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Abstract. To obtain existence and uniqueness when solving some nonlinear char-
acteristic Cauchy problems, we define a special algebra GOM

(
Ω
)

of generalized func-

tions on the closure Ω of an open set Ω in Rn constructed from the topological algebra
OM

(
Ω
)

of slowly increasing functions in Ω. Moreover other concepts are needed such

as slow scale elements and point values characterization of elements in GOM

(
Ω
)
.

1. Introduction

In many problems (such as differential Cauchy ones with f ∈ C1 [0,+∞[ as initial
data), we have to define some spaces or algebras on the closure of an open set Ω of Rn.

In other cases the asymptotic analysis of a family of functions (such as e−
x
ε ) de-

pending on a parameter needs the study in an algebra defined on the closure of an
open set (such as [0,+∞[). However, the usual generalized functions (distributions,
Colombeau-type algebras ...) are a priori constructed on an open set Ω in Rn for rea-
sons principally linked to their sheaf structure (restriction operator, support, partial
derivatives...). The starting point of our constructions is the algebra of smooth func-
tions and we come back to the technics of continuous extension of such functions and
their derivatives on the boundary of a closed subset of Rn, following the definitions
given in [3] and [4].

The space OM (Rn) of slowly increasing functions, endowed with the family of semi-
norms (pϕ,α)(ϕ,α)∈S(Rn)×Nn , becomes a topological algebra used in [5] to define the gen-

eralized algebra GOM
(Rn) (which differs from Gτ (Rn)). It is very useful to prove the

uniqueness of some linear characteristic Cauchy problem studied in [2].
But in nonlinear cases, we cannot obtain the result without replacing Rn by a smaller

closed set. When Ω is a convex open set in Rn, we prove that OM
(
Ω
)
, with the topol-

ogy induced from that of OM (Rn) by replacing S (Rn) by S
(
Ω
)
, becomes also a locally

convex algebra. Now, we define the generalized algebra GOM

(
Ω
)

as the quotient algebra

MOM

(
Ω
)
/NOM

(
Ω
)
. When Ω is unbounded, it is given an alternative representation

of NOM

(
Ω
)

leading to a point-value characterization ([8]) of the elements of GOM

(
Ω
)
.

There is the toolbox to obtain the uniqueness for nonlinear characteristic Cauchy prob-
lem involved in the above construction.
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2. First extension of classical spaces

Definition 2.1. Following the C∞-extension defined for example by H. Biagioni [4]
for the closure Ω of an open set Ω in Rn, with K = R or C
C∞(Ω) =

{
f : Ω→ K : f|Ω∈ C∞(Ω); (∀x ∈ ∂Ω) (∀α ∈ Nn)

(Dαf (x) = lim
Ω�y→x

Dαf (y) < +∞)} with Dα =
∂α1+...+αn

∂yα1
1 ...∂yαn

n

for y =

(y1, . . . , yn) ∈ Ω, α = (α1, ..., αn) ∈ Nn.

Topology on C∞(Ω)
In a natural way the topology on C∞(Ω) is the locally convex one defined by the

family of seminorms (pK,l)KbΩ,l∈N where

C∞(Ω) 3 f → pK,l (f) = sup
x∈K,|α|≤l

|Dαf (x)| .

Definition 2.2. For the slowly increasing or rapidly decreasing functions on Ω, we
define, in the same way
OM

(
Ω
)

= {f ∈ C∞(Ω), (∀α ∈ Nn) (∃p ∈ N) (∃C > 0)(
∀x ∈ Ω

)
(|Dαf (x)| ≤ C (1 + |x|)p)},

S
(
Ω
)

= {ϕ ∈ C∞(Ω), (∀α ∈ Nn) (∀q ∈ N) (∃D > 0)(
∀x ∈ Ω

)
(|Dαϕ (x)| ≤ D

(1 + |x|)q
)}.

Remark 2.3. All these spaces are in fact algebras, and S
(
Ω
)

is an ideal of OM
(
Ω
)
.

