
An ITS Solution Providing Real-Time Visual
Overtaking Assistance Using Smartphones

Subhadeep Patra∗, Carlos T. Calafate†, Juan-Carlos Cano‡ and Pietro Manzoni§
Department of Computer Engineering,

Universitat Politècnica de València,
Camino de Vera S/N 46022, Valencia, Spain.

Email: ∗subpat@doctor.upv.es, †calafate@disca.upv.es, ‡jucano@disca.upv.es, §pmanzoni@disca.upv.es

Abstract—ITS solutions suffer from the slow pace of adoption
by manufacturers despite the interest shown by both consumers
and industry. Our goal is to develop ITS applications using
already available technologies to make them affordable, quick
to deploy, and easy to adopt. In this paper we introduce an
ITS system for overtaking assistance that provides drivers with
a real-time video feed from the vehicle located just in front.
This provides a better view of the road ahead, and of any
vehicles travelling in the opposite direction, being especially
useful when the front view of the driver is blocked by large
vehicles. We evaluated our application using H.264 and MJPEG
video encoding formats, and determined the most effective codec
choice for our case. Experimental results allow us to be optimistic
about the effectiveness and applicability of smartphones in
providing overtaking assistance based on video streaming in
vehicular networks.

Index Terms—Android application; real implementation; video
transmission; live streaming; vehicular network; ITS.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) are advanced solu-
tions that make use of vehicular and infrastructured networks
to provide innovative services related to both traffic and
mobility management, and that interface with other models
of transport. ITS aims at using the already available trans-
port networks in a smarter manner, resulting in significant
coordination and safety improvements. Our goal here is to
integrate smartphones into vehicular networks to develop ITS
applications that can reach out to the masses in a short period
of time. The choice of smartphones is not only justified by
their wide availability and use, but also because they are
evolving towards high performance terminals with multi-core
microprocessors packed with sufficiently accurate onboard
sensors.

The application has been developed for the Android plat-
form, and has been named EYES [1]. EYES requires the
devices running it to be equipped with at least a GPS and
a back camera. It makes use of the camera to record video
and transmit it over the vehicular network, thus providing
an enhanced multimedia information aid for overtaking. The
location information of the vehicles gathered from the GPS is
useful since the transmission of the video feed only occurs
between cars travelling in the same direction, and always
occurs from the vehicle in front to the vehicle travelling
behind. The Android devices are to be placed on the vehicle

dashboard with the camera facing the windshield, so that a
clear view of the road in front and cars coming from the
opposite direction can be captured. This capture is streamed to
the vehicle behind, where it is displayed on-screen. The drivers
would only check this video when they wish to overtake the
vehicle ahead, and they base their decision on what they see
in the video. Once started, our application requires no further
user interaction to operate, and it can run in the background.
EYES can be specially useful in scenarios where the view of
the driver is blocked by a larger vehicle, or when a long queue
of cars is located ahead and the driver wishes to overtake.
The video streaming and playback always occurs between the
car just in-front and the vehicle following it to eliminate any
confusion that might arise if the video was streamed by the
leader of the queue. In such a case, the driver, unaware of
the number of cars ahead, would be overtaking in dangerous
situations. Another added advantage of using this type of
communication is that our application does not suffer from
the typical multi-hop delay.

We have evaluated the developed application in both indoor
and outdoor scenarios. The indoor tests involved comparing
the performance of the application using two different video
codecs, namely H.264 [2] and MJPEG1, which involves com-
pressing the video stream separately as JPEG [3] images.
These two encoding formats were compared focusing mainly
on the delay between capture and playback of the video
stream. Then, choosing the best codec based on the indoor
experiments, we have performed outdoor tests involving real
cars. A more detailed explanation about the developed applica-
tion in terms of its architecture, design, implementation issues
and results obtained will be provided in the following sections.

The rest of this paper is organized as follows: In section II,
we survey some works in the literature that are closely related
to our own. In section III, we will present an overview of the
developed application. Later, in section IV, we will present
the application modules and some implementation details. The
setup used to deploy and validate our application will be
described in detail in section V. In section VI, we will present
the preliminary results achieved with the application in both
a real testbed and a laboratory environment. Finally, section
VII concludes this paper summarizing our contributions.

