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Abstract. Exceptional Preferences Mining (EPM) is a crossover be-
tween two subfields of datamining: local pattern mining and preference
learning. EPM can be seen as a local pattern mining task that finds
subsets of observations where the preference relations between subsets of
the labels significantly deviate from the norm; a variant of Subgroup Dis-
covery, with rankings as the (complex) target concept. We employ three
quality measures that highlight subgroups featuring exceptional prefer-
ences, where the focus of what constitutes ‘exceptional’ varies with the
quality measure: the first gauges exceptional overall ranking behavior,
the second indicates whether a particular label stands out from the rest,
and the third highlights subgroups featuring unusual pairwise label rank-
ing behavior. As proof of concept, we explore five datasets. The results
confirm that the new task EPM can deliver interesting knowledge. The
results also illustrate how the visualization of the preferences in a Pref-
erence Matrix can aid in interpreting exceptional preference subgroups.

1 Introduction

Consider a survey where detailed preferences of sushi types have been collected,
along with demographic details of the respondents. For each example in the
dataset, we have personal details (age, gender, income, etc.) as well as a set of
sushi types, ordered by preference [15]. By mapping the demographic attributes
and unusual preferences, marketeers would be able to target key demographics
where specific sushi types have greater potential.

The study of preference data has been approached from a number of perspec-
tives, grouped under the name Preference Learning (PL) (e.g., as Label Ranking
[3,22,24]). Typically, the aim is to build a global predictive model, such that the
preferences can be predicted for new cases. However, in several areas, such as
marketing, there is also great value in identifying subpopulations whose prefer-
ences deviate from the norm. If some sushi type is markedly underpreferred by
a certain age group or in a certain region, then the vendor can develop specific
strategies for those groups. Finding coherent groups of customers to focus on is
an invaluable part of promotion strategies.
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Arguably the most generic setting for discovering local, supervised deviations
is that of Subgroup Discovery (SD) [17]. The aim of SD is to discover subgroups
in the data for which the target shows an unusual distribution, as compared to
the overall population [17]. SD is generic in the sense that the actual nature of
the target variable can be quite diverse [1,14,23]. In this paper, we develop a
Subgroup Discovery approach that focuses on a deviation target concept repre-
senting preferences over a fixed set of labels.

1.1 Main Contributions

This work provides focus specifically on the discovery of meaningful subgroups
with exceptional preference patterns (see Section 4). We propose three quality
measures for this purpose, reflecting different facets of interestingness one might
have about the unusual preferences. All quality measures contrast the ranking
of the labels in the subgroup with the ranking of the labels in the entire dataset;
they differ in the granularity of the measured deviation. A subgroup is deemed
interesting by the first quality measure if the overall ranking is exceptional, by
the second quality measure if one particular label behaves exceptionally, and
by the third quality measure if a single pair of labels displays exceptional be-
havior. Hence, Exceptional Preferences Mining provides subgroups displaying
exceptional ranking behavior; different quality measures allow for this excep-
tional behavior to either encompass the entire label space, or focus on more
local peculiarities.

2 Label Ranking

Label Ranking (LR) studies the problem of learning a mapping from instances
to rankings over a finite number of predefined labels [12]. It can be considered
a variant of the conventional classification problem [4]. However, in contrast to
a classification setting, where the objective is to assign examples to a specific
class, in LR we are interested in assigning a complete preference order of the
labels to every example.

More formally, in classification, given an instance x from the instance space
X, the goal is to predict the label (or class) λ to which x belongs, from a pre-
defined set L = {λ1, . . . , λk}. In Label Ranking, the goal is to order the labels
in L by their association with x. A ranking is a total order over L defined on
the permutation space Ω. A total order can be represented as a permutation π
of the set {1, . . . , k}, such that π(a) is the position of λa in π.

A total order
λπ(1) �

x
λπ(2) �

x
. . . �

x
λπ(k)

is associated with every instance x ∈ X, representing a ranking π ∈ Ω. In cases
where the orders are partial, they are represented as rankings with ties [10].

The goal in label ranking is to learn the mapping X→ Ω. The training data
is defined as D, which is a bag of n records of the form x = (a1, . . . , am, π),



where {a1, . . . , am} is set of values from m independent variables A1, . . . ,Am
describing instance x and π is the corresponding target ranking.