3. Topology on the algebra of slowly increasing functions

Let F be the closure of any open set in Rd (even Rd itself) and consider the function
OM (F )→ R+

f 7→ pϕ,α (f) = sup
x∈F
|ϕ (x)Dαf (x)|

where ϕ ∈ S (F ) and α ∈ Nn. We can see that pϕ,α is a semi-norm on OM (F ). Then,
the family P = (pϕ,α)ϕ,α∈S(Ω)×Nn endows the algebra OM (F ) with a locally convex

topology (a priori of vector space). We can refer to [5] about the continuity of the
product in OM(Rd), but when F = Ω, for any open set Ω, the proof needs the following
lemma.

Lemma 3.1. Let U ⊆ Rd and f be a map U → C which is rapidly decreasing in the
sense that for each m ∈ N, and 〈x〉m = (1 + |x|)m

sup
x∈U
〈x〉m |f(x)| < +∞.

Then there exists ψ ∈ S(Rd) such that |f(x)| ≤ ψ(x) for each x ∈ U .



GENERALIZED FUNCTIONS ON THE CLOSURE OF AN OPEN SET. APPLICATION 3

Proof. Let g(t) = sup
x∈U,|x|≥t

|f(x)|. Then, g : [0,+∞[ −→ R is a decreasing function (in

particular g ∈ L1
Loc (R)) and is rapidly decreasing since for each m ∈ N

g(t) ≤ sup
x∈U,|x|≥t

|x|m

tm
|f(x)| ≤ C

tm
.

Let Φ ∈ D( [0, 1] ), Φ ≥ 0,
∫

Φ = 1. Extend g as a constant function on (−∞, 0]. Then
g ∗ Φ ∈ C∞ (R) and

(g ∗ Φ) (t) =

∫ t

t−1

g(s)Φ(t− s)ds ≥ g(t)

∫
Φ = g(t).

Further g ∗ Φ ∈ S(R). Possibly increasing the values of g ∗ Φ, we find h ∈ S(R) with
h ≥ g and h constant on a neighbourhood of 0. Hence

(x 7→ ψ(x) = h(|x|)) ∈ S(Rd)

with ψ(x) ≥ g (|x|) ≥ |f(x)| for each x ∈ U .
�

Theorem 3.2. OM
(
Ω
)

is a locally convex algebra.

Proof. Let ϕ ∈ S
(
Ω
)
. By Lemma 1 there exists ψ ∈ S(Rd) such that

√
ϕ ≤ ψ on Ω.

Let u, v ∈ OM
(
Ω
)
. Then

pϕ,0 (uv) = sup
Ω

|ϕuv| ≤ sup
Ω

|ψu| sup
Ω

|ψv| = pψ,0 (u) pψ,0 (v)

and similarly, by the Leibnitz rule, writing νϕ,m = max
|α|≤m

pϕ,α,

νϕ,m(uv) ≤ Cmνψ,m(u)νψ,m(v).

�

4. A tempered algebra on the closure of an open set

Definition 4.1. Let GOM
(Ω) be the algebra MOM

(
Ω
)
/NOM

(
Ω
)

where

MOM
(Ω) = {(uε)ε ∈ OM(Ω)(0,1] : (∀ϕ ∈ S(Ω)) (∀α ∈ Nn)

(∃M ∈ N) (∃ε0) (∀ε < ε0) (pϕ,α (uε) ≤ ε−M)};
NOM

(Ω) = {(uε)ε ∈ OM(Ω)(0,1] : (∀ϕ ∈ S(Ω)) (∀α ∈ Nn)

(∀m ∈ N) (∃ε0) (∀ε < ε0) (pϕ,α (uε) ≤ εm)}.

This definition is consistent. We can involve, for example, the framework of (C, E ,P)-
algebra with E = OM(Ω), P = (pϕ,α) and C generated by (ε)ε .