1More on MJPEG: http://en.wikipedia.org/wiki/Motion JPEG

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 479

II. RELATED WORKS

Both academia and industry have shown a strong interest
in the field of ITS, resulting in the development of many in-
novative applications. Since our EYES application is targeted
at smartphones, in this section we are going to focus the bulk
of our attention on some of the most interesting smartphone
applications related to safe driving.

Most driving safety applications for smartphones usually
aim at warning generation based on onboard location sensors
like in the works of Whipple et al. [4], Yang et al. [5], Diewald
et al. [6] and Tornell et al. [7]. The application developed by
Whipple et al. warns drivers when driving at high speed near
schools. Yang et al. concentrated on finding out the probability
of accidents based on the location information. DriveAssist, by
Diewald et al., triggers warning messages for certain traffic
incidents, while Tornell et al., in their proposed application,
display on screen important vehicles like ambulances and
police cars on a map view, and they later improved that same
solution in [8]. Few other applications used the On Board
Diagnostics (OBD-II) [9] interface to detect incidents, like in
the work of Zaldivar et al. [10] which aimed at detecting
accidents. Wideberg et al. [11] also made use of OBD-II
devices to extract safety and environment related information.

Only very few applications concentrated on providing vi-
sual aids to the drivers, like in SignalGuru described in
[12], which leverages collaborative sensing on windshield-
mount smartphones, in order to predict the schedule of traffic
signals. The CarSafe App [13], introduced by You et al.,
analyses images from front and back cameras of smartphones
to monitor the driver as well as the road ahead. Another
interesting application available for download is iOnRoad [14],
which aims at providing driving assistance functions including
augmented driving, collision warning, and “black-box” like
video recording.

Although we have found many different drive safety ap-
plications for smartphones, only a handful aimed at provid-
ing visual aids to the drivers, namely SignalGuru, CarSafe
and iOnRoad. However, none of these smartphone based
applications actually provides real-time visual overtaking aids
provided by other cars taking advantage of vehicular networks,
even though the idea of video-based overtaking assistance
systems is not new. Works like the See-Through System [15],
which was later improved in [16], although not being targeted
for smartphones, are focused on the issue of video-based
overtaking assistance. Other related works worth mentioning
are [17] and [18], which demonstrate the feasibility of such
video-based assistance systems. In [17] authors proposed per-
formance improvements to a video-based overtaking assistant
by focusing on codec channel adaptation issues. Whereas, [18]
focuses on the reallocation of wireless channel resources to
enhance the visual quality.

Encouraged by the findings from the above mentioned
works, and in order to fulfill the need for a visual overtaking
assistance application targeted at the consumers, we decided
to develop an application which on being provided with

a vehicular network, would require no additional hardware
besides a smartphone to operate. The proposed application
is targeted at smartphones since we aim at achieving rapid
acceptance, as well as to promote the close integration of
smartphones to vehicular networks.

III. OVERVIEW OF THE PROPOSED ARCHITECTURE

The goal of the application is providing assistance during
overtaking by streaming real-time video coming from one
vehicle to another. The minimum requirements for our appli-
cation is the availability of a smartphone with GPS and a back
camera, along with a vehicular network for video transmission.

The functionality of the EYES application can be split in
three simple steps for easy understanding. Step one, involves
electing the sender and the receiver of the video which is
subject to some special tests and validation conditions. In step
two the actual video transmission occurs between the sender
and receiver chosen in phase one. Finally, step three is where
the application decides to terminate the video transmission and
playback. This step also involves testing a special condition
to stop the video streaming.

In the first step, each device equipped with a back camera
and running our application, broadcasts an advertisement
containing its location and direction, while they are simul-
taneously listening for incoming broadcast messages coming
from other devices. Whenever a device receives broadcast
messages from other devices, it first verifies whether the source
of the message is valid. This validity check is based on tests
which basically involve checking if the source and destination
vehicles are traveling one ahead of the other, and in the same
direction. For a more detailed description of these validation
conditions refer to Section IV. If several valid sources are
found, the device requests video from the best source, which
is selected based on the distance between sender and receiver
vehicles. The source vehicle, upon receiving the request to
send video from the destination vehicle, starts streaming the
video signal over the vehicular network, in step two. However,
before sending the video, the source double-checks the valida-
tion conditions used in step one. The destination vehicle starts
playing the video onscreen as soon as it starts receiving it.
The streaming and playback process is stopped in step three,
only when the vehicle behind successfully overtakes, or when
it stops following the vehicle in-front.

