon worden voldaan, eindigt hier deze para-
graaf. Nu, beste lezer, begint Uw queeste, de zoektocht naar de perfecte ledfosfor.
Het belooft een waar avontuur te worden dat U voorbij kwantummechanica, lasers
en andere narigheden zal brengen. Maar koestert U vooral geen vrees, beste lezer,
als U hier bent geraakt, heeft U dit voorwoord overleefd. Het kan U enkel maar beter
vergaan!

Mei 2017
Jonas Joos
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1 Introduction

Nature exhibits many different forms of luminescence. Examples are fluorescent
minerals, the polar light or luminous organisms such as jellyfish or fireflies. Almost
equally diverse are the technological applications of luminescence, ranging from
lighting, display technology to medical imaging. Here, the basic ideas involving
luminescence, the study of luminescent materials and the application of these ma-
terials in light-emitting diodes (LEDs) are reviewed. At the end of this chapter, the
reader is guided through the structure of this text.

1.1 Terminology

The German physicist and science historian Eilhard Wiedemann was, in 1888, the
first to use the term Luminescenz or luminescence as collective name for all luminous
phenomena which are not caused by thermal radiation [1]. The so-called black-body
radiator for which the emission spectrum is given by Planck’s law [2],

I(ωk ,T ) =
~ω3

k

4π3c2
1

e~ωk /kBT − 1
, (1.1)

is hence a kind of light emission which is not considered as luminescence. The light
emission of the sun, smoldering wood or the filament of an incandescent lamp is
thermal radiation. In contrast to the emission spectrum of a black-body radiator that
consists of a broad band of which the color drifts from red-hot via yellow and white
to blue-glowing with increasing temperature, the emission spectrum of luminescent
processes is characterized by several discrete lines or narrow bands, entailing a vast
number of colors of cold light that can be found in nature as well as in laboratories.

Before a luminescent material can emit light, it requires some kind of excitation.
The nature of the excitation mechanism determines the name that is given to the
phenomenon. This distinction was also first made by Wiedemann [1]:

• Photoluminescence (PL): This kind of luminescence is excited by light itself.
This is not necessarily visible light, but can likewise be ultraviolet light (UV).

• Thermoluminescence (TL): Light emission which is caused by heating a mate-
rial. Although this phenomenon is driven by temperature, it has a completely

1



2 Chapter 1

different origin and appearance than thermal radiation. The emitted energy
was stored in the material before the heating. This can e.g. be effectuated by
illumination, similar to PL. Temperature is hence not explicitly controlling the
excitation mechanism and only causes the stored energy to be released.

• Electroluminescence (EL): When light emission is caused by an electric dis-
charge, e.g. in gases or by an electric current passing through a solid or a
liquid.

• Triboluminescence: Luminescence which is caused by applying pressure to
crystals, possibly - but not necessarily - breaking them. Mechanolumines-
cence (ML), fractoluminescence and piezoluminescence are variants of this
phenomenon. As in the case of TL, nondestructive ML is caused by the release
of stored energy by applying pressure.

• Crystalloluminescence: This type of luminescence is found during the crystal-
lization from a liquid solution; Lyoluminescence is the opposite phenomenon,
i.e. when light is emitted when crystals are dissolved.

• Chemoluminescence: When light is emitted during a chemical reaction.

Later on, many other names were added. These are not necessarily all mutually
independent or independent from the initial six types of luminescence of Wiede-
mann [1, 3]:

• Cathodoluminescence (CL): Light emission caused by the impact of an electron
beam on a material.

• Anodoluminescence: Light emission caused by the impact of positively charged
ions on a material. Also known as ionoluminescence.

• Radioluminescence: Luminescence which is caused by the exposure of mate-
rials to ionizing radiation. In the case of X-rays, this is often referred to as
röntgenoluminescence.

• Sonoluminescence: Light emission upon the exposure of a liquid to intense
sound waves.

• Pyroluminescence: Luminescence caused by a flame.

• Bioluminescence: Luminescence in a living organism. All bioluminescence
phenomena can be reduced to chemoluminescence.

• Galvanoluminescence: Light emission which can be found upon steering an
electric current through an aqueous solution such as in some electrolysis pro-
cesses.

A luminescent material is often referred to as a phosphor. Furthermore, photolu-
minescence is typically divided into fluorescence and phosphorescence, a distinc-
tion which can also be attributed to Wiedemann [1]. The former features a ”fast”
transition, while the latter a ”slow” transition. In the case of luminescent organic
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molecules, this distinction can be straightforwardly related to the type of electronic
transition, governing the luminescence. In the case of inorganic materials where
the luminescence is caused by isolated metal ions, this distinction is less straight-
forward to make and luminescence is used in general terms (see chapter 4). For the
latter class of luminescent materials, the designation persistent luminescence or af-
terglow is additionally made. This refers to photoluminescence for which the light
emission can still be seen seconds to hours after the excitation stopped.

1.2 Historical overview of luminescence

Eilhard
Wiedemann

(1852-1928) [4].

The oldest known writings about luminescence date from 10 to
15 centuries BC and were found in China. The authors from the
Shang dynasty mention the luminescence of glowworms and fire-
flies. In contrast, no writings on luminescence were found from
the old Egyptian, Sumerian and Babylonian civilizations. This
void is probably rather due to a lack of registration than due to
a lack of observation. Multiple writings are found from the Greek
and Roman civilizations which describe - in addition to mention-
ing fireflies - atmospheric discharges (a form of electrolumines-
cence) that are known as ignis lambens. For the Romans this ma-
rine luminescence, which later became known as St-Elmo’s fire, is
a bad omen. It was moreover a Greek, Anaximenes, who was the
first to mention the light from the sea (which is due to microorgan-
isms, i.e. a form of bioluminenscence).

New types of luminescence, luminescent materials and organisms were discovered
in the subsequent centuries. During the Middle Ages no systematic scientific studies
of the different phenomena were undertaken. For this, humanity had to wait until
the scientific revolution which took place at the end of the Renaissance.

What is now considered as the first scientific approach took place in the 17th cen-
tury, following the discovery of the Bologna Stone by Vincenzo Casciarolo in 1602.
This Italian shoemaker and amateur-alchemist found a rock of barite (BaSO4) near
Bologna which he heated in an attempt to produce gold. However, instead of gold he
created a material that was able to absorb the light at day which could be re-emitted
later, when it was dark. This phenomenon was named phosphor, derived from the
Greek phosphorus meaning morning star or light bearer. More recent research has
shown that the persistent luminescence was most likely due to the formation of bar-
ium sulfide (BaS) during the heating. The luminescence can be activated by trace
impurities of Cu+ ions [5, 6]. A detailed description of how the Bologna Stone was
prepared was given by the Frenchman Pierre Potier (Poterius) who emigrated to
Italy under commission by the French king (1652). The chemical element phospho-
rus which was later, in 1669, isolated from urine by the German alchemist Hennig
Brand received the same name because it emits light upon oxidation, i.e. shows
chemoluminescence. This ambiguity confuses many people to date as a phosphor (a
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luminescent material) does not necessarily contain phosphorus (element 15) [1].

Thanks to the discovery of the Bologna Stone, luminescence ensures its place in sci-
ence. In the remainder of the 17th century, new luminous life forms and phospho-
rescent minerals were found. Especially the latter were succesful in seeking the
attention of alchemists as these minerals, given their ability to store the golden sun-
light, might illuminate the path towards the legendary philosopher’s stone. As a
consequence, numerous alchemists bundled their knowledge in voluminous reports.
Worth mentioning and progressive was the work of Robert Boyle, the only mem-
ber of the prominent Royal Society of London who performed a memorable study
on luminescence. He carried out exhaustive experimental research into the lumi-
nescence of diamond, rotting wood and luminous fish. Moreover, he discovered
phosphorus independently from Brand. At the end of the 17th century, all but one
-crystalloluminescence- of the six types of luminescent of Wiedemann were discov-
ered and described. Notwithstanding the many efforts, one did not go beyond the
description and enumeration of phenomena. Furthermore, an esoteric atmosphere
remained associated with luminescence. A profound understanding of the different
phenomena was still far away [7].

In the 18th century, the age of reason, many essays were written on luminescence and
the scientific approach got more decoupled from the mystical approach. As a con-
sequence of the development of electricity, the research into electroluminescence,
i.e. electrical light, boomed. In 1786, a green light was observed during the crys-
tallization of potassium sulfate (K2SO4) from solution, crystalloluminescence was
discovered. This age can also be characterized by the disagreement between those
adhering to the wave theory of light and those adhering to the corpuscular theory of
light. Among those active in the field of luminescence, particle theories were very
popular because persistent luminescent materials were often envisioned as a sponge
for light, absorbing light particles in their pores which can be released slowly in the
dark.

The 19th century featured many important discoveries. However, one was in the
middle of a crisis at the beginning of this century as not a single connection could
be found between the large number of luminescence phenomena that were known.
Driven by the famous mineralogist and founder of crystallography, René Just Haüy,
the French institute for mathematics and physics promised a financial reward to the
one who could find a connection between the different phenomena. This competi-
tion yielded two remarkable essays. The first, the winner of the prize, was written by
the Frenchman Jean Philibert Dessaignes. He was the first to distinguish short and
long-lasting luminescence. Moreover, he was able to show that the light that was
produced by certain fish was the result of a chemical reaction. A second interesting
work was due to the German Placidus Heinrich. He was the first to distinguish or-
ganic and inorganic luminescence.

The fact that the luminescent properties of materials could be influenced by adding
metal impurities was already supposed by Benjamin Wilson in the 18th century.
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Wilhelm Osann succeeded in the 1830s to prepare phosphors of different colors by
adding small quantities of sulfides of arsenic, antimony or mercury to his starting
material, crushed oyster shells, before heating. Osann can therefore, together with
Wach who added metal oxides to barite and celestite (SrSO4), be considered as the
”inventors” of luminescence by metal impurities. This discovery was formalized in
1886-1887 by Auguste Verneuil who investigated luminescence in calcium sulfide
(CaS) and took it into his commerce of synthetic gems. His method to synthesize
ruby1 crystals is well-known to date.

Sir George Stokes
(1819-1903) [3].

Thanks to the development of spectroscopy, more targeted
research on light could be performed in the 19th century.
The Scotsman David Brewster and the Frenchman Alexandre-
Edmond Becquerel2 can be safely regarded as pioneers in the
spectroscopy of phosphors. Becquerel was one of the first to
acknowledge that many luminescent materials can be most ef-
fectively excited by - the at that time recently discovered - ul-
traviolet (UV) light. It was George Stokes who established in
1852 that the light which is emitted by luminescent materi-
als always has a longer wavelength than the absorbed light.
This important fact is now known as the Stokes shift or Stokes’
law, making Stokes’ name one of the most encountered in lu-
minescence literature. He was also the first who used the term

fluorescence, named after the mineral fluorite (CaF2) which is often luminescent. Flu-
orite was already discovered in the 16th century and used as additive to melt ores,
yielding its name (from the Latin fluere, meaning to flow). The chemical element
fluorine was also named after fluorite. A landmark in the history of luminescence
was the denomination of the phenomenon. For this, science had to wait until 1888
when Wiedemann published his Uber Fluorescenz und Phosphorescenz in Annalen der
Physik [4].

The development of quantum theory, which was launched by Max Planck in 1900,
changed the complete thinking about luminescence. A connection was found with
the photo-electric effect and explanations were searched at the electronic level. The
configurational coordinate model, the standard model to explain the basic charac-
teristics of luminescent materials, was developed in the 1920-1930s by the group of
Robert Pohl in Germany, in collaboration with Frederick Seitz in the United States.
Besides that, the Nazi scientists Johannes Stark and Philipp Lenard supplied impor-
tant and progressive work on luminescence. Next to applying the youthful quantum
theory, which they later discarded for anti-Semitic reasons, to the theory of lumi-
nescence, they investigated in a systematic way the influence of different metal im-

1Ruby consists of aluminum oxide or corundum, Al2O3, contaminated with a small amount of
chromium, Cr, denoted as Al2O3:Cr3+. The Cr3+ ions replace Al3+ ions in the crystal. The notation
with the colon is conventional in the discipline of luminescence.

2Alexandre-Edmond was the son of Antoine César Becquerel who investigated luminescence as well.
This family tradition ended abruptly when Alexandre-Edmond’s son Antoine-Henri Becquerel acciden-
tally discovered radioactivity during his investigation of the luminescence of uranium salts. This made
him the most famous Becquerel and also Nobel laureate.
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purities in host materials. They were the first to use so-called rare earth metals3 to
activate luminescence.

After the second World War, the luminescence research evolved radically thanks
to advances in solid state physics, optical spectroscopy and the understanding of
the electronic structure of transition metal and lanthanide ions. The fact that lan-
thanides give rise to efficient luminescence caught the attention of industry. In the
Dutch company Philips a young scientist George Blasse worked who paved the path
for the production of lanthanide-based fluorescent lamps which were commercial-
ized in 1980 [10]. The first cold light source with application in general lighting was
a fact.

1.3 Towards white LEDs

Since the invention of the incandescent bulb at the end of the 19th century, sev-
eral lighting technologies came and went. A recurring tendency is the quest for an
efficient light source with a good color rendering. Nowadays, white light-emitting
diodes (LEDs) are a mature technology superior to all other technologies. Fig. 1.1(a)
shows the luminous efficacy in lumen/watt (lm/W) for different types of light sources.
It demonstrates the amazing rise of LED technology after the turn of the century. The
theoretical maximum for white LEDs with a good color rendering lies around 300
lm/W (for pc-LEDs, see further).

1.3.1 The LED chip

Light-emitting diodes are essentially built from a semiconductor p-n junction, called
a diode4. In forward bias, i.e. when connecting a positive voltage to the anode, elec-
trons and holes are injected in respectively the anode and cathode, provoking an
electric current which grows exponentially with voltage as described by Shockley’s
law5. When the electrons and holes meet each other in the middle of the junction,
recombination can occur, leading to the emission of photons. This is hence a form
of electroluminescence. Since the energy that is released during the recombination

3Rare earths are a collective name for the lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb, Lu), scandium (Sc) and yttrium (Y). Although rare earths are not really rare given that their
abundance is comparable to that of more common metals such as Cu, Ni, Zn, Cr, ..., it is difficult to mine
and purify them due to their chemical similarity and the fact that they are well dispersed and nowhere
occur in very large concentrations. Moreover, the People’s Republic of China holds a quasi-monopoly in
esteem, resulting into fluctuating prices for raw materials and hence an unstable market [8, 9].

4A p-n junction is, as the name tells, a junction of a p-type (anode) and n-type (cathode) semiconductor.
An n-type semiconductor is doped by impurity atoms such that the electrons in the conduction band are
the majority charge carriers. For a p-type material, the dopant is chosen such that holes in the valence
band are the majority charge carriers [11, 12].

5William Bradford Shockley, who also invented the semiconductor diode, shared the Nobel prize in
1956 with his colleagues Walter Houser Brattain and John Bardeen of Bell Telephone Laboratories for their
invention of the semiconductor transistor. Thanks to their work, the cumbersome vacuum tube electron-
ics could be replaced by semiconductor technology.
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Figure 1.1 – (a) The luminous efficacy of white LEDs, compared to traditional light
sources [13, 14]. (b) Band gap energy versus lattice parameter for the most common
III-V semiconductors used for LEDs or laser diodes [13, 15].

is equal to the band gap energy of the semiconductor, EG, a materials property, the
photon energy will be ~ωk ≈ EG. For this reason, the light of LEDs is expected to
be monochromatic. In reality, multiple effects such as a finite temperature and non-
ideal behavior will lead to a significant broadening of the emission spectrum of an
LED. Nonetheless, saturated, i.e. ”pure”, colors are found.

In order for a diode to be an efficient LED, the band gap has to be direct. This means
that light emission follows the recombination of the charge carriers immediately. In
the case of indirect semiconductors, such as silicon or germanium, this is not the
case and heat has to be exchanged in addition. This makes silicon diodes poor LEDs.
As the initial successes from semiconductor technology pertain mainly to silicon and
germanium, the invention of the LED was somewhat delayed until the investigation
of direct semiconductors.

In the 1950s, so-called III-V semiconductors were predicted and synthesized by the
German physicist Heinrich Welker6. This material class does not occur in nature,
in contrast to e.g. II-VI semiconductors. Gallium arsenide (GaAs) crystals were
for the first time grown at a large scale in 1954. This direct semiconductor has a
band gap energy which corresponds to infrared (IR) radiation (±870 nm). In the
subsequent decades, people succeeded to shift the emission wavelength to the visi-
ble wavelength range by constructing GaAs/AlGaAs (red, 1960s) and GaP/GaAsP:N
(red, yellow, orange, green, 1960-1970s) structures. The first practical visible light
LED was developed in 1962 by Nick Holonyak, Jr.7, a scientist from General Elec-
tric. The LEDs of that time were for multiple reasons limited to applications with
low light intensities such as indicator lamps. The first LEDs based on the AlGaInP
system were developed in the 1980s. Currently, this materials class is the most used

6III-V materials are composed of a cation from the third group (Al, Ga, In) and an anion from the fifth
group (N, P, As, Sb) of the periodic table.

7Holonyak was a student of John Bardeen and is since his invention known as the godfather of the
LED.
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semiconductor for efficient LEDs in the red to yellow part of the visible spectrum.

All that time, nobody succeeded in constructing a blue LED. The attempts with GaN
led to an extremely poor blue or UV EL and were hence unusable. The main reason
for this was the failure to incorporate acceptors in GaN i.e. to prepare p-type GaN,
which should be accomplished by Mg doping, without generating unwanted deep
levels. The first efficient blue LEDs were demonstrated in 1995 by the Japanese sci-
entist Shuji Nakamura of Nichia Chemical Industries Corporation. These LEDs, based
on GaInN proved to be very efficient, leading to a fast implementation, e.g. in light-
ing. Also the blue GaInN/GaN-based laser diodes are capable to generate high light
intensities. Nakamura obtained the Nobel prize in Physics in 2014 for the invention
of efficient blue LEDs together with Isamu Akasaki and Hiroshi Amano, two other
GaN pioneers.

It is the gallium-indium ratio that determines the emission color of a GaInN device.
By adding more indium, the color can be shifted towards the green (see Fig. 1.1(b)).
This figure shows that it is possible - in principle - to make LEDs in the full visible
wavelength range. This is however not viable in reality as it proves to be impossible
to grow good crystals with a high indium content as this main group metal sponta-
neously evaporates from the growing crystal surface. This complication is the reason
why green GaInN LEDs are less efficient than their blue and UV counterparts. For
the same reason, efficient green laser diodes cannot be found 8.

1.3.2 Phosphor-converted LEDs

Already in the 1670s, Newton demonstrated that white light is a mixed color, com-
posed from all colors of the rainbow, i.e. the spectral colors. As LED chips only emit
light in a limited wavelength range, white light cannot be directly obtained. Three
indirect possibilities however exist:

1. RGB LEDs: In this approach, three p-n junctions with different EG values,
corresponding to the colors red, green and blue, are combined. The mixed
color of the three LEDs is white.

2. UV diode + RGB phosphors: Here, an LED with a sufficiently large EG value,
corresponding to UV radiation, is used in combination with three phosphors,
a red, green and blue one, to obtain white light.

3. Blue diode + Y/RG phosphors: A blue LED is used to excite a single yellow or
a red-green phosphor blend. This is the archetype of a white LED in various
applications. The most popular yellow LED phosphor is YAG:Ce3+ (see Fig.
1.2), yielding rather cold-white LEDs. Warmer white light can be obtained by
using an additional red phosphor or by using a green-red phosphor blend.

8The most efficient green lasers are built from a neodymium-doped yttrium aluminum garnet
(Y3Al5O12) crystal, YAG:Nd3+ which emits light at 1064 nm. This IR light is then guided through a
nonlinear optical crystal such as potassium hydrogen phosphate (KH2PO4), KDP. Due to the nonlinear
response, the wavelength of the light is halved to 532 nm, obtaining green laser light indirectly.
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(b) (c)(a)

Figure 1.2 – White phosphor-converted LED. (a) 5 mm LED package. (b) Schematic
cross-section. (c) Emission spectrum of a white LED, based on a 450 nm InGaN pumping
LED and a broadband yellow phosphor (YAG:Ce) (thick blue line), compared to the solar
spectrum (thin black line) [13].

The second and third possibility are called phosphor-converted LEDs (pc-LEDs).
These pc-LEDs are more appropriate than the RGB LEDs for most applications. The
reason is that the latter require more complicated electronics to account for the dif-
ferent aging behavior and temperature response of the different LEDs. Furthermore,
a large freedom is available to choose the phosphors in pc-LEDs, allowing to tune
the white LEDs to the needs of the envisioned application. To date, improvements
are still made, optimizing the composition of the phosphor blend, device geometry
etc. It is in this technological context that this work, which focuses on the selection
and development of LED phosphors, needs to be placed.

1.3.3 Applications

Obviously, white pc-LEDs find a huge application potential in general lighting. Cur-
rently, the market which is primarily based on inefficient incandescent bulbs and
polluting fluorescent lamps undergoes a large-scale evolution towards more sustain-
able LED technology. Depending on the preferences of the consumer, LED lighting
with a cold-white or warm-white appearance are available. To meet with the con-
servativism of many consumers, LED bulbs with the appearance of an incandescent-
bulb are nowadays available (see Fig. 1.3b).

While LEDs for lighting already outperform the competing technologies (see Fig.
1.1a), improvements are still possible. A good light source has, among other things,
a broad spectrum, allowing for an optimal rendering of colored objects. The spec-
tra of current white LEDs typically show a gap between the blue pumping LED and
the green or yellow phosphor, leading to a decreased rendering of objects with blue-
green colors (see Fig. 1.3c). It is therefore desirable to fill this gap in some way.
This issue is further addressed in chapter 8. Furthermore, the currently used red
phosphors all show an emission tail extending into the far red / near IR part of the
spectrum. As the human eye sensitivity is very limited in this region, this emission
can be considered as superfluous (see Fig. 1.3c). There is hence a need for more
narrow-band red phosphors. A possibility to limit these losses is validated in chap-
ter 9.
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Figure 1.3 – (a) Remote phosphor white pc-LED, pumped with blue LEDs. (b) White
pc-LED, designed to resemble an incandescent bulb. (c) Spectrum of a warm-white pc-
LED. The black arrows indicate possible improvements to the spectrum. (d) Optical
microscope picture of a pixel of a LCD, showing the RGB subpixels. (e) Spectrum of a
white pc-LED, used in LCDs. The black arrows indicate possible improvements to the
spectrum. (f) Working principle of a pixel of a LCD.

Next to lighting, white LEDs also find an important application in display technol-
ogy. Current large screens of e.g. television sets and computers are mainly liquid
crystal displays (LCD). The liquid crystal (LC) part of the display is only responsible
for the switching of every (sub)pixel, i.e. a separate light source is required. Before
the advent of LEDs, cold cathode fluorescent lamps (CCFL) were used for this, how-
ever now LED-LCD displays are standard. The color of every pixel is determined by
the three primary colors RGB which are mixed in the correct ratios by the three LC
cells in the subpixels (see Fig. 1.3f). To obtain a maximal color gamut, the primary
colors should be as saturated as possible, i.e. corresponding to emission bands which
are as narrow as possible. Phosphors used in displays hence feature different spectra
as opposed to phosphors used in lighting. As time passed by, the requirements for
the saturation of the primary colors got more strict, driven by the demand of the
consumer, the corporate willingness to innovate or a combination of both, culmi-
nating in the ITU-R Recommendation BT.2020 (Rec. 2020) for ultra high definition
television [16]. This recommendation demands emission bands for which the full
width at half maximum (FWHM) is limited to a few tens of nm, depending on the
emission maximum [17]. Most existing phosphor materials do not achieve these nar-
row spectra, motivating a systematic search to new, narrow-band phosphors in both
the green and red spectral segment (see Fig. 1.3e). This issue is further addressed in
chapter 9.
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1.4 Phosphor performance

In order to be applicable in white LEDs, phosphors need to fulfill different tech-
nological requirements. These are described in detail in [13] and are summarized
here:

1. The emission spectrum of the phosphor should be suited for the envisioned
application. This differs to a large extent for lighting and displays.

2. The phosphor should be easily excitable by the blue or near-UV light of the
pumping diode.

3. The conversion efficiency of the material should be high.

4. The luminescent properties of the material such as the emission color and con-
version efficiency should be stable as a function of temperature since elevated
temperatures are encountered in devices.

5. The luminescence intensity should show linear behavior as a function of the
excitation power, i.e. saturation effects are undesired.

6. The material should be chemically stable on the long term. Lifetimes of 50 000
hours are currently specified for white LEDs.

It is important to stress that all these requirements have to be fulfilled simultane-
ously for a phosphor to be a suitable candidate for applications.

However, using an intelligent device architecture can relax certain requirements to
some extent. As an example, requirements 4 and 5 are relaxed in a so-called re-
mote phosphor approach (see Fig. 1.3a). Here, the phosphor is not applied directly
onto the semiconductor LED chip, where temperature and excitation fluxes are very
stressful, but on a separate phosphor plate at a certain distance from the chip. Here,
the conductive heating of the phosphor by the LED chip is completely removed and
the excitation flux is spread over a larger surface of phosphor material. An important
disadvantage of this remote phosphor approach is that a larger quantity of phosphor
powder is needed. Also when used in displays, remote phosphor architectures are
possible.

Next to these technological requirements, also economical and environmental re-
quirements can be of importance.

Economical requirements pertain to the cost of the phosphor which is determined by
the synthesis procedure and the availability of the starting materials. Due to recent
fluctuations of the price of lanthanides, phosphors based on lanthanides are often
regarded as economically less interesting. A distinction should however be made
between lanthanide-based phosphors where only the activator is a lanthanide and
materials where the host compound is lanthanide-based. In the former case, the re-
quired amount of lanthanides is rather limited.
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Environmental requirements pertain to the impact of the mining and processing of
ores to the final product, as well to the recycling of the materials after their lifespan.
Especially lanthanides get a bad score for environmental friendliness given their low
concentration in ores, difficult separation involving harmful chemicals and the large
amount of the radioactive element thorium, which is considered as a waste prod-
uct, in lanthanide ores. Due to economical and environmental objections, it would
be desirable to minimize the amount of lanthanides in phosphors. Nevertheless,
the majority of current LED phosphors are lanthanide based. This objection should
however be put in a broader context as phosphors are by far not the largest market
of lanthanides. Only 8% of the mined lanthanides end up in phosphors. The largest
fraction goes into catalysis for chemical and automotive industry, metallurgy and
petroleum refinement9 [18].

In the most rudimentary picture, phosphors are composed of a host compound,
doped with metal impurities that activate the luminescence. The luminescence prop-
erties of the obtained phosphor depend on the intrinsic properties of both building
blocks, e.g. on the type of local electronic transition yielding the luminescence (see
Tab. 1.1), but also on the details of the interactions between both. Subtle changes in
the dopant-host interaction can already have an appreciable influence on the macro-
scopic physical properties of the phosphor.

Host crystals can have a large variety of chemical composition, ranging from halides,
over all kinds of oxides to sulfides or nitrides. Activator ions are typically grouped
according to their position in the periodic table. Lanthanides or 4f elements are very
popular for various reasons. Furthermore, transition metals, specifically from the 3d
series, and so-called s2 ions, originating from the heavy p block, have regained pop-
ularity in the search for lanthanide-free phosphors. Figure 1.4 shows the periodic
table of elements with these three regions highlighted.

9”The only way you can avoid the rare earths is to grab your sleeping bag and go into the deep forests or
caves in the desert far from civilization without your cell phone or even lighter flints (which are made of iron
and cerium-rich rare earths).” - K. A. Gschneidner, Jr. [18]

Table 1.1 – Overview of localized electronic transitions in defects.

transition example

1s↔ 2p F-center electron in vacancy
ns2↔ nsnp s2 ions (e.g.: Tl+, Pb2+, Bi3+, ...)
nd10↔ nd9(n+1)s1 transition metals Ag+, Cu+, Au+

ndN ↔ ndN transition metals (e.g.: Mn2+, Cr3+, Co2+,...)
nfN ↔ nfN lanthanides and actinides (e.g.: Eu3+, Tb3+, U4+,...)
nfN ↔ nfN−1(n+ 1)d lanthanides and actinides (e.g.: Ce3+, Eu2+, Pa4+, ...)
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1.5 Energy levels

A quick consideration learns that an unimaginably large number of combinations
between dopants and hosts can be made. Combining the relevant transition met-
als and lanthanides with the large number of possible binary, ternary, quaternary,
... compounds, possibly existing in different stoichiometries and polymorphs leads
indeed to rapidly increasing numbers. Moreover, co-doping can improve the perfor-
mance of a phosphor in different ways. It is hence practically impossible to experi-
mentally subject all these different materials to the six requirements that are listed
above.

The growing demand towards more specialized materials, specified by the above
requirements, raises new challenges for science and materials engineering. More
than before, a theoretical framework is required to design materials on the drawing
board before actual synthesis to prevent getting stuck in an uncreative trial-and-
error approach of combining hosts and dopants. So-called energy levels bridge the
macroscopic properties of a material with the microscopic physical interactions. In
other words, energy level schemes form the key to understand, fine-tune and design
new functional materials. A simple example for a Ce3+ ion in a certain host material
is shown in Fig. 1.5.

The importance of energy level schemes is evident upon inspecting the scientific
literature on luminescence, they simply appear in the majority of the published ar-
ticles. Simultaneously, one would probably notice that there is no agreement on
how to use what type of energy level scheme in which situation, even leading to
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Figure 1.4 – Periodic table showing the three groups of elements of which most optical
dopants are selected.
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energy level schemes with an unclear meaning and interpretations lacking formal
grounds 10. A rationalization of the meaning of the different types of energy level
schemes and what they represent under which assumptions is hence essential at this
moment. This rationalization is additionally complicated by the multiple theoret-
ical frameworks and computational techniques that are available for every type of
energy level scheme ranging from the simplest empirical rules to the most compli-
cated quantum mechanical calculations, requiring a vast amount of computer power.

2

free Ce 3+ coordinated Ce3+

4f1

5d1

crystal field 
 interaction

Stokes 
shift

excitation 
spectrum

emission 
spectrum

(1) (2) (3) (4) (5)

(1)

(2)

(3)

(4)

(5)

Figure 1.5 – Schematic illustration of the
crystal field effects on the energy levels of
a Ce3+ ion and the corresponding excita-
tion and emission spectra.

When theoretical techniques are applied to
study or even design luminescent materials,
it is very important to grasp the implicit and
explicit assumptions of the used model as
well as the magnitude of the uncertainties
that are associated with it. Knowledge of
the assumptions and the uncertainties gives
a direct idea of the quality of the predicted
properties. If the quality of the prediction
is less than required for the application, the
model is of little use in designing functional
materials. On the other hand, it can be re-
warding to investigate the deficiency of sim-
ple models, both from the scientific as from
the technological point of view because im-
proved models obviously lead to improved
predictions and potentially superior mate-
rials.

1.6 Goal and structure of
this text

In the end, it is the target to develop phos-
phors that are perfectly adapted to their ap-
plication, in this case white LEDs for either displays or general lighting. Two strate-
gies are applied, i.e. the use of energy level models and the mining of existing scien-
tific literature.

As said, different types of energy level schemes and many theories are available to
describe luminescent materials. In this text, different techniques are reviewed and
exploited to investigate a few selected materials. To meet with the ambiguity per-
taining to the different types of energy level schemes, chapters 2, 3, 4 and 5 explain
the origin of the different types of energy level schemes. The focus is consciously
put on the approximations that are made during the derivation of the models. Fur-
thermore, the theoretical frameworks that are used in the remainder of the text are

10”Das ist nicht nur nicht richtig, es ist nicht einmal falsch!” - Wolfgang Pauli [19].
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regarded from the viewpoint of luminescent materials and some relevant examples
are given. Specifically, chapter 2 explains the intimate connection between energy
level schemes and spectroscopic properties in general terms. Chapter 3 describes
the influence of the dynamics on experimental spectra and offers a microscopic in-
terpretation for key parameters such as thermal quenching and the quantum effi-
ciency of a luminescent material. In chapters 4 and 5, the two major types of energy
level schemes are discussed. These are respectively many-body levels or multiplets
(chapter 4) and single-particle levels or orbitals (chapter 5). Multiplets are regarded
from the atomic point of view in the framework of crystal field theory, while or-
bital diagrams are regarded from the band point of view in the framework of den-
sity functional theory. Alternative computational frameworks are briefly reviewed.
Many-body energy level schemes are used to investigate the luminescence properties
of the phosphors K2SiF6:Mn4+ and SrAl2O4:Eu2+. Appendices A and B provide the
necessary mathematical tools to calculate quantum mechanical matrix elements.

In chapter 6, a third approach to obtain energy level schemes, next to crystal field
theory and density functional theory, is discussed in detail, i.e. empirical band di-
agrams with impurity levels of lanthanides. The available methodology is critically
reviewed and put in the broader context of energy level models. Empirical models
are by far the fastest and the easiest to implement, making them the most interest-
ing models from the viewpoint of phosphor development. It is however important to
have a good idea of the uncertainties inherent to the model. An error assessment is
carried out, not only pertaining to the energy levels itself, but more importantly, to
the physical properties that can be calculated, allowing to decide which rules yield
sufficiently accurate predictions with respect to the technological requirements and
which rules do not (see Fig. 1.6). Furthermore, suggestions are made how exist-
ing empirical models can be improved. Empirical band diagrams are exploited to
investigate the luminescence of lanthanide-doped CaGa2S4, SrGa2S4, SrAl2O4 and
Sr2Si5N8. The latter three host compounds are used as examples to demonstrate pos-
sible improvements to the empirical rules, inspired by the occurrence of nonequiv-
alent lanthanide defects or charge compensation schemes in the first coordination
shell of the lanthanide. The repercussions of the existence of nonequivalent lan-
thanide defects on the electronic structure and physical properties is discussed. Val-
ues of empirical parameters are collected in appendix C.

The second part of this text is more centered around the experimental validation
of the above six requirements for a selection of promising phosphors which were
selected based on recent literature. In chapter 7, the necessary experimental tech-
niques to achieve this goal are reviewed and put into connection with the six re-
quirements. Special emphasis is put on the construction, calibration and measure-
ment methodology of a setup to obtain absolute quantum efficiencies of powder
phosphors, possibly the parameter that is hardest to measure while validating phos-
phors. Specialized quantities that are used to evaluate the spectra of light sources
are reviewed in appendices D and E.
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Figure 1.6 – Pictorial representa-
tion of two models with predic-
tive possibilities having uncertain-
ties σmodel for physical properties.
One is able (bottom) and one is un-
able (top) to obtain sufficiently ac-
curate predictions, dictated by the
allowed spread on the technolog-
ical requirements σreq. This fig-
ure represents only the precision
of the model. In reality also the ac-
curacy is important which would
be represented by the offset of the
center of the light blue circle with
respect to the bull’s-eye [20].

In the subsequent chapters, different phosphors
are investigated. Chapter 8 reviews the lu-
minescent properties of Eu2+ activated oxoni-
tridosilicates of the form MSi2O2N2 (M = Ca,
Sr, Ba, Eu) and highlights the results that
were obtained for the blue phosphor with M =
Sr0.25Ba0.75. The blue emission color is rather
untypical for the family of europium doped ox-
onitridosilicates and hence deserves some spe-
cial attention. Additionally, the sense and non-
sense of using blue phosphors in pc-LEDs is
discussed based on simulations of LED spec-
tra.

In chapter 9, the luminescent properties of
Eu2+ activated thiogallates of the form MGa2S4
(M = Mg, Zn, Ca, Sr, Ba, Eu) are first re-
viewed. Subsequently, the performance of the
saturated green phosphor SrGa2S4:Eu2+ is dis-
cussed. The thermal quenching and concentra-
tion quenching of the Eu2+ emission are stud-
ied in detail and the use of SrGa2S4:Eu2+ as
green phosphor for display applications is eval-
uated. In the second part of this chapter
the ZnGa2S4:Eu2+ phosphor is investigated in
detail, inspired by positive reports in scien-
tific literature, suggesting LED applications for
this material. The incorporation of Eu2+ in
this remarkable host for lanthanides is stud-
ied and the origin of the green emission ex-
plained.

Finally, a combined experimental-theoretical study
of the red phosphor CaZnOS:Mn2+ is conducted in
chapter 10. A band diagram, impurity levels and
a phonon dispersion relation are obtained with a

semi-empirical version of density functional theory and compared to experimen-
tal luminescence and absorption spectra. It is settled by the calculation as well as
X-ray absorption spectroscopy how the manganese dopant is incorporated in the
oxysulfide host. Furthermore, crystal field theory is exploited to reproduce the well-
resolved luminescence spectrum of this phosphor. Its use as red phosphor in white
LEDs is validated.

Finally, the conclusions of this research work are summarized and some perspectives
are formulated.
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2 A theory of matter and light

In this chapter, the physical building blocks will be provided that allow a theoretical
description of material properties, with a focus on the spectroscopic properties of
inorganic luminescent materials. The physical building blocks come in a mathemat-
ical form, i.e. as the laws of quantum mechanics, permitting to describe the behavior
of matter, light and their interaction. The true and complete theory of matter and
light is called quantum electrodynamics (QED) and treats light and matter as in-
teracting quantum fields, described by the operators of second quantization. Here,
only the light will be considered in field-theoretical disguise, while ordinary quan-
tum mechanics in the form of the many-body Schrödinger equation is used for the
matter part. This does not pose severe restrictions to the systems and processes that
are studied in this text.

First, the equation of motion for matter, the luminescent materials in this case, is
treated in a general way. The so-called Born-Oppenheimer approximation is in-
troduced which decouples the motion of nuclei and electrons based on their huge
mass difference. This approximation paves the way for a more detailed treatment
in further chapters. Subsequently, a quantum mechanical version for the theory of
electromagnetism is given, introducing the notion of the photon, the light particle.
Finally, the interaction between light and matter is studied, yielding a tool to calcu-
late intensities for transitions between ground and excited states of materials upon
absorption or emission of light.

2.1 Quantum mechanical description of matter

Crystalline solids are, like all materials, built from atomic nuclei and electrons which
behave according to the laws of quantum mechanics. As these laws are exactly
known, it is tempting to state that it is possible to predict physical and chemical
properties of materials by mere mathematical manipulation of these laws. This is
only true in principle and demonstrated for the most simple systems. If one at-
tempts a serious theoretical treatment of experimentally relevant systems, even the
most courageous scientist will very soon run into a wall, erected by the limited pos-
sibilities of the available mathematical and computational apparatus. The incon-
ceivably large number of particles that makes up a macroscopic amount of matter is
clearly responsible for this. In a gram of sand, as an example, one can find 3×1022

19
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atomic nuclei and 3×1023 electrons. In the course of the years, multiple shortcuts
were disclosed, putting approximate solutions of the quantum mechanical many-
body problem within reach. Below, the most relevant approximations for the study
of luminescent materials are introduced.

2.1.1 Born-Oppenheimer approximation

As point defects in crystals are considered, a first straightforward approximation can
be made by considering only the immediate neighborhood of the defect and forget-
ting the remainder of the crystal. In this way, one ends up with a molecular defect
cluster. The Schrödinger equation for a cluster containing M nuclei with positions
Rα and N electrons with positions ri reads:

HmatΨ (r,R) =

 M∑
α=1

− ~2

2Mα
∇2
α +

M∑
β>α

ZαZβe
2

4πε0

∣∣∣Rα −Rβ ∣∣∣


+
N∑
i=1

− ~2

2me
∇2
i −

M∑
α=1

Zαe
2

4πε0 |Rα − ri |
+

N∑
j>i

e2

4πε0

∣∣∣rj − ri ∣∣∣

Ψ (ri ,Rα)

= EΨ (r,R), (2.1)

Herein,Hmat and E denote the total Hamiltonian and total energy of the defect clus-
ter respectively and Ψ the many-body wave function.

An often used simplification of Eq. 2.1, effectively separating electronic and nuclear
motion, was found by Robert J Oppenheimer during his stay in Göttingen in 1926-
27 under the supervision of Max Born [21]. This approximation is to date standard
in most quantum mechanical calculations. It assumes following ansatz for the total
wave function:

Ψ (r,R) = ψ(r,R)χ(R). (2.2)

ψ and χ respectively denote the electronic and nuclear wave functions. It allows
to separate Eq. 2.1 into an electronic and nuclear eigenvalue equation under the
condition that the so-called non-adiabatic terms,

Hn-ad =
M∑
α=1

−~2

2Mα

(
2∇αψ (r,R) · ∇αχ(R) +χ(R)∇2

αψ(r,R)
)
, (2.3)

can be neglected. This approximation is most often justified due to the large differ-
ence between the nuclear and electron masses (Mα/me ≈ 103 − 105).
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The approximate solution of Eq. 2.1 starts by solving the electronic eigenvalue equa-
tion,  N∑

i=1

−~2

2me
∇2
i −

M∑
α=1

Zαe
2

4πε0 |Rα − ri |
+

N∑
j>i

e2

4πε0

∣∣∣rj − ri ∣∣∣


+
M∑
α=1

M∑
β>α

ZαZβe
2

4πε0

∣∣∣Rα −Rβ ∣∣∣
ψm(r,R) = Em (R)ψm(r,R), (2.4)

for fixed nuclear positions R. Different electronic eigenvalues Em are then obtained.
The index m denotes the set of quantum numbers and auxiliary numbers that are
required to label the different electronic eigenstates. Depending on the relative size
of the different interactions in the electronic Hamiltonian, these can be angular mo-
menta, wave numbers, irreducible representations of crystal symmetry groups or
Lie groups. Chapters 4 and 5 are devoted to different solutions of Eq. 2.4 that are
relevant for the studied luminescent systems.

Potential energy surfaces Em (R) are obtained by successively solving Eq. 2.4 for dif-
ferent - but always fixed - nuclear coordinates. In this way, the electronic eigenvalues
and eigenfunctions depend parametrically on the nuclear coordinates. The R value
for which the energy Em (R) reaches a minimal value, Rm0, corresponds to the equi-
librium positions of the nuclei. For the electronic ground state, this corresponds to
the experimentally found nuclear geometry. To obtain the complete, however ap-
proximate, solution of the total Schrödinger equation 2.1, the nuclear eigenvalue
equation has to be solved subsequently: M∑

α=1

− ~2

2Mα
∇2
α +Em(R)

χmµ (R) = εmµχmµ (R) . (2.5)

This equation has to be solved on each potential energy surface (PES) that was found
by solving the electronic eigenvalue equation. Equation 2.5 describes the motion of
the atomic nuclei in the defect cluster, i.e. the vibrations of the nuclei around their
equilibrium positions. The index µ denotes the additional set of quantum numbers
that label the different solutions of Eq. 2.5. In chapter 3, approximate analytical
solutions are found for Eq. 2.5.

When solutions are found for both eigenvalue equations, 2.4 and 2.5, the general
solution of Eq. 2.1 can be constructed from the total wave functions, Eq. 2.2, and
energies:

Emµ = Em(Rm0) + εmµ. (2.6)

These are total energies, i.e. the sum of all contributions from all interacting elec-
trons and nuclei, as seen from Schrödinger equation 2.1.

2.1.2 Relativity theory

Schrödinger’s equation 2.1 is purely non-relativistic implying that it fails to describe
phenomena due to relativistic effects. Rather than striving for a solution of the Dirac
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equation (i.e. the relativistic invariant wave equation) one typically adds terms to
H to improve the description of physical reality. The theory of relativity explains
amongst other things the existence of spin, an intrinsic angular momentum that el-
ementary particles possess. This spin angular momentum couples to the orbital
angular momentum of bound particles through the so-called spin-orbit interaction,
probably the most notable term added to Eq. 2.1. The remaining relativistic effects,
related to the mass increase of electrons in high speed orbits are referred to as scalar
relativistic effects [22]. These effects become increasingly important for the heavy
nuclei found upon descending the periodic table. Relativistic effects are not only
required to comprehend the spectra of lanthanide ions, but also to explain daily ob-
servations such as why metallic gold has a golden color or mercury is liquid at room
temperature. The latter two are direct consequences of the relativistic shrinking of
the outer electron orbits [23].

2.2 Quantum mechanical description of light

The most impressive scientific development of the 19th century is doubtlessly the
consciousness that electric and magnetic phenomena are two manifestations of one
fundamental interaction, i.e. electromagnetism. The classical theory of this interac-
tion is built from a few laws that were first written down by James Clerck Maxwell.
The modern textbook version of these laws is due to Oliver Heaviside [24]:

∇ ·E =
ρ

ε0
∇ ·B = 0 (2.7)

∇×E = −∂B
∂t

∇×B = ε0µ0
∂E
∂t

+µ0J , (2.8)

where E and B represent the electric and magnetic fields respectively. Although a
wave solution of these equations is straightforward to find, the implications are enor-
mous. First of all, it proves the existence of electromagnetic waves. Furthermore, it
tells that these waves propagate with a velocity 1/

√
ε0µ0, which can be calculated

from the permittivity and permeability of the vacuum, quantities that were known
from experiments on electricity and magnetism. Surprisingly -at that time- this ve-
locity was already known as the measured speed of light, i.e. c = 299 792 km/s.
Later, more experimental validations of the Maxwell theory followed, for example
the famous radio wave experiments of Heinrich Hertz [25].

Although an interaction between light and matter is clearly present in Maxwell’s
equations through the occurrence of the electric charge density ρ and current den-
sity J , this classical theory does not succeed to yield a sufficiently profound under-
standing of how light can interact with matter. For this, light has to be treated on an
equal footing as matter was treated in §2.1, i.e. quantum mechanically. The classical
wave solution will be given upon which the recipe of quantum mechanics will be
applied.
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2.2.1 Hamiltonian of the radiation field

Rather than working with the electric and magnetic fields E and B, it proves to be
beneficial to introduce the so-called scalar and vector potentials φ and A, which
yield more clear, though equivalent, equations [26]:

E = −∇φ− ∂A
∂t

B = ∇×A. (2.9)

As one can see, the fields pertain to changes in the potentials. As such, a constant
offset in the latter does not influence the former, physical quantities. More general,
it is easy to show that transformations of the type,

A→ A+∇χ φ→ φ− ∂χ
∂t
, (2.10)

where χ is an arbitrary function of space and time, does not influence the physi-
cal fields and is thus a symmetry, called the gauge symmetry, intrinsic to the the-
ory of electromagnetism [24]. The symmetry 2.10 will be used to find the fastest
way towards the physical results that are of our interest. This is done by fixing
the gauge. When not bothering about relativistic invariant equations, the Coulomb
gauge, ∇ ·A = ∂χ/∂t = 0, is an excellent choice [27].

When plugging the expression for A into Maxwell’s equations, a wave equation is
immediately found,

∇2A(r, t) =
1
c2
∂2A(r, t)
∂t2

, (2.11)

for which a general solution can be written as a Fourier series:

A(r, t) =
∑
k,σ

A0(k)εkσ
(
akσeik·r + a∗kσe−ik·r

)
(2.12)

where discrete normal modes were obtained by imposing Dirichlet boundary condi-
tions at the borders of a box with volume L3 1 . The time dependence is absorbed in
the coefficients akσ (t) = akσ (0)eiωkt and the wave number is related to the frequency
by ωk = c |k|. In UV-VIS spectroscopy, the wavelength λ is often used instead of the
wavenumber:

~ωk =
hc
λ
. (2.13)

The two polarization vectors, εkσ (σ = 1,2) and the wave vector k are mutually per-
pendicular. Obtaining similar expressions for the physical fields is straightforward
in Fourier space as derivatives become algebraic expressions:

E(r, t) =
∑
k,σ

−iωkA0(k)εkσ︸           ︷︷           ︸
E0(kσ )

(
akσeik·r − a∗kσe−ik·r

)
(2.14)

B(r, t) =
∑
k,σ

−iA0(k) k× εkσ︸             ︷︷             ︸
B0(kσ )

(
akσeik·r − a∗kσe−ik·r

)
(2.15)

1This discretization is the consequence of the boundary conditions. The found expression is a solution
of Maxwell’s equation and thus classical in nature.
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The total energy which is present in the electromagnetic field, i.e. the classic Hamil-
tonian, can be obtained from the Fourier series:

Hrad =
1
2

∫
L3

(
ε0E

2 +
1
µ0
B2

)
d3r =

∑
kσ

A0(k)2L3ε0ω
2
k

(
akσa

∗
kσ + a∗kσakσ

)
. (2.16)

The theory can be canonically quantized according to the recipe of Dirac for many-
body systems [28]. Field quantities become operators satisfying certain commuta-
tion relations2. For the normal modes of the Maxwell field, these are:[

akσ , a
†
k′σ ′

]
= δkk′δσσ ′ [akσ , ak′σ ′ ] =

[
a†kσ , a

†
k′σ ′

]
= 0. (2.17)

Upon choosing A0(k) =
√
~/L3ε0ωk, the quantum mechanical Hamiltonian becomes:

Hrad =
∑
kσ

~ωk
(
a†kσakσ +

1
2

)
. (2.18)

The eigenstates of the radiation field are built from a (large) number of quanta of
each mode, | . . . ,nkσ , . . . ,nk′σ ′ . . .〉, corresponding with eigenenergy

∑
kσ ~ωk (nkσ + 1/2).

The operators a†kσ and akσ can be easily shown to raise or lower nkσ by one unit, while
the operator nkσ = a†kσakσ simply counts the number of quanta with wavenumber k
and polarization σ :

akσ | . . . ,nk,σ , . . . ,nk′ ,σ ′ . . .〉 =
√
nkσ | . . . ,nkσ − 1, . . . ,nk′σ ′ . . .〉 (2.19)

a†kσ | . . . ,nkσ , . . . ,nk′σ ′ . . .〉 =
√
nkσ + 1 | . . . ,nkσ + 1, . . . ,nk′σ ′ . . .〉 (2.20)

nkσ | . . . ,nkσ , . . . ,nk′σ ′ . . .〉 = nkσ | . . . ,nkσ , . . . ,nk′σ ′ . . .〉 (2.21)

The quanta of the electromagnetic field are called photons. Their energy and wave-
length are given by Eq. 2.13.

2.3 Light-matter interactions

2.3.1 Interaction Hamiltonian

In order to obtain a quantum mechanical Hamiltonian that describes the interaction
between light and matter, one can use the same strategy as in §2.2.1 and start from
the classical expression for the equations of motion, i.e. the Lorentz force, calculate
the classical Hamiltonian and perform a canonical quantization. This procedure
leads to the so-called minimal coupling substitution,

∂
∂t
→ ∂
∂t

+
ie
~
φ ∇→∇− ie

~
A, (2.22)

2To keep the notation light and because the meaning can be derived from the context, no operator
symbols, ,̂ are used.
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that has to be implemented in the Schrödinger equation. Interestingly, the same re-
sult can be obtained by demanding a local U(1) gauge symmetry for the wave func-
tion:

Ψ → e
ie
~ χΨ (2.23)

with χ a function of space and time. The Schrödinger equation is only invariant for
global U(1) transformations3, corresponding with constant χ. The symmetry of the
Schrödinger equation can be made local by introducing two auxiliary fields, φ and
A that transform exactly like Eq. 2.10. From §2.2.1 we know that the equations of
motion for these fields are the Maxwell equations. Demanding a local gauge sym-
metry is thus equivalent with introducing an interaction. This deep insight, which is
not further explored, is often exploited to find theories for the interactions between
elementary particles [29].

When the minimal coupling substitution is performed in the many-particle Hamil-
tonian, Eq. 2.1, one obtains for the total system, i.e. matter and radiation:

H =Hmat +Hrad +Hint (2.24)

where the first two terms are given by Eq. 2.1 and 2.18 and the additional term
reads:

H′int +H′′int =
∑
i

− qimi pi ·A+
q2
i

2mi
A2

 . (2.25)

Herein, the summation is over all particles, i.e. both electrons and nuclei. A term
proportional to A and a term proportional to A2 are found. It is instructive to insert
the Fourier series Eq. 2.12 into the interaction Hamiltonian:

H′int =
∑
i

∑
k,σ

−
qi
mi

√
~

L3ε0ωk
pi · εkσ

(
akσeik·r + a†kσe−ik·r

)
(2.26)

H′′int =
∑
i

∑
k,σ

∑
k′ ,σ ′

~q2
i

L3ε0ωk

εkσ · εk′σ ′√
ωkωk′

(
akσak′σ ′e

i(k+k′)·r

+akσa
†
k′σ ′e

i(k−k′)·r + a†kσak′σ ′e
i(−k+k′)·r + a†kσa

†
k′σ ′e

−i(k+k′)·r
)

(2.27)

Hamiltonian H′int contains only one creation or annihilation operator in each term
and will cause the absorption or emission of a single photon while H′′int contains
two such operators in each term and will therefore be responsible for two-photon
processes. Thus far, the spins of the particles were neglected while these give rise
to intrinsic magnetic moments4, and therefore to an additional interaction with the
magnetic field component of the radiation field according to H = −ms ·B. In Fourier

3U(N ) is the Lie group of all unitary N ×N matrices, i.e. matrices U for which U†U = UU† = I with I
the unit matrix. For N = 1, this boils down to the complex numbers with modulus one. The connection
between groups and symmetry transformations is briefly discussed in appendix A.

4Magnetic moments are related to spin through ms = g q
2m s. The g-factor is a dimensionless quantity.
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space, this Hamiltonian reads

H′′′int =
∑
i

∑
k,σ

−
igiqi
2mi

√
~

L3ε0ωk
si · (k× εkσ )

(
akσeik·r − a†kσe−ik·r

)
(2.28)

and will, like H′int, give rise to single-photon processes. The complete Hamiltonian
for the light-matter interaction is then given by:

Hint =H′int +H′′int +H′′′int (2.29)

The magnitude of Hint is much smaller than Hmat or Hrad. Therefore, perturbation
theory can be applied with the eigenstates |Ψ 〉 ⊗ | . . . ,nk,σ , . . . ,nk′ ,σ ′ . . .〉 of the non-
interacting many-particle system Hmat +Hrad as starting point.

2.3.2 Transition probabilities

In the following, the general expression for transition probability will be briefly elu-
cidated and subsequently applied to electronic transitions associated with the emis-
sion or absorption of photons.

Fermi’s golden rule

If the physical system finds itself at a given moment, t = 0, in a certain eigenstate of
Hmat +Hrad, denoted by |i〉 = |n0〉5, the time-dependent6 perturbationHint can effect
an evolution as a function of time towards a different state |f (t)〉:

|f (t)〉 =
∑
n

cn(t)e−
i
~En0 t |n0〉. (2.30)

Herein, the time evolution of the unperturbed Hamiltonian is given by the time-

dependent Schrödinger equation (the factor e−
i
~En0 t), while cn(t) is purely due to the

perturbation. The probability to find the physical system in state |n〉 after time t is
then given by:

Pn(t) = |
〈
n|f (t)

〉
|2 = |cn(t)|2 . (2.31)

An elegant way to obtain an expression for the coefficients is within the interaction
picture7 where the coefficients are given by matrix elements of the evolution oper-
ator, cn(t) = 〈n|U (t) |n0〉. From the time-dependent Schrödinger equation, a Dyson
series can be found for the evolution operator8:

U (t) =
∞∑
m=0

1
m!

(
− i
~

)m∫ t

0
dt1 . . .

∫ t

0
dtm T [Hint(t1) . . .Hint(tm)] . (2.32)

5The index n denotes the quantum and occupation numbers needed to specify the eigenstate.
6The time-dependence of Hint is concealed in the coefficients akσ (t) = akσ (0)eiωk t , see §2.2.1
7Up to now, all encountered quantum mechanics was within the Schrödinger picture where all time

dependence is absorbed in the state vectors while the operators are time-independent. In the interaction
picture, both operators and state vectors take a part of the time dependence, |ψ(t)〉I = ei/~Ht |ψ(t)〉 and
OI (t) = ei/~HtOe−i/~Ht . The third possibility, where the full time dependence is absorbed in the operators
is called the Heisenberg picture.

8The time-ordering operation, T , is a shorthand notation to put the operators in the argument accord-
ing to increasing time.
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This equation can be drastically simplified in the case of harmonically oscillating
perturbation9, which happens to be the case for Hint. One rather uses transition
probability rates as Pn(t) ∝ t for t→ +∞:

wi→n = lim
t→+∞

Pn(t)
t

=
2π
~ |
Mni |2 δ(Ef −Ei), (2.33)

with:

Mni = 〈n|Hint |i〉+
∑
I

〈n|Hint |I〉〈I |Hint |i〉
Ei −EI + iη

+ . . . . (2.34)

The complete set of intermediate states I are sometimes referred to as virtual states.
Result Eq. 2.33 which forms the keystone of theoretical spectroscopy is known as
Fermi’s golden rule.

Photon emission

When a photon with wave vector k and polarization σ is emitted by a many-particle
system, this will occur simultaneously with the decay of an excited state Ψ2 to a
lower energy state Ψ1 while conserving the total energy. Often, the electronic eigen-
states are degenerate, denoted by i1 = 1 . . .g1 and i2 = 1 . . .g2. The initial and final
eigenstates of the light-matter system are:

|i〉 = |Ψ2〉 | . . .nkσ . . .〉 |f 〉 = |Ψ1〉 | . . .nkσ + 1 . . .〉. (2.35)

The leading order contribution in Eq. 2.33 is due toH′int +H′′′int and can be separated
into a radiation factor, which is calculable with Eq. 2.20, and a matter part, yielding:

w2→1, kσ =
2π
~

1
g2

∑
i1i2

(nkσ + 1)
∣∣∣∣M(1)

21, kσ

∣∣∣∣2 δ(E1 −E2 + ~ωk). (2.36)

where the first order transition moment was defined as:

M(1)
21, kσ =

〈
Ψ1

∣∣∣∣∣∣∣∑i
√

~
L3ε0ωk

qi
mi

(
pi · εkσ −

igi
2
si · (k× εkσ )

)
e−ik·r

∣∣∣∣∣∣∣Ψ2

〉
(2.37)

and was summed over the final states and averaged over the initial states. The factor
nkσ+1, which directly originates from Eq. 2.20 splits the transition rate in two terms,
one proportional to the number of photons already present in the field with the same
wavenumber and polarization as the emitted photon and one term independent of
the radiation field. The former term is responsible for stimulated emission, a cru-
cial phenomenon for laser operation, the latter term is responsible for spontaneous
emission, the phenomenon of interest for this work.

The number of transitions per unit time is found by multiplying the transition prob-
ability rate by the number of available photon states,

dDγ =
( L

2π

)3
d3k =

( L
2π

)3
k2 dk d2Ωk =

( L
2πc

)3
ω2
k dωk d2Ωk , (2.38)

9Of the type V (t) = V0e
iωt +V †0 e

−iωt
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to yield

dw2→1 =
L3

4π2~c3g2

∑
i1i2

(nkσ + 1)
∣∣∣∣M(1)

21, kσ

∣∣∣∣2 δ(E2 −E1 − ~ωk)ω2
k dωk d2Ωk . (2.39)

Integration over the photon energy and wave vector yields:

w2→1 =
L3

4π2~2c3g2

∑
σ=1,2

ω2
k

∫
4π

d2Ωk(nkσ + 1)
∑
i1i2

∣∣∣∣M(1)
21, kσ

∣∣∣∣2 , (2.40)

with ~ωk now fixed at the energy difference E2 − E1 due to the energy conserving
delta function. The spectral energy density10,

I(ωk) =
dΦ
dωk

(2.41)

=
1
L3

∑
σ=1,2

∫
4π

d2Ωk

dDγ
dωk

nkσ~ωk (2.42)

iso, unpol
=

~ω3
k

π2c3n(ωk), (2.43)

can be identified in the stimulated emission term. If it is further assumed that the
radiation field is isotropic and unpolarized, above expression can be written in terms
of the famous Einstein’s A and B coefficients:

w2→1 =
L3ω2

k

4π2~2c3g2

∑
σ=1,2

∫
4π

d2Ωk

∑
i1i2

∣∣∣∣M(1)
21, kσ

∣∣∣∣2︸                                                 ︷︷                                                 ︸
A2→1

+I(ωk)
L3

4~3ωkg2

∑
σ=1,2

∫
4π

d2Ωk

∑
i1i2

∣∣∣∣M(1)
21, kσ

∣∣∣∣2︸                                              ︷︷                                              ︸
B2→1

, (2.44)

The ratio of ~ω3
k /πc

3 between the coefficients was already derived by Einstein in
1905, based on the empirical assumption of Planck’s black-body radiation law. Cur-
rent derivation makes use of quantum electrodynamics, i.e. quantization of Maxwell’s
equations, and is much more powerful, but unknown to the young Einstein. Elabo-
ration of the QED approach neatly produces Planck’s law without further assump-
tions.

Photon absorption

Conversely to the emission process, photon absorption is now considered, exciting
the many-particle system from state Ψ1 to state Ψ2 with higher energy. Here, the

10Here, the total energy density is given by Φ =
∫
I(ωk ) dωk .
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initial and final states are:

|i〉 = |Ψ1〉 | . . .nkσ . . .〉 |f 〉 = |Ψ2〉 | . . .nkσ − 1 . . .〉. (2.45)

and the annihilation operator Eq. 2.19 is now used to calculate the matrix element
pertaining to the radiation, yielding for the transition probability rate:

w1→2, kσ =
2π
~

1
g1

∑
i1i2

nkσ

∣∣∣∣M(1)∗
21, kσ

∣∣∣∣2 δ(E2 −E1 − ~ωk), (2.46)

and

w1→2 =
L3

4π2~2c3g1

∑
σ=1,2

ω2
k

∫
4π

d2Ωknkσ

∑
i1i2

∣∣∣∣M(1)∗
21, kσ

∣∣∣∣2 (2.47)

= I(ωk)
L3

4~3ωkg1

∑
σ=1,2

∫
4π

d2Ωk

∑
i1i2

∣∣∣∣M(1)∗
21, kσ

∣∣∣∣2︸                                              ︷︷                                              ︸
B1→2=

g1
g2
B2→1

, (2.48)

for the transition rate.

2.3.3 Transition moments

Before the evaluation of M(1)
21 , one should realize that the goal is to study systems

with typical dimensions of the size of one up to a few atoms, i.e. in the range of 0.1-
10 nm while the part of the electromagnetic spectrum we are bothered with ranges
from the near UV to the near IR, corresponding roughly with wavelengths in the
range of 100-1000 nm. The different orders of magnitude for the spatial extension
of the matter system and the wavelength of the light allows us to locally approxi-
mate the electromagnetic wave according to eik·r ≈ 1 + ik · r as the product kr ∝ r/λ is
a small parameter.

The above approximation allows to rewrite the operator in Eq. 2.37 in such a way
that different terms obtain a meaning which is reminiscent of concepts of classical
electrodynamics. For this, a few vector identities are applied, together with Heisen-
berg’s equation11 which relates the linear momentum operator to the position vector.
The result reads:

M(1)
21, i =

〈
Ψ1

∣∣∣∣∣Di ·E0(kσ ) +mi ·B0(kσ ) +
1
3
Q : ∇E0(kσ )

∣∣∣∣∣Ψ2

〉
(2.49)

where the amplitudes for the electric and magnetic fields, Eq. 2.14 and 2.15, were
reintroduced. One clearly recognizes the classical interaction energies of an electric

11This equation describes the time evolution of operators in the Heisenberg picture: dOH
dt = − i

~ [OH ,H].
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dipole (E1), magnetic dipole (M1) and electric quadrupole term (E2) in electric and
magnetic fields, with the respective multipole moments as the operators [24]:

D =
∑
i

Di =
∑
i

qiri (2.50)

m =
∑
i

mi =
∑
i

qi
2mi

(`i + gisi) (2.51)

Q =
∑
i

Qi =
∑
i

3
2
qi

(
riri − r2

i 1
)

(2.52)

Depending on which transition moment in Eq. 2.37 is dominant for a particular case,
one speaks of electric dipole, magnetic dipole or electric quadrupole transitions.
The relative transition strengths of the three contributions can be estimated from
above expressions, yielding 1:10−5:10−6 for E1:M1:E2 [30]. The electric dipole term
is dominant upon first sight, however the details of the matter wave functions Ψ are
important as specific symmetries can cause matrix elements, such as the E1 matrix
element, to vanish and therefore induce changes in the relative importance of the
various contributions. Which transitions are dominant in which cases is dictated by
the so-called selection rules. These will be discussed in §4.3 after the symmetries of
the matter wave functions are discussed.

Electric dipole transitions

The simple expression for the electric dipole moment allows to obtain a simple ex-
pression for the transition (probability) rates as well. The transition moment, Eq.
2.37 for E1 transitions is:

ME1
21,kσ = −iωk

√
~

L3ε0ωk
〈Ψ1 |εkσ ·D|Ψ2〉 . (2.53)

The transition rate for emission, Eq. 2.44 is then:

wE1
2→1 =

1
4π2c3ε~

1
g1

∑
i1i2

∑
σ=1,2

∫
dΩk(nkσ + 1) |εkσ · 〈Ψ1 |D|Ψ2〉|2 . (2.54)

When the radiation is emitted uniformly and unpolarized, this becomes:

wE1
2→1 =

[n(ωk) + 1]ω3
k

3πc3ε0~
1
g1

∑
i1i2

|〈Ψ1 |D|Ψ2〉|2 , (2.55)

or:

AE1
2→1 =

ω3
k

3π3ε0~
1
g1

∑
i1i2

|〈Ψ1 |D|Ψ2〉|2 (2.56)

BE1
2→1 =

1
3ε0~2

1
g1

∑
i1i2

|〈Ψ1 |D|Ψ2〉|2 . (2.57)

A similar formula can be found for absorption.
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Local field effect

From the above expression for the transition probability in terms of electric or mag-
netic multipole moments, a factor scaling with the electric or magnetic field strength
arises. As the optical transitions that are of our interest do not take place in vacuum,
but rather in a dielectric host compound, polarization and possibly magnetization
effects should be taken into account, which can change the value of the local fields.
For this reason, following correction factors need to be multiplied to the transition
probabilities: (

Eloc

E0

)2

and
(
Bloc

B0

)2

, (2.58)

for E1, E2 and M1 transitions respectively. As most host compounds show no strong
magnetization (µr = 1), no correction is expected for M1 transitions.

Different analytic expressions are available for Eloc, but none is exact. The most
popular expression is the so-called Lorentz local field which is calculated in classic
electrostatic theory by assuming a nearby cubical coordination of electric dipoles
and a polarizable continuum further away. The contribution of the former can be
shown to vanish while the latter contributes 1/3(εr − 1)E0 to the local field [24].
Together with the external field, the final expression becomes:(

Eloc

E0

)2

=
(
n2 + 2

3

)2

, (2.59)

with n =
√
εrµr the refractive index of the host compound.
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3 Vibronic interactions

In the previous chapter, a superficial look was cast upon the Schrödinger equation
which was symbolically solved in terms of the Born-Oppenheimer approximation.
The solutions are energy levels which are tagged by two types of labels, i.e. labels
associated with the motion of the electrons in the system and labels associated with
the motion of the nuclei in the system. The eigenstates factorize in a nuclear and
an electronic wave function. In this chapter, the meaning of the nuclear labels is
explained by finding approximate solutions of the nuclear eigenvalue equation. Nu-
clear motion inside a material is nothing more than vibration of the nuclei around
their equilibrium position. The quantum mechanical unit for the lattice vibration,
i.e. the phonon, is introduced. The electron-vibrational (or vibronic) nature of the
energy levels has important consequences on the physics of spectroscopy experi-
ments because transitions are not purely electronic, but vibronic in nature, i.e. the
creation or annihilation of phonons is associated with the emission or absorption of
a photon. Broad spectral bands are found instead of sharp lines and the energy of
absorbed and emitted photons is different, yielding the desired color conversion for
many applications. These effects alter the Einstein theory for transition rates. Fur-
thermore, the interaction between the electronic and nuclear subsystems opens the
path for a full non-radiative relaxation which is unwanted in optical materials. The
intuitive and often applied configurational coordinate model is derived as a sim-
plification of the more general theory of electron-vibrational interactions, yielding
simple expressions for the Stokes shift, band shape and non-radiative decay rate in
terms of a single phonon frequency and the Huang-Rhys coupling strength. In this
chapter, the electronic eigenstates are treated symbolically. The details of these are
discussed in subsequent chapters.

3.1 The harmonic approximation

First, a closer look will be cast on the solutions of the nuclear eigenvalue equation,
Eq. 2.5. Consider an electronic eigenstate, m, for which the potential energy surface
(PES) is explored:  M∑

α=1

− ~2

2Mα
∇2
α +Em(R)

χmµ (R) = εmµχmµ (R) . (3.1)

33
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For small deviations from a reference configuration, R0, the PES can be approxi-
mated by a Taylor expansion:

Em(q) = Em(q0)+
3M∑
α=1

Am,α (qα−q0α)+
1
2

3M∑
α=1

3M∑
β=1

Km,αβ (qα−q0α)(qβ−q0β)+O
(
q3

)
(3.2)

where the mass-weighted Cartesian coordinates were introduced1: qα′ =
√
MαRα,i

and the expansion coefficients,

Am,α =
(
∂Em(q)
∂qα

)
q0

and Km,αβ =
(
∂2Em(q)
∂qα∂qβ

)
q0

(3.3)

were introduced. Km,αβ is a positive definite, symmetric matrix and is called the
Hessian matrix or force matrix. For sufficiently small deviations from the reference
geometry, the expansion 3.2 can be terminated at second order according to the har-
monic approximation. The potential energy surfaces then correspond with multidi-
mensional paraboloids. The second order term corresponds to the force constants of
a system of independent oscillators, while the linear term corresponds to the cou-
pling between the luminescent center and the host crystal.

Subsequently, another basis transformation is performed,

Qm = Tm
(
q−qm,0

)
, (3.4)

which is composed of a translation qm,0 and a rotation Tm. The rotation has the goal
to diagonalize the Hessian, Km. The matrix Tm is hence straightforwardly obtained
from the eigenvectors of Km, the eigenvalues are denoted as Kmα . The translation
is such that Qmα = 0 for the equilibrium geometry for the eigenstate m, i.e. corre-
sponding to the minimum of the paraboloid:

qmα,0 = −Kmα
Amα

. (3.5)

The new coordinates, Qmα are called the normal coordinates. If these coordinate
transformations are filled out in the harmonic approximation for the PES, Eq. 3.2,
one obtains:

Em(Qm) = Em(0) +
∑
α

1
2
KmαQ

2
mα −

1
2

∑
α

A2
mα

Kmα
. (3.6)

A system of independent oscillators is indeed found. The third term, which is a con-
stant term, is usually included in the electronic energy of the state m, along with the
first term [31].

1In this new notation, the indices α,β, . . . enumerate the complete 3M dimensional space of all nuclear
coordinates while α,β, . . . are used to count the M nuclei up to now, which all have three (i = 1,2,3)
degrees of freedom.
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The nuclear eigenvalue equation is then obtained from the contributions from the
lattice vibrational energy,

3M∑
α=1

(
−~

2

2
∂2

∂Qmα
+

1
2
KmαQ

2
mα

)
χmµ (Qm) = εmµχmµ (Qm) , (3.7)

showing explicitly the decoupling of the solution in 3M independent oscillators, the
so-called normal modes of the defect cluster in electronic state m. The solution of
one quantum harmonic oscillator is given by [2]:

εmαµmα =
(
µmα +

1
2

)
~ωmα (3.8)

χmαµmα (Qmα) =

√
1

µmα!2µmα

√
ωmα
π~

e−ξ
2
mα /2Hµmα (ξmα) (3.9)

with ω2
mα = Kmα and ξmα(Qmα) =

√
ωmα
~
Qmα (3.10)

where µmα = 0, 1, 2, ... denotes the number of phonons, i.e. quanta of vibration, for
the mode ωmα . Hµmα (ξ) are Hermite polynomials [32]. As H0(ξ) = 1, the eigenstate
corresponding to the zero-point oscillation2 is a Gaussian function of Qmα . The 3M
normal modes do not all correspond to vibrations of the defect cluster. Explicit cal-
culation of theQmα as a function of Rα shows that three normal modes correspond to
mutually perpendicular translations and another three with independent rotations.
In both cases, the shape of the defect cluster does not change. Furthermore, the clus-
ter is embedded in a crystal, prohibiting these movements to occur. In the end, one
remains with 3M − 6 independent vibrational modes3. The vibrational modes can
be labeled by the irreducible representations (IR) of the point group of the defect
cluster, α = aΓγ , with a the branching multiplicity label and γ the partner of the IR
Γ (see appendix A). The total nuclear wave function and energy corresponding to
electronic state m, solution of Eq. 3.1, is given by:

εmµm = Em(qm,0)− 1
2

∑
α

A2
mα

ω2
mα

+
∑
α

εmαµα (3.11)

χmµm(R) =
∏
α

χmαµα (Qmα) (3.12)

with occupation numbers µm = (µmα), α = 1...3M − 6.

2The lowest vibrational eigenvalue is not zero, but εmα0 = 1/2~ωmα . This is referred to as the zero-
point oscillation.

3In the case of linear defect clusters, the axial rotation is not prohibited and 3M − 5 modes remain.
Examples of linear defects are dichalcogenide ions such as O−2 and S−2 and actinyl ions such as UO2+

2 and
NpO2+

2 . Even in these cases, the axial symmetry is broken by the surrounding crystal. Irrespective of
their interesting luminescent and structural properties, these ions are not encountered in this work.
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To summarize, for every PES, corresponding to an electronic energy levelm, multiple
vibrational energy levels µm are associated. The normal coordinates and frequencies
are in general different for every electronic eigenstate. Duschinsky proposed a linear
relationship to relate the normal coordinates of two different electronic eigenstates,
m = 1 and m = 2 [33]:

Q1 = JQ2 +K, (3.13)

with J the Duschinsky matrix and K the shift vector. These can be simply calculated
from the transformation, Eq. 3.4,

J = T1T
−1
2 and K = T1(q2,0 −q1,0). (3.14)

This is a good approximation if the geometrical differences between both electronic
states are limited [34].

3.2 Vibronic transitions

Now that we have expressions at our disposal for both the electronic and nuclear
wave functions, as well as for the electromagnetic transition rates, we can finally put
the pieces of the puzzle together and obtain the spectrum of our phosphor, i.e. cal-
culate the line shape of the transitions involving the metal ion which is incorporated
in a vibrating host crystal.

3.2.1 Franck-Condon approximation

According to Fermi’s golden rule, the rate of an absorption or spontaneous emission
transition is determined by the evaluation of matrix elements of a certain transition
moment (Eq. 2.36, 2.46), which is denoted as µ in general. These transition mo-
ments are calculated by simply summing the contributions of all particles. At the
atomic level only two types of particles are found, i.e. nuclei and electrons, which
are treated on a completely different footing in the adiabatic approximation. For this
reason, the transition moment is decomposed in an electronic and a nuclear part:

µ =
N∑
i=1

µe,i︸  ︷︷  ︸
µe

+
M∑
α=1

µn,α︸   ︷︷   ︸
µn

. (3.15)

In the Born-Oppenheimer approximation, the total wave function was factorized in
an electronic and nuclear part, Eq. 2.2. Filling out this ansatz for a transition from
state ”1” to state ”2” yields:

〈Ψ2|µ |Ψ1〉 = 〈χ2µ2
| 〈ψ2|µe |ψ1〉 |χ1µ1

〉︸                        ︷︷                        ︸
〈χ2µ2 |µ21 |χ1µ1 〉

+
〈
ψ2|ψ1

〉︸   ︷︷   ︸
0

〈χ2µ2
|µn |χ1µ1

〉. (3.16)
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The second term of the right hand side vanishes because of the orthogonality of the
electronic eigenstates. For this reason, only the electronic part of the transition mo-
ment is needed for the evaluation of transition rates.

The electronic transition moment depends, analogously to the PES, on the nuclear
positions. For this reason, µ12 will in general not be constant during an electronic
transition. Still, in the same philosophy as the adiabatic approximation, it can be
assumed that the electronic transition occurs much faster than the induced nuclear
reorganization. Then, µ12 can be Taylor expanded around the initial state’s equilib-
rium geometry:

µ21(Q1) = µ21(0)+
∑
α

(
∂µ21

∂Q1α

)
0
Q1α+

1
2

∑
α

∑
β

(
∂2µ21

∂Q1α∂Q1β

)
0
Q1αQ1β+O(Q3

1), (3.17)

where the normal coordinates of the initial electronic state, Q1, were used instead
of the Cartesian coordinates R. The lowest order approximation corresponds to a
static electronic transition moment and is widely known as the Franck-Condon (FC)
approximation, named after James Franck and Edward Condon, the two pioneers
who first formulated this principle [35, 36]. Higher order terms in above series ex-
pansion can be safely neglected for fully allowed transitions (see chapter 4), while
the linear term can have important contributions in the case of weakly allowed or
electric dipole-forbidden transitions, i.e. when the FC term is small or vanishes.
Herzberg and Teller were the first to apply this, giving their name to this next level
of approximation.

3.2.2 Band shapes

In this paragraph, the shape of a spectral band, corresponding to a single electronic
transition, will be derived. It is solely determined by the nuclear motion according
to the FC principle.

Only one electronic transition is considered and no information is required for the
electronic eigenstates as the electronic transition moment is after all merely a pro-
portionality constant, i.e. µ21(0). This constant is added to the other factors that
occur in the formula for the relevant transition probability (see §2.3.2), denoted as
F0

4. It is then clear that the shape of the spectrum is determined by the square of
the Frank-Condon integrals 〈χ2µ2

|χ1µ1
〉. One has to sum over all possible final and

initial states, while the initial states are weighted by their temperature-dependent
occupation number. As vibrational quanta are bosons, the Bose-Einstein distribu-
tion is used for this. When this is all considered, the shape function for the transition

4These additional factors can have a frequency dependence. See e.g. the Einstein A coefficient for E1
transitions, which has a factor ω3

k in front (Eq. 2.56).
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Ψ1→ Ψ2 becomes:

F(ω0 −ω) = F0(ω0 −ω)×
∞∑

µ′1=−∞

. . .
∞∑

µ′3M−6=−∞

∞∑
µ1=−∞

. . .
∞∑

µ3M−6=−∞

3M−6∏
α′=0

3M−6∏
α=0∣∣∣∣〈χ2α′µ′

α′
(Q2α′ )|χ1αµα (Q1α)

〉∣∣∣∣2 δ[ε2α′µ′
α′
− ε1αµα − ~(ω0 −ω)]

eε1αµα /kBT − 1
, (3.18)

where ~ω0 is the energy of the zero-phonon line (ZPL), i.e. the purely electronic
transition where no vibrational quanta are created or annihilated. The vibrational
modes and quantum numbers that correspond to the final state, ’2’ were denoted
with a prime. At finite temperature, phonons can also be annihilated in the transi-
tion which is then referred to as an anti-Stokes line. Evaluation of the Frank-Condon
integrals additionally requires the Duschinsky transformation, Eq. 3.13 to be per-
formed. Calculating F(ω0 −ω) is clearly not a trivial problem, therefore many lim-
iting cases that reduce the complexity of Eq. 3.18 are available. The most popular
simplification is the configurational coordinate model which is elaborated in §3.4.