Pairwise comparisons have been used to decompose LR or Multi-Label prob-
lems into binary problems [12]. In LR, the most relevant approach is Ranking
by Pairwise Comparisons (RPC) [9], which decomposes the LR problem into a
set of binary classification problems. Then, a learning method is trained with
all examples for which either λi � λj or λj � λi is known [9]. The resulting
predictions are then combined to predict a total or partial ranking [3].

Recently, some approaches have been suggested for mining preferences and
ranks [11,18]. These approaches tackle different problems from the one we pro-
pose in this paper. In [11], the authors suggest an approach to mine the rankings
with association rules that search for subranking patterns, while our approach re-
lates the ranking patterns with descriptors (otherwise referred to as independent
variables). From a different perspective, [18] suggests a ranked tiling approach
to search for rank patterns, whereas we are interested in the preference relations
derived from the ranks.

3 Subgroup Discovery and Exceptional Model Mining

Subgroup Discovery (SD) [17] is a data mining framework that seeks subsets
(satisfying certain user-specified constraints) of the dataset where something ex-
ceptional is going on. In SD, we assume a flat-table dataset D, which is a bag
of n records of the form x = (a1, . . . , am, t1, . . . , t`). We call {a1, . . . , am} the
descriptors and {t1, . . . , t`} the targets, and we denote the collective domain of
the descriptors by A. We are interested in finding interesting subsets, called sub-
groups, that can be formulated in a description language D. In order to formally
define subgroups, we first need to define the following auxiliary concepts.

Definition 1 (Pattern and coverage). Given a description language D, a
pattern p ∈ D is a function p : A → {0, 1}. A pattern p covers a record xi iff
p(ai1, . . . , a

i
m) = 1.

Patterns induce subgroups, and subgroups are associated with patterns, in the
following manner.

Definition 2 (Subgroup). A subgroup corresponding to a pattern p is the bag
of records Sp ∈ D that p covers:

Sp =
{
xi ∈ D

∣∣ p (ai1, . . . , aim) = 1
}

For simplicity, we will loosely identify pattern and subgroup with each other.
The exact choice of the description language is left to the domain expert or

analyst. A typical choice is the use of conjunctions of conditions on attributes.
Restricting the findings of SD from all subsets to only subgroups that can be
defined in such a way, ensures results of the following form:

Age ≥ 30 ∧ Likes = Salmon Roe is unusual



Restricting the search from subsets to subgroups, combined with a sensible choice
of description language, ensures that SD delivers subgroups that are defined in
terms of attributes of the dataset. This means that the results are delivered in a
form with which dataset domain experts are familiar. In other words, the focus
of SD lies on delivering interpretable results.

Formally, the interestingness of a subgroup can be measured using all infor-
mation available in its associated pattern. In practice, it depends on the task we
are trying to solve. Therefore, we should define one or more quality measures to
assess the interestingness we want to explore.

Definition 3 (Quality Measure). A quality measure is a function ϕ : D → R.

In the most common form of pattern mining, frequent itemset mining [2], inter-
estingness is measured by the frequency of the pattern. Subgroup Discovery [17],
on the other hand, measures interestingness in a supervised form. One designated
target t1 is identified in the dataset, and subgroup interestingness is gauged by an
unusual distribution of that target. Hence, considering that a poll revealed that
the majority of Japanese people like Fatty tuna sushi, an interesting subgroup
could be:

Age ≥ 30 ∧ Lives in region = Hokkaido ⇒ Likes = Tuna roll

If instead of a single target, multiple targets t1, . . . , t` are available, and if we
are not interested in finding unusual target distribution, but unusual target
interaction, we can employ Exceptional Model Mining (EMM) [5,6] instead of
SD. EMM is instantiated by selecting two things: a model class and a quality
measure. Typically, a model class is defined to represent the unusual interaction
between multiple targets we are interested in. A specific quality measure that
employs concepts from that model class must be defined to express exactly when
an interaction is unusual and, therefore, interesting.