Fig. 1 provides more details about step one. In this example,
we have four cars, all of them using our EYES application.
CAR-A and CAR-B are travelling in one direction, while
CAR-C and CAR-D travel in the opposite direction. First, the
cars broadcast the advertisement to each other as shown in
Fig. 1a. Since CAR-C is not within the range of any other
car, nobody is able to communicate with it. Each car, upon
receiving an advertisement, performs the validity checks to
see if the sender of the advertisement is travelling ahead of
it, in the same direction and lane. In this case, only CAR-A
finds the advertisement message from CAR-B to be valid, and
thus requests video from it, as depicted in Fig 1b.

480

Advertisements

Advertisements

Advertisements

CAR-D

CAR-BCAR-A

CAR-C

(a) The vehicles exchange advertisements.

Video Request

CAR-D

CAR-BCAR-A

CAR-C

(b) The client requests video from the server.

Fig. 1: Functional overview of EYES - Step one.

CAR-D

CAR-BCAR-A

CAR-C

Video streaming and playback

VIEW

Fig. 2: Functional overview of EYES - Step two.

Similarly, Fig. 2 shows that CAR-B, upon receiving the
video request from CAR-A, rechecks the validity conditions
and starts streaming the video. CAR-A starts receiving the
video stream and plays it onscreen for its driver. It may be
noted here that a device can act both as video source and
destination. This is because, while a device is receiving video
from another device, it may also be streaming its own video
capture to a completely different device.

CAR-D

CAR-B CAR-A

CAR-C

Fig. 3: Functional overview of EYES - Step three.

Fig. 3, shows that CAR-A has overtaken CAR-B, and this
causes the video transmission to stop. Now, CAR-B may
request the video feed from CAR-A which is now travelling
ahead, and all the steps above would be repeated in that case.

IV. IMPLEMENTATION DETAILS

From the previous section we already know that the func-
tionality of the developed architecture can be split into three
steps. Also, a device running EYES can act as both server and
client at the same time, receiving video from another device
while streaming video to a completely different device. In this
section we consider two devices out of which one will be
streaming and the other just receiving. The device sending the
video is considered as the server, while the receiver acts as a

client. Although the server and client roles are not established
at the beginning of step one, we will use the words server
and client to refer to the devices that will be attaining the
respective role in the future for the sake of clarity.

INIT

END

NOTIFY

REPLY

STREAM

(a) Different Server States.

INIT

END

LISTEN

REQUEST

PLAY

(b) Different Client States.

Fig. 4: State diagram of the Server and Client.

Fig. 4 shows the different states that server and client can
attain. When the client and the server start as a part of step
one, the server is in the notify state, as shown in Fig. 4a,
and it starts advertising the availability of the video feed by
broadcasting a hello message. Besides sending advertisements,
the server, while in the notify state, also listens for replies to
its hello message from clients requesting the video feed. A
hello message contains the location information of the server
so that the client, upon receiving it, and by performing some
validation tests, can determine if the server is ahead and
travelling in the same direction. The client remains listening
for advertisements from the server while in the listen state, as
shown in fig. 4b. If the client receives hello messages from
different servers, it checks whether the servers are valid, and
stores the information in a queue of candidate servers.

(a) Same direction test. (b) Same lane test.

Fig. 5: Validation tests to initiate video streaming in EYES.

Fig. 5 shows the proposed validity tests which include the
same direction test and the same lane test conditions. The
same direction test is used to detect whether two vehicles