3.3 Non-radiative transitions

The coupling between electronic and vibrational states can give rise to non-radiative
transitions. The interaction Hamiltonian which is then used in Fermi’s golden rule,
Eq. 2.33, is not the electron-light interaction but the electron-vibration interaction.
The non-adiabatic terms that were neglected in the Born-Oppenheimer approxima-
tion can be held responsible:

Hn−adψmχmµ = −
3M∑
α=1

(
~2∂ψm
∂Qα

∂χmµ
∂Qα

+
1
2
χmµ

∂2ψm
∂Q2

α

)
, (3.19)

giving rise to a transition probability, similar to Eq. 3.18:

wn−rad
2→1 =

2π
~

∞∑
µ′1=−∞

. . .
∞∑

µ′3M−6=−∞

∞∑
µ1=−∞

. . .
∞∑

µ3M−6=−∞

3M−6∏
α′=0

3M−6∏
α=0∣∣∣∣〈ψ1χ1αµα |Hn−ad|ψ2χ2αµα

〉∣∣∣∣2 δ(ε2α′µ′
α′
− ε1αµα )

eε2αµα /kBT − 1
. (3.20)

Again a bulky formula which will be simplified for the comprehensive configura-
tional coordinate model.

Non-radiative decay of excited activators is typically an unwanted phenomenon. For
applications, the energy that was used to excite the phosphor should obviously be
utilized to create light in an as efficient as possible way. Nonetheless, the above for-
mula demonstrates that non-radiative processes always compete with the radiative
decay. The quantum efficiency is a parameter which is used to indicate to which
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extent non-radiative pathways dominate the decay of the luminescence activator. If
Ninc is the number of photons that is incident on the luminescent material, one has:

Ninc = Nrefl +Nabs (3.21)

= Nrefl +Nrad +Nn-rad, (3.22)

where Nrefl and Nabs are respectively the number of reflected and absorbed pho-
tons while Nrad and Nn-rad are the number of absorbed photons that give rise to
respectively a radiative and a non-radiative decay. The internal quantum efficiency
is defined as [13]:

QEi =
Nrad

Nabs
=

Nrad

Ninc −Nrefl
. (3.23)

Additionally, one has the external quantum efficiency,

QEe =
Nrad

Ninc
, (3.24)

which is a useful parameter in the light of applications (see chapter 7). The decay
dynamics of the considered excited state is described by:(

dN ∗(t)
dt

)
r + n-r

= −
(

1
τrad

+
1

τn-rad

)
N ∗(t) (3.25)

with τ−1
rad =

∑
w2→1, and τ−1

n−rad =
∑
wn−rad

2→1 summed over all possible radiative and
non-radiative decay channels. The quantum efficiency can hence be obtained indi-
rectly when the decay rates are known:

QEi =
τrad

τrad + τn−rad
=

1
1 + τn−rad

τrad

(3.26)

Even when a material has a high quantum - or conversion - efficiency, the energy
efficiency is limited by the Stokes shift (see chapter 7).

Upon increasing temperature, non-radiative decay channels can become more im-
portant, driven by the population of higher-lying vibrational levels according to the
Bose-Einstein distribution in Eq. 3.20. This phenomenon is referred to as ther-
mal quenching (TQ) and offers an experimental tool to obtain information on the
electronic structure of the luminescent defect cluster (see §3.4.4, 6.2.7). Regarding
applications of luminescent materials, TQ should be avoided as a high conversion
efficiency is required irrespective of the working temperature (see §1.4).

3.4 Configurational coordinate model

The first occurrence of a configurational coordinate diagram dates from the 1930’s
and is due to the physicist Arthur von Hippel who worked under the supervision of
James Franck and Robert Pohl in Göttingen. He applied the model to the study of
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electric conduction in insulators [37, 38]. Frederick Seitz was the first to use a simi-
lar intuitive argument to explain some features in the luminescence spectra of thal-
lium activated salts [39]. As Sir Nevill Francis Mott used this model to explain the
temperature-dependent behavior of the luminescence of point defects, the configu-
rational coordinate model is also referred to as the Mott-Seitz model [40]. Strangely
enough, it lasted until 1950 before the model was quantitatively elaborated in order
to get analytical expressions describing spectral band shapes or the temperature de-
pendence of luminescence efficiency. This thorough theoretical treatment was done
by Kun Huang and Avril Rhys who gave name to the most important parameter
of this model, S. [31]. Rather surprisingly, the Mott-Seitz model succeeds to give a
qualitative, and sometimes even quantitative understanding of different phenomena
associated with the luminescence of isolated defects.

3.4.1 Energy levels

In the configurational coordinate model, only one vibrational mode is considered.
In most textbooks the totally symmetric or breathing mode is chosen. For allowed
electronic transitions one can always be sure that the creation of totally symmetric
phonons is allowed (see §3.2). This simplification has another important advantage,
next to the simplification of Eq. 3.18 as it allows to depict the PES in a simple two-
dimensional sketch as the electronic energies Em are only function of one normal
coordinate, Q, referred to as the configurational coordinate in this model (see Fig.
3.1).

The two electronic energy levels that are depicted in Fig. 3.1 can be described in the
harmonic approximation for the configurational coordinate as:

E1(Q) = E1(0) +A1Q+
1
2
K1Q

2 (3.27)

for the ground state ”1” and

E2(Q) = E2(0) +A2Q+
1
2
K2Q

2 (3.28)

for the excited state ”2”. The minimum of the ground state parabola is typically
chosen as the energy reference:

Q1 = −A1

K1
Q2 = −A2

K2
(3.29)

E1(0) =
A2

1
2K1

E2(0) = ∆E +
A2

2
2K2

. (3.30)

The numbers ∆Q = Q2 −Q1 and ∆E give the offset of the excited state level with
respect to the ground state and are obtained by solving the electronic eigenvalue
equation, Eq. 2.4. The equidistant eigenvalues of the nuclear eigenvalue equation
are displayed for both electronic states (see Eqs. 3.7-3.8).
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Figure 3.1 – Two-energy-level system as a function of the single configurational coordi-
nate. Band shapes for different electron-phonon coupling S and temperature T .

3.4.2 Stokes shift

According to the FC approximation, electronic transitions occur vertically, leaving
the nuclear coordinates unchanged. For the excitation from the electronic ground
state to the excited state, this is shown by arrow (1) in Fig. 3.1. It is assumed that
temperature is sufficiently low such that the starting point is the lowest vibrational
level. Due to the nonzero ∆Q, the excited state that is created does not correspond
to the vibrational ground state. Therefore, the electronic transition is followed by a
spatial relaxation towards the lowest vibrational level of the electronic excited state.
During this non-radiative transition, vibrational quanta, i.e. phonons are created.
Subsequently5, the electronic excited state will decay to a non-equilibrium nuclear
geometry for the electronic ground state where a similar relaxation occurs.

From this description and Fig. 3.1, it is clear that there is an energy difference be-
tween the absorbed and emitted photon,

∆S = Eexc −Eem > 0. (3.31)

This energy difference is called the Stokes shift, named after Sir George Stokes who
was the first to establish this phenomenon in 1852, in the early years of spectroscopy
[1]. The Stokes shift, ∆S can be easily found as a function of ∆Q within the configu-
rational coordinate model. For this, it is typically assumed that both parabola have

5The reason why we can assume this fixed sequence of excitation-relaxation-decay-relaxation is be-
cause of the large discrepancies between the time scales of these phenomena, τrelaxation � τdecay, where
the latter is the lifetime of the electronic excited state.
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the same curvature, K1 = K2 = K . This yields:

Eexc = E2(Q1)−
[
E1(Q1) +

1
2
~ωQ

]
= ∆E +

A2
2

2K
− A1A2

K
+
A2

1
2K
− 1

2
~ωQ (3.32)

Eem =
[
E2(Q2) +

1
2
~ωQ

]
−E1(Q2)

= ∆E −
A2

1
2K

+
A1A2

K
−
A2

2
2K

+
1
2
~ωQ (3.33)

with ∆E = ~ω0 and where the zero-point energy, was taken into account. The Stokes
shift is then found:

∆S = Eexc −Eem

=
1
K

(A2 −A1)2 − ~ωQ

= K∆Q2 − ~ωQ (3.34)

Conventionally, the Huang-Rhys parameter is introduced:

S =
Edis

~ωQ
=

K
2~ωQ

(Q2 −Q1)2 − 1
2
, (3.35)

with Edis the dissipated energy during one transition (see Fig. 3.1). This yields:

∆S = 2S~ωQ. (3.36)

The Huang-Rhys parameter signifies the average number of created phonons per
electronic transition.

3.4.3 Band shape

Under the approximations of the configurational coordinate model, Eq. 3.18 simpli-
fies significantly. Only one vibrational mode is considered, Q, which is the same for
the ground and excited electronic level:

F(ω0−ω) = F0(ω0−ω)
∞∑

µ=−∞

∞∑
µ′=−∞

∣∣∣∣〈χ2µ′ (Q)|χ1µ(Q)
〉∣∣∣∣2 δ[ε2µ′ − ε1µ − ~(ω0 −ω)]

eε1µ/kBT − 1
. (3.37)

The FC integral can be calculated by using some identities for the Hermite polyno-
mials. The result is [41]:

〈
χ2µ′ (Q)|χ1µ(Q)

〉
=

√
µ!
µ′!

(−S)µ
′−µ e−S/2L

µ′−µ
µ (S). (3.38)



i
i

i
i

i
i

i
i

Vibronic interactions 43

Here, Lkn(x) are the associated Laguerre polynomials [32]. By using another identity
relating different classes of special functions, the general formula for the band shape
in the configurational coordinate model is obtained:

F(ω0 −ω) = F0(ω0 −ω)
∞∑

µ′=−∞
exp

[
µ′~ωQ
2kBT

− S coth
~ωQ
2kBT

]
Iµ′

[
S csch

(
~ωQ
2kBT

)]
×δ

(
µ′~ωQ − ~ω

)
, (3.39)

where Iν(x) are the modified Bessel functions [32]. This band shape function was
first derived by Huang and Rhys and is therefore often referred to as the Huang-
Rhys band shape [31]. Fig 3.1 shows some examples of band shapes for transitions
with a low (S = 0.1) and intermediate (S = 4) electron-phonon interaction, yielding
respectively line and broadband spectra, for different temperatures.

It is clear that spectra broaden when the temperature increases. The integrated in-
tensity remains however unchanged. It can be shown that the bandwidth varies as

Γ (T ) ≈ Γ (0)

√
coth

~ωQ
2kBT

(3.40)

with temperature. At sufficiently low temperature, the thermal averaging can be
avoided as then only the vibrational ground state will be occupied (µ = 0). This
simplifies the calculation of the FC integral to a trivial problem, yielding,

F(ω0 −ω) = F0(ω0 −ω)
∞∑
µ′=0

e−SSµ
′

µ′!
δ(µ′~ωQ − ~ω). (3.41)

The band shape is hence approximated by a Poisson distribution, which is often
referred to as a Pekarian or Huang-Rhys-Pekar shape function.

3.4.4 Non-radiative decay

For the configurational coordinate model, Eq. 3.20 reduces to:

wn−rad
2→1 =

2π
~

∞∑
µ=−∞

∣∣∣∣〈ψ1χ1(µ0+µ)(Q) |Hn−ad|ψ2χ2µ(Q)
〉∣∣∣∣2 δ(ε1(µ0+µ) − ε2µ)

eε2µ/kBT − 1
. (3.42)

with µ0 = ω0/ωQ. The eigenfunctions of the harmonic oscillator fulfill the identity,

∂χmαµα
∂Qα

=

√
Kmα

2~ωmα

(√
µχmα(µα−1) −

√
µ+ 1χmα(µα+1)

)
, (3.43)
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allowing for a re-summation, yielding:

wn−rad
2→1 =

2π
~

∞∑
µ=−∞

∣∣∣∣∣∣∣〈ψ1|~2

√
K

2~ωQ
(
√
µ+ 1−√µ)

∂
∂Q

+
1
2
∂2

∂Q2 |ψ2〉

∣∣∣∣∣∣∣
2

×
∣∣∣〈χ1(µ0+µ)(Q)|χ2µ(Q)〉

∣∣∣2 δ(ε1(µ0+µ) − ε2µ)

eε2µ/kBT − 1

≈ wn−rad
0

∞∑
µ=−∞

∣∣∣〈χ1(µ0+µ)(Q)|χ2µ(Q)〉
∣∣∣2 δ(ε1(µ0+µ) − ε2µ)

eε2µ/kBT − 1
(3.44)

where in the last step, the Condon approximation for the matrix elements of ∂/∂Q was
applied. This simplifies the calculation appreciably while the end-result remains
very close to the exact solution [42]. All the electronic contributions are collected in
the constant wn−rad

0 , which is in physical situations of the order 1012-1014 s−1. Eq.
3.44 can be elaborated with Eq. 3.38, or more practically thanks to the recursion for-
mulas of Manneback which even allow a different curvature of the two PES. Charles
W. Struck and William H. Fonger worked this out for different types of luminescence
spectra in the 1970’s [42–46].

Here, Eq. 3.44 is applied to two insightful examples. Important quantities that
can be compared to experimental data are the quantum efficiency and the thermal
quenching. These are evaluated within the Condon approximation for two typical
non-radiative decay channels, outside crossover (Fig. 3.2a) and small-offset multi-
phonon emission (Fig. 3.2b). The quantum efficiency was evaluated according to Eq.
3.44 as a function of temperature, yielding the thermal quenching which is displayed
in Fig. 3.2c for both cases. Fig. 3.2d displays the contribution to the rate wn−rad

1→2 of a
multiphonon transition with µ phonons in the initial state at a temperature of 300 K.

In the case of outside crossover, it is clear that the non-radiative decay rate is highly
temperature-dependent, giving rise to a TQ profile strongly resembling experimen-
tal profiles. While the average number of initial state phonons, µ, increases with
temperature, it is remarkably lower than the number of phonons that is required
to cross the energy barrier, formed by the point of intersection of the two parabola,
which lies 14~ωQ above ε20 in this case. This has an important consequence when a
TQ profile is fitted by an empirical Mott prescription,

wn−rad
1→2 = wn−rad

0 e−EMott/kBT (3.45)

which yields TQ profiles according to:

I(T ) =
I0

1 + wn−rad
0
wrad

1→2
e−EMott/kBT

. (3.46)

If the TQ profile of the outside crossover in Fig 3.2c is fitted by Eq. 3.46, one is
fated to obtain a severe underestimation of the energy of the PES intersection point.
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number of phonons

Figure 3.2 – (a), (b) Two different non-radiative decay channels, respectively outside
crossover and small-offset multiphonon emission. (c) Calculated TQ profiles for the pa-
rameters shown in (a) and (b). (d) Relative contributions for the different terms, corre-
sponding with the number of emitted phonons, in the total non-radiative decay rate.

Furthermore, if the expected values of wn−rad
0 and wrad

1→2 are used, the drop in the
TQ profile is much sharper, going from a maximal to a minimal QE in a region of
± 200 K, while this takes a region of ± 500 K for the exact calculation. Unphysical
values for the rates are hence often used. The closer the point of intersection is to
the bottom of the higher parabola, the higher the overlap between the vibrational
wave functions will be and the higher the non-radiative decay rate. This can be rep-
resented by the Mott energy barrier which becomes smaller. When the non-radiative
decay rate is as high such that the luminescence is also quenched at low temperature,
it is called a fast bottom crossover.

Multiphonon relaxation (MPR) is typically found for energy levels with a small off-
set between the PES. Here, a crossover point is not available and the vibrational wave
function overlap is only appreciable for small µ. This is clear from Fig. 3.2d where
only the terms up to three or four created phonons participate in the transition prob-
ability. For this reason, MPR will only play an appreciable role for electronic energy
levels that are reasonably close, up to 3−4~ωQ. This is evidenced in Fig. 3.2c, where
the QE is high due to the large ZPL energy of 6~ωQ.
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3.5 Breakdown of the adiabatic approximation

Within the Born-Oppenheimer approximation, it was assumed that the total wave
function could be neatly separated in an electronic and a nuclear part that are treated
independently. For this to hold, the non-adiabatic part of the many-body Hamilto-
nian, Hn−ad was neglected. This Hamiltonian can however become important for
some physical phenomena. In §3.3 it was shown that it plays a crucial role to ex-
plain non-radiative decay of a luminescent center. Here, different PES were found
to intersect or to lie near each other.

In general, it can be shown that the adiabatic approximation breaks down when the
condition

~ωm1α �
∣∣∣Em1

(q)−Em2
(q)

∣∣∣ (3.47)

is no longer valid [47], i.e. when the difference between the electronic energy levels
becomes comparable to the difference between the vibrational energy levels. This
has repercussions on the eigenstates and eigenvalues of the many-body problem. A
notable consequence is the lifting of degeneracies. These are after all the extreme
cases where the above condition is not fulfilled. The lifting of degeneracies by vi-
bronic interactions was formalized by Hermann A. Jahn and Edward Teller in two
papers in 1937-38 [48, 49]. They used group theoretical arguments to show that the
only remaining degeneracy that can be left is the so-called twofold Kramers degen-
eracy6. Thanks to their pioneering work, this effect is now known as the Jahn-Teller
effect. It has consequences on multiple physical observables such as optical spec-
tra, decay behavior, thermal quenching and so on [47]. Often the effects are rather
small, hidden by other mechanisms that also induce the splitting of energy levels. It
is in particular a popular aid to explain the spectroscopic behavior of s2 ions such as
Pb2+, Bi3+, ... where crystal field splitting is absent for sufficiently high symmetries
(see §4.2).

A semantic confusion might arise in this context. In specialized literature pertain-
ing to the Jahn-Teller effect, ”vibronic interactions” specifically refer to the effects of
Hn−ad, while in the broader luminescence literature, the designation ”vibronic inter-
action” is often used in the context of the Stokes shift, vibrational band broadening
and related phenomena for systems that satisfy the adiabatic approximation.

6In the original work of Jahn and Teller, the non-adiabatic Hamiltonian was linearized in q. For this
approximation, linear nuclear geometries can keep a higher degeneracy which is however lifted upon
inclusion of higher-order terms, e.g. by the quadratic Jahn-Teller effect (also known as the Renner-Teller
effect) [47].
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4 Atomic picture

A deep understanding of the electronic structure of free ions offers a good starting
point to understand the electronic structure of the defect centers, formed by these
ions when they are introduced as impurities in solids. Therefore, the first part of
this chapter is devoted to explain how the ground and excited states of atoms come
about. Many famous scientists have racked their brain during the previous century
in their attempt to describe the atomic states formed by incompletely filled d and f
shells of respectively transition metal and lanthanide/actinide ions. These ions are
different from the atoms in the s and p blocks of the periodic table in the sense that
the usage of the standard techniques in atomic physics due to Slater, Condon and
Shortley becomes extraordinary involved. In the 1940s, Giulio Racah revolutionized
physics by applying group theoretical techniques to this problem. This launched the
penetration of group theory in physics where it soon became indispensable. Racah
was the first to make the distinction between simple and complex spectra, the latter
originating from dN or fN configurations (N ≥ 3) where the Russell-Saunders quan-
tum numbers LSJM are insufficient to obtain an unambiguous labeling of states.
Later, in the 1990s Brian Judd continued the masterpiece of atomic shell theory
by fully exploiting the machinery of Lie groups to devise the quark theory for the
atomic f shell. This treatment, which is based on the diagonalization of Hamiltonian
matrices starts from an independent particle model, the so-called central field ap-
proximation, of which the solutions are electron configurations. Subsequently, the
most important corrections to this model are discussed, i.e. the non-spherical part of
the interelectronic repulsion and the spin-orbit coupling. Expressions to calculate
matrix elements are derived and appropriate labels for the electronic eigenstates are
found. Further smaller corrections, originating from interactions between different
configurations are discussed.

It is a dramatic event for an atom to be inserted as an impurity in a solid. The alien
environment strongly alters its electronic structure. Atomic states can undergo rel-
ative shifts and will split due to the lowering of the symmetry of its environment.
Furthermore, the electrons of the impurity atom will interact with the electrons and
nuclei in the solid and vice versa. In crystal field theory (CFT), a third term is added
to the Hamiltonian which already contained the interelectronic repulsion and spin-
orbit coupling, allowing to describe the splitting of atomic states. The foundations
for this theory were laid by the Nobel laureates Hans Bethe and John Van Vleck in

47
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the late 1920s/early 1930s. Since then, the interpretation of the crystal field effect
has largely changed, although the general principles of the theory hold and yield an
accurate and simple interpretation of many experiments. The second part of this
chapter gives an overview of crystal field theory and applies this to the important
cases of transition metal and lanthanide ions in solid hosts, yielding the highly pop-
ular Tanabe-Sugano and Dieke diagrams respectively. The excited 4fN−15d1 con-
figuration, which is important in spectra of e.g. Eu2+ and Ce3+, is discussed in the
context of CFT and contemporary luminescence literature. It is highlighted how
the parameters of CFT can be obtained by quantum mechanical calculations from
first principles. Finally, this theory is applied to shed a light on some spectroscopic
dubieties concerning the red LED phosphor K2SiF6:Mn4+ and the green afterglow
phosphor SrAl2O4:Eu2+.

4.1 Free ions

A free ion is a conceptually simple system consisting of a positively charged nucleus
around which negatively charged electrons orbit. In secondary school chemistry
courses, it is already taught that the electrons organize themselves in shells, causing
periodicity upon adding electrons to atoms. The concept of electron shells enables
the existence of the periodic table, one of the flagships of science for already more
than 150 years. The ordering of electrons in shells lies also at the foundation of
atomic spectroscopy as will be discussed in this paragraph. The story does not end
here, and important refinements of the shell model are discussed subsequently.

4.1.1 The central field

The Hamiltonian of the electronic eigenvalue equation, Eq. 2.4, reads1

He =
N∑
i=1

− ~2

2me
∇2
i −

N∑
i=1

Ze2

4πε0ri
+

1
2

N∑
i,j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣ (4.1)

for the atomic case with N electrons in the field of a nucleus with charge Ze. Un-
less we have only one electron, this Schrödinger equation has no simple analytical
solution. The reason for this is the occurrence of the third term, breaking spher-
ical symmetry as it contains a factor 1/

∣∣∣ri − rj ∣∣∣. In a first approximation, one can
split this term into two parts, an as large as possible central field and the remaining
problematic part, called the Russell-Saunders (RS) Hamiltonian:

Ucentr.field(r1, . . . , rN ) =
N∑
i=1

Ui(ri) = −
N∑
i=1

Ze2

4πε0ri
+
〈

1
2

N∑
i,j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣
〉

(4.2)

HRS(r1, . . . ,rN ) =
1
2

N∑
i,j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣ −
〈

1
2

N∑
i,j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣
〉

(4.3)

1We work in the Born-Oppenheimer approximation (see §2.1.1) and omit the constant nucleus-nucleus
repulsion.
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The central field is necessarily a single-particle (sp) potential and signifies the aver-
aged interaction an electron feels in the field of the other electrons. When neglecting
the RS Hamiltonian, an independent particle model (IPM) is obtained,

Hcentr.field =
N∑
i=1

Hcentr.field(i) =
N∑
i=1

(
− ~2

2me
∇2
i −

Ze2

4πε0ri
+Ui(ri)

)
. (4.4)

In this case, the total wave function can be written as a product of sp wave func-
tions (orbitals) and the total energy is the sum of the sp energies (binding energies).
Subsequently, realizing that the solution of a particle in a central potential can al-
ways be written as a product of a radial wave function and a spherical harmonic (see
appendix A). This yields finally:

Ψcentr.field(x1, . . . ,xN ) =
N∏
i=1

ψni`im` isimsi (xi)

ψni`im` isimsi (xi) = Rni`i (ri)Y`im` i (Ωi)χsimsi (i)

Ecentr.field =
N∑
i=1

ε
ni `im`i simsi

(4.5)

where the additional spin degree of freedom was included (xi = (ri ,msi )). Here, the
atomic shell model already emerges if the allowed values for the quantum numbers
are inspected:

n = 1, 2, 3 . . .

` = 0, 1, . . . , n− 1

m` = −`, −` + 1, . . . , ` − 1, `

s = 1/2

ms = −1/2, 1/2 (4.6)

for which every unique combination corresponds to a sp orbital. Anti-symmetriza-
tion of the sp solution yields the well-known Slater determinants. The physical
meaning of the principle quantum number n is related to the sp energy of the or-
bital, while ` andm` pertain to the size and projection of the electrons’ orbital angu-
lar momentum2. The spherical symmetry of the central potential conserves angular
momentum and does not affect spin, resulting into a (2` + 1)(2s + 1) = 4` + 2 -fold
degeneracy of the sp energies. The total energy, i.e. the eigenvalues, can therefore be
labeled by the occupation numbers, Ni , for every shell, quantified by the sp quan-
tum numbers n and `. The many-particle (mp) solutions therefore correspond to
so-called electron configurations, n1`

N1
1 . . .nr`

Nr
r , with N1 + . . .+Nr = N . The degen-

eracy of these mp states is obviously obtained by combining the available sp orbitals

2The algebra ˆ̀2 |n`m`〉=~2`(` + 1) |n`m`〉 and ˆ̀
z |n`m`〉=~m` |n`m`〉 applies (see appendix A). Spectro-

scopic notation is common, where the quantum number ` is denoted by s (` = 0), p (` = 1), d (` = 2), f
(` = 3), ...
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with the occupation numbers:

r∏
i=1

(
4`i + 2
Ni

)
=

r∏
i=1

(4`i + 2)!
Ni !(4`i + 2−Ni)!

. (4.7)

In the most simple case of a one-electron atom, the central field corresponds exactly
to the Coulomb potential of the nucleus which has a 1/r behavior3. Potentials with
this inverse distance proportionality exhibit an additional internal symmetry, cor-
responding to the Lie group SO(4) which gives rise to a higher n2-fold degeneracy
of the energy eigenvalues. The additional conserved quantity is the Laplace-Runge-
Lenz vector, which is well-known from the classical Kepler problem. The existence
of electron spin increases the degeneracy by a factor 2s+ 1 = 2 [50].

In a many-electron atom, the potential does not show a 1/r proportionality anymore,
breaking the SO(4) symmetry. Another practical consequence is that an analytical
expression for the potential cannot be found anymore, nor an analytic solution to
the radial Schrödinger equation. Obtaining the radial wave functions therefore re-
quires numerical techniques. Hartree found a straightforward method to determine
this function and the central field potential in a self-consistent way in 1927. Later,
Fock and Slater independently added the Pauli exclusion principle to the theory, re-
sulting in what is now widely known as Hartree-Fock (HF). It can be shown that HF
is the mean field theory for an electron gas, i.e. it corresponds to the lowest order
term (Feynman diagram) in the many-body perturbation series in the two-particle
(tp) interaction [51].

The obtained energy level schemes are very simple, the example of a Na atom is
given in Fig. 4.1. The excited state landscape of this IPM is generated by all the
particle-hole excitations, the energies of which are obtained by subtracting the bind-
ing energies of the individual orbitals. The excited states can be displayed in a total
energy diagram which contains exactly the same information as the sp scheme for an
IPM. In the case of Na, this description is already close to reality because it contains
only one s valence electron. For more complex cases, elements containing more than
one valence electron in highly degenerate d or f shells, this approximation obviously
fails to describe the excited states and the RS interaction needs to be included in the
description. It will result in a splitting of the degenerate central field energy levels.

In most treatises, including this one, the central field approximation is assumed to
be a good lowest order approximation to the energy spectrum. Additional interac-
tions, such as the RS Hamiltonian, are subsequently treated in first order perturba-
tion theory. This means that the notion of an electron configuration, defined by the
sp occupation numbers holds. In the cases when this is not compatible with real-
ity, configuration mixing can be allowed, meaning that the physical eigenstates can

3This 1/r feature is generally not present for a central field of a many-electron atom because of nuclear
shielding by electrons.
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Figure 4.1 – Result of a central field calculation for the Na atom. The single-particle (sp)
diagram compares the solutions of the central field with the exactly solvable 1/r central
field of the H-atom. The many-particle (mp) diagram shows the total energy of the sys-
tem, which is simply the sum of the sp energies within the central field approximation.
The ground state is put at zero total energy. Adapted from [51].

have character of more than one electron configuration. This is for example required
to explain the transition probabilities for intraconfigurational 4fN transitions in the
lanthanides, which is briefly discussed in §4.3. One can also include the effect of
configuration interaction (CI) in an effective way, while keeping the active space re-
stricted to initial configuration in second order perturbation theory (see §4.1.6).

In the following, matrix elements have to be calculated for the different corrections
to the central field. The way this is done always boils down to the same procedure.
Quantum numbers can be found by searching operators that commute with the total
electronic Hamiltonian. In reality, when all interactions are taken into account, this
is seldomly possible and one rather speaks of labels of basis vectors into which the
eigenstates of the Hamiltonian are expressed. If a basis is chosen, matrix elements
have to be calculated. Typically, matrix elements are factorized into an angular part
and a radial part. The angular part can be analytically calculated by algebraic meth-
ods, which are due to G. Racah. These methods essentially consist of two ingredients,
irreducible tensor operators and expansion into coefficients of fractional parentage
(CFP). Appendix B gives a rather detailed account on how these concepts are used
for the calculation of matrix elements. Below, the results of this appendix are ap-
plied to calculate the matrix elements of the interactions which are of interest for
the luminescent systems under study.

4.1.2 Russell-Saunders interaction - equivalent electrons

It can be checked that the individual angular momenta `i do not commute with
1/

∣∣∣ri − rj ∣∣∣. The sp labels can therefore not be used for the eigenstates when HRS is
added to the description. Other labels are required and the operators L2 and S2,
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with the total angular momenta defined as

L =
N∑
i=1

`i S =
N∑
i=1

si , (4.8)

can be shown to commute with 1/
∣∣∣ri − rj ∣∣∣. The associated eigenvalues L and S can

thus be regarded as good quantum numbers upon inclusion of RS. It will be demon-
strated for a configuration featuring N equivalent electrons, i.e. electrons with the
same n and ` quantum numbers, how eigenstates and energies are obtained.

Shell of N equivalent electrons, `N

The allowed |`N LS〉 basis states, often referred to as terms, can be found by reducing
the direct products of SO(3) irreducible representations (irreps):

N⊗
i=1

D(`i ) =
⊕
L

D(L) and
N⊗
i=1

D(si=1/2) =
⊕
S

D(S), (4.9)

under particle exchange antisymmetry restrictions. This group theoretical view-
point thus allows to predict the occurrence of term splitting and the residual degen-
eracies without calculating any matrix element. This demonstrates the power and
usefulness of group theory in spectroscopy. Similar symmetry arguments will be
applied in the study of the crystal field (see further, §4.2.1).

Group theory allows for a quick counting of spectral lines, however quantitative in-
formation can only be obtained upon calculation of matrix elements and subsequent
diagonalization of the Hamiltonian. As the operators L2, Lz, S2 and Sz all commute
with 1/

∣∣∣ri − rj ∣∣∣, the inter-electronic repulsion Hamiltonian will be diagonal in the
proposed basis. So, in the following, only diagonal matrix elements will be consid-
ered.

It is insightful to re-include the inter-electronic repulsion Hamiltonian completely,
and re-separate the spherically symmetric part afterwards. Matrix elements are cal-
culated by expanding the Coulomb potential in a multipole expansion4:

〈n`N LS |
N∑

i<j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣ |n`N LS〉 =
∞∑
k=0

4π
2k + 1

〈n`N LS |
N∑

i<j=1

Y (k)(i) ·Y (k)(j) |n`N LS〉

︸                                                    ︷︷                                                    ︸
fk(`N LS)

× e2

4πε0

∫ ∞
0

drir
2
i

∫ ∞
0

drjr
2
j R

2
n`(ri)

rk<
rk+1
>

R2
n`(rj )︸                                                    ︷︷                                                    ︸

Fk(n`,n`)

. (4.10)

4Here, r< and r> denote respectively the smaller and larger distance of ri and rj .
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The projections ML and MS are left out of the equations for notational simplicity
and the definition of the scalar product of two spherical harmonics was used (Eq.
B.23). Furthermore, the Slater-Condon parameters Fk(n`,n`) are introduced. Al-
though these are symbolically rather simple-looking, they cannot be analytically
evaluated as the radial wave functions Rn`(r) depend on the details of the central
field (see §4.1.1). They are however equal for all terms of the same configuration.
Furthermore, it is important to note that the spherical harmonics in the above ex-
pression are regarded as operators. Their particular symmetry properties allow to
use Racah’s toolbox to crack the angular integrals. In particular, the unit tensor is
introduced according to Eq. B.21:

〈n`N LS |
N∑

i<j=1

Y (k)(i) ·Y (k)(j) |n`N LS〉

= 〈`||Y (k) ||`〉2〈n`N LS |
N∑

i<j=1

u(k)(i) ·u(k)(j) |n`N LS〉

=
1
2
〈`||Y (k) ||`〉2

(
〈n`N LS |U (k) ·U (k) |n`N LS〉

−〈n`N LS |
∑
i

u(k)(i) ·u(k)(i) |n`N LS〉
)

(4.11)

The first term in Eq. 4.11 is of the form B.24 and reads

1
2L+ 1

∑
L′

(−1)L−L
′ ∣∣∣〈n`N LS ||U (k) ||n`N L′S〉

∣∣∣2 , (4.12)

while the second term in Eq. 4.11 needs an additional step. Using the Wigner-Eckart
theorem and the fact that the scalar product

∑N
i=1u

(k)(i) ·u(k)(i) can be considered as
a rank-0 tensor yields:

〈n`N LSMLMS |
N∑
i=1

u(k)(i) ·u(k)(i)(0)
0 |n`

N LSMLMS〉

= (−1)L−ML

 L 0 L

−ML 0 ML

〈LS || N∑
i=1

u(k)(i) ·u(k)(i)(0) ||L′S〉

=N

√
1

2` + 1
〈`||u(k) ·u(k) ||`〉

=
N

2` + 1
, (4.13)

where Eq. B.47 and Eq. B.24 were used consecutively. Finally, combining the above,
and using Eq. B.13 yields:

fk(`
N LS) =

1
2

(2` + 1)2

` k `

0 0 0

2  1
2L+ 1

∑
L′

(−1)L−L
′ ∣∣∣〈LS ||U (k) ||L′S〉

∣∣∣2 − N
2` + 1

 .
(4.14)
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From this expression, it is clear that the range of k is limited by k ≤ 2` because of the
selection rules of the Wigner-3j symbol. Furthermore, as the lowest three entries are
zero, the sum of the upper three, 2`+k, must be even, implying that k must be even.

Furthermore, evaluation of the k = 0 coefficient yields

f0(`N LS) =
N (N + 1)

2
, (4.15)

which is equal for all terms. In other words, f0F0 shifts all energy levels of the config-
uration by an equal amount and corresponds to the spherical symmetric part of the
inter-electronic repulsion Hamiltonian which is added to the central field (§4.1.1).
Optical spectra originate often from transitions between terms of the same configu-
ration. In that case, the value of the F0 parameter is unimportant.

Summarized, for the dN and fN configurations which are of importance for this
work, respectively two (F2 and F4) and three (F2, F4 and F6) Slater-Condon param-
eters are required to parametrize the RS Hamiltonian.

As the fk ’s contain a common denominator irrespective of N , it is often absorbed in
the Slater-Condon parameters, which are then denoted with subscript k and referred
to as the normalized Slater-Condon parameters to avoid confusion:

` = 2 : ` = 3 :

F0 = F0 F0 = F0

F2 = 1
49F

2 F2 = 1
225F

2

F4 = 1
441F

4 F4 = 1
1089F

4

F6 = 1
184041F

6.

(4.16)

The inadequacy of SO(3): Racah’s parentage groups

Unambiguous labeling of terms by L and S is possible, provided that every irrep
found in Eq. 4.9 is unique. It can be checked that this is always the case for incom-
pletely filled shells of s and p electrons. For dN and fN configurations, on the other
hand, multiply occurring LS terms emerge when N ≥ 3 and an additional label, α,
is introduced which can be interpreted as a branching multiplicity label. Neverthe-
less, the interpretation of α is not clear at first sight as supergroups for SO(3) are
required in order to be able to use the notion of branching multiplicity. Further-
more, a recipe is required to obtain the matrix elements for these different states. It
was again Racah who found an elegant way to resolve this issue. As α is implicitly
present in Eq. 4.14 and other matrix elements for other interactions, unambiguous
labeling of states is of importance and the solution of Racah is discussed here briefly.

The current point of discussion is about the labeling of RS terms corresponding to
irreps of the product group SO(3)⊗SU(2), the former pertaining to L, the latter to S.
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This discussion however started from Slater determinants, i.e. the anti-symmetrized
solutions for the central field, which correspond to 4`+2 spin orbitals that form a ba-
sis for an anti-symmetrical representation of SU(4`+2). The mp eigenstates form an
alternative basis for this anti-symmetrical representation and in principle the row
indices of this irrep, Ξ, can be used to distinguish the RS states. It will however
prove to pay off when intermediate groups are traced.

Separating the spin degrees of freedom corresponds to limiting SU(4`+2) to its sub-
group SU(2` + 1)⊗SU(2), where the label S emerges for the irreps of SU(2). Unam-
biguous labeling can be achieved by using the row index of the relevant irrep of
SU(2` + 1), ∆, in addition. Intermediate Lie groups still exist, but these are different
for ` = 2 and ` = 3.

For d electrons, one arrives ultimately at the group chain5:

SU(10) ⊃ [SU(5) ⊃ SO(5) ⊃ SO(3)] ⊗ SU(2), (4.17)

corresponding to the mp labels:

|dN Ξ〉 → |dN ∆SMS〉 → |dN υSMS〉 → |dN υLMLSMS〉. (4.18)

So the orthogonal group SO(5) is found in addition. While all mp eigenstates used
belong to the same irrep of SU(5), reducing this irrep to SO(5) will cause a breakup
into the irreps of SO(5) which are characterized by ` = 2 numbers, W = (w1,w2),
which can be used to label the eigenstates.

Before adhering to this group theoretical method, Racah obtained a consistent label-
ing of the dN states from inspecting the RS terms across the dN series for varying N .
He noticed that the terms of dN recur for dN+2 and used this to introduce the senior-
ity number υ, denoted as 2S+1

υL, which represents theN value for which 2S+1L occurs
for the first time. A two-particle operator was introduced, which is now referred to
as Racah’s seniority operator6,

Q =
N∑

i<j=1

qij for which 〈`2LML|qij |`2LML〉 = (2` + 1)δL0. (4.19)

with eigenvalues that yield exactly the ad hoc introduced seniority number:

Q(N,υ) =
(N −υ)(4` + 4−N −υ)

4
, (4.20)

proving that υ (or Q) is a good label. Further analysis of the branching of irreps
from SU(2`+ 1) to SO(2`+ 1) reveals that the seniority operator is directly related to

5An alternative, but less common group chain contains the symplectic group Sp(4` + 2).
6In the field of atomic spectroscopy, this seniority operator does not have a pronounced physical mean-

ing and is solely used to distinguish nonequivalent eigenstates. In nuclear physics however, the seniority
operator, which signifies a pairing force, gives a good first approximation for the strong interaction be-
tween identical nucleons [52].
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G[SO(2` + 1)], the Casimir operator of SO(2` + 1):

Q =
N (4` + 4−N )

4
−G[SU(2)]− (2` + 1) G[SO(2` + 1)]. (4.21)

Both viewpoints are thus equivalent, i.e. a one-to-one correspondence exists between
(υ,S) and W = (w1,w2), and υ can be used as an additional label for the eigenstates.

The above reasoning about the seniority number can be extended to fN configura-
tions. It can however be shown that already for N = 3, multiple terms with identical
υLS labels emerge upon reducing the irreps W = (w1,w2,w3) of SO(7) into SO(3).
Consequently, additional measures have to be taken. It happens that ` = 3 is a spe-
cial case as an additional Lie group appears in the chain7:

SU(14) ⊃ [SU(7) ⊃ SO(7) ⊃G2 ⊃ SO(3)] ⊗ SU(2), (4.22)

corresponding with mp labels:

|fN Ξ〉 → |fN ∆SMS〉 → |fN WSMS〉 → |fN WUSMS〉 → |fN WULMLSMS〉. (4.23)

G2 is one of the five exceptional simple Lie groups, first described by Wilhelm
Killing. It is a rank-2 group, so its irreps are labeled by two numbers, U = (u1,u2). In
analogy with the seniority operator, a two-particle operator can be devised, which
distinguishes the different irreps of G2. In the reduction of all possible W ’s of SO(7)
to U ’s of G2, no multiplicities higher than one are found. However, for the reduc-
tion of G2’s U ’s into SO(3)’s D(L)’s, ambiguity remains for the irreps U = (31) and
U = (40), which occur for N ≥ 5. In principle, this can be fully resolved by including
the irreps of SO(4) as an intermediate step. This is in practice not done because of
the severe mathematical complication this involves and an arbitrary branching mul-
tiplicity label, τ , is used when required.

An important remark regarding the above argumentation is that it is a strange result
that (almost) unambiguous labeling can be achieved with the used Lie groups. After
all, except for SO(3), these are no symmetry groups for the atomic Hamiltonian, i.e.
the generators of these groups do not commute with He. Labels such as υ, W or U
can therefore not be regarded as good quantum numbers.

The greatest advantage of the group theoretical approach is revealed when matrix
elements are calculated. If the operator can be formulated in terms of the irreps of
the complete Lie group chain, the Wigner-Eckart theorem can be applied for these
supergroups. This allowed Racah to achieve his tour de force, to calculate the ma-
trix elements for the Coulomb interaction in all dN and fN configurations [54]. For
this, the Y (k)(i) · Y (k)(j) terms are re-summed by projecting them on the irreps of
SO(2` + 1) (and G2 for ` = 3) to obtain well-behaving tensor operators. This leads
to a reformulation of the f k ’s in terms of a(dN υLS), b(dN υLS) and c(dN υLS) for
` = 2 and e0(fN WULS), e1(fN WULS), e2(fN WULS), e3(fN WULS) for ` = 3. The

7According to Brian R. Judd this is merely ´´an extraordinary stroke of good fortune´´ [53].
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radial integrals that correspond to these coefficients are linear combinations of the
Slater-Condon parameters and referred to as Racah parameters:

` = 2 : ` = 3 :

A = F0 − 49F4 E0 = F0 − 10F2 − 33F4 − 286F6

B = F2 − 5F4 E1 = 1
9 (70F2 + 231F4 + 20020F6)

C = 35F4 E2 = 1
9 (F2 − 3F4 + 7F6)

E3 = 1
3 (5F2 + 6F4 − 91F6)

(4.24)

This is the background why Racah’s parameters are found in literature rather than
Slater-Condon parameters.

4.1.3 Russell-Saunders interaction - nonequivalent electrons

Often, one encounters configurations in which more than one incompletely filled
shell is found. Examples are the nfN−1(n + 1)d1 and nfN−1(n + 2)s1 configurations
that are found in lanthanides (n = 4) and actinides (n = 5) or the ns1np1 configura-
tion that is found upon exciting s2 ions such as Tl+, Pb2+, Bi3+. For spectroscopy of
metal impurities, the most common configurations of nonequivalent electrons fea-
ture an incompletely filled shell n1`

N−1
1 , coupled to a single electron in a different

shell, n2`
1
2 . This is an important observation as it drastically simplifies increasingly

complicated formulas for matrix elements.

For the general case of a two shell configuration, `N1
1 `N2

2 , there are different possi-
bilities to couple the angular momenta of the shells (see §4.1.5). Here, we proceed
as before (Eq. 4.8) and consider the total momenta of the separate shells, L1, S1 and
L2, S2 and subsequently the total momenta of the complete electronic system, L and
S. This gives rise to basis kets |ψ〉 = |n1`

N1
1 α1L1S1, n2`

N2
2 α2L2S2; LS〉. A similar ar-

gument as before learns that the Coulomb interaction will be diagonal with respect
to L and S. As this Hamiltonian only has positional dependence and no spin depen-
dence, it will also be diagonal with respect to S1 and S2.

In the case of a two shell configuration, `N1
1 `N2

2 , the Hamiltonian is rewritten:

N1+N2∑
i<j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣ =
e2

4πε0

 N1∑
i<j=1

1∣∣∣ri − rj ∣∣∣ +
N2∑
i<j=1

1∣∣∣ri − rj ∣∣∣ +
N1∑
i=1

N2∑
j=1

1∣∣∣ri − rj ∣∣∣
 (4.25)

The first term acts only on the first shell and is therefore diagonal with respect to the
quantum numbers of the second shell. Its matrix elements can be calculated with
the above derived expression for equivalent electrons. A similar argument applies to
the second term. The third term is different and describes the Coulomb interaction
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between the nonequivalent electrons. Multipole expansion of the last term leads to
a similar expression as Eq. 4.10:

〈ψ|
N1∑
i=1

N2∑
j=1

e2

4πε0

∣∣∣ri − rj ∣∣∣ |ψ′〉 =
∞∑
k=0

4π
2k + 1

〈ψ|
N1∑
i=1

N2∑
j=1

Y (k)(i) ·Y (k)(j) |ψ′〉

︸                                         ︷︷                                         ︸
fk

(
n1`

N1
1 α1L1L

′
1S1,n2`

N2
2 α2L2L

′
2S2;LS

)
× e2

4πε0

∫ ∞
0

dri r
2
i

∫ ∞
0

drj r
2
j R

2
n`(ri)

rk<
rk+1
>

R2
n`(rj )︸                                                     ︷︷                                                     ︸

Fk(n1`1,n2`2)

+
∞∑
k=0

4π
2k + 1

〈ψ|
N1∑
i=1

N2∑
j=1

Y (k)(i) ·Y (k)(j) |ψ′〉ex︸                                           ︷︷                                           ︸
gk

(
n1`

N1
1 α1L1L

′
1S1,n2`

N2
2 α2L2L

′
2S2;LS

)
× e2

4πε0

∫ ∞
0

dri r
2
i

∫ ∞
0

drj r
2
j Rn1`1

(ri)Rn2`2
(rj )

rk<
rk+1
>

Rn1`1
(rj )Rn2`2

(ri)︸                                                                                 ︷︷                                                                                 ︸
Gk(n1`1,n2`2)

.

(4.26)

where the subscript ”ex” denotes the exchange matrix element. Both terms ask for a
slightly different elaboration.

Direct part

The angular matrix element is simply calculable with the tensor methods. Upon
substituting the unit tensor (Eq. B.21), one obtains:

〈ψ|
N1∑
i=1

N2∑
j=1

Y (k)(i) ·Y (k)(j) |ψ′〉

= 〈`1||Y (k) ||`1〉〈`2||Y (k) ||`2〉〈ψ1|U (k)(1) ·U (k)(2) |ψ′〉

N2=1
= 〈`1||Y (k) ||`1〉〈`2||Y (k) ||`2〉(−1)L

′
1+`2+LδLL′δMLM

′
L

L′1 `2 L

`2 L1 k

 ,
×〈`N1

1 L1S1||U (k) ||`N1
1 L1S1〉 (4.27)

where U (k)(1) and U (k)(2) sum over the electrons in shell `1 and `2 respectively. In
the last step, N2 = 1 was assumed to simplify the derivation and because only this
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special case is of interest to the spectroscopic experiments that follow. U (k)(2) be-
comes u(k)(2) and Eq. B.32 was used. From the above and Eq. B.13, one obtains:

fk
(
n1`

N1
1 α1L1L

′
1S1, n2`

1
2

)
= (−1)L

′
1+`2+L

`1 k `1

0 0 0

`2 k `2

0 0 0


L′1 `2 L

`2 L1 k


×(2`1 + 1)(2`2 + 1)〈`N1

1 L1S1||U (k) ||`N1
1 L1S1〉. (4.28)

Exchange part

Exchange matrix elements are troublesome because the Wigner-Racah algebra does
not apply to them. For this reason, gk is first rewritten as a direct matrix element of a
different operator. Upon application of the CFP formalism, the evaluation of a two-
particle operator for a many-particle system boils down to the calculation of matrix
elements for the two electrons that relate the grandparent terms to the granddaugh-
ter terms (see appendix B):

〈`1s(i), `2s(j); LS |Y (k)(i) ·Y (k)(j) |`1s(j), `2s(i); LS〉
= (−1)`1+`2−L′+S ′ 〈`1s(i), `2s(j); LS |Y (k)(i) ·Y (k)(j) |`2s(i), `1s(j); LS〉

= δSS ′δLL′ (−1)`1+`2+S+k

`2 `1 L

`2 `1 k

∣∣∣〈`1||Y (k) ||`2〉
∣∣∣2 , (4.29)

where the factor (-1) in the first step originates from the antisymmetrized two-
electron basis states as derived in any standard quantum mechanics handbook8. In
the second step, the scalar product was decoupled in factors working on electron i
and j respectively. Racah’s sum rule (Eq. B.5) is applied to the Wigner-6j symbol,
yielding:

= δSS ′δLL′ (−1)S+L+`1+`2
∣∣∣〈`1||Y (k) ||`2〉

∣∣∣2
×
∑
r

(−1)r (2r + 1)

`2 `1 L

`1 `2 r


`2 `1 k

`1 `2 r


= δSS ′δLL′ (−1)S

∣∣∣〈`1||Y (k) ||`2〉
∣∣∣2 ∑

r

(−1)r (2r + 1)

`2 `1 k

`1 `2 r


×〈`1s(i), `2s(j); LS |u(r)(i) ·u(r)(j) |`1s(i), `2s(j); LS〉. (4.30)

where in the first step it was used that `1 + `2 + k is even (due to the 〈`1||Y (k) ||`2〉
factors) to simplify the exponent of (-1). Then, Eq. 4.27 was used for N1 = 1 and in-
spection of Eq. 4.30, reveals that the exchange matrix element was indeed rewritten

8Two electron can form either a spin singlet, for which the spin part is antisymmetric and the
orbital part symmetric: |1LMLMS 〉 = 1/

√
2 |00〉S

(
|`1(i)`2(j)LML〉+ (−1)`1+`2−L |`2(i)`1(j)LML〉

)
, or a

spin triplet, for which the spin part is symmetric and the orbital part antisymmetric: |3LMLMS 〉 =
1/
√

2 |1MS 〉S
(
|`1(i)`2(j)LML〉 − (−1)`1+`2−L |`2(i)`1(j)LML〉

)
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in a direct matrix element. The factor (−1)S originated from the two-particle anti-
symmetrized wave function and is only valid for the two-electron case where S can
be 0 or 1. A generalization is thus required. From angular momentum algebra it is
simple to show that

〈ψ| − 1
2
− 2

N1∑
i=1

N2∑
j=1

s(i) · s(j) |ψ′〉 = 1− S(S + 1), (4.31)

which indeed boils down to (−1)S for N1 =N2 = 1. This allows to rewrite Eq. 4.29 in
its final form:

〈`1s(i), `2s(j); LS |Y (k)(i) ·Y (k)(j) |`1s(j), `2s(i); LS〉 (4.32)

= −1
2
δSS ′δLL′

∣∣∣〈`1||Y (k) ||`2〉
∣∣∣2 ∑

r

(−1)r (2r + 1)

`2 `1 k

`1 `2 r


×〈`1s(i), `2s(j); LS |u(r)(i) ·u(r)(j) + 4v(r1)(i) · v(r1)(j) |`1s(i), `2s(j); LS〉

upon introduction of the direct product B.22. From the CFP algebra (see appendix
B), this expression can be easily generalized to the general case. As before, only the
case N2 = 1, which is of particular interest for this work, is further explored:

〈ψ|
N1∑
i=1

N2∑
j=1

Y (k)(i) ·Y (k)(j) |ψ′〉ex = −1
2

∣∣∣〈`1||Y (k) ||`2〉
∣∣∣2 ∑

r

(−1)r (2r + 1)

`2 `1 k

`1 `2 r


×〈ψ|U (r)(1) ·u(r)(2) + 4V (r1)(1) · v(r1)(2) |ψ′〉

(4.33)

The first term of this expression is identical to the operator in Eq. 4.27, so this
expression can be copied. The second term contains a scalar product of two direct
products of irreducible tensor operators. To work this out, Eq. B.38 can be used.
When the reduced matrix elements (Eqs. B.13, B.20 and B.22) are filled in, one
finally obtains:

gk
(
n1`

N1
1 α1L1L

′
1S1, n2`

1
2

)
= −1

2
(2`1 + 1)(2`2 + 1)

`1 k `2

0 0 0

2

(4.34)

×
∑
r

(−1)r (2r + 1)

`2 `1 k

`1 `2 r


(−1)L

′
1+L+`2+L

L′1 `2 L

`2 L1 r

〈`N1
1 L1S1||U (r) ||`N1

1 L1S1〉

+ 2
√

6(−1)L
′
1+`2+L+S ′1+1/2+S

L′1 `2 L

`2 L1 r


S ′1 1/2 S

1/2 S1 1

〈`N1
1 L1S1||V (r1) ||`N1

1 L1S1〉
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4.1.4 Spin-orbit interaction

As already explained in §2.1.2, relativistic effects are not accounted for in the Schrö-
dinger equation, possibly leading to incorrect results if no appropriate measures are
taken. An important correction term, which can be derived from the Dirac equation,
is the spin-orbit coupling, described by the Hamiltonian:

Hso =
N∑
i=1

ξ(ri)`i · si . (4.35)

It is a single-particle interaction, simplifying the calculation of matrix elements. In
the case nonequivalent electrons are present, the Hamiltonian can be evaluated for
each shell separately, and the results added. On the other hand, the calculation be-
comes more involved because the tensor operator is non-scalar. The expression for
the function ξ(ri) follows from Dirac’s equation. It contains the gradient of the scalar
potential, φ (see §2.2.1) and it is implicitly assumed that φ depends only on r.

It can be verified that the commutators of Hso with L2, Lz, S2 and Sz are nonzero.
For this reason, L, S, ML and MS cease to be good quantum numbers when Hso is
taken into account. It is easily shown that bothHso and the other terms in the atomic
Hamiltonian commute with J2 and Jz, where J corresponds to the total angular mo-
ment J = L + S 9. For this reason, the label J (and MJ ) are added to the mp basis
states. Hso is evidently diagonal with respect to these quantum numbers.

For a shell n`N , the matrix elements of Hso are evaluated as follows:

〈n`N LSJ |
N∑
i=1

ξ(ri)`i ·si |n`N L′S ′J〉 = 〈n`N LSJ |
N∑
i=1

`i · si |n`N L′S ′J〉︸                                 ︷︷                                 ︸
Aso(`N LL′SS ′J)

∫ ∞
0

dr r2R2
n`(r)ξ(r)

︸                  ︷︷                  ︸
ζn`

,

(4.36)
again separating angular and radial contributions. The angular integral can be cal-
culated analytically when the tensor character of the operator is recognized. `i · si
can be considered as a scalar product of two rank-1 tensor operators, working on
different Hilbert spaces (see appendix B).

The Wigner-Eckart theorem can be used to decouple L and S according to Eq. B.32:

Aso(`N LL′SS ′J) = (−1)L
′+S+J

L′ S ′ J

S L 1

 (4.37)

×
∑
α′′
〈`N αL||`(1) ||`N α′′L′〉〈`N α′′S ||s(1) ||`N α′S ′〉,

9Angular momentum algebra applies, so J = |L− S |, . . . , L+ S and MJ = −J, . . . , J .
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where the definition of the direct product V (11), Eq. B.22, can be recognized, up to a
factor 〈`||` ||`〉 (Eq. B.17). The result is then immediately found:

Aso(`N LL′SS ′J) = (−1)L
′+S+J

√
(2` + 1)(` + 1)` (4.39)

×

L′ S ′ J

S L 1

〈n`N αLS ||V (11) ||n`N α′L′S ′〉

and shows clearly that spin-orbit interaction can mix basis states with different S
and L.

4.1.5 Coupling schemes

At this point, the two most important corrections to the central field model were
discussed. The relative size of the Russell-Saunders interaction and the spin-orbit
coupling changes from atom to atom. For the radial wave functions of a one-electron
atom, it is possible to derive a Z4 dependence of ζn`, indicating that the magnitude
of the spin-orbit coupling shows an increase upon proceeding through the periodic
table.

In the case of two interactions, three different coupling schemes are possible. In the
Russell-Saunders coupling case, first HRS is diagonalized, i.e. by working in the RS
basis, |`N αLS〉 as explained above. Subsequently, Hso is evaluated in the separate
eigenspaces of HRS, leading to an additional splitting with respect to J , i.e. one ob-
tains the kets |`N αLSJ〉 as solutions.

Alternatively, in the so-called jj coupling case, Hso is first diagonalized. In this
regime, the single-electron labels m` and ms do not have a proper meaning, but the
individual total momenta and projections, corresponding to ji = `i+si , do. As s = 1/2,
two subshells are found for every `N shell, j+ = `+1/2 and j− = `−1/2. The jj terms are
then labeled by |`N α+j

N+
+ , α−j

N−− 〉withN++N− =N . Similar as in the RS states, addi-
tional labels are required to obtain unambiguous labeling of the coupled subshells.
These are included in the α’s and represent a seniority label υ, and one additional la-
bel, often denoted asNr. Upon inclusion ofHRS, the individual j2 cease to commute
with the Hamiltonian and additional multiplet splitting for every jj configuration
is caused according to the total momentum J . The kets |`N α+j

N+
+ J+, α−j

N−− J−; J〉 are
then found as solutions.

The disadvantage of both coupling schemes is that the second Hamiltonian is evalu-
ated in the eigenspaces of the first Hamiltonian, allowing no interaction between the
different eigenspaces. This approximation is only valid if the ratio of the magnitudes
of the matrix elements is very small. Two reasons are thinkable why this approach
is nevertheless sometimes followed. First, the expressions for the diagonal matrix
elements are often simpler than for the non-diagonal matrix elements. Second, the
computational cost is reduced as the diagonalization of a large matrix is avoided.
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Both reasons do not apply for our case as computational cost is almost no longer an
issue and we have general formulas at our disposal (e.g. Eq. 4.14 and Eq. 4.39).
Therefore, the complete Hamiltonian is evaluated and diagonalized according to the
intermediate coupling scheme. Two choices for basis states are possible, i.e. the RS
or jj states. As the RS basis states are closer to reality for most atoms, they are a nat-
ural choice. The kets |`N αLSJ〉 are thus no longer regarded as physical eigenstates,
but as the basis vectors into which the physical eigenstates are expanded. Often, the
basis state with the highest expansion coefficient is used to label a state in energy
level diagrams, increasing readability. If jj labels are required, a matrix of basis
transformation can be obtained by means of Racah algebra.

Figure 4.2 shows intermediate coupling calculations for a np3 configuration, illus-
trating that the RS coupling is well reproduced for the light elements N, P and As
(n = 2,3,4), while intermediate coupling is required to have a good description of
the heavier element Sb (n = 5). For Bi (n = 6), jj coupling can give a reasonably good
description. The color of the curves illustrates the breakdown of S as a good quan-
tum number.

In the pure jj coupling case, an IPM is again obtained as the two-particle interaction
vanishes. The IPM is characterized by equidistant energy levels in a total energy
diagram, corresponding to the binding energy difference between the orbitals. The
sp energy level scheme is shown for the ground state and different excited states
(Fig. 4.2).

4.1.6 Additional interactions

If the atomic Hamiltonian correcting the central field solution is restricted to the
Russell-Saunders and spin-orbit interactions, a suboptimal description of experi-
mental spectra is obtained, indicating that something is overlooked. Over time,
multiple additional terms were added to the Hamiltonian in order to improve the
correspondence with experimental spectra.

The first correction term to the atomic Hamiltonian was phenomenologically found
by Richard E. Trees in 1951 [55, 56]. Based on the observation for 3dN configu-
rations that the error decreased upon increasing N , he found that adding a term
proportional to L(L + 1) could decrease the overall error by a factor of 2 to 8 [55].
Ten years later, Racah found that including a second additional term, proportional
to the seniority operator, Q, could improve the description by another 20% [57].

A physical interpretation of these terms was found later by Rajnak and Wybourne
[58]. They calculated the effect of configuration interaction, emerging in second
order perturbation theory with respect to the central field solutions (see §4.1.1):

∆E(ψa) =
∑
ψ′

∑
a

∣∣∣〈ψ′a′ |HRS +Hso |ψa〉
∣∣∣2

Eψ −Eψ′
. (4.40)
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Figure 4.2 – Intermediate coupling calculations for an np3 configuration. The color of
the lines encodes the content of spin-doublet (S = 1/2) and spin-quartet (S = 3/2) charac-
ter in the eigenstates, illustrating the breakdown of Russell-Saunders coupling for heav-
ier elements. The vertical lines represent the experimental parameter ratio. The single-
particle energy level schemes for the different excited states in the jj extreme case are
shown in the right box where a black dot represents an occupied orbital.
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Here, the notation ψ signifies configurations, e.g. `N , and |a〉 the states, found from
first order perturbation theory, e.g. |αLSJ〉. The primed symbols pertain to the con-
figurations that interact with the configuration under study, with unprimed sym-
bols. Elaborating this expression yields different contributions:

∆E(ψa)1 =
∑
ψ′

∑
a

〈ψa|HRS |ψ′a′〉〈ψ′a′ |HRS |ψa〉
Eψ −Eψ′

(4.41)

∆E(ψa)2 = 2
∑
ψ′

∑
a

〈ψa|HRS |ψ′a′〉〈ψ′a′ |Hso |ψa〉
Eψ −Eψ′

(4.42)

∆E(ψa)3 =
∑
ψ′

∑
a

〈ψa|Hso |ψ′a′〉〈ψ′a′ |Hso |ψa〉
Eψ −Eψ′

(4.43)

In the Russell-Saunders coupling regime, ∆E(ψa)1 is expected to give the largest
contribution. It was calculated by Rajnak and Wybourne for the `N configuration,
interacting with multiple other configurations. They were able to show that a large
part of ∆E(ψa)1 can be described by a linear combination of the two-particle tensor
operators

∑N
i<j=1u

(k)(i) · u(k)(j). The terms with even k produce exactly the same
form as the RS interaction (see §4.1.2) , while the tensor operators in the terms with
odd k were not yet encountered. By rearranging the odd operators according to the
parentage groups, Rajnak and Wybourne retrieved the following matrix elements
[58]:

〈dN αLS |Hci−2 |dN α′L′S ′〉 = δαα′δLL′δSS ′
(
α 〈dN αLS | G[SOL(3)] |dN αLS〉

+β 〈dN αLS | G[SO(5)] |dN α′L′S ′〉
)

〈fN αLS |Hci−2 |fN α′L′S ′〉 = δαα′δLL′δSS ′
(
α 〈fN αLS | G[SOL(3)] |fN αLS〉

+β 〈fN αLS | G[G2] |fN α′L′S ′〉

+γ 〈fN αLS | G[SO(7)] |fN α′L′S ′〉
)
.

(4.44)

The first and second term indeed correspond to the phenomenological L(L+ 1) (see
Eq. A.30) and Q (see Eq. 4.21) corrections of Trees and Racah. An additional term
is found for fN configurations. The radial integrals, α, β and γ are now known as
Trees’ parameters.

In their work on Coulomb CI,∆E(ψa)1, Rajnak and Wybourne found that for specific
configurations, interacting with the `N configuration under study, terms of the form∑N
i,j,h[[u(k1)(i)u(k2)(j)](k)u(k)(h)](0), i.e. including the coordinates of three electrons,

emerge [58]. This was formalized by Judd, using the parentage groups, who found
that six or two additional terms are needed for fN or dN configurations, respectively
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[59]10:
〈`N αLS |Hci−3 |`N α′L′S ′〉 =

∑
i

T i 〈`N αLS | ti |`N α′L′S ′〉, (4.45)

where T i are the radial integrals. Of course, Hci−3 does only yield nontrivial contri-
butions for N ≥ 3.

A smaller, but measurable effect is expected from∆E(ψa)2, which is referred to as the
electrostatically correlated spin-orbit interaction, while the CI effect, purely from
spin-orbit coupling is expected to be several orders of magnitude smaller in situa-
tions close to Russell-Saunders coupling [60]. The effect of ∆E(ψa)2 is expected to
be of comparable magnitude to higher order magnetic interactions, treated at first
order perturbation theory [61].

These magnetic interactions have the same origin as spin-orbit coupling, i.e. from
relativistic quantum mechanics as described by the Dirac equation. Many differ-
ent interactions emerge simultaneously in the non-relativistic limit when inspecting
Breit’s equation, a many-body equation, derived from Dirac’s equation [62]. Retar-
dation of the Coulomb interaction, magnetic orbit-orbit interaction and the contact
interaction between electron spins yield tensor operators which are already covered
by other interactions, discussed above. Only the spin-spin and the spin-other-orbit
interactions have an operator form which is fundamentally different. Their expres-
sions were already calculated by Marvin in 1947 [63]. It lasted until 1968 before
they got embodied into lanthanide spectroscopy [61]. The matrix elements factorize
according to:

〈`N αLS |Hss+soo |`N α′L′S ′〉 =
∑
i=0,2,4

M i 〈`N αLS |mi |`N α′L′S ′〉. (4.46)

The radial integrals, M i are referred to as the Marvin parameters.

A large part of ∆E(ψa)2 contains the same tensor operators as Eq. 4.46 [61]. The
remaining contributions are collected in three new operators:

〈`N αLS |Hecso |`N α′L′S ′〉 =
∑
i=2,4,6

P i 〈`N αLS |pi |`N α′L′S ′〉, (4.47)

which concludes the long list of interaction Hamiltonians used to describe the elec-
tronic structure of `N shells.

In practical applications, the Trees correction is typically the only additional term
in the Hamiltonian for dN configurations. However in the case of fN configurations,
for which more transition energies can typically be resolved from the spectra, more
additional terms are usually taken into account.

10Strangely, this interaction term is in literature often referred to as a three-body interaction, although
it originates from interelectronic Coulomb repulsion, a two-body interaction. Up to four electron coordi-
nates can however occur in matrix elements of two-body operators.
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4.1.7 Summary and interpretation

When all contributions that were discussed in previous sections are gathered to-
gether, the free ion Hamiltonian for a general configuration `N1

1 . . . `Nrr is obtained11:

H0(`N1
1 . . . `Nrr ) =

r∑
i=1

H0(`Nii ) +
r∑

i<j=1

∑
k

fk(`i , `j )F
k(`i , `j ) +

∑
k

gk(`i , `j )G
k(`i , `j )

 ,
(4.48)

with

H0(dN ) = Ecentr. field(dN ) +
∑
k=2,4

fkF
k + ζndAso +αL(L+ 1) + βQ, (4.49)

or

H0(fN ) = Ecentr. field(fN ) +
∑

k=2,4,6

fkF
k + ζnfAso +αL(L+ 1) + βG[G2]

+γG[SO(7)] +
∑
i

tiT
i +

∑
i=0,2,4

miM
i +

∑
i=2,4,6

piP
i , (4.50)

for each shell of equivalent electrons. Every term is composed of two factors, an
angular integral for which an analytical expression is available, and a radial inte-
gral which has to be obtained in another way. Most commonly, radial integrals are
treated as empirical parameters and fitted to experimental spectra. Different the-
oretical frameworks exist, allowing to calculate radial integrals from more funda-
mental principles. This is elaborated in §4.2.4.

Remarkably, the treatment of higher order interactions in §4.1.6 brings to light that
parts of these additional terms have the same functional dependence as the RS and
spin-orbit interactions. This has some important consequences. When radial in-
tegrals are obtained by fitting a Hamiltonian to experimental spectra, these need
to be interpreted as effective parameters, not necessarily only quantifying the pri-
mary suspect interaction, but equally containing contributions of other interactions
with (partially) the same transformation behavior. If radial integrals are calculated
within some theoretical framework, it is for this reason of importance to know ex-
actly which interactions are included in order to be able to compare calculated with
empirical parameters.

It is in this context that the notion of an effective Hamiltonian can be explained,
which is defined as a Hamiltonian which acts in a finite subspace of the Hilbert
space, called model space and which gives rise to the same eigenvalues as the exact
Hamiltonian in the full Hilbert space. The effective Hamiltonian’s eigenfunctions
are referred to as the model eigenfunctions [64]. H0 is considered as an effective
Hamiltonian as its active space is limited to a single configuration of the N valence

11In these expressions, the use of a diversifying notation for operators, matrix elements and eigenvalues
as was persevered up to now, was abandoned in imitation of most scientific literature.
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electrons.

Now that the theory for the atomic states is well developed, it should - according to
the atomic picture - be possible to understand the electronic structure and optical
spectra of these metal atoms as impurities in crystals with only a small additional
effort. This small additional effort is called crystal field theory and adds - maybe
unsurprisingly at this point - another set of terms to the effective Hamiltonian.

4.2 Crystal field theory

The basic ideas of crystal field theory (CFT) were devised in the 1930s by Hans Bethe
and John Hasbrouck Van Vleck. This theory allowed them to qualitatively under-
stand the colors and magnetic properties of transition metal salts. To appreciate
the innovative aspect of their work, one should realize that representation theory of
point groups was not yet available at that time, necessitating Bethe to develop this
tool. Also the notion of a double group (see appendix A) is due to him.

The original theory was characterized by two major lines of reasoning. First, group
theoretical arguments were used to predict the splitting of degenerate states due
to the symmetry lowering in crystals. These arguments are explained for different
coupling schemes in §4.2.1. Second, splitting energies could be calculated by the
parametrization of the crystal field interaction by a point charge electrostatic model
(PCEM) where the atoms of the host crystal, or more specifically the anions in the
first coordination shell, are envisaged as point charges with charge equal to their
oxidation state, localized on their lattice site.

As the PCEM model is not well suited to describe reality, improvements to the model
have been proposed throughout the years. In particular ligand field theory (LFT) is
worth mentioning. Here, molecular orbital theory is applied to the chemical bond-
ing between the metal atom and its neighbors, so-called ligands. The result is a
molecular orbital diagram containing single-particle levels which are filled by va-
lence electrons of both the metal and the ligands. Many-electron states can be ob-
tained by suitable linear combinations of the obtained Slater determinants.

In fact, CFT can be perfectly formulated from symmetry arguments without de-
ciding how the crystal field should be parametrized, be it by a PCEM, or a more
advanced model taking wave function overlap, ligand polarization and other effects
into account. For this reason, the distinction between CFT and LFT can be consid-
ered as a historical artifact and the designation CFT will be used in the remainder.

A very persistent notation that modern research has inherited from the old PCEM
model and which might lead to confusion, is 10Dq. It emerges if the crystal field
splitting in the PCEM is calculated for a single d electron in the field of point charges,
positioned in an octahedron while neglecting spin-orbit coupling or any other addi-
tional interaction. For the octahedral symmetry, the fivefold degenerate sp level of
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the d electron splits into two levels with remaining twofold and threefold degener-
acy. Within the PCEM, the splitting energy between the sp levels reads:

∆ε = 10× 35Ze2

16πε0d5︸     ︷︷     ︸
D

× 2
105

∫ ∞
0

drr2 Rnd(r) r4 Rnd(r)︸                                 ︷︷                                 ︸
q

. (4.51)

Although 10Dq is also used to quantify ´´crystal field splitting´´ for many-electron
systems, one should be aware that this designation is purely phenomenological since
a larger number of splitting mp levels are present and sp levels are in general terms
meaningless for the correlated many-electron systems.

4.2.1 Coupling schemes

The interaction of the valence electrons of the metal ion with the host crystal can be
described by an effective Hamiltonian, Hcf, which can be added to Eq. 4.48. Before
we discuss the details of this Hamiltonian and how matrix elements can be calcu-
lated, a general discussion about the symmetry of this Hamiltonian and the magni-
tude of its matrix elements with respect to those of other Hamiltonians, in particular
HRS and Hso, can offer interesting physical insights.

Symmetry operations for the metal atom in a crystal are very much restricted with
respect to the atom in a free state. Under the assumption of a perfect incorporation in
the host crystal12, the symmetry operations are those of the point group of the lattice
site, i.e. Hcf commutes with these symmetry operations. H0 obviously commutes as
well with these operations as the point group is a subgroup of the rotation group.
On the other hand, Hcf does not commute with all operations of SO(3). Therefore,
angular momentum labels cease to be good labels and the irreps of the point group
have to be used to label the eigenstates ofH0 +Hcf. However, similar as explained in
§4.1.5, it is sometimes a good approximation to treat the Hamiltonians consecutively,
leading to solutions where the angular momentum labels can still have a meaning.
If we assume RS coupling, three possible CF coupling schemes are thinkable:

• weak crystal field: 〈Hcf〉 � 〈Hso〉 � 〈HRS〉,

• intermediate crystal field: 〈Hso〉 � 〈Hcf〉 � 〈HRS〉,

• strong crystal field: 〈Hso〉 � 〈HRS〉 � 〈Hcf〉.

The orders of magnitude of these three interactions for the different types of valence
electrons are summarized in Tab. 4.1. In this table, the increase of the strength of
the spin-orbit coupling with the atomic number is evident. Furthermore, it is strik-
ing that the crystal field strength is much smaller for nfN configurations than for the
other configurations. This can be explained when the electron density is studied as

12By this, it is meant that only the translation symmetry of the host crystal is broken, i.e. the point
group remains the same. This assumption can be incorrect if the doping causes strain in the crystal or
when the metal defect favors other defects in its close environment.
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Table 4.1 – Typical order of
magnitude for the matrix ele-
ments of different Hamiltonians
for d block and f block electron
configurations. All values in eV.

HRS Hso Hcf

3dN 1-10 0.1 1.0
4dN 1-10 0.1-1 1.0
5dN 1-10 1.0 1.0
4fN 1-10 0.1-1 0.01
5fN 1-10 1.0 0.01-0.1

(a
.u

.)

Figure 4.3 – Radial wave functions
rRn`(r) for a europium atom, obtained
by a Hartree-Fock calculation [65].
While the 6s electrons are removed upon
formation of the Eu2+ and Eu3+ ions, the
filled 5s and 5p shells are unaffected and
screen the 4f valence electrons from the
crystal environment.

a function of radial distance for the different shells (see Fig. 4.3). It happens that
the 4f valence electrons of the lanthanides and the 5f valence electrons of the heavy
actinides are well shielded from the crystal field by filled 5s, 5p and 6s, 6p shells,
respectively13.

In the following paragraph, the electronic states originating from the three pertur-
bation schemes are discussed. This discussion is limited to a single shell of equiv-
alent electrons, `N . In the case of a configuration with more shells, other coupling
schemes exist. In §4.5.3, this is demonstrated for a particular example, 4fN−15d1

configurations, which are of importance for the spectroscopy of lanthanides. The
results of the representation theory of point groups required to support this discus-
sion are summarized in appendix A.

Weak crystal field

In the weak field perturbation scheme, the crystal field can be seen as a perturbation
on the free ion’s multiplets. This is the case of nfN configurations. The r crystal
field levels can be simply found upon reducing according to the label J , which can
be regarded as a good quantum number in this limiting case:

D(J) =
r⊕
i=1

aiΓ
(i). (4.52)

As J is half integer for an odd number of electrons, the reduction is generally per-
formed for the double group (see §A.4.2). The labels of the crystal field levels are

13This effect is less pronounced for the lighter actinides [66].
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|`N αLSJ aΓ 〉 where a is the branching multiplicity and Γ denotes the irrep. If some
degeneracy remains, the different partners of the irreps can be labeled by an addi-
tional row index γ . These symmetry adapted linear combinations (SALCs) can be
obtained from,

|`N αLS JaΓγ〉 =
J∑

M=−J
〈JM | JaΓγ〉 |`N αLSJM〉, (4.53)

upon calculation of the reduction coefficients.

Intermediate crystal field

In the case of an intermediate crystal field, term splitting according to HRS is dom-
inant. Therefore, the terms |`N αLS〉 are the starting point. The crystal field is
spin-independent and acts therefore only on the orbital angular momentum:

D(L) =
r⊕
i=1

aiΓ
(i)
L . (4.54)

While L ceases to be a good quantum number at this point, S is unaffected and the
resulting levels are (2S + 1)dΓ degenerate, with dΓ the dimension of irrep Γ , and la-
beled by |`N αLΓ S〉, or shorter 2S+1Γ .

In the double group, D(S) shows following reduction:

D(S) =
s⊕
j=1

ajΓ
(j)
S . (4.55)

The 2S+1Γ levels will show additional splitting due to the (weak) spin-orbit coupling
according to:

2S+1Γ
(i)
L → Γ

(i)
L ⊗D

(S) =
s⊕
j=1

aj

(
Γ

(i)
L ⊗ Γ

(j)
S

)

=
s⊕
j=1

aj

t⊕
k=1

akΓ
(k) (4.56)

where the irreps belong to the double group. The associated kets can be obtained if
the Clebsch-Gordan (or coupling) coefficients of the (double) point group are known
in addition to the reduction coefficients:

|`N α(LaLΓL, SaSΓS ) aΓγ〉 =
∑

MLMSγLγS

〈LML|LaLΓLγL〉〈SMS |SaSΓSγS〉 (4.57)

×〈ΓLγLΓSaS |aΓγ〉 |`N αLMLSMS〉.

The intermediate crystal field terms are common in the literature on the electronic
structure of transition metal ndN shells.
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Strong crystal field

In this coupling scheme, the crystal field is the dominant interaction. If we assume
that the crystal field is described by a single-particle Hamiltonian, it will accordingly
act on the individual orbital angular momenta:

D(`) =
r⊕
i=1

aiγ
(i). (4.58)

Here, we copy the notation used in the atomic case that sp labels are small characters
and those for coupled states capital symbols. The sp label for the irrep, γ (i) should
not be confused with the symbol of partners.

If there are N valence electrons, these can be used to fill the crystal field orbitals ac-
cording to an aufbau principle, (a1γ1)n1(a2γ2)n2 . . . (arγr )nr with n1 +n2 + . . .+nr =N .
In this context, the designation configuration is also used. Excited states are obvi-
ously found as particle-hole excitations. The energy spectrum will hence be the one
of an IPM, characterized by sets of equidistant lines, depending on the remaining
degeneracies and number of electrons, N . It is found by simply adding the sp ener-
gies:

E[(a1γ1)n1(a2γ2)n2 . . . (arγr )
nr ] =

r∑
i=1

niεaiγi . (4.59)

Interelectronic Coulomb repulsion subsequently couples the orbitals to multiplets:

r⊗
i=1

(γ (i))ni =
s⊕
j=1

ajΓ
(j)
L . (4.60)

Spin labels are added while taking care of the required antisymmetry of the mp wave
function and the result of spin-orbit coupling can finally be accounted for in a sim-
ilar way as in Eq. 4.56. The strong field states are found from some more extensive,
but straightforward algebra with recoupling and Clebsch-Gordan coefficients:

|`N α [((a1γ1)n1(a2γ2)n2 . . . (arγr )
nr ) aLΓL, aSΓS ] aΓγ〉. (4.61)

Single-particle crystal field models, as described by Eq. 4.58 and 4.59 are abundant
in handbooks and scientific literature. This is undoubtedly due to its conceptual
simplicity. However, it offers seldom a good description of reality if more than one
valence electron is present. The dN and fN configurations are highly correlated and
the many-particle effects can almost never be neglected. The closest agreement is
found for transition metal complexes with CN− or CO ligands [67].
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4.2.2 One-electron crystal field hamiltonian

Crystal field potential

The most common crystal field Hamiltonian originates from the interaction of the
metal’s valence electrons with an external potential,

Hcf = −e
N∑
i=1

V (ri). (4.62)

Here, Hcf is a single-particle Hamiltonian. In the spirit of Bethe and Van Vleck, we
tentatively parameterize the potential V (r) as an electrostatic one:

V (ri) =
∫

d3r
ρ(r)

4πε0 |r − ri |
, (4.63)

where a general charge distribution ρ(r) was chosen14. Later, it will become clear
that the exact nature of the potential does not matter and the shortcomings of the
electrostatic model can be easily overcome. Thanks to the factor 1/ |r − ri |, a mul-
tipole expansion can be applied, analogously as in §4.1.2. It is assumed that the
electrons are spatially separated from the charge density, i.e. r > ri and some manip-
ulations on the spherical harmonics are performed:

V (ri) =
∫

d3r
ρ(r)
4πε0

∞∑
k=0

rki
rk+1

4π
2k + 1

k∑
q=−k

(−1)qY (k)
−q (Ω)Y (k)

q (Ωi) (4.64)

=
∫

d3r
ρ(r)
4πε0

∞∑
k=0

rki
rk+1

4π
2k + 1

×

Y (k)
0 (Ω)Y (k)

0 (Ωi) +
k∑
q=1

(−1)q
(
Y

(k)
−q (Ω)Y (k)

q (Ωi) +Y (k)
q (Ω)Y (k)

−q (Ωi)
)

=
∫

d3r
ρ(r)
4πε0

∞∑
k=0

rki
rk+1

4π
2k + 1

Y (k)
0 (Ω)Y (k)

0 (Ωi)

+
k∑
q=1

1
2

(Y (k)
−q (Ω) + (−1)qY (k)

q (Ω)
)(
Y

(k)
−q (Ωi) + (−1)qY (k)

q (Ωi)
)

−1
2

(Y (k)
−q (Ω)− (−1)qY (k)

q (Ω)
)(
Y

(k)
−q (Ωi)− (−1)qY (k)

q (Ωi)
) .