The target concept at hand in this paper has only one target object t, which
resembles SD. However, that target object is a label ranking πi ∈ Ω, as defined in
Section 2. Hence it represents unusual interactions between multiple individual
labels, which is more consistent with EMM.

3.1 Traversing the Search Space

Typically, subgroups are found by a level-wise search through attribute space
[20]. We define constraints on single attributes, and define the corresponding
subgroups as those records satisfying each one of those constraints.

The actual phenomenon of the data that a given quality measure favors, de-
pends on the target concept (binary, numeric, preferences, . . . ). For very small
subgroups, one easily finds an unusual distribution of the target. To favor larger
subgroups, one defines the quality measure such that it balances the exception-
ality of the target distribution with the size of the subgroup.

SD approaches have been developed for binary, nominal [1] and numeric tar-
get variables [13,14], as well as for targets encompassing multiple attributes [23].
However, none of the previous approaches is able to capture all the sets of pref-
erences that can be derived from rankings within an SD framework.



4 Exceptional Preferences Mining

Exceptional Preferences Mining (EPM) is the search for subgroups with deviat-
ing preferences. Exactly what constitutes an interesting deviation in preferences
is governed by the employed quality measure, and can be inspired by the appli-
cation at hand.

When the number of labels is large, the search for preference patterns can
be hard to analyze and visualize. A real world example is the Sushi dataset [15],
which represents the preferences of 5 000 persons over 10 types of sushi. Even
this relatively modest number of sushi types can be ranked in a large number of
combinations: more than 98% of the 5 000 rankings present in this dataset are
unique. This illustrates why it can be more difficult to directly learn a ranker
that associates a reliable complete ranking for any subset in X when the number
of labels is large.

In EPM, we want to search for strong preference behavior. However, in cases
like the Sushi dataset, it is difficult to get strong total orders, due to the low
number of ranking repetitions. In other words, searching for subgroups where all
types of sushi are consistently ranked in this exact same order can be unfruitful.
For this reason, we also propose lower-granularity measures that focus on one
label versus the others (Labelwise). That is, we look for subgroups where at
least one type of sushi is often preferred to all the others. As an example, if a
subgroups ranks tekka-maki consistently in the top 3 while the majority in the
dataset ranks it in the last 3, this measure will find it to be very interesting. We
also propose a measure of even lower granularity, focusing on label versus label
(Pairwise) preferences. This means that, if most people display a preference
tamago � kappa-maki, a subgroup where most people prefer kappa-maki �
tamago will be deemed interesting by this measure.

Our assumption is that, even though over 98% of the total rankings in the
Sushi dataset are unique, there is plenty of information present in these rankings:
the partial orders and pairwise comparisons can reveal interesting subgroups.

4.1 Preference Matrix

Let us define a function, ω, assigning a numeric value to the pairwise comparison
of the labels λ and λ̂:

ω
(
λ, λ̂

)
=


1 if λ � λ̂ (λ preferred to λ̂)

−1 if λ ≺ λ̂ (λ̂ preferred to λ)

0 if λ ∼ λ̂ (λ indifferent to λ̂)

n/a if λ ⊥ λ̂ (λ incomparable to λ̂)

Note that, by definition, ω
(
λ, λ̂

)
= −ω

(
λ̂, λ

)
. We can use ω to represent a

ranking π as a Preference Matrix (PM), Mπ:

Mπ (i, j) = ωπ (λi, λj)



Table 1: Example dataset D̂. The first column is the only descriptor. The subsequent
four columns represent the preferences among four labels, by providing their ranks. An
alternative representation is presented in the rightmost section of the table.

a1
π

alternative π
λ1 λ2 λ3 λ4

0.1 4 3 1 2 λ3 � λ4 � λ2 � λ1

0.2 3 2 1 4 λ3 � λ2 � λ1 � λ4

0.3 1 4 2 3 λ1 � λ3 � λ4 � λ2

0.4 1 3 2 4 λ1 � λ3 � λ2 � λ4

Mπ is, by definition, an antisymmetric matrix with tr (Mπ) = 0. PMs can na-
tively represent partial or incomplete orders but can also be aggregated to rep-
resent sets of rankings from an entire dataset D or subgroup S. To aggregate
the entries, the mean or the mode can be used.