481

are travelling in the same direction. For understanding the
same direction test, let us assume we have two cars, one
travelling from the point A1 to B1, and the other from A2
to B2, as shown in Fig. 5a. Notice that, even if two cars are
travelling in the same direction, it is hard for them to have
an overlapping displacement vector; in other words, the angle
between the two vectors is not 0. This can happen due to
different driving styles, the nature of the route and GPS errors.
Thus, we measure the angle θ between these two vectors and
compare it to a predefined threshold α. If θ is less than α, we
can safely assume that the two vehicles are travelling in the
same direction. Now, even if two vehicles are travelling in the
same direction, it does not necessarily mean that one is ahead
of the other, both vehicles may be travelling on different lanes
or parallel roads altogether. To check if one is following the
other one on the same lane, we perform the same lane test, and
for this purpose we draw an imaginary line joining the current
locations of the two vehicles, as shown in fig. 5b, where B1
and B2 are the current locations. Then we measure the angle
of intersection of this line joining the points B1 and B2 with
the displacement vectors of the vehicles. When the measured
angle of intersection θ is less than a predefined angle β, then
the vehicles are considered to be travelling on the same lane.
Being on different lanes will result in a higher value of the
measured angle θ, and the same lane test will fail. If these two
conditions are satisfied, then the two vehicles are assumed to
be travelling in the same direction, one following the other.

The client which was listening for server advertisements,
chooses the best server from the list of candidate servers based
on its distance to the server. The client then tries to connect
to the chosen server by sending a request, and moves to the
request state. The server, upon receiving the request from the
client, also checks its validity by performing the same direction
and same lane tests once again. Before sending the ready or
reject message, which denotes whether it is ready to send the
video being captured by its camera, the server changes its
state to reply. The server may further choose to change its
state back to notify or to stream modes depending on its own
reply. The client, which was previously in the request state,
only changes its state to play if the reply from the server was a
ready message containing the video sender port number; else
it may choose to contact some other server. Table I, details
the packet types exchanged between the server and the client.

In case the server and client are in the stream and play states
respectively, step two, which involves video streaming and
playback, is started at the server and client ends, respectively.

Fig. 6: Overtake test to terminate video streaming in EYES.

Beside streaming video, the server, during this period, keeps
sending a data message every second. The data message
contains the location, direction and speed information of the
vehicle where the server is located. This way, its corresponding
client can check whether an overtake has occurred. To find out
if an overtake was successful, the overtake test is evaluated,
as shown in fig. 6. This test is similar to the same lane test,
the only difference being that the angle θ measured here is
the other linear pair of the angle of intersection between the
displacement vector and the line formed by joining the current
location of the two vehicles. Also, the threshold ϕ used here is
usually a much larger value. Upon receiving the data message
from the server, the client, if it still has not overtaken as
suggested by the overtake test, replies the server with a data-
ack message to keep the video connection alive.

If the application detects that an overtake has occurred, step
three takes place, and so the client can request the server to
terminate the video stream by sending an end message. When
the video streaming has been stopped, the client switches to
the end state and, later on, moves back to the listen state once
again. The server, on the other hand, can move to the end
state upon receipt of the end message from the client, or if
the waiting time for a data-ack from the client expires. This
waiting time is used to detect cases of eventual disconnections.
In our implementation we have fixed this waiting time to 3
seconds, which is adequate to detect disconnections, especially
when considering that all communications occur between two
cars, one just ahead of the other.

V. CREATING THE VEHICULAR NETWORK

For proper operation, the developed application assumes the
availability of a vehicular network, although the vehicles we
use on a daily basis still lack the capability to communicate
with one another. So, for testing EYES, we equipped cars
with GRCBoxes [19] inside them. GRCBox is a low cost

Message Type From → To Client State Server State Message Contents
Hello S → C Listen Notify Location and Direction
Request C → S Request Notify Location and Direction
Ready S → C Request Reply Video sender port
Reject S → C Request Reply -
Data S → C Play Stream Location, Direction and Speed
Data-Ack C → S Play Stream -
End C → S Play Stream -

TABLE I: Messages exchanged between the Server and Client.

482

connectivity device based on a Raspberry Pi2 which enables
the integration of smartphones into vehicular networks. It
was developed mainly due to the difficulty in creating an
adhoc network using smartphones. Another important feature
provided by GRCBox is the support for V2X communications.
The different networks supported by the GRCBox include
adhoc, cellular and Wifi access points, among others. Thus,
we use the adhoc network support of the GRCBoxes to create
the required network for our application.

GRC

GRC GRC

CAR-A CAR-B

CAR-C
Video recordingVideo playback

Vehicular
Network

Fig. 7: Our application working together with GRCBox.