14In the original CFT model, ρ(r) =
∑CN
i=1Qiδ(r − ri ), where CN is the coordination number, i.e. the

number of nearest neighbors/ligands.
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Upon introduction of the crystal field coefficients:

Bk0(ri) =

√
4π

2k + 1
rki

∫
d3 rρ(r)

1
rk+1

Y
(k)
0 (Ω), (4.65)

Bkq(ri) =

√
4π

2k + 1
rki

∫
d3 rρ(r)

1
rk+1

1
2

(
Y

(k)
−q (Ω) + (−1)qY (k)

q (Ω)
)
, (4.66)

B′kq(ri) =

√
4π

2k + 1
rki

∫
d3 rρ(r)

1
rk+1

i
2

(
Y

(k)
−q (Ω)− (−1)qY (k)

q (Ω)
)
, (4.67)

which depend only on the radial coordinate of the electrons and contain the details
of the crystal field, the expression for the potential assumes a simpler form:

V (ri) =
∞∑
k=0

Bk0(ri)C
(k)
0 (Ωi) +

k∑
q=1

Bkq(ri)
(
C

(k)
−q (Ωi) + (−1)qC(k)

q (Ωi)
)

(4.68)

+ iB′kq(ri)
(
C

(k)
−q (Ωi)− (−1)qC(k)

q (Ωi)
) .

The normalized spherical harmonics were introduced:

C
(k)
q (Ωi) =

√
4π

2k + 1
Y

(k)
q (Ωi). (4.69)

Matrix elements

The CF coefficients facilitate the calculation of matrix elements as a factorization in
a radial and angular part is again possible. The radial part is obtained from the CF
coefficients and defines the so-called crystal field parameters:

Bk0 = −e
∫ ∞

0
dri r

2
i R

2
n`(ri)Bk0(ri), (4.70)

Bkq = −e
∫ ∞

0
dri r

2
i R

2
n`(ri)Bkq(ri), (4.71)

B′kq = −e
∫ ∞

0
dri r

2
i R

2
n`(ri)B

′
kq(ri). (4.72)

The angular part consists of combinations of the normalized spherical harmonics,∑N
i=1C

(k)
q (Ωi). An analytic expression can be derived by means of Racah algebra. In
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the RS basis, |`N αLSJM〉,

〈`N αLSJM |
N∑
i=1

C
(k)
q (i) |`N α′L′S ′J ′M ′〉

= (−1)J−M
 J k J ′

−M q M ′

 N 〈`N αLSJ ||C(k) ||`N α′L′S ′J ′〉

= δSS ′ (−1)2J−M+S+L′+k N
√

(2J + 1)(2J ′ + 1)

 J k J ′

−M q M ′


 J k J ′

L′ S L


×〈`N αLS ||C(k) ||`N α′L′S〉

= δSS ′ (−1)2J−M+S+L′+k+`

` k `

0 0 0

 J k J ′

−M q M ′


 J k J ′

L′ S L


×(2` + 1)

√
(2J + 1)(2J ′ + 1) 〈`N αLS ||U (k) ||`N α′L′S〉, (4.73)

where the Wigner-Eckart theorem was first applied, Eq. B.11, followed by a decou-
pling of L and S, Eq. B.33, while keeping in mind that the operator does not affect
S. In the last step, the unit tensor, Eq. B.20, was introduced and Eq. B.13 applied.

The first Wigner-3j symbol in Eq. 4.73 also occurs in the matrix elements of HRS
for `N configurations, Eq. 4.14. Hence, the possible ranks of CF parameters are re-
stricted to the same values as the ranks of Slater-Condon parameters, i.e. k = 2,4 for
d electrons while k = 2,4,6 for f electrons.

The matrix elements were calculated in the basis |`N αLSJM〉 which is straightfor-
wardly available for all electron configurations. IfHcf is required in other bases, the
matrix element can be calculated directly in the other basis or a suitable transforma-
tion of the matrix can achieve the same, e.g. Eq. 4.53 or Eq. 4.58.

Now that the exact formula for matrix elements is available for all interactions dis-
cussed in §4.2.1, calculations can be performed without making any assumptions on
the coupling scheme by the exact diagonalization of the total Hamiltonian. This is
similar to the intermediate coupling scheme for free ions, §4.1.515.

The Bkq/B′kq parametrization of the crystal field is due to Brian G. Wybourne, one
of the pioneers of lanthanide spectroscopy [68]. Other equivalent parametrization
schemes are possible and can be found in literature, together with translation tables
that relate the different schemes. Recalling from §4.2.1, Hcf should show the point
group symmetry of the defect cluster. This puts additional restrictions on the num-

ber of C(k)
q ’s that will be present in the expansion. The higher the symmetry, the less

terms are needed. Table 4.2 summarizes this number for the different point groups

15The designation intermediate coupling scheme asks for some cautiousness as it can pertain to the full
diagonalization of the atomic Hamiltonian (§4.1.5), an approximate perturbation sequence for the crystal
field (§4.2.1) or the full diagonalization of the total Hamiltonian as discussed here.
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Table 4.2 – Number of one-electron crystal field parameters required for energy level
calculations.

` = 2 ` = 3
# Bkq groups # Bkq groups

14 Ci, C1 27 Ci, C1

8 C2h, C2, CS 15 C2h, C2, CS

5 D2h, D2, C2v 12 C3

4 C3, S6, C4h, C4, S4 9 D2h, D2, C2v, C3, S6

3 D3d, D3, C3v, D4h, D2d, 7 C4h, C4, S4

D4, C4v 6 D3d, D3, C3v

2 C3h, C5h, C6h, C5, C6, 5 D4h, D2d, D4, C4v, C3h, C5h, C6h,
D3h, D6h, D5d, D5, C5, C6

D6, C5v, C6v, D5h, D∞h, 4 D3h, D6h, D5d, D5, D6, C5v, C6v

D4d, D6d, C∞v, S8 3 D5h, D∞h, D4d, D6d, C∞v, S8

1 Oh, Td 2 Oh, Td
0 Ih 1 Ih

for d and f electrons.

The expansion ofHcf in terms of spherical harmonics can be seen as a general single-
electron Hamiltonian with the symmetry of the defect cluster. In other words, this
Hamiltonian can be used without the need to restrict oneself to the electrostatic
model that was used to derive it. Spherical harmonics form a special class of tensor
operators as they form a complete set of orthogonal operators16 [69,71]. The impor-
tance of operator orthogonality was stressed by Brian R. Judd, another pioneer of
lanthanide spectroscopy, as a third criterion to select operators for effective Hamil-
tonians next to their physical interpretation and the availability of group theoretical
methods to calculate matrix elements [71, 72].

4.2.3 Correlation crystal field

Up to now, the crystal field effect was limited to a single-particle potential and one
could wonder whether the two-particle interaction is well described for metal ions in
a crystal field by the same method as for the free metal ion. It was found that the con-
ventional crystal field description showed some remarkable discrepancies with the
experiments for a few particular multiplets. This aberration could not be resolved by
adding terms to the free ion Hamiltonian or tweaking its parameters. Therefore, it
appeared that a generalization of the conventional CF model was necessary, paving
the way for Bishton and Newman to propose an anisotropic two-particle interac-
tion [73]. Judd and Read worked out the possible orthogonal tp operators by means
of Racah’s parentage groups, yielding the modern version of the correlation crystal

16Two operators, O1 and O2 are orthogonal if Tr(O1O2) = 0 [69, 70].
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field (CCF) [74, 75]:

HCCF =
∑
iKQ

g
(K)
iQ G

K
iQ. (4.74)

The g(K)
iQ are combinations of direct products of unit tensors, [U k1(i)U k2(j)](K)

Q . The
disadvantage of this model is that a great number of parameters is added, compli-
cating or precluding the comparison with experimental spectra. Without symme-
try constraints, 637 CCF parameters are required for f electrons while still 41 CCF
parameters are required for octahedrally coordinated f systems [70]. Fortunately,
prescriptions are available that introduce an important part of the CCF effect while
keeping the number of added parameters limited. A particularly successful model
is the so-called spin-correlated crystal field.

Spin-correlated crystal field

The spin-correlated crystal field (SCCF) was devised by Judd as an alternative with
less parameters, compared to the more general CCF. It was inspired by the phe-
nomenological finding for the 4fN spectra of lanthanides that sp CF parameters,
able to reproduce CF levels of multiplets with a certain S value, failed notably when
predicting the CF levels of a multiplet with a different S [70, 76]. The form of the
SCCF Hamiltonian was inspired by the spin-dependent Coulomb exchange interac-
tions and is obtained with the substitution,

C
(k)
q (Ωi) → (1 + ck si · S) C(k)

q (Ωi) (k = 2,4,6) (4.75)

in the CF Hamiltonian, yielding:

Hsccf =
∑
k

Bk0(ri)C
(k)
0 (Ωi) +

k∑
q=1

ckBkq(ri)si · S
(
C

(k)
−q (Ωi) + (−1)qC(k)

q (Ωi)
)

(4.76)

+ ickB′kq(ri)si · S
(
C

(k)
−q (Ωi)− (−1)qC(k)

q (Ωi)
) .

which leads to a better agreement with experiment if added to the total Hamiltonian.
The parameters ck can be written as linear combination of a few CCF parameters
[70].

4.2.4 Meaning and calculation of radial parameters

Up to now, only the general formalism of crystal field theory was explained. The
short summary is that all relevant interactions are collected as different terms in
an effective Hamiltonian. Each term of this Hamiltonian can be written as a prod-
uct of an angular integral and a radial integral. The former are exactly calculable
by means of the Wigner-Racah algebra, while for the latter analytical expressions
cannot be obtained. The radial integrals can either be obtained from experimental
spectra by a fitting procedure (see §4.4) or can be calculated numerically within a
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theoretical framework of choice. Most of the theoretical methods available in liter-
ature do however use empirical input, although some authors have succeeded well
in hiding this nuance. Still these models decrease the number of empirical param-
eters needed, which is especially interesting for low-symmetry complexes (see Tab.
4.2). In this paragraph, the most popular techniques to calculate radial integrals are
briefly enumerated.

The parameterization which appeared historically as first is the point charge elec-
trostatic model (PCEM) [77, 78]. Here, the nearest neighbors of the optically active
metal ion are treated as fixed point charges, effecting a Stark splitting on the elec-
tron configuration of interest. A PCEM is intuitively simple and can explain certain
observations in a qualitative fashion. Despite its didactic value, quantitative predic-
tions are however far from reality as a consequence of the simplistic assumptions.
In modern applications, the role of the PCEM is therefore limited to an initial guess
for fitting procedures.

The superposition model (SM), which was developed by Newman and his cowork-
ers in the 1960s decreases the number of empirical parameters of the general CF
model by assuming that the contribution to the CF of every ligand can be super-
posed [70, 79, 80]. For every ligand, an axially symmetric crystal field (C∞v) is cal-
culated, characterized by Bk0, which is then rotated and summed to construct the
crystal field Hamiltonian for the first coordination shell. The atomic positions are
assumed to be known for this procedure. In addition to this model, intrinsic param-
eters, Bk are introduced for every type of ligand, which can be transferred to other
materials. To compensate for remaining discrepancies, an empirically determined
factor depending on the binding distance is introduced.

In parallel with the development of the SM, Schäfer and Jørgenson developed what
is called the angular overlap model (AOM) [70,80–82]. This model assumes a super-
posable nature for the contributions of the different ligands, similar to the SM. The
AOM parametrizes the matrix elements of the sp crystal field Hamiltonian directly,
rather than yielding coefficients for an expansion in irreducible tensor operators.
The formulation of the AOM parameters is inspired by molecular orbital theory,
where σ -, π- or δ- molecular orbitals are found, centered at the metal site. For this
reason, the AOM can be interpreted as a quantitative formulation of LFT.

The exchange charge model (ECM), invented by B. Malkin in the 1970s, extends
the PCEM model with wavefunction overlap directly at the level of CF parame-
ters [83–85]. The PCEM parameters are supplemented by a term which contains
overlap integrals that are calculated by a wave function-based quantum mechanical
technique, typically Hartree-Fock. Moreover, this term contains an empirical factor
which is calculated from the first absorption band.

The above models all have as disadvantage that they give no information on how
the atomic parameters, most notably those describing the Coulomb interaction, are
altered in the crystal field. However, it is empirically known that these can change
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appreciably. As an example, the decrease of the free ion Racah parameters upon
the formation of chemical bonds has obtained a dedicated name, i.e. the nephelaux-
etic effect [67, 86]. Models describing these effects are as a rule computationally
more demanding than the simple models described above. Nonetheless, increasing
computer power enables these models to be applied to systems that are studied ex-
perimentally.

Ligand field density functional theory (LFDFT) has been demonstrated to yield a
satisfying description of the excited states of transition metal and lanthanide ions.
This method, which was developed by M. Atanasov, C. Daul and C. Rauzy, can be
regarded as a modern version of the SM or AOM [87–89]. First, an optimized geom-
etry and electronic structure is obtained by density functional theory (DFT) calcula-
tions17. Although DFT is by definition not suited to describe excited states, a cun-
ning procedure, where the single-particle states are combined into many-particle
states, allows the user to distill Racah and CF parameters from the DFT calculation
and hence obtain excitation energies in an indirect way.

A complementary method to obtain some information on excited states from ordi-
nary DFT is upon forcing the system into a non-equilibrium orbital occupation. The
difference in total energy can then be used to estimate the vertical excitation energy,
while it is also possible to relax the geometry for the excited state to estimate the
energy of the zero-phonon line. The limitation of this technique is that it can only
be used to obtain energy differences for interconfigurational transitions. This use of
DFT is further elaborated in §5.3 as it is more commonly applied within the band
picture. Term- and multiplet splitting hamper a straightforward extension of this
technique to interconfigurational transitions [90–94]. For the latter, LFDFT offers
an alternative.

To meet with the restriction of DFT being a ground-state method, Runge and Gross
developed a time-dependent variant of DFT (TD-DFT). By determining the connec-
tion between the time-dependent density and external potential via linear response
theory, the excitation energies of the system can be found as the poles of the response
function [95, 96]. While TD-DFT was able to prove its use in the description of ex-
cited states of organic systems, its successful application to d or f shell systems is
limited, although its popularity is considerable given the relatively small threshold
for users due to the limited required computer power and black-box behavior [97].
Reasons for the limited success can be found in the multiconfigurational nature of
the systems and high degeneracies of open-shell configurations [97].

The multiconfigurational nature of the excited state landscape of the systems un-
der study suggests the use of multiconfigurational quantum mechanical techniques
such as CASSCF [97, 98]. Dynamic correlation can be included in perturbation
theory, cfr. CASSCF/CASPT2 [97, 98]. While these and related techniques are by
far the most involved of this list, concerning both required computer resources as

17For details on DFT, the reader is referred to §5.3 where this formalism is applied to other aspects of
luminescent materials.
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user-experience, they have resulted in accurate and above-all insightful results con-
cerning the spectroscopy of d- and f-block elements, including information on the
electron-vibrational coupling, in contrast to most of the above techniques [98–102].
To date, these calculations can therefore be regarded as the theoretical benchmark.

4.3 Electric dipole transitions

In the previous paragraphs, it was explained how the energy eigenvalues of the
Hamiltonian are obtained. The energy differences between these eigenvalues yield
the energies that can appear in experimental spectra. So far, it was however not yet
discussed which transitions are allowed and what intensities to expect. In §2.3 it was
shown that matrix elements of a transition moment have to be calculated. Under the
assumption of the Born-Oppenheimer approximation and the Frank-Condon prin-
ciple (see §3.2.1), only the electronic part, i.e. the intensity of the ZPL needs to be
calculated. Here, we will restrict ourselves to electric dipole radiation18.

Here, line strengths are inspected, defined as:

S(αLSJ,α′L′S ′J ′) =
∑
MM ′

∣∣∣〈αLSJM |D|α′L′S ′J ′M ′〉∣∣∣2 , (4.77)

for pure Russell-Saunders states. For intermediate coupling eigenstates, the appro-
priate linear combinations of Eq. 4.77 have to be made. Line strengths can be related
to emission, excitation and absorption spectra in a straightforward way (see §2.3.2).
Care should however be taken as the Einstein relations between the A and B coef-
ficients are not necessarily found in real materials which are no two level systems.
After absorption of a photon, a fast non-radiative relaxation can occur, dissipating
part of the energy and messing up the detailed balance of Einstein. Nonetheless, the
individual expressions for the coefficients can still be applied, provided the correct
wave functions are used.

In spectroscopy, selection rules are of great interest. These rules tell when matrix
elements such as Eq. 4.77 vanish. These rules can be found by direct calculation,
or more interestingly by group theory. In the latter case, the irreps of a symmetry
group of the system have to be identified for both wave functions and the operator.
Generally written as 〈

fΓ
∣∣∣OΓ1 ∣∣∣gΓ2〉 , (4.78)

the matrix element will only be nonzero if the totally symmetric irrep is found in
the reduction of the direct product Γ ⊗ Γ1 ⊗ Γ2 or similarly, when Γ is found in the
reduction of Γ1 ⊗ Γ2 (see appendix A).

18Here, M1 and E2 transitions are not considered although these can be indicative for certain spectro-
scopic studies.
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Laporte rule

When the system contains a symmetry center, the irreps of the wave functions have
a well-defined parity label, i.e. even or odd. Parity is defined as the eigenvalue of the
parity operator, P which transforms r to −r. The parity of an electron configuration
is given by:

(−1)
∑N
i=1 `i (4.79)

and does not depend on any other quantum number, i.e. parity is the same for every
term or multiplet of the same configuration. As the parity of the electric dipole
operator is odd, the parity of the initial and final wave function should be opposite
for E1 transitions to be allowed. This is clearly not the case for intraconfigurational
transitions such as ndN ↔ ndN and nfN ↔ nfN transitions. If the point group of the
defect center is non-centrosymmetric, the Laporte rule does not strictly hold and a
relaxation of the parity selection rule can be expected.

Matrix element

First, the dipole moment of the electrons is recast in irreducible tensor form:

D
(1)
q = −e

N∑
i=1

riC
(1)
q (Ωi). (4.80)

Selection rules for the electric dipole transitions are found by applying the Wigner-
Eckart theorem to the angular part,〈

αLSJM
∣∣∣∣C(1)
q

∣∣∣∣α′L′S ′J ′M ′〉 = (−1)J−M
 J 1 J ′

−M q M ′

〈αLSJ ||C(1) ||α′L′S ′J ′〉. (4.81)

The Wigner-3j symbol vanishes unless (see B.1):

∆J = 0,±1 except J = J ′ = 0 is not allowed. (4.82)

These are the selection rules for E1 transitions. Additional selection rules can be
found by decoupling J , Eq. B.33:

〈αLSJ ||C(1) ||α′L′S ′J ′〉 = (−1)L+S+J ′+1
√

(2J + 1)(2J ′ + 1)

 J 1 J ′

L′ S L

〈αL||C(1) ||α′L′〉.

(4.83)
yielding

∆S = 0 and ∆L = 0,±1. (4.84)

In the intermediate coupling scheme, these rules get relaxed as spin-orbit coupling
mixes states with different L and S (see §4.1.5).

The parity-allowed E1 transitions that are of relevance for phosphors are of the type
`N ↔ `N−1`′ such as the 4fN ↔ 4fN−15d1 transitions in lanthanides or the ns2 ↔



82 Chapter 4

ns1np1 transitions in s2 ions. Their line strength can be obtained by elaborating the
above matrix element, yielding [68]:

S(n`NαLSJ, n`N−1α1L1S1,n
′`′ ;S ′L′J ′) = δSS ′N`

′(2J + 1)(2J ′ + 1)(2L+ 1)(2L′ + 1)

×

 J 1 J ′

L′ S L


2 L 1 L′

`′ L1 `


2 ∣∣∣〈`N−1 α1 L1 S1; `| } `N αLS〉

∣∣∣2
×
[
(−e)

∫ ∞
0
Rn′`′ (r)r

3Rn`(r)dr
]2

︸                                ︷︷                                ︸
[s(n`,n′`′)]2

. (4.85)

Breaking the selection rules

It is an experimental fact that ndN ↔ ndN and nfN ↔ nfN transitions occur. Their
spectra can only be partially explained by higher order transition moments, indicat-
ing that the above-derived selection rules can be avoided. Multiple mechanisms are
held responsible.

Of historical importance in the understanding of lanthanide spectroscopy is the
Judd-Ofelt mechanism, proposed independently by Brian R. Judd and George S.
Ofelt in 1962 [103, 104]. They explained the intensities of intraconfigurational 4f
transitions by mixing of the 4fN configuration with higher-lying configurations of
different parity through the odd components of the one-electron crystal field Hamil-
tonian and hence quantified the breaking of the Laporte rule.

The configuration mixing was treated at second order perturbation theory, starting
from the wave functions, calculated in the intermediate coupling scheme (§4.1.5).
After extensive rewriting of the matrix element for these induced electric dipole
transition while adding multiple assumptions concerning the degeneracies in the
higher-lying configurations, they arrive at a condensed expression for the line strength,
requiring three radial integrals. In the modern version, the line strength for induced
E1 transitions reads [105, 106]:

S(n`NαLSJ, n`Nα′L′S ′J ′) =
∑

λ=2,4,6

Ωλ

∣∣∣〈`NαLSJ ||U (λ) ||`Nα′L′S ′J ′〉
∣∣∣2 , (4.86)

where the Judd-Ofelt parameters conceal the odd crystal field coefficients (see §10.2.2)
[107]:

Ωλ = (2λ+ 1)
∑

k=1,3,5

k∑
q=−k

Ξ2(kq,λ)
2k + 1

(4.87)
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with

Ξ(kq,λ) = 2
∑
n′`′

(−1)`+`
′
(2` + 1)(2`′ + 1)

E(n`)−E(n′`′)

1 λ k

` `′ `


` 1 `′

0 0 0

`′ k `

0 0 0


×
∫ ∞

0
Rn`(r)rRn′`′ (r)r

2dr
∫ ∞

0
Rn`(r)Bkq(r)Rn′`′ (r)r2dr. (4.88)

The reduced matrix elements in Eq. 4.86 are proportional to the Wigner-6j symbolL λ L′

J ′ S J

 (4.89)

according to Eq. B.33, yielding the following selection rules for induced E1 transi-
tions:

|∆J | ≤ λ ≤ J + J ′ and ∆J even (4.90)

while

∆S = 0 and |∆L| ≤ λ ≤ L+L′ (4.91)

are relaxed by the spin-orbit interaction.

In reality, the Ωλ parameters are obtained by fitting expression Eq. 4.86 to an ex-
perimental spectrum rather than being calculated from first principles. From the
parameters, a theoretical lifetime can be obtained for every excited state. Compar-
ing these values with experimentally determined lifetimes gives a rough idea of the
quantum efficiency of the luminescence (see §3.3). Given the drastic approximations
that were made during the derivation of Eq. 4.86, the Judd-Ofelt parameters should
be regarded as phenomenological parameters, not necessarily yielding additional in-
depth information of the physical system which is modeled [106].

In Judd-Ofelt theory, the configuration interaction is regarded as a perturbative, i.e.
a small, effect. For appreciable CI, the approximation breaks down and one should
consider the mixed configuration explicitly. In this case, the mixing matrix elements
are evaluated, requiring values for the odd CF parameters. It was shown that this
approach is necessary to yield a good description for the transition intensities of
Pr3+ and U4+, using the extended bases |4f2α1L1S1J1M1〉⊕ |4f15d1α2L2S2J2M2〉 and
|5f3α1L1S1J1M1〉 ⊕ |5f26d1α2L2S2J2M2〉 respectively [108, 109]19.

In addition to the static mechanism that breaks the E1 selection rules, also dynamical
effects, i.e. the coupling of odd vibrational modes to the electronic eigenfunctions
can yield the same result [107].

19Along the same line of reasoning, explicitly accounting CI mixing through even CF parameters can
improve the transition energies themselves, e.g. by adding a third configuration to describe the spectra of
Pr3+: |4f2α1L1S1J1M1〉 ⊕ |4f15d1α2L2S2J2M2〉 ⊕ |4f16p1α3L3S3J3M3〉 [108]
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4.4 Numerical implementation

4.4.1 General overview

A Python [110] program was developed which implements the effective Hamilto-
nian formalism that was described above. The CFP tables of Nielson and Koster,
as well as Racah’s tables for the calculation of the ei matrix elements were used as
input [111, 112]. This program allows to construct and diagonalize matrices for the
electron configurations which are most common in luminescence research such as
ndN , ndN−1(n + 1)s1, nfN , nfN−1(n + 1)d1 or ns1np1. The program offers the utility
to optimize radial integrals in order to minimize the deviation from experimental
transition energies, defined as:

σCF =

√∑N
i=1(Eexp

i −Ecalc
i )2

N − P
, (4.92)

for N levels of a manifold, using P empirical parameters. The optimization is per-
formed by a downhill-simplex algorithm [113].

Besides the calculation of transition energies, the wave functions which are opti-
mized simultaneously can be used to calculate line strengths for E1 allowed transi-
tions or induced E1 transitions in the case of f↔f transitions when Ωk parameters
are available. Along the same line, the Ωk parameters can be obtained empirically
from experimental spectra. In principle, it is possible to obtain other physical prop-
erties from the optimized wave functions, such as the magnetic susceptibility of the
metal defect.

Furthermore, point group representation theoretical manipulations are included in
the program. As an example, the automated calculation of supergroup-subgroup
relations for both single and double point groups is of importance to obtain the
correct symmetry of crystal field states.

4.4.2 Choice of basis

It was chosen to calculate matrix elements of operators in a basis where the im-
plementation is as simple as possible, additionally avoiding the use of symmetry
adapted bases. This leads to a complication on another point, i.e. when Hamiltoni-
ans have to be summed, they have to be transformed to the same basis first. For this,
a module is provided that calculates matrices of basis transformation such as:

|αLSJ〉 ↔ |α−jN−− , α+j
N+
+ ; J〉 (4.93)

for a single-shell configuration n`N and

|α1L1S1, α2L2S2, ; LSJ〉 (4.94)

↔ |α1L1S1J1, α2L2S2J2; J〉

↔
∣∣∣∣[((α1−j

N1−
1− J1−, α1+j

N1+
1+ J1+

)
J1, α2−j

N2−
2− J2−

)
J ′12, α2+j

N2+
2+ J2+

]
J
〉
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for a two-shell configuration n1`
N1
1 n2`

N2
2 . It is clear that more possibilities are found

in the second case as the additional choice of coupled and uncoupled representa-
tions (concerning ML, MS and M) can be made.

In general, these basis transformations boil down to a suitable (re-/de-)coupling of
angular momenta, which can be performed using the algebra of the Wigner 3j-,
6j- and 9j- symbols (see appendix B). Transformation between LS and jj coupling
becomes however rather complicated but for a few simple textbook examples. For-
tunately, the algebra of so-called quasi-spin, applied by Kerman and Helmers to
nuclear shell theory, simplifies the manipulations [114–117]. Briefly, quasispin, Q,
obeys angular momentum algebra whereby the advantages of the Wigner-Eckart the-
orem are applicable [118]. While the quasispin itself is directly related to seniority,
its projection MQ, on the other hand, is directly related to the occupation number of
the subshell. Therefore, the quasi-spin formalism is not restricted to a fixed particle
number, but yields a simultaneous description for all allowed occupation numbers.
For this reason, it is not very surprising that the fermion creation and annihilation
operators of second quantization can be cast as quasi-spin tensors [118, 119].

4.5 Representative examples

4.5.1 Transition metals - Tanabe-Sugano diagrams

The breakthrough of crystal field theory in the study of transition metal (TM) spectra
was reinforced by the Japanese researchers Yukito Tanabe and Satoru Sugano in a se-
ries of four papers in the 1950’s [120–123]. They combined Bethe’s and Van Vlecks’
crystal field theory with Racah’s tensor and CFP techniques, as sketched above, to
obtain the splitting of a shell of N equivalent d electrons. Their approach was dif-
ferent, yet equivalent to the one sketched above in the sense that they worked in a
strong field basis, Eq. 4.61, rather than in the atomic basis |`N LSJM〉 that was used
in §10.2.2.

Tanabe and Sugano considered the case of an octahedral or cubic crystal field, corre-
sponding to Oh symmetry. For d electron systems, only one crystal field parameter
is required (see Table 4.2). Although only one parameter is required, three matrix
elements (Eq. 4.73) are nonzero. It depends on the choice of reference frame which
ones are nonzero. In the case one chooses the z-axis along a fourfold symmetry axis,
the crystal field Hamiltonian reads:

H(4)
cf =

N∑
i=1

B
(4)
40

C40(i) +

√
5

14

(
C44(i) +C4 −4(i)

) (4.95)

and the cubic symmetry of the Hamiltonian fixes B44/B40 at the cubic ratio of
√

5/14.
The superscript (4) denotes the reference system and is added to avoid confusion.
Alternatively, the crystal field Hamiltonian can be written with respect to a reference
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system where the z-axis is put along the threefold rotation axis:

H(3)
cf =

N∑
i=1

B
(3)
40

C40(i) +

√
10
7

(
C43(i)−C4 −3(i)

) . (4.96)

In this case one is left with the B40 and B43 parameters which are mutually connected
by the cubic ratio

√
10/7. When the same physical system is described, one has the

following relationship:

B
(3)
40 = −2

3
B

(4)
40 . (4.97)

To start with, consider the case of a single d electron, N = 1, while neglecting spin-
orbit interaction. Upon reducing D(`) in the Oh point group (Eq. 4.58), two irreps
are found for ` = 2:

D(`) = t2g ⊕ eg , (4.98)

corresponding to respectively threefold and twofold degenerate single-particle states.
Upon diagonalization of Hcf indeed two levels are found, for which the crystal field
splitting is

εcfs =
∣∣∣∣εt2g − εeg ∣∣∣∣ = 10Dq =

10
21
B

(4)
40 . (4.99)

Here, the notation 10Dq reappears, although no PCEM is mentioned. In the remain-
der, Eq. 4.99 is regarded as the definition of 10Dq. For this reason, 10Dq can also
appear in discussions for which N > 1, although the interpretation of sp crystal field
splitting is only valid in the strong field limit.

For N > 1, a nonzero HRS (and possibly other terms) unavoidably enters the total
Hamiltonian, complicating the spectrum. Tanabe and Sugano calculated diagrams
where the crystal field multiplets, i.e. the mp states, are shown as a function of the
crystal field strength, quantified by B40 (or alternatively 10Dq). They did this for all
possible N , here the diagram is calculated and discussed for N = 3.

The conventional Tanabe-Sugano diagrams show a linearly increasing 10Dq for fixed
Racah parameters B and C (see Fig. 4.4a). These are omnipresent in literature and
show the free ion terms (2S+1L) splitting according to the intermediate crystal field
regime into CF multiplets (2S+1Γ ).

The luminescence spectrum of d3 ions can be explained with this diagram. In the ex-
citation and absorption spectra, the spin allowed transitions for the 4F(4A2g ) ground
state to the excited spin quartets, 4F(4T2g ), 4F(4T1g ) and 4P(4T2g ) dominate. Broad
bands are expected based on the observation that a significant portion of the eigen-
state will change its character with respect to the strong field configuration, i.e. while
the ground state corresponds to a large extent to a t32g configuration, the excited spin-

quartets have a larger amount of t22ge
1
g and t12ge

2
g character (see Fig. 4.4c). A relatively

large electron-phonon coupling, featured by broad bands, is hence expected.
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4

spin 
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(a) (b) (c)

Figure 4.4 – Excited state landscape of a d3 configuration. The color of the curves en-
codes the amount of spin multiplicity. (a) shows the Tanabe-Sugano diagram where the
RS terms of a free atom, 2S+1L, are split into crystal field multiplets, 2S+1Γ according to
the intermediate coupling scheme, as a function of 10Dq (in units of B) for fixed B and
C. (b) shows a modified diagram where both 10Dq and B are varied to obtain the IPM
of the strong field limit. (c) includes spin-orbit coupling, yielding again an IPM in the
strong field limit, but with decreased degeneracies. The inset shows the associated sp
energy level scheme with the ground state occupation.

After excitation, multiphonon relaxation ensures that the emission occurs from the
first excited state, which can be the 4F(4T2g ) level for relatively low crystal fields,
giving rise to broad bands, or the 2G(2Eg ) level for higher crystal fields, when the
crossing point around 10Dq ≈ 15B in Fig. 4.4 is passed, giving rise to a spin for-
bidden transition and sharp lines due to the small electron-phonon coupling of this
transition where the CF configuration remains essentially unchanged.

A modification of the Tanabe-Sugano diagram can be obtained by varying B and C
along with 10Dq. The example is given for the d3 configuration in Fig. 4.4b. Here,
the transition is shown from the intermediate coupling scheme to the strong cou-
pling scheme. In the latter limiting case, an IPM is again obtained as indicated in
the figure. During the calculation a fixed ratio of C/B = 4 was taken.

As explained in §10.2.2, a full diagonalization allows to include all interaction with-
out making assumptions on any coupling scheme. As such, spin-orbit coupling can
be added to the Tanabe-Sugano diagram. An example is shown in Fig. 4.4c, which
was calculated with the same settings as 4.4b, but with Hso added where the ζ3d
value was kept fixed. On the right hand side, where the limit of a vanishing tp in-
teraction is found, an IPM exhibiting CF splitting as well as spin-orbit coupling is
now obtained. Although this limit is not found as a physical reality (except for the
trivial N = 1 case), a similar picture can be encountered if quasi-particles are used
to model the luminescent ion (see §5.3).
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Luminescence of K2SiF6:Mn4+

Finally, crystal field theory is applied to give an explanation for the peculiar decay
behavior of the red LED phosphor K2SiF6:Mn4+. This material was synthesized and
investigated in the context of the Ph.D. work of Heleen Sijbom20.

The results of this work were published in:

Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and
at the microscopic level

Heleen F. Sijbom, Jonas J. Joos, Lisa I. D. J. Martin, Koen Van den Eeckhout,
Dirk Poelman, Philippe F. Smet

ECS Journal of Solid State Science and Technology, 5 (1) R3040-R3048 (2016).

K2SiF6 forms cubic crystals with the K2PtCl6 structure (space group Fm3̄m) [124].
Upon activation with Mn4+, occupying the octahedral Si sites, a saturated red lumi-
nescence emerges. For this reason, K2SiF6:Mn4+ has been multiply proposed as LED

20Details on the synthesis and characterization of luminescent powders is given in chapter 7.

(a)

(b)

(c)

(d)

Figure 4.5 – (a) and (b) Photoluminescence excitation (upon monitoring emission at 630
nm) and emission (upon excitation at 455 nm) spectra of K2SiF6:Mn4+ measured at room
temperature (a) and at 10 K (b). (c) Measured luminescence decay profiles (dots) and fits
(lines) at 450 K, 295 K and 220 K. (d) Integrated emission intensity of K2SiF6:Mn4+ as a
function of temperature (blue) and the fraction of the fast decay component, as obtained
from the fits (grey). The dashed line is a guide to the eye.
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phosphor [125–128].

The photoluminescence (PL) emission and excitation spectrum of K2SiF6:Mn4+ are
shown in Fig. 4.5(a-b), measured at room temperature and at 10 K.

Tetravalent manganese features three valence 3d electrons, implying that the above-
discussed Tanabe-Sugano diagrams are applicable. The room-temperature PL emis-
sion spectrum shows narrow emission bands due to the 2Eg → 4A2g spin-forbidden
transitions of Mn4+. Two broad excitation bands are present corresponding to the
4A2g → 4T2g and 4A2g → 4T1g spin-allowed transitions.

In the low temperature PL spectra, the vibronic fine structure is clearly visible in
the case of the 2Eg → 4A2g and 4A2g → 4T2g transitions. For the 2Eg → 4A2g transi-
tion, the zero phonon line (ZPL) is located at 620.5 nm. The location of the ZPL is
hard to determine in case of the 4A2g → 4T2g transition because in addition to the
occurrence of the different phonon-assisted transitions, the 4T2g electronic energy
level is expected to be split due to low-symmetry crystal field components and the
spin-orbit interaction (see further).

The luminescent-lifetime measurements in Fig. 4.5(c) show a mono-exponential de-
cay at 220 K with a decay time τ1 = 10.5 ms. With increasing temperature (in the
295-450 K range), a bi-exponential decay is required since a second, faster decay
component emerges. The time constant of the slow component decreases with in-
creasing temperature, reaching τ1 = 8.1 ms at room temperature and τ1 = 4.9 ms at
450 K. This behavior is consistent with the drop in the overall decay time from 15
to 7 ms in the 20-300 K temperature range that was reported earlier [129]. These
results show that the drop in decay time continues further with increasing tempera-
ture, although thermal quenching only starts above 400 K.

The second, faster component, has a decay time between 0.63 and 1.0 ms in the
295-450 K range. The fraction of the total emission assigned to the fast component
increases from 2-3% in the 295-320 K temperature range to 15% at 345 K and 24%
at 450 K (see Fig. 4.5(d)). The largest fraction of the emission, 76% at 450 K, takes
place following the slower, spin-forbidden 2Eg → 4A2g transition and no extra peaks
are observed in the emission spectrum with increasing temperature.

From the particular shape of the decay curves, it is plausible to assume that a cer-
tain minority of the Mn4+ centers show different emission dynamics, provided that
sufficient thermal energy is available. This energy allows the defect center to be ther-
mally excited to an electronic eigenstate, characterized by a slightly higher total en-
ergy and a higher probability for radiative decay. In the case of perfectly octahedral
MnF2−

6 defect clusters, the degeneracy of the emitting 2Eg level is maintained, even
with the inclusion of spin-orbit coupling. In that case, the emitting level transforms
according to the four-dimensional irrep G of the double group O∗h . This is visual-
ized in the modified Tanabe-Sugano diagram, displayed in Fig. 4.6(a). Therefore,
the question boils down to what the origin is of such a faster-decaying, higher-lying
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1

0

spin doublet 
content 

Figure 4.6 – (a) Tanabe-Sugano diagram of a d3 configuration in octahedral symmetry.
Spin-orbit coupling is included (ζ3d = 47meV). (b) The effect of tetrahedral deforma-
tion of the octahedral Mn4+ defect (Oh → D4h) on the multiplet energies for a constant
10Dq = 30.2B and Dt = 0. (c) The effect of trigonal deformation of the octahedral Mn4+

defect (Oh→D3d) on the multiplet energies for a constant 10Dq = 30.2B and Dτ = 0.

multiplet. In the following, it is examined through crystal field theory whether this
can be the result of a small deformation of the octahedral complex, for example by
nearby lattice defects or other Mn4+ ions.

Two straightforward ways exist to lower the octahedral symmetry, either tetrago-
nally by prolonging or shortening the body diagonal along a fourfold rotation axis
or trigonally by altering the length of the body diagonal along a threefold rotation
axis. Consequently, one ends up with respective point symmetries D4h and D3d,
which require three instead of one parameter to quantify the one-electron crystal
field. The Ballhausen parametrization of the CF parameters is applied [130].

In the case of D4h symmetry, one has according to Wybourne’s parametrization:

Hcf =
N∑
i=1

[
B20C

(2)
0 (i) +B40C

(4)
0 (i) +B4 −4

(
C

(4)
4 (i) +C(4)

−4 (i)
)]
. (4.100)

The parameters are related to the Ballhausen parameters according to:

B20 = −7Ds (4.101)

B40 = 21(Dq −Dt) (4.102)

B44 = 21

√
5

14
Dq (4.103)

Ds is related to the extra parameter that emerges from the descent of symmetry while
Dt describes the deviation from the cubic ratio. Only when Dt = 0, the relationship
between B40, B44 andDq is the same as in the case of octahedral symmetry (Eq. 4.95).
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For D3d symmetry, the crystal field Hamiltonian becomes:

Hcf =
N∑
i=1

[
B20C

(2)
0 (i) +B40C

(4)
0 (i) +B43

(
C

(4)
3 (i) +C(4)

−3 (i)
)]
. (4.104)

A similar alternative parametrization is again available:

B20 = −7Dσ (4.105)

B40 = −14Dq − 21Dτ (4.106)

B43 = −2
√

70Dq (4.107)

When Dτ = 0, the relationship between B40, B43 and Dq is the same as in the case of
octahedral symmetry when referred to the threefold axis (Eq. 4.96).

In Figures 4.6(b) and (c), the effect of the deformation on the multiplets is given as
a function of the Ballhausen 10Ds and 10Dσ parameters, quantifying the deforma-
tions. In both cases, it is assumed that the cubic ratios of the crystal field parameters
in octahedral symmetry are maintained during the deformation.

In the case of a tetragonal deformation, the emitting 2Eg multiplet splits into two sin-
glets, transforming as the 2A1g and 2B1g irreps of D4h, corresponding to the Kramers
doublets E1/2g and E5/2g . The ground-state multiplet 4A2g of Oh corresponds to the
4B1g irrep of D4h. Due to the spin-orbit interaction, this level is split in two Kramers
doublets, E1/2g and E5/2g . If the selection rules for electric dipole transitions in D4h
symmetry are considered, every transition is forbidden due to the presence of an
inversion center and Laporte’s rule. If this parity selection rule is relaxed, or in
other words, after a further descent of symmetry towards C4v, one finds that the
B1 → B1 transition is electric-dipole allowed in this reduced symmetry, that is the
direct product B1 ⊗A1 ⊗B1 transforms according to the total symmetric representa-
tion A1 in C4v symmetry. In this case, the z component of the electric dipole moment
has symmetry label A1. The A1→ B1 transition remains symmetry forbidden at the
electric dipole level as A1⊗A1⊗B1, for polarization along the z axis, and A1⊗E⊗B1,
for polarizations perpendicular to the z axis, do not contain A1 in their reduction.
If the B1 multiplet has a slightly higher energy than the A1 multiplet, the partic-
ular decay behavior can be explained. This corresponds to negative Ds values. If
the crystal field is parametrized in terms of a point charge model, negative Ds and
Dt values signify a shortening of the body diagonal of the coordination polyhedron.
Tetragonal deformation can be expected in the K2SiF6 crystal from a nearby fluorine
vacancy or interstitial atom. Interstitials might occupy the octahedral voids in the
crystal structure (Wyckoff site 4b) and are indeed expected to compress the coordi-
nation polyhedron in the direction of the fourfold rotation axis.

In the case of a trigonal deformation, the 2Eg multiplet does not split due to sym-
metry breaking, but rather transforms as the irrep 2Eg of D3d. However, unlike the
octahedral case, this multiplet splits in two Kramers doublets, E1/2g and E3/2g due to
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Oh D4h calc. (cm−1) exp. (cm−1)
4A2g

4B1g 0.00 0.00
0.16 0.00

2Eg
2A1g 16166 16117
2B1g 16406 ≈ 16360

2T1g
2Eg 16685

16837
2A2g 17456

4T2g
4Eg 21166 21553

21167
21186
21234

4B2g 21827
21888

2T2g
2B2g 25118
2Eg 25882

26012

4T1g
4Eg 27671 27300

27758
27828
27919

4A2g 33052
33082

Table 4.3 – Calculated multiplet energies
of K2SiF6:Mn4+, obtained from a crystal
field calculation, compared to the experi-
mental energies, obtained from low tem-
perature PL spectroscopy.

parameter value (cm−1) ref.

B 770 [131]
C 3470 [131]

ζ3d 380 [132]
α 91 [132, 133]

10Dq 21791
10Ds -1118
10Dt 0

Table 4.4 – Parameters used in
the crystal field calculation for
K2SiF6:Mn4+.
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spin-orbit interaction. In the case of positive 10Dσ values, the higher-lying Kramers
doublet features a slightly higher S = 3/2 content than the lower-lying one, ensuring
a faster decay due to a relaxation of the spin selection rule. However, the weak spin-
orbit interaction for 3d ions mixes spin multiplicity only in a limited way. Typically
0.2-0.5% of quartet character is present in the relevant eigenstates. This is also clear
from Fig. 4.6. Only where energy levels are sufficiently close to interact, substan-
tial spin mixing is visible. For this reason, it is more likely that the observed decay
behavior originates from tetragonal deformation rather than from trigonal deforma-
tion. Electron paramagnetic resonance (EPR) offers a way to distinguish one case
from the other. Trigonal deformation is induced when two Mn4+ ions are sitting on
neighboring Si4+ sites in the crystal or from an adjacent potassium vacancy.

From symmetry arguments, it is most likely that the observed decay dynamics origi-
nate from a tetragonal compression of the coordination polyhedron. For this rea-
son, the crystal field Hamiltonian for D4h symmetry was fit to the experimental
low temperature photoluminescence spectrum. Racah, spin-orbit and Trees param-
eters were kept fixed at literature values that were obtained for similar Mn4+ sys-
tems [131–133]. The crystal field 10Dq and 10Ds values were varied in order to
reproduce the experimental transition energies as well as possible. The location of
the ZPLs of the 4A2g → 4T2g and 4A2g → 4T1g transitions were assigned to the low
energy side of the respective excitation bands. The crystal field splitting between
the 2B1g and 2A1g multiplets was estimated in the order of kT ≈ 250 cm−1 from the
activation temperature of the fast decay component. The fixed and optimized pa-
rameters are summarized in Table 4.3, the optimized energies are tabulated in Table
4.4. The root-mean-square deviation of the fit is 270 cm−1 which is reasonable given
the limited number of experimentally available energies.

4.5.2 Lanthanides - The Dieke diagram

The 4fN configurations show unique properties due to the effective shielding by the
5s and 5p electrons, leading to a limited crystal field interaction and associated level
splittings of maximum a few hundreds of meV (see Tab. 4.1 and Fig. 4.3). For the
same reason, the electron-phonon coupling for intraconfigurational 4fN transitions
is very limited and line spectra are found. This allows spectroscopists to experimen-
tally determine the locations of the large number of multiplets of the 4fN manifolds
very accurately not only from gaseous discharges, but also from solid state sam-
ples. The spectra of the different lanthanides were extensively studied in the 1950s-
1960s by multiple laboratories, using gas discharges as well as lanthanide doped
crystals as sample, culminating in 1968 in a summarizing monograph by Gerhard
H. Dieke [134]. This monograph featured an energy level scheme for all trivalent
lanthanides, which is known as the Dieke diagram ever since.

The energy scale of the original Dieke diagram was limited to ±5 eV by the experi-
mental and computational limitations of the 1960s. Decades later, the diagram could
be completed thanks to VUV spectroscopy and increased computer power. For this,
Peijzel et al. used samples of LaF3 inspired by the important work of William T.
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Figure 4.7 – Extended Dieke diagram of the Ln3+ and Ln2+ ions. The lowest spin allowed
(with respect to the 4fN ground state) 4fN−15d1 and 4fN−16s1 levels are indicated by the
zig-zag lines.

(a.k.a. Bill) Carnall from 1989 [135, 136].

The modern version of the Dieke diagram is shown in Fig. 4.7, along with a similar
diagram for the divalent lanthanide ions. This diagram is fundamental to interpret
4fN -4fN spectra, but not limited to this. Also in the study of 4fN -4fN−15d1 spectra,
approximate models use the Dieke diagram as input (see §4.5.3). For completeness,
the locations of the lowest multiplet for the nearby 4fN−15d1 and 4fN−16s1 configu-
rations are shown in the diagram. Upon connecting these multiplets for the different
lanthanides, the -almost symbolic- zig-zag curves emerge.

4.5.3 Lanthanides - Cracking the 4fN−15d1 configuration

In the case of transition metal ions, the only intra-atomic transitions that are found
in the visual range are within the dN configuration, implying that this is the only
configuration of our interest. Lanthanides on the other hand often feature low-lying
4fN−15d1 and 4fN−16s1 configurations that can be found in the visible or near-UV
spectral ranges. Therefore, these configurations are worthwhile to investigate in ad-
dition to the 4fN manifold. This paragraph is devoted to 4fN−15d1 configurations,
which are accessible by E1 transitions and are hence most common in literature. The
4fN−16s1 configurations can be treated analogously.
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Crystal field theory

Although crystal field theory has already a long history and has been applied to dN

and fN configurations for decades, the description of the 4fN−15d1 manifold is rather
novel and largely due to Michael F. Reid and coworkers [137–147]. Different reasons
are possible to explain this. Next to the computational cost which is larger, it is
experimentally often impossible to obtain well-resolved 4fN−15d1 structures due to
vibronic broadening, a high density of energy levels and high energies required to
assess a lot of the excited 4fN−15d1 configurations.

The effective Hamiltonian can be symbolically written as:

H =Hcentr. field(fd) +HRS(ff) +HRS(fd) +Hcf(f) +Hcf(d) +Hso(f) +Hso(d), (4.108)

where the additional correction terms (see §4.1.6 and §4.2.3) were left out for sim-
plicity. For 4fN−15d1 configurations, the selection rules for the Coulomb matrix el-
ements, Eqs. 4.14, 4.28 and 4.34 learn that nontrivial F2(4f,4f), F4(4f,4f), F6(4f,4f),
F2(4f,5d), F4(4f,5d), G1(4f,5d), G3(4f,5d) and G5(4f,5d) Slater-Condon parameters
can be expected.

In general, all Hamiltonians can be simultaneously evaluated and H fully diago-
nalized, yielding solutions which do not depend on a predetermined perturbation
sequence. Possible basis states for 4fN−15d1 manifolds were listed by C.-G. Ma et
al. and make extensive use of the point group irreps and SALCs [144]. These bases
correspond to different coupling schemes. Of particular interest is the following
perturbation sequence:

〈HRS(ff) +Hso(f)〉 , 〈Hcf(d)〉 � 〈HRS(fd)〉 � 〈Hso(d)〉 � 〈Hcf(f)〉 .
(4.109)

which is called the decoupled scheme if only the first step of the sequence is ap-
plied. It is decoupled in the sense that the 4fN−1 core and the 5d electron do not
interact. The basis is formed by the direct product of the bases for both parts, i.e.
|4fN−1 αLSJ〉 |5d1 aΓγ〉 and the Hamiltonian is block diagonal. Typically, only the
lowest 4fN−1 (2S+1LJ ) multiplet is taken into account, resulting in a very simple pic-
ture with a limited number of energy levels. This model can of course only be used
to describe the low energy tail of the 4fN−15d1 manifold.

In a variant of this coupling scheme, the evaluation of the spin-orbit coupling of the
fN−1 core is postponed and a simplified Hamiltonian replacesHRS(fd) [141]:

〈HRS(ff)〉 , 〈Hcf(d)〉 � 〈Hex(fd)〉 � Hso(f), 〈Hso(d)〉 � 〈Hcf(f)〉 .
(4.110)

The isotropic exchange Hamiltonian,Hex(fd), is the part ofHRS(fd) which is respon-
sible for a splitting of the configuration in a high spin (HS) and a low spin (LS) part.
It is given by [141]:

Hex(fd) = −JexSf · sd. (4.111)
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The value of the interaction strength Jex is calculated from the average exchange in-
teraction strength, i.e. from the Gk parameters [141].

A typical example where the decoupled scheme is applied, is the 4f65d1 excited
manifold of the Eu2+ ion where the 4f6 core is modeled by the 7FJf multiplets of the
Eu3+ ion. This picture was first described by Freiser, Methfess and Holtzber in 1968
and is shown in Fig. 4.8(a) [148]. The validity of this approach is often justified
by the occurrence of a so-called staircase structure that can be resolved in certain
low temperature Eu2+ spectra [149–152]. The occurrence of a staircase structure
does however not necessarily mean that the Coulombic exchange can be neglected
and decoupled energy level labels are correct. This is demonstrated in Fig. 4.8(b)
where HRS(fd) is switched on and its strength increased while keeping the ratios of
the Slater-Condon parameters at the free ion values [141,153–155]. The vertical line
estimates the value of the interaction strenght in the case of Eu2+ in CaF2 according
to Weakliem [153]. A separation of the excited state landscape in a HS and LS part
due to HRS(fd) is visible, demonstrating the ability of the exchange interaction, Eq.
4.111 to approximate the f-d Coulomb interaction.

When 4fN ↔ 4fN−15d1 transitions are studied, a second effective Hamiltonian is
required in addition to Eq. 4.108 to describe the 4fN ground state configuration (see
§4.5.2). The energy difference between both configurations is given by:

∆fd =
〈
Hcentr. field(fN−1d1)

〉
−
〈
Hcentr. field(fN )

〉
. (4.112)

In the case of Eu2+, this is a rather trivial extension because the 4f7 ground state has
almost pure 8S7/2 character. Other multiplets of the 4f7 configuration lie at relatively
high energies and are mostly obscured by the lower-lying 4f65d1 configuration. In
Fig. 4.8(c), a calculated E1 excitation spectrum is shown from the Eu2+ 4f7(8S7/2)
ground state towards the 4f65d1 manifold corresponding to the vertical line in Fig.
4.8(b). Here, electron-phonon coupling was not taken into account, however ev-
ery transition was broadened by means of a Lorentzian shape function (FWHM of
800 cm−1). It is clear that the spin-allowed transitions to the HS states dominate
the spectrum. This example shows that even when Jf ceases to be a good quantum
number, a staircase structure can still be found if a good experimental resolution is
obtained, e.g. by measuring at low temperature. When the symmetry of the crys-
tal field is lower, more 5d(aγ) levels with smaller separations are expected. Then,
the combined effect of Hso(f) and HRS(fd) in addition to Hcf(d) causes the excitation
spectrum to become broad and featureless, a description that is indeed often used in
Eu2+ spectroscopy.

Alternative quantities

In experimental studies of 4fN ↔ 4fN−15d1 transitions, the parameters that occur
in the effective Hamiltonians are not always directly obtainable, nor are spectra suf-
ficiently resolved to start fitting the spectrum with the Hamiltonian. For this reason,
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Figure 4.8 – Crystal field calculation for the low energy part of the 4f65d1 con-
figuration of Eu2+ in an octahedral crystal field, calculated in the 490 dimensional
|4f6(7FJf ),5djd ; JM〉 basis, approximating the 30030 dimensional basis for the full con-
figuration. (a) Decoupled scheme. (b) Showing the influence of HRS(fd) on the energy
levels. (c) Calculated low energy part of the 4f7-4f65d1 spectrum with (G1 = 3500 cm−1,
solid blue line) and without (grey dashed line) 4f-5d interaction.
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an experimentally inspired nomenclature has evolved. The most important quanti-
ties are enumerated.

The redshift of a 4fN →4fN−15d1 transition is defined as the energy decrease for the
transition between the lowest levels of both configurations for the free and incorpo-
rated ion,

D(LnQ+,A) = Efd(LnQ+, free)−Efd
abs(LnQ+,A), (4.113)

where Ln denotes the lanthanide ion, Q its oxidation state and A the host mate-
rial. Ideally, it would be calculated from the location of the zero phonon line (ZPL).
However, this is not always possible, and often the maxima of the different bands in
absorption or excitation spectra are used, unavoidably adding some contributions of
vibronic effects into D(LnQ+,A).

The electronic contribution to D(LnQ+,A) can be envisaged as originating from two
different sources. First, the environmental dependence on the difference in the cen-
tral fields for both configurations gives rise to a relative shifting of the barycenters
of the configurations, which is denoted as the centroid shift, εc(LnQ+,A) = ∆fd(free)−
∆fd(A). The other differences in H0 between the free and incorporated ion and
the crystal field Hamiltonians for the incorporated ion will lead to level splittings
which are different in both configurations, giving rise to a second contribution to
D(LnQ+,A).

When a perturbation sequence is assumed in whichHcf(d) is evaluated first, such as
the decoupled scheme, the second contribution to D(LnQ+,A) is separated in a part
which originates from Hcf(d), referred to as the crystal field splitting,
εcfs(LnQ+,A)/r(LnQ+,A), where εcfs is the total one-particle crystal field splitting and
1/r the fraction contributing to the redshift. The remaining differences in splittings
of the configuration, originating e.g. from different Slater-Condon parameters for
the free and incorporated ion, are collected in a term ∆εcfs(LnQ+,A). Collecting all
contributions yields:

D(LnQ+,A) = εc(LnQ+,A)−∆εc(LnQ+, free) +
εcfs(LnQ+,A)
r(LnQ+,A)

+∆εcfs(LnQ+,A) (4.114)

the term ∆εc(LnQ+,A) is the energy difference between the barycenter and the low-
est level of the 4fN−15d1 configuration of the free ion. These concepts are further
clarified through the example in the next paragraph.

The attainable 4fN ↔ 4fN−15d1 energies for varying chemical environment depend
on the lanthanide ion under consideration. Often, these energies are in the UV
region (typically for trivalent lanthanides) or in the IR region (typically for diva-
lent lanthanides). However, few ions such as Ce3+ (N = 1), Eu2+ (N = 7) and Yb2+

(N = 14) have their 4fN−15d1 manifold desirably within reach of the visible spectral
range. Especially Eu2+ is well-known for its extreme color tunability upon incorpo-
ration in various host crystals (see Fig. 4.9).
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Figure 4.9 – Series of Eu2+ phosphors excited by a UV lamp, exposing the extreme color
tunability of the Eu2+ 4f65d1→ 4f7 emission upon changing the chemical environment.

Luminescence of SrAl2O4:Eu2+ - an empirical approach

SrAl2O4:Eu2+ is a well-known afterglow material. This means that light emission
can still be observed a long time after the excitation has ceased. Although this phe-
nomenon is already known since the Age of Enlightenment and omnipresent in daily
life in the form of safety signalization or glow-in-the-dark gadgets, an in-depth sci-
entific explanation for the phenomenon is still lacking, notwithstanding substantial
progress that was achieved in the last years [156–162]. It has been shown that charge
carriers escape from the activator, in this case the Eu2+ ion, during the energy stor-
age. Open questions pertain to the nature of the defects where these charge carriers
are trapped, the reason why co-doping with Dy3+ can prolong the afterglow time
significantly and by which mechanism the charge carriers are released from the ac-
tivator during charging and from the trap during afterglow.

O

Sr1 Sr2

Sr

Figure 4.11 – Coordination environ-
ment for the two Sr sites in SrAl2O4
[163].

Next to the above questions, which mainly per-
tain to the dynamics of the phenomenon, the
interpretation of the steady-state PL spectra
of the compound has proven to be problem-
atic. Next to the well-known green emission,
a second, blue emission band emerges when
the material is cooled below room temperature
(see Fig. 4.10). Different hypotheses to ex-
plain the occurrence of the two bands can be
found in literature. Given that there are two
nonequivalent strontium sites in the SrAl2O4
crystal structure (see Fig. 4.11), it seems straightforward to assign the occurrence
of both emission bands to the substitution of Eu on these two lattice sites. Differ-
ent coordination for both sites is then expected to sufficiently change the electronic
structure to arrive at the observed spectral differences. Nevertheless, several authors
discarded this hypothesis because both sites are too similar to explain the large en-
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Figure 4.10 – Photoluminescence emis-
sion (upon excitation at 370 nm, blue
line) and excitation spectra (upon mon-
itoring at 445 nm, dashed grey line and
upon monitoring at 520 nm, solid grey
line) of SrAl2O4:Eu2+ at 10 K.

green blue

Efd
em(Eu2+,A) 2.37 2.79

FWHM 0.27 0.21
D(Eu2+,A) 1.42 1.22
εcfs(Eu2+,A) 1.10 1.13
εc(Eu2+,A) 1.65 1.44
∆S(Eu2+,A) 0.43 0.21

Table 4.5 – Properties of the
emission and excitation spec-
tra of SrAl2O4:Eu2+, measured
at 10 K. All values in eV.

ergy difference when judging on the emission bands. As an alternative explanation,
Poort et al. [164] suggested that the two emission bands result from a possible prefer-
ential orientation of the d orbitals of Eu2+ on Sr sites that appear to line up. Clabau
et al. proposed that the blue emission band arises from the charge transfer from
the fundamental level of the 4f7 configuration of Eu2+ to the valence band and is
associated to a hole detrapping mechanism (interatomic processes are discussed in
more detail in chapter 5) [165]. Hölsä et al. considered the blue emission band as
anomalous low-temperature luminescence and proposed that it originates from a
higher Eu2+ 5d state that may be observed due to the absence of high energy lattice
vibrations at low temperatures [166].

In order to ascertain whether the incorporation of the europium activator on the two
similar, but nonequivalent Sr sites can give rise to different luminescent properties
and can explain the occurrence of the blue and green emission bands in SrAl2O4:Eu,
empirical rules are exploited that relate structural properties to the excited 4f65d1

manifold of Eu2+.

This investigation was performed in the broader context of the Ph.D. work of Dr.
Jonas Botterman. The results of this work were published in:

Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: influ-
ence of excitation wavelength and temperature

Jonas Botterman, Jonas J. Joos, Philippe F. Smet

Physical Review B, 90 085147 (2014).

The decoupled perturbation scheme for the 4f65d1 excited configuration of the Eu2+

ion is applied to distill the different parameters in Eq. 4.114 from the experimental
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Figure 4.12 – Energy level scheme showing the multplets of the 4f65d1 manifold of Eu2+

within a very simplified model (see text) on the Sr1 (yielding green emission) and on the
Sr2 (yielding blue emission) sites in monoclinic SrAl2O4. The meaning of the different
quantities and the connection with the excitation spectra is displayed.

excitation spectra (Fig. 4.10). Only the lowest term of the 4f6 core is considered, i.e.
7F, yielding a very simplified picture (displayed in Fig. 4.12).

The redshift values of both excitation spectra were determined by taking the point
where the intensity equals 20% of the first maximum of the overlapping staircase
structure which originates from the splitting of the underlying 4f6(7F) term. This
yields a good estimate of the location of the lowest 4f6(7F0) level [167, 168].

Obtaining accurate experimental values for the 5d crystal field splitting of Eu2+ is
a tedious occupation for low coordination symmetries. In this particular case, the
4f65d1 level is split by the crystal field into five bands which strongly overlap due
to the energy level structure of the remaining 4f6 configuration. Hence, a broad
and relatively featureless band is obtained, which is, for instance, in contrast to the
case of Ce3+, having only a single 4f electron in the ground state [169]. In the case
of SrAl2O4:Eu2+, an estimate of the crystal field splitting can nevertheless be made
since fundamental absorption only becomes significant above 6.50 eV and therefore
does not appear in the part of the excitation spectrum that is related to 4f7→ 4f65d1

absorption due to the Eu2+ impurities [170]. In analogy with the low energy side,
the point where the intensity is 20% of the maximum of the staircase structure is
selected to pin the highest 4f6(7F6) level. By subtracting both values, an energy dif-
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ference is obtained which equals the crystal field splitting combined with the total
splitting energy of one 4f6(7F) term. This can be approximated by using the splitting
energy of the 4f6(7F) term in Eu3+, being 0.62 eV [167,171]. The obtained values are
shown in Table 4.5.

Once the experimental redshift and crystal field splitting are determined, the experi-
mental centroid shifts can also be calculated with Eq. 4.114. A value of∆εc(Eu2+, free) =
1.12 eV was used, based on the energy scheme constructed by Sugar and Spec-
tor [172, 173]. It can be assumed that r(Eu2+,A) is equal for both lattice sites. A
point charge model was applied to verify this [78]. r(Eu2+,A) = 1/0.45 was obtained
for both Sr sites within this model. The experimental values for εc(Eu2+,A) are in-
cluded in Table 4.5 The experimental ratios are:

εcfs(green)
εcfs(blue)

= 0.97 and
εc(green)
εc(blue)

= 1.14. (4.115)

Both the centroid shift and the crystal field splitting can be related to the size and
nature of the coordination polyhedra by empirical formulas:

εc

CN
=

αspe
2

4πε0d
6
eff

(〈
r2

〉
5d
−
〈
r2

〉
4f

)
(4.116)

εcfs =
βQpoly

d2
av
. (4.117)

In these expressions, αsp and βQpoly are empirical parameters, introduced by Doren-

bos [174,175]. Equation 4.116 was originally introduced for Ce3+, but the theoretical
basis for this empirical relation is more generally valid for 4fN−15d1 configurations
as was derived by Morrison, based on a suggestion of Judd [175, 176]. The average
and effective bond lengths are defined as:

1

d6
eff

=
1

CN

CN∑
i=1

1[
di − f (RSr2+ −REu2+ )

]6 (4.118)

dav = 〈d〉 − f (RSr2+ −REu2+ ). (4.119)

These distances give a measure for the size of the coordination polyhedron, adapted
for the relaxation which originates from the substitution of a lanthanide ion on the
site of a metal ion with a different crystal radius, R. 〈d〉 is the arithmetic average of
the bond lengths in the undoped crystal. The constant f measures the strength of the
lattice relaxation and is empirically chosen in the range of 0.5-0.7. These distances
can be calculated from the crystal structure of SrAl2O4. The monoclinic structure
of SrAl2O4 was first described by Schulze and Müller-Buschbaum in 1981 [163].
As said, the structure contains two nonequivalent Sr sites, both completely lacking
symmetry. Bond lengths range from 2.5 to 3.5 Å for both sites [163] . Furthermore,
f = 0.6 was taken, and Sr2+ = 1.32 Å and Eu2+ = 1.31 Å were used [177].
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From the crystallographic data of SrAl2O4 and the above algebra, it can now be
verified whether it is plausible that the two different redshifts originate from incor-
poration of Eu2+ on the Sr1 and Sr2 sites. For this, the assumption is made that αsp,

βQpoly, and the expectation values
〈
r2

〉
n`

are equal for both lattice sites and the differ-
ence in redshift is thus the mere consequence of the difference in bond length. This
yields:

εcfs(Sr1)
εcfs(Sr2)

=
d2

av(Sr2)

d2
av(Sr1)

= 0.90 and
εc(Sr1)
εc(Sr2)

=
d6

eff(Sr2)

d6
eff(Sr1)

= 1.21. (4.120)

Regardless of the simplicity of the model, these calculated ratios are in good corre-
spondence (deviations of only 0.07 and 0.06) with the experimental ratios for the
green and blue emission bands. Therefore, it is certainly plausible that the different
spectral features are the consequence of the small but significant difference between
the two lattice sites. The green emission band is attributed to the Sr1 site, and the
blue emission to the Sr2 site within this simple model. The obtained energy level
scheme is displayed in Fig. 4.12. Herein, the relative locations of the five 4f65d1

levels after crystal field splitting were estimated with a point charge model [78]. A
good qualitative correspondence with the experimental spectrum is observed, when
adding all the different sub-levels. Represented in this way, it is also clear that upon
excitation towards higher excited levels, the multitude of sub-levels leads to a quick
non-radiative relaxation to the lowest excited state, even at low temperature. Hence,
the hypothesis that the blue emission originates from emission starting at higher ex-
cited states can be discarded. In addition, the clear differences on the high energy
side of the excitation spectrum point at a different origin of both emission bands as
well.

The above results led to an interesting discussion in scientific literature. Hagemann,
Bierwagen and coworkers found very similar results concerning the energy storage
processes in SrAl2O4 [178, 179]. Wavelength dependence of the different processes
and the increase of energy transfer for increasing doping concentrations indicate the
correctness of the model with the two nonequivalent Eu defects.

Next to these investigations of dynamics, some more studies on the incorporation
of Eu2+ in SrAl2O4 appeared. In particular, Nazarov et al. performed VUV spec-
troscopy on this phosphor and ECM calculations for both nonequivalent Eu2+ ions
[180]. Interestingly, the VUV spectroscopy revealed additional spectral features
above 5 eV. These were all attributed to transitions towards the excited 4f65d1 con-
figurations except for intese band slightly below 7 eV which is most likely due to fun-
damental absorption of the SrAl2O4 host crystal (see also §5.4). As the calculation
of Slater-Condon parameters is not possible within the ECM, the authors assumed
a simple effective Hamiltonian containing only the Hcf(d) term. They obtained 5d
crystal field splittings of 3.15 eV and 2.73 eV for Eu2+ at the Sr1 and Sr2 site re-
spectively, spanning the full violet-VUV region of their measurements. These are re-
markably high values, compared to typical values that are found in literature [173].
Furthermore, given the low symmetry of the compound it is expected that the five
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different sets of energy levels will interact severely, i.e. contributions of Hso(f) and
HRS(fd) cannot be neglected here, devaluating the meaning of the five discrete 5d
levels. In addition, it is expected that effects from HRS(ff) will be important as well
when crystal field splittings of 2-3 eV are considered. After all, the first excited
multiplet of the 4f6, i.e. 5D3Jf lies only 2.1 eV above the 7F0 ground state [171]21.
Probably, the VUV spectral features originate at least partially from transitions to
energy levels corresponding to |4f6(5D3Jf ),5djd ; JM〉 states.

Anyway, the qualitative empirical study arguing that the observed spectral and dy-
namical differences are due to two nonequivalent Eu2+ ions holds. Reliably assessing
which ion gives rise to which spectral feature is obviously out of the scope of both
above empirical study and the oversimplified ECM calculation by Nazarov et al. This
issue is further elaborated in §6.5.

21The ´´3´´ in 5D3 denotes the 5D term with υ = 6, W = (2,1,0) and U = (2,1) (see §4.1.2).
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5 Band picture

The band theory of solids was first written down by Alan H. Wilson and Felix Bloch
in the late 1920s - early 1930s. Despite its simplicity, this theory was able to rev-
olutionize physics and to provide the theoretical keystone of the new discipline of
solid state physics, which quickly expanded the successes of semiconductor science
and technology. It describes the electronic structure of crystalline solids in terms of
single-particle orbitals, the bands. In the case of insulators and semiconductors, a
forbidden band, called the band gap, separates the occupied from the empty bands.
Impurities or other defects in the crystal give rise to levels that lie in the band gap.
In the case of transition metal or lanthanide impurities, multiple charge states can
be found and many-electron effects cannot be neglected hence giving rise to com-
plications with the single-electron band picture. In order to hold on to the notion
of occupied and empty bands, charge-state transition levels are used, describing the
stabilities of the charge states of the impurities in terms of total energies, while main-
taining the band picture for the host crystal. Charge-state transition levels can be
numerically calculated with density functional theory, using a defective supercell
and periodic boundary conditions.

5.1 Perfect crystals

Crystals are highly symmetric structures. Translation symmetry allows to find a
primitive unit cell which can be copied along the basis vectors a, b and c to generate
the full crystal, which is assumed to be infinitely large. As in the atomic case, group
theoretical techniques can simplify the description of the electronic structure for
crystals. The symmetry group of a crystal is called a space group and is composed
of the familiar point group operations, supplemented with translations, T , along
the crystallographic directions a, b and c. For non-symmorphic space groups, glide
planes and screw axes are found in addition. The space group operations commute
with the Hamiltonian and provide good quantum numbers to label the electronic
eigenstates (see appendix A).

Band theory offers an approximate solution to the Schrödinger equation for a crys-
talline solid. Next to the assumption of perfect crystallinity, it is additionally as-
sumed that the electrons behave independently. This means that band theory is a
single-particle theory where the total wave function can be written as the product of
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single-electron wave functions, ψ and the Hamiltonian is the sum of sp Hamiltoni-
ans:

H0(i) = − ~2

2me
∇2
i +V (ri). (5.1)

The electron’s potential energy will show periodicity, dictated by the crystal symme-
try. In terms of the translation operators one has:

T (Ri)V (r) ≡ V (r +Ri) = V (r), (5.2)

where Ri are the lattice vectors1. The eigenfunctions of the Hamiltonian are simul-
taneously supposed to be eigenfunctions of the translation operators (see appendix
A):

T (Ri)ψ(r) = ψ(r +Ri) = λiψ(r). (5.3)

The electron density necessarily has the same periodicity as the potential, implying
that the eigenvalues λi are limited to a phase factor λi = eiφi . When translation
operations are performed consecutively, the eigenvalues get multiplied, yielding that
φi = k ·Ri , with k an arbitrary vector which is the same for all operations. This k
vector can be used to label the eigenfunction:

ψk(r +Ri) = eik·Riψk(r). (5.4)

This result is known as Bloch’s theorem and is central to the study of the electronic
structure of crystals. Typically, a function uk(r) is introduced as,

ψk(r) = eik·ruk(r), (5.5)

and thus has by definition the same periodicity as the crystal potential. The wave
vector serves as a quantum number for the Hamiltonian and simultaneously as label
for the eigenstates of the translation operator.

Local physical properties have the same periodicity as the crystal, suggesting a de-
scription in terms of (discrete) Fourier transforms. For the electron density, ρ, one
has for instance:

ρ(r) =
∑
G

ρ(G)eir·G . (5.6)

As ρ needs to be invariant for the space group operations, most notably the transla-
tions, this puts restrictions on the allowed values for the vectors G. It can be shown
that the G vectors form a lattice, the so-called reciprocal lattice, defined by its basis
vectors bi for which bi ·aj = 2πδij . As for the crystal lattice, a primitive unit cell can
also be found for the reciprocal lattice, which is referred to as the first Brillouin zone.
The reciprocal lattice vectors have the same unit as the k vector, which hence live in
reciprocal space. A general wave vector k can be translated to the first Brillouin zone
by a suitable reciprocal lattice vector G:

k′ = k−G. (5.7)

1A lattice vector can correspond to one or more atomic positions. In the latter case, the atomic unit is
referred to as the motif. The motif is repeated at every lattice point R.
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The Bloch function of this vector outside the first Brillouin zone reads:

ψk(r) = uk(r)eiG·r︸     ︷︷     ︸
u′k(r)

eik′ ·r . (5.8)

The factor eiG·r has the same periodicity and can therefore be absorbed in uk(r).
This can be done for all wave vectors outside the first Brillouin zone and hence an
additional quantum number is required. This is called the band index n. We finally
obtain the general expression

ψnk(r) = unk(r)eik·r (5.9)

for the sp solutions for electrons of a perfect crystal corresponding to sp energy
εn(k). When the Fourier transform of the periodic function unk(r) is introduced, the
sp states can be written alternatively as:

ψnk(r) =
∑
G

cnk(G)ei(k+G)·r , (5.10)

with G a reciprocal lattice vector.

Very similar to the central field solution for atoms, Eq. 4.5, the Bloch states ψk(r) and
the sp potential V (r) can be regarded as the mean field (or Hartree-Fock) solution
of the electronic structure problem. Electron correlation can be added at a higher
level of approximation. As an example, Fig. 5.1 shows the single-particle energy
level structure of SrZrO3. In the left part of the figure (5.1(a)), the dispersion of the
energy eigenvalues is shown as a function of the k vector. The capital letters de-
note points of high symmetry in the Brillouin zone of the compound, as shown Fig.
5.1(d). This figure illustrates that continuous energy bands are formed, separated by
gaps where no electronic states occur.

The single-electron states are filled according to the Fermi-Dirac distribution,

f (E) =
1

e(E−µ(T ))/kBT + 1
, (5.11)

where µ(T ) represents the chemical potential of the system, i.e. the energy cost or
gain upon adding or removing an electron to the system. The Fermi level, EF , is de-
fined as the electron chemical potential at absolute zero. If the Fermi level is inside
a band, one obtains a metal, while a semiconductor or insulator2 is obtained when
the Fermi level lies inside a forbidden band. This forbidden band is then referred to
as the band gap and its width as the band gap energy, EG. The highest filled band is
the valence band (VB), the lowest unfilled band the conduction band (CB). As metals
are poor host materials for luminescent ions, only semiconductors and insulators are

2The distinction between semiconductors and insulators is rather ambiguous and very craft dependent.
Anyway, insulators have the larger band gap energies.
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Figure 5.1 – (a) Single-particle band structure of a SrZrO3 crystal (space group Pm3̄m)
shown along a line in the Brillouin zone, connecting some points of high symmetry. (b)
Total and projected density of states of the band structure. (c) Band diagram. (d) Path in
the Brillouin zone along Γ (0,0,0), R (1/2,1/2,1/2), X (0,1/2,0) and M (1/2,1/2,0). Adapted
from [181, 182].

considered from here. For crystals where the curvature3 of the valence band top and
the conduction band bottom with respect to the k vector is equal, EF lies exactly in
the middle of the band gap.

Furthermore, the so-called density of states (DOS) is shown in Fig. 5.1(b). This prop-
erty is calculated by counting the number of available sp states in the energy interval
[E,E + dE] and can be interpreted as a condensed version of the full band structure.
The DOS can also be projected on the different atomic orbitals4 or on the different
orbitals to obtain the projected DOS (PDOS). This is in practice done by calculating
overlap integrals between the Bloch solutions and atomic orbitals, centered onto the
nuclear positions.

An even more simplified representation of the compound’s sp electronic structure
is shown in Fig. 5.1(c). Here, only two parameters are left, i.e. the locations of the
valence band top, EV and the conduction band bottom, EC. The band gap energy is
obviously found by the difference, EG = EC − EV. This ultimately condensed repre-
sentation is referred to as the band diagram in the following. These band diagrams
are often found in qualitative analyses and empirical models (see also chapter 6).

3These are the so-called effective masses of electrons and holes, m∗−1
ij = ∂2ε(k)

∂ki∂kj

∣∣∣∣∣
k=k0

for the sp eigen-

value ε(k), evaluated at the extremal point k0.
4Formally spoken, the concept of an atom is lost within a molecule or solid, which should be rather

regarded as a collection of nuclei and electrons. Nonetheless, atomic cores can unambiguously be found
and only for the valence electrons it becomes problematic to assign them to an atom. This covalency is
clearly visible in the overlapping PDOS.
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5.2 Imperfect crystals

In the derivation of the Bloch sp states for the crystal, it was explicitly assumed that
the crystal is perfect, showing the long range order as described by the space group.
This means that no defects are present in the crystals. Real materials however always
contain defects, either intrinsically present or extrinsically applied [183]. Depend-
ing on their extent, defects are divided into point or extended defects such as line
and planar defects. This work is restricted to point defects. Intrinsic point defects
are either vacancies (VM ) or interstitials (Mi), representing a missing and a surplus
of atomic speciesM respectively. Extrinsic defects are impurity atoms (X) that can be
incorporated substitutionally (XM ) or interstitially (Xi). Defect clusters often occur,
e.g. an antisite defect (M1M2

+M2M1
), a Frenkel defect (VM +Mi) or a Schottky defect

where vacancies cluster in a stoichiometric fashion. Here, the Kröger-Vink notation
was used to label the different types of defects. Typically, the Kröger-Vink charge is
also given, defined as the difference between the oxidation state of the defect and
the oxidation state of the pristine lattice site. It is denoted by ’, × or • for negatively,
neutral (or isovalent) and positively charged defects respectively [183].