Aggregation of a PM for sets of rankings The PM of a set of rankings
from a dataset D with n rankings, MD, aggregated with the mean is:

MD (i, j) =
1

n

∑
π∈D

Mπ (i, j)

The PM of the example dataset D̂ (cf. Table 1) is the following:

MD̂ =


0 0 0 0.5
0 0 −1 0
0 1 0 1
−0.5 0 −1 0


This representation enables easy detection of strong partial order relations in a
set. If row i has all the values very close to 1, then λi is highly preferred in this
group. If entry MD̂ (i, j) = 1 or MD̂ (i, j) = −1, then all rankings in D̂ agree
that λi � λj or λi ≺ λj , respectively.

All the elements of D̂ reveal distinct total preferences, but λ3 is always pre-
ferred to λ2, which is easily verified by checking that MD̂ (3, 2) = 1. In the

ranking representation of D̂, this fact follows from four distinct combinations of
ranks: rank 3 > 1, rank 2 > 1, rank 4 > 2 and rank 3 > 2 (this information is
found in the two columns below λ2 and λ3). Conversely, λ4 is never preferred to
λ3, which is represented by MD̂ (4, 3) = −1. In some cases, the overall trend is
not as clear (e.g. λ1 is preferred to λ4 but not always) and in other cases, there
is no trend at all (e.g. λ1 and λ2).

Representing a set of rankings as a PM has another advantage over the tra-
ditional permutation representation: it enables simple measurement of labelwise
(by rows/columns of the PM) and pairwise (by single entries of the PM) dis-
tances (see Section 4.2).



Fig. 1: PM representation of the set of rankings in D̂ (cf. Table 1).

From the PM of a subgroup S, one can derive a new ranking πS . How to
do so is a non-trivial question, which has received a lot of attention in several
research fields with similar types of matrix [12]. The straightforward way is to
sum the rows of the PM and then assign a score to each corresponding label.
Higher values correspond to a relatively more preferred label.

The generation of a PM is basically a pairwise decomposition problem. The
complexity is O

(
sk2
)

per subgroup, where s is the size of the subgroup and k
the number of labels in the ranking. Even though any number of labels is theo-
retically permitted in label ranking, in practice the number of labels is usually
smaller than 20. Hence, the generation of PMs should not be an issue in terms
of computational time.

We use a visual representation of PM that is a set of colored tiles (cf. Fig-
ure 1). Each tile represents an entry of the PM. The entries of a PM can vary
from −1 to 1. The negative entries of the matrix are represented with red tiles,
the positive with green tiles, and 0 is represented in white. The colored tiles fade
out as they get closer to 0.

4.2 Characterizing Exceptional Subgroups

The table has now been set to formally define the quality measures for EPM,
which will evaluate how exceptional the preferences are in the subgroups. A sub-
group can be considered interesting both by the amount of deviation (distance)
and by its size (number of records covered by the subgroup, cf. Section 3) [8].
Since, reasonable quality measures should take both these factors into account,
we divide the quality measures into two parts: the distance component and the
size component.

QMS = sizeS · distanceS

In order to allow direct comparisons between different quality measures, both
components are normalized to the interval [0, 1]. A common measure for the size
in Subgroup Discovery is

√
s [16]. To normalize, we use the square root of the

fraction of the dataset covered by S: sizeS =
√
s/n.



Before introducing the distance components, let us first define a distance
matrix LS , as the distance matrix between the PMs MS and MD:

LS =
1

2
(MD −MS)

where S ⊆ D (division by 2 limits the distance to the interval [−1, 1]). We can
measure different properties of LS and represent them with a numeric value.
This way we get an indicator of the quality of the distance of preferences for a
subgroup. Consider the subgroup Ŝ1 : A1 ≥ 0.3, which covers the last two cases
from our example dataset D̂. Its PM is:

MŜ1
=


0 1 1 1
−1 0 −1 0
−1 1 0 1
−1 0 −1 0


The first row clearly reveals that λ1 is always preferred to all other labels in this
subgroup. If we compute the difference matrix LŜ1

we get:

LŜ1
=


0 −0.5 −0.5 −0.25

0.5 0 0 0
0.5 0 0 0
0.25 0 0 0


The difference matrix LŜ1

shows that the behavior of λ1 is exceptional in Ŝ1.
Only subgroups for which we can infer at least one pairwise preference are

considered interesting in Exceptional Preferences Mining. That is, subgroups
with a PM containing only zeros are not considered interesting.

