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Abstract. Although extensive investigations exist for structural damage detection, which often 

solely considers the stiffness reduction, or specific damage type like concrete spalling, this study 

aims to address a general novelty detection procedure for detecting the novelty, or so-called 

outlier from structural dynamic analysis with applying cosine based indicator in frequency 

response functions. This study also addresses a short review for the cosine indicator and modal 

assurance criterion, and their interrelation as well. The eight degree-of-freedom system is 

considered for the verification, and proves well performance in novelty detection.  

1.  Introduction 

In-service structures undergo various forms of occasions that can affect their dynamic responses, such 

as temperature, bolt loosening, concrete spalling and so on. These changes in comparison with the initial 

structural state cannot be always considered as damages, but might be better called as novelty, or so-

called outlier. The detection of these novelties makes structural health monitoring (SHM) of high 

significance, and also make it arduous since various factors can induce novelty. The accurate detection 

of damage rather than environmental change shall be afterwards challenging. In contrast to defining a 

damage-caused stiffness reduction, this study considers all response changes as novelty.  

Over the past few years, various inspection techniques have been developed, such as vibration 

based, impedance based, probability based, and so on. The techniques can involve magnetic particle 

testing, acoustic testing, guided wave, new sensors like fiber bragg gratting (FBG) and so on. For large-

scale structures, vibration based techniques still occupy a large portion of applications due to their simple 

conduction, and effective work [1]. Vibration based techniques can be summarized into two categories: 

experimental modal analysis (EMA) and operational modal analysis (OMA) [2]. EMA usually applies 

to the structures in laboratory testing, and measures as much data as possible especially for the excitation 

and response, later to use frequency response functions (FRFs) and modal parameters such as modal 

damping, modal frequencies, mode shapes and their extensions like modal strain energy (MSE) in 

identifying the potential structural damages, or more generally, novelties. OMA behaves as an 

alternative for EMA by avoiding the measurement of excitation, and tries to achieve the same functions 

as EMA, which implies further applications for real engineering structures. For OMA, transmissibility, 

http://creativecommons.org/licenses/by/3.0
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as reference free technique, raised for decades ago, has been applied in several directions, such as 

damage detection [2-18], damage quantification [8, 10, 19], and so on. Review for transmissibility are 

available in [2, 10, 12]. 

Even alternatives can be found for novelty detection in terms of specific damage, like weight 

change can apply for spalling. It would be desirable to develop a strategy for general detection of 

novelty. This study tries to use extended cosine based indicator in the detection of novelty. Remaining 

work is organized as follows: section 2 gives the background of cosine indicator and its relation with 

modal assurance criterion (MAC) [19], and further applies in the FRFs to extract indicators for novelties; 

section 3 uses a eight degree-of-freedom system as verification, and section 4 addresses the concluding 

remarks.  

2.  Theoretical background 

2.1.  Cosine indicator and modal assurance criterion (MAC) 

Consine and MAC have been widely used separately, and recent advancement combined these two 

indicators, and addressed their kernel agreeing well, and detailed discussion can refer to [19]. For cosine 

indicator, which can be expressed as: 

 
                                                                     (1) 

where X, Y mean two vectors, ()T means the transpose of (). 

Then, MAC can be illustrated as: 

 
                               (2) 

This relation unveils the interrelation between cosine indicator and MAC, and also explains why MAC 

can be applied as an objective function [19].  

2.2.  Frequency response functions 

For a single loaded linear elastic structural system, the damped vibration can be illustrated with the 

second order differential equation: 

 
                                                      (3) 

where M, C, and K denote the mass, damaping, and stiffness matrices of the structure, respectively. 

f(t) represents all the possible time dependent loading. x(t) means the responses of the structure.  

Then, the FRF can also be expressed as: 

                                                                     (4) 

where Xi, and Fr refer to the frequency spectrum of response xi and excitation fr. FRF can also 

expressed as the accumulation of discrete modes,  

                                                (5)  

where p denotes the pth mode, n means the number of modes considered. kp, mp and cp mean modal 

stiffness, mass and damping, respectively. From this equation, it is possible to see that the modal 
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parameters are hidden in the FRFs, and therefore possible to extract these modal parameters from FRFs 

through some algorithms, like expectation maximum algorithm.  