Fig. 7 shows how EYES works when combined with GR-
CBox. Each car within the vehicular network has a GRCBox
mounted. The smartphones of the passengers within the car
are connected to the GRCBox, which is equipped with Wifi-
enabled USB interfaces to communicate in adhoc mode, cre-
ates a vehicular network. Even though GRCBox is supposed
to be equipped with 802.11p for vehicular communication,
we used 802.11a devices instead as 802.11p-enabled hardware
was not available while setting up the GRCBox to perform
the tests. In future experiments we intend to use 802.11p
compatible hardware to take advantage of the WAVE standard
[20].

As shown in fig. 7, Car-B is ahead of the Car-A, and
both of them are travelling in the same direction and running
our application, so the smartphone in Car-B starts recording
the video autonomously and sending it to Car-A, relying on
the vehicular network created using the GRCBoxes available
within the cars. Concerning the video, it is played onscreen
on the device in Car-A as soon as video reception starts.

VI. APPLICATION VALIDATION

For validating the EYES application, we performed tests in
both indoor and outdoor scenarios. The indoor tests consisted
of comparing the delay involved between video capture and
its playback, for both H.264 and MJPEG encoding formats.
The outdoor tests, on the other hand, involved testing our
application and evaluating the various conditions for initiating
or terminating video streaming, using real cars driven around
the Universitat Politècnica de València. Each car was equipped
with a GRCBox to create the required vehicular network, and
the Android devices used were a Nexus 7 and a Samsung
Galaxy Note 10.1 (2014 Edition). The Nexus 7 from Google

2More on Raspberry Pi: https://www.raspberrypi.org

was powered by a quad-core 1.2 GHz processor, ULP GeForce
GPU, 1 GB RAM and 1.2 MP camera. The Samsung Galaxy
Note 10.1, on the other hand, was equipped with a quad-core
1.9 GHz plus quad-core 1.3 GHz processors, 3 GB ram, 8 MP
primary camera and 2 MP secondary camera.

A. Delay requirements

The most important factor to determine the proper function-
ing of a driving assistance application based on streaming real-
time video, is the delay between video capture and playback.
To calculate an admissible delay value between video capture
and playback, let us assume two cars travelling in the opposite
direction on a road located in a densely populated area, and
where the possibility of accidents is much higher because
roads tend to be more crowded. We know that the maximum
speed limit on such roads is usually around 50 km/h. Assuming
the worst case where both cars are travelling near the speed
limit, the relative velocity (VR) can be calculated using the
formula:

VR = VA + VB

where VA and VB are the velocities of the two cars, VR is
found to be 100 km/h or 27.778 m/s.

CAR-BCAR-A

CAR-C

Video streaming and playback

VIEW

Error in position

Current position
of CAR-C

Fig. 8: Error due to delay.

Since there is a delay involved between video capture and
playback, the car coming from opposite direction will be in
fact closer than the position shown by the application. Fig. 8
demonstrates such a situation, where CAR-A is receiving
video feed from CAR-B which shows the position of CAR-
C. However, due to the delay involved, CAR-C is located at
a position much closer than shown in the video feed. Now,
if the allowable error in the position of the vehicle coming
from the opposite direction is limited to 10 meters, which is
reasonable considering the fact that safe overtaking requires a
margin of at least 100 meters from the overtaking vehicle to the
vehicle in the opposite direction, then the maximum allowable
delay would be 0.36 seconds in accordance with the equation:
time = distance/speed. So, in the results that follow, we
must make sure that such maximum delay requirement is met.

B. Indoor tests

Compared to H.264, MJPEG is a more simpler video com-
pression format since the video stream is compressed sepa-
rately as JPEG images. Thus, when talking about compression-
ratios, the performance of MJPEG is limited. So, to make
a clear comparison between H.264 and MJPEG encoding
schemes for Android devices in terms of delay, we first

483

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 30 40 50 60 70 80

T
hr

ou
gh

pu
t i

n
M

b
ps

JPEG quality in percentage

320x240
640x480

1280x720

Fig. 9: Variation of throughput with JPEG quality for a
10fps MJPEG video.

calculate the throughput of MJPEG video for different resolu-
tions, so that we can eventually make delay versus throughput
comparisons for the two encoding formats.