As we are interested in subgroups with exceptional preferences, we use the
distance matrix LS to measure exceptionality. The distance measures we employ
here typically consider a particular subset of the cells of the distance matrix LS .

Norm Maximizing the distance of preferences is also maximizing the magnitude
of LS . The most fundamental mathematical way to measure the magnitude of a
vector or matrix is the norm. Hence we can use the Frobenius norm of LS as a
distance measure.

Norm(S) =
√
s/n · ||LS ||F =

√
s/n ·

√√√√ k∑
i=1

k∑
j=1

L (i, j)
2

If one is searching for preference deviations in general, one should use the Norm
quality measure, as it considers all the PM entries at the same time. After the
subgroups are found, ideally, we can derive a complete ranking from their PMs.
The overall deviation can be due to one label deviating strongly or from multiple
labels deviating less strongly.



Labelwise An interesting task in the PL field is the labelwise analysis [3].
Instead of focusing on a whole ranking, it focuses on the preference behavior from
the perspective of individual labels. A data analyst might be interested in finding
if a particular label λ behaves substantially different according to most members
in a subgroup S, compared to its behavior on the overall dataset. Hence, the fact
that only one label behaves differently, disregarding the interaction between the
other labels, can also be interesting. We can measure the distance of each label,
in subgroup S, by computing the norm of the rows from LS . Since in this case
we are interested in exceptionality of only one label, we consider the maximum
value found:

Labelwise(S) =
√
s/n · max

i=1,...,k

1

(k − 1)

k∑
j=1

L (i, j)

Pairwise Another well-studied task in PL is Pairwise Preferences [12] which de-
composes the preferences into pairs label-vs-label. In situations where there are
not even exceptional labelwise preferences, one can still search for localized pref-
erence strongholds. If we are interested in subgroups with, at least one pair with
distinctive preference behavior, we can employ the following quality measure:

Pairwise(S) =
√
s/n · max

i,j=1,...,k
L (i, j)

This quality measure is the least restrictive of this set: a subgroup is interesting
if one pair of labels interacts unusually, disregarding all other label interactions.

5 Experiments

We incorporate Exceptional Preferences Mining in the Cortana4 software pack-
age [21]. This package delivers a generic framework for SD, implements several
SD instances, and offers many generic features allowing for different SD ap-
proaches. The description language consists of logical conjunctions of conditions
on single attributes.

Our experiments use a standard beam search approach. Since the Subgroup
Discovery algorithm itself is not the topic of this paper, we will skip over the
algorithmic details, but they can be found elsewhere: the relevant pseudo-code
is given in [5, Algorithm 1]. The most influential parameters are set as follows:
we use a relatively generous search width w (also known as beam width or
beam size) of 100, allowing for a relatively broad (albeit heuristic) search, and a
maximum search depth d of 2, which keeps the resulting subgroups interpretable.
We explore some striking subgroups found with the quality measures on a variety
of datasets, providing evidence of the versatility of our work.

All the findings we present in this paper have gone through the DFD vali-
dation procedure [7] with 100 copies, and all have been found significant at a
significance level of α = 1%.

4 http://datamining.liacs.nl/cortana.html
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Table 2: Dataset details. The column Uπ represents the percentage of unique rankings.

Datasets #examples #labels #attributes Uπ

Cpu-small 8 192 5 6 1%
Elevators 16 599 9 9 1%
Wisconsin 194 16 16 100%
Algae (COIL) 316 7 10 72%
Sushi 5 000 10 10 98%

5.1 Datasets

Statistics regarding the datasets used in this work are shown in Table 2. The
majority are Label Ranking datasets from the KEBI Data Repository at Philipps
University of Marburg [4]. These datasets were adapted from multi-class and
regression problems both from the UCI repository [19] and the Statlog collection
[4]. In the process, the features were normalized, and their names were replaced
by A1, A2, . . . , Am. Therefore, on these datasets, the reported subgroups cannot
be interpreted on the original dataset domain, whereas for general datasets, this
interpretability is a key feature of Exceptional Preference Mining. We choose
to experiment with these datasets anyway, since they are well-known in the
preference learning community.