Example 4.2. We deal with the characteristic Cauchy problem (Pg) for the transport
equation formally written in characteristic coordinates

∂u

∂t
= u; u |{x=0}= v.
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However, we cannot prove the existence of a solution to (Pg) in GOM
(R2); indeed the

regularized problem becomes

(P∞)
∂uε
∂t

(t, x) = uε (t, x) ;uε (t, εt) = v (t)

whose solution is uε(t, x) = v(x
ε
)e−

x
ε et which clearly is not in MOM

(R2).

Example 4.3. Without changing asymptotic scale, we can estimate

sup
t,x
|ϕ(t, x)| v(

x

ε
)e−

x
ε et

for ϕ ∈ S([0, T ]× [0,∞[), x ≥ 0 and t ≤ T in GOm([0, T ]× [0,∞[) with its polynomial
1
ε
-scale. Indeed, with x ≥ 0 one has(

1

e
1
ε

)x
≤ εx ≤ 1

and the computation is easy. Then (uε)ε ∈MOM
([0, T ]× [0,∞[) and [uε] solve (Pg) in

GOM
([0, T ]× [0,∞[).

5. Point values characterization

In the following, we suppose that Ω is a convex open set.

5.1. A new definition of GOM
(Ω).

Theorem 5.1.

MOM
(Ω) = {(uε)ε ∈ OM(Ω)(0,1] | (∀α ∈ Nd) (∃m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|∂αuε(x)| ≤ ε−m)}.
NOM

(Ω) = {(uε)ε ∈ OM(Ω)(0,1] | (∀α ∈ Nd) (∀m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|∂αuε(x)| ≤ εm)}.

Proof. (Sketch) We follow the lines of proposition 5 in [5], which proves thatMOM
(Rn) =

Mτ (Rn), extended to the case when Ω is unbounded. But the ideal NOM
(Ω) differs

from the tempered oneNτ (Ω) and its characterization needs some other arguments. �

5.2. Zero derivative and slow scale elements.

Definition 5.2. A subset U ⊆ Rd has the cone property if there exist r > 0 and c > 0
such that for each x ∈ U , there exists a rotation A such that x + AΓc,r ⊆ U , where
Γc,r = {(x, y) ∈ R× Rd−1 : 0 ≤ x ≤ r, |y| ≤ cx}.

This condition is used in Sobolev space theory [1, Ch. IV]. If Ω is bounded and
convex, then Ω has the cone property: take any open ball B(x0, r) ⊆ Ω. Then for each
x ∈ Ω, the cone at x with base B(x0, r) is contained in Ω. As Ω is bounded, this cone
contains a cone x + AΓc,r with c independent of x. However, if Ω is unbounded and
convex, this property may fail:
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Example 5.3. Let Ω ⊆ R3 be the convex closure of the half lines L1 = {(0, t, 0) : t ≥
0}, L2 = {(0, t, 1) : t ≥ 0} and L3 = {(1 + t, t, 0) : t ≥ 0}. Then points on L3 intersect
Ω in cones with smaller and smaller angles as t → +∞. Hence Ω is the closure of an
open convex set, but it does not have the cone property.

Theorem 5.4. If Ω has the cone property, then

NOM
(Ω) = {(uε)ε ∈ OM(Ω)(0,1] | (∀m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0)
(
supx∈Ω(1 + |x|)−p|uε(x)| ≤ εm

)
}.

Proof. We will in fact only assume a weaker property on Ω than the cone property: we
will only require that there exist r > 0 and M ∈ N such that for each x ∈ U , there
exists a rotation A such that x+AΓ ⊆ Ω, where Γ is the cusp {(x, y) ∈ R×Rd−1 : 0 ≤
x ≤ r, |y| ≤ xM}.