2.3.  Novelty indicator 

From the discussion above, novelty indicators can be defined as the extension of cosine indicator [19], 

                                                           (6) 

where ()u, ()d denote the value under undamaged and damaged states, respectively. This cosine extension 

indicator has also been applied in transmissibility for damage detection [19], and it proves to be effective 

in detecting damages, and can measure the relative damage.  

3.  Experimental verification 

An eight degree-of-freedom system shown in Figure 1 [20] is taken into consideration for unveiling the 

feasibility of the proposed approach in detecting the novelty. Detailed information for this experiment 

can be found in [16]. Bolts, springs, translating masses form the system. Different types of damage are 

simulated, linear and non-linear. Excitation of the system is driven by the voltage supplied. In this study, 

only the 14% damage at location 5 is considered, and the excitation is random, and changing voltage 

with 3V, 4V, 5V and 6V. Each response is recorded with an average of 40 measurements, and hanning 

window is used [20]. Further information about this experimental data analysis can also refer to [21]. 

 

 
Figure 1. Experimental setup. 

4.  Results analysis  

Results are computed and discussed in this section as follows in order to draw out the feasibility of the 

proposed novelty detection procedure. Figure 2 demonstrates the FRF (9, 2) for the structural system 

with and without damage under 6V excitation, and one can clearly find the natural frequency shift 

leftward, which implies the stiffness decrease. Certainly herein, it is possible to use the frequency change 

to estimate the stiffness reduction, since the change in the stiffness matrix leads to a corresponding 

change in the eigenvalue.  
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Figure 2. FRF(9, 2) for the structure with and without damage under 6V excitation. 

 

Figure 3 shows the FRF (9, 2) for the structure without damage under 6V, 5V, 4V, and 3V 

excitation. From this figure, clear differences exist between these FRFs in the light of different voltage 

excitation. Similar phenomenon can be found in Figure 4 for the case with 14% damage. In theory, FRFs 

should be stable without change in the existing damage and nonlinearity. Herein, these difference can 

attribute to small nonlinearities, operational errors, or systematic errors. In general, these factors are all 

summarized as novelty in this study. Further investigation is indispensable in unveiling the kernel.  

 
Figure 3. FRF(9, 2) for the structure without damage under 6V, 5V, 4V, and 3V excitation. 

 

 
Figure 4. FRF(9, 2) for the structure with damage under 6V, 5V, 4V, and 3V excitation. 

 

Figures 5, 6, and 7 demonstrate the CI (Q=1), CI (Q=2), and CI (Q=4) for undamaged and damaged 

scenarios, under 6V, 5V, 4V and 3V excitation. All novelties are successfully detected, like damaged 

scenarios for these three CIs, and as Q increases from 1 to 2, and 4, the CI performances become better 

as the difference of CI between undamaged and damaged scenarios increases. For the novelty induced 

between different voltage excitations, as the excitation voltage decreases from 6V, 5V, 4V, to 3V, the 

CIs increase. For different FRFs, the CIs show small variations without changing the general trend.  
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Figure 5. CI (Q=1) for the structure for undamaged and damaged, under 6V, 5V, 4V, and 3V 

excitation. 

 
Figure 6. CI (Q=2) for the structure for undamaged and damaged, under 6V, 5V, 4V, and 3V 

excitation. 

 
Figure 7. CI (Q=4) for the structure for undamaged and damaged, under 6V, 5V, 4V, and 3V 

excitation. 

 

5.  Conclusions 

This study applies the cosine extended indicator in FRFs for detecting the novelties. Compared with an 

experimental investigation on an eight degree-of-freedom structure, this study demonstrates that the 

proposed novelty detection procedure performs well in identifying the novelties, regardless of the type 

of damages. The sensitivity of CI depends on the Q, which relies heavily on the engineering experience.  
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