For illustrating domain-specific interpretation of the results, we experiment
with two further datasets. We adapt the COIL 1999 Competition Data from
UCI [19]. This dataset concerns the frequencies of algae populations in different
environments. We refer to this dataset as Algae. The original COIL dataset
consists of 340 examples, each representing measurements of a sample of water
from different European rivers in different periods. The measurements include
concentrations of chemical substances such as nitrogen (in the form of nitrates,
nitrites and ammonia), oxygen and chlorine. Also the pH, season, river size
and flow velocity are registered. For each sample, the frequencies of 7 types
of algae are also measured. In this work, we consider the algae concentrations
as preference relations by ordering them from larger to smaller concentrations.
Those with 0 frequency are placed in last position and equal frequencies are
represented with ties. Missing values are set to 0.

Our final dataset is the Sushi preference dataset [15], which is composed of
demographic data about 5 000 people and sushi preferences. Each person sorts a
set of 10 different sushi types by preference. The 10 types of sushi, are a) shrimp,
b) sea eel, c) tuna, d) squid, e) sea urchin, f) salmon roe, g) egg h) fatty tuna, i)
tuna roll and j) cucumber roll. Since the attribute names were not transformed
in this dataset, we can make a richer analysis of it.

For all the experiments, all results and statistical tests are completed in less
than 5 minutes on an Intel Core 2 Duo CPU @ 2.93GHz with 4GB RAM.



Fig. 2: PM representation of the dataset Elevators (base matrix), the subgroup A6 ≥
0.436 (subgroup matrix) and the difference (difference matrix).

5.2 Results

We start this section by presenting a discovery which provides an exemplary
demonstration of one advantage of the PM representation.

Elevators dataset Figure 2 shows the subgroup with highest score found with
the Norm quality measure in the Elevators dataset. Considering the base matrix,
which has information from all the rankings in the dataset, we conclude that
e, f, g, h have fixed relative positions: e � g � f � h. This information is not
easy to obtain with the usual representations of rankings, but is clearly revealed
in the PM representation. In fact, 13 403 from a total of 16 599 rankings have
e � g � f � h. This illustrates how the visual ranking representation in a PM
can be very useful for supporting predictive methods and for data exploration.
The subgroup, A6 ≥ 0.436, covering 7 048 instances, had a norm of 0.0028. It
shows a distinct behavior between the sets of labels a, b, c, d and the set e, f, g, h.
In the whole data, labels a, b, c, d are a bit more desirable than e, f, g, h. However,
in the subgroup, the latter are clearly preferred to a, b, c, d.

Wisconsin Using the Norm quality measure on the Wisconsin dataset, we
obtain 30 subgroups, the 1st-ranked of which (it happens to occur at depth 1 in
the search) is represented in Figure 3. The base matrix reveals that the dataset
has balanced preferences, by the low intensity of the colored tiles. The red rows
of the PM of subgroup A5 ≤ −0.527 (Subgroup Matrix in Figure 3) indicate a
strong behavior of the labels f, h and i. The PM reveals that labels f, h, i are
consistently ranked lower than the other labels in this specific subgroup. Since
PMs are antisymmetric, the 3 green columns represent the same phenomena but
from the perspective of the other labels. If we focus on these 3 labels, we can
see that tile (f, h) is white, which means f and h are equivalent. On the other
hand, tiles (i, f) and (i, h) are green, which means that i � f and i � h. If one
had to guess a reliable partial order from this subgroup using only the PM, a
logical choice would be to say that a, b, c, d, e, g, j, k, l,m, n, o, p � i � f, h.



Fig. 3: PM representation of the dataset Wisconsin (Base Matrix) and the subgroup
A5 ≤ −0.527 (Subgroup Matrix).

Fig. 4: PM representation of the subgroups Season = Spring (left subgroup matrix)
and Season = Autumn (right subgroup matrix) from the Algae dataset.