Let (uε)ε satisfy the estimates in the statement of the theorem. Let x ∈ Ω. Let A be
such that x+AΓ ⊆ Ω. Let {e1, . . . , en} be the standard basis of Rd. Let e′k = Aek (then
e′1 is along the symmetry axis of AΓ). As x + AΓ ⊆ Ω, the line segments [x, x + εqe′1]
and [x + εqe′1, x + εqe′1 + εMqe′k] (k = 2, . . . , d) are contained in Ω, as soon as ε ≤ r,
q ≥ 1. Let m ∈ N. Applying the Taylor argument from [7, Thm. 1.2.25] to these line
segments, we find p ∈ N such that |∇uε(x)| ≤ e′m1 〈x〉p and |∇uε(x+ εqe′1)| ≤ e′mk 〈x〉p,
as soon as ε ≤ ε0 and q sufficiently large. Then also

|∇uε(x) · e′k| ≤ |(∇uε(x+ εqe′1)−∇uε(x)) · e′k|︸ ︷︷ ︸
≤Cεq−N 〈x〉p

+Cεm〈x〉p ≤ C ′m〈x〉p

as soon as ε ≤ ε0 and q is sufficiently large. Hence ‖∇uε(x)‖ ≤ C ′′m〈x〉p, with C ′′

independent of ε and x. Inductively, we obtain the bounds for the derivatives of any
order. �

Remark 5.5. If one assumes a weaker kind of cone property where r > 0 depends on
x, this characterization may fail (see the counterexample [7, 1.2.26]).

5.3. Point values characterization of elements of GOM
(Ω).

Definition 5.6. An element x̃ = [(xε)ε] ∈ R̃d is of slow scale if

(∀n ∈ N) (∃ε0) (∀ε < ε0)
(
|xε| ≤ ε−1/n

)
.

We can consider Ω̃ ⊆ R̃d (containing those x̃ having a representative (xε)ε ∈ Ω
(0,1]

).

Theorem 5.7. Let u = [(uε)ε] ∈ GOM
(Rd) and let x̃ = [(xε)ε] ∈ Ω̃ be of slow scale.

Then the point value u(x̃) = [(uε(xε))ε] ∈ C̃ is well-defined.

Proof. Let (uε)ε ∈ MOM
(Ω) be a representative of u. As in [7, Prop. 1.2.45], (uε)ε ∈

MOM
(Ω) implies that (uε(xε))ε ∈ MR, and (uε(xε) − uε(x

′
ε))ε ∈ NR if (x′ε)ε ∈ Ω̃ is

another representative of x̃. The latter argument requires that [xε, x
′
ε] ⊆ Ω, which is

satisfied because Ω is convex. It remains to be shown that the definition of the point
value does not depend on the choice of representative of u. So let (uε)ε ∈ NOM

(Ω).
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Let m ∈ N. Choose p ∈ N as in the statement of theorem 5.4. Then for sufficiently
small ε,

|uε(xε)| ≤ εm(1 + |xε|)p ≤ εm(2|xε|)p ≤ εm(2ε−1/p)p = 2pεm−1.

Since m ∈ N is arbitrary, (uε(xε))ε ∈ NC. �

Theorem 5.8. Let Ω have the cone property. Let u ∈ GOM
(Ω). Then u = 0 iff

u(x̃) = 0 for each slow scale point x̃ ∈ Ω̃.

Proof. If u = 0, then clearly u(x̃) = 0 for each slow scale point in Ω̃ (since the definition
of point values does not depend on the representative of u). Conversely, let u(x̃) = 0

for each slow scale point x̃ ∈ Ω̃. We first show by contradiction that

(5.1) (∀m ∈ N) (∃n ∈ N) (∃ε0) (∀ε < ε0)
(

supx∈Ω, |x|≤ε−1/n |uε(x)| ≤ εm
)
.

Assuming the contrary, we find M ∈ N, a decreasing sequence (εn)n tending to 0 and

xεn ∈ Ω with |xεn| ≤ ε
−1/n
n and |uεn(xεn)| > εMn , for each n. Let xε be a fixed element

x0 ∈ Ω if ε /∈ {εn : n ∈ N}. Then x̃ = [(xε)ε] ∈ Ω̃ is of slow scale and (uε(xε))ε /∈ NR,
contradicting u(x̃) = 0.