In Fig. 9, the frames per second of the MJPEG video stream
was fixed at 10 because we believe that a 10fps video is
sufficient for our application. Also, the JPEG compression
function used to generate the frames required for the video
feed accepts a value between 0 and 100. The value 0 produces
the worst perceived quality but the highest compression, while
the opposite occurs for 100. For our experiments, the quality
of the JPEG in the video stream was varied from 20 to 80
percent, since for lower values the video quality was too low,
whereas a JPEG quality of more than 80 percent did not show
any significant improvements in the perceived quality. From
the figure we can observe that, for a resolution of 320x240,
the average throughput varies from 0.405 to 1.029 Mbps. For
640x480, it lies between 0.976 to 2.336 Mbps, and in case
of a 1280x720 resolution, it ranges between 1.805 to 4.177
Mbps.

We now supply the throughput values we achieved for
MJPEG to the H.264 encoder to make a proper comparison
between them, and to obtain the delay for the two types of
encoding formats.

Fig. 10 shows the delay comparison of MJPEG versus
H.264 for different resolutions. Fig. 10a allows observing that,
for a resolution of 320x240, the average delay for MJPEG
suffer minimal variations (from 0.24 to 0.27 seconds), whereas
for H.264, it increases from 0.71 to 2.92 seconds. Similarly,
fig. 10b shows that the average delay ranges from 0.26 to 0.31
seconds for MJPEG, and from 0.7 to 1.22 seconds for H.264
video, the resolution being 640x480 for both the encoding
formats. Eventually, in fig. 10c, which compares H.264 with
MJPEG for a resolution of 1280x720, we see that, in case
MJPEG is used, the mean delay ranges between 0.4 and 0.44
seconds, and being in the range from 0.72 to 1.44 seconds for
H.264. Thus, in all the cases, MJPEG outperforms H.264 when

0

0.5

1

1.5

2

2.5

3

3.5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

D
el

ay
 in

 s
ec

o
nd

s

Throughput in Mbps

H.264 @ 10 fps
MJPEG @ 10 fps

(a) The delay comparisons for 320x240 video stream.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

D
el

ay
 in

 s
ec

o
nd

s

Throughput in Mbps

H.264 @ 10 fps
MJPEG @ 10 fps

(b) The delay comparisons for 640x480 video stream.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.5 2 2.5 3 3.5 4 4.5

D
el

ay
 in

 s
ec

o
nd

s

Throughput in Mbps

H.264 @ 10 fps
MJPEG @ 10 fps

(c) The delay comparisons for 1280x720 video stream.

Fig. 10: The comparison of MJPEG and H.264.

484

Cars in the
opposite direction

Car ahead transmitting
video using EYES

GRCBox used to create the vehicular networkThe video from the car
ahead being played

Fig. 11: The experiments with EYES in real scenario.

considering delay in scenarios involving Android devices.
Notice that, although the devices used for our experiments
packed sufficient processing power, delay was introduced by
the Android libraries. This means that MJPEG becomes the
wisest choice among the two compression methods.

Next, we want to select the most appropriate resolution and
JPEG quality for the MJPEG video stream for use in the scope
of our application. The proper functioning of the application
is largely dependent on the availability of a vehicular network,
which has been created using GRCBoxes. Thus, this selection
process depends on the bandwidth provided by the vehicular
network. From our experiments with the GRCBox, we found
that it is capable of providing a mean bandwidth of 10.5Mbps
for TCP traffic, and 15.5Mbps for UDP traffic, although the
worst value for both TCP and UDP was close to 5.5Mbps.
Since, an Android device with our application installed can
simultaneously act as video source and destination, the effec-
tive bandwidth available for one-way video transmission in the
worst case scenario is 2.75Mbps. At the data rate of 2.75Mbps,
all the different combinations of resolution up to HD with
JPEG quality up to 50 percent, as suggested by Fig. 9, can be
supported by the vehicular network created using GRCBoxes.
However, we have previously seen that a delay of more than
360 ms is unacceptable for our real-time visual overtaking
aid, and consequently we choose the MJPEG compression
scheme with a resolution of 640x480 at 10fps with JPEG
quality set to 80 percent for the video stream, owing to its
better performance in terms of delay while meeting throughput
limitations.

C. Outdoor tests

In our developed architecture, the three important conditions
evaluated were described in Section IV, and each of these

conditions, namely same direction test, same lane test and
overtake test, were dependent on a threshold value. We have
performed a wide set of tests in a real scenario, and our
aim was to evaluate the usefulness of these conditions by
investigating if reasonable values of the threshold angles α,
β and ϕ can be achieved, for two cars where one follows the
other throughout the whole experiment while travelling along
a particular route, so that there is non-stop streaming of video
between them.