Algae With the Algae dataset, we obtain results about the concentrations of
algae with the Norm measure. One such example is that during Spring, the
types of algae a, b and c are much more common in rivers than the others. This
can be easily concluded by studying the PM representation of the subgroup
(Figure 4). This subgroup has a norm of 0.010647. On the other hand, we also
see an interesting behavior during the Autumn season, with a norm of 0.01058.

With the Labelwise measure, we find more than 400 subgroups, the best of
which is presented in Figure 5. The PM clearly reveals the effect of the Labelwise
quality measure: in the subgroup, the label a is strongly preferred over all others,
while the image is much more nuanced over the whole dataset. If we ignore the
label a, the PMs for both the overall dataset and the subgroup are rather bland,
and their difference is not very pronounced. But for this one particular label a,
the behavior on the subgroup is extremely clear-cut, and the Labelwise quality
measure picks up on that effect.

Sushi With the Labelwise measure, we find 149 subgroups on the Sushi dataset.
We present the best subgroup using this measure in Figure 6. The subgroup
(Males over 30 years) shows a preference for Sea Urchin, since the majority of
men rank this sushi type in the top 4. By contrast, in the whole population,
more than half rate it between 5th to 10th, and every fifth person rate it in last
place.



Fig. 5: PM representation of the dataset Algae (base matrix) and the subgroup V 10 ≤
59 ∧ V 6 ≤ 11.867 (subgroup matrix), with difference matrix on the right.
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Fig. 6: Percentage of ranks for Sea Urchin (Sushi dataset) for all individuals in com-
parison to the subgroup (males older than 30 years).

Cpu-small On the Cpu-small dataset, the subgroup A6 ≥ 0.127 ranks the best
for the Pairwise quality measure. Around 80% of the 2 221 instances of this
subgroup agree that a � d, in contrast to the 30% in the whole dataset of 8 192
instances.

6 Conclusions

We introduce Exceptional Preferences Mining (EPM), a supervised local pattern
mining task where the target concept is a ranking of a fixed set of labels. The
result of this task is a set of subgroups, which are coherent subsets of the dataset
that can be described in terms of a conjunction of few conditions on an attribute,
where the label preferences are exceptional in some sense.

The relevant statistics on a set of preference relations is collected in the cells
of a Preference Matrix (PM). A PM is compiled for the entire dataset, and for
each subgroup under consideration. A subgroup whose PM deviates significantly
from the PM for the whole dataset is then considered to be interesting. We define
three quality measures for EPM that instantiate this concept of ‘interesting’ to
different levels of granularity. The Norm quality measure deems a subgroup



interesting if the full set of preference relations is substantially displaced. The
Labelwise quality measure highlights subgroups where any one label interacts
exceptionally with the other labels, agnostic of how those other labels interact
with each other. The Pairwise quality measure finds a subgroup interesting if any
one pair of labels display exceptional preference relations. Hence, by choosing
the appropriate quality measure, EPM delivers subgroups featuring preference
relations that are exceptional at your preferred scope.

The experiments with the Norm quality measure on the Elevators dataset
illustrate the value of the PM visualization. The PM, as displayed in Figure 2,
clearly indicates that there are strong relations between a subset of the avail-
able labels. We learn that quite frequently, labels e, f, g, h have fixed relative
positions: e � g � f � h. This information is not easy to obtain with the usual
representations of rankings, but is clearly revealed through the PM visualization.
The experiments with the Labelwise quality measure on the Sushi dataset illus-
trate the relative merit of this quality measure: it focuses on subgroups where
one particular label is exceptionally under- or overappreciated. The subgroup
presented has a penchant for Sea Urchin (cf. Figure 6). The Pairwise measure
shows its potential on the Cpu-small dataset by identifying a subgroup with
strong exceptional preferences with respect to the pair of labels a and d.

As we argued in Section 3, one of the main benefits of a local pattern mining
method such as EPM is that it delivers interpretable results. That means that the
resulting subgroups are ideally suited to instigate real-world policies and actions.
However, due to the employed preprocessing in the KEBI datasets (cf. Section
5.1), interpretation of results on those datasets falters. Only the experiments on
the Algae and Sushi datasets allow a more extensive exploration of interpretable
results. In future work, we would be interested in evaluating EPM on more label
ranking datasets that come with interpretable attributes.
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