The presence of a point defect breaks the translation symmetry of the crystal and
possibly also the point group symmetry. The pristine band structure will be altered
through the occurrence of impurity levels, i.e. sp states that occur at energies that
were forbidden for electrons in the pristine crystal. Furthermore, the defect can
scatter electrons in Bloch states, changing the density of states of the allowed bands
[184]. It has been experienced that a general treatment of the electronic structure
is not simple. In the following, the most remarkable results are briefly reviewed in
order to get a better understanding of energy levels of defects in the band picture
[185].

5.2.1 Shallow levels

The so-called effective mass theory for impurities was devised by Joaquin M. Lut-
tinger and Walter Kohn in 1955 [186, 187]. It is valid for substitutional impurities
which differ by only one atomic number with the atom they replace. In this case, the
impurity has one excess or one deficient valence electron with respect to the pris-
tine material. Luttinger and Kohn proposed a sp Schrödinger equation for the excess
electron or hole, which interacts by a Coulomb-like 1/r potential with the remainder
of the impurity. In other words, a hydrogen-like eigenvalue equation is obtained. In-
stead of taking the vacuum level as energy reference as in the atomic case, here the
CB bottom, EC or VB top, EV is taken for electrons and holes respectively, as this
point corresponds to exempting the charge carrier from the impurity. Consequently,
the sp electronic structure of this Luttinger-Kohn defect shows hydrogen-like or-
bitals reaching towards the associated band. When the effective mass impurity is
ionized, this corresponds to a neutral Kröger-Vink charge. When not ionized, a sin-
gle negative or positive Kröger-Vink charge is found for electron donors or acceptors
respectively. The energy to ionize the defect exactly corresponds to the energy dif-
ference between the 1s ground state and EC or EV. Two possible charge-states are
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hence found for effective mass defects.

The substitutional defects that can be described by effective mass theory give rise to
shallow impurity levels. This means that the occupation of the defect can be altered
by varying the temperature. For higher temperatures, the defects will be ionized,
while for low temperature, the charge carrier is frozen at the defect. The location of
the Fermi level is found upon evaluation of the condition for charge neutrality. It
is found that the Fermi level lies between the impurity level and the closest energy
band at low temperature, when the charge carrier is trapped at the defect, while it
converges towards the middle of the band gap for higher temperatures. When the
Fermi level crosses the impurity level, the charge carriers get massively delocalized.

The Luttinger-Kohn model assumes a charged defect which exhibits a rather long-
range Coulomb-like perturbation on the excess charge-carrier. Obviously, these as-
sumptions are not valid for all point defect which are often neutral, showing a short-
range perturbation potential, mainly originating from the different core potentials.
In this sense, the notion of deep levels is introduced as opposed to shallow levels,
where the difference is not necessarily the depth of the impurity level with respect to
the CB or VB, but rather whether effective mass theory offers a successful description
or not.

5.2.2 Deep levels

Simultaneously with the development of the Luttinger-Kohn model, George F. Koster
and John C. Slater came with the first theory for deep levels [188,189]. In this model,
Wannier functions are used as sp basis states rather than Bloch functions5. It is as-
sumed that only the Wannier functions centered at the impurity contribute to the
deep level. Green’s function techniques were applied to the study of defects for the
first time. Additionally, Slater and Koster initially assumed that only one sp level
was perturbed by the defect. This band is then pulled into the band gap and pinned
there. Depending on the sign of the matrix element of the perturbing Hamiltonian,
the level has a different origin. For a negative potential, the perturbed eigenvalue is
smaller than the original eigenvalue, implying that the impurity level has CB char-
acter and stays relatively close to the CB if the perturbation is small. Similarly, for a
positive potential, an impurity level with VB character is found. If the magnitude of
the perturbation increases, the impurity level will go further into the band gap and
is expected to obtain character of both VB and CB, requiring a description in terms
of more than one sp level, which can be effectuated in the model.

The Koster-Slater model assumes that the Bloch electrons get scattered at the im-
purity by its different core potential, yielding impurity levels with s or p character.
In the case of transition metals, the Bloch electrons get however mainly scattered
by the d electrons, yielding impurity levels with d character. This requires a dif-

5Wannier functions are the Fourier transform of Bloch functions. Given the extended nature of the
Bloch states in coordinate space, Wannier functions are localized, which is advantageous in the descrip-
tion of defects.
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ferent model. In 1976, F. Duncan Haldane and Philip W. Anderson extended the
Anderson impurity model for metals to the case of semiconductors [190]. Their
research was mainly motivated by the remarkable discrepancy between the energy
differences between the different charge states for free metal atoms and the occur-
rence of many different charge states as defects in semiconductors, e.g. Au3− and
Au+ can be formed in germanium, irrespective of its small band gap energy. In the
Haldane-Anderson model, the localized d or f electrons are explicitly considered in
addition to the itinerant electrons which are mixed, hybridized, by a single-particle
interaction, parametrized by V , which is included in the model Hamiltonian:

H = ε`
∑
m`ms

c†m`mscm`ms +
∑
kms

εkc
†
kms

ckms +V
∑
m`kms

(
c†m`msckms + c†kmscm`ms

)
+

1
2
U

∑
m`ms,m

′
`m
′
s

c†m`msc
†
m′`m

′
s
cm`mscm′`m

′
s
. (5.12)

The localized electrons mutually interact by a Hubbard-like U term6. The Hamil-
tonian was solved within the Hartree-Fock approximation with the band gap, lo-
cation of the d level with respect to the band gap, tp interaction strength and the
hybridization strength as tunable parameters. The result of this investigation was
the confirmation that, when the hybridization is sufficiently large with respect to
the tp interaction, multiple charge states of the defect can be stable. When the
number of electrons in a d orbital is increased, the hybridization ensures that the
increased electron density close to the metal ion is compensated by a decrease of
the density coming from VB electrons. This charge self regulating mechanism is the
key to understand the occurrence of multiple charge states of metal ions doped in
semiconductors or insulators. This mechanism is also directly responsible for the
breakdown of Koopmans’ theorem, i.e. the binding energy of the localized electrons
is only identical to the highest occupied mean field level when the sp wave func-
tions are not altered upon adding an electron, which is indeed not the case due to
the hybridization. This means that the sp level schemes depend on the number of
localized electrons and that in reality a sp level scheme is required for all relevant
charge states.

While the Haldane-Anderson model gives a qualitative account on how the impu-
rity levels of metal defects can be interpreted, it evades the inclusion of correlation
effects as the Hubbard term is treated in a mean field approximation. Therefore, a
multiplet picture, as required to understand the excited state landscape, does not
occur. The link between the two viewpoints was elaborated in 1979 by the Soviet
physicists K. A. Kikoin and V. N. Fleurov by an approach which can be regarded as a
hybrid form of the original work of Tanabe and Sugano and the Haldane-Anderson
model [191]. They refer to this calculation scheme as the impurity pseudoion. In
a first step, an Anderson Hamiltonian is solved by a mean field calculation, using

6It describes the two-particle Coulomb interaction in an effective fashion, neglecting the details of the
term splitting (see §4.1.2) by restricting the number of parameters to one instead of two (for ` = 1), three
(for ` = 2) or four (for ` = 3). See also §5.3.3.
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a basis containing both Bloch functions as well as suitable linear combinations of
impurity centered d functions, adapted to the symmetry of the defect cluster. The
hybridization causes both types of basis functions to mix, altering the radial wave
function associated with the localized electrons, which obtains a symmetry label
Rn`γ (r). This calculation is referred to as covalent renormalization. Subsequently,
the obtained sp radial wave functions are used to calculate Slater-Condon parame-
ters. In contrast to conventional CFT, more radial parameters, Fk(γ1,γ2,γ3,γ4) (see
e.g. Eq. 4.10), are found as each sp function has its own symmetry label, e.g. one
obtains 18 parameters instead of 3 for a d shell in a cubic environment. Multiplets
can be constructed by suitably combining the d-like functions, requiring recoupling
and Clebsch-Gordan coefficients of the point group (see §4.2.1). Although similari-
ties can be found, this approach is fundamentally different from ordinary CFT, e.g.
no sp CF parameters exist in the theory of the pseudoion. Calculations within the
framework of the impurity pseudoion are in practice not straightforward and the
choice of realistic parameters is difficult. Nonetheless, this model offers the unique
feature to combine the single-particle band picture and the many-particle atomic
picture within the same formal framework, yielding interesting insights into the
meaning of both types of energy level schemes.

5.2.3 Charge-state transition levels

From the above overview it is clear that a sp band picture containing impurity levels
cannot be easily related to real materials. The main reasons are the multiplet effects
and the occupation dependence of the sp spectrum with its associated geometric re-
organization, i.e. the violation of Koopmans’ theorem. To obtain a full picture of a
real system, one needs a sp energy level scheme for every charge-state of the defect,
while the mp energy level scheme should accommodate the different configurations.
In order to retain the concept of impurity levels, a generalization of the impurity
levels as they occur in the Luttinger-Kohn or Slater-Koster model was introduced
by Schockley and Last in 1957 for defects that adopt multiple charge states [192].
Energy levels of a charged defect were pragmatically defined as the Fermi level lo-
cations at which the defect changes its charge to minimize the total free energy of
the system. It was argued that the total energy of a defect cluster is a linear func-
tion of the Fermi level location, i.e. the chemical potential of the electron reservoir.
Later, Zhang and Northrup found that the defect energy additionally depends on the
chemical potentials of the atoms that are relevant for the defect, which are bound in
a restricted range determined by the formation of unwanted impurity phases [193].

The formation energy for a defect X in a host compound A is calculated as:

Ef (A : XQ) = Etot(A : XQ)−Etot(A)−
∑
i

niµi +QEF. (5.13)

Herein, Q denotes the Kröger-Vink charge of the defect and Etot represents the total
energy of the pristine crystal and a crystal with one defect. The integer ni indicates
the number of atoms of type i that have been added (ni > 0) or removed (ni < 0)
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to form the defect and µi are the atomic chemical potentials. The Fermi level is
referred with respect to the VB maximum, EV = 0. The impurity levels are found
as the so-called charge-state transition levels, i.e. the Fermi level locations at which
two charge states of the defect have the same formation energy:

ε(Q/Q′) =
1

Q −Q′
(
Ef (A : XQ

′
)
∣∣∣
EF=EV

− Ef (A : XQ)
∣∣∣
EF=EV

)
(5.14)

These levels correspond to the experimental impurity levels which can be assessed
through various techniques such as deep-level transient spectroscopy (DLTS) or charge-
transfer (CT) luminescence [94].

One should keep in mind that these impurity levels cannot be identified with energy
levels in the sense that these are no solutions of an eigenvalue equation. Charge-state
transition levels are thermodynamic concepts, indicating the relative stability of the
different charge states of defects. The underlying electronic structure is in general
more complex as explained in §5.2.1-5.2.2.

Figure 5.2 – Illustration
of the formation energy
Ef versus Fermi level EF
for a defect that can take
three charge states, Q =
−1,0,1. Two charge-state
transition levels are found,
a deep donor level ε(+/0)
and a deep acceptor level
ε(0/−). The thick line in-
dicates the energetically fa-
vored charge state for a
given Fermi level. Adapted
from [94].

Figure 5.2 shows a schematic illustration of the defect
formation energies as a function of the Fermi level lo-
cation for a certain defect. The linear relation with the
Kröger-Vink charge as proportionality factor is imme-
diately clear. This figure shows how the impurity lev-
els can be found as the point where the straight lines
cross.

Often, a so-called U parameter or Coulomb correlation
parameter is introduced for defects that can take mul-
tiple charge states. It gives a measure for the electron-
electron repulsion at the defect, which is larger for
highly localized states and for host compounds with a
small electronic screening. In the case of two successive
impurity levels:

U = ε(Q/Q − 1)− ε(Q+ 1/Q) (5.15)

= Ef (A : XQ+1) +Ef (A : XQ−1)− 2Ef (A : XQ)

= Etot(A : XQ+1) +Etot(A : XQ−1)− 2Etot(A : XQ).

The notation and definition of this parameter is remi-
niscent of the Coulomb correlation parameter in the An-
derson model7. In these models, the U parameters de-
scribed the full electron correlation, while in the realistic
case of d or f shells Coulomb correlation requires a de-
scription in terms of Slater-Condon or Racah parameters

7If the hybridization is switched off in the Haldane-Anderson Hamiltonian (V = 0), one immediately

finds that the energy for a shell containing N electrons equals EN = Nε` + N (N+1)
2 U , yielding indeed

U = EN+1 +EN−1 − 2EN .
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(see 4.1.2). For this reason, knowledge of U through experiments or the calculation
of charge-state transition levels is not sufficient to generate the excited state land-
scape of the impurity.

Charge-state transition levels can be calculated within a theoretical framework of
choice that yields total energies. In §5.3 it will be shown how density functional
theory can be employed for this.

5.3 DFT description of point defects

Density functional theory (DFT) is a popular tool to study the incorporation, chemi-
cal bonding and electronic structure of defects in crystalline solids. A recent tutorial
review of Freysoldt et al. is available on how to calculate defect formation energies
by means of DFT for defects in supercells, imposed to periodic boundary conditions,
offering an in-depth overview of many aspects concerning the interpretation of re-
sults and the practical implementation on how to obtain them [94]. Here, the most
important aspects of the DFT formalism and its application to the study of lumines-
cent defects is summarized. The calculations in this work are performed with the
Vienna Ab Initio Simulation Package (VASP) [194–196].

5.3.1 Density functional theory

The special feature that distinguishes DFT from other electronic structure methods
is that it does not search for solutions in terms of the many-electron wave function,
a complex-valued function of the (3 + 1)N electronic degrees of freedom of the N
electron system, but it searches for the ground state electron density, a real function
of only the three spatial dimensions.

According to quantum mechanics, knowledge of the external potential v(r), defined
as the system-dependent part of the electronic Hamiltonian8:

He =
N∑
i=1

− ~2

2me
∇2
i +

N∑
j>i

e2

4πε0

∣∣∣rj − ri ∣∣∣
︸                                      ︷︷                                      ︸

system independent
F

−
N∑
i=1

M∑
α=1

Zαe
2

4πε0 |Rα − ri |︸                       ︷︷                       ︸
system dependent

+
∑N
i=1 v(ri)

, (5.16)

yields the total wave function ψ as solution of the Schrödinger equation. Subse-

quently, the electron density ρ can be obtained by integrating
∣∣∣ψ∣∣∣2 over the 3N spa-

tial coordinates of the electrons. One thus arrives at the ”ordinary” sequence:

v(r)⇒ ψ(r1 . . .rN )⇒ ρ(r). (5.17)

8We work in the Born-Oppenheimer approximation (see §2.1.1) and omit the constant nucleus-nucleus
repulsion.
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The development of the DFT formalism dates back to the 1960s and is largely due
to Pierre Hohenberg, Walter Kohn and Lu Jeu Sham. The at first sight surprising
fact that the electron density contains all the information which is also hidden in
the total wave function is essential to understand DFT. This is governed by the first
Hohenberg-Kohn theorem which states that v(r) can be determined from the ground
state density, implying bijectivity of previous relation:

v(r)⇔ ψ(r1 . . .rN )⇔ ρ(r). (5.18)

Thanks to this relation, it can be easily seen that the total energy -and any other
physical property- will be a functional of the electron density, E[ρ(r)]. It is typically
separated in its purely electronic and external contributions, E[ρ] = F[ρ] + Vext[ρ]
with F[ρ] the universal or Hohenberg-Kohn potential and

Vext[ρ] =
∫
ρ(r)v[ρ,r]d3r. (5.19)

If an expression for F[ρ] can be found, DFT would be an exact solution method. This
is unfortunately not the case and an approximate functional needs to be used.

The second Hohenberg-Kohn theorem offers a means to find the true ground state
density for a given external potential. It states that the energy of an arbitrary density
is always larger than the energy of the true ground state density. A minimization al-
gorithm can then be used to find ρ(r).

In practice, it is however difficult to find an expression for the kinetic energy as a
functional of the density, T [ρ], making it laborious and inaccurate to directly work
with the density. To accommodate this difficulty, Kohn and Sham introduced a sys-
tem of fictitious independent particles that give rise to the same density as the phys-
ical electrons. For the IPM, the kinetic energy can be simply calculated from the
Kohn-Sham (KS) orbitals and is denoted as Ts[ρ]. The universal functional is sepa-
rated as:

F[ρ] = Ts[ρ] + J[ρ] +Exc[ρ], (5.20)

with
Exc[ρ] = T [ρ]− Ts[ρ] +Vee[ρ]− J[ρ], (5.21)

the exchange-correlation energy and J[ρ] the direct part of the mean field of the
inter-electronic repulsion9, Vee[ρ] for the ground state density. The sp KS equations
read (

−~2

2me
∇2
i + veff(ri)

)
φKS
i (ri) = εKS

i φKS
i (ri). (5.22)

The sp effective potential is obtained by claiming that the density, calculated from
the KS orbitals is the same as the density of the physical interacting electrons:10

veff(r) = v(ri) +
δJ[ρ]
δρ(r)

+
δExc[ρ]
δρ(r)

= v(ri) +
∫

ρ(r′)
|r − r′ |

d3r′ + vxc(r), (5.23)

9J[ρ] = 1
2

s ρ(r)ρ(r′ )
|r−r′ |. d3rd3r′

10The definition of functional derivative is used here: δF[f (x)] = F[f + δf ]−F[f ] =
∫
δf (x) δF[f ]

δf (x) dx.
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where vxc(r) is the exchange-correlation potential. The KS equations are solved in
a self-consistent iteration scheme, reminiscent of Hartree-Fock theory, minimizing
total energy:

E[ρ] =
N∑
i=1

εKS
i − J[ρ] +Exc[ρ]−

∫
vxc(r)ρ(r)d3r. (5.24)

DFT is exact in principle, in contrast to e.g. Hartree-Fock which is approximate by
definition. This of course requires an expression for the exact exchange-correlation
functional, an expression which unfortunately does not exist. In reality, many dif-
ferent approximations to this functional are used. The most important classes are:

• Local density approximation (LDA): Here, the functional depends solely on
the value of the electron density at each point in space, e.g. no derivatives
occur. The expression for the functional is often based on the equations for a
homogeneous electron gas.

• Generalized gradient approximation (GGA): In addition to LDA, here the func-
tional depends also on the gradient of the density, ∇ρ, improving the descrip-
tion for non-homogeneous systems. If the functional depends in addition on
the kinetic energy of the electrons, it is referred to as a meta-GGA functional.

• Hybrid functionals: Here, the GGA or meta-GGA functional is extended with
a certain fraction of ”exact exchange”, meaning that a Coulomb exchange in-
tegral is calculated for the KS orbitals. These functionals require significantly
more computational labor because of the occurrence of four-center integrals.

The above enumeration of functionals was called Jacob’s ladder by DFT pioneer John
Perdew in 2000. Here, every rung represents an increasingly sophisticated func-
tional, ultimately reaching the heaven of chemical accuracy. The exact formulation of
exchange-correlation functionals is outside the scope of this text and a specializa-
tion in its own. It should however be remarked that this is the point where empiri-
cism sneaks into DFT. Most functionals contain parameters which are tuned such
that well-chosen experimental data sets are reproduced by the DFT calculation. Al-
though this devalues in a certain sense the philosophical superiority of those who
want to predict properties of materials from first principles, a pragmatic point of
view intrudes where DFT is one of the possible tools, including experiments, that
are combined to obtain a better understanding of functional materials, finally lead-
ing to new applications or improvements of existing applications. In the meantime,
the quest for the exact exchange-correlation functional, and the eternal glory for
those to reach the heaven of chemical accuracy, continues unabated [197].

5.3.2 Physical interpretation of the Kohn-Sham eigenvalues

The KS wave functions were introduced as a mathematical trick to find the ground
state density of the physical system. Therefore, there is no a priori reason to attach
a physical meaning to the KS orbitals and eigenvalues. This is in stark contrast with
what can be found in scientific literature. More than often, KS eigenvalues, mostly
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in their disguise as a density of states (DOS) are used to explain physical properties.
In particular, defect-projected PDOS are often interpreted as impurity levels. This
is possibly in part motivated by the lower computational cost of a DOS calculation
compared to calculating the full defect formation energy as sketched in §5.2.3 and
§5.3.4. In the following, it is reviewed under which constraints this association is
valid.

Related to that, the KS eigenvalues show a band gap which is typically compared to
experimentally determined band gaps of solids. It is well-known in the materials
science community that DFT has some issues with predicting the values of band
gaps, discouraging many outsiders to apply DFT to their research as band gaps are
important parameters for fundamental investigations as well as for technological
applications of functional materials. In this paragraph, the origin of this bothersome
shortcoming is briefly discussed. In §5.3.3 it is shown how this issue is circumvented
in this work.

Quasiparticles

A popular interpretation of the KS orbitals and energies is that they originate from
so-called quasiparticles. These objects can be envisaged as the relics of the sp exci-
tations when the interaction is turned on [198]. Quasiparticles obey different equa-
tions of motion than free particles, although their properties are modeled as those
of free particles. In this treatment, effective parameters are then introduced, remi-
niscent of the free particle parameters, but with different values. A conduction band
electron in band theory is an excellent example. Its E(k) dispersion relation close to
the CB minimum is modeled as that of a free electron,

E(k) =
~2k2

2m∗e
, (5.25)

however with an effective mass which is different than me.

Analysis of the quasiparticle concept by means of many-body physics learns that
quasiparticles have a well-defined meaning for sp near the Fermi level. Further
away from the Fermi level, the quasiparticle states acquire a width and lose their
single-particle or single-hole meaning. This implies that, even when KS eigenstates
can really be interpreted as quasiparticles, only those near the Fermi level have an
experimental meaning.

Janak’s theorem

In contrast to Hartree-Fock theory, KS-DFT does not feature a handy property such
as Koopmans’ theorem to relate excitation energies to the sp eigenvalues. However,
by taking a small detour, another argument can be used to relate the KS eigenvalues
close to the Fermi level to an addition (electron affinity) or removal (ionization po-
tential) energy.
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The theory of KS-DFT can be formally extended to accommodate fractional occupa-
tion numbers ni (0 ≤ ni ≤ 1, 0 ≤ i ≤N ). Janak showed that in this case the equality

∂E[ρ]
∂ni

= εKS
i , (5.26)

holds, irrespective of which functional is used. Upon integration, this formula offers
indeed a prescription for addition or removal energies, e.g.

I = E(N − 1)−E(N ) = −
∫ 1

0
εKS
N (nN )dnN , (5.27)

for the ionization potential. If this integral is rudimentarily approximated by us-
ing the trapezoidal rule11, or in other words by assuming that εKS

N (nN ) is a linear
function, one obtains:

I = −1
2

[
εKS
N (0) + εKS

N (1)
]
. (5.28)

Often, it is further assumed that εKS
N (0) = εKS

N (1) so that the highest occupied KS
eigenvalue is directly used to yield the ionization potential. The latter approxima-
tion is then justified by the argument that the electron density of the system con-
taining many electrons is not altered significantly by removing one electron. This
sounds reasonable for infinite systems, but is highly doubtful in the case of the lo-
calized d or f states of transition metal or lanthanide impurities in insulators. In
contrast, it has been shown that Kohn-Sham levels can give qualitative insights into
the occupation of defects and defect clusters in their charge-neutral state [199].

Delocalization error

The band gap of a system with N electrons is given by the difference between the
ionization potential, I , and the electron affinity, A:

EG = [E(N − 1)−E(N )]− [E(N + 1)−E(N )] = I −A. (5.29)

Hence to obtain a good value for EG, the behavior of the energy as a function of the
particle number has to be well-described. A few years after Janak’s paper, Perdew,
Parr, Levy and Balduz showed with a thermodynamic argument that the exact E(N )
is a continuous piece-wise linear function with a discontinuous slope at integer N
values (see Fig. 5.3) [200]. The chemical potential µ, i.e. the derivative of the total
energy with respect to the particle number will be constant for non-integer N and
shows discrete jumps at every integer N . This yields an alternative way to express
the band gap as:

Ederiv
G = lim

δ→
>

0

∂E
∂N
− lim
δ→
<

0

∂E
∂N

. (5.30)

And it is clear that when the total energy shows the correct piece-wise linear behav-
ior, Eq. 5.30 is equivalent to Eq. 5.29, i.e. I −A.

11
∫ b
a f (x)dx = 1

2 (b − a)[f (a) + f (b)].
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It can be shown that

µ =
∂E
∂N

=
∂E
∂nf

, (5.31)

for the optimized ground state where nf is the occupation number of a frontier or-
bital, i.e. the highest occupied (HOMO) or lowest unoccupied (LUMO) KS state.
Upon application of this equality and the Janak theorem, Eq. 5.26, we obtain:

Ederiv
G = εKS

LUMO − ε
KS
HOMO. (5.32)

From the above, it is thus found that when the total energy shows the correct piece-
wise linear behavior:

EG = I −A = εKS
LUMO − ε

KS
HOMO. (5.33)

In other words, the assumptions at the end of §5.3.2 boil down to a correct descrip-
tion of the total energy as a function of the fractional occupation numbers. Hence,
the accuracy by which the frontier KS eigenvalues yield a correct band gap depends
on how well the used functional satisfies the linearity condition [197].

Figure 5.3 – E versus N for
an external potential com-
posed of a single proton.
Comparison between the ex-
act behavior and the GGA
functional BLYP. The miss-
ing of discontinuous behav-
ior is the hallmark of the fail-
ures of DFT for strong corre-
lation. Adapted from [197].

It turns out that the approximate functionals that are
used in real calculations show a convex behavior, mean-
ing that a too low energy is found for fractional charges
(see Fig. 5.3). This implies that the calculated charge
density will show a higher delocalization than the phys-
ical charge density. This is the definition of the delocal-
ization or self-interaction error of DFT which lies at the
origin of the systematically underestimated band gap
values.

5.3.3 On-site Coulomb interaction

Different possibilities exist to correct for the delocaliza-
tion error of DFT of which some are very sophisticated.
A possibility that is computationally rather cheap and
which has proven its success, is inspired by the Ander-
son model (Eq. 5.12) and separates the system in lo-
calized and delocalized electrons. An explicit Coulomb
interaction is added to the localized electrons, typically
d and f electrons. Of course, the unaltered functional
already took electron-electron interactions into account,
so a part of the Hubbard term has to be subtracted again
to avoid double counting. For the latter, the mean field approximation is usually
taken. One then arrives at the total energy that is written as [201]:

E[ρ] = E0[ρ] +
∑
I

(
EIHubb[ρ]−EIdc[ρ]

)
, (5.34)

where E0[ρ] represents the uncorrected energy and EIdc[ρ] is the term that avoids the
double counting of interactions. The corrections are summed over all contributing
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atomic sites I .

In the general formulation of Liechtenstein et al., the expressions for the correction
terms are [201, 202]:

EIHubb[ρ] =
1
2

∑
m`m

′
`m
′′
`m
′′′
`

∑
msm

′
s

(
〈m`m′′` |Vee |m′`m

′′′
` 〉 − δmsm′s〈m`m

′′
` |Vee |m′′′` m

′
`〉
)

c†m`msc
†
m′′`m

′
s
cm′`mscm

′′′
` m

′
s
, (5.35)

EIdc[ρ] =
U
2
n(n+ 1)− J

2

[
n↑(n↑ − 1) +n↓(n↓ − 1)

]
, (5.36)

where the Hubbard and Stoner U and J parameters were introduced. n, n↑ and n↓
represent the total number and the number of spin-up and spin-down electrons in
the shell to which the interaction is added. The atomic-like m` states are obtained
by projecting the KS orbitals on the states of a localized basis set and the mean field
double-counting term is obtained in the fully-localized limit, i.e. with the occupation
numbers of every atomic orbital equal to 0 or 1. The matrix elements of Vee are
related to the Slater-Condon parameters (see §4.1.2) and provide the interpretation
of the U and J terms in of the Fk ’s via the mean field term:

U =
1

(2` + 1)2

∑
m`m

′
`

〈m`m′` |Vee |m`m
′
`〉 = F0, (5.37)

J =
1

2`(2` + 1)

∑
m,m′
〈m`m′` |Vee |m

′
`m`〉 =

 F2+F4

14 (` = 2)
286F2+195F4+250F6

6435 (` = 3).
(5.38)

Three implementations of this additional interaction are encountered in literature:

• Only the lowest order Slater-Condon parameter F0 = U is retained and F2 =
F4 = F6 = J = 0.

• BothU and J are retained. J is required to correctly describe atoms which have
a net magnetic moment.

• U and J are combined in an effective parameter Ueff = U − J . This is known as
Dudarev’s scheme [203, 204].

The parameters U , J or Ueff are specified as input for the calculation. These param-
eters can themselves be obtained by self-consistent calculations at different levels
of theory, or empirically chosen to reproduce experimental data such as band gaps.
Because of the conspicuousness of the Hubbard U parameter in these correction
schemes, these techniques are referred to as LDA+U , GGA+U or in general DFT+U .
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5.3.4 Practical issues

In this section, some practical issues pertaining to DFT calculations of defect forma-
tion energies (Eq. 5.13) are summarized.

Plane-wave basis sets

To solve the KS equations, it is customary to expand the orbitals in a basis set, bµ.
Eq. 5.22 can then be rewritten as a matrix equation,

HC = SCE, (5.39)

with

Hµν = 〈bµ| −
−~2

2me
∇2 + veff |bν〉 (5.40)

Cνi = 〈bµ|φi〉 (5.41)

Sµν = 〈bµ|bν〉 (5.42)

Eij = εiδij , (5.43)

where the indices i, j run to N , the number of KS orbitals and µ,ν to M, the dimen-
sion of the basis set. Many possible basis sets are available depending on the nature
of the system under study. In this work, crystalline solids are investigated, suggest-
ing the use of plane waves as basis sets. The use of plane waves comes with two
advantages. First, the overlap integrals Sµν automatically vanish. Second, the KS
equations can be rephrased in reciprocal space (see §5.1) which implies a simplifica-
tion of the equations [204, 205]. A discrete grid is typically chosen in k space. Fast
Fourier transforms (FFT) are used to switch between r and k spaces (see also Eq. 5.6).

In reality, one cannot use the infinitely large plane wave basis set, but one needs to
introduce a cut-off. The larger the vector k +G becomes in the expansion Eq. 5.10,
the smaller the associated wavelength, and hence the smaller the details that can be
described by the plane wave. The resolution can be limited by introducing an upper
bound for k+G, Gmax. In calculations, this is specified as a cut-off energy which can
be calculated according to

Ecut−off =
~2G2

max
2me

. (5.44)

Near atomic nuclei, the electron density typically oscillates very rapidly, requiring a
high resolution and hence a very large number of plane waves to obtain a reasonable
description. Often, space is separated in so-called muffin-tin spheres to accommo-
date this problem. Inside the spheres, atomic sp orbitals are used which are solutions
of the radial Schrödinger equation for a pseudopotential while plane waves are used
outside these spheres. The projector augmented wave (PAW) method is slightly dif-
ferent from the pseudopotential method. Here, the rapidly oscillating part of the
wave functions is projected onto smooth wave functions that are easily expanded in
terms of plane waves [195, 204, 206].
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Charged supercells

The performed DFT calculations are subject to periodic boundary conditions and
plane waves (see §5.3.4) are used to describe the KS orbitals. This means that a unit
cell is defined which is copied infinite times in the three crystallographic directions.
This is highly convenient for perfect crystals, but requires some thinking when de-
fects are modeled. In reality, defects only occur at low concentrations, requiring
large supercells to simulate their diluted occurrence. This size of the supercell is
chosen such that the interaction between neighboring defects is nullified, requiring
some pre-analysis using different cell sizes. The total energies that are required to
calculate defect formation energies (see Eq. 5.13) are then calculated for pristine and
defective supercells.

Simulating charged defects requires an additional measure to be taken into account.
A net charge cannot be plainly put into the supercell as then the net charge of the
infinite crystal would diverge. To guarantee charge neutrality, a homogeneously dis-
tributed background charge is added to the supercell. Furthermore, a term has to be
added to Eq. 5.13 to correct for the interaction between the defect with its periodic
images [94, 207, 208]. The monopole-monopole correction was applied, scaled by
the macroscopic dielectric constant of the host material. The latter was calculated
within the framework of density functional perturbation theory [209, 210].

Extrapolation scheme for transition levels

In §5.3.3 it was discussed that the DFT band gap can be widened further by adding
an on-site Coulomb interaction, characterized by the parametersU and J orUeff. It is
clear that this interaction will affect not only the band gap energy, but also the loca-
tion of charge-state transition levels. To handle both the inaccuracy of the band gap
energy determined by DFT+U as well as the dependence of the band gap energy and
impurity level locations on the U and J or Ueff parameters, an extrapolation scheme
was proposed by Janotti and Van de Walle for the LDA+U functional [211]. This
scheme can likewise be applied to a GGA+U functional.

Physical impurity level locations are obtained by shifting formation energies ac-
cording to the differences between the PBE (Perdew-Burke-Ernzerhof, an often-used
GGA functional) and PBE+U band gap on one hand and the experimental band gap
and the PBE+U band gap on the other hand [211]:

Ef (A : XQ) = Ef ,GGA+U (A : XQ) +
E

exp
G −EGGA+U

G

EGGA+U
G −EGGA

G

n∆ε̄. (5.45)

Here, n is the single-particle occupation number of the defect states in the band gap
for charge state Q and ∆ε̄ is the difference for the ε(Q/Q′) values, calculated with
GGA+U and GGA, averaged over the available charges Q′ . A good correspondence
between these extrapolated impurity levels and the experimental levels has been
shown for multiple examples [94, 211, 212].
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5.4 Charge transfer states

As shown in the previous paragraphs, a d block or f block defect can show different
charge states. In reality, only one charge state will be stable at ambient conditions
for most materials. However, through disturbing the equilibrium conditions, e.g.
by illuminating the material with light, non-equilibrium charge states can be cre-
ated during a short time span. In spectroscopy, these so-called charge transfer (CT)
transitions have special characteristics and can be an important information source
when constructing energy level schemes.

5.4.1 Mobile excitations

The most straightforward CT transitions do not involve defects, but are simply the
fundamental interband transitions of the pristine host compound. In the IPM of-
fered by band theory, these excitations correspond with particle-hole excitations,
implying that these are found at an energy which is exactly the band gap energy.
Unfortunately, or interestingly depending on one’s point of view, interband excita-
tions are poorly described by an IPM. The constituents of the formed electron-hole
pair can interact strongly, entailing a strong correlation and hence the breakdown of
the sp picture. The collective excitation which is formed is referred to as an exciton.

The most important experimental feature of this many-body effect is that excitation
energies can be found in the region which was forbidden in the IPM. The energy dif-
ference between the lowest energy excitation and the sp band gap is often referred
to as the exciton binding energy. It can be visualized that the individual particles
are separated upon adding this energy to the system. Higher excited versions of
the exciton can be found, not surprisingly similar to the spectrum of the hydrogen
atom, or more appropriately positronium. In experimental contexts, the sp gap is
often referred to as the electronic band gap, while the optical band gap is what is
found in absorption experiments, i.e. the energy to create an exciton. Furthermore,
many different types of excitons can be specified, depending on the binding energy,
the spatial extent of the excitation, or even the scientific sub-discipline [12]. These
distinctions fall outside the scope of this text.

5.4.2 Local excitations

A ligand to metal charge transfer (LMCT) can be found for most metal dopants,
hence it is often referred to as charge-transfer without further specification. In a
LMCT, an electron is transferred from the host compound to the impurity. In terms
of the sp particle picture, this transition again corresponds with a particle-hole ex-
citation, i.e. a transition from the VB maximum to an empty sp state of the impurity
which is localized in the band gap. Also in this case, it is thinkable that many-body
effects cannot be neglected, i.e. the full details of the multiplets of the d or f shell
need to be taken into account in the initial and final states. A straightforward ex-
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tension of the CFT formalism is imposed, so-called charge-transfer multiplet (CTM)
theory, where configuration interaction with CT states is included. The latter are
denoted as |n`N+1L〉, where L denotes a hole in the ligand shell L. The configura-
tion interaction with the |n`N 〉 states occurs through a Haldane-Anderson-like hy-
bridization interaction (see Eq. 5.12) [213]. As this is a sp interaction, no Coulomb
correlation between the ligand and metal electrons is accounted for, while this can
be of importance to describe excitonic effects. In this case, the exciton is not mobile
as in §5.4.1, but is fixed to the impurity by the electron. This is then referred as an
impurity trapped exciton (ITE).

Interestingly, the distance between a (Q/Q−1) charge-state transition level as defined
by Eq. 5.14 and the VB maximum equals the energy of a LMCT by definition:

ε(Q/Q − 1) = Etot(A : XQ−1)−Etot(A : XQ) = ECT(A : XQ). (5.46)

Here, total energies are used which include correlation effects. This shows that
charge-state transition levels resolve the deficiencies of the sp model, while main-
taining its simple interpretation and accounting for the complex mp interactions. It
should be remarked that the total energies can be calculated for the relaxed atomic
geometries for both charge states, corresponding to the thermodynamic charge-state
transition level. For optical transitions, it can however be more meaningful to use
the geometry of the initial state for both total energy calculations given the Frank-
Condon principle (see §3.2.1). This yields the so-called optical charge-state transi-
tion level [94].

When an electron is transferred from the activator ion to another transition metal or
lanthanide ion of the host compound, the transfer is referred to as a metal to metal
charge transfer (MMCT). In both cases, the hole is fixed to the activator and the ex-
citations can be regarded as ITE in the mp point of view.

A special case of a MMCT is when the partners that exchange an electron have the
same atomic number. This can only occur for metals which can take two charge
states that are relatively close in energy. A homonuclear MMCT is referred to as an
intervalence charge transfer (IVCT)12.

Often ITEs and CTs are regarded as different types of excitations. It is probably
more correct to state that these are respectively the many-particle and single-particle
pictures of the same kind of excitation.

12In luminescence literature, the vocabulary MMCT and IVCT are sometimes falsely interchanged [101,
214]. The definitions given here agree with the IUPAC prescriptions [215].



i
i

i
i

i
i

i
i

6
Impurity levels of
lanthanides: empirical rules

In the previous chapters it was shown that an extensive choice of theoretical frame-
works is available to understand and predict the properties of luminescent materials
starting from a combination of a host and an activator. In general terms, a greater
level of detail is achieved upon increasing the computational effort, considering
hardware, software as well as user experience. On the other hand, a back-of-the-
envelope calculation learns that an incredible number of host-dopant combinations
are possible, preventing the large scale application of sufficiently accurate theoreti-
cal techniques.

A straightforward alternative is the use of empirical rules. These rules lack the for-
mal theoretical basis of ab initio techniques, but allow for fast and computationally
simple predictions of optical properties. Empirical relationships and rules of thumb
pertaining to lanthanide materials have been reported during the last 40 years by
multiple authors. Progressive was the PhD work of Charles Thiel, who constructed
empirical band schemes, containing charge-state transition levels for all lanthanides
based on photoelectron spectroscopy. During the last 20 years, Pieter Dorenbos exca-
vated many of these relationships and observations from literature and tested them
to a vast amount of experimental data, both confirming the correctness of existing
models and rules, as well as uncovering new relationships [216]. Thiels’ energy
level schemes were refined by Dorenbos, who contrived a straightforward way to
construct them from few simple-to-obtain optical spectra, immensely popularizing
empirical modeling in the field of luminescent materials.

Rather than being rooted in a strong physical description, these models are empiri-
cal in nature, as they are constructed from a large amount of experimental data or
parameters and subsequent fitting. Models are thus statistical in nature and pre-
dictions about yet to be performed experiments are essentially an extrapolation of
existing data. However, interpretation of the empirical laws in terms of more fun-
damental physical laws is sometimes possible, but even then it usually remains nec-
essary to introduce empirical parameters.

If a theory or a model allows to predict observable quantities, it should also be pos-
sible to get a grasp of the error margins associated with the model and consequently
of the accuracy of the calculated parameters. This chapter aims to give an overview
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of the errors, which are statistical in nature, of electronic and optical properties cal-
culated by the conventional empirical relationships.

These empirical relationships are further explored to construct energy level schemes
of lanthanide doped CaGa2S4 phosphors. This ternary sulfide is well known as host
crystal for efficient lanthanide luminescence. It is therefore a suitable test case based
on the detailed description in literature [5, 217–220]. An empirical band diagram
for the lanthanide impurities was already constructed in 2005, although some radi-
cal simplifications were made at that time [220]. Relevant quantities, describing the
optical and electronic properties of CaGa2S4:LnQ+ materials are calculated and the
error margins assessed, based on the prior error analysis.

Many of the common empirical rules are constructed in a most pragmatic way, ne-
glecting as much crystallographic detail as possible. For instance, it is seldom con-
sidered that lanthanide ions can form multiple nonequivalent defects in certain host
materials. Moreover, it is typically assumed that all lanthanide ions, which can be
divalent or trivalent1 incorporate in an identical fashion. Although this is often true
due to the chemical similarity across the series, exceptions occur. In the second part
of this chapter, it is assessed in which way these nonidealities affect the constructed
energy level schemes and even corrupt the uncertainties associated with the empir-
ical rules.

The findings in this chapter are published as:

Energy level modeling of lanthanide materials: review and uncertainty
analysis

Jonas J. Joos, Dirk Poelman, Philippe F. Smet

Physical Chemistry Chemical Physics, 17 19058-19078 (2015).

Nonequivalent lanthanide defects: Energy level modeling

Jonas J. Joos, Dirk Poelman, Philippe F. Smet

Optical Materials, 61 50-58 (2016).

6.1 Nomenclature and roadmap

The energy level schemes that are constructed in this chapter belong to the band
picture. The impurity levels that are discussed correspond to the charge-state transi-
tion levels (see §5.2.3) which signify the point that the electronic chemical potential
needs to cross in order for the trivalent lanthanide ions to get reduced or oxidized,
i.e. ε(Ln2+/Ln3+) and ε(Ln3+/Ln4+) using spectroscopic notation. In the following,

1Tetravalent lanthanide ions are not explicitly accounted for in these models.
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the notation by Dorenbos is used:

E4f(Ln2+) ↔ ε(Ln2+/Ln3+), (6.1)

E4f(Ln3+) ↔ ε(Ln3+/Ln4+), (6.2)

which highlights the interpretation that the concepts of impurity levels and many-
electron multiplets can be united. As this usage has not been theoretically sub-
stantiated to date, this text chooses not to take part in this movement and sticks to
the distinction between single-electron and many-electron pictures as in traditional
quantum mechanics and quantum field theory. The popularity of miscellaneous
band diagrams in current literature is the motivation to use this notation nonethe-
less.

When vacuum referred energy level schemes are constructed, the chemical shift,
Echem

4f (LnQ+,A), is the first parameter to be determined. The chemical shift refers to
the similar meaning of a charge-state transition level for a lanthanide as defect and
the ionization potential of the free lanthanide ion. It is hence defined as the energy
difference between the impurity level and the free ion’s corresponding ionization
potential (denoted here as E4f(LnQ+, free)):

E4f(LnQ+,A) = E4f(LnQ+, free) + Echem
4f (LnQ+,A). (6.3)

The symbol A refers to the host material, or more specifically to the crystallographic
location where the lanthanide defect is situated.

The notion of chemical shift was first introduced by Pauling in 1929 for alkali halides
[221]. It was revived by Pedrini et al. in 1978 to describe the photoconductivity
threshold of divalent lanthanide impurities in alkaline earth fluorides [222–224]. In
2001, Thiel constructed a complete vacuum referred lanthanide energy level scheme
by adding a parameter to the model used by Pedrini and experimental input from
photoemission spectroscopy (PES) [225–228]. Later, Dorenbos elaborated on the
chemical shift in the optical spectroscopy of lanthanides [216, 229]. For a detailed
historical survey on the chemical shift and the various effects influencing it, we refer
to chapter 5 of [227].

The parametrization of the chemical shift by Thiel and Dorenbos and the equiva-
lence of both approaches are elucidated in §6.3. Despite the simplifying rationale
of the model, it can explain some features of lanthanide spectra without cherishing
the ambition to serve as a microscopic theory describing the electronic structure of
lanthanide compounds, as this requires a framework of quantum mechanical many-
body theory. In practice it is recommended to use the model only as a set of empirical
rules yielding energy level schemes that are able to describe certain electronic and
optical properties.

A semantic confusion might arise about the term chemical shift. As defined in Eq.
6.3, the chemical shift is a physical observable which can be calculated in multi-
ple theoretical frameworks. The designation chemical shift model as introduced by
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Dorenbos pertains to the parametrization of Echem
4f (LnQ+,A) in terms of a Coulomb

potential (Eq. 6.22) and is thus one of all possible parametrizations.

The approach to obtain full vacuum referred binding energy (VRBE) and host re-
ferred binding energy (HRBE) level schemes is sketched in the following. Further-
more, in every step of the energy level roadmap (Fig. 6.1), the induced error is
assessed in order to obtain a reliable error margin for every quantity calculated in
this way. For averaged values, a single standard deviation was used for the error, i.e.
68% of the values lie within the error margin2. Similar for fitted trends, prediction
limits of 68% were used, containing the accumulated effect of the uncertainty of the
fit based on the available data - the confidence limits - and the scatter of the data
around the fitted curve.

All steps of the calculation are summarized in Fig. 6.1, serving as a guide during
reading or as a flow scheme when energy level diagrams for lanthanides inside a
given host matrix are to be constructed. Additionally, the result of the error analysis
is displayed. Figure 6.4 shows explicitly how energy level schemes are drawn from
the calculated parameters. The model requires multiple parameters which are fixed.
These are summarized in appendix C.

The empirical rules discussed in the remainder of this chapter contain only those
relationships that are directly used to construct band diagrams with lanthanide im-
purity levels. Other relationships exist, such as those between the crystal structure
of host compounds and the spectroscopic properties of lanthanide dopants, i.e. the
multiplet energies [174,175,230,231]. Some of these were applied in §4.5.3, but are
left out of this discussion for consistency.

6.2 Review and uncertainty analysis

6.2.1 Vacuum referred impurity level, the chemical shift

The 4f-4f Coulomb repulsion energy of europium,U (Eu,A), takes a prominent place
in the empirical models. This parameter represents the difference in 4f binding
energy of the Eu3+ and Eu2+ ion (see Eq. 5.16):

U (Eu,A) = E4f(Eu2+,A)−E4f(Eu3+,A). (6.4)

For europium ions in free space, the Coulomb repulsion energy amounts toU (Eu, free) =
18.05 eV [229].

Europium is usually selected as lanthanide of reference because it is the divalent lan-
thanide on which most experimental data can be found. Two reasons can be devised
for this. First, it is the lanthanide which can be stabilized in the divalent charge state
most easily. Second, the Eu2+ ion is the most interesting lanthanide for designing

2A normal distribution is assumed.
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Figure 6.1 – Lanthanide energy level scheme roadmap. This flow diagram illustrates
how VRBE and HRBE level schemes are obtained and which errors are accumulated.
Empirical parameters are displayed in black, experimental parameters in purple and the
color of calculated quantities maps their standard deviation. Ln′ , Ln′′ and Ln′′′ denote
specific lanthanide ions from which input is needed, such as the experimental charge
transfer and 4f-5d transition energies (for divalent and trivalent lanthanides).



130 Chapter 6

applicable materials due to its highly tunable emission color across the full visible
spectrum (see 4.5.3).

U (Eu,A) can be acquired from an empirical relationship which relates this parame-
ter with the centroid shift of the Ce3+ ion, εc(Ce3+,A), i.e. the shift of the barycen-
ter of the 5d1 manifold upon incorporation (see §4.5.3) on the lattice site A under
study [232, 233]:

U (Eu,A) = 5.44 + 2.834 e−εc(Ce3+ ,A)/2.2, (6.5)

The obtained value for U (Eu,A) is expected to be less susceptible to random errors
compared to the value one could obtain with the aid of a common host referred bind-
ing energy level scheme [233]. However, uncertainty originating from the nonlinear
least square fitting procedure has to be taken into account.

The 68% prediction limits amount to 100 meV for U (Eu,A) when εc(Ce3+,A) is in
the range of 1.0-3.0 eV, which are typical values for Ce3+ doped dielectrics. The ex-
perimental error on εc(Ce3+,A) is sufficiently small to be ignored as this can directly
be obtained from luminescence spectroscopy. The data, fit and associated prediction
band, yielding Eq. 6.5 are displayed in Fig. 6.2(a).

One could also calculate εc(Ce3+,A) from crystallographic information of the host
compounds, i.e. from the binding distance of the Ce3+ ion and its nearest neigh-
bors and electronegativity values of the atomic species contained in the host com-
pound [216, 234]. This is not explored in this overview to prevent the introduction
of supplementary errors and the relatively straightforward way to obtain εc(Ce3+,A)
from experiment.

Subsequently, the chemical shift (in eV) of the Eu2+ ion is obtained from the empir-
ical formula [216, 229]:

Echem
4f (Eu2+,A) =

U (Eu, free)−U (Eu,A)
0.777− 0.0353U (Eu,A)

, (6.6)

The numbers in this formula were chosen to yield reliable chemical shifts for lan-
thanides in LaF3, aqueous solution and lanthanide metals [229]. It is therefore rather
difficult to estimate the error on Echem

4f (Eu2+,A) as calculated by Eq. 6.6. If a stan-
dard deviation of two units in the last digit of the numbers is taken into account,
standard deviations for Echem

4f (Eu2+,A) in the range of 100-110 meV are obtained
through propagation. Now U (Eu,A) and Echem

4f (Eu2+,A) are known, the VRBE of the
Eu2+ and Eu3+ ions can be calculated from Eq. 6.3 and 6.4 with associated standard
deviations of 100 meV and 150 meV respectively. The impurity levels for the Eu
atom can then be added to the energy level scheme (Fig. 6.4-a,b).
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6.2.2 Shape of the 4f zig-zag curves

Now that the impurity levels corresponding to Eu2+ and Eu3+ are localized with re-
spect to the vacuum level, the zig-zag curves connecting the 4f levels of the different
lanthanides can be constructed (Fig. 6.4-c). Zig-zag refers to the particular shape
of this curve emerging from the gradual filling of the 4f shell across the lanthanide
series. The 4f electrons are more tightly bound when the shell is completely or half
filled, i.e. when 14 or 7 f electrons are present. This is reflected in the ionization
energies of the free lanthanide ions [235]. Since the same trend is observed for the
4fN -4fN−15d1 transition energies (see §4.5.3), the binding energies of the 5d elec-
trons is approximately equal for all lanthanide ions with the same charge state (see
§6.2.5).

The 4f zig-zag curves are defined by the difference in binding energy between the
lanthanide ions and the europium ion:

∆E(Ln,Eu,Q,A) = E4f(LnQ+,A)−E4f(EuQ+,A). (6.7)

In the lowest order of approximation, one could assume that the shape of these
curves is unchanged when lanthanide ions are brought from the vacuum into the
host lattice. This is however a poor approximation as the 4f curves are subject
to a rotation (with the Eu ion as pivoting point) attributed to the slightly different
crystal field experienced by the different ions due to their unequal ionic radii (see
6.3) [225, 226, 229]. There are two ways to account for this rotation.

The first possibility, which is most commonly used, is to utilize averaged ∆E param-
eters, ∆E(Ln,Eu,Q). These were determined by averaging the shape of the zig-zag
curves over a large number of host materials and are thus host independent [216].

The second possibility is to calculate a host specific version of ∆E by taking the
degree of rotation into account in an empirical way. To acquire this, the contraction
tilt parameter α(Q,A) is utilized (see §6.3):

E4f(LnQ+,A) = E4f(LnQ+, free) +Echem
4f (EuQ+,A) +α(Q,A)

[
R(LnQ+)−R(EuQ+)

]
(6.8)

The contraction tilt can be calculated from Eq. 6.28 (see §6.3). In Eq. 6.28, f takes
the lattice relaxation around the lanthanide impurity into account, R is the ionic
radius [177]. In this work, f is taken to be 0.6 [216]. The real value of f depends
however on the elastic properties of the host crystal and can only be assessed by
advanced experimental techniques such as X-ray absorption spectroscopy (XAS) or
calculation from first principles. Although Eq. 6.28 has some theoretical justifica-
tion, it is not expected that the chemical shift model can really account for all the
details of the interactions between metal ions and their crystalline environment. If
correct values are used for the quantities in the right hand side of Eq. 6.28, one can
calculate ∆E(Ln,Eu,Q,A) values which are as close to ∆E(Ln,Eu,Q) as 50-150 meV.
In any case, the similar values for Echem

4f (EuQ+,A) regardless of A indicate that only
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(a) (b)

Figure 6.2 – (a) Experimental Ce3+ centroid shifts versus Eu Coulomb correlation energy
values for different materials. The solid black line represents the empirical rule, Eq. 6.5.
Data from [233]. (b) Experimental exciton binding energies versus optical band gap
values for halide wide band gap semiconductors. The solid black line represents the
Eexe−h(A) = 0.08Eex(A) rule. Data from [239]. In both cases, the dashed lines display the
68% prediction interval for the fit.

small variations in α(Q,A) are expected and the ∆E(Ln,Eu,Q) values should be suf-
ficiently accurate.

For the Ln2+ ions, the average ∆E(Ln,Eu,2) values were determined by Dorenbos
from Ln3+ charge transfer (CT) energies (ECT(Ln3+,A), see §6.2.3). For Sm3+, Tm3+

and Yb3+, a sufficient amount of data was available to reliably pin the ∆E(Ln,Eu,2)
values within a standard deviation of typically 150 meV [236, 237]. For Pr3+, Nd3+,
Dy3+, Ho3+ and Er3+ only a few or even one CT data point was available to calculate
the average [236]. For these ions, we estimate a standard deviation of 200 meV.

For the Ln3+ ions, initially, the rule of thumb ∆E(Ln,Ce,3) = 1.2 ∆E(Ln,Ce,2) was
used together with the known values of ∆E(Ln,Eu,Q, free) for the shape of the free
Ln3+ ions 4f curve [236]. A first improvement of this model was introduced by es-
timating binding energies of Ln3+ by pinning thermally quenched 5d levels close
to or in the conduction band [236] . Recently, more accurate parameters were ob-
tained from the MMCT energies of Pr3+ and Tb3+ in transition metal containing
compounds [231, 238]. Since these transitions were only investigated for these two
ions, more uncertainty is presumed for the shape of the Ln3+ 4f curve. In analogy
with the Ln2+ 4f curve, a standard deviation of 200 meV is adapted.

When the standard deviation for Echem
4f (EuQ+,A) is propagated through Eq. 6.28,

standard deviations of 1-2 meV/pm are obtained for α(Q,A), yielding standard de-
viations of 150 meV for ∆E(Ln,Eu,Q,A).

Hence, using the average shape of the zig-zag curves (∆E(Ln,Eu,Q)) or a host com-
pound specific one (∆E(Ln,Eu,Q,A) through calculation of α(Q,A)) gives rise to a
similar accuracy.
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6.2.3 Fixing the valence band

Now the vacuum referred binding energies (VRBE) of the lowest 4f levels are deter-
mined. They should be positioned with respect to the energy bands of the host com-
pound (HRBE). Charge transfer (CT) energies of trivalent lanthanides are used to
probe the distance between the top of the host’s valence band (VB) and the E4f(Ln2+,A)
(ε(Ln2+/Ln3+)) impurity level (see Eq. 5.46) [236]. In this way, the valence band of
the host is added to the energy level scheme (Fig. 6.4-d).

The thermodynamic charge-state transfer energy was used to define the impurity
levels of the lanthanide ions. As explained in §5.4.2, optical absorption experiments
yield an energy value which is larger than the thermodynamic one due to a relaxation
of the nuclear positions. Within this empirical framework, the distinction between
the thermodynamic and optical charge-state transition energies is neglected, giving
rise to intrinsic errors.

Since errors were already taken into account for the shape of the 4f curves, no ad-
ditional error is induced in pinning the valence band with respect to the 4f curves.
The experimental error on the charge transfer energy depends on the exact features
of the spectrum. Typically, the maximum of the excitation band, corresponding to
the CT is chosen as input for the energy level scheme. Frequently, this energy can
be simply read from the spectrum with a small experimental error. It is however
not uncommon that multiple CT transitions are present in the spectrum, possibly
obscured by 4fN -4fN−15d1 or 4fN -4fN absorption bands. In this case, resolving the
desired energy value can be more challenging and a larger experimental error is ex-
pected. For current error assessment, the best case scenario, corresponding to an
experimental error of 10 meV is adapted since the accuracy of the empirical models
is the main topic of this work.

The vacuum referred binding energy of valence band electrons, i.e. the photoelectric
threshold, EP E(A), is calculated as:

EV(A) = −EP E(A) = E4f(Eu2+, free) +Echem
4f (Eu2+,A)

+∆E(Ln,Eu,2)−ECT(Ln3+,A) (6.9)

The uncertainty on EP E(A) is obtained from the uncertainties on all terms in Eq. 6.9,
yielding standard deviations in the range of 150-200 meV. The most reliable value
for EP E(A) is thus obtained if the CT energy of the Eu3+ ion is used, as in this case the
third term in Eq. 6.9 vanishes (Ln = Eu). This quantity is experimentally accessible
through X-ray or Ultraviolet Photoelectron Spectroscopy (XPS or UPS) [240]. Since
these are surface techniques, the experimental value of EP E is highly dependent on
which surface of the crystal is probed and on possible surface reconstruction and
passivation [240]. In the case of metals, the work function - defined as the energy
difference between the vacuum level and the chemical potential of the electrons - is
identical to the photoelectric threshold [240]. It is sometimes overlooked that this
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is not true in the case of insulators or semiconductors where the chemical potential
lies inside the forbidden band [240].

6.2.4 Self-trapped excitons and the conduction band

The conduction band (CB) can be added to the energy level scheme if the electronic
band gap energy (EG(A)) is known. This can be obtained by adding the exciton
binding energy (Eexe−h(A)) to the optical band gap (Eex(A)) as displayed in Fig. 6.4-e,f.
Although a horizontal line is typically added to the band diagrams below the CB to
indicate the exciton binding energy, this does not correspond to an energy level. As
explained in §5.4.1, excitons are many-body effects which cannot be represented in
a single-particle orbital diagram.

The optical band gap value is typically determined from absorption spectroscopy
or diffuse reflection spectroscopy on powders, combined with Kubelka-Munk (KM)
fitting of the absorption coefficient (see §7.2.1). The rather inaccurate nature of this
technique in the case of powder reflection spectroscopy does not allow to neglect the
error on this experimental parameter. One standard deviation is estimated to be 100
meV.

To obtain the electronic band gap, one needs the excitonic binding energy in addi-
tion. Unfortunately, this quantity is hard to determine. To meet this difficulty, a
rule of thumb was introduced in [241] to relate the electronic and optical band gap
values:

EG(A) = 1.08Eex(A) (6.10)

The 1.08 proportionality factor was determined as the average of the limited avail-
able data.

The error on the location of the conduction band depends on the accuracy of the
1.08-rule of thumb. In Fig. 6.2(b), the underlying data to obtain this rule are dis-
played. The proportionality between the optical band gap energy and the exciton
binding energy of a compound is not so clear. Furthermore, the used data set is bi-
ased towards halides and does not consider oxides, nitrides, ... However, thanks to
the small binding energies of (self-trapped) excitons compared to the band gap of
the considered material classes, the large relative error for Eexe−h(A) (in the order of
20-100%) reduces to a moderate relative error for EG(A), corresponding to a stan-
dard deviation of typically 250 meV if both the experimental uncertainty on Eex(A)
and the limited accuracy of Eq. 6.10 are taken into account.

If needed, the electron affinity, A(A) = −EC(A), can be obtained by subtracting EG(A)
from EP E(A), yielding standard deviations in the range of 250-350 meV [240]. With
this kind of modeling, the electron affinity of a semiconductor or insulator can easily
be obtained from lanthanide spectroscopy [232, 233, 240, 242].
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The valence stability of the divalent ions in a particular host can be estimated from
the location of the lowest Ln2+ 4f level with respect to the host’s energy bands. This
is true by definition of the charge-state transition levels (see §5.2.3). Dorenbos con-
firmed the validity of the empirically found 4f levels as charge-state transition levels
for multiple compounds [243]. The location of the electronic chemical potential is
assumed to be halfway the band gap. This is only formally true at absolute zero
and in the case when the effective masses of electrons and holes are equal [11]. Fur-
thermore, the location of the chemical potential of the electrons is supposed to be
unaltered upon introduction of the dopants. The energy difference between the cen-
ter of the band gap and the relevant Ln2+ 4fN level can be calculated with a standard
deviation of 250 meV for Eu2+ and 300 meV for Sm2+, Tm2+ and Yb2+. Of course,
the occurrence of shallow donor or acceptor defects can shift the chemical potential
away from the center of the band gap (see §5.2.1). These defects can be intrinsically
present, be a consequence of charge compensation schemes or induced via inten-
tionally or unintentionally co-doping or treatment in specific gas atmospheres [243].
The specific shape of the 4f zig-zag curve which is to a large extent host-compound
independent explains why Eu2+ is the most abundant divalent lanthanide, followed
by Yb2+, Sm2+ and Tm2+. The most abundant tetravalent lanthanide ions are Ce4+,
Pr4+ and Tb4+.

6.2.5 Interconfigurational 4f-5d transitions

In lanthanide spectroscopy, 4fN−15d1 configurations play often a crucial role. Adding
a 5d level to the band diagram does not pose an additional difficulty. The signifi-
cance of this level as a charge-state transition level is clear. When the chemical po-
tential as well as the thermodynamic 4f charge-state transition level are higher than
the 5d level, a 4fN−15d1 ground state is to be expected rather than a 4fN ground
state. This can be the case for certain divalent lanthanides [244, 245].

Typically, it is assumed that the spectroscopic redshifts (D(LnQ+,A)), i.e. the de-
crease in 4fN -4fN−15d1 absorption energy from the free to the incorporated ion (see
Eq. 4.113) are equal for all lanthanide ions having the same charge, regardless of
their differing ionic radii [216]. The spectroscopic redshift was first introduced by
Dorenbos in his large-scale investigation of reported transition energies [246]. How-
ever, the idea that the 4fN -4fN−15d1 transition energies of the lanthanide ions are
related is much older [247–249].

The energy of the 4fN -4fN−15d1 transition was first investigated in great detail for
the trivalent ions, mainly based on data for Ce3+, Pr3+ and Tb3+, confirming the
known trend within a standard deviation of 100-115 meV. More data, underpinning
this rule, was gathered during the last 20 years.

For the divalent lanthanides, similar data mining was performed, mainly based on
electronic spectra of the Eu2+, Yb2+ and Sm2+ ions [167]. The associated standard
deviations amount to 50-100 meV. Other divalent lanthanides are very difficult or
impossible to stabilize in compounds (see §6.2.4) leading to a lack of available data



136 Chapter 6

for the redshifts.

These standard deviations pertain to the 4fN -4fN−15d1 absorption energies. For the
VRBE of the 5d level, the uncertainty on the location of the 4f level has to be added

E5d(LnQ+,A) = E4f(EuQ+, free) +Echem
4f (EuQ+,A) +∆E(Ln,Eu,Q)

+Efd(LnQ+, free)−D(Q,A), (6.11)

leading to standard deviations of 250-300 meV. If the location of the 5d level with
respect to the host’s valence band is required, one obtains:

E5d(LnQ+,A)−EV(A) = Efd(LnQ+, free)−D(Q,A)− δQ,3U (Eu,A)

+∆E(Ln,Eu,Q)−∆E(Ln′ ,Eu,2) +ECT(Ln′3+,A),(6.12)

where Ln′3+ is the lanthanide ion for which the CT energy was used to pin the va-
lence band. For the Kronecker delta, δQ1,Q2

= 1 if Q1 =Q2 and δQ1,Q2
= 0 if Q1 ,Q2.

If Ln = Ln’ and Q = 2, this relationship simplifies to the often used formula:

E5d(Ln2+,A)−EV(A) = Efd
abs(Ln2+,A) +ECT(Ln3+,A). (6.13)

In this case, the uncertainty is the experimental accuracy for probing both parame-
ters on the right hand side of Eq. 6.13. In the more general case, a higher uncertainty
is obtained, coming from the ∆E terms. If the energy difference between the 5d level
and the exciton binding energy or the CB bottom is needed, additional contributions
to the standard deviation have to be considered.

In 2003, a linear relationship was proposed between the redshifts of the divalent and
trivalent lanthanide ions, based on data from Ce3+ and Eu2+ spectra:

D(Eu2+,A) = 0.64D(Ce3+,A)− 0.233 eV. (6.14)

The data underlying this empirical rule is shown in Fig. 6.3, where error margins
are given, corresponding to the 68% prediction interval, amounting to 250 meV.

By spectroscopic measurement of one 4fN -4fN−15d1 energy for each valence state (or
for one valence state, supplemented with formula 6.14), one can add the locations of
the 5d levels for all ions to the energy level scheme (Fig 6.4-g,h).

6.2.6 Vibronic interactions

Up to now only static interactions between the luminescent ion and the host crystal
have been considered. No attention has been paid to vibronic interactions resulting
from the coupling of electronic states and vibrational modes of the defect cluster.
However, this interaction has a strong influence on the spectroscopic properties of
the compound. Vibronic broadening of emission and excitation bands and the Stokes
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(a) (b)

Figure 6.3 – (a) Spectroscopic redshifts of Ce3+ versus those of Eu2+ on the same lattice
site. The solid black line represents the empirical rule, given by Eq. 6.14. The dashed
lines display the 68% prediction interval for the linear fit. (b) Similar figure for the
Stokes shifts and the empirical rule given by Eq. 6.16. Data from [168, 250].

shift are direct consequences of this interaction (see chapter 3).

The Stokes shift, ∆S, is defined as the energy difference between the absorbed and
emitted photons originating from transitions between the lowest ground state (in
this case the lowest 4fN multiplet) and excited state (in this case the lowest 4fN−15d1

multiplet):

∆S(LnQ+,A) = Efd
abs(LnQ+,A)−Efd

em(LnQ+,A). (6.15)

Similar to the redshift, it has been proposed that the Stokes shifts of LnQ+ 4fN -
4fN−15d1 transitions are the same for all ions with the same charge in the same host
crystal [167, 246, 250]. This was first substantiated for trivalent lanthanides, based
on data from UV and VUV spectroscopy of Ce3+, Pr3+, Nd3+, Er3+ and Tm3+ ions.
The trend holds within a standard deviation of 15 meV. For divalent lanthanides,
a similar trend has been shown for Sm2+, Eu2+, Tm2+ and Yb2+ within a standard
deviation of 30 meV.

Stokes shifts for the 4fN -4fN−15d1 intraconfigurational transitions of the Eu2+ and
Ce3+ ions were compared in [173]. A positive correlation is clearly present and the
values were connected through a linear fit,

∆S(Eu2+,A) = 0.61∆S(Ce3+,A). (6.16)

This fit is displayed in Fig. 6.3. Prediction intervals are situated at about 100 meV
above and below the fitted value for ∆S(Eu2+,A), corresponding to relative errors in
the range of 20-80%. If the energy of Eu2+ emission in a certain host is to be esti-
mated from spectroscopy of the Ce3+ ion, one needs to apply Eq. 6.14 and Eq. 6.16
consecutively yielding standard deviations of 270 meV. For example, if the lowest
energy 4f-5d absorption band of Ce3+ is situated at 400 nm and shows a Stokes shift
of 0.25 eV, the emission of the Eu2+ ion in the same host is predicted at 525 nm using
Eq. 4.113, 6.14, 6.15 and 6.16. However, the uncertainty interval corresponding to
a single standard deviation of 270 meV ranges from 470 nm to 595 nm, spanning a
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host	energy	bands

a. b. c.

d. e. f.valence	band

g. h.
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Figure 6.4 – Illustrative cartoon on how to obtain a lanthanide band diagram from the
calculated quantities, summarizing §6.2.1-6.2.5. It shows how the impurity levels for
Eu are positioned with respect to the vacuum level from knowledge of U (Eu,A) (a,b).
The recurring shape of the 4f zig-zag curves is used to locate the impurity levels of the
other lanthanides (c). Subsequently, the VB top is positioned from a LMCT energy (d)
and the CB minimum from the optical band gap energy (e,f). A 4fN -4fN−15d1 transition
energy allows to localize the 5d levels (g,h), yielding the complete lanthanide impurity
level scheme for host compound A (i).

significant fraction of the visible spectrum, ranging from blue to orange light emis-
sion. For this reason, these kinds of relationships have limited use for designing
LED phosphors where specifications for emission peak wavelengths have a typical
tolerance of a few to 10 nm (see chapter 1).

Furthermore, the width of the emission band cannot be assessed from these empiri-
cal relations while this is of major importance for the emission color of the phosphor.
This can deviate strongly from host to host for the same luminescent ion, for example
Ba0.8Sr0.2SiO4:Eu2+ shows an emission band full width at half maximum (FWHM)
of 84 nm while for SrGa2S4:Eu2+, the FWHM is only 52 nm. Emission bands of both
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materials are nevertheless located in the same wavelength range [251, 252]. Within
a configurational coordinate model, the emission band width can be expressed in
terms of the Stokes shift and a phonon frequency, related to the host (see §3.4).
Dorenbos applied this on a large number of Eu2+ activated crystals [168]. This model
is however not sufficiently accurate to be used for practical applications [168].

The effects of vibronic interactions are hence not very well described by the em-
pirical models. An important remark regarding the empirical energy level schemes
is that all excited states (including CT transitions to fix the position of the top of
the valence band) were derived from excitation spectra (or alternatively absorption
spectra). Though this is the most straightforward way to assess the excited state
landscape, one should not forget that in this way one does not consider the excited
state in its relaxed form, i.e. the lowest vibrational energy level as illustrated in Fig.
3.1.

During excitation, a vertical transition occurs, corresponding to the energy of the
absorbed photon. This is the energy which is used for constructing the energy level
schemes. However, almost immediately after the photon absorption, a relaxation of
the excited state occurs towards the lowest vibrational state of the excited state po-
tential energy surface (at absolute zero temperature). It would be more appropriate
to display this energy (i.e. the energy of the zero phonon line, ZPL) in purely elec-
tronic energy level schemes. Zych and coworkers have succeeded in obtaining more
accurate ∆E(Ln,Ce,3) values from measurement of the ZPL of Ln3+ 4fN -4fN−15d1

transitions in four different hosts [253]. The applicability of this approach is how-
ever limited since ZPLs are most often obscured in spectra of 4f-5d transitions. Ad-
ditionally, in designing materials for a specific application, the emission band maxi-
mum and FWHM are more important parameters than the location of the ZPL, both
requiring a more detailed knowledge of the specific nature of vibronic interactions.

6.2.7 Thermal quenching of luminescence

Luminescent materials show a particular response as a function of temperature.
Most often, the photoluminescence quantum efficiency drops when temperature
rises above a certain critical temperature. Observationally, an energy barrier, EMott is
often associated with thermal quenching in imitation of the Mott model (see §3.4.4).
Then, the thermal quenching (TQ) profile of the material is described by:

I(T ) = I0

1 +
τrad

1→2

τn−rad
0

e
−EMott/kBT

−1

, (6.17)

where τrad
1→2 = 1/wrad

1→2 is the intrinsic radiative decay constant of the ion and τn−rad
0 =

1/wn−rad
0 is the decay constant for the non-radiative decay path, responsible for TQ.

According to Blasse, this empirically determined energy barrier corresponds to the
energy difference between the emitting excited state and the conduction band of
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the host material in the case of the 4f1-5d1 transition of Ce3+ [254]. This idea was
extended to other 4fN -4fN−15d1 transitions by multiple authors through the compar-
ison of energy level schemes and TQ experiments [255–258]. Within this theoreti-
cal framework, one can calculate the TQ behavior from the constructed energy level
scheme. It is however not very clear whether the CB bottom, the exciton level or some
intermediate value has to be used. Note that in transition metal host compounds, TQ
can proceed via an MMCT state. The confusion that arises when applying Eq. 6.17
has several origins which will be enumerated below.

EMott can be obtained from TQ measurements using two methods: one can fit Eq.
6.17 to the experimental quenching profile, or one can take T0.5, i.e. the temper-
ature where the intensity reaches 50% of the intensity at low temperature, as sole
experimental parameter. This is then related to EMott by:

T0.5 =
EMott

kB ln τrad
1→2

τn−rad
0

, (6.18)

as obtained from Eq. 6.17. Recently, Dorenbos and Rogers studied the Tb3+ 5D4
and 5D3 emissions and the Pr3+ 3P0 emission in more detail for transition metal ox-
ide host compounds, allowing a determination of the accuracy of this method [259].
In this work, the thermal quenching of the interconfigurational 4f transitions is as-
cribed to the presence of a MMCT state. The available data is displayed in Fig. 6.5.

1  2
rad

n-rad

Figure 6.5 – Experimental versus calculated
T0.5 for Pr3+ 3P0 emission and Tb3+ 5D4 and
5D3 emission. EX represents the VRBE of a
self-trapped exciton, E(2S+1LJ ) of the emitting
4fN level. τrad

1→2 was taken to be 1 ms, 0.5 ms
and 0.1 ms for 5D4, 5D3 and 3P0 emission, re-
spectively. A straight line is fit (slope 0.86, in-
tercept -68 K) and the 68% prediction interval
is shown. Data from [259]. Datapoints where
only an upper or lower boundary was given,
were omitted.

Though one would expect a unit
slope straight line through the ori-
gin, the fitted line intersects the
horizontal axis around 70 K. This
is attributed to the exact geome-
try of the potential energy surfaces
(approximated as 1D parabola) in
nuclear coordinate space in [259].
Since our interest is oriented to-
wards the deviations from the trend
line, neither the nonzero intercept
nor the exact nature of the thermal
quenching are of interest at this mo-
ment.

From the 68% prediction intervals, dis-
played in Fig. 6.5, the accuracy in
determining T0.5 from an energy level
scheme is limited to 115 K for the
Tb3+ and Pr3+ ions. A substantial frac-
tion of the inaccuracy is coming from
the EMott value. If one uses the self-
trapped exciton lowest energy level as
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”end point” for the thermal quenching
process, EMott is obtained from

EMott(LnQ+,A) = EX(A)−Eemitting level(LnQ+,A)

= Eex(A)−ECT(Ln′3+,A)−Etransition
abs (LnQ+,A)

+ δQ,3U (Eu,A) +∆E(Ln′ ,Eu,2)−∆E(Ln,Eu,Q), (6.19)

inducing standard deviations in the range of 300-350 meV. If these standard devi-
ations are propagated through Eq. 6.18, standard deviations for T0.5 in the range
of 160 K, 220 K and 280 K are obtained for Tb3+ 4f8(5D4), Eu2+ 4f65d1 and Ce3+

5d1 emission respectively. These values are obtained without taking any additional
error for τrad

1→2 and τn−rad
0 into account. It is seen that, while trends are usually able

to predict transition energies and absolute level positions with sufficient accuracy,
this type of model fails for the determination of TQ, since the standard deviations
on the quenching temperature become excessive.

The accuracy of the method can be improved by using reliable values for the param-
eters τrad

1→2 and τn−rad
0 in Eq. 6.17. The lifetime of the excited state can be obtained

from time-resolved luminescence spectroscopy (see §7.2.5). It is in general not suf-
ficient to utilize a predetermined value for τrad

1→2 as the radiative decay probability
of an ion is sensitive to the embedding host (see §2.3.3) [260, 261]. τn−rad

0 has the
meaning of a frequency factor or attempt rate. The period of the main vibrational
mode at the defect site is taken for τn−rad

0 which is around 0.5−1 × 10−13 s [258,259].

In the common reasoning which was sketched above, the calculation of the energy
barrier height uses the location of the excited state as obtained from absorption
or excitation spectroscopy. Again, the role of geometrical relaxation after photon
absorption is not included. Thermal ionization of the defect is governed through
the thermodynamic charge-state transition level, rather than the optical counterpart
which was used to construct the energy level scheme. Nonetheless, the error mar-
gins are too large for accurate prediction of the thermal quenching temperature T0.5.
Furthermore, in §3.4.4, it was shown by explicitly calculating the overlap integrals
between the vibrational wave functions and the temperature-dependent occupation
of the vibrational energy levels that thermal quenching cannot be reliably described
by a Mott-like expression such as Eq. 6.17 and that the details of the potential en-
ergy surfaces are required.

In addition, multiple competing (non-radiative) decay mechanisms exist, all having
a different temperature response or nonequivalent luminescent centers might exist.
For these reasons, thermal quenching (and decay dynamics) are very complex phe-
nomena for which a simple model as Eq. 6.17 is inappropriate to grasp the details.
In summary, a correct description of thermal ionization requires more details of the
energy landscape which are harder to obtain from spectroscopic experiments.
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Thermal quenching is not the only phenomenon for which conduction band states
are thought to be involved. Anomalous luminescence, i.e. a luminescence phe-
nomenon featuring a too low emission energy and a too large Stokes shift accord-
ing to empirical experience, is often attributed to the radiative decay of an impu-
rity trapped exciton. Furthermore, electrons or holes can sometimes be released
from the activator ion, possibly leading to charge storage and delayed lumines-
cence [156, 262–265]. Due to above mentioned reasons, quantitative predictions
of these phenomena are not straightforward and in reality, empirical energy level
schemes need to be considered as a qualitative aid in understanding experimental re-
sults rather than a way to predict experimental results [266,267]. First principles cal-
culations can additionally be of great help to understand individual cases [268,269].

6.3 Parameterization of the chemical shift

C. W. Thiel parametrized the chemical shift as originating from the electrostatic,
i.e. Madelung, interaction of the ions of the host crystal with the dopant ion, com-
plemented with a term, correcting for the relaxation (α) of the lattice due to the
non-equal ionic radii (R) of the lanthanide dopant (LnQ+) and the metal ion (MQ′+)
for which it substitutes [225–228]:

Echem
4f (LnQ+,A) =

Qe2

4πε0d(A)
M(A) +α(Q,A)∆R(LnQ+,A). (6.20)

Herein, M(A) is the Madelung constant corresponding to the crystal lattice site on
which the lanthanide incorporates and d the bond length to the nearest neighbors in
the undoped crystal. ∆R is the difference in ionic radii between the dopant and the
metal ion that is substituted by the dopant:

∆R(LnQ+,A) = R(LnQ+)−R(MQ′+). (6.21)

In Dorenbos’ model, the chemical shift is rationalized as the energy resulting from
an electrostatic interaction between a single 4f electron and a charge at a certain
screening distance (RQ(LnQ+,A)) described by a Coulomb-like law [229]:

Echem
4f (LnQ+,A) =

Qe2

4πε0RQ(LnQ+,A)
(6.22)

=
Qe2

4πε0RQ(EuQ+,A)

+α(Q,A)
[
∆R(LnQ+,A)−∆R(EuQ+,A)

]
+ . . .

where a series expansion was applied around the case of the europium ion and a
linear relationship utilized for the screening distance across the lanthanide series:

RQ(LnQ+,A) = RQ(EuQ+,A)− f
[
R(LnQ+)−R(EuQ+)

]
. (6.23)



i
i

i
i

i
i

i
i

Impurity levels of lanthanides: empirical rules 143

Herein, f represents the extent of mechanical lattice deformation upon incorpora-
tion of impurity ions. It is assumed to be independent of both host lattice and dopant
ion [229].

As one can see from Eqs. 6.20 and 6.22, both models are equivalent up to linear
order in series expansion of Eq. 6.22, the former without a lanthanide as reference,
the latter with europium as the lanthanide of reference (i.e. the last line of Eq. 6.22
vanishes for Ln=Eu).