Fig. 11 shows a photo taken during one of the outdoor
tests 3. In this picture, we can see that the front car is trying
to take a right turn, and the back car is receiving the video
from the car ahead and playing it onscreen. While doing our
outdoor tests with the application, we collected the various
angles used in the three different validation tests. Below we
can see the graphical representation of the data obtained during
the experiment.

Fig. 12 shows the density plot of the angles measured by the
same direction test at the client side. Most observations for the
same direction test lie within 20 degrees, which is satisfactory.
It is also noticeable that many peaks occur due to GPS errors,
also because the route followed had a lot of turns and curves,
and so the two cars were not always on a straight path.

Fig. 13 shows the density graph of the same lane test for
the client. From this particular plot, we can see that most
observations for the same lane test also lie within 20 degrees.
Notice that this value is too high considering that this test is
very sensitive, and used to detect if cars are travelling one
ahead of the other on the same lane, and so we find that this
condition may not be too useful when considering the accuracy
of current technology. Notice that the same direction test and
same lane test are relevant when starting the video stream, and

3Application in action: https://www.youtube.com/watch?v=jrIWbFjN3Hw

485

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

0.
20

Angles measured by the same direction test (in degrees)

D
en

si
ty

Fig. 12: Results of the same direction test.

0 50 100 150

0.
00

0.
02

0.
04

0.
06

Angles measured by the same lane test (in degrees)

D
en

si
ty

Fig. 13: Results of the same lane test.

are evaluated by both the sender and the receiver, but only data
from the receiver (i.e. the client) has been plotted in Fig. 12
and 13 as similar values have also been obtained at the server
end. More details related to these tests, can be found in [1].

Fig. 14, shows the density plot for the observations of the
overtake test. Note that, in order to simplify the graph analysis,
the values used are: 180◦−θ where θ represents the measured
angles in the overtake test. The overtake test is only evaluated
by the client, and we have used its data to produce the graph.
We find that the results from this test were pretty much what
we expected since all plotted values are below 90 degrees.

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Angles measured by the overtake test (in degrees)

D
en

si
ty

Fig. 14: Results of the overtake test.

VII. CONCLUSIONS

In this paper, we have presented EYES, a driving safety
application that is able to help drivers in safe overtaking.
The system provides a real-time video feed captured by
the smartphone installed in the vehicle ahead, and which is
streamed to the smartphone of the driver seated in the car just
behind, where the video is displayed without user intervention.
Thus, it provides drivers with important information and helps
them decide whether it is safe to overtake. Also no multi-
hop relaying is required by the application, thus making
us optimistic about its applicability in regions with a high
traffic density. The developed application works correctly and
was tested using H.264 and MJPEG video encoding formats;
MJPEG was chosen as the default video compression scheme
due to its lower encoding delay. We have also introduced three
validation conditions, namely the same direction, same lane
and overtake test, used by the application to choose the video
server and client. These conditions have been kept very simple
to achieve low delays and thus enhance the usefulness of our
system. Also, we have evaluated these conditions, and found
that thresholds of 20 degrees for the same direction test and 90
degrees for the overtake test are reasonable. Nevertheless, the
same lane test was found to be useless unless more accurate
GPS hardware is made available. Despite this minor issue, we
acknowledge the fact that combining smartphones with vehic-
ular networks indeed opens a new horizon for ITS applications
and, in the future, we will focus our attention on improving
our application by evaluating different alternatives for the same
lane test, which includes, among others, incorporating image
processing techniques for license plate recognition, which can
assist the client in choosing the video server. Incorporating
this feature would also help us detect situations where the
leading vehicle is not a part of the network, and thus would

486

refrain clients from requesting inadequate video feeds from
other vehicles.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission under Svāgata.eu, the Erasmus Mundus Programme,
Action 2 (EMA2) and the Ministerio de Economı́a y Com-
petitividad, Programa Estatal de Investigación, Desarrollo e
Innovación Orientada a los Retos de la Sociedad, Proyectos
I+D+I 2014, Spain, under Grant TEC2014-52690-R.

REFERENCES

[1] S. Patra, J. H. Arnanz, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“EYES: A Novel Overtaking Assistance System for Vehicular Net-
works,” in Ad-hoc, Mobile, and Wireless Networks. Springer, 2015,
pp. 375–389.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H. 264/AVC video coding standard,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560–576,
2003.

[3] G. K. Wallace, “The JPEG still picture compression standard,” Commu-
nications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.

[4] J. Whipple, W. Arensman, and M. S. Boler, “A public safety application
of GPS-enabled smartphones and the android operating system,” in
Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International
Conference on. IEEE, 2009, pp. 2059–2061.

[5] J. Yang, J. Wang, and B. Liu, “An intersection collision warning system
using Wi-Fi smartphones in VANET,” in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE. IEEE, 2011, pp. 1–5.

[6] S. Diewald, A. Möller, L. Roalter, and M. Kranz, “DriveAssist-A V2X-
Based Driver Assistance System for Android.” in Mensch & Computer
Workshopband, 2012, pp. 373–380.

[7] S. M. Tornell, C. T. Calafate, J.-C. Cano, P. Manzoni, M. Fogue, and
F. J. Martinez, “Implementing and testing a driving safety application
for smartphones based on the eMDR protocol,” in Wireless Days (WD),
2012 IFIP. IEEE, 2012, pp. 1–3.

[8] S. Patra, S. M. Tornell, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“Messiah: An ITS drive safety application,” in XXV Jornadas Sarteco,
Valladolid, Spain, 2014.

[9] I. O. for Standardization, “ISO 14230-1:1999: Road vehicles, Diagnostic
systems, Keyword protocol 2000,” 1999.

[10] J. Zaldivar, C. T. Calafate, J.-C. Cano, and P. Manzoni, “Providing
accident detection in vehicular networks through OBD-II devices and
Android-based smartphones,” in Local Computer Networks (LCN), 2011
IEEE 36th Conference on. IEEE, 2011, pp. 813–819.

[11] J. Wideberg, P. Luque, and D. Mantaras, “A smartphone application to
extract safety and environmental related information from the OBD-II
interface of a car,” International Journal of Vehicle Systems Modelling
and Testing, vol. 7, no. 1, pp. 1–11, 2012.

[12] E. Koukoumidis, M. Martonosi, and L.-S. Peh, “Leveraging smartphone
cameras for collaborative road advisories,” Mobile Computing, IEEE
Transactions on, vol. 11, no. 5, pp. 707–723, 2012.

[13] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J. Bao,
M. Montes-de Oca, Y. Cheng, M. Lin, L. Torresani et al., “Carsafe
app: Alerting drowsy and distracted drivers using dual cameras on
smartphones,” in Proceeding of the 11th annual international conference
on Mobile systems, applications, and services. ACM, 2013, pp. 13–26.

[14] “iOnRoad official website,” http://www.ionroad.com/, accessed: 2015-
02-8.

[15] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira, and M. Ferreira,
“The See-Through system: A VANET-enabled assistant for overtaking
maneuvers,” in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE,
2010, pp. 123–128.

[16] P. Gomes, C. Olaverri-Monreal, and M. Ferreira, “Making vehicles
transparent through V2V video streaming,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 13, no. 2, pp. 930–938, 2012.

[17] A. Vinel, E. Belyaev, K. Egiazarian, and Y. Koucheryavy, “An overtaking
assistance system based on joint beaconing and real-time video trans-
mission,” Vehicular Technology, IEEE Transactions on, vol. 61, no. 5,
pp. 2319–2329, 2012.

[18] E. Belyaev, P. Molchanov, A. Vinel, and Y. Koucheryavy, “The use
of automotive radars in video-based overtaking assistance applications,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 14, no. 3,
pp. 1035–1042, 2013.

[19] S. M. Tornell, S. Patra, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“GRCBox: Extending Smartphone Connectivity in Vehicular Networks,”
International Journal of Distributed Sensor Networks, 2014.

[20] D. Jiang and L. Delgrossi, “IEEE 802.11 p: Towards an international
standard for wireless access in vehicular environments,” in Vehicular
Technology Conference, 2008. VTC Spring 2008. IEEE. IEEE, 2008,
pp. 2036–2040.

487