The equivalence of the α parameters in the chemical shift models of Thiel and
Dorenbos can be shown by explicitly writing the chemical shift for EuQ+:

Echem,T.
4f (EuQ+,A) =

Qe2

4πε0d(A)
M(A) +αT(Q,A)∆R(EuQ+,A) (6.24)

Echem,D.
4f (EuQ+,A) =

Qe2

4πε0RQ(EuQ+,A)
(6.25)

Where T and D denote Thiel and Dorenbos respectively. If Eq. 6.24 and 6.25 are re-
spectively subtracted from 6.20 and 6.22, one obtains Echem

4f (LnQ+,A)−Echem
4f (EuQ+,A)

for both models. These ought to be equal:

αT(Q,A)
[
R(LnQ+)−R(MQ′+)

]
−αT(Q,A)

[
R(EuQ+)−R(MQ′+)

]
= αD(Q,A)

[
R(LnQ+)−R(EuQ+)

]
, (6.26)

indeed yielding αT(Q,A) = αD(Q,A). The subscripts T and D can thus be omitted.

The screening distance RQ(EuQ+,A), introduced by Dorenbos, is then related to the
Madelung constant:

1

RQ(EuQ+,A)
=
M(A)
d(A)

+
4πε0α(Q,A)

Qe2 ∆R(EuQ+,A). (6.27)

The binding energy shift per unit change in ionic radius, α, is named the contraction
tilt parameter by Dorenbos, referring to the lanthanide contraction, i.e. the decrease
in ionic radius for increasing atomic number for the lanthanides [229].

Both authors state that the chemical shift model should be approached in an empir-
ical way, i.e. by making abstraction of an exact meaning of the M (or RQ) and α pa-
rameters, but rather regard them as effective parameters. In this way the model can
describe more complex interactions than purely the electrostatic one. Thiel consid-
ered M and α as two independent parameters which can be fitted to experimental
photoelectron spectroscopy (PES) spectra. Dorenbos considers Eq. 6.20 as an ap-
proximation of Eq. 6.22, restricting the number of independent parameters to one.
In this case, α can be calculated as:

α(Q,A) =
Qe2f

4πε0R
2
Q(EuQ+,A)

=
4πε0f

Qe2

[
Echem

4f (EuQ+,A)
]2

(6.28)



144 Chapter 6

In reality, the choice to use one or two parameters in the chemical shift model is of
no relevance because the chemical shift is usually determined from another, purely
empirical relationship (Eq. 6.6, see §6.2.1).

6.4 Example: CaGa2S4:LnQ+

In this part, the energy level modeling and error analysis is explicitly applied to
lanthanide doped calcium thiogallate CaGa2S4. This will allow assessing to which
extent these models can be used for predicting spectroscopic properties. Sulfides
form an interesting class of host materials for energy level modeling due to their
small band gap energy, allowing to measure charge transfer and fundamental ab-
sorption bands within the limits of standard experimental equipment, i.e. without
the need for VUV spectroscopy.

The CaGa2S4 polymorph with the orthorhombic crystal structure, corresponding
to space group Fddd, is considered [270]. Although three nonequivalent alkaline
earth metal sites are present on which the lanthanide dopants can incorporate, their
shapes and sizes differ barely such that it can be safely assumed that only one alka-
line earth metal site is present. This is underpinned by the narrow emission band
of the Eu2+ ion (see §6.4.1). The D2 (or C2) site symmetry can be approximated by a
(non-crystallographic)D4d point symmetry since the coordination polyhedra deviate
only minimally from an idealized square antiprism [270]. In the strong-field cou-
pling scheme, a single d electron with a fivefold degenerate energy level is expected
to split in a singlet and two doublets:

D(2) = a1 ⊕ e2 ⊕ e3. (6.29)

6.4.1 Experimental spectra

Fig. 6.6 shows the emission and excitation spectra of Eu2+, Ce3+ and Tm3+ in the
described host material. The details on the spectroscopic experiments that were per-
formed to obtain these spectra can be found in chapter 7. The numerical values
of the parameters that can be obtained from these measurements are summarized
in Table 1. For band maxima, an experimental error of 20 meV was taken into ac-
count. To obtain the transition energy from the 4f7(8S7/2) ground state to the lowest
4f6(7F0)5d1 state of Eu2+, the point where the excitation band is 20% of its maximum
value is usually taken (see §4.5.3). For this procedure, an experimental error of 50
meV is adopted. The error on empirical parameters that are regarded as constants,
such as Efd(LnQ+, free) is taken to be 10 meV.

The Eu2+ and Ce3+ spectra are characterized by broadband luminescence in the vi-
sual range, coming from the intraconfigurational 5d-4f transition. Tm3+ shows line
emission, originating from interconfigurational 4f12 transitions. The emission can
be efficiently excited by a charge transfer transition, yielding a broad band in the
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UV range of the excitation spectrum. In the CaGa2S4:Tm3+ excitation spectrum, an
additional band peaking at 4.43 eV is visible. A similar band was also reported else-
where and ascribed to fundamental absorption in the host material, sensitizing the
Tm3+ emission [220]. Comparison of the Tm3+ excitation spectrum of a sample pre-
pared in forming gas atmosphere (N2 /H2), with a similar sample, though prepared
in hydrogen sulfide (H2S) atmosphere, shows that the relative intensity of the Tm-S
charge transfer peak increases in the latter case. This suggests that the additional
band can as well originate from sulfur defects, unavoidably present in the prepared
materials.

6.4.2 Energy level scheme, construction and discussion

The complete lanthanide energy level scheme for CaGa2S4 is displayed in Fig. 6.7.
In this figure, error margins are indicated, based on the error analysis in the previous
paragraph, corresponding to single standard deviations and 68% prediction limits.
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Figure 6.6 – Emission (solid lines) and excitation spectra (dashed lines) of lanthanide
doped CaGa2S4, measured at 75 K. Top: Ce3+ doped, emission spectrum upon 410 nm
(3.02 eV) excitation, excitation spectrum for 445 nm (2.79 eV) emission. Middle: Eu2+

doped, emission spectrum upon 450 nm (2.76 eV) excitation, excitation spectrum for
560 nm (2.21 eV) emission. Bottom: Tm3+ doped, emission spectrum upon 370 nm
(3.35 eV) excitation, excitation spectrum for 810 nm (1.53 eV) emission. The colored
bands indicate the locations of the 4fN5d1 multiplets with respect to the 4fN ground
state.



146 Chapter 6
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0.5
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Figure 6.7 – Lanthanide impurity energy level scheme for the CaGa2S4 (A = CaGa2S4)
host, calculated with the ∆E parameters. The saw tooth shaped (zig-zag) curves rep-
resent the lowest 4f charge-state transition level of the ion, the more or less horizontal
lines the lowest 5d level. Blue squares for divalent lanthanide ions (ε(Ln2+/Ln3+)), black
circles for trivalent lanthanide ions (ε(Ln3+/Ln4+)). The single standard deviations, σ ,
for the impurity levels are represented by the thickness of the lines, the errors on the
location of the host’s VB, CB and exciton binding energy are indicated at the left and
right sides of the figure. The symbol of the quantity of which the standard deviation is
shown, is denoted in the subscript. The differences between the calculated and experi-
mentally determined CT energies (∆CT) are represented in the bar diagram on top. Blue
for CT energies calculated from the averaged ∆Es, black for CT energies, calculated from
the contraction tilt parameters α. When multiple experimental energies were available,
the average was calculated. The dotted lines represent the calculated σEC (Ln3+,A) and
2σEC (Ln3+,A) values [219, 220].
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Table 6.1 – Optical properties of Ce3+, Eu2+ and Tm3+ ions in the MGa2S4 (M = Ca,
Sr) hosts. These parameters serve as input for the calculation of the lanthanide energy
level schemes. d1, d2 and d3 denote the positions of the three 4f-5d excitation bands
of Ce3+, f1 and f2 denote the positions of the two 5d-4f emission bands of Ce3+. The
spectra of SrGa2S4, their interpretation and the discussion of the energy level schemes
can be found in §6.5.2. All values in eV.

A = SrGa2S4 A = CaGa2S4

Optical band gap Eex(A) 4.16± 0.10 3.98± 0.10

Ce3+ Absorption Efd1
abs (Ce3+,A) 3.03± 0.02 3.05± 0.02

Absorption Efd2
abs (Ce3+,A) 4.04± 0.02 3.81± 0.02

Absorption Efd3
abs (Ce3+,A) 4.32± 0.02 4.29± 0.02

Redshift D(Ce3+,A) 3.09± 0.03 3.07± 0.03
Centroid shift εc(Ce3+,A) 2.40± 0.02 2.50± 0.02
Crystal field splitting εcfs(Ce3+,A) 1.29± 0.03 1.24± 0.03

Emission Ef1d
em (Ce3+,A) 2.54± 0.02 2.54± 0.02

Emission Ef2d
em (Ce3+,A) 2.80± 0.02 2.78± 0.02

Stokes shift ∆S(Ce3+,A) 0.23± 0.03 0.27± 0.03

Eu2+ Redshift D(Eu2+,A) 1.76± 0.05 1.83± 0.05
Stokes shift ∆S(Eu2+,A) 0.16± 0.06 0.17± 0.06

Tm3+ Charge transfer ECT(Tm3+,A) 3.32± 0.02 3.37± 0.02

In Fig. 6.7, the deviations between the calculated and measured CT energy are
displayed in a bar diagram for both types of calculations, i.e. from ∆E param-
eters and from the contraction tilt parameters (α(2,CaGa2S4) = 0.109 eV/pm and
α(3,CaGa2S4) = 0.175 eV/pm). The typical error lies within 0.5 eV, corresponding
to twice the calculated standard deviation. A better correspondence was found for
the CT energies when the average ∆E parameters were used. The difference in CT
energies between these two approaches amounts up to a few 100 meV.

From the point of view of error analysis, no larger deviation is a priori expected
for the CT energies obtained from the contraction tilt than those obtained from
the ∆Es. Nevertheless, it appears to be the case. A possible reason for this is the
inability to describe the detailed interactions in the lanthanide defect cluster with
the main premise of the chemical shift model, namely the Coulomb potential, Eq.
6.22. In this case, Eq. 6.28 does not furnish the correct relation between α(Q,A)
and Echem

4f (EuQ+,A). Alternatively, a simple rotation as described by Eq. 6.8 - which
remains valid for a more general class of models than the chemical shift model -
might be insufficient to describe the change of shape of the 4f curves upon incor-
poration. After all, the 4f curves obtained with ∆E(Ln,Eu,Q) cannot be obtained
by simple rotation of ∆E(Ln,Eu,Q, free), the optimal contraction tilt parameters of
α(2,A) = 0.097eV/pm and α(3,A) = 0.156eV/pm yield some deviations.
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If the energy level scheme (Fig. 6.7) is compared with the one available in literature,
a few differences show up [220]. In Fig. 6.7, most Ln2+ 5d levels are within the con-
duction band while they are below in [220]. This can be attributed to the different
Eex values used in both calculations. Bessière et al. used the maximum of a host re-
lated excitation band in the spectrum of Ce3+ [220]. It is however not sure whether
the maximum of the broad excitation band corresponds to self-trapped exciton cre-
ation. Furthermore, the Coulomb correlation energy in [220] is rather low (around
5.5 eV according to their Fig. 5), corresponding to the value for Eu metal, recorded
by Dorenbos (Fig. 6.2 and [233]). This results in a Ln3+ 4f curve which is too loosely
bound with respect to the vacuum, having the Tb3+ 4f state in the band gap while
in Fig. 6.7 it lies in the VB. This deviation can be related to the less extended energy
level model used 10 years ago. On the other hand, if one considers realistic errors
on all calculated quantities, the differences between both energy level schemes are
limited and the scheme of Bessière et al. can be used as well. From the energy level
scheme, electronic and optical properties of CaGa2S4:LnQ+ are predicted.

From the locations of the 4fN levels, it is inferred that the europium ion will be
divalently incorporated, matching observation. All other lanthanides except for yt-
terbium are expected to be trivalent. Ytterbium is a more difficult case as the Yb2+

4fN ground state is very close to the center of the band gap. Comparison with other
sulfide hosts suggests that ytterbium will most likely be incorporated as Yb2+ [267].

Afterglow of a few seconds has been reported in CaGa2S4:Eu2+ when this phosphor
is co-doped with another lanthanide ion [271–273]. The locations of the Ln2+ 4f
states with respect to the host’s conduction band are of particular interest since it has
been suggested that Ln3+ ions behave as electron acceptors, trapping auto-ionized
electrons from the light emitting ion [156]. This has been successfully demonstrated
for YPO4:Ce3+, Ln3+, where trap depths between 0.5 eV and 3.2 eV were found from
the analysis of thermoluminescence glow curves [264] . In the case of CaGa2S4 how-
ever, the 4f levels of Pr2+, Nd2+, Gd2+, Dy2+, Ho2+ and Er2+ lie very close or inside
the conduction band of CaGa2S4. For this reason, all these lanthanides are expected
to be poor trapping centers and no meaningful trend is expected as a function of N .
This is also reflected in Figure 7 of [273] where three trap levels were fitted to TL
glow peaks. The observed traps might be rather coming from defect levels, other
than those associated with the 4f electrons of the codopant, nonetheless potentially
caused by the incorporation of the codopant. For Sm3+ and Tm3+ as codopant, no
light emission was observed which is in accordance with the calculated trap depths
of 1.48 ± 0.31 eV and 0.68 ± 0.23 eV respectively, calculated with respect to the
conduction band bottom. In these cases, the afterglow will be obscured by the deep
traps from the Tm3+ and Sm3+ acceptor ions, which cannot be emptied at room tem-
perature within a reasonable time. If the trap depths are calculated with respect to
the self-trapped exciton binding energy, one obtains 1.16 ± 0.24 eV and 0.36 ± 0.10
eV for Sm3+ and Tm3+. The error on the trap depth for Tm3+ is smaller thanks to
the fact that the Tm3+ CT was used to position the VB. The predictive power of these
trap depths is limited due to the large error margin and the neglect of vibrational ef-
fects. Concerning the large errors, a trap of depth 0.68 ± 0.23 eV can be too shallow
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for efficient charge storage, perfect for gradual charge release to construct persistent
luminescent materials or too deep to be emptied at room temperature.

6.5 Nonequivalent defects

Up to now, the described empirical rules and techniques for constructing charge-
state transition level schemes have been applied to many host materials [267, 274–
280]. This can be unambiguously done for host materials in which all lanthanides
act identically in chemical and crystallographic terms. One can expect that often this
is true because of their similar ionic radii and chemical behavior. However examples
are known where this is not the case. Furthermore, there is a one-to-one correspon-
dence between the number of nonequivalent defects in a certain host and the number
of charge-state transition levels for a dopant. If multiple defect geometries for the
same foreign atom are possible, multiple energy level schemes are necessary for a
correct description. Both these subtleties are often neglected or simply forgotten.

Below, the empirical energy level models are applied to lanthanide-doped materials
with more challenging host compounds, featuring multiple nonequivalent lattice
sites on which the lanthanides can incorporate. SrAl2O4 and Sr2Si5N8 are presented
as case studies. Site-selective spectroscopy can offer a tidy opportunity to separate
the spectral features and construct energy level schemes for the different defect ge-
ometries. Remaining difficulties such as correlating the spectral features to the de-
fects are discussed.

Subsequently, spectra of the lanthanide doped ternary sulfide SrGa2S4 are presented.
It is known that the first coordination shell is severely altered when Ce3+ is incorpo-
rated [281], yielding a completely different situation than for Eu2+ doping. In this
case, the use of empirical rules that relate spectral properties of different lanthanides
becomes severely restricted. The repercussions on the construction of charge-state
transition level schemes are discussed in detail.

6.5.1 Multiple nonequivalent lanthanide defects

In this paragraph, two examples of host compounds (SrAl2O4 and Sr2Si5N8) are
discussed which feature two nonequivalent substitutional defects upon lanthanide
doping. This poses additional difficulties when the electronic structure is empir-
ically assessed as both lanthanide defects require a separate energy level scheme.
Examples are included for which the occurrence of the nonequivalent defects is
clear from the optical spectra, i.e. site-selective spectroscopy can be performed.
This is preferably done on low-concentrated systems, avoiding interactions between
nonequivalent defect centers. Interactions between centers result in energy transfer
which can obscure the optical spectra.
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Site-selective spectroscopy of the Ce3+ ion is an important first step as it allows to
construct vacuum referred binding energy level schemes for the 4f levels. This is
thanks to empirical rule Eq. 6.5. Next, the host compound’s valence and conduction
band need to be added. From photoluminescence excitation spectroscopy of a triva-
lent lanthanide, the anion to lanthanide CT energy can be obtained, approximately
probing the 2+/3+ charge-state transition level (see §5.4.2, §6.2.3). The binding en-
ergy difference between two nonequivalent Ln3+ defects is significantly smaller than
the typical width of a charge-transfer spectral band [236]. As the ionization poten-
tials for both defects were already calculated, deconvolution of the CT band poses
no additional problems.

SrAl2O4

Doped with divalent europium, strontium aluminate (SrAl2O4) features an exten-
sively studied green afterglow which can be intensified upon codoping with triva-
lent dysprosium [158, 159, 282]. Interestingly, when this material is cooled below
250 K, a second emission band emerges in the blue spectral region [266]. The origin
of this band has been the debated since it was first found. Although an explana-
tion in terms of incorporation of Eu2+ on the two nonequivalent lattice sites seems
the most simple one, it was pleaded that the minor geometrical differences between
the Sr1 and Sr2 sites cannot account for the differences between the two spectral
features [164–166, 283]. Alternatively, more exotic explanations such as alignment
of Eu ions, hole release or even emission from a higher 4f65d1 multiplet were con-
trived [164–166].

In §4.5.3, empirical rules, relating the bond lengths of the undistorted lattice sites
to the multiplet structure of the excited 4f65d1 configuration were applied, show-
ing that the order of magnitude of the spectral differences between the excitation
bands of the blue and green emission can be perfectly explained by the structural
differences between both lattice sites, discarding the more exotic explanations for
the occurrence of two emission bands.

Also upon Ce3+ doping, it was spectroscopically shown that two different defects
are present [284]. Based on this data, which is summarized in Table 6.2, charge-state
transition level schemes can be constructed. The 2+/3+ levels for all the lanthanides,
i.e. the divalent 4f curves, are shown in Fig. 6.8.

Sr2Si5N8

Strontium nitridosilicate, Sr2Si5N8, has been frequently reported as a chemically
stable host material for lanthanides. In particular, upon doping with divalent eu-
ropium, an efficient red phosphor is formed which is applied in phosphor-converted
white light-emitting diodes (LEDs) [288–293].

Spectroscopy of Ce3+ in Sr2Si5N8 was performed by Li et al. They clearly found the
effect of two nonequivalent cerium defects in their spectra of which different crystal
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Table 6.2 – Experimental spectroscopic parameters for lanthanides incorporated on the
nonequivalent Sr sites in SrAl2O4 and Sr2Si5N8. εcfs, εc and D denote respectively the
crystal field splitting, centroid shift and redshift of the 4fN−15d1 manifolds. ∆S denotes
the Stokes shift of the 4fN -4fN−15d1 luminescence. All values in eV.

SrAl2O4 Sr2Si5N8 ref.
low energy high energy low energy high energy

Ce3+ εcfs 0.85 1.14 1.91 1.61 [266, 285, 286]
εc 2.65 2.23 2.73 2.41 [266, 285, 286]
D 2.85 2.47 3.24 3.02 [266, 285, 286]
∆S 0.25 0.31 0.33 0.87 [266, 285, 286]

Eu2+ D 1.42 1.22 2.05 2.02 [266, 287]
∆S 0.43 0.21 0.32 0.23 [266, 287]

4f

5d

4f

5d

LnSr1

LnSr2

SrAl2O4 Sr2Si5N8 LnSr1

LnSr2

Figure 6.8 – Diagrams with the 2+/3+ charge-state transition levels for the LnSr1 and
LnSr2 defects in SrAl2O4 and Sr2Si5N8. Assignation for Sr2Si5N8 according to [286]
and [287].
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field splitting energies could be extracted [286]. Based on their data, the centroid
shifts of the cerium 5d1 configuration for both cerium defects were estimated. The
data is summarized in Table 6.2.

More recently, Lazarowska et al. performed a detailed site-selective spectroscopy
study of the Eu2+ ion in Sr2Si5N8 [287]. From the 4f7-4f65d1 excitation spectra, it
was concluded that the spectroscopic redshift for both europium defects are very
similar. The difference in emission energy is therefore almost completely due to
a different electron-vibrational interaction. Empirical total energy level schemes
within the single configurational coordinate approximation were provided.

Based on site-selective spectroscopy on Ce3+ and Eu2+ and the charge transfer en-
ergy of Sm3+ [294], charge-state transition level schemes were constructed for both
defect geometries (see Fig. 6.8).

An empirical charge-state transition level scheme for lanthanide defects in Sr2Si5N8
was first constructed in 2013 by ten Kate et al. [294]. Only the charge-state transition
levels for the low energy site were calculated. Though not represented in the energy
level scheme, the 4fN -4fN−15d1 transition energies for lanthanides were compared
for both defect configurations. Interestingly, for the Tb3+ ion only one 4f8-4f75d1 ex-
citation band was found. By extrapolating the 4f-5d energies of the cerium defects
according to the empirical finding that all Ln3+ ions feature the same 4f-5d spectro-
scopic redshift, the excitation band was attributed to the Sr1 site. This means that
the Tb3+ ion occupies preferentially the smaller Sr1 site while no preference was
found for the slightly larger Ce3+ ion [294].

Inspection of the diagram in Fig. 6.8 learns that the binding energies for both de-
fect sites are very close. How can this be compatible with the undeniable spectral
differences between both types of defects? This is a direct consequence of the fact
that charge-state transition level schemes do not directly display spectroscopic in-
formation, but have a thermodynamic meaning (see §5.2.3) . In the case of Ce3+,
there is a clear difference in the details of the 5d manifold for both defects. This is
dictated by the exact details of the crystal field interaction, which is not described
by the charge-state transition levels. In the case of Eu2+, the spectral difference is
a direct consequence of a different local electron-vibration interaction. To correctly
describe the dynamics, details of the potential energy surfaces, such as curvatures,
equilibrium coordinates and relevant normal modes are indispensable. No empiri-
cal rules to obtain these quantities are available to date.

In [287], it was argued that the preferential incorporation of Eu on the site yielding
the higher-energy emission is due to the 4f level of this defect being more strongly
bound than for the alternative defect. This is however an incorrect interpretation of
the charge-state transition levels. It is true, by definition of the charge-state trans-
fer energies, that the EuSr2 defect requires slightly more energy in order to oxidize.
On the other hand, preferential occupation of certain lattice sites is governed by the
defect formation energy which is calculated in terms of total energies (see §5.2.3).
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Furthermore, if the difference in defect formation energies would be the same as the
difference in charge-state transition levels, it would be too small to yield an observ-
able difference in site occupation given the high temperature at which the materials
are synthesized.

Relating crystal sites to spectra

The remaining challenge is linking the separate spectral features to the different
defect geometries. It is often assumed that a smaller lattice site corresponds to a
lower 4f-5d energy. The reasoning is that the crystal field strength, and implicitly
the spectroscopic redshift of the 5d level, increases upon decreasing bond lengths.
The validity of this assumption is doubtful for lattice sites for which the geometry
does not differ too much. Moreover, the crystal lattice will locally relax to a different
equilibrium geometry, adapted to the specific lanthanide atom in an unknown way.

As the different lanthanide ions behave very similar in chemical terms, it is likely
that high- and low-energy sites can be correlated for the different lanthanides, al-
lowing to construct empirical charge-state transition diagrams for both defects. Ex-
ceptions to this rule of thumb are discussed in §6.5.2.

SrAl2O4 forms monoclinic crystals (space group P21) in which two nonequivalent
Sr sites occur, both on Wyckoff position 2a. Sr2Si5N8 forms orthorhombic crystals
(space group Pmn21) [295] in which likewise two nonequivalent Sr sites occur, both
corresponding to Wyckoff site 2a [295].

In Sr2Si5N8, the Sr1 site has a lower coordination number and features a smaller
polyhedron than the Sr2 site [295]. Specifying the coordination number, i.e. the
number of neighboring atoms is somewhat arbitrary in these cases. This is illus-
trated in literature where different coordination numbers are reported for the same
compound [286, 287, 294].

The reason for the ambiguity is demonstrated in Fig. 6.9 where the number of an-
ions lying inside a sphere, centered at the Sr atom is given as a function of the radius
of the sphere. This figure shows that coordination shells cannot be identified in a
straightforward fashion, neither for SrAl2O4 nor Sr2Si5N8. In the case of SrGa2S4, a
higher symmetry is present and well-defined coordination shells can be identified.

To straighten out this ambiguity, Rudolf Hoppe introduced the effective coordina-
tion number in 1979 in which a weighing of the different bond lengths is carried
out [296]. This quantity turns out to be simply the ordinary coordination number in
the case of compounds with a high symmetry and well-defined coordination shells,
while it yields a rational number in other cases. The effective coordination numbers
for the Sr1 and Sr2 sites of Sr2Si5N8 are respectively 5.98 and 6.88. The coordina-
tion polyhedra of the first 6 and 7 neighbors for the Sr1 and Sr2 sites of Sr2Si5N8 are
approximate pentagonal and hexagonal pyramids respectively [295].
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Figure 6.9 – (a) Coordination environments for the different Sr sites in Sr2Si5N8,
SrAl2O4 and SrGa2S4. Crystal data from [163, 295, 296]. (b) Illustration of the num-
ber of anions (O, N or S) contained inside a sphere centered at the cationic (Sr) sites as
a function of the radius of the sphere for SrAl2O4, Sr2Si5N8 and SrGa2S4. The effective
coordination number, as defined by R. Hoppe, is given for each site [296]. Furthermore,
the location of the closest cation (Al, Si) is given. The smallest Sr-Ga distance in SrGa2S4
is 3.86 Å.

Several assignments of the spectral bands of SrAl2O4:LnQ+ are available in litera-
ture. Jia et al. showed that the high energy band in SrAl2O4:Ce3+ has an emission
intensity which is 10 times higher than the intensity for the low energy band at room
temperature [284]. From this result, it was concluded that the high energy emission
originates from Ce incorporated on the larger Sr1 site as this provides more space
for the suggested charge compensation [284]. This is however a somewhat arbitrary
argument because the intensity of an emission band is not necessarily related to
a preferential site occupation and can as well be the result of a different thermal
quenching behavior.

The empirical structure-property rules, used in §4.5.3, showed that the high energy
emission is most likely attributed to the smaller Sr2 site.

More recently, vacuum UV spectroscopy of Sr0.75Ce0.125Na0.125Al2O4 was combined
with quantum mechanical calculations to gain a better understanding of the con-
nection between defect geometry and spectral properties [100]. The sodium atoms
were added for charge-compensating the Ce•Sr defects and located on the nearest or
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next-nearest Sr site for the calculations. The multireference calculations confirmed
that the two spectral features originate from incorporation on the different Sr sites.
The allocation of the Ce•Sr1 and Ce•Sr2 defects to respectively the low and high energy
emission bands was however reversed by the calculation. It still remains a question
why the 4f-5d transition of Ce3+ on the larger Sr site would correspond to the high-
est energy. Additionally, the influence of the nearby Na

′
Sr defect on the multiplets

of the Ce3+ ion is unclear as the Coulomb interactions between the different defects
can have a rather long range [183].

In the case of Sr2Si5N8:Eu2+, the lowest energy emission was attributed to the small-
est undistorted Sr site according to the typical rule of thumb [286,287]. It was found
that the Eu2+ ion occupies both Sr sites, although it has a preference for the larger
Sr2 site because it is the only occupied site for low doping concentrations. In the
article of Lazarowka et al., the labeling of the Sr1 and Sr2 sites was exchanged with
respect to the assignation by Schlieper et al. [295] which is used in this text, follow-
ing the convention of Yeh et al. [297].

From these examples, it is clear that the subtle differences in defect geometry can
result in appreciable spectral changes which are very difficult to predict.

6.5.2 Structural distortions across the Ln series: SrGa2S4

Previous examples, SrAl2O4 and Sr2Si5N8, were challenging host compounds for
constructing empirical charge-state transition level schemes in the sense that two
nonequivalent lanthanide defects occurred and formally, two different schemes are
required. Yet, because site selective spectroscopy allows to separate the different
spectral features, the two schemes can be constructed almost independently.

A more complex situation occurs if not all lanthanides behave in the same way with
respect to incorporation. If this is the case, the systematics which is normally ex-
ploited in the construction of the charge-state transition level schemes breaks down
and it should be carefully considered which empirical rules are still usable. SrGa2S4
is an example of such a host compound.

Crystal structure

Strontium thiogallate (SrGa2S4) is isostructural to calcium thiogallate (see §6.4).
Similarly as for the Ca-compound, the existence of only one nonequivalent Sr site of
effective D4d symmetry is assumed because all three Sr sites differ only very slightly
as demonstrated in Fig. 6.9. Eu2+ doping is expected to deform the coordination
polyhedron only minimally due to the comparable ionic radii of Eu2+ and Sr2+ and
given that EuGa2S4 is isostructural with SrGa2S4 [177, 298, 299]. Doped with Eu2+

or Ce3+, this compound has been thoroughly described in view of multiple applica-
tions such as electroluminescent displays, field-emissive devices and more recently
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LED phosphors (see also chapter 9) [251, 300–304].

Although this compound effectively features only one Sr site and might therefore be
considered as a straightforward case upon lanthanide doping, a discontinuity across
the lanthanide series occurs. Warren et al. have shown by electron paramagnetic
resonance (EPR) spectroscopy that the Ce•Sr defect induces a sulfur interstitial Si
in the first coordination shell to compensate the excess positive charge [281]. The
deformed coordination polyhedron for the Ce3+ dopant features approximate C3h
point symmetry and a coordination number of 9 (see Fig. 6.9).

The geometrical deviation for the Ce•Sr defect is expected to have an influence on
the luminescence properties. It is self-evident that this has to be taken into ac-
count when constructing charge-state transition level schemes. In the following,
the optical spectra and electronic structure of SrGa2S4:LnQ+ will be compared to the
previously discussed CaGa2S4:LnQ+. It has been shown by EPR that for the isostruc-
tural CaGa2S4:LnQ+ the pristine symmetry and coordination number of the Sr site is
maintained upon Ce3+ doping. This might be due to the similar ionic radii of Ce3+

and Ca2+ [305]. For this reason, CaGa2S4:LnQ+ is a good choice as a well-behaving
reference.

Photoluminescence

Fig. 6.10(a-b-c) shows the emission and excitation spectra of Eu2+, Ce3+ and Tm3+ in
SrGa2S4, compared to the spectra of the same lanthanides in CaGa2S4. The spectra
of these three defects can be used as input to construct the empirical charge-state
transition level schemes. This was done for CaGa2S4 in §6.4. The numerical values
of the parameters that can be obtained from these measurements are summarized in
Table 6.1.

The spectra for SrGa2S4:LnQ+ are -at first sight- very similar to the spectra of
CaGa2S4:LnQ+, with broadband 4fN -4fN−15d luminescence for Eu2+ and Ce3+ and
4f12-4f12 line emission for Tm3+ with a CT band and an additional unassigned
band in the excitation spectrum. The latter is significantly less intense for the Sr-
compound than for the Ca-compound.

If the excitation spectra of Ce3+ and Eu2+ are more closely compared for both host
materials, a deviation from the idealized situation, described by Eq. 6.14, occurs.
The Eu2+ band is red-shifted for CaGa2S4 with respect to SrGa2S4, in agreement
with the observed yellow and green emission respectively. This is understood to be
due to the increased crystal field strength, i.e. the accumulated effect of the centroid
shift and crystal field splitting, due to the decreased bond length in the case of the
Ca-compound. In the case of Ce3+, however, both excitation spectra approximately
coincide at the low energy side (Fig. 6.10).

Although this behavior lies fully within the expected uncertainties, it is still remark-
able if an isomorphous coordination polyhedron would be expected. However, from
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Figure 6.10 – Emission (solid lines) and excitation spectra (dashed lines) of lanthanide
doped SrGa2S4 (light blue lines) and CaGa2S4 (dark blue lines), measured at 75 K. (a)
Ce3+ doped, emission spectrum upon 410 nm (3.02 eV) excitation, excitation spectrum
for 445 nm (2.79 eV) emission. (b) Eu2+ doped, emission spectrum upon 450 nm (2.76
eV) excitation, excitation spectrum for 535 nm (2.32 eV) (560 nm (2.21 eV)) emission
for SrGa2S4 (CaGa2S4). (c) Tm3+ doped, emission spectrum upon 370 nm (3.35 eV)
excitation, excitation spectrum for 810 nm (1.53 eV) emission. (d) Tb3+ doped, emission
spectrum upon 302 nm (4.11 eV) (320 nm (3.88 eV)) excitation, excitation spectrum for
544 nm (2.28 eV) emission for SrGa2S4 (CaGa2S4). (e) Pr3+ doped, emission spectrum
upon 320 nm (3.87 eV) excitation, excitation spectrum for 651 nm (1.90 eV) (640 nm
(1.94 eV)) emission for SrGa2S4 (CaGa2S4). The colored bands indicate the locations of
the 4fN5d1 multiplets with respect to the 4fN ground state.
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the EPR study of Warren et al. (see §6.5.2) [281], it is known that the situation is lo-
cally completely different for SrGa2S4:Ce3+ which can explain this anti-correlation
between the calcium and strontium thiogallates.

Typical green Tb3+ 5D4 emission is often excited by 4f8-4f75d1 absorption in the UV
range. Remarkably, the excitation spectra of Tb3+, displayed in Fig. 6.10(d), coincide
for doping in CaGa2S4 and SrGa2S4, which indicates that Tb•Sr is likely to be charge-
compensated in the same way as Ce•Sr. Assuming an equal spectroscopic redshift
for both lanthanides, the SrGa2S4:Tb3+ spin-allowed and spin-forbidden absorption
bands are predicted at respectively 4.68 eV and 3.98 eV [262]. The experimental
excitation spectrum (Fig. 6.10) shows this feature around 3.91 eV, most likely corre-
sponding to the spin-forbidden transition. The spin-allowed transition is therefore
believed to be obscured by fundamental absorption by the host crystals.

The Pr3+-S2− charge transfer is expected at 4.47 eV ± 0.20 eV and the 4f2-4f15d1 ab-
sorption band is expected at 4.54 ± 0.12 eV in SrGa2S4 assuming isostructural Pr•Sr
and Ce•Sr defects. Experimentally, broadband excitation peaks are found at lower en-
ergy, peaking around at 3.92 eV and 4.32 eV (Fig. 6.10(e)). If the lowest energy band
is assigned to the charge-transfer band and the higher energy band to the 4f2-4f15d1

transition, the mismatch between prediction and experiment is respectively 2.7σCT
and 1.8σfd, with the σ -values as obtained above. These are rather large deviations,
suggesting that possibly a different mechanism causes the origin of the excitation
bands. Yet another distorted coordination polyhedron is a possible alternative ex-
planation.

In 2004, Iwamaru et al. studied the cathodoluminescence of SrGa2S4:Sm [306]. They
found a broad red emission band about 700 nm (1.77 eV) which was attributed to
4f55d1-4f6 emission of Sm2+. From the Eu2+ spectra, the absorption threshold of
Sm2+ in SrGa2S4 is estimated at 1.25 eV and the emission at 1.09 eV. Therefore, it
is unlikely that the observed emission band is due to Sm2+. From the approximate
location of the 2+/3+ charge-state transition level of Sm (see Fig. 6.11), it is moreover
expected that Sm will be preferentially incorporated in a trivalent state, assuming
that the electronic chemical potential lies in the middle of the band gap [243, 307].

Energy level schemes

Because of the deviating Ce incorporation, the charge-state transition level scheme
for SrGa2S4 cannot be simply constructed based on Eex(A), Efd1

abs(Ce3+,A), Efd
abs(Eu2+,A)

and ECT(Tm3+,A), as was done for CaGa2S4 in §6.4.

The Coulomb 4f correlation parameter for Eu, U (Eu,A), which is a key parameter
for constructing vacuum referred binding energy level schemes, is assessed from the
Ce3+ centroid shift according to Eq. 6.5. This relationship cannot be used in this
case because of the different defect geometries for Ce and Eu. Since this and other
equations are completely empirical, it is unknown to which extent different charge
compensating effects or other imperfections are present in the data used to obtain
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these equations. It is more specifically possible that this kind of effects is readily
accounted for in the empirical routine without the users knowledge. Inspection of
the data used for deriving Eq. 6.5 learns for instance that SrGa2S4 was used as a data
point [232].

3+/4+

2+/3+ 4f

5d

Figure 6.11 – Diagram with the 2+/3+ and
3+/4+ charge-state transition levels for the
LnSr defects which are isostructural to the Ce•Sr
defect in SrGa2S4.

Concerning this question, it can also
be of interest to take a look at the un-
certainties, associated with the empiri-
cal rules. Eq. 6.5 allows to calculate
U (Eu,A) with a 68% uncertainty inter-
val of 100 meV. This is of the same
order of magnitude as the deviations
between U (Eu,A) for two different de-
fect sites in the same host, based on
the above examples. As the occurrence
of multiple nonequivalent defects nor
discontinuous behavior such as differ-
ent charge-compensation schemes were
systematically taken into account in de-
vising the set of empirical rules, the un-
certainties on these empirical rules, as
calculated above, are larger than differ-
ences between possible nonequivalent
defects.

Of course, applying the empirical rules in a thoughtful way by making the distinc-
tion between different defect geometries will yield more information about the rel-
ative positions of the charge-state transition levels for each nonequivalent defect,
allowing a comparison between the different physical observables associated with
them.

Assuming that the Ce•Sr and Tm•Sr defects are isostructural in SrGa2S4, host referred
and vacuum referred binding energy level schemes for the defect with nearby sulfur
interstitial can be constructed according to the usual routine. The result is displayed
in Fig. 6.11.

Obtaining a charge-state transition level scheme for the 8-fold coordinated lanthanide
defects in SrGa2S4 such as the EuSr defect is not straightforward as neither the Ce3+

centroid shift can be used to obtain vacuum referred binding energies nor a charge-
transfer energy of a trivalent lanthanide to probe host referred binding energies.
Both rely on spectroscopy of trivalent lanthanides which form different defect ge-
ometries. Remaining possibilities are core-hole spectroscopic techniques such as
photo-electron spectroscopy or photoconductivity measurements.
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6.6 Prospects

This chapter featured an extensive discussion on the empirical modeling of lumines-
cent lanthanide materials. The fundamental relationships of the model were devised
by multiple authors during the last 40 years and extensively reviewed and fine-tuned
by Dorenbos during the last 20 years through data mining and revisiting of scientific
literature on lanthanide materials.

The different empirical relationships of the model were reviewed as well as the nec-
essary steps to build an energy level scheme from spectroscopic measurements. A
profound analysis was performed on the accumulated errors. The errors are not
only determined for the energy level scheme itself, but also for the commonly de-
rived physical observables.

The error analysis revealed that a different accuracy is obtained when the energy
level locations are calculated with respect to the vacuum or to the host’s valence or
conduction bands. The 4f and 5d charge-state transition levels of the divalent and
trivalent lanthanide ions can be probed with a standard deviation of respectively
100-150 meV and 250-300 meV with respect to the vacuum level. If referred to the
valence band, the standard deviations are typically 50 meV higher.

The conduction band bottom can only be positioned within a standard deviation of
300 meV. Not only can the optical band gap be determined in a rather approximate
way from diffuse reflection spectroscopy, but also the empirical relationship for cal-
culating the self-trapped exciton binding energy proves to be inaccurate, yielding
relative errors up to 100% for materials with a small band gap energy. This has
its repercussions on the accuracy of quantities describing phenomena in which con-
duction band states are reckoned to be involved such as thermal quenching, electron
transfer or anomalous luminescence. The model does not allow to quantitatively de-
scribe these phenomena. Nevertheless, correlations which are revealed by the model
remain valid and allow for qualitative interpretation of experiments.

As example of an ideally behaving host compound, an energy level scheme was de-
vised for CaGa2S4 based on optical spectroscopy of Ce3+, Eu2+ and Tm3+. The com-
parison between calculated and measured quantities is in accordance with the prior
error analysis and the energy level schemes allowed for a better understanding of
new and already reported results on these materials.

Furthermore, possible refinements of the set of empirical rules used to construct
charge-state transition level schemes for lanthanide materials have been discussed.
More specifically, it was investigated to what extent the occurrence of multiple non-
equivalent defects within the lanthanide series alters the level schemes.

Following reports in literature containing energy level schemes, it is commonly
assumed that only one nonequivalent defect is present in a certain host which is
isostructural for each lanthanide dopant, whatever its formal charge. The validity
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of this assumption is doubtful, however a painstaking task to confirm experimen-
tally. This involves doping with a large number of lanthanide ions and possibly
specialized analytical techniques such as electron paramagnetic resonance or X-ray
absorption spectroscopy. In this chapter, a few cases were discussed where the above
assumption is known to be invalid. A distinction between two situations was made.

First, host compounds were considered in which multiple nonequivalent substitu-
tional defects occur. SrAl2O4 and Sr2Si5N8 are examples for which the lanthanide
ions spontaneously occupy both Sr sites. In these cases, clear spectroscopic differ-
ences are visible and site-selective spectroscopy allows to construct independent
charge-state transition level schemes for each defect geometry. From these exam-
ples, it is clear that very limited structural differences of coordination environment
can give rise to important deviations in the optical spectra.

Second, host compounds were considered for which different lanthanide ions show
a different behavior with respect to the local coordination. SrGa2S4 is an example in
which Ce3+ and Eu2+ form very different defect geometries. If this is the case, a dis-
continuity across the lanthanide series exists and the empirical rules exploiting the
systematic behavior for the different ions cannot be used to construct charge-state
transition level schemes. Therefore, only partial schemes can be made.

The energy differences between the charge-state transition levels and energy levels
belonging to the same lanthanide in a different defect geometry were compared with
the typical uncertainties of the empirical models. It is concluded that both are of the
same order of magnitude. This could imply that some of the data used to derive the
empirical rules are compromised, if multiple nonequivalent defects occur or if struc-
tural distortions across the lanthanide series were not identified. Consequently, the
error margins related to the present empirical rules might potentially be reduced if
the underlying input data is scrutinized.
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7
Phosphors for white LEDs:
synthesis and evaluation

The development of (novel) luminescent materials for use in LEDs can be summa-
rized in a few steps. First, a candidate-material is selected for investigation. This is
often based on promising reports of specific properties, the result from a selection
based on theoretical models, possibly empirical ones or a trial-and-error approach.
The last option is clearly the least desirable strategy. Secondly, the selected mate-
rial is synthesized. Different techniques can be used, the most effective typically
depending on the chemical composition of the host compound. The solid state syn-
thesis is often most popular as it requires a minimum number of processing steps
and a limited amount of chemical dedication. This technique is explained in §7.1.
If the purity of the synthesized sample is of sufficient quality, the actual evaluation
of the six technological requirements (see chapter 1) can commence. The various lu-
minescence techniques that are employed for this are reviewed in §7.2. In the third
step, the obtained results are interpreted in terms of physical models, not seldomly
energy level models. This is of importance to understand the physical limitations
of the studied material, often allowing to separate fundamental deficiencies from
deficiencies that can be resolved by a well-performed optimization of the material.
This optimization, with the envisioned application in mind, is the final step of the
phosphor design.

7.1 Synthesis of phosphors

Below it is described how the powder phosphors are produced by solid state synthe-
sis. Subsequently, the techniques used to verify the structural and chemical compo-
sitions of the powders are explained.

7.1.1 Solid state synthesis

For a solid state synthesis, inorganic salts or oxides are typically used as starting ma-
terials. Stoichiometric amounts of every precursor are weighed, mixed and ground
in an agate mortar. Subsequently, the mixed powders are put into alumina (Al2O3)
or zirconia (ZrO2) crucibles.

The mixtures are sintered at high temperature for a certain time span in a gas at-
mosphere of choice. For the syntheses in this text, tube furnaces are used. The
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temperature of the heat treatment is chosen such that it is below the melting point
of the precursors and the envisioned end product. While at high temperature, the
atoms in the powder mixture gain a higher mobility and can diffuse into neighbor-
ing grains, ultimately forming crystals with a different chemical composition, which
is in the most ideal case uniform over the complete contents of the crucible.

After the synthesis, the obtained powders are typically slightly ground before char-
acterization.

7.1.2 X-ray diffraction

X-ray diffraction (XRD) is an analytical technique from which information on the
crystal structure of materials can be obtained. For this, monochromatic X-rays are
elastically scattered from the sample, which in this case is a powder (PXRD). Every
electron in the solid scatters X-rays and can hence be regarded as a secondary source,
emitting a spherical wave. A given crystal structure will then give rise to specific
directions into which the monochromatic X-rays will interfere constructively, corre-
sponding to the different planes in the crystal lattice.

Suppose that a plane wave of X-rays, eik·r impinges the sample. Far away, the scat-
tered X-ray will be a plane wave as well, eik′ ·r. Then, it is assumed that the amplitude
of the scattered wave is proportional to the electron density, yielding a scattering
amplitude:

F =
∫
ρ(r)e−i∆k·rd3r, (7.1)

where the scattering vector ∆k = k′ −k was introduced. Using the Fourier transform
of the electron density, Eq. 5.6, this becomes:

F =
∑
G

ρ(G)
∫

ei(G−∆k)·rd3r (7.2)

= 2π
∑
G

ρ(G)δ(G −∆k). (7.3)

This expression shows that discrete diffraction peaks, reflections, emerge where the
condition for incoming and outgoing waves,

G = ∆k, (7.4)

is fulfilled, i.e. when their difference in wave vector corresponds exactly to a recip-
rocal lattice point. In XRD, only elastically scattered X-rays are considered, having
|k| = |k′ | = k, yielding for the condition:

2k ·G = G2, (7.5)

which is the vectorial form of the famous Laue conditions. The reciprocal lattice
vectors G = hb1 + kb2 + lb3 are perpendicular to the crystal lattice plane with Miller
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Figure 7.1 – Left: Siemens D5000 diffractometer. Middle: Schematic image of a Bragg-
Brentano diffractometer. The meaning of the numbers is elucidated in the text Right:
Typical XRD pattern.

indices (hkl) and the spacing between these planes is dhkl = 2nπ/ |G| with n a natural
number, allowing to rewrite the Laue condition as

2dhkl sinθ = nλ, (7.6)

the well-known Bragg condition for diffraction which is equivalent to the Laue con-
dition. Here, θ is the angle between the incoming X-ray and the crystal lattice plane
(hkl) [308].

From Bragg’s law, Eq. 7.6, it is clear that a peak will only be found for specific com-
binations of dhkl , θ and λ. For powder samples, all θ values occur simultaneously1,
yielding a cone of reflections around the incoming beam for every lattice plane.

Nowadays, PXRD patterns are collected by Bragg-Brentano diffractometers as illus-
trated in Fig. 7.1. Here, the X-ray source (1) is in a static position while the table
holding the sample (2) rotates, specified by the angle θ. The X-ray detector (3) moves
around the sample on a circle, specified by the angle 2θ (see Fig. 7.1). The diffraction
peaks are then obtained as a function of 2θ while their intensities are determined by
Eq. 7.3. For this work, a Siemens D5000 diffractometer was used, equipped with an
X-ray tube (40 kV, 40 mA), producing Cu Kα1 radiation (λ = 0.15418 nm).

7.1.3 Scanning electron microscopy

Optical microscopy can only resolve structures which are not smaller than approx-
imately half of the wavelength of the used light. From the Rayleigh criterion2 it
follows that a minimal resolution around 175 nm can be obtained for optical mi-
croscopy with 400 nm violet light. From quantum mechanics, it is also known that
electrons have a wave character. This important principle was first formulated by

1At least in the absence of texture, i.e. preferential alignment of the powder grains.
2This criterion gives the minimal angle between two point sources in the far field for which the diffrac-

tion patterns can be distinct.
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Louis-Victor de Broglie in 1924. The wavelength of an electron is inversely propor-
tional to its momentum, p:

λ =
h
p
. (7.7)

In a scanning electron microscope (SEM) electrons are accelerated to energies of the
order of 10 keV, corresponding to wavelengths in the range of 0.01 nm, allowing
atomic resolution in principle. The practical resolution is determined by the width
of the electron beam and is about 1-3 nm [309].

SEM allows to study the morphology of materials, but is not limited to it. When the
correct peripherals are present, the chemical composition (EDX) as well as possible
cathodoluminescence (CL) of the sample can be studied.

SEM

For the SEM measurements in this work, a Hitachi S-3400N SEM was used (see Fig.
7.2). The free electrons are created at the top of the device by a tungsten hairpin
through thermionic emission (1). These electrons are accelerated in the direction of
the sample by the anode (2) and focused by a condenser lens (3). The deflection coil
(4) bends the electron beam such that the sample is scanned in a row-by-row fash-
ion, reminiscent of a cathode ray tube (CRT). A last lens (5) finally focuses the beam
onto the sample (6) [309].

The interaction of the electrons with the sample results in the emission of various
secondary particles or photons with different energies. While the sample surface is
scanned, the secondary particles are detected, yielding different images of the sam-
ple, encoded in the secondary particle flux.

Every type of particle is released from a different part of the sample (Fig. 7.2) and
carries specific information [309]:

1. Secondary electrons (SE) have a fairly low energy (10 to 50 eV) and are ejected
near the spot where the beam strikes the sample. Due to their low energy, their
trajectories can be easily bent by an anode, leading the electrons towards the SE
detector (7). The number of detected SE depends primarily on the topography
of the sample. As only the SE that are created close to the surface make it out
of the sample, SE yield the best resolution.

2. Backscattered electrons (BSE) are those electrons which are elastically scat-
tered by the atoms in the sample. As they have a high kinetic energy, they are
not deflected by the electric field of the SE detector. The BSE detector (8) is
placed above the sample, around the incident electron beam. As the scattering
cross section increases for heavier atoms, the BSE intensity gives an idea about
the chemical composition of the sample, i.e. Z contrast.

The information which is obtained from SE (topography) and BSE (chemistry) is
hence complementary.
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Figure 7.2 – Left: Hitachi S-3400N SEM. Middle: Schematic image of the most important
parts of a SEM. The meaning of the numbers is elucidated in the text. Right: Interaction
volume of an electron beam with a sample. The different spatial resolutions for the
detection of the different types of secondary particles and radiation is indicated.

EDX

The incident electrons have a sufficiently high energy to excite a core electron in the
atoms of the specimen. The core-hole can then be rapidly filled by a valence electron,
creating a characteristic X-ray. Energy-dispersive X-ray spectroscopy (EDX) resolves
the different energies of the X-rays and hence allows to obtain detailed information
about the chemical composition throughout the sample [309].

Cathodoluminescence

The electron beam can also cause the excitation of valence electrons, yielding so-
called cathodoluminescence (CL). For materials which are also photoluminescent,
both spectra are typically very similar. The CL light can be collected by an opti-
cal fiber and analyzed by a detector (Princeton Instruments ProEM 16002) which is
equipped by a monochromator (Princeton Instruments Acton SP2300). By mapping
the CL together with the EDX, variations in chemical composition can be correlated
to variations in the luminescence spectrum. This proves to be a very useful combi-
nation in the study of luminescent materials [310, 311].

7.1.4 X-ray absorption spectroscopy

X-ray absorption spectroscopy (XAS) is used to study the local structure around a
selected element. Next to information on the first coordination shells, XAS can also
assess the charge-state of transition metal and lanthanide ions.

During a XAS measurement, a deeply bound electron is excited by selecting the cor-
rect characteristic X-ray energy and a core-hole is formed. Upon excitation near the
absorption edge (X-ray absorption near edge structure, XANES), the excited electron
can occupy the lowest unoccupied orbitals of the excited atom. The energy at which
these are found yields information on the charge-state of the ion. For higher X-ray
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energies (extended X-ray absorption fine structure, EXAFS), the excited electron gets
ionized and behaves as a photo-electron in the vicinity of the absorbing center. The
fine structure that can be found in this range of the X-ray absorption spectrum is due
to the scattering of the photo-electron in the compound. Analysis of the spectrum
therefore yields information on the coordination of the absorbing atom [213]. For
this, a self-consistent real space multiple scattering code called FEFF3 is used [312].

X-ray spectra can be measured in transmission, or in fluorescence. In the latter case,
the total X-ray fluorescence, which gives a good measure of the absorbed fraction,
is followed as a function of incident photon energy. The X-ray spectra in this work
were measured in fluorescence mode at the Dubble beamline (BM26A) at the ESRF
synchrotron facility in Grenoble (France).

The analysis of the data was performed by Dr. Katleen Korthout [312, 313].

7.2 Evaluation of phosphor properties

When the purity of the synthesized powders has been checked, their luminescence
and optical properties can be experimentally obtained.

7.2.1 Diffuse reflection spectroscopy

For specular or mirror-like reflection, the angle of incidence, i.e. the angle between
the incoming light ray and the sample, equals the angle of reflection. In contrast,
diffuse reflection accounts for all possible angles of reflection. In the case that pow-
ders are studied, the latter quantity is more meaningful.

Diffuse reflection is measured in an integrating sphere, where indeed all the re-
flected light is collected and integrated (see also §7.2.3). This technique is used to
e.g. quantify the colors of powders. In this work, it is used to obtain an estimate
of the (optical) band gaps of the phosphor hosts. The measurements are performed
with a Varian Cary 500 spectrophotometer, equipped with an internal integrating
sphere, using BaSO4 as a reference.

As the optical band gap is a quantity solely related to the host, it is recommended
that undoped host materials are used to obtain the band gap rather than doped sam-
ples where absorption bands related to the dopant can obscure the measurement.
The Kubelka-Munk function,

F[R(E)] =
K(E)
S(E)

=
[1−R(E)]2

2R(E)
, (7.8)

relates the reflectance of a layer of material, R, to the absorption and scattering co-
efficients, K and S [314,315]. This relationship carries the assumption that the layer

3The name FEFF is derived from feff, the effective curved wave scattering amplitude in the EXAFS
equation [312]
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is sufficiently thick such that the reflectance does not change upon layer thickness
increase. If F(R) is quantitatively used as an absorption spectrum, it is assumed that
the scattering coefficient is independent of the photon energy in the measurement
range. This is often a tedious restriction as it is only fulfilled when grain sizes are
significantly larger than the wavelength of measurement. On the other hand, when
the grains are exceedingly coarse, the dynamical range of the fundamental jump in
the absorption spectrum is lowered due to increased specular reflection [315].

When an absorption spectrum is available, the optical band gap Eex can be estimated
by fitting of the absorption coefficient:

F[R(E)] ∝ (E −Eex)p . (7.9)

This relationship can be derived using elementary quantum mechanics [316]. The
value of the exponent p depends on the nature of the fundamental absorption tran-
sition. For direct band gaps, p = 1/2 or p = 3/2 for allowed and forbidden transitions
respectively. For indirect band gaps, p = 2 or p = 3 for allowed and forbidden transi-
tions respectively [316]. This method to determine the band gap of semiconductors
is attributed to Jan Tauc [317]. The nature of the band gap and the electronic tran-
sition are often unknown making the value of p in the ansatz Eq. 7.9 essentially
unknown. Ideally, the type of band gap can be determined from choosing the best
fit among the different possible equations, but this requires a very good experimen-
tal data set, which is seldom obtained.

Given the approximate character of both Eq. 7.8 and 7.9, a standard deviation of at
least 100 meV has to be considered when the optical band gap of powders is assessed
from diffuse reflectance spectroscopy.

7.2.2 Photoluminescence spectroscopy

To determine the photoluminescent properties of a phosphor, two types of spectra
are typically recorded:

1. Emission spectrum: The material is excited at a fixed wavelength while the
spectrum of the emitted light is collected. According to Stokes’ law, the wave-
length of the emitted light is longer than the chosen wavelength for the exci-
tation. The first requirement can be validated from the phosphor’s emission
spectrum (see §1.4).

2. Excitation spectrum: The emission intensity at a fixed wavelength is probed
as a function of the excitation wavelength. In this way, it is established which
wavelengths can be used to effectively excite the phosphor material, allowing
to validate the second requirement (see §1.4).

Both types of spectra can be obtained with the same apparatus, i.e. a photolumines-
cence spectrometer. Here the FS920 of Edinburgh Instruments, which is used in this
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Figure 7.3 – Left: Edinburgh FS920 photoluminescence spectrometer. Right: Schematic
image of the most important parts of the spectrometer. The meaning of the numbers is
elucidated in the text.

text, is described (Fig. 7.3).

A high pressure xenon arc lamp of 450 W is used as light source (1). The light is
generated by a so-called arc discharge, a self-sustaining DC gas discharge, charac-
terized by a low voltage drop. Electrons are emitted from the cathode through both
thermionic and field emission. These are accelerated in the plasma, colliding with
Xe ions or evaporated electrode material (tungsten, W) which get excited due to the
collision. The ions can decay radiatively, emitting characteristic photons. Thanks to
the high pressure, of the order of 10 atm, the density of the plasma is high such that
high efficiencies can be obtained [318].

The excitation wavelength is selected through a double excitation monochromator
(2). These are constructed from a diffraction grating and some mirrors to guide
the light in the desired direction. The diffraction grating consists of a plate upon
which parallel lines are etched. The spacing of these lines should be of the same
order of magnitude as the wavelength of the incident light. The lines which are
not etched reflect the light, forming a diffraction pattern (Fraunhofer diffraction)
which has an angle-dependent light distribution showing different maxima (diffrac-
tion orders). As the diffraction angles for the maxima are wavelength-dependent,
the grating gives rise to dispersion, i.e. the light beam is decomposed into its consti-
tuting wavelengths. By rotating the grating, a particular wavelength can be selected
to coincide with the exit slit. The second excitation monochromator is added not
only to improve the wavelength resolution, but more important to remove as much
stray light as possible [319, 320]. This illumination system is able to excite samples
in the wavelength range of 250 nm to 900 nm.

Subsequently, the monochromated light enters the sample compartment (3). Here, a
semi-transparent mirror reflects a small part of this light, the reference beam, onto
a photodiode. The majority of the light is focused by a lens onto the sample. The
light which is emitted by the luminescent sample is imaged, by another lens, into
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the emission monochromator (4) which is tuned to select a wavelength of choice.

Finally, the monochromated emission light strikes a point detector (5). Depending
on the wavelength range of the phosphor’s emission, different detectors are available.
For the spectral range up to 800 nm, a photomultiplier tube (PMT) is used (Hama-
matsu 928). When hit by a photon, the photocathode of the PMT emits an electron
according to the photoelectric effect. This electron is accelerated by an electrode,
called the dynode, into which the electron smashes, creating multiple secondary
electrons. Different dynodes with increasing voltages succeed, creating an electron
avalanche which can be electrically detected when the anode is finally reached. An
amplification factor of 106 is common. To improve the signal-to-noise ratio, the PMT
is cooled to -20◦C by a Peltier element [321]. For near IR emission, a germanium de-
tector is available.

7.2.3 Quantum efficiency

The quantum efficiency (QE) is an important quantity to assess the application po-
tential of a luminescent material (requirement 3, §1.4). It is hence important to be
able to measure it in a reproducible way. Two techniques are commonly used to mea-
sure the QE of a luminescent material, i.e. absolute and relative measurements. In
the latter case, a reference sample with a well-known QE is required which has simi-
lar absorption, emission and reflection characteristics as the sample under consider-
ation. As the availability of stable reference samples for different spectral character-
istics is questionable, unknown systematic errors are likely to occur and an absolute
measurement approach is favored. To this means, a set-up containing an integrat-
ing sphere was constructed, calibrated and extensively tested in an inter-laboratory
validation. This validation, together with a detailed description of how quantum ef-
ficiency values can be reliably obtained was published within the framework of the
Ph.D. work of Dr. Sven Leyre as:

Absolute determination of photoluminescence quantum efficiency using
an integrating sphere setup

Sven Leyre, Eduardo Coutino-Gonzales, Jonas J. Joos, Jana Ryckaert, Youri
Meuret, Dirk Poelman, Philippe F. Smet, Guy Durinck, Johan Hofkens, Geert
Deconinck, Peter Hanselaer

Review of Scientific Instruments, 85 123115 (2014).

A 152 mm diameter, Spectralon-coated integrating sphere (Labsphere) was pur-
chased and mounted on a stand (see Fig. 7.4). Three ports are provided to perform
a measurement. The optical in- and outcoupling is furnished by SMA connections,
allowing for a fast and playable setup with optical fibers. The excitation light, which
originates from an illumination system built of a xenon arc lamp with monochroma-
tor or a 5 mm LED, enters the sphere from the top (1) and is focused on the powder
sample (2), which can be mounted into the sphere from the bottom. The reflected
excitation light and the luminescence from the sample are scattered in all directions
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Figure 7.4 – Left: Integrating sphere setup that can be equipped for various types of
measurements. Middle: Schematic image of the integrating sphere, equipped to deter-
mine QEs of powders. The meaning of the numbers is elucidated in the text. Right:
Typical spectra, obtained for a luminescent powder and a white reference powder.

from the powder sample. Thanks to the use of an integrating sphere all emitted
and reflected light scatters multiple times from the diffusive reflecting coating in
the sphere, allowing for an integration both in terms of the emitted direction and
emission time. The integrated light can couple out of the sphere through the third
port, which is covered by a diffuser, towards the detector (3), which is the same de-
tector that is used for SEM-CL measurements (see §7.1.3). A baffle (4) prevents that
light gets detected without reflecting at least once from the inside wall of the sphere.

Before QEs can be measured, the complete setup, i.e. the sphere, optical fiber be-
tween the sphere and the detection system and the detection system itself, have to be
intensity calibrated. This intensity calibration accounts for wavelength-dependent
absorptions and the spectral response of the detector. For this means, calibrated
lamps with a well-known emission spectrum are used, a deuterium lamp for the
spectral range from 200 nm to 400 nm and a halogen lamp for the longer wave-
lengths. The spectral signal measured by the detector, SL(λ), is related to the spectral
radiant flux, ΦL(λ) that is coupled into the sphere through4:

SL(λ) = R(λ)ΦL(λ), (7.10)

where the index L denotes the calibrated lamp and R(λ) is the spectral response of
the full setup, including the so-called sphere factor, and the sensitivity of the CCD.
When the signal of an unknown light source is now measured, S(λ), the spectral
response corrected signal can be obtained by:

I(λ) = S(λ)
ΦL(λ)
SL(λ)

(7.11)

To calculate quantum efficiencies, photon fluxes are required instead of irradiances,
requiring an additional division by the photon energy for every wavelength (Eq.
2.13):

n(λ) = S(λ)
ΦL(λ)
SL(λ)

λ
hc
. (7.12)

4For an overview of radiometric and photometric units see appendix D).
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When the setup is properly calibrated, actual measurements can be performed. For
this, two different approaches are available, the three measurement approach and
the two measurement approach. In both cases, measurements are performed when
the excitation beam hits a white reference sample and the luminescent sample. In the
three measurement approach, an additional spectrum is collected where the lumi-
nescent sample is in the sphere, but when the excitation beam hits the sphere wall
instead of the sample. Leyre et al. were able to show by means of the integrating
sphere theory that both approaches are equivalent [322]. Hence, the two measure-
ment approach is applied in this work. Three parameters are obtained from the two
measurements by calculating suitable integrals of the spectrum, i.e. the reflection of
excitation light of the white reference, Nw

ex, the reflection of the excitation light of
the luminescent sample, Nex, and the luminescent emission in the latter case, Nem
(see Fig. 7.4). In general, the transmission, absorption and reflection of excitation
light by the luminescent sample add to one,

T +A+R = 1. (7.13)

Here, it is assumed that T = 0 by piling the sample sufficiently thick. Additionally,
A = 0 for the white reference, yielding finally for the internal and external QE (for
their definitions, see §3.3):

QEi =
Nem

Nw
ex −Nex

QEe =
Nem

Nw
ex

A =
Nw

ex −Nex

Nw
ex

(7.14)

The use of this setup is not restricted to the determination of QEs of powder phos-
phors. The powder cup at the bottom port of the sphere can be removed and re-
placed by a high-power pumping LED, mounted in a white light mixing cup. On
top of this cup, phosphor plates can be put, effectively constructing a remote phos-
phor pc-LED. The spectrum, and more importantly, the efficiency of the constructed
pc-LEDs can then be accurately studied thanks to this setup.

Furthermore, the integrating sphere setup has a fourth access port that allows to
measure cuvettes with fluorescent dyes or colloidal quantum dots. In this case, the
light enters the sphere from the front side while the cuvette hangs in the middle of
the sphere from the top port. A baffle is mounted on the cuvette holder, again pre-
venting the direct detection of luminescent light.

Finally, this setup was also used to determine the upconversion effiency of powder
samples5. In this case, an IR pump laser was used in combination with grey fil-
ters, allowing to measure as a function of excitation power, for illumination, while a
calibrated radiometer (ILT 1700, International Light Technologies) was used for the
light detection. As this is a point detector, a cut-off filter was used to decouple the
excitation and upconverted light.

5Upconversion is a nonlinear phenomenon, typically involving multiple optical centers which transfer
energy, finally leading to e.g. the emission of a visible light photon upon the absorption of two IR photons.
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Figure 7.5 – Left: T -TL setup, used to measure thermal quenching [323]. Middle: Cryo-
stat, used for low temperature experiments. Right: ICCD and schematic overview of the
experimental determination of decay profiles. The meaning of the numbers is elucidated
in the text.

7.2.4 Temperature-dependence

It proves useful to measure luminescent properties also as function of temperature.
From the application point of view, the properties of luminescent materials should
be stable up to their working temperatures (requirement 4, §1.4) while from the
more fundamental point of view, spectra at low temperature are better resolved,
allowing a more accurate identification of the different electronic and vibrational
levels.

For measuring thermal quenching (TQ), i.e. the variation of the external quantum
efficiency upon increasing temperature, an in-house built vacuum chamber is avail-
able (Fig. 7.5) [323]. Samples in powder or pressed pellet form are mounted on a
heating stage inside a vacuum chamber. The stage can be heated up to temperatures
of 500 K by a resistive element and cooled to 210 K by a flow of liquid nitrogen. Exci-
tation and measurement of the samples is performed by the same optical-fiber-based
illumination and detection system as the QE measurements, allowing to collect com-
plete spectra. This λT -TL setup can also be used to measure thermoluminescence
profiles.

For low temperature experiments, from 4 K or 75 K depending on the cooling liquid,
He or N2, which is used, to 475 K, an Oxford Instruments OptistatCF cryostat is
available (Fig. 7.5). This cryostat is equipped with transparent windows, allowing
spectroscopic measurements.

7.2.5 Time-resolved photoluminescence

Studying the decay dynamics is desirable from both the application-oriented as the
fundamental point of view. First, it allows to validate requirement 4 (see §1.4) as the
luminescent lifetime of the emitting level can be obtained. Secondly, decay profiles
cast a unique view upon the dynamics by which the absorbed energy is dissipated
or transferred between centers inside the luminescent material.
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The decay dynamics of a luminescent center happen in a time span of the excited
state’s lifetime after the excitation, i.e. it ranges from milliseconds to nanoseconds
depending on the dominant mechanisms. In order to measure the emitted light in-
tensity for these short time scales, a dedicated setup is required. The most important
part is an intensified CCD (ICCD), Andor Technology DH720 (Fig. 7.5).

An ICCD is built from a conventional CCD chip (charge-coupled device), a phos-
phor, a micro channel plate (MCP) and a photocathode. These three additional parts
amplify the original light signal and can be steered as a fast switching shutter. When
a photon strikes the photocathode, an electron is released, which is then accelerated
towards the MCP where it is multiplied in a similar fashion as in a PMT. In contrast
to a PMT, a MCP is constructed from a large number of channels, conserving the
spatial information, i.e. the position where each photon hits the detector. The mul-
tiplied electrons excite a CL phosphor of which the emitted light is in turn detected
by the CCD. As the ICCD can be considered as a line detector, a monochromator is
positioned in front of the entrance slit, resulting in the collection of a full spectrum
for every time step. The fast switching is obtained by changing the polarity of the
voltage between the photocathode and the MCP, deflecting the photoelectrons and
effectively closing the shutter.

Reading out the ICCD (1) takes longer than the luminescent decay of the excited
sample (2), implying that a full decay profile cannot be measured in one shot. To
achieve a sufficiently dense sampling, a pulsed excitation source (3) is used, along
with a variable delay between the excitation pulse and the opening of the shutter
of the ICCD. This strategy can result in a decay profile with nanosecond resolution.
A nitrogen laser (337 nm) or a pulsed LED can be used as excitation source. The
excitation source and ICCD are synchronized by a photodiode (4), triggered by the
laser beam (using a beam splitter (5)) in the case of the nitrogen laser or an electronic
trigger signal in the case of the pulsed LED.

7.2.6 Chemical stability

Up to now, experimental techniques were reviewed that allow to validate the first
five technological requirements (see §1.4) for LED phosphors. The sixth require-
ment, i.e. long-term chemical stability of the phosphor powder is the last require-
ment to by checked. Phosphors can degrade during their operation as a consequence
of being exposed to air or water, or as a consequence of the stressful irradiation by
blue or near-UV pumping light, i.e. photodegradation.

Degradation is potentially a slow process, requiring an accelerated aging test. This is
typically performed inside a climate chamber (Memmert HCP 108) where a constant
temperature and relative humidity of, for example, 75◦C and 75% are retained. The
degradation can be probed by structural characterization of the powders, or by fol-
lowing the variation of the quantum efficiency. Various lasers are available to study
photodegradation. Here, the degradation can be most conveniently followed in situ
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through probing of the luminescence signal.

Even when materials suffer from degradation through contact with ambient air or
water, a proper encapsulation can protect them, offering a means to at least partially
circumvent the sixth technological requirement [324].
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Blue luminescence from Eu2+

in oxonitridosilicates

Blue phosphors are relatively underrepresented in luminescence literature because
the pumping LED typically covers the blue spectral region in phosphor-converted
white LEDs. Still, some authors claim that LEDs with improved properties are ob-
tained when a UV pump LED is combined with RGB phosphors. This idea is elabo-
rated in this chapter with the blue oxonitridosilicate phosphor
Sr0.25Ba0.75Si2O2N2:Eu2+ as guidance. First, the class of the alkaline earth oxonitri-
dosilicates is briefly described in terms of their crystal structure and luminescence
properties upon activation by divalent europium. Subsequently, the luminescence
properties of the protagonist phosphor are studied and discussed in greater detail,
including a microscopic investigation where inhomogeneities in the emission spec-
trum are addressed. Finally, white LEDs with a UV pump LED and RGB conversion
phosphors, including the blue emitting oxonitridosilicate, are simulated in order to
assess their performance in terms of color quality and overall energy efficiency.

8.1 Overview of oxonitridosilicates

The MSi2O2N2:Eu2+ (M = Ca, Sr, Ba) system has already been the subject of exten-
sive and detailed studies [292, 325–331]. All three basic compounds (i.e. with only
one type of alkaline earth metal) exhibit strong 4f65d1→4f7 luminescence upon dop-
ing with divalent europium. While BaSi2O2N2:Eu2+ features a greenish-blue narrow
banded emission, SrSi2O2N2:Eu2+ and CaSi2O2N2:Eu2+ are characterized by signif-
icantly broader yellowish-green and yellow emission bands, respectively.

Structurally, the class of MSi2O2N2 oxonitridosilicates is built from alternating lay-
ers of metal ions and layers of SiON3 tetrahedra in which the nitrogen atoms con-
nect the silicon atoms, forming a structure with so-called dreier Ringe. Although this
layered structure is similar for all members of the MSi2O2N2 family, the basic com-
pounds possess significantly different crystal structures, for example the orientation
of the O atoms in the SiON3 tetrahedra. For more details about the crystal struc-
tures of the MSi2O2N2 oxonitridosilicates, we refer to [332–334]. The structural
differences between the basic compounds implicate that forming a solid solution by
mixing of the metal ions is only possible up to a certain limit, above which a second
phase will be formed during the synthesis [325]. Generally, a precise determination
of the crystal structure is often difficult for these layered materials. Here, the already
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known luminescent properties of the MSi2O2N2:Eu2+ family are shortly reviewed.
Key structural and luminescent quantities are summarized in Tab. 8.1.

BaSi2O2N2:Eu2+ is an efficient phosphor, even though it has the lowest quantum
efficiency of the basic compounds (Tab. 8.1). It features a narrow emission band
peaking at 495 nm (full width at half maximum (FWHM) of 32 nm). Depending
on the synthesis conditions, an appreciable afterglow and strong mechanolumines-
cence are observed, making it suitable for use as pressure sensor [327, 335, 336].

SrSi2O2N2:Eu2+ is a very efficient phosphor with a reported internal quantum ef-
ficiency of up to 90% [328]. It also exhibits afterglow upon UV excitation [327].
The superior thermal properties make this phosphor a primary candidate as green-
yellow conversion phosphor in white phosphor converted LEDs. Up to 50% of Sr2+

can be replaced by Ca2+ to gently shift the emission color from yellow-green to yel-
low while keeping a single crystal phase [325]. Finally, CaSi2O2N2:Eu2+ is charac-
terized by a much worse thermal quenching behavior [325].
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Figure 8.1 – CIE 1931 chromaticity diagram
with the color points of the MSi2O2N2:Eu2+

family members. The white arrow indi-
cates the color shift of the saturated blue
Sr1−xBaxSi2O2N2:Eu2+ phosphor to the white
due to the yellow emitting impurity phase.
Color points of other phosphors from [325].

In Bachmann et al., the
Sr1−xBaxSi2O2N2:Eu2+ solid solution is
investigated for x up to 0.75 [325].
By replacing Sr2+ by Ba2+ in the
SrSi2O2N2:Eu2+ phosphor, the color is
surprisingly red-shifted. This was ex-
plained by Eu2+ preferentially occu-
pying Sr2+ sites in the lattice, while
further substitution of Sr2+ by Ba2+

enlarges the experienced crystal field
strength, due to compression of the co-
ordination sphere of the remaining Sr
sites. It is impossible to synthesize
solid solutions between the yellow (x =
0.75) and blue-green (x = 1) phosphor
[325, 329].

In 2012, Seibald et al. reported the
remarkably blue luminescence of a
Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor and
its crystal structure [337]. From single-
crystal diffraction, the averaged crys-
tal structure was determined to be or-
thorhombic, while a more detailed in-
vestigation with HRTEM allowed to re-
solve the local cation ordering, result-
ing in a triclinic structure [337]. This
is in contrast to the yellow phosphor with the same stoichiometry, which resembles
the triclinic SrSi2O2N2 crystal structure. The host material of this blue emitting ma-
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Table 8.1 – Structural and luminescence properties of europium doped MSi2O2N2 phos-
phors. All properties are given at room temperature. (o), (m) and (t) stand for the or-
thorombic, monoclinic and triclinic phase respectively.

M space # M λmax FWHM QE τ T0.5 Refs.
group sites (nm) (nm) int/ext (µs) (K)

Ca P21 6 555 106 76/- 1.00 440 [325, 332]
Sr (t) P1 4 538 76 91/- 1.15 600 [325, 328, 333]
Sr (m) P21 4 532 75 -/- - - [338]
Sr0.25Ba0.75 (t) P1 4 564 95 66/- - - [325]
Sr0.25Ba0.75 (o) Pna21 1 467 41 41/30 0.35 545 [337], this work
Ba Cmc21 1 495 32 71/- 0.47 600 [325, 334, 335]
Eu P1 4 568 120 -/- - - [339, 340]

terial turned out to be composed of a BaSi2O2N2 like structure. However, for this
particular composition, the metal layers are corrugated, yielding different lumines-
cent properties than BaSi2O2N2:Eu2+ where the metal layers are parallel [337].

In another paper, in 2013, Seibald et al. reported the occurrence of an additional
monoclinic SrSi2O2N2 phase [338]. A single crystal could be isolated and struc-
turally analyzed. The emission signal is slightly blue-shifted compared with the
common triclinic SrSi2O2N2 phase. The structural difference between the two phases
is the relative orientation of consecutive silicate layers. It was questioned whether
it would be possible to synthesize a pure SrSi2O2N2 phase without formation of the
other one [338].

In this chapter, a more thorough luminescence study is conducted on the blue ox-
onitridosilicate phosphor Sr0.25Ba0.75Si2O2N2:Eu2+, which was reported in 2012 but
not yet fully characterized until this moment. Possible applications for this phos-
phor are evaluated, after which the discussion is generalized to evaluate the useful-
ness of blue phosphors in LED lighting technology. The findings that are collected
in this chapter were published as:

Evaluating the use of blue phosphors in white LEDs: the case of
Sr0.25Ba0.75Si2O2N2:Eu2+

Jonas J. Joos, Jonas Botterman, Philippe F. Smet

Journal of Solid State Lighting, 1 (6) (2014).
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8.2 Microscopic investigation of Sr0.25Ba0.75Si2O2N2:Eu2+

8.2.1 Synthesis and phase purity

Sr0.25Ba0.75Si2O2N2:Eu2+ (with an europium concentration of 1 molar %) lumines-
cent powders were synthesized by a solid state reaction in a tube furnace at high
temperature. During all heat treatments, the powder mixtures were kept in a con-
trolled atmosphere of forming gas (90% N2, 10% H2 mixture) and put inside zirconia
crucibles. Two different synthesis methods were carried out:

1. In one step, with SrCO3 (Alfa Aesar, 99.99%), BaCO3 (Alfa Aesar, 99.95%),
Si3N4 (-phase, Alfa Aesar, 99.9%) and EuF3 (Alfa Aesar, 99.5%) as starting ma-
terials. After dry ball mixing, the powder mixture was heat treated at 1400◦C
for 4 hours (heating rate of 4.7◦C/min).

2. In two steps. First (Sr0.25Ba0.75)2SiO4:Eu is prepared from SrCO3, BaCO3,
SiO2 (Alfa Aesar, 99.9%) and EuF3 at 1250◦C for 3 hours (heating rate of
4.7◦C/min). Second, Si3N4 was dry ball mixed with the obtained orthosili-
cate and heat treated at 1400◦C for 4 hours (heating rate of 4.7◦C/min). This
is the synthesis recipe described in [337].

After the heat treatments, the powders were allowed to cool naturally and were
lightly ground.

For the synthesis of the blue emitting Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor, Seibald et
al. used a dual step solid state synthesis based on the orthosilicate
(Sr0.25Ba0.75)2SiO4:Eu2+ phosphor as intermediate product [337, 341]. In this work,
it could be confirmed that this synthesis method indeed yields the described blue
phosphor. However, the same phosphor could also be synthesized in a faster one-
step way, similar to the method described in [325]:

3MCO3 + 2Si3N4 → 3MSi2O2N2 + N2 + 3CO. (8.1)

After the heat treatment, visual inspection under UV illumination learns that the
bulk of the obtained phosphor powder has the desired blue color. On top of the blue
powder, a thin, green emitting layer is formed. For further investigation, this green
emitting top layer was removed and kept apart. This green emitting layer was also
formed during the dual step synthesis. X-ray diffraction (XRD) and photolumines-
cence (PL) measurements (see further) were addressed to verify that the result of
both syntheses are indeed identical. The powder prepared with the one step synthe-
sis was selected for further investigation.

It was reported that the addition of small amounts of NH4Cl as fluxing agent dur-
ing the temperature treatment improves the formation and crystallization of the
SrSi2O2N2:Eu2+ phosphor [342]. The influence of NH4Cl (2 weight% of the final
mass) on the formation of the blue phosphor was investigated. It turns out that the
fluxing agent rather stimulates the formation of an undesired yellow emission band
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Sr0.25Ba0.75Si2O2N2

z

Ba3Si6O12N2

Ba3Si6O9N4
(a) (b)

Figure 8.2 – XRD measurements (blue) compared with simulated patterns (black). (a)
The prepared Sr1−xBaxSi2O2N2:Eu2+ powder (bottom), compared with the calculated
pattern for Sr1−xBaxSi2O2N2 (top) [337]. The black circles indicate reflections, possibly
originating from BaSi6N8O [343]. (b) The prepared green emitting top layer (bottom),
compared with the calculated pattern for Ba3Si6O12N2 (middle) and Ba3Si6O9N4 (top)
[344, 345].

next to the blue emission band. Therefore, NH4Cl was omitted from further synthe-
ses.

To specify the composition of the powders, X-ray diffraction (XRD) measurements
were performed. The results are summarized in Fig. 8.2. The XRD pattern for
the blue emitting bulk powder (Fig. 8.2(a)) shows a reasonably good comparison
with the calculated one from the structure reported in [337]. The XRD measure-
ment indicates that texture effects are present. However, the locations of the reflec-
tions are in correspondence with those of the reference pattern, indicating that the
desired Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor is obtained. Additionally, some extra re-
flections appear around 2θ = 30◦. These might be originating from small amounts of
BaSi6N8O that formed during the high temperature synthesis. Since BaSi6N8O:Eu2+

is reported to show fluorescence in the blue-green spectral region (emission band
peaking at 503 nm, FWHM of 102 nm [346]), this might compromise the character-
ization of the Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor.

From the XRD measurement of the green emitting top layer, it can be derived that it
is mainly composed of Ba3Si6O9N4:Eu2+ (filled circles, Fig. 8.2(b)) and
Ba3Si6O12N2:Eu2+ (open squares, Fig. 8.2(b)). The locations of the experimental
reflections are slightly shifted to higher 2θ values, which is explained by the incor-
poration of some Sr2+ in the crystal structure, decreasing the effective lattice pa-
rameters. Ba3Si6O12N2:Eu2+ is known to give green emission, explaining the green
color of the top layer under UV excitation [344, 347]. The blue luminescence of
Ba3Si6O9N4:Eu2+ is thermally quenched at room temperature [347]. Note that both
impurities have the same (Sr,Ba):Si ratio of 1:2, as in the intended stoichiometry. The
main difference is the larger oxygen to nitrogen ratio, which is probably due to oxy-
gen traces during the synthesis process.
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µ

10 K
300 K

(a) (b)

Figure 8.3 – (a) Photoluminescence emission (excitation at 370 nm, solid lines) and ex-
citation (emission at 466 nm, dashed lines) spectra of Sr0.25Ba0.75Si2O2N2:Eu2+, mea-
sured at room temperature and at 10 K. (b) Decay profile of the blue emission band at
300 K. Measured with a 337 nm pulsed laser as excitation source (blue diamonds). Fit
with the sum of two exponential functions (black line).

8.2.2 Luminescence at the macroscale

The photoluminescence of the Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor features broad-
band emission and excitation spectra (see Fig. 8.3(a)), characteristic for the 4f7 -
4f65d1 transitions within the Eu2+ion. The emission spectrum peaks at room tem-
perature at 467 nm and has a full width at half maximum (FWHM) of 41 nm.

In the emission spectrum, a second contribution in the yellow range around 560 nm,
is clearly visible. The origin of this second emission band might be the occurrence
of a Sr1−xBaxSi2O2N2:Eu2+ phase with a different structure than the intended blue
phosphor, which has averaged an orthorhombic structure. In their paper, Bachmann
et al. report a Sr0.25Ba0.75Si2O2N2:Eu2+ phase with the triclinic SrSi2O2N2 structure,
emitting a broadband spectrum, peaking at 564 nm [325,348]. It is not unlikely that
this is the phase responsible for the weak yellow emission band. If this impurity
phase indeed has the SrSi2O2N2 structure, it is not surprising that the addition of
NH4Cl flux during the heat treatment stimulates the formation of it [342]. This yel-
low emission band also occurred in the spectrum from the original paper reporting
the blue phosphor [337].

Since the XRD measurements suggest the occurrence of small quantities of
BaSi6N8O:Eu2+, it is important to verify whether this has an influence on the photo-
luminescence of the powders. The emission spectrum of BaSi6N8O:Eu2+ features a
broad band (FWHM = 102 nm), centered at 503 nm and can be excited between 200
nm and 400 nm [346], although no values for the QE have been reported. To ver-
ify the occurrence of this blue-green phosphor, two emission scans of the prepared
powder were compared, one at 310 nm excitation and one at 410 nm excitation,
the former chosen in the maximum of the excitation band of BaSi6N8O:Eu2+, the
latter chosen outside the excitation band of BaSi6N8O:Eu2+. Since no observable
differences between the two scans were noticed, it can be concluded that the light-
emitting BaSi6N8O:Eu2+ phase, as described by R.-J. Xie et al., is not observed in the
prepared powder. This has therefore no influence on the characterization of the lu-
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minescence of the Sr0.25Ba0.75Si2O2N2:Eu2+ powders apart from a possibly negative
influence on the overall quantum efficiency of the phosphor.

The color point (CIE x, CIE y) of the complete emission spectrum (i.e. blue and
yellow band) at room temperature is (0.165, 0.165). If the blue component would
be the only feature of the emission spectrum, the color point is estimated at (0.129,
0.067). Clearly, a small amount of the impurity phase shifts the color point towards
the white region of the chromaticity diagram (see Figure 8.1).

The internal and external quantum efficiency (QE) of the photoluminescence were
measured upon excitation with a 370 nm LED. For the Sr0.25Ba0.75Si2O2N2:Eu2+

phosphor, values of QEext = 30% and QEint = 41% were obtained. This is signifi-
cantly lower than the internal quantum efficiencies of benchmark phosphors (typ-
ically QEint ≈ 90% [169, 328]). The grey shade in the body color of the powder
already hinted towards an insufficient QE. If impurity phases which do not emit
light (potentially BaSi6N8O) are present in the powders, the measured QE will be
lower than the intrinsic QE of the Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor. However, a
sound optimization of the synthesis process (e.g. finding a suitable fluxing agent)
might improve the quantum efficiency considerably because there does not seem to
be a fundamental reason why the Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor should have a
lower QE than comparable phosphors such as BaSi2O2N2:Eu2+ or SrSi2O2N2:Eu2+.

8.2.3 Luminescence at the microscale

From the photoluminescence measurements, it is clear that not a phase pure mate-
rial is obtained. Combining cathodoluminescence (CL) and energy dispersive X-ray
spectroscopy (EDX) inside a scanning electron microscope (SEM) should help to get
a better grasp of the different phases that occur in the phosphor powder and their
luminescence [349].

The morphology of the prepared powders consists of agglomerated, rod to plate-like
particles, typically 10 to 20 µm in length (Fig. 8.4). This rather uncommon morphol-
ogy seems not incompatible with the layered crystal structure of the host material.
The EDX maps reveal a rather homogeneous composition, taking the influence of the
sample morphology on the X ray detection efficiency for the different elements into
account.

At a few places, a higher than average silicon content could be found, although it
could not be linked to a specific chemical composition, nor was it reflected in the CL
spectra. These Si rich areas are possibly related to the BaSi6N8O phase which might
be present in the powder. SEM-CL confirms the result from the PL measurement
that there is no light emission originating from this phase. No results from thermal
quenching or quantum efficiency measurements of the BaSi6N8O:Eu2+ phosphor are
reported in literature. Furthermore, given the peculiarly high Stokes shift of this ma-
terial (1.14 eV or 9200 cm−1) and width of the emission band (estimated about 0.5
eV or 4033 cm−1), one can doubt whether the reported luminescence is originating
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Figure 8.4 – (left) Backscattered electron image (top) of the Sr0.25Ba0.75Si2O2N2:Eu2+

powder, along with EDX maps for barium and silicon (bottom). (middle) Maps for the
peak emission wavelength (λmax, in nm), the FWHM (also in nm) and the emission in-
tensity in the wavelength range (550-650 nm), relative to the total emission intensity.
(right) Correlation between peak wavelength and FWHM (top right) and emission spec-
tra (bottom) for the three selected areas indicated in the CL map. All maps (EDX and
CL) are corresponding to the area indicated by the blue rectangle on the backscattered
electron image. All data obtained at a sample temperature of 255 K.

from a ”normal” Eu2+ activated phosphor [168, 262, 346].

The studied area, indicated by the blue rectangle in Fig. 8.4, was divided into 256 by
192 pixels and in each pixel a full cathodoluminescence (E = 15 keV) emission spec-
trum was recorded. Then for each spectrum, key luminescence parameters, such
as the band width (FWHM) and the peak emission wavelength (λmax) were deter-
mined. Fig. 8.4 clearly shows that all studied particles have an emission peaking
between 465 and 468 nm, while the FWHM ranges between 37 and 43 nm. This
effect is larger than the mere consequence of the use of wavelength units. Averaging
out over all pixels, a CL emission spectrum is obtained which is similar to the PL
emission spectrum. Although the emission is very homogeneous over the studied
area, there appears to be some correlation between λmax and the FWHM, as longer
peak emission wavelengths tend to coincide with wider emission bands (Fig. 8.4),
which could be due to local variations in composition (e.g. Eu concentration or Sr:Ba
ratio).

The SEM-CL study also allows to probe the origin of the yellow emission band, peak-
ing at 558 nm, when preparing Sr0.25Ba0.75Si2O2N2:Eu2+. Note that this emission
band is found both in [337] and in this work. The yellow emission amounts to no
more than 20% of the total emission intensity, and certainly no areas with pure yel-
low emission (i.e. in the absence of the blue emission band) could be found, which
would be the case for a separately formed impurity phase. For these areas with a
larger fraction of long wavelength emission, no deviation in stoichiometry could be
found by means of SEM-EDX. This is no surprise since it was shown by Seibald et al.
by a combination of TEM/HRTEM/TEM-EDX that a domain structure is present at a
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Figure 8.5 – Integrated emission intensity of the blue (blue, solid line) and yellow (grey,
dotted line) emission band as a function of temperature. Measured upon excitation with
a 370 nm LED.

nanometer length scale, impossible to resolve with SEM-EDX. The yellow emission
is originating from domains with a Sr-richer content, composed of the SrSi2O2N2
structure [331, 337].

The SEM-CL study shows that yellow emission is always accompanied by the blue
emission, within the same phosphor particles, supporting the conclusion by Seibald
et al. that the yellow emission is due to intergrowth on the nanoscale. Nevertheless,
the main fraction of the studied phosphor particles shows only the blue emission
band, which offers the promise to prepare a purely blue emitting phosphor, with-
out the additional yellow emission band from the Sr-rich domains. Regardless the
impossibility of a SEM to resolve the nanoscopic domain structure, this clearly il-
lustrates that the majority of the micrometer sized grains exhibit only the blue lu-
minescence. Therefore, the submicron resolution of CL in a SEM offers a fast and
elegant way to probe the luminescence behavior at the single grain level, by being
complementary to the aforementioned TEM study at the nanoscale [350].

8.2.4 Thermal quenching

In Fig. 8.5, the integrated emission intensity is displayed as a function of tempera-
ture. Thermal quenching is starting around 450 K and the temperature where the
emission intensity is halved with respect to low temperature (T0.5) is 545 K. This
means that this phosphor can safely be used in typical lighting applications, where
the phosphors temperature will remain below 450 K. The thermal quenching be-
havior of the yellow component (T0.5 = 454 K) is worse though. In Tab. 8.2, some
parameters describing the emission of Sr0.25Ba0.75Si2O2N2:Eu2+ are given as a func-
tion of temperature. Not only the intensity of the blue luminescence stays constant
in the relevant temperature range, also the color point remains stable, which is im-
portant from an application point of view. This is due to two opposite effects, namely
the slightly broadening of the blue emission band and the quenching of the yellow
one, which tend to cancel out to a large extent when the color point is calculated.
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Table 8.2 – Features of the emission spectrum of Sr1−xBaxSi2O2N2:Eu2+ as a function
of temperature, maximum (λmax) and FWHM of the emission band, relative intensity
of the blue emission band with respect to 300 K, color point of the complete emission
spectrum (blue and yellow component) and corresponding color shift in CIE Luv color
space.

T (K) λmax FWHM I(T )
I(300K) (CIE x, CIE y) du′v′ (T , 300K)

300 K 467.4 41 1.00 (0.165, 0.165) 0.0000
350 K 467.0 43 1.04 (0.164, 0.164) 0.0002
400 K 466.6 49 1.06 (0.164, 0.165) 0.0008

8.2.5 Decay of luminescence

The decay of the blue emission band was measured at room temperature. The decay
profile is displayed in Figure 8.3(b). This profile could be fitted with a sum of two
exponential functions:

I(t) = I1e−t/τ1 + I2e−t/τ2 . (8.2)

The obtained decay times are 461 ns and 219 ns, with contributions of 66% and 34%,
respectively, to the total decay. The fractions were calculated as:

fi =

∫
Iie−

t/τidt∫
I(t)dt

=
Iiτi

I1τ1 + I2τ2
(i = 1,2). (8.3)

Both components are in the expected range for lifetimes of the 4f65d1 excited state
in the case of blue emission. This is slightly faster than the luminescent lifetime of
Eu2+ in BaSi2O2N2 (Tab. 8.1). It is within expectations because the luminescence
lifetime shortens when the emission color is blue-shifted on condition that the re-
fractive index does not change (see §2.3.2). The origin of the faster decay component,
presumably related to a non-radiative decay path, could not yet be clarified.

Because of the fast decay of the 4f65d1 excited state of Eu2+ in this host lattice, it
is expected that high excitation fluxes can be used without sublinear response, as is
the case in some applications [351].

8.2.6 Chemical stability

The chemical stability of the oxonitridosilicate phosphor was inspected by monitor-
ing the in-situ photoluminescence (excitation with a 370 nm LED) during an accel-
erated aging test inside a humidity chamber (75◦C, 75% relative humidity). In a
timescale of 200 hours, no significant decrease of the luminescence could be mea-
sured for both the blue and yellow components (not shown).
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8.3 Blue phosphors for increased color rendering?

Almost all current white pc-LEDs are composed of a blue pumping LED (peaking
typically at 455 to 460 nm and 20 nm FWHM) and a yellow phosphor or green-red
phosphor blend. As it was suggested that the blue phosphor under study can be
applied in pc-LEDs with high color rendering index (CRI) [337], a simulation is con-
ducted in order to estimate the increase in color rendering that can be achieved by
using an additional blue phosphor [352].

In the simulations, a white LED with a correlated color temperature (CCT) of 4000 K
is intended. For lower CCT, the blue spectral region will only have a minor influence
on the color rendering. To account for the green and red spectral region, standard
broadband phosphors were selected for this: SrSi2O2N2:Eu2+ and Sr2Si5N8:Eu2+, a
typical combination which is known to yield white light of good color quality and
color rendering when combined with a blue pumping diode [13, 353].

For the blue component, a gaussian spectral shape was taken, serving as an ap-
proximation to the spectrum of a blue phosphor in a UV-pumped pc-LED or a blue
LED in a blue-pumped pc-LED. To examine the influence on the color quality scale
(CQS) and luminous efficacy of the radiation (LER), the peak wavelength and width
(FWHM) of the blue component were varied. It was opted to study the CQS instead
of the CRI, since the former was designed to account for the defects inherent to the
definition of the latter.

The relative contributions of the red and green phosphors in the simulated LED
were adapted such that a constant CCT of 4000 K and a limited deviation of the
Planck locus (|Duv| < 0.001) are obtained for all variants of the blue component. The
result of this simulation is displayed in Fig. 8.6(a-b). In this figure, the approxi-
mate locations of a three-band LED with the Sr0.25Ba0.75Si2O2N2:Eu2+ blue phos-
phor and a traditional blue diode pumped white LED are indicated. Also the loca-
tion of a three-band LED with the well-known BaMgAl10O17:Eu2+ blue phosphor is
indicated. This phosphor is characterized by an emission maximum at 450 nm, a
FWHM of 55 nm, internal QE of 90% and can be efficiently excited between 220 nm
and 380 nm [354, 355].

It can be seen that it is possible to improve the color quality (CQS) by replacing the
blue pumping LED by a UV pumping LED and a blue phosphor. However, the im-
provement is rather limited because good color quality can already be achieved in
the traditional way with a pumping LED of 455 nm. The increase in CQS (from a
value of 87 to 89), is at the expense of a decrease in luminous efficacy (315 lm/W
instead of 331 lm/W). Higher color qualities can be achieved if blue phosphors with
a broader emission spectrum are used (CQS up to 95 for a phosphor with FWHM ≥
60 nm).

To illustrate this, the spectra of three simulated white LEDs are displayed in Figure
8.6(c). As one can see, the cyan gap between the blue pumping LED and the green
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Figure 8.6 – Influence on color quality scale (CQS, a) and luminous efficacy of radiation
(LER, b) of the spectral shape of the blue component in a three-band LED. The approx-
imate location of the Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor is indicated by a circle, the
location of the standard blue phosphor BaMgAl10O17:Eu2+ is indicated by a diamond
and the locations of blue pumping LEDs are indicated by the oval. (c) White LED spec-
tra from simulations. Blue LED pumped (455 nm peak wavelength, grey solid line), UV
pumped with a narrow band blue phosphor (467 nm peak wavelength, 40 nm FWHM,
blue dotted line) and UV pumped with a broad band blue phosphor (460 nm peak wave-
length, 65 nm FWHM, blue solid line).

phosphor can be bridged by using a blue phosphor instead of a blue pumping LED.
The highest CQS can be achieved by using a blue phosphor which is significantly
broader (FWHM of 65 nm, peaking at 460 nm) than the described
Sr0.25Ba0.75Si2O2N2:Eu2+ phosphor. In this case, a CQS of 96 can be achieved. The
LER is 314 lm/W, which is comparable with the LER of the white LED when the
narrow blue phosphor is used.

However, if a blue phosphor is used instead of a blue pumping LED, the phosphor
mix needs to be pumped by a UV LED. Because of this, the Stokes shifts will be
significantly higher, especially for the red and green phosphors. This will have a
severe impact on the overall electrical to optical power conversion efficiency (ηe−o),
the so-called wall-plug efficiency [13, 15]:

ηe−o =
Popt

Pel
= ηLEDηextr

f0 +
N∑
i=1

fiQEint

∫
Ii(E)EdE /

∫
II (E)dE∫

ILED(E)EdE /
∫
ILED(E)dE

 . (8.4)

In this formula, ηLED and ηextr represent the electrical to optical power conversion
efficiency of the pumping LED and the extraction efficiency of the LED package
respectively. N phosphors are used with relative weights fi (

∑N
i=1 fi = 1), internal

quantum efficiencies QEint and spectra Ii(E). f0 is the fraction of the spectrum of the
pumping LED which is not absorbed by the phosphors. For UV pumping LEDs, f0 is
ideally 0. The ratios in the right-hand side of Eq. 8.4 are called the quantum deficits,
originating from the Stokes shifts of the phosphors.

The term between brackets can be calculated for the spectra of the simulated LEDs.
Internal quantum efficiencies of 90% were assumed for all phosphors. This yields a
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wall-plug efficiency of
ηe−o = 0.83ηLEDηextr, (8.5)

for the traditional blue pumped white LED and

ηe−o = 0.66ηLEDηextr, (8.6)

for a 400 nm pumped white LED with three phosphors. If the pumping LED has a
peak wavelength of 370 nm, this becomes:

ηe−o = 0.61ηLEDηextr. (8.7)

Given the similar external quantum efficiencies of In1−xGaxN LEDs (ηLED) in the
blue and UV spectral region, there is no possibility to overcome the efficiency differ-
ence of at least 20% between blue and UV LED pumped white LEDs [356].

Because of the decrease in luminous efficacy and wall-plug efficiency while the color
quality improves only slightly, it is very unlikely that relatively narrow band blue
phosphors will be used in future high color quality LEDs for lighting. For devices
with high color quality, whether expressed in CQS or CRI, much broader emission
bands are to some extent beneficial.

For certain display or projection applications, based on violet laser excitation, blue
phosphors with a narrow emission spectrum such as Sr0.25Ba0.75Si2O2N2:Eu2+ are
interesting. In this case, color rendering is irrelevant and saturated colors, corre-
sponding with narrow emission bands are compulsory to achieve a large color gamut
for the display [357].

8.4 Conclusions

In this chapter, a complete characterization of the luminescence of a recently re-
ported phosphor in the oxonitridosilicate family was given. The blue emitting ma-
terial with stoichiometry Sr0.25Ba0.75Si2O2N2:Eu2+ is characterized by broadband
emission peaking at 467 nm at room temperature and a good thermal stability of
both the emission intensity and color. An additional weak yellow emission band
was observed. The currently obtained internal quantum efficiency of 41% is too low
to allow this phosphor to be used in applications. Nevertheless, this might be im-
proved by an optimization of the synthesis procedure. The phosphor was found to
be chemically stable. As a conclusion of this feasibility study, this blue oxonitri-
dosilicate can be suitable for the use in applications if the quantum efficiency can be
improved.

Additionally, the microscopic structure of this phosphor was studied. It turned out
that no grains with a pure yellow emission could be found, the blue emission is ev-
erywhere dominant. The majority of the powder particles do however only emit blue
light.
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Finally, the potential of blue phosphors to improve the color quality of white LEDs
for lighting was investigated because this is often quoted as motivation to study
blue phosphors. It was found that only a minor improvement of color quality can
be achieved by using a saturated blue phosphor such as the oxonitridosilicate which
was subject of this study, or the BaMgAl10O17:Eu2+ phosphor. This increase in color
quality is at the expense of a decrease in luminous efficacy and overall electrical-
to-optical conversion efficiency of the LED, leading to the conclusion that only the
use of blue phosphors with a significant broader emission band (FWHM ≥ 60) is
justifiable to produce LEDs with very high color quality (CQS > 90). Narrow band
phosphors with a saturated blue color are however useful in case of projection or
display applications based on conversion of near-UV light, e.g. in the case of laser
diode excitation.
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9
Green luminescence from Eu2+

in thiogallates

Alkaline earth thiogallates are ternary sulfides which are well-known for their ef-
ficient and color-pure luminescence upon activation by divalent europium. In this
chapter, the green emitting phosphors of this family are investigated in detail. This
is especially motivated by the increasingly stringent recommendations for back-
lights in liquid crystal displays, requiring extremely saturated colors. After a general
overview of the Eu2+ activated thiogallates and the similar thioaluminates, the solid
solution series Sr1−xEuxGa2S4 is studied. The luminescence properties are optimized
and the phosphor is applied in white LEDs in combination with red emitting quan-
tum dots. Finally, the structural and luminescence properties of Zn1−xEuxGa2S4 are
studied in order to resolve the fog around the luminescence mechanism of this apos-
tate member of the thiogallate family.

9.1 Overview of thiogallates and thioaluminates

The europium doped alkaline earth thiogallates and thioaluminates offer a very
interesting set of luminescent materials, both from the application point of view,
thanks to their color tunability and color purity, as well as from the fundamental
point of view (see chapter 6). All compounds of this set, and most of the solid solu-
tions, exhibit efficient broadband 4f65d1→4f7 luminescence upon activation by the
Eu2+ ion. These materials were already known before the quest for LED phosphors
exploded, in particular as EL phosphors for electroluminescent thin film displays or
CL phosphors for field emission displays upon activation by divalent europium or
trivalent cerium [5,303,358–362]. The basic structural and luminescence properties
of this family of compounds are briefly discussed. The key parameters are summa-
rized in Tab. 9.1 and the color points shown in Fig. 9.1.

The alkaline earth thiogallates and thioaluminates crystallize into only two different
structures. The calcium and strontium compounds form orthorhombic crystals with
three nonequivalent alkaline earth sites which resemble to a large extent (see also
§6.4) square antiprisms (Fig. 9.2(a)) [270, 302]. The fully concentrated materials
EuGa2S4 and EuAl2S4 form the same crystal structure, implying that there are no
restrictions on the europium concentration in the Ca and Sr compounds.

193
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The Ca and Sr thioaluminates feature a remarkably saturated bluish-green emis-
sion upon activation by Eu2+ [150, 359]. The similar thiogallates yield a yellowish
and green emission which is still saturated, however somewhat broader than in the
case of the thioaluminates [302, 361, 363, 364]. For these four compounds, only the
emission band of SrGa2S4:Eu2+ is ideally located to be used in white LED applica-
tions. A similar color point can be obtained by the solid solution of CaAl2S4:Eu2+

and CaGa2S4:Eu2+, although slightly less saturated [365]. By adding some Ba to
SrGa2S4:Eu2+, the emission spectrum can be shifted slightly to shorter wavelengths
[366]. Yu et al. were able to show that by using appropriate Ca:Sr and Al:Ga ratios,
a large part of the green and green-bluish area of color space can be covered [365].

Remarkably, both fully concentrated Eu compounds still feature photoluminescence
at room temperature [367–369].
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Figure 9.1 – CIE 1931 chromaticity di-
agram with the color points of the
MGa1−yAlyS4:Eu2+ family members (M
= Ca, Sr, Ba).

The barium compounds crystallize into
structures with a cubic unit cell where
two Ba sites are found (Fig. 9.2(b))1.
In contrast to the structure of the Ca
and Ba compounds, the two Ba sites
are completely different. The Ba1
site is twelvefold coordinated by sulfur
and can be approximated by a icosa-
hedron, while the Ba2 site is sixfold
coordinated, approximating an octahe-
dron. Jabbarov et al. hypothesize
that the Eu ion will occupy both Ba
sites in BaGa2S4 and even attribute dif-
ferent features in the excitation spec-
trum to the different Eu coordina-
tion, based on rather hand waving
arguments [362]. BaAl2S4:Eu2+ fea-
tures a saturated blue emission, ex-
plaining the attention it got in the
context of EL displays [5, 370, 371].
BaGa2S4:Eu2+ shows a broader bluish-
green emission which was attributed
to a larger electron-phonon coupling
[218].

Due to its different crystal structure, solid solutions with Ba and another alkaline
earth metal will not be stable over the full concentration range. Upon adding Sr to
BaGa2S4:Eu2+, a redshift towards the green is found before phase segregation occurs
at 40% of Sr [366]. When Ba is added to SrGa2S4:Eu2+, a blueshift is found up to the

1BaAl2S4 shows a less common orthorhombic phase in addition. This phase is isostructural to the Ca
and Sr thioaluminates [370].
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Figure 9.2 – Crystal structures of the alkaline earth thiogallates and thioaluminates and
zinc thiogallate. (a) Orthorhombic Fddd structure of e.g. CaGa2S4 and SrGa2S4. The
three nonequivalent metal sites are accentuated. An enlarged figure is shown in Fig. 6.9
[270]. (b) Cubic Pa3 structure of BaAl2S4 and BaGa2S4, the two nonequivalent Ba-sites,
with coordination numbers of 6 and 12, are accentuated [217]. (c) The defect stannite
structure, I42m, of ZnGa2S4 with an Eu2+ occupying an octahedral void as proposed by
Wickleder et al. [372, 373]

maximal Ba concentration of 20% [366].

The thioindates were deliberately left out of this overview. Although SrIn2S4 and
BaIn2S4 crystallize in the recurring orthorhombic structure, no conclusive studies
on the luminescence of Eu2+ dopants are available [270, 374, 375]. A few available
literature reports describe very broad and redshifted emission bands which doubt-
fully originate from 4f65d1→4f7 transitions in Eu2+ [376,377]. This might be related
to the small band gaps of the thioindates and hampers applications for these mate-
rials [5].

Next to the classical Ca, Sr and Ba compounds, the zinc and magnesium thiogallates
are added to this overview as saturated green luminescence of Eu2+ in these com-
pounds was claimed. It is however unconventional that Eu2+ substitutes for Mg2+ or
Zn2+ given the large discrepancy in ionic radius. Wickleder et al. proposed a model
for ZnGa2S4:Eu2+ where the dopant occupies octahedral voids in the defect stannite
host compound (see Fig. 9.2). These compounds are investigated in detail in §9.3.

As described in §1.3.3, efficient phosphors with a saturated green color are required
to achieve the modern standards for display applications. From the above literature
overview, it seems that especially SrGa2S4:Eu2+, ZnGa2S4:Eu2+ and MgGa2S4:Eu2+

have a potentially interesting color point. For this reason, these materials are high-
lighted and further investigated in the following.

SrGa2S4:Eu2+ is investigated while varying the europium concentration. Increasing
the dopant concentrations can help to optimize the external quantum efficiency of
the phosphor. One should however keep an eye on possible non-radiative decay
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Table 9.1 – Structural and luminescence properties of europium doped thiogallate and
thioaluminate phosphors. All properties are given at room temperature. ZnGa2S4 and
MgGa2S4 are shown in blue as their luminescence is most likely not due to Eu2+ defects
in these hosts (see §9.3).

space # M λmax FWHM QE τ T0.5 Refs.
group sites (nm) (nm) int/ext (µs) (K)

CaAl2S4 Fddd 3 516 39 0.10/- 0.400 > 350 [150, 270]
SrAl2S4 Fddd 3 496 38 0.20/0.15 400 [270, 359]
BaAl2S4 Pa3 2 470 43 0.62/0.54 0.345 > 300 [359, 370]
EuAl2S4 Fddd 3 506 26 0.064 [369]

CaGa2S4 Fddd 3 565 50 0.30/- 0.610 350 [270, 361, 363]∗

SrGa2S4 Fddd 3 536 50 0.71/0.50 0.445 475 [270, 302, 364]∗

BaGa2S4 Pa3 2 493 60 0.290 420 [217, 362]
EuGa2S4 Fddd 3 544 45 0.21/- 0.116 204 [367, 368]∗

MgGa2S4 C12/c1 3 538 49 0.149 [369, 378]
ZnGa2S4 I42m 1 542 50 0.13/0.06 0.127 240 [373]∗

∗ this work

channels and a proper distribution of the dopant inside the host compound. The first
part of this chapter is therefore dedicated to a study of the thermal quenching and
the decay dynamics of this compound. The result of this investigation was published
as:

Thermal quenching and luminescence lifetime of saturated green
Sr1−xEuxGa2S4 phosphors

Jonas J. Joos, Katrien W. Meert, Anthony B. Parmentier, Dirk Poelman,
Philippe F. Smet

Optical Materials, 34 (2012), 1902-1907.

Subsequently, optimized SrGa2S4:Eu2+ powders were applied to manufacture white
pc-LEDs, suitable for display applications, with a remote phosphor architecture (see
§1.3.3). As the red component, CdSe/CdS quantum dots were used as these show
a highly tunable and efficient saturated red emission. This work, which was largely
performed within the framework of the Ph.D. work of Dr. Sofie Abé, was published
as:

Hybrid remote quantum dot / powder phosphor layers for display back-
lights

Sofie Abe, Jonas J. Joos, Lisa I. D. J. Martin, Zeger Hens, Philippe F. Smet

Light: Science & Applications, 6 (2017), e16271.
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In the case of ZnGa2S4:Eu2+, it was up to now unclear how the Eu ion gets incorpo-
rated in the unconventional host compound. The final part of this chapter aspires to
answer this question. Furthermore, the phosphor is evaluated for the use in white
LEDs. This work is published in following form:

Origin of saturated green emission from europium in zinc thiogallate

Jonas J. Joos, Katleen Korthout, Sergey Nikitenko, Dirk Poelman, Philippe F.
Smet

Optical Materials Express, 3 (2013), 1338-1350.

9.2 Thermal quenching and luminescent lifetime of Eu2+

in SrGa2S4

9.2.1 Synthesis

Sr1−xEuxGa2S4 powders with x = 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.10, 0.15, 0.20
and 0.30 were prepared by solid state synthesis. Appropriate amounts of SrS (Alfa
Aesar, 99.9%), Ga2S3 (Alfa Aesar, 99.99%) and EuF3 (Alfa Aesar, 99.5%) were weighed,
mixed in an agate mortar and put into an alumina crucible. Then the powders were
heat treated under a flow of H2S at 900◦C for 2h. Powders were allowed to cool nat-
urally. After recuperation they were lightly ground.

From the X-ray diffraction patterns of the synthesized Sr1−xEuxGa2S4 phosphors, it
was observed that crystalline powders were obtained, without the presence of im-
purity phases.
Although the powders that were investigated in this work were prepared by a syn-
thesis in H2S, it was validated that powders with very similar behavior can be ob-
tained by performing the same synthesis in forming gas, which is more promising
when considering working safety and environmental friendliness.

9.2.2 Steady-state luminescence

The PL emission and excitation spectra for Sr1−xEuxGa2S4 at room temperature are
shown in Fig. 9.3(a). Both the width and the position of the emission spectrum
(Tab. 9.2) are stable over the entire studied range (0.01 ≤ x ≤ 0.30). The excitation
spectrum is similar for all dopant concentrations, except for an increasing excitation
efficiency at lower energies upon increasing dopant concentration, corresponding to
the observations of Hidaka and Takizawa [364].

Figure 9.3(b) shows the internal and external QE of the Sr1−xEuxGa2S4 phosphors.
QEi peaks at 71% for a dopant concentration of 4%, and drops off slowly for higher
dopant concentration. For instance, it equals 39% for x = 0.20. Iida et al. reported
a QE of 21% for the fully substituted EuGa2S4 [367]. The external QE, which takes
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(a) (b)

Figure 9.3 – (a) PL emission (at 400 nm excitation, solid lines) and excitation (at 532 nm
emission, dashed lines) spectra for different Sr1−xEuxGa2S4 powders at room tempera-
ture. The dip in the excitation spectra around 470 nm is an experimental artifact. (b)
Absorption, internal and external QE (as defined in §3.3 and 7.2.3) for Sr1−xEuxGa2S4
at room temperature, measured at 460 nm excitation.

into account the absorption of the excitation light, is stable at around 50% for a
dopant concentration range from 4% to 7%. This is due to the steady increase of
the absorption in the blue region for increasing dopant concentration and is also re-
flected in the body color of the phosphors which is yellowish-green. The internal
QE of 71% is in line with the (indirectly obtained) value reported by Hidaka and
Takizawa [364].

The relatively low values of QEi for Sr0.99Eu0.01Ga2S4 and Sr0.98Eu0.02Ga2S4 are
rather surprising, as one expects similarly high internal QE as for Sr0.96Eu0.04Ga2S4.
The two phosphors with the lowest dopant concentration (1% and 2%) appear greyish-
yellow under white light illumination, in contrast to the other phosphors, which
show a much brighter body color. This was quantified by looking at the reflection
on the phosphors surface of the emission from an orange-red LED. In this region
of the visible spectrum, one does not have absorption from the Eu2+ luminescence
centers. For the higher dopant concentrations, about 85-95% of the light is reflected
compared to a white reference standard. For the lower concentrations (x ≤ 0.02),
this reflection drops to about 65-70%, which is in line with the visual observation of
the greyish body color. These absorptions obviously lower the internal QE, due to
an increased fraction of the absorbed (blue) excitation light which does not lead to
excitation of Eu2+ centers. It also reduces the fraction of emitted light which reaches
the phosphor surface. Consequently, the (calculated) internal QE will be lower. An
explanation of the lower optical quality of the powders with low dopant concentra-
tion might be related to the use of EuF3 as dopant precursor. Fluorides are known
to act as flux material, enhancing synthesis and promoting grain growth. Obviously,
for higher dopant concentrations, a higher degree of fluxing can be expected.

9.2.3 Decay behavior and thermal quenching

The luminescence decay profiles of Sr1−xEuxGa2S4 at room temperature are shown
in Fig. 9.4(a). For low dopant concentrations (x ≤ 0.04), the decay profile can be
fitted with a single exponential with a decay constant of 445 ns (±5 ns), which is
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Table 9.2 – Influence of dopant concentration and temperature on the emission prop-
erties of Sr1−xEuxGa2S4. λem is the (fitted) wavelength of the emission peak, T0.5 is the
temperature for which the emission intensity is half of the intensity at low temperature
(100 K), I(T ) is the integrated emission intensity at temperature T . (∗) denotes extrapo-
lated value.

x λem (nm) FWHM (nm) T0.5 (K) I(400 K)/I(300 K)
300 K 400 K 300 K 400 K

0.01 535.8 533.8 52 59 475 (∗) 0.90
0.03 536.4 535.2 51 57 460 0.92
0.07 536.8 536.0 50 56 445 0.83
0.15 539.2 539.7 48 53 435 0.78
0.30 539.7 540.0 49 54 385 0.69

only slightly smaller than the value of 480 ns reported by Chartier et al. for the
radiative decay time of Sr0.999Eu0.001Ga2S4 [302]. For dopant concentrations of 7%
and higher, a deviation from the single exponential decay is observed with the emer-
gence of a faster decay component. The 445 ns component is still preserved, as seen
in the similar steepness in the second half of the decay profiles.

To quantify this aspect, the decay profiles were fitted with two exponentially decay-
ing components according to Eqs. 8.2 and 8.3. For the entire studied concentration
range, it turns out that the decay profiles can be fitted with two components having
decay constants of τ1 = 445 ns and τ2 = 220 ns. While for the lower concentrations
(x ≤ 0.04), the decay is purely monoexponential, for higher concentrations the frac-
tion f2 steadily increases (inset of Fig. 9.4(a)). For x = 30%, both decay components
contribute almost equally. These observations nicely correlate with the behavior of
the internal QE (Fig. 9.3(b)). For concentrations of 5% and higher, the internal QE
starts to decrease, which can be related to the emergence of non-radiative decay. This
is in correspondence with the observed fast decay component. Also, the fact that the
decay profile is described by only one component of 445 ns for the low dopant con-
centrations (x ≤ 0.02) shows that the observed lower internal QE (Fig. 9.3(b)) is
entirely related to the body color of the phosphor, and not due to additional non-
radiative decay paths at these low dopant concentrations.

From the decay measurements, it appears that there exist two types of Eu centers
in Sr1−xEuxGa2S4. At low concentration (x < 5%), the majority of the dopant ions
can be considered as isolated centers, and the decay profile is described by a single
exponential decay. For higher dopant concentrations, a second type of configura-
tion is formed for which the lifetime is considerably shorter, presumably due to
energy transfer between nearby Eu centers, and locally approaching the situation in
EuGa2S4. This assumption will be further substantiated when the influence of tem-
perature on the decay profiles is discussed.
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(a) (b)

Figure 9.4 – (a) Decay profiles of the green emission of Sr1−xEuxGa2S4, measured at
room temperature with a 337 nm pulsed laser as excitation source. The inset shows the
fitted fraction of the fast decay component, f2 (Eq. 8.3). (b) Integrated emission intensity
of Sr1−xEuxGa2S4 powders upon excitation with 400 nm as a function of temperature.

For most phosphors the optimum dopant concentration is relatively low (typically
0.5%), with the luminescence emission intensity dropping fast for elevated dopant
concentrations. Similar to for instance Eu2SiS4 [379], the stoichiometric phosphor
EuGa2S4 is still luminescent with an emission peak at 549 nm at room tempera-
ture [367, 380]. However, the high dopant concentration leads to a strong thermal
quenching, with T0.5 being reported at 150-200 K [367, 381]. For low dopant con-
centrations, the emission intensity is almost constant up to about 400 K (Fig. 9.4(b)).
At this temperature, the emission intensity is still more than 90% of this at room
temperature (Tab. 9.2). Therefore, this phosphor is suitable for color conversion
purposes. For higher temperatures, the emission intensity drops steeply. This is a
typical thermal quenching behavior, and the observed intensity profiles are in line
with those reported by Chartier et al. on Sr0.999Eu0.001Ga2S4 [303]. The thermal
quenching temperature T0.5 is 460 K for Sr0.97Eu0.03Ga2S4 (Tab. 9.2). For higher
dopant concentrations (x > 5%), the behavior is somewhat more complex, with two
components. First, the steep decay setting in at 400 K is clearly visible. In addition,
the emission intensity decreases steadily between 100 K and 400 K, with the steep-
ness of the decrease directly related to the concentration. This behavior is closely

µ µµ

Figure 9.5 – Decay profiles of the green emission of Sr1−xEuxGa2S4 as a function of
temperature. The profiles were fitted with one or the sum of two exponential functions
(see text for details).
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related to the internal QE at room temperature, which starts to drop for dopant con-
centrations above 5%.

During the thermal quenching study, emission spectra were collected, allowing to
calculate the influence of the temperature on the emission color. As shown in Tab.
9.2, heating from room temperature to 400 K hardly changes the position of the
emission peak (∆λ < 2 nm), while the FWHM only slightly increases by about 10%.
Consequently, the emission color of all studied Sr1−xEuxGa2S4 phosphors is stable.
The CIE (x,y) chromaticity diagram (Fig. 9.1) shows the location of the saturated
green emission which is well above the green color point of the EBU gamut, without
the need for filtering of the spectrum. In the case when the newest Rec. 2020 stan-
dards are pursued, a minimal amount of green light needs to be filtered.

To get a better grasp of the influence of the dopant concentration on the thermal
quenching behavior, luminescence decay profiles were recorded for selected phos-
phors at different temperatures (Fig. 9.5).

For the phosphor with the lowest dopant concentration (x = 0.03), the decay profile
can be fitted with a single exponential decay component. The decay constant τ is
stable at 440 ns (±5 ns) up to 375 K, after which it starts to drop quickly. Never-
theless, a single exponential decay is maintained up to 475 K (not shown). These
results are in line with the report of Chartier et al. on Sr0.999Eu0.001Ga2S4 [303]. For
higher dopant concentrations, the situation is more complicated. At low tempera-
ture (75 K), a single exponential decay is obtained with a radiative decay time close
to 440 ns. Increasing the temperature leads to the emergence of a second compo-
nent. One component is showing the same behavior as in lightly doped phosphors
(i.e. a constant decay time of about 440 ns, which starts to decrease beyond 375 K).
The second component shows a different dependency of temperature, e.g. about 230
ns around 150 K and steadily reducing to about 150 ns at 450 K. This type of behav-
ior is rather similar to the decay profiles shown for EuGa2S4 by Barthou et al. [381].
Increasing the dopant concentration from 15% to 30% (Fig. 9.5) leads to basically
the same two decay components, albeit with a different relative contribution. The
decay behavior shows large similarities with the thermal quenching profiles. For low
dopant concentrations, the emission intensity is stable (reflected in a constant value
for τ), to drop off quickly beyond 400 K. For higher dopant concentrations, there
are two components in the thermal quenching profile: the first, steady decrease in
emission intensity (T < 400 K) is related to the steady shortening of the fast decay
component. Second, for higher temperatures, the intensity falls off quickly, related
to the shortening of the slow decay component. From these observations, we can
conclude that presumably there exist two types of environments in Sr1−xEuxGa2S4
phosphors. The first one, predominant at low doping concentrations, is related to
Eu ions with relatively little interaction with other Eu ions. In this way excitation
energy is not able to migrate over the lattice and will therefore in general not reach
defects. The second type is characterized by luminescence properties in terms of
thermal quenching and lifetime behavior which are in correspondence with those
of EuGa2S4. It corresponds to an environment where several neighboring Sr ions
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are replaced by Eu ions. In that case, energy transfer between Eu ions can occur,
and non-radiative decay at defects is more likely to take place, thus resulting in a
shorter lifetime. The lower thermal quenching temperature can be explained by a
(locally) smaller energy separation between the excited 5d state and the conduction
band, which bears more resemblance to EuGa2S4 than to SrGa2S4. For moderate
Eu concentrations, we clearly observe a mix of both types of environments, which
leads us to the conclusion that the Eu ions do not distribute homogeneously over the
SrGa2S4 lattice, but that local concentration variations can occur. Given the simi-
lar ionic radii of Sr2+ and Eu2+, this is not unlikely. By means of X-ray absorption
spectroscopy, or other analytical techniques able to probe the local environment, this
hypothesis could be verified, and will be the subject of further research.

9.2.4 Chemical stability

Most sulfide materials suffer from irreversible degradation upon exposure to moist
air, due to hydrolysis. SrGa2S4:Eu is relatively stable, especially when compared
to thioaluminates (like the green emitting CaAl2S4:Eu [150]) or most thiosilicates
[5, 382]. EuGa2S4 is reported to be stable against hydrolysis [381]. We evaluated
the stability of unprotected Sr0.96Eu0.04Ga2S4 phosphor powder by means of an ac-
celerated aging test in a controlled atmosphere (air, 80◦C, 80% relative humidity)
and continuous monitoring of the PL intensity. After 100h, the PL intensity was
reduced to 81% of the initial value. The phosphor emission intensity degraded to
about 95% of the initial value within 1h of exposure, after which the degradation
slowed down. This behavior is considerably better than this for micron-sized CaS:Eu
particles [324, 383]. For these alkaline earth sulphides, Avci et al. reported efficient
encapsulation methods which considerably improved the stability under accelerated
aging conditions [324,383]. Therefore, it is believed that the potential stability prob-
lems of Sr1−xEuxGa2S4 phosphors can be circumvented.

9.2.5 Application potential

We can now evaluate the Sr1−xEuxGa2S4 phosphors against the six requirements for
conversion phosphors, as outlined in §1.4:

• The saturated green emission color is ideally suited for display applications. A
large color gamut can be obtained based on this green phosphor, without the
need for filtering, thus optimizing conversion efficiency.

• The phosphors can be excited efficiently by both blue, violet or near ultraviolet
light sources. The excitation spectrum is broad and relatively featureless, so
that the emission intensity is not influenced by slight variations in the emission
spectrum of the pumping light source.

• The quantum efficiency is reasonably high (QEi of 71%), in combination with
a strong absorption, for a wide concentration range. Considering that little fil-
tering is required due to the saturated color, this quantum efficiency is suitable
for most display applications.
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• The decay times are sufficiently short to avoid saturation under high excitation
fluxes. Furthermore, the dopant concentration can be relatively high before
concentration quenching sets in, which is also beneficial to avoid saturation.

• Both the emission color and the conversion efficiency are stable up to 400 K,
which is sufficient for a wide range of applications.

• In this work the chemical stability was not assessed in detail, although the
Sr1−xEuxGa2S4 phosphors appear considerably more stable than other sulfide
phosphors. Encapsulation of phosphor particles appears a prerequisite though
for long term stability, as required for solid state lighting and backlighting.

In conclusion, we can state that Sr1−xEuxGa2S4 phosphors are an interesting option
to provide saturated green emission in color conversion applications, given that they
fulfill the critical requirements mentioned above.

9.2.6 White pc-LEDs for display applications with hybrid phos-
phor layers

Materials and strategy

Given the suitable properties of SrGa2S4:Eu2+, an optimized white light-emitting
diode will be constructed where this phosphor covers the green component. Due
to its narrow emission band, a white LED for display applications is aimed for.
As in contrast to the previous, more fundamental investigation, the efficiency of
the device is of primordial importance for this proof-of-concept, a fully optimized
SrGa2S4:Eu2+ phosphor was obtained from a commercial collaborator. This pow-
der features an absorption, internal and external quantum efficiency of respectively
80%, 95% and 75% upon illumination with a blue LED, emitting at 450 nm. The
emission peaks at 535 nm (FWHM of 51 nm).

For the red component, multiple possibilities are available within the realm of tra-
ditional metal-activated inorganic crystals (see §10.2.4). Here, a more multidisci-
plinary approach is chosen. Colloidal quantum dots (QD) are semiconductor crys-
tals with dimensions in the nanometer range. Due to their particular size, which is
of the same order of magnitude as the exciton radius of the semiconductor, quan-
tum mechanical confinement effects become important, resulting in size-dependent
physical properties [384]. The property that is exploited here is the luminescence of
the QDs which features superior narrow emission bands in the case of CdSe QDs and
a high quantum efficiency upon excitation with blue light. The QDs that are used
here were synthesized by Dr. Sofie Abé and are composed of CdSe cores (typical
diameter of 2.77 nm), around which a CdS shell is grown (with a typical thickness
of 3.3 nm), improving the above-mentioned optical properties [17,385]. Their emis-
sion peaks at 629 nm (FWHM of 39 nm) and they have an internal QE of 79% when
measured as a diluted dispersion.

Luminescent layers of the individual components or a mixture of the green and red
components were prepared by mixing the luminescent materials with a dissolved
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green PP (g/m2) red QD (g/m2)

(a) (b)

Figure 9.6 – (a) White pc-LED spectra, with a CCT of 6500-7000 K for all configurations
(see Tab. 9.3). (b) Loading of green powder phosphor (PP) and red QDs in the layers
shown in (a).

polymer, Kraton FG1901X in toluene and methyl ethyl ketone. The mixture was ap-
plied onto circular glass substrates, obtaining the homogeneous luminescent layers
after evaporation of the solvent. These layers are used in combination with a high-
power blue LED (Royal-Blue LUXEON Rebel ES with emission maximum at 454 nm)
in the remote phosphor LED configuration as shown in §7.2.3, allowing for a quan-
titative study with the integrating sphere setup. In the following, optimized white
LEDs are shown, indicating the advantages of the approach where microcrystalline
phosphor particles are combined with QDs in so-called hybrid phosphor layers. The
key idea of this strategy is that the large phosphor crystals scatter the light and hence
improve outcoupling in contrast to a full-QD phosphor layer as QDs are too small
to effectively scatter visible light, leading to an optical trapping of down-converted
light due to total internal reflection, resulting in a suboptimal device efficiency.

Result and design rules

Five different conversion layers were optimized according to the above-described
procedure:

• |RG |: The green phosphor powder and the red QDs are combined in the same
polymer layer.

• |G||R|: Two separate layers, a green and a red, are stacked, leaving an air gap
between the layers, with the green layer facing the blue pump LED.

• |R||G|: Two separate layers, a green and a red, are stacked, leaving an air gap
between the layers, with the red layer facing the blue pump LED.

• |G||R |: The two separate layers are connected by an index-matched liquid (ethy-
lene glycol) with the green layer facing the blue pump LED.

• |R||G |: The two separate layers are connected by an index-matched liquid (ethy-
lene glycol) with the red layer facing the blue pump LED.

The optimized white LEDs were fully characterized to assess their performance as
well as to understand the differences between the different stacking geometries in
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terms of a simple physical picture. Their spectra are shown in Fig. 9.6(a) while the
most important quantitative measures are given in Tab. 9.3. The required amount of
powders phosphor and quantum dots for every geometry are indicated in Fig. 9.6(b).

Given the data, all five geometries yield state-of-the art white LEDs, tuned to fit the
transmission characteristic of color filters in LCDs [357]. Prior to color filtering, the
three primary components already cover 86% of the NTSC display standard in CIE
(u′ ,v′) space (see appendix E). Relatively high color temperatures and LER values are
obtained as required in LCD backlights. The electrical-to-optical power efficiency of
the blue LED is reflected in the LE-value.

When both phosphors are incorporated in the same layer, the measurements show
that the absorption of the blue pump light exceeds that of green emitted and red
emitted light by a factor of 15 and 78, respectively. As this will translate into a pro-
portionally longer path length for green and red light, it is expected that undesired
reabsorption - where a QD is excited by a red photon emitted by another QD or a
green instead of a blue photon - will be relatively limited with these CdSe/CdS QDs.
Moreover, the 5 nm redshift of the QD emission maximum in the red layer relative
to the QD dispersion is reduced to less than 1 nm in |RG|, substantiating a signifi-
cant reduction of the QD self-absorption, due to the enhanced outcoupling of the red
light through scattering by the STG microcrystals. When the degree of scattering is
too high, multiple scattering events will increase the path length of the QD emission
and hence also reabsorption, leading to efficiency losses and a redshifted emission.
This is not the case in the present green layers, as the scattering is just sufficient to
redirect trapped (red) light that did not immediately leave the film. Nonetheless, a
certain amount of green light is reabsorbed by the QDs. This secondary excitation
has very little effect on the QE of the mixed hybrid remote phosphor layer given the
internal QE of the green phosphor which is close to unity. This is evidenced by the
internal QE of the |RG | film (80%) which lies between the internal QEs of individual
red (71%) and green (93%) layers with the same loading. Although the properties
of this, most simple, geometry are already very favorable, it will prove to be more
cost-efficient when adhering to an alternative stacking geometry, minimizing either
the used quantity of green powder phosphor or red QDs, conform the prizes of raw
materials.

In the case of the |G||R| and |R||G| layers, the emission spectrum of each configu-
ration depends on the interplay between the relative absorption of the blue pump
light by both color convertors, the scattering of light by the powder phosphor, and
reabsorption of green and red emission by the QDs [386–389]. As the lowest layer is
exposed to the highest blue intensity, its emission is proportionally more dominant
with respect to the emission of the upper layer. To achieve a similar color point as
in the |RG| case, a reduced amount of red or green color convertor is required for
the |R||G| and |G||R|geometries respectively. The disadvantage of this approach is
that the conversion efficiency of the red QD layer is reduced due to optical trapping
and reabsorption of the red light as a consequence of the absence of light scattering.
This is evidenced by the redshift of the QD emission (see Fig. 9.6(a)). Although these
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Table 9.3 – Internal quantum efficiency, correlated color temperature (CCT), luminous
efficacy of the radiation (LER), electrical-to-optical luminous efficacy (LE) and CIE (x,y)
color point of the white LEDs that were made of the optimized phosphor layers.

layer QEi (%) CCT (K) LER (lm/W) LE (lm/W) CIE (x,y)

|RG | 80 7082 314 58 (0.299, 0.345)
|G||R| 77 7288 326 56 (0.290, 0.365)
|R||G| 75 7097 284 48 (0.304, 0.320)
|G||R | 77 6488 265 45 (0.317, 0.299)
|R||G | 77 6536 266 45 (0.316, 0.300)

configurations suffer from self-absorption of red light by the QDs and are prone to
reabsorption of green light by the QDs, an internal QE of 77% can still be obtained
for the |G||R| configuration. Hence, with the highly efficient SrGa2S4:Eu2+phosphor
and the CdSe/CdS QDs designed to show little self-absorption, reabsorption losses
are not a major issue in this hybrid remote phosphor.

Hybrid layers where the two separate films are optically connected by applying an
index-matching liquid are investigated subsequently. This liquid obviously prevents
the optical trapping of the converted red light by bringing the scattering green lu-
minescent crystals within reach for the red light, while preserving the important
advantage of stacked layers, i.e. the reduced loading for the lowest color component.
Given that in this configuration, a larger part of the green light will be available
for reabsorption by the QDs, leading to a QD loading which is further reduced by
one-third in the |G||R | geometry while high efficiencies are maintained thanks to the
high internal QE of the green phosphor.

A remote phosphor for display applications is expected to provide the highest per-
formance at the lowest cost. Performance is assessed by considering the proper-
ties of the eventual white LED emission spectra and the internal QE of the entire
color conversion. The proposed hybrid remote QD/powder phosphor combination,
with CdSe/CdS QDs and SrGa2S4:Eu2+ microcrystals, meets state-of-the-art spec-
tral specifications for display applications, with an internal QE of 75-80% for all
assessed configurations - the latter affected mainly by the somewhat lower internal
QE of the QDs. The cost, on the other hand, can be reasonably assumed to be de-
termined primarily by the cost of the color-convertor materials, implying that the
loading of both components (see Fig. 9.6(b)) gives an immediate idea of the remote
phosphor layer cost if the unit prize for every component is known. Depending on
the economical situation, a grounded choice can be made for either the |G||R | or the
|R||G | geometry, based on the above design rules.
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9.3 Origin of the green emission of ZnGa2S4:Eu2+

9.3.1 Motivation

Europium doped zinc thiogallate, ZnGa2S4:Eu2+ is, like most Eu2+ activated phos-
phors, expected to be a broadband emitter due to the 4f65d→ 4f7 transition that is
responsible for the luminescence. The emission band of this material has been re-
ported to be rather narrow, yielding a saturated green color [390–394]. In this para-
graph, it is investigated whether ZnGa2S4:Eu2+ has the same advantageous proper-
ties as the chemically similar SrGa2S4:Eu2+ (Tab. 9.1). The particular motivation for
this work is the contradiction between a number of reports which are published on
ZnGa2S4:Eu2+ phosphors.

The photoluminescence of ZnGa2S4:Eu2+ was first described by Yuta and White re-
porting broadband emission at 535 nm and a Stokes shift of 0.78 eV [390]. Kim and
Kim elaborated on the photoluminescence (PL) and cathodoluminescence (CL) of
ZnGa2S4:Eu2+ and (Ca,Zn)Ga2S4:Eu2+ mixtures [391, 395]. The synthesis parame-
ters of the solid-state reaction yielding the powders were optimized and a saturated
green emission at 540 nm was reported. The lack of efficient CL was ascribed to
the small particle size of the phosphor powders. By adding only a small amount of
calcium to the mixture, the emission band at 540 nm disappeared abruptly and a
new emission band was formed at longer wavelengths (> 550 nm). Recently, Yu et al.
reported the thermal properties of ZnGa2S4:Eu2+. Herein, it was found that this ma-
terial has a relatively low thermal quenching temperature, but it remains a potential
candidate for LED applications because of the favorable excitation spectrum [393].
Reported key parameters about ZnGa2S4:Eu2+ (at room temperature) are an emis-
sion band at 540 nm (FWHM of 50 nm), a luminescence lifetime ranging from 126 to
79 ns, depending on the europium concentration and a quenching temperature T0.5
of 407 K. T0.5 was defined as the temperature where the emission intensity dropped
to half the intensity value at 300 K, which is somewhat in contrast to the common
approach to comparing the intensity to the value at low temperature, where no ther-
mal quenching is noticeable. In [394], luminescence in ZnS-ZnGa2S4:Eu2+ mixed
compounds was explained by energy transfer from ZnS:Eu2+ to ZnGa2S4:Eu2+. In
contrast to the above reports, an anomalously broad emission at 565nm has been
reported in [396]. Up to now, no value of the quantum efficiency of ZnGa2S4:Eu2+

has been reported.

Additionally, there is still discussion about the position of the Eu2+ ions in the zinc
thiogallate lattice. Due to the size mismatch between the Eu2+ and Zn2+ ions, one
can expect a difficult incorporation of the europium ions in the zinc-based host ma-
terial. The ions could (1) substitute for the zinc ions, (2) occupy the tetrahedral va-
cancy sites in the lattice, or (3) substitute at octahedral voids of the host lattice. Yuta
and White proposed an energy level scheme for Eu2+ in ZnGa2S4, based on tetrahe-
dral coordination [390]. The difficult incorporation of Eu2+ on small tetrahedral co-
ordinated sites is already drawn to attention by Wickleder et al. [372]. They argued
that the octahedral voids are favored, based on the 4f65d → 4f7 transition energy
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and the observation that no europium doped compounds exist where the doping ion
is fourfold coordinated as would be the case on the zinc or vacancy sites. However,
no direct proof for any of the europium positions has been given yet [372, 397].

The hypothesis which is explored here is that the observed luminescence originates
from small amounts of unintentionally formed EuGa2S4. This stoichiometric phos-
phor is known to exhibit efficient green luminescence, centered around 545 nm
[367]. This is surprisingly similar to the reported values for the ZnGa2S4:Eu2+ phos-
phors. In EuGa2S4, the europium ions are eightfold coordinated by sulfur ions. The
internal and external quantum efficiencies and the other vital properties of the lu-
minescence of ZnGa2S4:Eu2+ are characterized and discussed, to complement the
previously published data on this phosphor. Next, the suitability of ZnGa2S4:Eu2+

as a conversion phosphor for lighting and display applications is evaluated. Empha-
sis is put on the microscopic structure of the phosphor, both at the level of individual
phosphor particles and at the atomic level, to get a thorough understanding of the
doping of Eu2+ into ZnGa2S4.

9.3.2 Synthesis

Zn1−xEuxGa2S4 powders with europium concentrations of x = 0.01, 0.02, 0.03, 0.04,
0.06, 0.08 and 0.10 were synthesized by a solid state reaction between ZnS (Alfa
Products, 99.9%), Ga2S3 (Alfa Aesar, 99.99%) and EuF3 (Alfa Aesar, 99.5%). Sto-
ichiometric quantities of these starting materials were mixed and heat treated at
1000◦C for 2 hours in alumina crucibles under a H2S flux. After the heat treatment,
the powders cooled naturally and were lightly ground. Pure EuGa2S4 was synthe-
sized in a similar fashion, however using EuS instead of EuF3 and without ZnS.

9.3.3 Steady-state luminescence and reflection spectra

The photoluminescence emission and excitation spectra of the powders with dopant
concentrations up to x = 0.10 were measured at room temperature. Both the posi-
tion of the maximum (at about 542 nm) and the full width at half maximum (FWHM,
about 50 nm) of the emission peak show no significant dependence on the europium
concentration. The spectra of Zn0.99Eu0.01Ga2S4, which are also representative for
all other doping concentrations, are shown in Fig. 9.7(b). The absolute intensity of
the emission bands is discussed further on. The emission band of the phosphor cor-
responds with a saturated green color (CIE (x,y) = (0.31,0.66)), exceeding the green
color point of the EBU gamut.

Both the emission and excitation spectra of the powders are very similar to the spec-
tra of the stoichiometric phosphor EuGa2S4 which are also included in the figure.
This is surprising given the very different structure of the ZnGa2S4 and EuGa2S4
host crystals. The difference in the excitation spectra below 420 nm can be explained
in terms of interband absorption in ZnGa2S4. The absorbed energy is not transferred
to Eu2+ ions and is dissipated non-radiatively. Diffuse reflectance spectra are dis-
played in Fig. 9.7(a) for Zn0.99Eu0.01Ga2S4, EuGa2S4 and undoped ZnGa2S4. The
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(a)

(b) (d)

(c)

Figure 9.7 – (a) Diffuse reflection spectra for ZnGa2S4 (x = 0.00), Zn0.99Eu0.01Ga2S4
(x = 0.01) and EuGa2S4 (x = 1.00) at room temperature. (b) PL emission (at 450 nm
excitation solid lines) and excitation (at 540 nm emission, dashed lines) spectra for
Zn0.99Eu0.01Ga2S4 (x = 0.01) and EuGa2S4 (x = 1.00) at room temperature. The dip in
the excitation spectra around 470 nm is an experimental artifact. (c) Absorption, internal
and external QE (as defined in §3.3 and 7.2.3) for Zn1−xEuxGa2S4 at room temperature,
measured at 460 nm excitation. (d) Normalized PL intensity and luminescent lifetime as
function of temperature for Zn0.94Eu0.06Ga2S4 upon excitation at 400 nm.

steep increase in the ZnGa2S4 absorption around 400 nm is due to interband ab-
sorption of the host material. The bandgap of ZnGa2S4, 3.4 eV, was obtained from
a fit to the Kubelka-Munk spectrum, calculated from the reflection spectrum (see
§7.2.1). This is in correspondence with the reported value of 3.22 eV [372]. EuGa2S4
starts to absorb light from 520 nm due to electronic excitation towards the 5d levels
of Eu2+.

The internal and external quantum efficiencies of the Zn1−xEuxGa2S4 powders are
depicted in Fig. 9.7(c). The internal quantum efficiency remains essentially constant
as a function of Eu-concentration at a value of about 18%. This is striking since con-
centration quenching is expected to occur because of the increasing probability for
energy transfer between two adjacent Eu2+ ions when they are closer together. Still,
some small changes as a function of doping concentration can be observed. If one as-
sumes that small grains of luminescent EuGa2S4 are mixed in ZnGa2S4 powder (this
assumption will be substantiated in the remainder of this section), these changes
can be attributed to scattering effects, the nonzero absorption of ZnGa2S4 (at low x-
values, see Fig. 9.7(a)) and reabsorption of converted light by other EuGa2S4 grains
(at higher x-values). In any case, the low conversion efficiency of this phosphor ham-
pers the possibilities for technological applications.
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9.3.4 Decay and thermal quenching

The decay profiles of the samples were measured at different temperatures with the
pulsed excitation from an LED emitting at 400 nm. A luminescent lifetime was
determined by fitting the initial decay with a single exponential function. The life-
time of 127 ± 24 ns did not change as a function of the europium concentration.
This is a remarkably short luminescent lifetime for 4f65d→ 4f7 transitions in Eu2+.
In comparison, the luminescent lifetime of other europium doped thiogallate and
thioaluminate phosphors are given in Tab. 9.1. Emission maxima are also displayed
because of the intrinsic dependence of the lifetime on the emission color, shorter
wavelengths corresponding with shorter lifetimes (if the refractive indices are as-
sumed to be similar, see §2.3.3). At low temperature (77 K), the lifetime increased
to 350 ns. The other, more efficient thioaluminate and thiogallate phosphors do not
show a change in lifetime as a function of temperature unless thermal quenching
sets in [362].

The integrated emission intensity of the Zn1−xEuxGa2S4 powders was monitored as
a function of temperature (Fig. 9.7(d)). It is notable that the emission intensity
does not show a stable region as a function of temperature as most conventional
phosphors (see §3.4.4), but decreases over the entire temperature range. This is, in
contrary, a common behavior for stoichiometric phosphors [30,368]. The quenching
temperature, defined as the temperature where the emission intensity is half of the
intensity at low temperature (here, 100 K), is about 240 K for x = 0.06. The obtained
result is in accordance with the quenching temperature of 407 K as reported in [393],
taking into account that the reference level was then taken at 300 K. No significant
influence of the doping concentration on the decay or thermal quenching behav-
ior was observed. From these measurements, we can state that the luminescence of
these phosphor powders is essentially quenched over the whole studied temperature
range, and is characterized by an unusual short luminescent lifetime.

The temperature dependence of the corresponding time constant is very similar to
that of the non-radiative decay path, as identified in SrGa2S4:Eu2+ (see §9.2). For
the latter phosphor, this decay path is only relevant at high doping concentrations
or temperatures above 400 K. It was found that in this phosphor, which in contrast to
ZnGa2S4 is isostructural to EuGa2S4, the environment of Eu locally resembles that of
EuGa2S4 due to clustering of europium. The luminescent lifetime for EuGa2S4 was
evaluated to be 116 ns (at 300 K). Within the error range, this is the same as the decay
time of the ZnGa2S4:Eu2+ powders. The thermal quenching profile of EuGa2S4 was
measured by Iida et al. [367]. Their result is very similar to the profiles we obtained
for ZnGa2S4:Eu2+. This luminescence characterization of Zn1−xEuxGa2S4 powders
indicates that the light emission most likely originates from EuGa2S4 impurities.
The PL emission and excitation spectra, quantum efficiency, thermal behavior and
decay dynamics can be explained with this conjecture. In the next part, structural
analysis will be applied to confirm this finding.
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Figure 9.8 – SEM-CL-EDX mapping of Zn0.99Eu0.01Ga2S4 powder, obtained at 250 K.
Left: Phosphor morphology, obtained by a BSE image. The integrated CL emission in-
tensity is shown as an overlay in false colors. Middle: Elemental distribution by EDX,
where the colors are determined by color coding with green for Zn and red for Eu. Si-
multaneous detection would lead to a yellow color. Right: CL emission spectra for the
points indicated in the middle figure, obtained in clockwise direction.

9.3.5 Microscopic investigation

By the combined mapping of cathodoluminescence and characteristic X-rays in a
scanning electron microscope setup, local variations in the chemical composition of
a powder sample can be related to differences in luminescent properties (see 7.1.3).
In Fig. 9.8, a SEM-CL-EDX mapping of the Zn0.99Eu0.01Ga2S4 powder is displayed.
In the EDX map, the areas which are colored red (green) are the result from the map-
ping on Eu (Zn). One can clearly discern EuGa2S4 grains, where no Zn is detected,
among the majority of ZnGa2S4 grains, where no Eu is detected. The CL map shows
that the characteristic green luminescence is indeed originating from the EuGa2S4
grains, due to the perfect correlation between the CL and the EDX maps. No light
output is detected from the ZnGa2S4 phase.

There are two possible reasons for the absence of luminescence in the ZnGa2S4
grains. First, it is possible that no europium is incorporated in the ZnGa2S4 lat-
tice at all. This is plausible due to the size mismatch between the Zn2+ and Eu2+

ions (88 pm versus 131 pm for sixfold coordination [177]). Secondly, incorporation
of europium ions in the host lattice does not necessarily cause light emission [258].
It would not be surprising if Eu in ZnGa2S4:Eu2+ is not luminescent. When ZnGa2S4
doped with europium would coincidentally have a very similar emission spectrum
as EuGa2S4, then the absorption energy is estimated to be 2.4 eV, for the transition
between the 4f7 ground state and the lowest 4f65d1 excited state of europium. This
absorption energy is the value where the PL excitation spectrum amounts to 20% of
its maximum value [168]. Given the small band gap of this host material (3.2-3.4
eV), the excited states will probably overlap with or be in close distance to exciton
states of the ZnGa2S4 host, totally quenching any europium activated luminescence.
One could also argue that the absence of CL does not automatically imply the ab-
sence of PL. Although there can be a noticeable difference between the efficiency
of CL and PL, a complete absence of cathodoluminescence for a lanthanide doped
inorganic crystal is not expected [398].
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Eu

5

(a) (b)

Figure 9.9 – (a) X-ray diffraction patterns for Zn1−xEuxGa2S4 powders, compared to
reference patterns for ZnGa2S4 (ICSD 69542) and EuGa2S4 (ICSD 8053) [298, 373]. (b)
y(x) as defined by Eq. 9.1.

9.3.6 X-ray diffraction

The XRD patterns show that crystalline powders are obtained, corresponding with
the defect-stannite structure of ZnGa2S4 (Fig. 9.9) [373, 399]. However, only a
limited amount of europium can apparently be dissolved in the ZnGa2S4 lattice
without clustering, as diffraction peaks originating from a EuGa2S4, having a dif-
ferent crystal structure, are observed. Careful inspection of earlier reports on XRD
patterns of ZnGa2S4:Eu2+, also suggests the presence of EuGa2S4 as an impurity
phase [298, 391, 394].

The emerging of the EuGa2S4 (4 4 2) peak at 24.1◦ is studied, together with the
ZnGa2S4 (1 1 0) peak at 23.8◦ to estimate the dependence of the ZnGa2S4 : EuGa2S4
fractional content on the doping concentration. The separate peak intensities, I ,
were calculated by a fitting procedure in the 2θ range from 23◦ to 25◦ with three
pseudo-Voigt peak shapes. The third peak is the less intense EuGa2S4 (4 4 0) peak
at 24.4◦. The pseudovoigt profile is calculated as a linear combination of a Gaussian
and a Lorentzian peak shape [400].

In Fig. 9.9(b), the values of

y(x) =
IEuGa2S4

IZnGa2S4

1− x
x

(9.1)

are displayed. Herein, I are the integrated areas of the XRD peaks for the EuGa2S4
(4 4 2) and ZnGa2S4 (1 1 0) peaks. One can expect a constant y as function of x when
no europium is incorporated in ZnGa2S4 or zinc in EuGa2S4. However, when a rea-
sonable amount of Eu is incorporated in ZnGa2S4, one expects a disproportionately
low amount of EuGa2S4 in the powders with small x-values, resulting in a smaller
y-value. Since there does not seem to be a variation of y for different europium con-
centrations, no incorporation of europium in ZnGa2S4 is discerned within the accu-
racy of the XRD measurements and fitting procedure. Therefore, if any europium
is incorporated, it is restricted to a small fraction, unlike the case of conventional
phosphor materials. This is underpinned by the constant XRD peak locations upon
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(a) (b) (c)

Figure 9.10 – (a) Eu LIII XANES spectrum of (top) Zn0.96Eu0.04Ga2S4, compared to the
spectra of reference compounds for Eu2+ and Eu3+ (bottom), EuS (solid line) and Eu2O3
(dashed line). (b) Top: Zn K edge extracted EXAFS spectrum, Middle: Eu LIII edge
extracted EXAFS spectrum, both in Zn0.96Eu0.04Ga2S4. Bottom: Eu LIII edge extracted
EXAFS spectrum in EuGa2S4. (c) Fourier transform of k2χ(k) to radial distance space for
a Zn0.92Eu0.08Ga2S4 powder (solid line) and the result of the simulation, based on the
structure of EuGa2S4 and the europium ions occupying the octahedral voids (circles).

changing the doping concentration. To measure the incorporation with a better ac-
curacy, different experimental techniques have to be addressed.

9.3.7 X-ray absorption spectroscopy

X-ray absorption spectroscopy is ideally suited to study both the valence state and
dopant incorporation in polycrystalline inorganic materials (see §7.1.4). The analy-
sis of the XAS data was performed by Dr. Katleen Korthout. Figure 9.10(a) shows the
Eu LIII edge XANES spectrum of Zn0.96Eu0.04Ga2S4 compared to those of Eu2O3 and
EuS, measured as reference compounds for Eu3+ and Eu2+, respectively. The shape of
the spectrum of Zn0.96Eu0.04Ga2S4 is almost the same as that for EuS having a sharp
single peak at 6972 eV and different from that for Eu2O3 having a single peak 8 eV
higher in energy. This result shows that most of Eu atoms in Zn0.96Eu0.04Ga2S4 are
divalent. This implies that the europium, which is doped in a trivalent state through
EuF3 is effectively reduced during the heat treatment in the H2S atmosphere. The ex-
tracted EXAFS spectra, k2χ(k) of the Eu LIII edge and the Zn K edge in ZnGa2S4:Eu2+

(4%) are shown in Fig. 9.10(b). This figure already suggests that the Eu ions do not
occupy the Zn2+ sites in the lattice, but are more likely to be present in the powders
as EuGa2S4.

To investigate the structure around dopant ions in detail, FEFF simulations were
carried out (see §7.1.4). In the first step, the EuGa2S4 powder was fitted using the
known crystallographic structure [298]. In this way the Debye-Waller parameters
were determined. First, a simulation with only EuGa2S4 was performed. The cor-
respondence with the experimental spectrum was already very good. This indicates
that the true composition of the powders does not deviate far from this model and
the majority of the europium occurs as EuGa2S4, as already established with SEM-
CL-EDX and XRD.
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Secondly, the simulation where a small amount of the Eu2+ ions substitute on the
tetrahedral coordinated zinc sites showed a bigger deviation from the experimental
spectrum. This is not surprising considering the limited volume of the Zn first coor-
dination sphere and the size mismatch between Zn2+ and Eu2+. This clearly confirms
the hypothesis by Wickleder et al. that Eu2+ is not substituting for Zn2+ [372].

Thirdly, a simulation with a small amount of the Eu on the octahedral voids in
ZnGa2S4 and the majority in the form of EuGa2S4, was performed. The simulated
Fourier transforms of Eu LIII edge EXAFS are shown in Fig. 9.10(c), compared to ex-
perimental data. In this case, the Fourier transforms were performed in the k range
of 2.1 Å−1 - 7.8 Å−1.

As can be seen in the figure, there is a very good correspondence between the two.
The volume of the octahedral voids in the ZnGa2S4 structure is ≈24 Å3, being much
larger than the volume of the coordination tetrahedron of the Zn site, but still sig-
nificantly smaller than the volume of the coordination octahedron of other sulfide
hosts for Eu2+ (≈ 31 Å3 for CaS, ≈ 36 Å3 for SrS [401]). The simulation also showed
that the closest zinc neighbor of the incorporated europium ions disappears. This
observation can be explained by charge compensation, the europium ions are diva-
lent as well as the zinc ions. Furthermore it is observed that some of the sulfur atoms
move away from the dopants. This effect can be caused by the vacancy that occurs
at the cationic position in the lattice. A crystal model of this simulation is displayed
in Fig. 9.2(c).

Although the analysis was not explicitly performed, it seems very credible that the
case of MgGa2S4:Eu2+ is completely analogous. The luminescent properties of this
compound are also identical to those of EuGa2S4 (see Tab. 9.1) while also for this
host, the site where the Eu2+ ion would sit, i.e. the Mg site, is remarkably small (23
Å3 for the largest Mg site).

9.4 Conclusions

In this chapter, first a general overview of the europium doped thioaluminates MAl2S4
and thiogallates MGa2S4 (M = Ba, Sr, Ca, Mg, Zn) was given. From this overview,
those phosphors with the most promising properties regarding white LED applica-
tions, i.e. SrGa2S4:Eu2+ and ZnGa2S4:Eu2+, were selected for further investigation.

The luminescent properties of the solid solution series Sr1−xEuxGa2S4 were studied
in detail, with a focus on the luminescence decay behavior and the thermal quench-
ing. This investigation yielded insight into the clustering of Eu centers for increasing
doping concentration. The highest internal quantum efficiency was found for a dop-
ing concentration of x = 0.04, corresponding with a relatively high absorption for
blue light which is beneficial for applications.
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Furthermore, a fully optimized SrGa2S4:Eu2+ phosphor was combined with red
CdSe/CdS quantum dots to prepare remote phosphor layers for blue pumped white
LEDs that can be used for display backlights. A detailed quantitative investigation of
the luminescent layers helped to compose design rules for different stacking geome-
tries of remote phosphor layers, minimizing the cost as a function of the economical
reality while maintaining state-of-the art color quality and device efficiencies.

Finally, Zn1−xEuxGa2S4 phosphors were investigated. The luminescent properties
and the distribution and incorporation of europium in the powders was investigated.
Due to their excessive thermal quenching and low quantum efficiency, these mate-
rials should be discarded from applications, despite earlier reports. The structural
characterization revealed that only a limited amount of europium - if any - can be
incorporated into the ZnGa2S4 lattice. If these ions are incorporated, they occupy
octahedral voids instead of the smaller zinc or vacancy sites with tetrahedral coordi-
nation. The majority of the europium ions form the EuGa2S4 phase which gives rise
to the measured luminescent properties. It is believed that the same conclusions can
be drawn for the MgGa2S4:Eu2+ phosphors which have been reported in literature.
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Red luminescence from Mn2+

in CaZnOS

Divalent manganese, Mn2+, is an activator ion that gained popularity in phosphors
in cathode ray tubes (CRT) or fluorescence lamps [7, 402–405]. With the break-
through of LED technology for both lighting and displays, lanthanide ions such as
Ce3+ and Eu2+ became the dopants of choice due to their superior performance for
these applications. This is because Mn2+, although it can be very efficiently excited
by cathode rays or UVC radiation (100-280 nm), has a very low absorption strength
for blue light, as required for LED applications. This is caused by the symmetry-
and spin-forbidden nature of the intraconfigurational 3d5 transitions exciting the
luminescence (see §4.3) [70, 85]. Very recently, however, Mn-based materials have
again gained increased attention in the context of rare-earth-free LED phosphors.
CaZnOS:Mn2+ was proposed as red phosphor because the absorption strength of the
3d5 transitions appears to be unusually high compared to other Mn2+ based phos-
phors. [406].

Calcium zinc oxysulfide (CaZnOS) can be considered as an atypical host compound
for optical dopants. First, not many host materials are known with a mixed anion
coordination polyhedron for the luminescent ion. Secondly, CaZnOS crystallizes
in polar crystals, which allow a nonzero internal electric field [407]. As an effect,
upon incorporation of luminescent impurities, non-centrosymmetric compounds
can show mechanoluminescence (ML) [408, 409]. For this to occur, energy has to be
stored in the material first, presumably by trapping photo-ionized charge carriers.
They can be released through the pressure-induced change of the internal electric
field, eventually recombining radiatively at the ionized activator [408–411]. ML has
been demonstrated in undoped CaZnOS and is ameliorated upon doping it with Mn
or Cu [274, 412–415]. The ML can be generated by different types of mechanical
stresses such as ultrasound and compressive stress [274, 412–415].

In a series of two papers, B. Huang studied Mn and Cu impurities and intrinsic
defects in CaZnOS by means of DFT+U calculations [416, 417]. This approach is
expected to yield important insights, especially with respect to the impurity level
locations of intrinsic and extrinsic defects as these are experimentally hard to de-
termine, while they are of utmost importance for the functional behavior of lumi-
nescent materials, e.g. the ML in the considered case. The impurity level locations
that were found for a large number of intrinsic defects form important pieces to

217
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solve the puzzle of the ML in CaZnOS. The orange emission in CaZnOS:Mn2+ is ex-
plained from energy differences between Kohn-Sham single particle energy levels,
referred to as 3d fine levels, of different defects. This interpretation of Kohn-Sham
levels yields results which contrast with the common interpretation of spectroscopic
transitions as differences in total energy between multiplets of the Mn ion. In partic-
ular, the energy difference between a single-particle level of a Schottky defect V ′ZnO
with a singly negative Kröger-Vink charge and a single-particle level of Mn••Zn with a
doubly positive Kröger-Vink charge is 2.1 eV and hence labeled as the reason for the
orange emission band in CaZnOS:Mn. Notice that the doubly positive Kröger-Vink
charge corresponds here to a Mn4+ ion in spectroscopic notation. This point of view
asks for a solid investigation towards the charge state and spectroscopy of Mn de-
fects in CaZnOS.

This chapter contains a fundamental study of the incorporation of Mn2+ in CaZnOS
and the electronic structure of the resulting luminescent material. Both single- and
many-particle schemes, i.e. band diagrams and multiplet schemes, are calculated
and compared with experimental photoluminescence spectra. This phosphor is eval-
uated as a rare-earth free alternative as red LED phosphor. Finally, the ML behavior
of this material is studied as a function of temperature and compared to thermolu-
minescence glow curves.

The results in this chapter are published as:

Charge transfer induced energy storage in CaZnOS:Mn - insight from ex-
perimental and computational spectroscopy

Jonas J. Joos, Kurt Lejaeghere, Katleen Korthout, Ang Feng, Dirk Poelman,
Philippe F. Smet

Physical Chemistry Chemical Physics, 19 9075-9085 (2017).

Figure 10.1 – Left: Coordination environment for the MnZn defect in CaZnOS. In this
figure, the layered Zn-S/Ca-O structure of the oxysulfide host is clearly visible. Right:
Difference in electron density for the MnZn defect, before and after the LMCT, calculated
with PBE+U . The orange and green isosurfaces correspond to charge density differences
of 0.0019 eÅ−3 and -0.0019 eÅ−3 respectively.
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10.1 Synthesis

CaZnOS powders were prepared by a solid state reaction, starting from CaCO3 (Alfa
Aesar, 99.95%) and ZnS (Alfa Aesar, 99.99%). The mixed precursors were heated to
1000◦C in nitrogen atmosphere and kept there for 12h. Afterward, the samples were
allowed to cool naturally, before slight grinding. Manganese doping was achieved
by adding a small amount of MnCO3 (Alfa Aesar, 99.9%) or MnS (Cerac, 99.9%)
to the mixture. The phase purity of the materials was checked using powder X-ray
diffraction. The described experiments were performed on powders with a nominal
Mn molar concentration of 0.5%.

10.2 Crystal structure and incorporation of Mn in
CaZnOS

CaZnOS forms hexagonal crystals consisting of alternating layers of Zn-S and Ca-O
and belongs to the non-centrosymmetric space group P 63mc [407, 418]. The zinc
atoms are coordinated by one oxygen and three sulfur atoms in a deformed tetrahe-
dron of symmetry C3v , while the calcium atoms are coordinated by three sulfur and
three oxygen atoms in a deformed octahedron of symmetry C3v [407]. Density func-
tional calculations at the PBE and PBE+U level were performed to optimize the unit
cell of CaZnOS. A good correspondence was achieved between the experimental and
calculated geometries (see Tab. 10.1).

It is known that the quaternary compound CaZnOS is unstable at high temperature.
The competitive reaction ZnS + CaO
CaS + Zn + 0.5 O2, which is the principle to
recycle Zn in industry, is unavoidable, especially in a reducing atmosphere. This
results in impurities, mainly of the binary compounds ZnS, CaS and CaO [419,420].
This finding is reflected in the formation energy of the compound which was calcu-
lated with respect to the experimental precursors ZnS and CaO. While PBE yields a
positive value of 39 meV per formula unit, corresponding with an unstable CaZnOS
phase, PBE+U yields a negative value of -16 meV per formula unit. These small
numbers support the empirical finding of most experimental studies -including this
one- that it is hard to obtain phase-pure CaZnOS. Small contaminations of binary by-
products are always found in PXRD patterns before post-treatments. Nevertheless,
the stability of synthesized CaZnOS was positively validated at room temperature
through PXRD and luminescence spectroscopy of doped samples over time.

There are two straightforward possibilities for the manganese dopant to incorporate
in the oxysulfide structure, by substituting for a zinc or calcium cation, forming a
MnZn or a MnCa defect, respectively. Duan et al. presumed the former case to be
most plausible due to the similar ionic radii of Zn2+ (60 pm) and Mn2+ (66 pm),
compared to Ca2+ (100 pm) [177, 406]. The defect formation energies can be calcu-
lated by considering that µMn equals the energy of Mn in a reference state, i.e. the
manganese reservoir [94]. Given the above-described physical reality of the crystal
structure, MnS was chosen as the reference state to calculate the formation energy
of the MnZn defect. Analogously, ZnS was chosen as reference state for Zn. Con-
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versely, MnO and CaO were chosen as reference compounds regarding the MnCa
defect.

Our DFT calculations confirm the assumption of Duan et al. that the Mn dopants are
found on the Zn site. The MnZn defect has a slightly lower defect formation energy
for all possible Fermi level locations (see further). Upon incorporation, the volume
of the MOS3 coordination polyhedron is slightly increased, in correspondence with
the higher ionic radius of Mn2+ [177]. The shape and dimensions of the polyhedron
are shown in Fig. 10.1 and Table 10.2. EXAFS was used to probe the details on the
geometry of the nearby environment of the probed element. The analysis of the Mn
K edge EXAFS spectrum was used as an experimental verification of the calculated
preference for incorporation of the Mn ion. The analysis of the XAS data was per-
formed by Dr. Katleen Korthout.

Figure 10.2 shows the Fourier transform of the EXAFS spectrum compared to the
fitted profile, based on the deformed tetrahedral coordination of MnZn. A simi-
lar profile, based on the deformed octahedral coordination of MnCa was not able
to reproduce the experimental data (not shown). Linearly combining both mod-
els showed indeed that tetrahedrally coordinated Mn dominates the spectrum and
that the component originating from octahedrally coordinated Mn can be safely ne-
glected. The parameters of the tetrahedral model were subsequently optimized in
order to reproduce the experimental spectrum. Bond lengths could be estimated
from the fit, which was restricted to the first two coordination shells as indicated by
the window in Fig. 10.2. These are shown in Tab. 10.2 and are in good agreement
with the DFT values. The presence of the pre-edge peak in the XAS spectrum (see
inset Fig. 10.2) also hints towards tetrahedral coordination [421].

Even though the DFT calculations and the EXAFS experiments show that the Mn
dopants are incorporated on the Zn site for the low doping concentration of 0.5
molar %, it cannot be excluded that some Mn will incorporate on the Ca site when
the doping concentration is increased. Huang et al. used this argument to explain
the redshift of the emission spectrum for increasing Mn concentration [417]. This is
a plausible explanation to understand the redshift for increasing Mn concentration
as a higher coordination number gives rise to a higher crystal field strength and
hence a redshift in the case of Mn2+ (see also the discussion on the Tanabe-Sugano
diagram in §4.3.) [7, 422]. An alternative reason for the redshift upon increasing
the concentration is the interaction between neighboring Mn ions, as proposed by
Zhang et al. for CaZnOS:Mn2+ [415]. This effect was also found to be responsible
for the redshift of the Mn2+ emission in Zn2SiO4 [423, 424].

10.2.1 Electronic properties

The intention is to construct a complete energy level scheme of the excited state
landscape of the CaZnOS:Mn2+ phosphor. The first important parameter pertains to
the undoped host crystal, i.e. the band gap determines the absorption spectrum of
this material in the visible and near UV spectral region. This parameter can be
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Table 10.1 – Comparison between
experimental and calculated unit cell
parameters and band gap. Experi-
mental data obtained at room tem-
perature.

a (Å) c (Å) EG (eV)

exp. 3.757 [407] 11.401 [407] 4.27∗

PBE∗ 3.792 11.450 2.10
PBE+U ∗ 3.758 11.380 3.12

PBE+U [416] 3.76 11.52 3.895
∗ this work

Table 10.2 – Comparison between
MOS3 polyhedra. d(O/S) denotes
the Mn-(O/S) and Zn-(O/S) bond
lengths, while dav denotes the arith-
metic average. Results from the
PBE+U optimization and EXAFS
analysis.

ZnOS3 ZnOS3 MnOS3 MnOS3

(DFT) (PXRD [407]) (DFT) (EXAFS)

volume (Å3) 5.678 5.826 6.380
dav (Å) 2.234 2.254 2.322 2.325 ± 0.009
dO (Å)) 1.865 1.900 1.968 2.001 ± 0.019
dS (Å) 2.357 2.372 2.440 2.445 ± 0.006

Ô-M-S (◦) 113.83 113.85 112.83
Ŝ-M-S (◦) 105.92 104.76 105.92

4

Figure 10.2 – Fourier transform of
the Mn K-edge EXAFS spectrum of
CaZnOS:Mn (blue, solid line), com-
pared to the fit, based on a tetrahe-
dral MnZn defect model (black, dot-
ted line). The grey window indicates
where the deviations between the
two curves was minimized. The inset
shows the XAS spectra in the Mn K-
edge XANES region of CaZnOS:Mn
(blue, solid line), compared to the
Mn(II) salts MnF2 (black, dotted
line) and MnCO3 (black, dashed
line) and to the Mn(IV) oxide MnO2
(black, solid line).

determined using UV-VIS spectroscopy as well as calculated with DFT.

Upon doping with transition metal ions such as Mn, impurity levels are formed in
the band gap. The locations of these impurity levels are calculable with DFT and
are closely connected to the energy of charge transfer bands that can occur in optical
spectra (see §5.4.2).

Band gap of CaZnOS

Based on diffuse reflectance measurements, followed by a Kubelka-Munk analy-
sis, experimental values of 3.7 eV [407], 3.88 eV [274, 419], 4.0 eV [406] and 4.16
eV [415] can be found in literature for the optical band gap of CaZnOS. A similar
measurement on our undoped CaZnOS samples revealed an even higher value of
4.27 eV, where a model for allowed transitions across a direct band gap was used.
The scatter on these values might be explained by the unintended occurrence of
intrinsic or extrinsic defects, giving rise to an apparently lower band gap. These un-
certainties are accounted for in an estimated error margin of 100 meV on the value
of the optical band gap (see 7.2.1).
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Both PBE and PBE+U calculations give rise to a Kohn-Sham band gap which is too
low compared to the experimental value (see Tab. 10.1). This is however within ex-
pectations given the well-known self-interaction error of DFT (see 5.3.2). To account
for this underestimation and, more importantly, to predict in which sense this affects
the locations of the calculated impurity levels, the extrapolation scheme of Janotti
and Van de Walle [94, 211, 212] (see §5.3.4) was applied in the following. Assigning
additional Hubbard U parameters to the np electrons of sulfur and oxygen can open
the calculated band gap even further [416].

Mn impurity levels

The charged supercell formalism was used to calculate the impurity levels of both
the MnZn and MnCa defects. Electrons were added or removed from the Mn defect
to simulate the different occupation numbers. In order to maintain a charge-neutral
system, a homogeneously distributed background charge was added, compensating
for the added or removed electrons. A monopole-monopole correction term was
taken into account to correct the total energies for unphysical interaction between
the defect and its periodic images, using the macroscopic dielectric constant of the
host material calculated with density functional perturbation theory.

Figure 10.3 shows the defect formation energies as a function of Fermi level location
for different charge states of the defect in a host referred (HRBE) and a vacuum
referred binding energy (VRBE) diagram. The Kröger-Vink notation (see §5.2) was
used. As Ca and Zn are both divalent ions, an uncharged Mn×Zn or Mn×Ca defect
corresponds to a Mn2+ ion according to spectroscopic notation. It is apparent from
the figure that the MnZn defect has the lowest defect formation energy for most
Fermi level locations and is hence expected to be the Mn defect found in reality. This
is in line with expectations given the similar ionic radii of Zn2+ and Mn2+. Only for
high chemical potentials for the electrons, i.e. when the Fermi level approaches the
conduction band bottom, it can be energetically favorable to form negatively charged
MnCa defects.

For both defects, the lowest charge-state transition level within the band gap is the
ε(0/ − 1) (or Mn2+/Mn+) level, lying 3.32 eV and 2.99 eV above the valence band
maximum for MnZn and MnCa, respectively. The physical significance of this level
is that when the electron chemical potential is below ε(0/ − 1), manganese will be
stable in the Mn2+ (Mn×Zn) charge state, while the defect will be stabilized in the
Mn+ (Mn′Zn) charge state when the chemical potential is above the impurity level.
The experimental charge state of the Mn dopant could be obtained from the XANES
spectrum. The inset of Fig. 10.2 shows the measured Mn K-edge XANES spectrum
of CaZnOS, compared to the Mn(II) salts MnF2 and MnCO3 and the Mn(IV) com-
pound MnO2. For the former, a good correspondence with the K-edge location is
found, while this is not the case for the latter, implying a predominant occurrence
of Mn in the divalent state in CaZnOS.
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Figure 10.3 – Defect formation energies for MnQZn and MnQCa (the value of Q is indicated
in the figure) as a function of the Fermi level location in CaZnOS (left). The secants of
the straight lines correspond with the physical impurity levels, i.e. charge-state transi-
tion levels. The obtained impurity levels are shown in a conventional band diagram, rep-
resenting host referred and vacuum referred binding energies, HRBE and VRBE (right).
The results were obtained from PBE+U calculations which were extrapolated according
to the scheme by Janotti and Van de Walle [94, 211, 212].

The impurity levels are thermodynamic transition levels, meaning that they were
calculated for optimized geometries in both charge states. These levels are there-
fore involved in slow processes, i.e. where the system has time to adapt itself to the
external factors. An examples is the path towards chemical equilibrium during the
synthesis of the material, eventually by oxidizing or reducing the impurity. In the
case of optical charge transfer transitions, a thermodynamic transition level corre-
sponds to the energy of the ZPL (see §5.2.3 and §5.4.2). An absorption band due to
a ligand-to-metal charge transfer is thus expected above 3.32 eV for CaZnOS:MnZn,
based on the supercell calculations. The optical charge-state transition level, where
the geometry was not allowed to reorganize, was calculated at 3.44 eV. The absolute
location of the impurity level is roughly in accordance with the universal trend, ob-
served for Mn in II-VI compounds, as identified by Caldas et al. [425].

Figure 10.1 shows the difference in electron density between both charge states, i.e.
the shift in electron density during the optical absorption. It is clear that the addi-
tional charge is spatially spread out around the Mn defect. This is in accordance
with the prediction of Haldane and Anderson of self-regulating behavior which
states that the effective charge of a transition metal remains close to neutrality what-
ever its valence due to the hybridization with valence band states, allowing the
additional charge to be localized further away from the transition metal (see §5.2)
[190, 426–428].

It should be emphasized that the calculated charge-state transition levels do not
coincide with Kohn-Sham eigenvalues (density of states, DOS) in the forbidden band
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for the defect of neutral charge. More elaboration on the meaning of KS levels can
be found in §5.3.2.

10.2.2 Spectroscopic properties

Up to now, only ground state properties of the neutral and charged CaZnOS:Mn2+

phosphor were addressed. To understand the physical processes behind the lumi-
nescence behavior, knowledge on the excited states of the 3d5 configuration of Mn2+

is required. DFT can only describe those states that correspond to the lowest en-
ergy state for different symmetry classes. Examples are the calculation of the ZPL
energy of the emitting transition of Mn4+, or the energy of the lowest 4fN -4fN−15d1

transition in some lanthanide-based scintillators by forcing the system into an or-
bital occupation which does not correspond to the lowest energy [90, 93, 429]. Here,
all the multiplets originating from the 3d5 configuration are however required and
for this reason, the focus is changed towards crystal field theory (CFT), which can
describe all excited states of a certain electron configuration. Electron-phonon cou-
pling is taken into account to discuss the CFT results in a rational way. The coupling
is quantified based on the vibronic fine structure of the emission spectrum and the
phonon density of states, obtained from DFT.

x 47

(a)

(b)

*

Figure 10.4 – Photoluminescence emission (upon excitation at 280 nm, blue lines)
and excitation spectra (when monitoring the emission at 610 nm, black lines) of
CaZnOS:Mn2+, measured at room temperature (a) and at 4.5 K (b). The vertical lines
indicate the locations of the excited multiplets for the ground state geometry of the de-
fect cluster, as obtained from the CFT optimization. The green and red color denote a
total spin of S = 3/2 and S = 1/2 respectively. The charge transfer transition is indicated
by ∗.
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Photoluminescence of the Mn2+ ion

The experimental room temperature photoluminescence (PL) excitation and emis-
sion spectra of CaZnOS:Mn are shown in Fig. 10.4a. The emission spectrum is in
correspondence with literature, reporting an emission peaking around 610 nm and
originating from the spin-forbidden transition from the first excited 3d5 multiplet to
the 3d5(6S5/2) ground state [406, 415]. The excitation spectrum shows characteristic
3d5-3d5 transitions on the low-energy side, i.e. between 350 nm and 600 nm. On the
high-energy side, a more intense broad excitation band is found, due to transitions
related to the host material.

The high-energy band below 315 nm originates most probably from fundamental
absorption in the CaZnOS host with subsequent energy transfer to the Mn defect.
This band has a shoulder at 338 nm, which is clearly resolved at low temperature. It
is reasonable to assign this band to the ligand-to-metal charge transfer that was pre-
dicted from the DFT calculations. The thermodynamic charge-state transition level
lies 3.32 eV above the valence band top, while the maximum of the excitation band
is found at 3.78 eV. The energy difference of 0.43 eV is perfectly consistent with
half of the typical values for the Stokes shift associated with CT transitions [236].
While the thermodynamic charge-state transition level found after extrapolating the
PBE+U results seems to be in accordance with experiment, the calculated difference
with the optical charge-state transition level of 0.12 eV is too low. This discrepancy
is most likely due to higher-order phenomena, such as excitonic effects, which are
not included in the DFT calculations.

The low temperature PL spectra are shown in Fig. 10.4b, where fine structure
emerges in both the emission and excitation spectra. In the emission spectrum, the
zero phonon line at 17051 cm−1 (586.5 nm) stands out and comes with a detailed
vibrational fine structure, clearly containing multiple active modes. The Stokes shift
amounts to 1550 cm−1 (0.19 eV). In the excitation spectrum, the transitions from
the 3d5(6S5/2) ground state towards the different excited 3d5 multiplets are well-
resolved along with some vibrational progressions. The fine details of the low tem-
perature spectrum allow to fit a crystal field Hamiltonian to the experimental tran-
sition energies (see further).

The thermal quenching of the emission upon excitation in the different excitation
bands was measured (not shown). While the intraconfigurational 3d5 transitions
remain stable between low temperature and room temperature, the broad excitation
bands at higher energy show severe thermal quenching, resulting in the relative
intensity difference between both spectra in Fig. 10.4. This suggests the existence of
a non-radiative decay channel near the higher-lying excited states, requiring only a
small amount of thermal energy to reach.
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Crystal field parameterization

Optical spectra of fourfold coordinated Mn2+ are typically labeled with irreducible
representations of the tetrahedral point group Td. In this case, the two broad ex-
citation bands in the region of 17300-19800 cm−1 correspond to transitions from
the 6A1 ground state to the 4T1 and 4T2 crystal field states originating from the 4G
Russell-Saunders term. Because excitation to the 4T1 and 4T2 states induces geomet-
ric relaxation of the nuclear positions in the Mn defect cluster, the maximum values
of the excitation bands are used to fit crystal field parameters rather than the ZPL in
order to obtain a more reliable result for the ground state situation.

Other crystal field states originating from the 4G term are 4A1 and 4E which are
accidentally degenerate in Td and Oh symmetries. In contrast with the former two
excitations, the latter two transitions correspond with a sharp peak. This can be in-
tuitively interpreted in terms of the independent particle configurations in the high
crystal field limit. No electron changes orbital for 6A1 → (4A1,

4E) transitions as
both initial and final state originate from the e2t32 configuration while an electron
is transferred from a t2 orbital to an e orbital in the case of excitation to the 4T1 or

spin multiplicity
2

4 6

Figure 10.5 – Tanabe-Sugano diagram for a nd5 configuration, showing the variation
of the multiplets from the weak-field limit (labeled by the atomic term symbols) to the
strong-field limit (labeled by the single-electron occupation numbers of the crystal field
orbitals) limits. The color of the lines represents the spin doublet (S = 1/2, red), quartet
(S = 3/2, green) or sextet (S = 5/2, blue) character of the states. The energy scale was
chosen to correspond with the correct values in the free ion limit.
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4T1 state which originate from the e3t22 configuration. This argument can be derived
from the modified Tanabe-Sugano diagram in Fig. 10.5. In this figure, the popular
convention is adapted to use 10Dq, the single-particle crystal field splitting. It is
related to the Wybourne parameter B40 = −14/10 10Dq for Td fields [130].

Higher lying excited states visible in the excitation spectrum are the 4T2 and 4E
states originating from the 4D term. In the same energy region, crystal field states
originating from the 2I term can be found. These are however not visible in the ex-
citation spectrum because of the larger difference in spin quantum number S with
respect to the ground state.

The coordination polyhedron for Mn2+, when incorporated on a Zn site is not per-
fectly Td symmetric, but the mixed anionic nature of the compound results in a lower
C3v symmetry. This has two repercussions on the crystal field (CF) parameterization,
i.e. the tetrahedral ratio between B40 and B43 ceases to hold and another nonzero pa-
rameter, B20, emerges, yielding a total of three independent CF parameters. Often,
an alternative parameterization due to Ballhausen is used in this case [130]:

B20 = −7Dσ

B40 = −14Dq − 21Dτ

B43 = −2
√

70Dq. (10.1)

When using this notation, the lowering of symmetry is stressed through the devia-
tion of the tetrahedral ratio (Dτ , 0) and the emergence of the additional term in the
Hamiltonian (Dσ , 0).

The additional terms in the CF Hamiltonian cause further splitting of the crystal
field levels, i.e. the orbital triplets split in a doublet and a singlet, while the orbital
doublets and singlets maintain their degeneracy. As the 4G(T1/T2) terms feature
broad excitation bands, their splitting is not visible. Different lines are resolved
from excitation to the 4D(T2) term, but it is not possible to derive the splitting due
to the symmetry lowering as the lines can also originate from vibronic side bands.
At first sight, it therefore seems difficult to quantify the symmetry lowering in terms
of crystal field parameters.

A straightforward explanation for the lifting of the accidental degeneracy of the 4A1
and 4E levels would be to attribute it to the symmetry lowering, offering a means to
quantify Dσ and Dτ . Figure 10.6 compares the effect of the two additional crystal
field parameters on the energy difference between 4A1 and 4E, denoted as ∆E(4Γ ),
and on the energy of the lowest excited state, E(4T1). As one can see from this figure,
symmetry lowering alone cannot account for the degeneracy lifting as it requires
unrealistically high values of |10Dσ | in the range of 25B, compared to typical |10Dq|
values in the range of 5− 10B for tetrahedral Mn2+ complexes [430–433].

The accidental degeneracy of the 4A1 and 4E levels and its lifting - even in fields of
Td or Oh symmetry - has been the subject of long debate [433–435]. Koide and Pryce
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modeled this phenomenon by proposing non-equal Racah parameters for electrons
in the e and t2 orbitals, which they attributed to covalency. Ng and Newman showed
that the assumptions of this so-called epsilon or renormalization model are in con-
tradiction with two-electron integrals, calculated through a configuration interac-
tion technique [436, 437]. Subsequently, the same authors showed that an improved
description of experimental spectra of octahedral Mn2+ ions in halides, correspond-
ing with σCF values in the range of 290-770 meV, could be obtained by adding the
spin-correlated crystal field, already known from lanthanide spectroscopy, Eq. 4.76,
to the effective Hamiltonian [435].

In the high-symmetry case of Td, only one additional parameter, c4, is required.
Upon lowering symmetry to C3v, a second nonzero parameter, c2, emerges. As crys-
tal field studies have shown that the importance of ck parameters increases with k,
c2 can be neglected at leading order, along with Dσ and Dτ [76]. In Fig. 10.6, it is
shown that the experimental 4A1 - 4E splitting can be obtained together with a re-
alistic value for the lowest excited state. Therefore, the spin-correlated crystal field
term is used to describe the experimental spectrum. To reduce the number of fitting
parameters, Td symmetry is assumed, which is an acceptable simplification.

Furthermore, the ratio of Racah parameters is kept fixed at the conventional value
C/B = 4 and the experimental Trees parameters for the free Mn2+ ion are used for
the calculation. A remarkably good correspondence between calculated and exper-
imental transition energies is obtained as shown in Fig. 10.4 and Tab. 10.3, with a
standard deviation σCF of 198 cm−1. The optimal parameters for the effective Hamil-
tonian are summarized in Tab. 10.4.

Table 10.3 – Calculated multiplet energies,
obtained from a spin-correlated crystal field
calculation, compared to the experimental
energies, obtained from low-temperature PL
spectroscopy.

term Td C3v calc. (cm−1) exp. (cm−1)
6S 6A1

6A1 0 0
4G 4T1

4A2 ⊕ 4E 17774 17826
(ZPL: 17051)

4T2
4A1 ⊕ 4E 19342 19456

4E 4E 20019 20061
4A1

4A1 20939 20705
4D 4T2

4A1 ⊕ 4E 22688 22549
4E 4E 24839 25002

4P 4T2
4A1 ⊕ 4E 24840

Table 10.4 – Parameters used in
the spin-correlated crystal field
calculation.

parameter value (cm−1) reference

B 636 this work
C 2544 this work
α 65 [433]
β -128 [433]

10Dq 3983 this work
c4B40 1570 this work
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Figure 10.6 – Energy of the emitting level, E(4T1) (left) and the lifting of the accidental
degeneracy, ∆E(4Γ ) = E(4A1)− E(4E) (right), as a function of symmetry lowering, 10Dσ
and 10Dτ (top) and as a function of the spin-correlated crystal field, c4 (bottom). The pa-
rameter values at which the experimental values for the displayed quantities are found,
are marked by the black and white lines, the optimized parameter values by the white
dot. All energy values in 1000 cm−1.

Electron-phonon coupling

Although intraconfigurational 3d transitions have a small transition probability, it
is nonzero in the case of CaZnOS:MnZn. The tetrahedral coordination of the Mn
ion does not possess a symmetry center whereby the Laporte parity selection rule
does not hold and the intraconfigurational 3d transition can become symmetry al-
lowed if the E1 selection rules ∆L = 1, ∆S = 0 are fulfilled. This seems not to be
the case at first sight. However, the crystal field can mix some 4P character in the
4G eigenstate, relaxing the ∆L = 1 rule. Furthermore, the ∆S = 0 rule is relaxed by
the spin-orbit interaction. The electronic transition moment

〈
6S(A1) |D|4G(E)

〉
can

then be nonzero for the point group C3v, evidenced by the occurrence of the totally
symmetric irreducible representation (irrep) A1 in the reduction of the direct prod-
uct A1 ⊗E ⊗E, considering that the electric dipole moment transforms according to
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(a) (b)

Figure 10.7 – (a) Low temperature (4.5 K) emission spectrum (excitation at 280 nm
(35700 cm−1)) of CaZnOS:Mn. The dotted line shows the calculated multiphonon vi-
bronic spectrum corresponding to the unbroadened harmonic and frequency mixed lines
as shown. (b) PBE+U phonon density of states, projected on the MnZn defect in CaZnOS,
compared to the experimentally obtained phonon energies. The uncertainties on the ex-
perimental energies were used as bandwidth in this plot.

the irrep E for light which is polarized perpendicular to the threefold rotation axis.
Additional contributions can originate from mixing with higher-lying excited states
through the odd part of the crystal field (see §4.3).

The shape of an emission or excitation band is given by 3.18. It shows how many
quanta, i.e. phonons of every vibrational mode, are created or annihilated during the
transition. The vibrational fine structure was well-resolved in the low temperature
emission spectrum in Fig. 10.4. The different phonon lines are not equidistant,
implying that the spectrum is multiphononic in nature (Fig. 10.7(a)). For this reason,
the standard Huang-Rhys theory for vibronic transitions involving one vibrational
mode in the harmonic approximation is not directly applicable. Liu et al. have
proposed an extension of the low temperature limit of this theory for multiphonon
vibronic spectra [438] inspired by the observation by Bron and Wagner that both
local and lattice modes can couple to electronic transitions [439–441]. The spectral
shape of an emission band is then given by the sum of two contributions:

I(E) = I0,loc

∑
Nk

· · ·
∑
N1

 k∏
i=1

e−Si
SNii
Ni !

 (10.2)

×
E0 −

∑k
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Table 10.5 – Optimized parameters for the vibronic line shape function for the emission
spectrum of CaZnOS:Mn.

mode frequency (cm−1) S σ (cm−1)

ω1 108.5± 0.4 0.96± 0.03 13.9± 0.3
ω2 137.2± 0.5 0.71± 0.03 13.9± 0.3
ω3 201.4± 0.2 1.33± 0.02 13.9± 0.3
Ω 131± 44 1.6± 0.6 500± 197

The first term reflects the low-temperature limit of Eq. 3.18 in the absence of Duschin-
sky effects and contains the contributions of the k different local modes with suitable
symmetry labels, characterized by frequency ωi and electron-phonon coupling Si
(see §3.1, 3.2.2 and 3.4.3). This term contains harmonic lines as well as lines orig-
inating from frequency mixing between the different modes. The lines are broad-
ened by a Gaussian shape function f (E;µ;σ ), centered at µ and having a width σ .
E0 denotes the energy of the ZPL. The second term originates from the coupling of
Frank-Condon allowed modes to lattice acoustic modes [438]. This is modeled by a
single average lattice phonon frequency Ω, coupled to all allowed local modes with
an effective Huang-Rhys parameter SΩ and a broad density of phonon modes, yield-
ing σΩ� σ [438]. The second term ensures a good fit of the broad band underlying
the fine structure.

It was possible to get a reasonable fit when three vibrational modes were taken into
account in the first term of Eq. 10.2. The result is shown in Fig. 10.7(a) and the
obtained phonon energies summarized in table 10.5. Statistical analysis of the per-
formed fit reveals a strong correlation between the parameters belonging to the aver-
age mode Ω, SΩ and σΩ, which corrupts an accurate determination of these param-
eters. On the other hand, the parameters belonging to the local vibrational modes
can be determined with a good accuracy (Tab. 10.5).

As a means of comparison, the phonon density of states was calculated for the
PBE+U optimized supercell in the Γ -point to identify the modes corresponding to
an isolated Mn defect. Upon projecting this phonon DOS on the Mn defect, Fig.
10.7(b) is obtained. In this figure, the experimental phonon energies from the Mn2+

emission spectrum (Tab. 10.5) are added. This comparison shows that the three
experimental modes indeed correspond to peaks in the phonon DOS with less than
10 cm−1 deviation, which is in line with previously documented accuracy of Γ -point
phonon frequency predictions [442–444]. The modes corresponding to the other
peaks in the phonon DOS might contribute to the luminescence spectrum as well,
but extracting them from the fit, Eq. 10.2, is impossible without overparameteriza-
tion.
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10.2.3 Energy level scheme
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Figure 10.8 – Complete energy level scheme,
combining the results obtained with the differ-
ent theories. The blue, green and red lines rep-
resent the potential energy surfaces involving
localized excitations of the 3d5 manifold with
respectively S = 5/2, S = 3/2 and S = 1/2, while
the dashed orange line is the lowest energy level
belonging to the ligand-to-metal charge trans-
fer, i.e. by adding a valence electron of the host’s
anions to the Mn defect, and the grey line rep-
resents the continuum of excitations across the
host’s band gap, forming an electron-hole pair
without affecting the local structure of the Mn
defect.

Figure 10.8 summarizes the results of
the above sections. It represents the
total energy of the complete system,
i.e. the 3d valence electrons of the
Mn dopant, as well as all the nu-
clei and electrons that make up the
host material and interact with the
optical dopant. The complementar-
ity of DFT (yielding the transition en-
ergy and geometric relaxation of a
charge-transfer), CFT (yielding the ex-
citation energies of the intraconfigura-
tional 3d5 transitions), and the anal-
ysis of the electron-phonon coupling
(yielding different equilibrium geome-
tries for the different eigenstates), is
demonstrated. The curvatures of
the potential energy surfaces were
obtained from the phonon energies,
while the relative offsets were deter-
mined from the experimental Stokes
shifts. One should be aware that this
figure is a simplified representation of
reality. This was proven by the quan-
titative analysis of the vibronic struc-
ture of the emission spectrum, indi-
cating at least three and possibly more
involved phonon modes of the defect
cluster, and thus requiring a higher-
dimensional energy diagram. Further-
more, only the location of the lowest
energy LMCT state is indicated. In
reality, this excited configuration fea-
tures numerous multiplets, similar to
any other electron configuration. The energy level scheme was projected on two
normal modes, Q1 and Q2, the former dominant for intraconfigurational 3d5 tran-
sitions, the latter dominant for the LMCT. Both normal modes are not necessarily
linearly independent and possibly feature different curvatures of the PES. The grey
band indicates the creation of an electron-hole pair in the CaZnOS host itself. It
is assumed that this excitation does not interact with the Mn impurity, allowing to
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simply copy the ground state parabola to the energy for exciton creation1.

As this diagram is obtained by a combination of experimental and computed pa-
rameters, it should be regarded as a semi-quantitative tool for the interpretation
of experiments. A fully quantitative version of the diagram, including all pos-
sible vibrational modes can be obtained from multireference calculations such as
CASSCF/CASPT2. The assets of these theoretical techniques were demonstrated by
multiple authors, yielding a deeper understanding of specific materials [98–102].
Yet, a lot of user-experience is required for these techniques, provisionally hamper-
ing a large-scale in-depth analysis of functional materials [97]. The semi-empirical
configurational coordinate diagram in Fig. 10.8 was constructed in an attempt to
offer a more attainable alternative. It was recently shown by multireference calcu-
lations that empirical configurational coordinate diagrams are reliable tools to de-
scribe intervalence charge transfers (IVCT) in particular compounds [445].

Although simplified, this sole many-particle picture explains all the physics that
was discussed in detail in the above sections, without the need for ambiguous dia-
grams displaying both single-particle and multiplet levels. Furthermore, it explains
additional physics which is not covered by separate band diagrams or 3d5 multi-
plets. Figure 10.8 shows why no emission is to be expected from the CT level. If the
system is excited to this level by absorbing a photon of suitable energy, it is immedi-
ately followed by a non-radiative cascade of energy via the 4G multiplets towards the
emitting 4G(4T1) level because of the potential energy surfaces crossing (see §3.4.4).
No additional thermal energy is required for this, excluding CT emission also at
low temperature. In general, the excited state landscape is crowded, implying that
non-radiative multiphonon emission towards the emitting level is to be expected,
regardless which level of the 3d5 manifold is reached by photon absorption. The en-
ergy level scheme allows to estimate activation temperatures of thermally assisted
processes as potential barrier heights can be extracted. The latter possibility is of
great importance in the study of phenomena where energy is stored in the material
such as mechanoluminescence. The relative location of energy levels can indicate the
channels through which the system can rearrange its charge carriers. Specifically, an
overlap between localized excited states of the activator and mobile excited states
such as excitons have to be looked for. The diagram shows that the energy surface
of the 3d5 4F multiplets around 4.0 eV show overlap with the energy surfaces of the
excited states of the host compound. This indicates that mechanoluminescence will
only be caused upon excitation with light of sufficient high energy, reaching these
particular levels.

1In literature, this grey band is sometimes referred to as the conduction band. This is however a
confusing designation as the grey band in Fig. 10.8 features many-body states while the conduction band
is a notion from single-particle band theory, i.e. the collection of empty orbitals (see chapter 5).
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10.2.4 Red LED phosphor

Recent cost, environmental and supply issues for the rare earth elements have trig-
gered a tendency to develop LED phosphors which are rare-earth free. In this con-
text, it makes sense to evaluate CaZnOS:Mn2+ for an application as red LED phos-
phor. Duan et al. have suggested this possibility based on the relatively intense
intraconfigurational 3d5 transitions in the excitation spectrum at room temperature
(see Fig. 10.4(a)) [406]. Here, we compare the performance of the CaZnOS:Mn2+

phosphor with that of different alternative red-emitting materials with respect to
the necessary conditions that were outlined in §1.4.

A

TQ

LER

CQS

color 
purity

-flux

Sr2Si5N8:Eu2+

CaAlSiN3:Eu2+

CaYAl3O7:Eu3+

K2SiF6:Mn4+

CaZnOS:Mn2+

Figure 10.9 – Performance of CaZnOS:Mn2+

as LED phosphor for lighting or displays, com-
pared with the benchmarks Sr2Si5N8:Eu2+

and CaAlSiN3:Eu2+, the rare-earth free
phosphor K2SiF6:Mn4+ and line-emitter
CaYAl3O7:Eu3+. The indication ”A” scales
with the absorptance of blue light while ”TQ”
scales with the maximum temperature up
to which the external quantum efficiency of
the phosphor stays constant. γ-flux gives a
measure for the maximum excitation intensity
where no saturation effects occur. ”LER” and
”CQS” scale with the luminous efficacy of the
radiation of the phosphor’s emission and the
color quality scale of a white LED based on
this phosphor (combined with a blue pump
LED and the yellow phosphor YAG:Ce3+). Fi-
nally, the indication ”color purity” scales with
the transmission of the phosphor’s emitted
light through display color filters, tuned to the
recent Rec. 2020 recommendation [16].

As a benchmark, the commercially
available, europium based nitrides
Sr2Si5N8:Eu2+ [288, 289, 291] and
CaAlSiN3:Eu2+ [446] are used. Here,
the broadband emission originates from
parity allowed, interconfigurational
4f65d1→4f7 electric dipole transitions.
As rare earth free alternative, we se-
lect the manganese based phosphor
K2SiF6:Mn4+, which is frequently dis-
cussed in literature [126, 128]. In this
material, the intraconfigurational 3d3

transitions of the Mn4+ ion are re-
sponsible for the luminescence, yield-
ing narrow line emission, rather than
the broadband emission of the 3d5 con-
figuration of Mn2+ (see also §4.5.1). For
completeness, a phosphor based on the
Eu3+ ion, showing intraconfigurational
4f6 transitions is added as Eu3+ based
phosphors are often suggested for LED
applications, despite their difficult exci-
tation with near-UV to blue light [447].
To evaluate CaZnOS:Mn2+, a powder
with a doping concentration of 4% was
selected, as the highest quantum effi-
ciency upon direct excitation of the 3d5

manifold was reported for this concen-
tration [415]. The internal quantum ef-
ficiency of the materials is not used in
this comparison as this depends largely
on the synthesis conditions and it can be safely assumed that there are no funda-
mental restrictions for any of these materials at room temperature, as deduced from
the high temperatures at which thermal quenching sets in (see §1.4).
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Fig. 10.9 shows the performance of the selected phosphors on the enumerated
points. It is immediately clear that the absorption strength of blue light (A) is still
too low for CaZnOS:Mn2+, even for the relatively high doping concentration of 4%,
compared to the Eu2+ based benchmark materials. This is the same problem which
also Eu3+ based phosphors are known to suffer. If this problem could be overcome,
for instance by codoping with a suitable sensitizer, the color point of CaZnOS:Mn2+

is ideal for using it in addition to Y3Al5O12:Ce3+ to create warm-white LEDs with
high color rendering, quantified by the color quality scale (CQS) [352], while keep-
ing the luminous efficacy of the radiation (LER) at an acceptable level. The emission
spectrum of CaZnOS:Mn2+ is less suitable for display applications as too much color
filtering is necessary to achieve the Rec. 2020 standard for the red primary color [16].
Mn4+ based phosphors are more suited for this purpose, provided that their absorp-
tion strength can also be increased. The phosphors based on Mn2+, Mn4+ and Eu3+

suffer from saturation effects at moderate photon fluxes, given their slow decay due
to the forbidden intraconfigurational transitions. Applying a remote phosphor LED
design can circumvent this problem to a certain extent.

10.2.5 Thermoluminescence and mechanoluminescence

Thermoluminescence (TL) is a valuable tool to evaluate the density and depth of the
traps involved in energy storage processes. Quite often, a TL study is performed af-
ter illumination with a single wavelength or with a broad spectral distribution (e.g.
from a Xe discharge lamp). Studying the wavelength dependency of the trap filling
can however provide relevant information on the trapping routes [266, 448, 449].

Here, TL glow curves were obtained after exciting the CaZnOS:Mn phosphor in its
various excitation bands. The results are shown in Fig. 10.10 and correspond to ex-
citation by intraconfigurational 3d5 transitions (at 500 nm and 440 nm to the crystal
field levels of the 4G and 4D terms respectively), the ligand-to-metal charge transfer
(at 328 nm) and fundamental absorption in the CaZnOS host (at 280 nm). The four
TL profiles were rescaled in order to make the high-temperature tail coincide. The
absolute intensities of the different profiles differ over three orders of magnitude
and are shown in the inset.

Upon inspection of the TL results, some features immediately stand out. The nature
of the traps that can be reached upon nonlocal or local excitation is clearly different,
as evidenced by the different TL profiles after fundamental absorption (280 nm) on
the one hand and after local excitation of the MnZn defect, be it through the LMCT
(328 nm) or 3d5-3d5 transitions (440 nm and 500 nm), on the other hand. Traps
that are in the near vicinity of the MnZn defect give rise to rather narrow TL bands,
peaking around 240 K, 350 K while more shallow traps can be adressed after funda-
mental absorption, corresponding to a TL band peaking at 125 K and two broader
TL bands that span the full temperature range.

Furthermore, the trapping efficiency differs significantly between the different routes,
corresponding roughly to a factor of 40 between nonlocal traps and local traps that
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Figure 10.10 – Thermoluminescence (TL) profiles of CaZnOS:Mn upon excitation with
various wavelengths at 75 K, obtained by heating the phosphor at 10 ◦C/min. The TL
profiles were normalized such that the high-temperature tails coincided. The absolute
intensities of the integrated TL profiles are shown on a logarithmic scale in the bar di-
agram in the inset. The data points display the mechanoluminescence intensity as a
function of the temperature of the thermal cleaning of the CaZnOS:Mn sample before
applying pressure, indicating up to which level traps are emptied. The horizontal line
serves as a guide to the eye.

are reached after LMCT absorption (see inset of Fig. 10.10). As it was ensured that
the phosphor was saturated after the charging, the effects of the different excitation
fluxes and excitation efficiencies at the different wavelengths are not expected to ac-
count for the observed intensity difference. This indicates that the traps which are
significant for the TL behavior are found close to the MnZn defect and that charging
is most effectively done through charge transfer excitation. This also implies that
when the electronic structure of the traps which are responsible for TL are studied,
one ideally has to consider defect clusters, accounting the MnZn defect as well as the
nearby intrinsic (or extrinsic) defect in the same computation. Defect clusters after
all yield a different local electronic structure than individual defects as evidenced by
the different TL curves in Fig. 10.10 and various computational and experimental
studies [100, 199, 450, 451].

In order to investigate whether the same (local) traps are responsible for the thermo-
luminescence and the mechanoluminescence (ML), the intensity of the latter was
recorded as a function of the temperature of a thermal cleaning in between the
charging (by a Hg lamp) and the application of pressure. During the thermal clean-
ing, the sample is heated to a specified temperature, emptying occupied traps up
to an associated depth. In this way it is possible to study the connection between
the traps involved in ML and those in TL. For this, the CaZnOS powder was fixated
in a silicon resin. These measurements were performed by scratching the films and
simultaneously collecting the emitted light. The reproducibility of this measure-
ment procedure was validated and the associated uncertainty estimated at 10% of
the measured intensity.

The result is shown by the data points in Fig. 10.10. Within the experimental ac-
curacy, the ML intensity remains constant in the available temperature range, i.e. a
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bright mechanoluminescence is still observed after the CaZnOS:Mn phosphor was
kept at 470 K for a significant time. This implies that the traps which are responsible
for the ML in CaZnOS:Mn have a different nature than the traps that are responsi-
ble for the TL or that the ML mechanism itself is different, in contrast to previous
assumptions [274, 417, 452]. Extending current experiment to higher temperatures
might reveal the true origin of the mechanoluminescence.

The ML emission spectrum was found to be identical to the PL emission spectrum.
This implies that the ML emission is the result of the 3d5 4G(4T1) → 3d5 6S(6A1)
transition as described in §10.2.2 and is opposed to the finding in [417] that the
emission is due to an electron transfer from an isolated V′ZnO Schottky defect to an
isolated Mn••Zn defect.

Its resistance to high working temperatures is a unique feature of CaZnOS:Mn2+

which is absent for alternative ML phosphors such as BaSi2O2N2:Eu2+ or SrAl2O4:Eu2+,
Dy3+, unlocking potential technological applications for CaZnOS:Mn under circum-
stances where the more traditional ML phosphors cease to work.

10.3 Conclusions

This chapter featured a combined experimental-theoretical investigation of the in-
sulating material CaZnOS and the luminescent material CaZnOS:Mn2+. A single-
particle band diagram and a many-particle multiplet energy level scheme of the Mn
defect were constructed and discussed.

CaZnOS shows a rather low formation energy of 39 meV and -16 meV, calculated
with respect to the experimental precursors ZnS and CaO, for PBE and PBE+U re-
spectively, confirming the experimental finding that it is hard to prepare phase-pure
CaZnOS powders.

The optical band gap of 4.27 eV makes CaZnOS a suitable compound to host optical
dopants. DFT calculations and XAS measurements were used to show that man-
ganese occupies a zinc site in the inorganic host, forming a neutral Mn×Zn defect.
Band diagrams and the associated impurity levels were obtained from defect for-
mation energies, calculated for large supercells. The thermodynamic impurity level
(0/−) is formed in the forbidden band of CaZnOS, predicting a charge transfer tran-
sition, which was spectroscopically verified in the expected energy range.

The experimental low-temperature photoluminescence spectrum was well-resolved,
allowing a precise determination of the multiplet energies of the 3d5 electron con-
figuration. An effective crystal field Hamiltonian was fitted to the experimental
spectrum yielding a small deviation of only 198 cm−1 upon inclusion of the spin-
correlated crystal field.
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Three local phonon energies could be accurately extracted from the low tempera-
ture emission spectrum, which were reproduced by the PBE+U calculation within
10 cm−1.

A critical feasibility analysis of the potential of CaZnOS:Mn2+ for the use as red
phosphor in white LEDs was performed. As red LED phosphor, this materials cannot
achieve the high standards set by the red-emitting Eu2+ doped nitrides. Especially
the low absorption strength, intrinsic to the forbidden nature of the luminescence
transition, is an important issue.

Thermoluminescence glow curves were obtained upon charging through the differ-
ent features in the excitation spectrum. This shows that different types of traps are
addressed when exciting the host itself or locally at the activator site. Furthermore,
the excitation band which was attributed to the ligand-to-metal charge transfer by
the DFT study turns out to be a very efficient route for trapping and subsequent
thermoluminescence.

Given that a thermal treatment up to 473 K does not influence the ML response, it
is concluded that the underlying mechanism is different from the mechanism un-
derlying the TL behavior, rejecting the prior assumption that the same traps are
responsible for ML as for the TL peaks around 400 K. The ML is hence governed by
deeper traps, which can be local or nonlocal, or by a completely different mechanism
that is yet to be resolved.

This case study demonstrated that a correct interpretation of different types of en-
ergy level schemes can improve current understanding of luminescent materials and
processes, paving the way for discovering new functional materials through thought-
ful engineering.
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Summary

Conclusions

This dissertation features an investigation of inorganic luminescent materials, acti-
vated by transition metal or lanthanide impurities. These materials, which are in this
context referred to as phosphors, form a key building block of white LEDs, a tech-
nology that has already revolutionized, and will continue to revolutionize, electric
lighting in terms of functionality, design and consumption. LED technology is not
limited to lighting, it improves display technology in terms of color gamut, contrast
and user experience. In this work, phosphors are developed, investigated and op-
timized for either lighting or display applications, the former requiring broadband
emission, guaranteeing a pleasant light source providing a good color rendering,
the latter requiring narrow emission, allowing displays with a superior color range.
Next to this spectral condition, five other requirements have to be fulfilled simul-
taneously before a material can be considered as a good candidate for applications.
These are described in chapter 1.

Given the different requirements that have to be validated for every candidate-material
and the huge number of possible combinations between the available activator ions
and thinkable host materials, an urge has originated for a thoughtful engineering of
materials. Two different strategies are explored in this dissertation, i.e. computa-
tional methods, calculating properties of luminescent materials in different mathe-
matical formalisms and rules, and the mining of scientific literature in the hope to
excavate the luminescent material one was searching for. Both strategies require few
or no experimental input.

Computational methods can be rooted in a strong theoretical framework, being con-
structed by the careful inspection of empirically found trends and correlations or
find itself into the spacious gray zone in between both extremes. No matter which
computational technique is applied, it is of great importance to know exactly which
assumptions are made, implicit or explicit, their impact on the predicted physical
properties and the uncertainties or systematic errors that are to be expected. Energy
level schemes are the computational tools that stand out to describe luminescent
properties and happen to be intrinsic quantum mechanical concepts. For this rea-
son, it is endeavored in the first chapters of this work to give a detailed description
of how different luminescence phenomena, be them desirable or undesirable for ap-
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plications, can be understood in terms of quantum mechanical theory. Chapter 2
offers the theoretical basis by illuminating those aspects of the theory of light, mat-
ter and their interaction to understand spectroscopic experiments with phosphors.
Chapter 3 builds on this by focusing on the matter part. Very useful approximations
are introduced, allowing to consider the nuclear and electronic motion separately
to a certain extent. The nuclear motion governs the microscopic dynamics that
are associated with luminescent properties such as spectral shapes, Stokes shifts,
temperature-dependence and non-radiative decay of excited states, while the elec-
tronic motion is responsible for the luminescent transitions themselves.

To describe the electronic motion which is associated with luminescent transitions,
two different types of energy level schemes exist, i.e. single-particle and many-
particle schemes. Whatever theoretical framework or computational technique one
uses, the resulting energy level scheme will always be one of these two. Chapters 4
and 5 discuss respectively the relevance of many-particle and single-particle energy
level schemes in the study of luminescent materials.

Crystal field theory is used to explain the use of many-particle or multiplet schemes
in chapter 4. In simplified terms, this theory starts from the atomic states of the
activator ion and regards the host crystal as a perturbation. A Python program was
developed, allowing crystal field calculations for the electron configuration that are
relevant in the study of phosphors. This chapter is rather extensive, allowing to cast
a look under the hood of the Python code and appreciating the assumptions and lim-
itations of crystal field theory. The theory is illustrated and the developed program
validated by applying it to the emblematic Dieke diagram and the Tanabe-Sugano
diagrams for lanthanide and transition metal ions respectively. Both diagrams can
be considered as historical landmarks. Of more recent relevance are the excited
4fN−15d1 configurations of lanthanide ions which are essential in many LED phos-
phors. Many-particle schemes are constructed for the currently relevant LED phos-
phor K2SiF6:Mn4+, explaining its peculiar decay behavior and to the well-known
afterglow material SrAl2O4:Eu2+, explaining the origin of a somewhat mysterious
blue emission which is only present at low temperatures.

In chapter 5, band theory is explained as an example of a single-particle theory. It
is addressed how defects alter the properties in a perfect crystal structure by in-
troducing discrete levels into the band gap of the host material. For certain types
of impurities, these impurity single-particle levels give a good idea of the lumines-
cence properties, while for the activators that are of interest in this work, the single-
particle description intrinsically fails due to electron correlation. In order to stick
to the single-electron picture, a generalization of impurity levels, called charge-state
transition levels, is introduced, attaching meaning to impurity levels of highly cor-
related activators. Density functional theory is discussed with the goal to calculate
charge-state transition levels, while illuminating the limitations of the technique
and focusing on the meaning of the obtained results. Finally, luminescent transi-
tions involving single-particle states of both the host and activator ion are discussed.
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During the last 40 years, several empirical methods and relationships were devised
for constructing single-particle schemes, containing the charge-state transition lev-
els of lanthanide defects in wide band gap solids. Chapter 6 reviews these empir-
ical rules and explains the notable systematic in lanthanide spectroscopy. Up to
now, an unbiased assessment of the accuracy of the obtained values of the calcu-
lated parameters is still lacking to a large extent. To address this issue, error mar-
gins for calculated electronic and optical properties are deduced. It is found that
optical transitions can be predicted within an acceptable error margin, while the
description of phenomena involving conduction band states is limited to qualita-
tive interpretation. This is due to the large error margins for physical observables,
such as thermal quenching temperature, corresponding to standard deviations in
the range 0.3-0.5 eV for the relevant energy differences. As an example, the elec-
tronic structure of CaGa2S4:LnQ+ is determined, taking the experimental spectra
of LnQ+ = Ce3+, Eu2+ and Tm3+ as input. Two different approaches to obtain the
shape of the zig-zag curves connecting the 4f levels of the different lanthanides are
explored and compared. When these empirical rules are applied, it is implicitly
assumed that all lanthanide ions form isostructural defects. However, in practice,
multiple nonequivalent defects related to the same lanthanide can occur or different
lanthanides can even incorporate in different ways. The consequences of these com-
plications on the impurity energy levels are discussed. It seems that small structural
differences around the lanthanide dopant can give rise to important spectral differ-
ences in its emission. These are not always clearly reproduced by the charge-state
transition level schemes. Improvements to the existing procedure are suggested, po-
tentially decreasing the uncertainties, which are then applied to the lanthanide ions
in the host crystals SrAl2O4, Sr2Si5N8 and SrGa2S4.

In the second part of this dissertation, multiple phosphors are selected based on re-
ports in scientific literature describing promising luminescent properties. In these
chapters, it is described how the phosphors are prepared and it is validated to which
extent the technological requirements are fulfilled. To investigate the quantum ef-
ficiency of the phosphors in a quantitative way, next to the more traditional experi-
mental techniques, a setup with an integrating sphere was designed, purchased and
characterized (see chapter 7).

The luminescence properties of the blue emitting phosphor Sr0.25Ba0.75Si2O2N2:Eu2+

are extensively investigated and compared to other members of the europium doped
MSi2O2N2 oxonitridosilicates in chapter 8. This phosphor features strong 4f65d1↔
4f7 luminescence originating from the Eu2+ ion, with a narrow emission band peak-
ing at 467 nm and a full width at half maximum (FWHM) of only 41 nm. Thermal
quenching of the blue luminescence only sets in above 450 K, making this mate-
rial an interesting candidate as LED conversion phosphor. The fast decay of the
luminescence prevents the phosphor to be susceptible to saturation effects at high
excitation fluxes. Furthermore it is proven to be chemically stable against moisture.
The only drawback is the relatively low quantum efficiency of the synthesized pow-
der, provisionally preventing this material to be used in applications. In addition,
the phosphor features a weak yellow emission band, originating from small domains
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featuring a different crystal structure. It is shown that the majority of the powder
grains only exhibit blue emission. Finally, the spectrum of a white LED, based on
a UV pumping LED and three (oxo)nitridosilicate phosphors is simulated in order
to assess the usefulness of blue phosphors in LEDs for lighting. Only a marginal
improvement in terms of color quality can be achieved with a narrow banded phos-
phor, at the expense of a decrease in luminous efficacy and overall electrical to opti-
cal power efficiency.

Subsequently, in chapter 9, the interesting class of thiogallate and thioaluminate
host materials is considered. From the general overview of their properties upon
doping with divalent europium, two thiogallates, SrGa2S4 and ZnGa2S4 are selected
for further investigation. The luminescent properties of Sr1−xEuxGa2S4 phosphors
are studied over a wide dopant concentration range (x = 0.01-0.3) as function of tem-
perature. The phosphors show a saturated green emission over the entire studied
range, with a typical peak wavelength around 536 nm and a FWHM of 50 nm. The
internal quantum efficiency is 71% for x = 0.04. For this concentration, the emission
intensity at 400 K is still 90% of the intensity at room temperature. By measuring
both decay and thermal quenching profiles as a function of europium concentration,
the emission properties can be explained on the basis of the local environment of the
europium ions in the lattice. As SrGa2S4:Eu2+ achieves a very good score with re-
spect to the technological requirements, a fully optimized powder is used to deliver
a proof-of-concept remote phosphor white LED, suitable for display applications.
The red component is provided by CdSe/CdS quantum dots and different remote
hybrid phosphor layers are prepared, featuring different stacking geometries of the
green and red components. The optimized white LEDs show favorable properties
such as internal quantum efficiencies in the 75-80% range, high luminous efficacies
and saturated primary colors. The different stacking geometries provide a means to
select the most cost-efficient layer design given the relative cost of the green powder
and red quantum dot components.

The second europium doped thiogallate which is studied is ZnGa2S4:Eu2+. This
material has been reported as a saturated green emitting phosphor, suitable as con-
version phosphor in white LEDs for lighting or displays. No direct proof for the
incorporation of Eu2+ in ZnGa2S4 has however been given. Here, X-ray diffraction
(XRD), cathodoluminescence in electron microscopy (SEM-CL) and X-ray absorp-
tion spectroscopy (XAS) are combined to study the incorporation of the europium
ions in the host material. The previously reported green luminescence was found to
originate from small amounts of unintentionally formed EuGa2S4, and not from eu-
ropium ions incorporated into ZnGa2S4. EuGa2S4 has a low quantum efficiency (<
20%) and shows strong thermal quenching, already below room temperature. The
XAS data analysis suggests that a certain amount of europium might occupy octahe-
dral voids inside the zinc thiogallate lattice in a divalent state. The zinc ion next to
these interstitial dopants is then removed for charge compensation. Notwithstand-
ing the possible, but limited, incorporation of Eu2+ in ZnGa2S4, these ions do not
activate any luminescence as was shown with SEM-CL.
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The final chapter, chapter 10, features a combined experimental-theoretical study
of the luminescent material CaZnOS:Mn2+. This compound features orange broad-
band luminescence, peaking at 612 nm, originating from intraconfigurational 3d5

transitions within the Mn2+ ion. DFT calculations at PBE+U level and X-ray absorp-
tion spectroscopy indicate that the Mn impurity is incorporated on the Zn site in a
divalent charge state. The electronic structure of the MnZn defects is obtained by two
complementary techniques. On the one hand, impurity levels in the band diagram,
i.e. the single-particle energy level scheme, are obtained from defect formation en-
ergies calculated with PBE+U . On the other hand, the excited state landscape of
the Mn2+ 3d5 electron configuration is assessed through the spin-correlated crystal
field, yielding the multiplets, i.e. the many-particle energy level scheme, of the opti-
cal dopant. Experimental photoluminescence spectra at room and low temperature
are analyzed in detail and a good correspondence is found between the calculated
energy levels and the experimental transition energies. The electron-phonon in-
teraction is investigated from the luminescence spectra showing that at least three
different vibrational modes are active in the transition. These are also found in the
Mn-projected phonon density of states. This case study demonstrates how physical
information can be extracted from the two complementary, but different types of
energy level schemes. The CaZnOS:Mn2+ phosphor is finally evaluated for the use
as red phosphor in white LEDs. Despite its favorable emission spectrum, the forbid-
den nature of the intraconfigurational 3d5 transitions yield a much too low external
quantum efficiency.

Perspectives

It is clear that white LEDs, and the conversion phosphors being an essential part of
it, will remain relevant technologies in the future and will continue to consolidate
their increasing market share in lighting and display markets. Although an incredi-
ble advantage has already been achieved on the phosphor point-of-view, going from
cold white YAG:Ce3+-based LEDs towards two- or three-phosphor LEDs with a well-
balanced color, incremental improvements can still be expected in the future.

In this work, phosphors based on different types of activator ions were investigated,
largely inspired by the unstable prices of lanthanides precursors. Straightforward
alternatives for the dipole allowed 4fN ↔ 4fN−15d1 transitions of Ce3+ and Eu2+

are the dipole forbidden intraconfigurational 4fN or 3dN transitions of respectively
lanthanides and transition metals. A huge drawback of both transitions is their for-
bidden nature, prohibiting an efficient excitation with blue pump light, making it
difficult to achieve the required values for the absorption around 80%. The external
quantum efficiency is hence limited by the selection rules. Sensitizing these ions by
another absorbing ion is a straightforward solution, potentially showing high inter-
nal and external quantum efficiency, at least in theory. Up to now, no convincing
lanthanide-free system exploiting this strategy can be found. An alternative from
this series which is possibly viable is the tetravalent Mn ion, Mn4+. Recent reports
indicate that this ion seems to suffer less from a low external quantum efficiency
than its fellow 3d ions. Future research, and specifically critical feasibility studies,
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have to be performed to unambiguously assess whether this small ion can dethrone
the dominant lanthanide ions. Until then, the ultimately color-tunable divalent eu-
ropium ion, Eu2+ is still the king.

Regarding energy level modeling, novel empirical rules can be expected, comple-
menting the existing empirical rules for lanthanide, transition metal or s2 ions.
These rules might relate properties of ions of different groups or limit the required
experimental input even further. Despite that, a rational footnote should however
be made that the most obvious empirical rules have probably already been found.
Critically scrutinizing the data used to construct the existing rules might decrease
the uncertainty of predictions to some extent, although no wonders can be expected
from this angle.

From the quantum mechanical side, progress is to be expected especially from the
high-level-of-theory side. The limitations pertaining to computational resources be-
come less problematic due to rapidly increasing computer power. A large-scale com-
putational screening of dopant-host combinations can hence be expected in the near
to mid-long term. A fundamental restriction of density functional theory remains
however the inability to describe excited states. Possibly more important, the most
complete computational techniques, such as multireference calculations, will be-
come more standard to interpret spectroscopic experiments, potentially leading to
new insights into functional materials.

In general, despite what is often claimed, designing novel functional materials with
well-defined properties, solely from the computational drawing board is currently
still far away. The reason for this is not only the barrier of computational cost, but
also the error margins of computational results which are still largely exceeding the
stringent restrictions by technological requirements. This pertains to essentially all
computational techniques with predictive potential. The distance in energy between
blue and red light is after all only 850 meV, a tiny energy interval which contains all
colors of the rainbow!
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Samenvatting

Conclusies

Deze verhandeling bestaat uit een onderzoek naar anorganische lichtgevende of lu-
minescente materialen die geactiveerd worden door transitiemetaal- of lanthanide-
onzuiverheden. Deze materialen, die in deze context vaak fosforen genoemd wor-
den, zijn een belangrijk onderdeel van witte leds, een technologie die revolutionair
is gebleken voor elektrische verlichting op het vlak van functionaliteit, ontwerp en
verbruik. De technologie van witte leds is echter niet beperkt tot verlichting, maar
behelst ook beeldschermtechnologie waar belangrijke verbetering op het vlak van
kleurgamma, contrast en gebruikservaring werden geboekt. In dit werk worden
fosforen ontwikkeld, onderzocht en geoptimaliseerd voor het gebruik in verlich-
ting of beeldschermen. Verlichting noodzaakt brede emissiebanden opdat het licht
als aangenaam wordt ervaren en de kleuren van belichte objecten correct worden
weergegeven. Beeldschermen vereisen daarentegen smalle emissiebanden teneinde
een superieur kleurengamma te verkrijgen. Naast deze spectrale voorwaarden, kun-
nen nog vijf andere voorwaarden opgesteld worden waaraan een fosfor tegelijkertijd
moet voldoen vooraleer in aanmerking te komen voor toepassingen. Specifiek moet
de fosfor een hoge absorptie hebben voor het blauwe of nabij-UV pomplicht, ge-
tuigen van een hoge conversie-efficiëntie die stabiel blijft bij hogere temperaturen,
een voldoende snel luminescent verval vertonen opdat sublineare gedrag bij ver-
hoogde excitatie-intensiteiten vermeden wordt en chemisch stabiel zijn over lange
tijdspannes. Deze voorwaarden worden beschreven in hoofdstuk 1.

Gegeven deze zes noodzakelijke voorwaarden en het enorme aantal dopant-gastma-
teriaalcombinaties dat moet worden gevalideerd, bestaat er een zekere noodzaak
voor een voor een bedachtzaam ontwerp van deze functionele materialen. Twee
verschillende aanpakken worden gebruikt in deze thesis, namelijk computationele
technieken waarbij eigenschappen van fosforen berekend worden in verschillende
formalismes en regels en het ontginnen van de talrijke wetenschappelijke literatuur
in de hoop het luminescente materiaal met de perfecte eigenschappen te vinden. Het
voordeel van beide technieken is dat ze weinig experimentele inbreng vergen.

Computationele technieken kunnen wortelen in een sterke theoretische basis, maar
evengoed ontworpen zijn door met veel zin voor detail te zoeken naar empirische
trends in een groot aantal experimentele studies. De grijze zone tussen deze ex-
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tremen puilt bovendien uit van de beschikbare technieken. Ongeacht welke com-
putationele techniek men verkiest, is het belangrijk om exact te weten welke aan-
names - die zowel impliciet als expliciet kunnen zijn - gemaakt worden, wat hun
weerslag is op de fysische eigenschappen die voorspeld worden en met welke on-
zekerheden en systematische fouten deze voorspellingen gemaakt worden. Ener-
gieniveauschema’s zijn de computationele hulpmiddelen bij uitstek voor de studie
van luminescente materialen. Aangezien energieniveauschema’s intrinsiek kwan-
tummechanische concepten zijn, wordt in de eerste hoofdstukken gepoogd om een
gedetailleerde beschrijving te geven van hoe de verschillende luminescente fenome-
nen, zowel de wenselijke als de te vermijden fenomenen, kunnen begrepen worden
vanuit de kwantummechanica. Hoofstuk 2 geeft een theoretische basis door de as-
pecten die relevant zijn voor spectroscopische experimenten uit de theorie van licht
en materie te belichten. Hoofdstuk 3 bouwt hierop verder door de nadruk te leggen
op het materie aspect. Nuttige benaderingen worden ingevoerd die toelaten om de
nucleaire en elektronische bewegingen tot op zekere hoogte apart te behandelen.
De beweging van de atoomkernen geeft aanleiding tot de microscopische dynamica
die wordt geassocieerd met luminescente eigenschappen zoals spectrale vormen, de
Stokesverschuiving, temperatuursafhankelijkheid en het niet-radiatief verval van
aangeslagen toestanden. De beweging van de elektronen worden daarentegen ve-
rantwoordelijk geacht voor de luminescente transities zelf en wordt verder bespro-
ken in de volgende hoofdstukken.

Om de elektronische beweging te beschrijven bestaan er twee soorten energieniveau-
schema’s, namelijk ééndeeltjes- en veeldeeltjesenergieschema’s. Ongeacht welk theo-
retisch kader of welke computationele techniek men gebruikt, het resulterende ener-
gieniveauschema zal steeds tot één van beide categorieën behoren. Hoofdstukken 4
en 5 bespreken de relevantie van respectievelijk veeldeeltjes- en ééndeeltjes-
energieschema’s in de studie van luminescente materialen.

Kristalveldtheorie wordt gebruikt om het gebruik van veeldeeltjesenergieschema’s of
multipletschema’s toe te lichten in hoofdstuk 4. Eenvoudig gesteld gaat deze theorie
uit van de atomaire toestanden van het activatorion en beschouwt ze het gastkristal
als verstoring van deze toestanden. Een Pythonprogramma werd ontwikkeld dat
kristalveldberekeningen kan uitvoeren voor de elektronconfiguraties die voorkomen
in luminescente materialen. Dit hoofdstuk is redelijk uitgebreid met als dubbel doel
een blik te werpen onder de motorkap van het Pythonprogramma en een beter idee
te krijgen van de aannames en beperkingen van kristalveldtheorie. De theorie wordt
geı̈llustreerd en het computerprogramma gevalideerd aan de hand van het symbo-
lische Dieke diagram en de Tanabe-Suganodiagrammen, beide historische mijlpalen
in het onderzoek naar lanthaniden en transitiemetalen. Van meer recent belang zijn
de aangeslagen 4fN−15d1 configuraties van lanthanide-ionen die essentieel zijn voor
de werking van veel ledfosforen. Veeldeeltjesschema’s worden opgesteld voor de
ledfosfor K2SiF6:Mn4+ en helpen om het afwijkende vervalgedrag van deze fosfor te
verklaren. Energieschema’s worden eveneens opgesteld voor de bekende nalichtfos-
for SrAl2O4:Eu2+ om de oorsprong van een mysterieuze blauwe emissie, die enkel
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zichtbaar is op lage temperatuur, te achterhalen.

In hoofdstuk 5 wordt de theorie van energiebanden uiteengezet als voorbeeld van
een ééndeeltjestheorie. Er wordt geı̈llustreerd hoe defecten de eigenschappen van
perfecte kristallen kunnen beı̈nvloeden door discrete energieniveaus in de verbo-
den zone van het gastmateriaal te genereren. Voor bepaalde types van onzuiver-
heden geven de ééndeeltjesonzuiverheidsniveaus een goede beschrijving van de lu-
minescente eigenschappen, terwijl dit niet het geval is voor de activatoren die in
dit werk onderzocht worden. Hierbij faalt de ééndeeltjesbeschrijving fundamenteel
door de manifeste elektroncorrelatie. Om het ééndeeltjesmodel toch niet helemaal
af te danken, wordt er een veralgemening van onzuiverheidsniveau geı̈ntroduceerd,
met name de ladingstoestandtransitieniveaus, die ook betekenis hebben voor de
sterk gecorreleerde metaalonzuiverheden. Dichtheidsfunctionaaltheorie wordt be-
sproken met als doel om ladingstoestandtransitieniveaus te berekenen. De beper-
kingen van de techniek worden besproken en de nadruk wordt gelegd op de beteke-
nis van de oplossingen van deze theorie. Tenslotte worden luminescente transities
besproken waarbij zowel ééndeeltjestoestanden van de activator als het gastmateri-
aal betrokken zijn.

Tijdens de laatste 40 jaar werden verschillende empirische methodes en relaties
vooropgesteld die toelaten om ééndeeltjesenergieschema’s met ladingstoestandtran-
sitieniveaus voor lanthanidedefecten in gastmaterialen te construeren. Hoofdstuk 6
geeft een overzicht van deze empirische regels en gaat verder in op de opmerkelijke
systematiek die teruggevonden wordt in de optische spectra van lanthaniden. Tot
dusver ontbrak het aan een objectieve onzekerheidsanalyse van de fysische groothe-
den die berekend worden met deze empirische regels. Om hieraan tegemoet te
komen, worden foutenmarges afgeleid voor de berekende elektrische en optische
eigenschappen. Er wordt bevonden dat optische transities met een aanvaardbare
foutenmarge kunnen worden voorspeld terwijl de beschrijving van fenomenen waar-
bij conductiebandtoestanden betrokken zijn beperkt wordt tot kwalitatieve interpre-
taties door de grote foutenmarges in de fysische grootheden. Zo worden bijvoorbeeld
temperaturen voor thermische uitdoving voorspeld met een foutenmarge van 0.3-
0.5 eV in de geassocieerde energiebarrière. Ter illustratie van de empirische regels
wordt de elektronische structuur van CaGa2S4:LnQ+ bepaald, gebruik makende van
de experimentele spectra van LnQ+ = Ce3+, Eu2+ en Tm3+. Twee verschillende aan-
pakken om de vorm van de zig-zagcurves die de 4f ladingstoestandtransitieniveaus
verbinden worden vergeleken. Bij het toepassen van deze empirische regels wordt
het impliciet verondersteld dat de lanthanide-ionen isostructurele defecten vormen.
In de praktijk is het echter al gebleken dat hier niet altijd aan voldaan wordt en
dat verschillende niet-equivalente defecten horend bij hetzelfde lanthanide kunnen
voorkomen of dat zelfs verschillende lanthaniden zich verschillend gedragen met
betrekking tot incorporatie in de kristalstructuur. De gevolgen van de complicaties
op de onzuiverheidsniveaus worden besproken. Het blijkt zo te zijn dat kleine struc-
turele verschillen rond de dopant aanleiding kunnen geven tot belangrijke spectrale
verschillen, voornamelijk in het emissiespectrum. Deze verschillen worden vaak
niet duidelijk teruggevonden in de ladingstoestandtransitieniveaus. Verbeteringen



248

in de bestaande procedure worden voorgesteld en toegepast op de gastmaterialen
SrAl2O4, Sr2Si5N8 en SrGa2S4. De voorgestelde aanpassingen kunnen mogelijks een
verkleining van de onzekerheden op de empirische regels tot gevolg hebben.

In het tweede deel van deze thesis worden verschillende fosforen geselecteerd op
basis van de wetenschappelijke literatuur waarin beloftevolle luminescente eigen-
schappen worden beschreven. In deze hoofstukken wordt beschreven hoe deze ma-
terialen worden gesynthetiseerd en in welke mate zij voldoen aan de technologische
voorwaarden. Om naast de standaard experimentele technieken ook de kwantu-
mefficiënties van fosforen kwantiatief te bestuderen, werd een opstelling met een
integrerende sfeer ontworpen, aangeschaft en gekarakteriseerd (zie hoofstuk 7).

De luminescente eigenschappen van de blauw emitterende fosfor
Sr0.25Ba0.75Si2O2N2:Eu2+ wordt uitgebreid onderzocht en vergeleken met de andere
leden van de europium gedoteerde MSi2O2N2 oxonitridosilicaten in hoofdstuk 8.
Deze fosfor vertoont sterke 4f65d1 ↔ 4f7 luminescentie door het Eu2+ ion met een
smalle emissieband die piekt bij 467 nm en een piekbreedte (FWHM) van slechts 41
nm heeft. Thermische uitdoving van de blauwe emissie start pas boven 450 K wat dit
materiaal een interessante kandidaat-ledfosfor maakt. Het snelle verval van de lu-
minescentie voorkomt dat verzadigdingseffecten zullen optreden bij hoge excitatie-
intensiteiten. Bovendien is dit materiaal chemisch stabiel in een vochtige omgeving.
Het enige bezwaar tegen dit materiaal is de relatief lage kwantumefficiëntie van het
gesynthetiseerde poeder. Dit verhindert voorlopig de toepassing. Bovendien ver-
toont dit materiaal een bijkomende, evenwel zwakke, gele emissieband. Deze vindt
zijn oorsprong in kleine domeinen met een andere kristalstructuur. Niettemin verto-
nen de meeste poederdeeltjes uitsluitend blauwe emissie. Tenslotte wordt het spec-
trum van een witte led, gebaseerd op een UV pompled en drie (oxo)nitridosilicaatfos-
foren gesimuleerd om de zin of onzin van blauwe fosforen in leds voor verlichting
te valideren. Enkel een marginale verbetering in kleurkwaliteit kan bereikt worden
met een smalbandige blauwe fosfor en dit ten koste van een afname in visueel ren-
dement en elektro-optische efficiëntie.

Vervolgens wordt in hoofdstuk 9 de interessante klasse van de thiogallaat en thioalu-
minaat gastmaterialen beschouwd. Uit het algemene overzicht van hun eigenschap-
pen bij europiumdotering worden twee gastmaterialen, SrGa2S4 en ZnGa2S4 uit-
gekozen voor een verder studie. De luminescente eigenschappen van de
Sr1−xEuxGa2S4 fosforen worden bestudeerd voor een breed interval van dopantcon-
centraties (x = 0.01-0.3) in functie van de temperatuur. De fosforen vertonen een
verzadigde groene emissie voor alle concentraties met een typische piekgolflengte
van 536 nm en een FWHM van 50 nm. De interne kwantumefficiëntie is 71% voor
x = 0.04. Bij deze europiumconcentratie is de intensiteit bij 400 K nog steeds 90%
van de intensiteit bij kamertemperatuur. Door zowel het vervalgedrag als de ther-
mische uitdoving te meten als functie van de europiumconcentratie kunnen de emissie-
eigenschappen uitgelegd worden op basis van de lokale omgeving van de
europiumionen in het kristalrooster. Vermits SrGa2S4:Eu2+ een goede score haalt
op de technologische voorwaarden, wordt een volledige geoptimaliseerd poeder ge-
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bruikt om een experimenteel ontwerp van een witte led voor beeldschermen te maken
waarbij de fosforen op een zekere afstand van de blauwe ledchip zitten. Als rode
component worden CdSe/CdS kwantumstippen gebruikt. Hiermee worden verschil-
lende hybride fosforlagen gemaakt met een verschillende stapeling van groen en
rood. De geoptimaliseerde leds vertonen gunstige eigenschappen zoals een interne
kwantumefficienties van 75-80%, een hoog visueel rendement en verzadigde pri-
maire kleuren. De verschillende stapelingen laten toe om een kostenefficiënt ont-
werp van de luminescente laag te kiezen, ingegeven door de huidige prijzen van de
groene poederfosfor en de rode kwantumstippen.

Het tweede europium gedoteerd thiogallaat dat bestudeerd wordt is ZnGa2S4:Eu2+.
Dit materiaal is gerapporteerd als een verzadigd groene fosfor en geschikt als con-
versiefosfor voor witte leds in beeldschermen en verlichting. Rechtstreeks bewijs
voor de incorporatie van Eu2+ in ZnGa2S4 is evenwel niet beschikbaar. In dit werk
worden X-straaldiffractie (XRD), kathodeluminescentie in een rasterelektronenmi-
croscoop (SEM-CL) en X-straalabsorptiespectroscopie (XAS) gecombineerd om de
incorporatie van het europium te bestuderen. Er wordt gevonden dat de eerder
gerapporteerde groene emissie het gevolg is van kleine hoeveelheden ongewenst
EuGa2S4 dat gevormd wordt en niet van europiumionen in ZnGa2S4. EuGa2S4 heeft
een lage kwantumefficiëntie (< 20%) en vertoont een sterke thermische uitdoving
die al actief is onder kamertemperatuur. De analyse van de XAS data suggereert dat
een zeer kleine hoeveelheid Eu2+ mogelijks octaëdrische holten in de ZnGa2S4 struc-
tuur opvult. Een zinkion verdwijnt dan in de buurt van het interstitieel omwille van
de ladingscompensatie. Niettegenstaande de mogelijke, doch beperkte incorporatie
van Eu2+ in ZnGa2S4, activeren deze ionen geen enkele luminescentie zoals werd
aangetoond met SEM-CL.

In het laatste hoofdstuk, hoofdstuk 10 wordt een gecombineerd experimentele-
theoretische studie toegelicht naar het luminescente materiaal CaZnOS:Mn2+. Dit
materiaal vertoont een oranje breedbandemissie die piekt bij 612 nm en die afkom-
stig is van intraconfigurationele 3d5 transities binnenin het mangaanion. DFT-bere-
keningen op PBE+U niveau en X-straalabsorptiespectroscopie tonen aan dat de Mn-
onzuiverheid inbouwt op een Zn-site in een divalente ladingstoestand. De elektroni-
sche structuur van het MnZn defect wordt beschreven aan de hand van twee comple-
mentaire technieken. Enerzijds worden ladingstoestandtransitieniveaus in de verbo-
den zone berekend, dus een ééndeeltjesenergieschema opgesteld met PBE+U . An-
derzijds wordt het landschap van geëxciteerde multipletten van de Mn2+ 3d5 config-
uratie bestudeerd via het spin-gecorreleerde kristalveld waardoor een veeldeeltjes-
energieschema bekomen wordt. Experimentele fotoluminescentiespectra bij kamer-
en lage temperatuur worden in detail geanalyseerd en een goede overeenkomst tus-
sen de berekende en experimentele energieniveaus wordt bekomen. De elektron-
fononkoppeling wordt bestudeerd aan de hand van de luminescentiespectra en min-
stens drie verschillende vibrationele modes die actief zijn tijdens de transitie wor-
den gedestilleerd. Dezelfde vibrationele modes worden ook gevonden in de Mn-
geprojecteerde fonontoestandsdichtheid. Deze studie toont aan hoe fysische infor-
matie kan worden verkregen uit de twee complementaire, maar verschillende types
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energieschema’s. CaZnOS:Mn2+ wordt uiteindelijk geëvalueerd als rode fosfor in
witte leds. Ondanks het gunstige emissiespectrum verhindert de lage externe kwan-
tumefficiëntie van de intraconfigurationele 3d5 transities de toepassing van dit ma-
teriaal in witte leds.

Perspectieven

Het is duidelijk dat witte leds, en de conversiefosforen die hier een essentieel deel
van uitmaken, een relevante technologie zullen blijven en een groeiende aandeel van
de verlichtings- en beeldschermmarkten zullen consolideren. Hoewel er reeds een
ongeloofelijke vooruitgang werd geboekt vanuit het fosforstandpunt, waarbij koud-
witte YAG:Ce3+-gebaseerde leds vervangen werden door twee- of driefosforleds met
een goed gebalanceerde kleur, kunnen er nog incrementale verbeteringen verwacht
worden in de toekomst.

In dit werk werden fosforen die gebaseerd zijn op verschillende types activatorionen
onderzocht, voornamelijk ingegeven door de onstabiele prijzen van de lanthaniden.
Voor de hand liggende alternatieven voor de dipool-toegelaten 4fN ↔ 4fN−15d1 tran-
sities van Ce3+ en Eu2+ zijn de dipool-verboden intraconfigurationele 4fN en 3dN

transities van respectievelijk lanthaniden en transitiemetalen. Een groot nadeel van
deze beide transities is hun verboden karakter dat een hoge excitatie-efficiëntie met
blauw licht, overeenkomstig met gewenste absorpties rond 80%, verhindert. De ex-
terne kwantumefficiëntie wordt dus beperkt door de selectieregels. Een voor de
hand liggende oplossing is het sensiteren van deze ionen door het toevoegen van
een bijkomend, absorberend ion. Op die manier worden potentieel hoge interne en
externe kwantumefficiënties gehaald, ten minste in theorie. Vooralsnog bestaat er
geen overtuigend lanthanide-vrij systeem dat deze strategie toepast. Een alternatief
uit deze reeks dat mogelijks haalbaar is, is het tetravalente Mn-ion, Mn4+. Recente
rapporten suggereren dat dit ion minder last lijkt te hebben van een lage externe
kwantumefficiëntie dan de andere 3d ionen. Kritische haalbaarheidsstudies moeten
ondubbelzinnig kunnen aantonen of dit kleine ion de dominante lanthanide-ionen
van de troon kan stoten. Tot dan blijft het Eu2+ ion, met zijn uniek kleurenpalet,
koning.

Aangaande energieniveaumodellering kunnen nieuwe empirische regels nog ver-
wacht worden die de bestaande regels voor lanthaniden, transitiemetalen en s2 ionen
aanvullen. Deze regels zullen mogelijks eigenschappen van ionen uit verschillende
reeksen relateren of de benodigde experimentele invoer verder beperken. Naast deze
stelling moet echter een rationele voetnoot geplaatst worden, namelijk dat het re-
delijk is om aan te nemen dat de meest toegankelijke empirische regels al gevon-
den zijn. Het kritisch onder de loep nemen van de bestaande data kan mogelijks
de bestaande regels enigszins verfijnen en dus de onzekerheden van voorspellingen
verkleinen. Hiervan mogen echter ook geen wonderen verwacht worden.

Vanuit kwantummechanische zijde kan nog enige vooruitgang verwacht worden,
meer specifiek van de dieper gewortelde theoretische kaders die aanleiding geven
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tot complexere berekeningen, met dank aan de toenemende rekenkracht. Een groot-
schalige computationele doorlichting van grote aantallen dopant-gastrooster com-
binaties kan bovendien ook verwacht worden op de korte tot middellange termijn.
Een fundamentele beperking van dichtheidsfunctionaaltheorie blijft wel het onver-
mogen om aangeslagen toestanden correct te beschrijven. Wat misschien interes-
santer is, is dat de meest complete computationele technieken zoals multireferen-
tieberekeningen meer standaard zullen worden en dat hierdoor de interpretatie van
spectroscopische experimenten gefaciliteerd kan worden en vermoedelijk aanlei-
ding kan geven tot frisse, nieuwe inzichten.

In het algemeen, en in tegenstelling tot wat vaak beweerd wordt, ligt het compu-
tationeel ontwerpen van nieuwe functionele materialen met vooraf gedefinieerde
eigenschappen nog niet binnen handbereik. De reden hiervoor is niet enkel de
barrière van de computationele kost, maar voornamelijk de strenge restricties die de
technologische voorwaarden vooropstellen. De afstand in energie tussen blauw en
rood licht is immers maar 850 meV, een zeer klein energie-interval dat alle kleuren
van de regenboog bevat!
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List of abbreviations

AOM angular overlap model
BLYP Becke-Lee-Yang-Parr
BSE backscattered electrons
CASSCF complete active space self-consistent field
CASPTn complete active space perturbation theory (nth order)
CB conduction band
CCD charge-coupled device
CCF correlation crystal field
CCFL cold cathode fluorescent lamp
CF crystal field
CFP coefficient of fractional parentage
CFS crystal field splitting
CFT crystal field theory
CI configuration interaction
CIE Comité Internationale de l’Eclairage
CL cathodoluminescence
CN coordination number
CRT cathode ray tube
CT charge transfer
CTM charge transfer multiplet
DFT density functional theory
E1 electric dipole (transition)
E2 electric quadrupole (transition)
EBU European Broadcasting Union
ECSO electrostatically correlated spin-orbit
ECM exchange charge model
EDX energy-dispersive X-ray spectroscopy
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EL electroluminescence
EPR electron paramagnetic resonance
EXAFS extended X-ray absorption fine structure
FC Franck-Condon
FFT fast Fourier transform
FWHM full width at half maximum
GGA generalized gradient approximation
HF Hartree-Fock
HRBE host referred binding energy
HRTEM high resolution TEM
HS high spin
ICCD intensified CCD
ICSD inorganic crystal structure database
IPM independent particle model
IR infrared
irrep irreducible representation
ITE impurity trapped exciton
IUPAC International Union of Pure and Applied Chemistry
IVCT intervalence charge transfer
KS Kohn-Sham
LC liquid crystal
LCD liquid crystal display
LDA local density approximation
LED light-emitting diode
LFDFT ligand field DFT
LFT ligand field theory
LMCT ligand to metal charge transfer
LS low spin
M1 magnetic dipole (transition)
ML mechanoluminescence
MLCT metal to ligand charge transfer
MMCT metal to metal charge transfer
mp many-particle
NTSC National Television Standards Committee
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PAW projector-augmented wave
PBE Perdew-Burke-Ernzerhof
PCEM point charge electrostatic model
pc-LED phosphor-converted LED
PES potential energy surface
PL photoluminescence
PXRD powder X-ray diffraction
RGB red-green-blue
SALC symmetry adapted linear combination
SCCF spin-correlated crystal field
SE secondary electrons
SEM scanning electron microscopy
SM superposition model
SO spin-orbit
SOO spin-other-orbit
sp single-particle
SS spin-spin
TDDFT time-dependent DFT
TEM transmission electron microscopy
TL thermoluminescence
TM transition metal
tp two-particle
UV ultraviolet
VASP Vienna Ab Initio Simulation Package
VB valence band
VIS visual
VRBE vacuum referred binding energy
VUV vacuum UV (λ < 200 nm)
XAS X-ray absorption spectroscopy
XANES X-ray absorption near edge structure
XRD X-ray diffraction
YAG yttrium aluminium garnet
ZPL zero-phonon line
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A Group theory

Modern physics, and more specific quantum mechanics, has an intimate connec-
tion with the mathematical machinery of group theory. This appendix enumerates
the aspects of group theory which are most important for the application to the spec-
troscopy of metal impurities. The symmetry group of the Hamiltonian is established
and it is shown how group theory offers meaningful labels for the physical states of
the system under study.

This chapter is mainly based on the following books:

• A. Frank, J. Jolie and P. Van Isacker. Symmetries in atomic nuclei: from isospin to
supersymmetry. Springer, New York, 2008.

• R. Penrose. The road to reality - A complete guide to the laws of the universe.
Alfred A. Knoph, New York, 2005 .

• G. B. Arfken and H. J. Weber. Mathematical methods for physicists. Elsevier,
2005.

A.1 Definitions

A group, G, is a mathematical concept, constructed of several elements, g1, . . . , gn
which can be combined with the multiplication ◦, satisfying following conditions:

• Closure: gi ◦ gj ∈ G.

• Associativity: (gi ◦ gj ) ◦ gk = gi ◦ (gj ◦ gk).

• Unity element: gi ◦E = E ◦ gi = gi .

• Inverse element: gi ◦ g−1
i = g−1

i ◦ gi = E.

A group is therefore not necessarily commutative. The latter is examined through
the group commutator, g1g2g

−1
1 g−1

2 , which yields E for a commutative group. Com-
mutative groups are also known as Abelian groups, after the tragically short-lived
Norwegian mathematician Niels Henrik Abel [453].
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The number of elements, n, can be finite, countable finite or uncountable finite,
yielding finite, infinite discrete and continuous groups respectively. In the last case,
which is often referred to as Lie groups1, a set of algebraically defined and con-
tinuously varying parameters a = a1, . . . , ar can be used to represent the group el-
ements2. In this work, both discrete groups, describing the symmetry of crystals,
and Lie groups, describing atomic states, are required. In the case of finite groups,
the number of elements n is called the order of the group, while for Lie groups, the
order refers to the number of parameters, r.

A group G can be mapped onto/into another group G′ . This is formally written
down by φ for which g ′ = φ(g). Some special mappings are important and have
hence received a distinct name. If a mapping is bijective, i.e. one-to-one, it is said
to be faithful and the inverse mapping can be defined. When φ conserves the group
multiplication, φ(gi ◦gj ) = φ(gi)◦φ(gj ), it is called a homomorphism. An isomorphic
mapping is a homomorphism which is also faithful.

A group G can contain a subgroup H , denoted as H ⊂ G. Here, H is composed of a
selection of elements of G which fulfill the group axioms for the same multiplication
and inversion operation as G. A subgroup is called normal when each element of G
commutes with all the elements of H .

A.2 Symmetry and quantum mechanics - representa-
tion theory

Assume that a physical system is invariant for a group G of symmetry operations gi .
These can be geometrical symmetries, such as rotations, translations or reflections,
but are not restricted to these. For instance, the operation of charge conjugation,
where each particle is replaced by its anti-particle is also a symmetry for certain sys-
tems. Another example of a non-geometrical symmetry is the gauge symmetry of
electromagnetic theory (see §2.2.1). These symmetry operations are quantum me-
chanically encoded as unitary transformation in the Hilbert space, mapping a state
vector onto another state vector. Unitarity of U is required as the norm of state
vectors is conserved during the symmetry operations.:

|Ψ ′〉 =U (gi) |Ψ 〉. (A.1)

If a basis for the Hilbert space is introduced, |ψi〉, each symmetry operation can be
represented by a matrix:

U (gi) |ψn〉 =
∑
m

[Γ (gi)]mn |ψm〉. (A.2)

These matrices necessarily fulfill the group axioms:

Γ (gi ◦ gj ) = Γ (gi)Γ (gj ), (A.3)

1Named after the Norwegian, 19th century mathematician Sophus Lie.
2All possible rotations along a fixed axis form a Lie group, parametrized by the rotation angle. For all

rotations in 3D space, three parameters are required, e.g. the Euler angles.
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where the group multiplication is simply the matrix multiplication. The dimension
of these matrices is equal to the dimension of Hilbert space, while the order of the
matrix group equals the order of G. In general, a group of matrices that satisfy Eq.
A.2 are called a matrix representation, or in short a representation of the group G. A
representation is at least homomorphic with G. When the mapping is isomorphic in
addition, the representation is called faithful. The different types of matrix groups
are discussed in §A.3.3. Often, the symbol of the matrix group is used to denote the
associated group for which the representations are studied.

Representations which are connected through a similarity transformation3 are con-
sidered as equivalent. If a representation can be brought into block diagonal form
upon a similarity transformation, it is said to be reducible:

Γ ′ = S−1Γ S =


Γ1 0 · · ·
0 Γ2 · · ·
...

...
. . .

 = Γ1 ⊕ Γ2 ⊕ . . . , (A.4)

with 0 matrices containing only zeros. The direct sum, ⊕, was introduced to sim-
plify notation. By reducing representations, Hilbert space is divided in invariant
subspaces for the group operations U (gi). If a group operation works on a state vec-
tor in an invariant subspace, the result will necessarily be a linear combination of
the states in the same invariant subspace. If a representation cannot be brought into
block diagonal form, it is called an irreducible representation, abbreviated as irrep.

Consider a physical observable, given by the operator A, with eigenvalues an,

A|ψn〉 = an |ψn〉. (A.5)

The eigenstates of A can be used as basis for the Hilbert space, which is divided in
invariant subspaces, the different eigenspaces of A, corresponding to the different
eigenvalues. If it is further assumed that the commutators of the observable A and
the operations of G vanish:

[A,U (gi)] =AU (gi)−U (gi)A = 0, ∀i, (A.6)

it is found that:
AU (gi) |ψn〉 = anU (gi) |ψn〉. (A.7)

So, U (gi) |ψn〉 and |ψn〉 have the same eigenvalue and they therefore are part of the
same invariant subspace. In most physical problems, the operator for which the
spectrum is inspected, is the Hamiltonian, A = H. With a similar argument, it is
easy to show that if the commutator of two operators vanishes, they can be diago-
nalized simultaneously.

Summarized, Hilbert space is divided in several invariant subspaces which form ir-
reducible representations of the symmetry group G. The states within the invariant

3Γ ′ = S−1Γ S, with S an invertible matrix.
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subspace correspond to the same eigenvalue of the considered operator, i.e. the en-
ergy in typical quantum mechanical problems. The irreps of the symmetry groups
can in other words be used to label the energy eigenvalues of the Hamiltonian and
the eigenfunctions of the Hamiltonian within each eigenspace can be used as basis
for the representation spaces. Every basis function or partner is characterized by a
so-called row index, denoted γ . The degeneracy of the eigenvalue is then given by
the dimension of the associated representation space.

These results are very useful when the effect of symmetry lowering on the energy
eigenvalues is studied. A representation which is irreducible for a group G does
not necessarily remain irreducible when the symmetry is lowered to H ⊂ G. When
the representation has to be reduced, the invariant subspaces of G are divided in
new invariant subspaces of H . This is associated with a lifting of degeneracy in the
eigenvalues. Group theoretical arguments can consequently be used to predict the
degeneracies of physical eigenstates. This is fully exploited in chapter 4.

The direct or Kronecker product of representations is an often encountered con-

struction. When ψ(1)
n and ψ(2)

k are the basis functions of two representations, Γ1 and
Γ2 of a group G and are considered to be linearly independent, e.g. depending on
different variables, the direct product representation is found from:

U (gi)( |ψ
(1)
n 〉 |ψ

(2)
k 〉) =

∑
m

[Γ1(gi)]mn |ψ
(1)
m 〉


∑
l

[Γ2(gi)]lk |ψ
(2)
l 〉


=

∑
ml

[Γ (gi)]ml, nk |ψ
(1)
m 〉 |ψ

(2)
l 〉 (A.8)

where Γ is the direct product of Γ1 and Γ2 and is itself a representation of G:

Γml, nk = (Γ1 ⊗ Γ2)ml, nk = Γ1, mn Γ2, lk . (A.9)

The product representation is in general reducible, also when it is composed of ir-
reps.

A.3 Lie groups and Lie algebra’s

A.3.1 Generators

The elements of continuous or Lie groups, g(a), are uniquely defined by a set of r
continuously varying real parameters, a = a1, . . . , aµ, . . . , ar . The identity corre-
sponds to a = 0, E = g(0). The number of parameters, r, is called the order of the
group. Lie’s treatment of continuous groups focuses on the local structure of the
group, by means of a set of infinitesimal group elements which define a kind of al-
gebra. This Lie algebra contains all information on the local structure of the group,
although not necessarily all information of the global structure of the group. How-
ever, the latter is generally of less importance for physics applications.
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Consider that a matrix I + Γ [g(δa)] represents an infinitesimal operation g(δa) of the
continuous group G, with δa a small parameter. The product of two infinitesimal
operations is given by:

U (g(δa)) ◦U (g(δb)) → (A.10)

(I + Γ [g(δa)])(I + Γ [g(δb)]) = I +
(
Γ [g(δa)] + Γ [g(δb)]

)
+ Γ [g(δa)]Γ [g(δb)].

If the term of second order in the small matrices is ignored, the group multiplication
g(δa)g(δb) is represented by the sum Γ [g(δa)] + Γ [g(δb)]. This is problematic if the
group is non-Abelian, as matrix summation is commutative. For this, the group
commutator is evaluated by inserting the geometric series4:

U (g(δa)) ◦U (g(δb)) ◦U (g−1(δa)) ◦U (g−1(δb)) →
(I + Γ [g(δa)])(I + Γ [g(δb)])(I + Γ [g(δa)])−1(I + Γ [g(δb)])−1

= I +
(
Γ [g(δa)]Γ [g(δb)]− Γ [g(δb)]Γ [g(δa)]

)
= I +

[
Γ [g(δa)], Γ [g(δb)]

]
(A.11)

where the commutator in its quantum mechanical disguise is found. In this context,
it is referred to as the Lie bracket. The Lie algebra g is constructed by the repeated
application of addition, subtraction, scalar multiplication and the Lie bracket op-
eration. The Lie algebra has the structure of a linear vector space, it closes under
commutation. If a basis is chosen for the Γ [g(δa)]’s, denoted as Xµ, one has:

[
Xµ,Xν

]
=

r∑
σ=1

cσµνXσ , (A.12)

which describes the structure of the Lie algebra. The numbers cσµν and the basis
vectors Xµ are called respectively the structure constants and the generators of the
Lie algebra. The Lie bracket satisfies following properties:

• Bilinearity:
[
αXµ + βXν ,Xσ

]
= α

[
Xµ,Xσ

]
+ β

[
Xν ,Xσ

]
(α, β ∈ C) .

• Alternativity:
[
Xµ,Xµ

]
= 0.

• Jacobi identity:
[
Xµ,

[
Xν ,Xσ

]]
+
[
Xν ,

[
Xσ ,Xµ

]]
+
[
Xσ ,

[
Xµ,Xν

]]
= 0.

• Antisymmetry:
[
Xµ,Xν

]
= −

[
Xν ,Xµ

]
These properties put restrictions on the values of the structure constants. A finite
element of the Lie group can be constructed from the elements of the Lie algebra by
the exponential map:

U (gi(a)) =
∞∑
i=0

1
i!

r∑
µ=1

(
aµXµ

)i
= exp i

r∑
µ=1

aµXµ, (A.13)

4(I + Γ [g(δa)])−1 = I − Γ [g(δa)] + Γ [g(δa)]2 − Γ [g(δa)]3 + . . .
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where the basis vectors are chosen according to:

Xµ =
∂U (g(a))
∂aµ

∣∣∣∣∣∣
aµ=0

, (A.14)

which is the more appropriate form of the expressions that introduced this para-
graph. Because of Eq. A.13, the Xµ’s are called the generators of the Lie group. This
shows that the study of representation theory of continuous groups can be largely
transferred to the study of the representations of Lie algebras, which is common
practice in physics because the Lie algebra’s matrices are usually simpler than the
Lie group’s matrices and satisfy linear rather than nonlinear restrictions. For this
reason, the designations Lie group and Lie algebra are often interchanged. Interest-
ingly, the Lie generators can be proven to be hermitic and often have a direct physical
interpretation (see e.g. §A.3.5).

A.3.2 Root figures

It proves to be insightful to elaborate on the Lie algebra by performing a well-chosen
basis transformation. Graphical representations of the Lie algebra are constructed
which can be exploited to find the irreps and their partners of the Lie group.

First, a maximal set of mutually commuting generators are searched for, which are
denoted as Hi and called the Cartan generators,[

Hi ,Hj
]

= 0 (i = 1 . . .m < r). (A.15)

The order of this subalgebram is called the rank of the original Lie algebra. From Eq.
A.15, it follows that the Hi ’s can be simultaneously diagonalized implying that their
eigenvalues can be used to label the partners of a given irrep. The m-dimensional
vectors that are found by combining the eigenvalues of the Cartan generators are
referred to as weight vectors and they form the so-called weight diagram. The m-
dimensional vector space is called weight space. A weight (h1, . . . ,hm) is higher than
another weight (h′1, . . .h

′
m) when the first nonzero hi − h′i is positive, starting at i = 1.

According to the theory of semi-simple groups5, an irrep is unambiguously labeled
by its highest weight. The weights themselves can be used to label the different part-
ners that belong to the irrep.

Second, the remaining generators of the Lie algebra are used to construct raising
and lowering operators. Within Lie group theory it can be shown that all remaining
generators are used for this. The obtained linear combinations are denoted as Eα
and are referred to as the Weyl generators. They satisfy by definition:

[Hi ,Eα] = αiEα (i = 1 . . .m < r, α = 1 . . . r −m) (A.16)

5A Lie group is simple when it possesses no non-trivial normal subgroups, it is semi-simple when its
Lie-algebra is the direct sum of simple Lie algebras.
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and the m-dimensional vectors composed of the αi are called the root vectors, form-
ing the root figure in the m-dimensional root space. A root figure can be considered
as a graphical representation of the Lie algebra.

Along with the Cartan and Weyl generators, the Casimir operators, Gi , are also de-
fined. These operators commute with the full Lie algebra and it can be shown that
the number of Casimir operators equals the rank of the Lie algebra. The first Casimir
operator is a bilinear function of the generators, while the other have a more compli-
cated form. The Cartan generators and the Casimir operators all mutually commute,
implying that their eigenvalues can be used to label a general eigenfunction:

Hi |g1 . . . gm, h1 . . .hm〉 = hi |g1 . . . gm, h1 . . .hm〉 (A.17)

Gi |g1 . . . gm, h1 . . .hm〉 = gi |g1 . . . gm, h1 . . .hm〉 (A.18)

From the definition of the Weyl generators, Eq. A.16, it follows that they indeed
behave as raising/lowering operators:

HiEα |g1 . . . gm, h1 . . .hm〉 = (EαHi + [Hi ,Eα]) |g1 . . . gm, h1 . . .hm〉
= (hi +αi)Eα |g1 . . . gm, h1 . . .hm〉

⇔ Eα |g1 . . . gm, h1 . . .hm〉 ∝ |g1 . . . gm, h1 +α1 . . .hm +αm〉. (A.19)

In summary, the eigenvalues of the Casimir operators can be used to label the irre-
ducible representations, while the eigenvalues of the Cartan generators can be used
to label the partners of the irrep. The Weyl generators are raising and lowering op-
erators that allow to change from one partner to another within the same irrep.

A.3.3 Matrix groups

In this paragraph, some subgroups of the general linear group of degree n, GL(n)
are enumerated. GL(n) is the group of all invertible n × n matrices with the matrix
multiplication as group multiplication. These matrices can be defined over a field of
choice such as the real or complex numbers. Some interesting subgroups of GL(n)
are:

• Special linear group SL(n). The matrices of GL(n) for which the determinant is
one.

• Orthogonal group O(n). The matrices of GL(n) for which the inverse matrix
equals the transposed matrix: OT =O−1 or OkiOkj = δij which implies detO =
±1. Orthogonal transformations preserve the inner product and can represent
either rotations or reflections in the n-dimensional space Rn.

• Special orthogonal group SO(n). The matrices of O(n) for which the determi-
nant is one. Only the n-dimensional rotations are left.

• Unitary group U(N ). The matrices of GL(n) for which the inverse matrix equals
the hermitian conjugate matrix: U† =U−1 orU ∗kiUkj = δij which implies detU =
eiφ. Obviously, the unitary group is defined over the field Cn.
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• Special unitary group SU(n). The matrices of U(n) for which the determinant
is one.

• Symplectic group Sp(n). The matrices of GL(n) which preserve the non-singular
antisymmetric matrix

M =

 0 In/2
−In/2 0

 ,
i.e. STMS = M. As M can only be non-singular for even n, odd n values are
excluded.

The associated semi-simple Lie algebras sl(n + 1), so(2n + 1), sp(2n) and so(2n) are
often alternatively denoted as Am, Bm, Cm and Dm respectively. Here, the degree is
written such that n is the rank of the Lie algebra. In addition to these four classes,
five exceptional Lie algebras, associated with the groups E6, E7, E8, F4 and G2, are
found to complete the enumeration of the semi-simple Lie algebras over the complex
numbers.

A.3.4 Noether’s theorem

To conclude the general discussion on continuous symmetries, we take a step back
to physics. Consider that the Hamiltonian features a continuous symmetry. Then
Eq. A.13 can be filled in Eq. A.6 to obtain[

A,Xµ
]

= 0 (∀µ). (A.20)

This means that when a physical system is invariant for a continuous symmetry
group, the Hamiltonian commutes with the generators of the group. Another impor-
tant result can be derived upon calculating the time dependence of the expectation
value of the generator by means of the time-dependent Schrödinger equation6:

d
dt
〈Ψ |Xµ |Ψ 〉 = 〈Ψ |

∂Xµ
∂t
|Ψ 〉+ i

~
〈Ψ |

[
H,Xµ

]
|Ψ 〉. (A.21)

If the generator is not explicitly time dependent, the first term vanishes. If further-
more the generator corresponds to the symmetry group of H, the second term also
vanishes because of the above result and the quantity to which Xµ corresponds is
a constant of motion for the physical system. The fact that a quantity is conserved
when its operator commutes with the Hamiltonian is known as Ehrenfest’s theorem.
The more profound result that for every continuous symmetry of a physical system,
a conserved quantity can be found is known as Noether’s theorem.

6i~d |Ψ 〉
dt =H|Ψ 〉.
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A.3.5 Spherical symmetry

Angular momentum algebra

Consider a system which shows spherical symmetry. This means that rotations, R,
form the symmetry operations of the group:

r′ = R(α,β,γ)r. (A.22)

When applied on a function of the spatial coordinates,

U (R)(α,β,γ)f (x,y,z) = f ′(x,y,z) = f (x′ , y′ , z′). (A.23)

Rotations in three-dimensional space can be specified by three angles, e.g. the Euler
angles. Consider here the simplified case of an infinitesimal rotation about the z
axis,

Rz(δφ) = lim
φ→δφ


cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 =


1 δφ 0
−δφ 1 0

0 0 1

 (A.24)

yielding

U (Rz)(δφ)f (x,y,z) = f (x+ yδφ,y − xδφ,z)

= f (x,y,z) + δφ
[
y
∂
∂x
− x ∂

∂y

]
f (x,y,z)

= (1− iδφLz)f (x,y,z) (A.25)

where a Taylor expansion was used in the first step and the definition of orbital
angular momentum, L = r ×p, was used in the second step. Composing a finite and
an infinitesimal rotation yields:

U (Rz)(φ+ δφ)f (x,y,z) =U (Rz)(δφ)U (Rz)(φ)f (x,y,z) = (1− iδφLz)U (Rz)(φ)f (x,y,z)
(A.26)

upon rearranging and taking the limit δφ→ 0, a derivative of the operator is found:

dU (Rz)(φ)
dφ

= lim
δφ→0

U (Rz)(φ+ δφ)−U (Rz)(φ)
δφ

= −iLzU (Rz)(φ), (A.27)

which can be integrated to yield

U (Rz)(φ) = exp(−iφLz). (A.28)

This shows that the components of the angular momentum vector are the generators
for rotations. Their commutation relation can be found from the definition of L:[

Li ,Lj
]

= iεijkLk (A.29)

yielding immediately the structure of the associated Lie algebra. This happens to be
exactly the structure of the Lie algebra so(3). For this reason, SO(3) is often referred
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to as the rotation group. This is not surprising because rotation matrices are indeed
orthogonal (see §A.3.3). From the Noether theorem, it follows that angular momen-
tum is conserved for spherically symmetric systems.

The dimension of the Lie algebra is three, given the three generators Lx, Ly and Lz.
The rank is one as none of the generators commute. Conventionally, Lz is chosen
as the Cartan generator, having the weights as eigenvalue. Furthermore, it is easy
to show that L2 commutes with all Li , hence L2 is the Casimir operator of so(3),
i.e. its eigenvalues will label the irreps. The Cartan and Casimir operator can be
diagonalized simultaneously. Their eigenvalues and eigenvectors are denoted as:

L2 |`m`〉 = `(` + 1)~2 |`m`〉 (A.30)

Lz |`m`〉 = m`~ |`m`〉. (A.31)

The Weyl operators are found as L± = Lx ± iLy :

L± |`m`〉 =
√
`(` + 1)−m`(m` ± 1)~ |`m` ± 1〉. (A.32)

This angular momentum algebra was derived for orbital angular momentum. For
spin angular momentum the same commutation relations are however found, as
well as for composite angular momenta. Now, the irreps for the rotation group can
be written down. These are labeled by the eigenvalue of the Casimir operator, `:

U (R) |`m〉 =
∑
m′
D(`)
m′m(R) |`m′〉 (A.33)

and are called the Wigner-D matrices. When the direct product of two irreps is
reduced, the expansion is known as the Clebsch-Gordan series:

(D(`1) ⊗ D(`2))m1m2,m
′
1m
′
2

= D(`1)
m`1m`1′ (R)D(`2)

m`2m`2′ (R) (A.34)

=
`1+`2∑

`=|`1−`2 |

∑̀
m,m′=−`

〈`1`2m1m2 |`1`2`m〉

×〈`1`2m
′
1m
′
2 |`1`2`m

′〉D(`)
mm′ (R)

where the coefficients 〈`1`2m1m2 |`1`2`m〉 are known as the Clebsch-Gordan coeffi-
cients.

Homomorphism between SO(3) and SU(2)

In previous section, rotations were represented by real orthogonal 3x3 matrices, i.e.
elements of SO(3). Alternatively, one can also use complex-valued unimodular uni-
tary matrices, i.e. elements of SU(2).

A general SU(2) matrix can be written as

u =

 a b

−b∗ a∗

 with |a|2 + |b|2 = 1 (A.35)
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and can be expanded in terms of the unit matrix and the three Pauli matrices,

σ1 =

0 1
1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0
0 −1

 , (A.36)

which are the generators of SU(2). The Pauli matrices satisfy the same algebraic
structure as the angular momentum operators:[σi

2
,
σj
2

]
= iεijk

σk
2

(A.37)

Furtherore, it can be shown that a general rotation in three dimensional space about
an angle φ around an arbitrary axis n = (n1,n2,n3) (with |n| = 1) is equivalent to a
rotation in two-dimensional complex space, given by the SU(2) matrix:

u(R(n,φ)) = I2 cos
φ

2
+ i(n1σ1 +n2σ2 +n3σ3) sin

φ

2
(A.38)

The correspondence is however not one-to-one. If the angle is altered according to
φ→ φ+2π, the same result is obtained for the 3x3 orthogonal matrix, while u→−u
is found for the 2x2 unitary matrix. Only after a rotation over 4π, the same result is
found. For this reason, the map between SO(3) and SU(2) is not isomorphic, it is a 2:1
homomorphism. The double group of SO(3) can be used to obtain an isomorphism
nevertheless (see §A.4.2) .

A particle in a spherical potential

Finally, the angular momentum eigenfunctions are considered in three-dimensional
coordinate space, i.e. 〈r |`m`〉. This is an interesting toolbox because the eigenfunc-
tions of a spherically symmetric Hamiltonian will be exactly the eigenfunctions of
the angular momentum operators (see §A.3.4). Symmetry dictates that spherical
coordinates (r,θ,φ) are used for this. Some elaboration learns that the angular mo-
mentum operators do not alter the radial part of the wave function such that only
the Ω = (θ,φ) dependence matters. Solving the eigenvalue equation yields:

〈Ω |`m`〉 = Y (`)
m` (Ω) = (−1)m`

√
2` + 1

4π
(` −m)!
(` +m)!

P`m` (cosθ)eim`φ. (A.39)

where P`m` are the associated Legendre polynomials [32]. The eigenfunctions Y (`)
m` (Ω)

are widely known as the spherical harmonics.

The eigenfunctions of a spherically symmetric Hamiltonian can be obtained by re-
alizing that the Hamiltonian forms together with L2 and Lz a set of commuting op-
erators, yielding eigenfunctions that are labeled |E`m`〉. In coordinate space, the
eigenfunction factorizes according to:

〈rθφ |E`m`〉 = ψE`m` (r,θ,φ) = RE` (r)Y
(`)
m` (Ω). (A.40)
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The problem is hence solved when the radial wave function is obtained from the
radial Schrödinger equation:[

d2

dr2 +
2
r

d
dr
− `(` + 1)

r2 +
2m
~2 [E −V (r)]

]
RE`(r) = 0. (A.41)

RE` is indeed independent of m`, which could be expected because the Hamiltonian
commutes with the Weyl generators. A (2` + 1)-fold degeneracy is hence expected
for every energy-eigenvalue.

A.4 Discrete groups

In this section, some specific features of discrete groups are collected. Their repre-
sentation theory has plenty of similarities to the representation theory of Lie groups
which was described above, but also some unique aspects.

A.4.1 Point groups: representation theory and application

A point group is a collection of symmetry operations that keep one point fixed. In
physics, they describe the symmetry of molecules or point defects in crystals. Here,
discrete point groups are discussed, where the number of symmetry elements, h,
called the order, is a finite number.

Two group elements, g1 and g2 are said to be conjugate if they are connected by a
third group element, g3 such that:

g2 = g−1
3 g1g3. (A.42)

Conjugate elements are hence equivalent. Conjugacy classes are formed by elements
which are all mutually conjugate.

Consider now a matrix representation for the point group. As all elements of a
class are equivalent up to a similarity transformation, the representation matrices
of elements of the same class will automatically have the same trace which is an
invariant for similarity transformations:

χ(Γ )(R) = Tr[Γ (R)] =
lΓ∑
i=1

Γ (R)ii , (A.43)

with lΓ the dimension of the representation Γ . Because of its distinguished role in
point group representation theory, the trace gets a special name in this context, i.e.
the character.

A discrete point group has a finite number of irreps. From the representation theory
it can be shown that the number of irreps is exactly equal to the number of conjugacy
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classes, r. The classes, irreducible representations and their characters are the work
horses when point groups are applied. For this reason, so-called character tables for
the different point groups can be found anywhere, including in this work. In §A.4.3,
the character tables that were used in this text can be found.

A straightforward, but important application of point groups is to inspect the split-
ting of energy levels, i.e. the eigenvalues of the Hamiltonian, upon symmetry low-
ering. Group theoretically, the energy level is initially labeled by an irrep of the
supergroup, Γ (see §A.2). Upon lowering of the symmetry, Γ will in general be a
reducible representation of the subgroup. Upon reducing, multiple irreps of the
subgroup are found,

Γ =
r⊕
j=1

ajΓ
(j), (A.44)

corresponding to the splitting of the energy level. It can be shown that the integer
coefficients can be found from the characters:

aj =
1
h

h∑
i=1

χ(gi)
[
χ(j)(gi)

]∗
. (A.45)

When the supergroup corresponds to the rotation or rotation-inversion group, the
representations of SU(2) can be used for which the characters are:

χ(j)(α) =
sin(2j + 1)α2

sin α
2

. (A.46)

for a general angular momentum j.

A.4.2 Double point groups

If the angular momentum in Eq. A.46 is an integer number, no problems are en-
countered. However, when j is half-integer, e.g. in cases where spin is added to the
description, a complication occurs. Consider a rotation about α+2π. The associated
character is:

χ(j)(α + 2π) = (−1)2jχ(j)(α). (A.47)

For half-integer j, the sign of χ changes after a rotation of 2π. This is a consequence
of the 2:1 isomorphism of SU(2) and SO(3) (see A.3.5).

To circumvent this problem, a new group element is introduced, R, which signifies
a rotation about 2π and which is explicitly different to the unity operation E:

R , E (A.48)

R2 = E. (A.49)

The introduction of this operation, and the combination of this operation with the
other original operation of the symmetry group G gives rise to the double group G∗.
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The order of G∗ is doubled with respect to the order of G. This does however not
mean that the number of classes/irreps doubles as some of the new symmetry oper-
ations can be added to original classes. This is governed by the rules of Opechowski.
As in the case of single groups, character tables can be constructed for the double
groups. Their application is completely analogous.

A.4.3 Character tables of point groups

Below, the character tables of the point groups that are used in this text can be found.
Schönflies notation was used for the names of the point groups, while Mulliken sym-
bols were used for the irreps.

Two tables can be found for each symmetry. The first table is the conventional char-
acter table that can be found at many places. The second table contains the relevant
part of the associated double group, i.e. the characters of the additional irreps. The
remaining characters of the double group can be copied from the character table
of the single group. Double groups allow to describe the symmetry of spin wave
functions.

Td

Table A.1:

Td E 8C3 3C2 6σd 6S4

A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 -1 1
T2 3 0 -1 1 -1

D(2+) 5 -1 1 1 -1

Table A.2:

T ∗d E R 8C3 8RC3 3C2 + 3RC2 6σd + 6Rσd 6S4 6RS4

E1/2 2 -2 1 -1 0 0
√

2 −
√

2
E5/2 2 -2 1 -1 0 0 −

√
2

√
2

G3/2 4 -4 -1 1 0 0 0 0

D(1/2) 2 -2 1 -1 0 0
√

2 −
√

2
D(7/2) 8 -8 1 -1 0 0 0 0
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C3v

Table A.3:

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

D(2+) 5 -1 1

Table A.4

C∗3v E R 2C3 2RC3 3σv 3Rσv
E1/2 2 -2 1 -1 0 0

E3/2
1 -1 -1 1 i −i
1 -1 -1 1 −i i

D(1/2) 2 -2 1 -1 0 0
D(7/2) 8 -8 1 -1 0 0

D4d

Table A.5:

D4d E 2S8 2C4 2S3
8 C2 4C′2 4σd

A1 1 1 1 1 1 1 1
A2 1 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 1 -1
B2 1 -1 1 -1 1 -1 1
E1 2

√
2 0 −

√
2 -2 0 0

E2 2 0 -2 0 2 0 0
E3 2 −

√
2 0

√
2 -2 0 0

D(2+) 5 1−
√

2 -1 1 +
√

2 1 1 1
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Oh

Table A.7:

Oh E 8C3 6C′2 6C4 3C2 i 8S6 6σd 6S4 3σh
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 -1 -1 1 1 1 -1 -1 1
Eg 2 -1 0 0 2 2 -1 0 0 2
T1g 3 0 -1 1 -1 3 0 -1 1 -1
T2g 3 0 1 -1 -1 3 0 1 -1 -1
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 -1 -1 1 -1 -1 1 1 -1
Eu 2 -1 0 0 2 -2 1 0 0 -2
T1u 3 0 -1 1 -1 -3 0 1 -1 1
T2u 3 0 1 -1 -1 -3 0 -1 1 1

D(2+) 5 -1 1 -1 1 5 -1 1 -1 1
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B Racah’s toolbox

The elaboration of angular integrals in atomic spectroscopy relies strongly on a few
powerful calculation techniques such as irreducible tensor operators and the associ-
ated angular momentum algebra, the theory of Lie groups and coefficients of frac-
tional parentage. The intention of this appendix is twofold, namely to refresh the
most important formulas to those who are familiar with these techniques and to of-
fer a basic introduction for the less experienced user. This appendix is mainly based
on

• B. R. Judd. Operator techniques in atomic spectroscopy. Princeton University
Press, New Jersey, 1998.

• A. R. Edmonds. Angular momentum in quantum mechanics. Princeton Univer-
sity Press, New Jersey, 1996.

B.1 Wigner-nj symbols

The calculation of angular integrals by means of the Wigner-Eckart theorem (see
§B.2) is standard practice in atomic spectroscopy. Due to the algebraic structure of
the rotation group, angular momenta are frequently encountered, often in the form
of so-called Wigner-nj symbols (n = 3,6,9). Here, the most important identities per-
taining to these symbols are reviewed.

B.1.1 Wigner-3j symbols

The Wigner-3j symbol is directly related to the Clebsch-Gordan coefficients of SO(3): j1 j2 j3
m1 m2 m3

 =
(−1)j1−j2−m3√

2j3 + 1
〈j1j2m1m2 |j1j2j3 −m3〉 (B.1)

and hence couple two angular momenta. Some useful symmetries of the Wigner-3j
symbol are that even permutation of the columns keep it invariant, while odd per-
mutations yield a factor (−1)j1+j2+j3 . Changing the signs of all m-values yields the
same factor. The Wigner-3j symbol has some selection rules. It vanishes when one
of the mi cannot correspond to a projection (weight, see §A.3) of the corresponding

285
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ji , when m1 +m2 +m3 = 0 or |j1 − j2| ≤ j3 ≤ j1 + j2 (the so-called triangular inequality,
often denoted as ∆(j1j2j3)) is not fulfilled. Finally, j1 + j2 + j3 must be an integer
number.

B.1.2 Wigner-6j symbols

The Wigner-6j symbols are encountered when three angular momenta need to be
coupled:

|(j1(j2j3)j23)jm〉 =
∑
j12

(−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

j1 j2 j12

j3 j j23

 |((j1j2)j12j3)jm〉.

(B.2)
They can be expressed as Wigner-3j symbols:j1 j2 j3

j4 j5 j6

 =
∑

m1...m6

(−1)j4+j5+j6+m4+m5+m6

 j1 j2 j3
m1 m2 m3

 (B.3) j1 j5 j6
m1 m5 −m6

 j4 j2 j6
−m4 m2 m6

 j4 j5 j3
m4 −m5 m3


and are hence bound to the triangular conditions ∆(j1j2j3), ∆(j1j5j6), ∆(j4j2j6) and
∆(j4j5j3). Furthermore, they are invariant for every permutation of the columns and
when the upper and lower arguments of two columns are interchanged. A 6j symbol
with a zero entry reduces to:j1 j2 j3

j4 j5 0

 =
(−1)j1+j2+j3√

(2j1 + 1)(2j2 + 1)
δj1j5δj2j4 . (B.4)

Useful is Racah’s sum rule:∑
j6

(−1)j+j3+j6(2j6 + 1)

j1 j2 j3
j4 j5 j6


j1 j4 j

j2 j5 j6

 =

j1 j2 j3
j5 j4 j

 . (B.5)

Similar and well-known is the Biedenharn-Elliot sum rule [454].

B.1.3 Wigner-9j symbols

Finally, the Wigner-9j symbol occurs upon the coupling of four momenta:

|[(j1j3)j13(j1j4)j24]jm〉 =
∑
j12j34

√
(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1) (B.6)

×


j1 j2 j12

j3 j4 j34

j13 j24 j

 |[(j1j2)j12(j3j4)j34]jm〉
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and can be expressed in terms of 6j symbols:
j1 j2 j3
j4 j5 j6
j7 j8 j9

 =
∑
r

(−1)2r (2r + 1)

j1 j4 j7
j8 j9 r


j2 j5 j8
j4 r j6


j3 j6 j9
r j1 j2

 . (B.7)

Hence, the selection rules of the found 6j symbols also relate to the 9j symbol. It
is furthermore invariant for even permutations of rows and columns, while a factor
(−1)

∑
ji is added for odd permutations. A 9j symbol with a vanishing argument

reduces to a 6j symbol:
j1 j2 j

j3 j4 j

j ′ j ′ 0

 =
(−1)j2+j3+j+j ′√
(2j + 1)(2j ′ + 1)

j1 j2 j

j4 j3 j ′

 . (B.8)

B.2 Irreducible tensor operators

Irreducible tensors were introduced by Racah in order to simplify atomic structure
calculations. Thanks to their well-defined transformation properties, the applica-
tion of Wigner-Eckart’s theorem reduces the arithmetic labor in computing matrix
elements to a large extent if the operator can be identified with such a tensor 1 .

B.2.1 Definition

Irreducible tensors are a generalization of spherical harmonics in terms of their
transformation properties under coordinate rotations, R:

U (R)T (k)
q U (R)−1 =

k∑
q′=−k

[D(k)(R)]q′qT
(k)
q′ , (B.9)

where the Wigner-D matrices are re-encountered. The irreducible tensor of rank k,
T (k) has 2k + 1 components q and forms the basis of a the irrep D(k) of SO(3).

The angular momenta Ji generate rotations, implying that:[
Jz,T

(k)
q

]
= qT (k)

q and
[
J±,T

(k)
q

]
=

√
(k ∓ q)(k ± q+ 1)T (k)

q±1, (B.10)

which is equivalent to the definition Eq. B.9.

1´´But the method ... necessitates very long calculations. It appeared therefore more convenient to develop a
new method.´´ [455].
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The reason why irreducible tensors simplify calculations is that the Wigner-Eckart
theorem can be directly applied, given their transformation property:

〈αJM | T (k)
q |α′J ′M ′〉 = (−1)J−M

 J k J ′

−M q M ′

〈αJ || T (k) ||α′J ′〉. (B.11)

In the following subsections, some examples are given which are applied when cal-
culating matrix elements, illustrating the power of the technique.

B.2.2 Special tensors

In the calculation of matrix elements, it is common practice to reformulate the op-
erator in terms of special irreducible tensor operators for which the reduced matrix
elements are easily calculated.

Spherical harmonics

The Gaunt coefficients, which are nothing more than the integral of three spherical
harmonics having the same argument, are often encountered objects in quantum
mechanics:

〈`m|Y (k)
q |`′m′〉 = (−1)m

√
(2` + 1)(2k + 1)(2`′ + 1)

4π

 ` k `′

−m q m′

` k `′

0 0 0

 . (B.12)

Here, the middle spherical harmonic is regarded as an irreducible tensor operator.
Applying the Wigner-Eckart theorem on the left-hand side yields immediately the
reduced matrix element:

〈`||Y (k) ||`′〉 = (−1)`
√

(2` + 1)(2k + 1)(2`′ + 1)
4π

` k `′

0 0 0

 . (B.13)

Angular momentum

Matrix elements of the components of j are evaluated. The component along the
quantization axis is straightforward:

〈jm| jz |j ′m′〉 =mδjj ′δmm′ . (B.14)

The vector j transforms as an irreducible tensor of rank-1, for which jz is the q = 0
component. With the Wigner-Eckart theorem, one obtains alternatively:

〈jm| jz |j ′m′〉 = (−1)j−m
 j 1 j

−m 0 m′

〈j ||j ||j ′〉 (B.15)

=
mδmm′√

(2j + 1)(j + 1)j
〈j ||j ||j ′〉, (B.16)
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yielding:
〈j ||j ||j ′〉 = δjj ′

√
(2j + 1)(j + 1)j (B.17)

and finally:

〈jm| jq |j ′m′〉 = (−1)j−m δjj ′
√

(2j + 1)(j + 1)j

 ` 1 `

−m q m′

 . (B.18)

For j = s = 1/2, one obtains:

〈s||s ||s′〉 =

√
3
2
. (B.19)

Unit tensor

The unit tensor operator is defined as:

U
(k)
q =

N∑
i=1

u
(k)
q (i) for which 〈αj ||u(k) ||α′j ′〉 = δαα′δjj ′ . (B.20)

It is a convenient tool in the calculation of matrix elements as it can be used to
replace single-particle operators, of course upon inclusion of the correct reduced
matrix element. For a spherical harmonic as an example, one has symbolically,

u
(k)
q =

Y
(k)
q

〈`||Y k ||`〉
, (B.21)

with ` the relevant angular momentum. The validity of Eq. B.21 can be easily veri-
fied from the Wigner-Eckart theorem.

Finally, the object V k1
qλ is mentioned. It is a direct product of two tensors working

in different Hilbert spaces (see §B.2.3), and is like U (k) defined through its reduced
matrix element:

V
(k1)
qλ =

N∑
i=1

v
(k1)
qλ (i) for which 〈α`s||v(k1) ||α′`′s′〉 = 〈α`||u(k) ||α′`′〉〈s||s ||s′〉.

(B.22)

B.2.3 Products of irreducible tensors

Scalar product

The scalar product of two irreducible tensors is defined as:

S (k) · T (k) =
k∑

q=−k
(−1)qS (k)

q T
(k)
−q . (B.23)
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Matrix elements of such products can be simplified thanks to the Wigner-Eckart
theorem:

〈αJM |S (k) · T (k) |α′J ′M ′〉 =
∑

α′′J ′′M ′′

k∑
q=−k
〈αJM |S (k)

q |α′ ′J ′ ′M ′ ′〉〈α′′J ′ ′M ′ ′ | T
(k)
−q |α′J ′M ′〉

=
∑

α′′J ′′M ′′

k∑
q=−k

(−1)q+J+J ′′−M−M ′′
 J k J ′′

−M q M ′′

 J ′′ k J ′

−M ′′ −q M ′


× 〈αJ ||S (k) ||α′′J ′′〉〈α′′J ′′ || T (k) ||α′J ′〉

=
∑
α′′J ′′

(−1)J−J
′′ δJJ ′δMM ′

2J + 1
〈αJ ||S (k) ||α′′J ′′〉〈α′′J ′′ || T (k) ||α′J ′〉 (B.24)

where in the last step, symmetry properties and the orthogonality relation of the
Wigner-3j symbols were used.

Tensor product

The tensor product of two irreducible tensors is defined as:

X (K)
Q =

[
S (k1) T (k2)

](K)

Q
=

∑
q1,q2

〈k1q1 k2q2|KQ〉 S
(k1)
q1 T

(k2)
−q2 (B.25)

=
∑
q1,q2

(−1)k1−k2−Q
√

2K + 1

k1 k2 K

q1 q2 −Q

 S (k1)
q1 T

(k2)
−q2 .

and transforms according to the irrep D(K) of SO(3). X (K)
Q is therefore an irreducible

tensor operator itself and commutation relations like Eq. B.10 exist. The possible K
values are given by the Clebsch-Gordan series:

D(k1) ⊗D(k2) =
k1+k2⊕

K=−|k1−k2 |
D(K). (B.26)

The evaluation of tensor products is a rewarding effort.

Assume that both tensors in the product act in different Hilbert spaces, with (j1, m1)
and (j2, m2) labels for the respective bases, i.e. they commute. The basis of the direct
product space is labeled by (J, M). Application of the Wigner-Eckart theorem yields:

〈αj1j2JM |X
(K)
Q |α

′j ′1j
′
2J
′M ′〉 = (−1)J−M

 J K J ′

−M Q M ′

 〈αj1j2J ||X (K) ||α′j ′1j
′
2J
′〉.(B.27)
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This can be evaluated in terms of S (k1) and T (k2) when the bra and ket are decoupled.
Together with definition Eq. B.25, this yields three Wigner-3j symbols:

〈αj1j2JM |X
(K)
Q |α

′j ′1j
′
2J
′M ′〉 =

∑
m1m2m

′
1m
′
2q1q2

(−1)j1−j2+M+j ′1−j
′
2+M ′+k1−k2+Q

×
 j1 j2 J

m1 m2 −M

 j ′1 j ′2 J ′

m′1 m′2 −M ′

k1 k2 K

q1 q2 −Q


×
√

(2J + 1)(2J ′ + 1)(2K + 1) 〈αj1m1j2m2|S
(k1)
q1 T

(k2)
−q2 |α

′j ′1m
′
1j
′
2m
′
2〉

=
∑

m1m2m
′
1m
′
2q1q2

∑
α′′j ′′1m

′′
1 j
′′
2m
′′
2

(−1)j1−j2+M+j ′1−j
′
2+M ′+k1−k2+Q

×
 j1 j2 J

m1 m2 −M

 j ′1 j ′2 J ′

m′1 m′2 −M ′

k1 k2 K

q1 q2 −Q


×
√

(2J + 1)(2J ′ + 1)(2K + 1) 〈αj1m1|S
(k1)
q1 |α

′′j ′′1m
′′
1 〉〈j2m2| j ′′2m

′′
2 〉

×〈j ′′1m
′′
1 | j
′
1m
′
1〉〈α

′′j ′′2m
′′
2 | T

(k2)
−q2 |α

′j ′2m
′
2〉. (B.28)

Two more 3j symbols appear upon applying the Wigner-Eckart theorem on both
irreducible tensor operators:

=
∑

m1m2m
′
1m
′
2q1q2α′′

(−1)j1−j2+M+j ′1−j
′
2+M ′+k1−k2+Q+j1−m1+j2−m2

×
 j1 j2 J

m1 m2 −M

 j ′1 j ′2 J ′

m′1 m′2 −M ′

k1 k2 K

q1 q2 −Q


×
 j1 k1 j ′1
−m1 q1 m′1

 j2 k2 j ′2
−m2 q2 m′2

√(2J + 1)(2J ′ + 1)(2K + 1)

×〈αj1||S (k1) ||α′′j ′1〉〈α
′′j2|| T (k2) ||α′j ′2〉. (B.29)

Finally, both Eq. B.27 and B.29 are multiplied by

(−1)J−M
 J K J ′

−M Q M ′

 , (B.30)

and summed over the row indicesM,M ′ andQ. For Eq. B.27, the Wigner-3j symbols
vanish because of the orthogonality relation and only the reduced matrix element
remains. For Eq. B.29, some rearranging of rows and columns with the symmetry
relations of the 3j symbols is required. When this is done in an appropriate way, one
recognizes the definition of the Wigner-9j symbol, to obtain:

〈αj1j2J ||X (K) ||α′j ′1j
′
2J
′〉 =

√
(2J + 1)(2J ′ + 1)(2K + 1)


j1 j ′1 k1

j2 j ′2 k2

J J ′ K


×
∑
α′′
〈αj1||S (k1) ||α′′j ′1〉〈α

′′j2|| T (k2) ||α′j ′2〉. (B.31)
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The matrix element of the scalar product in the coupled scheme |j1j2JM〉 is obtained
by setting K = Q = 0, implying k1 = k2 = k. A 9j symbol with a vanishing argument
reduces to a 6j symbol (Eq. B.8), yielding:

〈αj1j2J ||S (k) · T (k) ||α′j ′1j
′
2J
′〉 = (−1)j

′
1+j2+JδJJ ′δMM ′

j ′1 j ′2 J

j2 j1 k


×
∑
α′′
〈αj1||S (k) ||α′′j ′1〉〈α

′′j2|| T (k) ||α′j ′2〉. (B.32)

Another useful reduced matrix element is that of a single operator working only on
one part of the coupled basis. This is obtained by putting k2 = 0 and T (k) = 1 or
k1 = 0 and S (k) = 1, yielding respectively:

〈αj1j2J ||S (k) ||α′j ′1j
′
2J
′〉 = δj2j ′2 (−1)j1+j2+J ′+k

√
(2J + 1)(2J ′ + 1)

×

 J k J ′

j ′1 j2 j1

〈αj1||S (k) ||α′j ′1〉

〈αj1j2J || T (k) ||α′j ′1j
′
2J
′〉 = δj1j ′1 (−1)j

′
1+j ′2+J+k

√
(2J + 1)(2J ′ + 1)

×

 J k J ′

j ′2 j1 j2

〈αj2|| T (k) ||α′j ′2〉. (B.33)

Direct product

The direct product of two irreducible tensor operators is defined as:

X (k1k2)
q1q2 = S (k1)

q1 T
(k2)
q2 (B.34)

and does in general not satisfy Eq. B.9.

If S (k1) and T (k1) act in different Hilbert spaces, X (k1k2)
q1q2 behaves as an irreducible

tensor of rank k1 with respect to the first Hilbert space, while it behaves as an irre-
ducible tensor of rank k2 with respect to the second Hilbert space. In this case, a

reduced matrix element of X (k1k2)
q1q2 is defined as:

〈j1j2||X (k1k2) ||j ′1j
′
2〉 = 〈j1||S (k1) ||j ′1〉〈j2|| T

(k2) ||j ′2〉. (B.35)

Applying the Wigner-Eckart theorem on both tensors yields:

〈j1m1j2m2|X
(k1k2)
q1q2 |j

′
1m
′
1j
′
2m
′
2〉 = (−1)j1−m1+j2−m2

 j1 k1 j ′1
−m1 q1 m′1

 j2 k2 j ′2
−m2 q2 m′2


×〈j1j2||X (k1k2) ||j ′1j

′
2〉. (B.36)

This shows that V (k1)
q,λ (Eq. B.22) is indeed a direct product of ranks k1. The scalar

product of two direct products with the same ranks is given by:

X (k1k2) · Y (k1k2) =
∑
q1q2

(−1)q1+q2X (k1k2)
q1q2 Y

(k1k2)
−q1 −q2 . (B.37)
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If it is assumed that X (k1k2) works only on the momenta `1 and s1 and Y (k1k2)
q1q2 works

exclusively on `2 and s2, while the k1 part of both tensors transforms as a irreducible
tensor in the ` Hilbert space and similar for the k2 parts with the s Hilbert space, Eq.
B.24 can be applied twice:

〈α`1s1, `2s2; LSMLMS |X (k1k2) · Y (k1k2) |α′`′1s
′
1, `

′
2s
′
2; L′S ′L′MS

′
M〉

= (−1)`
′
1+`2+L+s′1+s2+SδLL′δSS ′

`′1 `′2 L

`2 `1 k1


s′1 s′2 S

s2 s1 k2


×
∑
α′′
〈α`1s1||X (k1k2) ||α′′`′1s

′
1〉〈α

′′`2s2||Y (k1k2) ||α′`′2s
′
2〉 (B.38)

B.3 Coefficients of fractional parentage

Another useful concept that was launched by Racah are the coefficients of fractional
parentage (CFP). They are a clever way to circumvent the expansion of mp basis
states in terms of Slater determinants. This was standard practice in pre-1940s
atomic physics, prohibiting a serious investigation of configurations with more than
two electrons.

B.3.1 Definition

One-particle CFPs relate mp basis functions of configuration `N to those of configu-
ration `N−1. In the RS basis,

|`N αLSMLMS〉 =
∑

α L S ML MSm`ms

〈L ML `m` |LML〉 〈S MS sms |SMS〉

×〈`N−1 α L S; `s| } `N αLS〉

× |`N−1 α L S ML MS〉 |`sm`ms〉, (B.39)

where the third coefficient is the CFP. For nonzero CFPs, |`N αLS〉 is called a daugh-
ter term of |`N−1 αLS〉, while |`N−1 αLS〉 is called a parent term of |`N αLS〉.

Below, it will be shown that the difficulty in calculating matrix elements is shifted
to the difficulty in calculating CFPs. The advantage of using CFPs is that they have
to be calculated only once after which they can be employed for different kinds of
matrix elements. Racah obtained the one-particle CFPs for dN and fN configurations
by factorizing them according to the irreps of a chain of Lie groups. This text will
not go into the details of their calculation, but will take the results for granted. CFPs
can be found in the famous tables by Nielson and Koster [111].

When the techniques of second quantization became more in use, the interpreta-
tion of the CFPs as reduced matrix element of the fermion creation and annihilation
operators was evident [116].
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B.3.2 Matrix elements

Knowledge of the CFPs allows one to calculate matrix element of mp states in a
very straightforward way as the calculation is effectively reduced to a single-particle
matrix element. This is demonstrated below for single- and two-particle operators
in the RS basis.

Single-particle operator

A single-particle operator acts only on one electron. For anN -electron shell, it reads:

F =
N∑
i=1

f (i). (B.40)

The electrons in the same shell are equivalent, yielding for the matrix element:

〈`N αLSMLMS |F |`N α′L′S ′M ′LM
′
S〉 =N 〈`N αLSMLMS |f (i) |`N α′L′S ′M ′LM

′
S〉, (B.41)

where the index i is arbitrary and can be omitted.

One could directly insert the CFP expansion, Eq. B.39,

= N
∑

α L S ML MSm`ms
α′ L

′
S
′
M
′
L M

′
Sm
′
`m
′
s

〈LML|L ML `m`〉 〈L
′
M
′
L `m

′
` |L
′M ′L〉 (B.42)

×〈SMS |S MS sms〉 〈S
′
M
′
S sm

′
s |S ′M ′S〉

×〈`N−1 α′L
′
S
′
; `s| } `N α′L′S ′〉 〈`N αLS{ |`N−1 α L S; `s〉

×〈`N−1 α L S ML MS |`N−1 α′L
′
S
′
M
′
LM
′
S〉︸                                                ︷︷                                                ︸

δα α′ δL L′ δS S
′ δML M′L

δ
MS M′S

〈`m`sms |f |`m′`sm
′
s〉,

showing that the matrix element is reduced to a single-particle matrix element. If
the operator transforms according to Eq. B.9, it can be regarded as an irreducible
tensor operator and the Wigner-Eckart theorem can be applied. Then, the sums over
the angular momentum projections in Eq. B.42 should have the same dependency on
ML, MS , M ′L, M ′S and the rank and index of the operator as dictated by the Wigner-
Eckart theorem. Then, the projections can be left out of the equations when the
reduced matrix elements are calculated.

As an example, it is assumed that f (k)
q (i) works only on the orbital angular momen-

tum. Applying the Wigner-Eckart theorem yields:

〈`N αLS ||F(k) ||`N α′L′S ′〉 = NδSS ′
∑
α L S

〈`N−1 α L S; `s| } `N α′L′S〉

×〈`N αLS{ |`N−1 α L S; `s〉〈`N−1 α L; ` || f (k) || `N−1 αL; `〉. (B.43)
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The last factor is a coupled representation L, while f (k)(i) works only on `, therefore,
Eq. B.33 can be used:

〈`N αLS ||F(k) ||`N α′L′S ′〉 = NδSS ′
√

(2L+ 1)(2L′ + 1)
∑
α L S

(−1)L+`+L+k

L k L′

` L `


×〈`N−1 α L S; `s| } `N α′L′S〉〈`N αLS{ |`N−1 α L S; `s〉〈`||f (k) ||`〉. (B.44)

Matrix elements of the unit tensor, F(k) = U (k), Eq. B.20, can be calculated if the
CFP’s are available:

〈`N αLS ||U (k) ||`N α′L′S ′〉 = NδSS ′
√

(2L+ 1)(2L′ + 1)
∑
α L S

(−1)L+`+L+k

L k L′

` L `


×〈`N−1 α L S; `s| } `N α′L′S〉〈`N αLS{ |`N−1 α L S; `s〉. (B.45)

In the case of a scalar operator, i.e. k = 0, the 6j symbol in Eq. B.44 can be evaluated:L 0 L

` L `

 = (−1)L+`+L δLL′√
(2` + 1)(2L+ 1)

. (B.46)

If furthermore the matrix element is diagonal, α = α′ , a short expression is obtained
thanks to the normalization of the CFPs:

〈`N αLS ||F(0) ||`N αLS〉 =N

√
2L+ 1)
2` + 1

〈`||f (0) ||`〉. (B.47)

For the direct product V (k1) (B.22), one obtains:

〈`N αLS ||V (k1) ||`N α′L′S ′〉 (B.48)

=N
∑
α L S

〈`N−1 α L S; `s| } `N α′L′S〉〈`N αLS{ |`N−1 α L S; `s〉

×〈`N−1 α L S; `s || v(k1) || `N−1 α L S; `s〉

=N
∑
α L S

〈`N−1 α L S; `s| } `N α′L′S〉〈`N αLS{ |`N−1 α L S; `s〉

×〈`N−1 α L S; `s || u(k) || `N−1 α L S; `s〉
×〈`N−1 α L S; `s || s(1) || `N−1 α L S; `s〉

=N

√
3
2

√
(2S + 1)(2S ′ + 1)(2L+ 1)(2L′ + 1)

∑
α L S

S S ′ 1
1
2

1
2 S


L L′ k

` ` L


×(−1)L+S+L+S+`+ 1

2 +k+1〈`N−1 α L S; `s| } `N α′L′S〉〈`N αLS{ |`N−1 α L S; `s〉

where in the final step, Eq. B.33 was used twice and the expression for the reduced
matrix element Eq. B.19 was filled in.
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C Values of empirical parameters

In this appendix, values for the different empirical parameters that are required to
construct band diagrams containing lanthanide impurity levels are given. For more
information, see chapter 6.

Ln E4f(Ln2+, free) E4f(Ln3+, free)

La -18.29 —
Ce -20.20 -36.76
Pr -21.62 -38.98
Nd -22.10 -40.6
Pm -22.37 -41.2
Sm -23.60 -41.6
Eu -24.92 -42.97
Gd -20.34 -44.5
Tb -21.91 -39.37
Dy -22.89 -41.2
Ho -22.84 -42.4
Er -22.74 -42.5
Tm -23.68 -42.4
Yb -25.03 -43.56
Lu — -45.25

Table C.1 – Ionization potentials of the
free lanthanide ions [216]. All values in
eV.

Ln ∆E(Ln, Eu, 2) ∆E(Ln, Eu, 3)

La 5.61 —
Ce 4.13 5.24
Pr 2.87 3.39
Nd 2.43 1.90
Pm 2.34 1.46
Sm 1.25 1.27
Eu 0.00 0.00
Gd 4.56 -1.34
Tb 3.21 3.57
Dy 2.27 2.15
Ho 2.40 1.05
Er 2.58 1.12
Tm 1.72 1.28
Yb 0.43 0.24
Lu — -0.98

Table C.2 – Shape of the 4f zig-zag
curves with respect to the europium ion
[216]. All values in eV.
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Ln Efd(Ln2+, free) Efd(Ln3+, free)

La -0.94 —
Ce -0.35 6.12
Pr 1.56 7.63
Nd 1.93 8.92
Pm 1.96 9.24
Sm 3.00 9.34
Eu 4.22 10.50
Gd -0.20 11.80
Tb 1.19 7.78
Dy 2.17 9.25
Ho 2.25 10.10
Er 2.12 9.86
Tm 2.95 9.75
Yb 4.22 10.89
Lu — 12.26

Table C.3 – Energy of the first spin-
allowed 4fN−15d1 multiplet with respect
to the 4fN ground state of the free lan-
thanide ions [216]. All values in eV.

Ln Efs(Ln2+, free) Efs(Ln3+, free)

La 0.79 —
Ce 2.39 10.74
Pr 3.52 12.43
Nd 3.76 13.65
Pm 3.65 13.76
Sm 4.49 13.66
Eu 5.95 14.53
Gd 0.84 15.55
Tb 2.19 10.92
Dy 2.86 12.29
Ho 2.71 12.98
Er 2.40 12.84
Tm 3.14 12.27
Yb 4.30 13.14
Lu — 14.48

Table C.4 – Energy of the first spin-
allowed 4fN−16s1 multiplet with respect
to the 4fN ground state of the free lan-
thanide ions [307]. All values in eV.
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D Light units

Photometric quantities and units are often used in the field of illumination engineer-
ing and by consequence also this text. In contrast to the more common radiometric
quantities, photometric quantities are defined by means of the spectral eye sensitiv-
ity of the (average) human.

Radiometric or energetic quantities can in general be used to describe all types of
radiation. The total integrated power, emitted by a source, is called the radiant flux
(ΦE [W]). When the emitted power is restricted to a specific direction, i.e. per unit
of solid angle, one obtains the radiant intensity (IE (W/sr)). If the radiation source is
extended in space, one can define the emitted power per unit of surface area, the ra-
diant exitance (ME (W/m2)). Finally, when the emitted power of an extended source,
expressed per unit of surface area, is considered in a specific direction, i.e. per unit
of solid angle, one obtains the radiance (LE (W/m2/sr)).

The above quantities pertain to radiation sources. When radiation is observed, the
incident power per unit surface is defined as the irradiance (EE (W/m2)).

For all enumerated quantities, one can introduce a spectral density, e.g. the spectral
radiant flux:

ΦE =
∫
ΦEλdλ, (D.1)

where λ is the wavelength of the light.

A photometric quantity can be associated with every radiometric quantity. These are
only relevant in the visible part of the electromagnetic spectrum (± 380-780 nm). To
obtain a photometric quantity, a weighted integration of the spectral radiometric
quantity is performed. The weight function, K(λ) is defined as:

K(λ) = KmV (λ) (D.2)

where V (λ) is the spectral eye sensitivity or luminosity function, normalized to the
maximum and Km is a proportionality constant. The photometric quantity XP is
hence obtained from the radiometric spectral density XE,λ as follows:

XP = Km

∫
V (λ)XE,λdλ. (D.3)
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Figure D.1 – Luminosity functions for photopic (V (λ) and scotopic (V ′λ)) vision, dis-
played on linear and logarithmic scales.

Thus far, photopic vision was implicitly assumed. In this case, the luminosity func-
tion V (λ) peaks around 550 nm and Km = 683 lm/W, where the lumen (lm) was
introduced as unit for luminous flux, the photometric analogue of radiant flux.
For scotopic vision, the spectral eye sensitivity is different and one uses the nota-
tion K ′(λ), V ′(λ) and K ′m. The scotopic luminosity function peaks at 505 nm and
K ′m = 1754 lm/W1. The functions V (λ) and V ′(λ) are shown in Fig. D.1. More elab-
oration on the origin of these functions is given in appendix E. An overview of the
most common radiometric and photometric quantities is given in Tab. D.1.

Spectra that are commonly found in scientific literature, including this text, are typ-
ically expressed as intensity as function of wavelength. The intensity typically scales
with the power incident on the detector, i.e. the irradiance. Alternatively, the inten-
sity can scale with the number of detected photons. Both are not equivalent, but are
connected by the photon energy (Eq. 2.13).

For specific cases, e.g. when energy level schemes are envisioned, it can be more
useful to study spectra as a function of photon energy instead of wavelength. What
can then be easily passed over is the fact that the equidistant wavelength intervals,
∆λ, in which emission spectra are measured are not equidistant on energy scale due
to Eq. 2.13 which is to be regarded as a coordinate transformation in this context.
For this reason, also the ordinates of the data points have to be rescaled according
to: ∫

∆E
I(E) dE =

∫
∆λ
I [E(λ)] |J(λ,E)| dλ, (D.4)

where ∆E are the corresponding -non-equidistant- energy intervals and J is the Jaco-
bian of the transformation i.e. ∂E∂λ , yielding an factor hc

E2 which needs to be multiplied
to the ordinates of emission scans, measured in equidistant wavelength intervals, to
obtain the correct spectrum on energy scale [456].

1The nominal values for Km and K ′m were determined at the General Conference on Weights and
Measures in 1979 and based on the historical definition of the candela (cd), stating that the luminous
intensity of a a candle flame is 1 cd.
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Table D.1 – Overview of radiometric and photometric quantities. φ represents the angle
between the surface normal and the line of sight [458].

radiometric definition unit photometric definition unit

radiant flux ΦE W luminous flux ΦP lm

radiant exitance ME = dΦE
dS W/m2 luminous exitance MP = dΦP

dS lm/m2

radiant intensity IE = dΦE
dΩ W/sr luminous intensity IP = dΦP

dΩ lm/sr [cd]

radiance LE = dΦE
dS cosφ W/m2/sr luminance LP = dΦP

dS cosφ cd/m2 [nit]

irradiance EE = dΦE
dS W/m2 illuminance EP = dΦP

dS lm/m2 [lux]

Absorption and excitation scans on the other hand do not require this Jacobian con-
version. The reason for this is the fact that these spectra are measured in a relative
fashion with respect to the spectrum of the light source used during the measure-
ment. Both the measured signal as the reference signal of the light source are subject
to the same Jacobian conversion which cancel each other [457].

A surface is said to be a Lambertian radiator or to have a Lambertian reflectance if
the radiance is isotropic (or alternatively when the radiant intensity obeys a cosine
behavior with respect to the surface normal). For completeness, some alternative
quantities are given in tables D.2 and D.3.

Table D.2 – Alternative units for luminance [458].

lambert [L] 1mL = 3.183cd/m2

footlambert [fL] 1fL = 3.426cd/m2

Table D.3 – Alternative unit for illuminance [458].

footcandle [fc] 1fc = 10.76lux
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E Quantifying color

This text utilizes concepts from color theory on multiple places. This appendix is
meant to briefly introduce the basic ideas of the extensive domain of colorimetry.

E.1 Physiological origin of color

The human eye contains two types of photoreceptor cells which have the ability to
convert ambient light, a visual stimulus, into an electrical signal. The neural net-
work, composed of the optic nerve and the brains are responsible for the further
signal processing. The photoreceptor cells are called rods and cones. Both have a
strongly differing spectral sensitivity and resolution. Under conditions of low lumi-
nances, it is thanks to the rods that one can see, i.e. scotopic vision, as these cells
are about 100 times more sensitive than cones in the range between 400 nm and 500
nm. When the luminance increases, the rods get saturated while the cones get active,
i.e. photopic vision1. As three different types of cones occur, all having a different
spectral sensitivity, a small part of the spectral information can be processed by the
neural network. This information is called color.

E.1.1 Scotopic vision

Assume that α′(λ) is the absorption characteristic of the rods. Their response to a
visual stimulus with spectral irradiance S(λ) is then described by the number:

A′ =
∫
α′(λ)S(λ)dλ. (E.1)

In this number, which describes scotopic vision, no wavelength dependent infor-
mation is left, i.e. scotopic vision is color blind. A′ solely measures the subjective
brightness of the stimulus2.

The absorption coefficient α′(λ) is the basis for the definition of the photometric
properties that were discussed in appendix D. The eye sensitivity curve K ′(λ) was

1The intermediate regime between photopic and scotopic vision, i.e. mesopic vision is not discussed
here.

2The true experienced brightness will be the result of the data processing of A′ by the whole visual
system, a complex, nonlinear system.
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constructed from experiments where subjects were asked to adapt the intensities of
light sources with different spectral distributions until the perceived brightnesses
were are equal.

E.1.2 Photopic vision

Analogous as for scotopic vision, the response of the cones for a stimilus S(λ) can be
described by means of the numbers:

Ai =
∫
αi(λ)S(λ)dλ (i = 1,2,3), (E.2)

where the index runs over the three different types of cones.

In color matching experiments, subjects are asked to alter the relative intensities
of three different light sources with spectra Pj (λ), the so-called primary colors, to
achieve a mixing color which corresponds visually to a fourth light source with spec-
trum S(λ). This is expressed by following relation:

S(λ) ↔
3∑
j=1

cjPj (λ), (E.3)

where the numbers cj are the so-called tristimulus coefficients. These coefficients can
become negative, meaning that the corresponding spectrum Pj (λ) has to be added to
the target spectrum S(λ). Two spectra have the same color when the Ai values are
equal. The above relationship can hence be formulated as∫

αi(λ)S(λ)dλ =
3∑
i=1

cj

∫
αi(λ)Pj (λ)dλ. (E.4)

c3

1

1

1

(k1, k2, k3)

c2

c1

(c1,c2,c3)

Figure E.1 – Chromatic
space (kj ) as a subspace of
the total color space (cj )

This system of three equations and three unknowns (cj )
has a unique solution when the primary colors are in-
dependent, i.e. when the determinant of the system is
nonzero. The linearity of the map Eq. E.3 was experi-
mentally verified.

The tristimulus coefficients can hence be interpreted as
the components of a vector, describing the color of S(λ)
in a three-dimensional linear vector space, color space.
The primary colors Pj (λ) can be conceived as basis vec-
tors. Changing the primary colors, i.e. a basis transfor-
mation, corresponds to changing the tristimulus values.
The new cj values can be calculated with the 3x3 matrix
describing the basis transformation. The relative intensities of the primary colors
is conventionally chosen such that the tristimulus coefficients for a uniform white
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Figure E.2 – Color matching functions for both standards in the CIE 1931 space.

spectrum are equal.

To determine the coordinates of a color, a color matching experiment has to be per-
formed in principle. However, thanks to the linear character of the model it is suf-
ficient to determine the tristimulus values for monochromatic, i.e. spectral, colors
once. The tristimulus values that are obtained in this way for every wavelength are
referred to as the color matching functionsmj (λ). These allow to determine the color
coordinates of an arbitrary spectrum S(λ):

cj =
∫
mj (λ)S(λ)dλ. (E.5)

The cj values also carry information on the brightness of the stimulus. Because the
brightness can be determined from the luminosity function K(λ), the tristimulus
coefficients are typically normalized:

kj =
cj∑3
i=1 ci

, (E.6)

implying that a color can be described by only two independent values. The kj values
are referred to as the trichromatic coordinates or color coordinates. The luminance,
measuring the brightness of the stimulus, is the third independent variable allowing
to reproduce tristimulus coefficients from color coordinates. Summarized, the three-
dimensional vector space breaks up into a (2+1)-dimensional (color + luminance)-
space. The two-dimensional subspace is called chromatic space3. The connection be-
tween the three-dimensional color space and the two-dimensional chromatic space
is illustrated in Fig. E.1.

3When two sets of tristimulus values are given, it is trivial to calculate the tristimulus values of the

mixed color thanks to the linearity of the model, i.e. c(mix)
j = c

(1)
j + c

(2)
j . Calculating mixed colors in the

chromatic subspace is less trivial, requiring a correct accounting of the luminances. What is known is
that a mixed color is always on the line connecting both primary colors. From more than two primaries,
all colors inside the defining polygon can be made by suitable color tuning.
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E.2 CIE (x,y,Y ) (1931)

To achieve a unique set of color coordinates, it is still required to define primary col-
ors as well as a standard observer. This was done in 1931 by the CIE (Comité Inter-
nationale de l’Eclairage). Monochromatic primaries for red (700.0 nm), green (546.1
nm) and blue (435.8 nm) were defined and color matching functions, r̄(λ), ḡ(λ) and
b̄(λ), were determined in accordance (see Fig. E.2(a)). The tristimulus values that
are determined for an arbitrary stimulus are denoted as (R,G,B), the trichromatic
coordinates as (r,g,b).

0.20.0 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

CIE x

C
IE

 y

0.20.0 0.60.4
0.0

0.2

0.4

0.6

CIE u'

C
IE

 v
'

Figure E.3 – The CIE 1931 (x,y) and
CIE 1976 (u′ ,v′) chromatic spaces.

As can be seen in Fig. E.2(a), the function r̄(λ)
is negative in the region around 500 nm. This
means that the cj and kj values can also take
negative values. To avoid this, alternative pri-
mary colors were derived from the above stan-
dard. The corresponding color matching func-
tions x̄(λ), ȳ(λ) and z̄(λ) are positive over the full
visible spectrum by construction. The tristim-
ulus and trichromatic coordinates are respec-
tively denoted as (X,Y ,Z) and (x,y,z) and are
positive for all physical colors. The consequence
of this construction is that the newly defined
primary colors are no physical colors4. This is
however not problematic as both standards are
related by a linear transformation. Additional,
one has chosen the new primaries such that the
function ȳ(λ) is equal to the luminosity function
V (λ). Altering slightly the definition, Eq. E.5, it
is put that: 

X

Y

Z

 =K
∫ 

x̄(λ)
ȳ(λ)
z̄(λ)

S(λ)dλ (E.7)

with K = Km = 683 lm/W for a radiating surface
and with Y the luminance of the surface. Until today, the (x,y,Y ) coordinates are
frequently used to characterize colors even though better alternatives are available
such as the CIELUV and CIELAB (1976) (u,v) and (u′ ,v′) color coordinates. An
important shortcoming of the CIE (x,y) coordinates is that distances do not encode
perceived color differences in a uniform way across chromatic space. Figure E.3
displays the chromaticity diagram in terms of the (x,y) and the more uniform (u′ ,v′)
coordinates.

4”It was octarine, the color of magic. It was alive and glowing and vibrant and it was the undisputed pigment
of the imagination, because wherever it appeared it was a sign that mere matter was a servant of the powers of
the magical mind. It was enchantment itself. But Rincewind always thought it looked a sort of greenish-purple.
- The Color of Magic, Terry Pratchett (1983).
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