Now let m ∈ N arbitrary. Choose n as in equation (5.1). Since (uε)ε ∈ MOM
(Ω),

there exists by theorem 5.1 some N ∈ N such that for small ε,

supx∈Ω(1 + |x|)−N |uε(x)| ≤ ε−N .

Let p = nm+ nN +N . Then, for small ε,

sup
x∈Ω

(1 + |x|)−p|uε(x)| =

max
(

sup
|x|≤ε−1/n

x∈Ω

(1 + |x|)−p|uε(x)|, sup
|x|≥ε−1/n

x∈Ω

(1 + |x|)−p|uε(x)|
)

≤ max
(

sup
x∈Ω, |x|≤ε−1/n

|uε(x)|, sup
x∈Ω

(1 + |x|)−N |uε(x)| sup
x∈Ω, |x|≥ε−1/n

(1 + |x|)N−p
)

≤ max
(
εm, ε−N(2ε−1/n)N−p

)
= 2εm.

Hence (uε)ε ∈ NOM
(Ω) by theorem 5.4. �

6. Application: uniqueness for a nonlinear Cauchy problem

The Characteristic Cauchy problems for Partial Differential Equations with the data
given on a locally or globally characteristic manifold are generally ill-posed in the classi-
cal context. In [2], are pointed out some important works on the question and described
another method to solve it. To simplify, it is chosen the two-variables characteristic
Cauchy problem for the transport equation (in basic form)

(Pc)
∂u

∂t
= F (., ., u); u|γ = v
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where γ of equation x = 0 is globally characteristic. For focusing only on the charac-
teristic singularity, v and F are supposed to be regular enough. Clearly (Pc) is ill-posed
but can be associated to a generalized problem

(Pg)
∂u

∂t
= F(u); R (u) = v.

• (Pg) is well formulated in some convenient algebras of (C,E ,P)-type (where C
define the asymptotics and (E ,P)a basic presheaf of topological algebra), with
u ∈ AC (E ,P) (R2) supposed to be ”stable under F” and v ∈ AC (E ,P) (R).

To obtain (Pg) from (Pc), two generalized mappings have to be defined:
F is a generalized mapping F : AC (E ,P) (R2) −→ AC (E ,P) (R2), associated to F

and
R : AC (E ,P) (R2) −→ AC (E ,P) (R) is obtained by replacing {x = 0} by a family

(γε : x = lε (t))ε

of non characteristic lines.

• If T is the usual topology of E = C∞, and C = [Breg] overgenerated by a
finite family of elements in relationship with the regularization of the problem,
we know from previous works the existence in A[Breg ] (C∞,T ) (R2) = A (R2)
(non uniqueness) of a solution to (Pg) depending a priori of the choice of the
”decharacterizing” process ([2], Theorem 5).

• A better result is obtained when choosing the decharacterizing process in a
tempered class Gτ . Then, the above solution (always non unique) depends only
on this tempered class ([2], Theorem 6).

• It is possible to recover the uniqueness in the homogeneous case ([2], Theorem
13) when working in the new algebra

A[(ε)ε]
(OM ,Q)

(
R2
)

= GOM

(
R2
)

based on the space of slowly increasing smooth functions OM (R2) endowed
with its usual locally convex topology Q. In that algebra it is impossible to
obtain uniqueness for nonlinear case.

Now, we are focusing on the nonlinear case. We can prove that F can be defined as a
mapping of GOM

([0, T ]× [0,∞[) into itself andR as a mapping GOM
([0, T ]× [0,∞[) −→

GOM
([0,∞[). Finally the uniqueness can be expected thanks to the tools and results

detailed in the above Section 6.
Assume that

∃M > 0,∀n ∈ N,∃µn > 0, sup
(t,x,z)∈R+×R+×R,|α|≤n

|DαF (t, x, z)| = Mn ≤ µnM.

Lemma 6.1. Let LOM
(R+) be the subset in MOM

(R+) of families (gε)ε such that
g′ε > 0,and [g−1

ε ] ∈ MOM
(R+) preserves slow scale points, lim

ε→0,D′(R)
gε = 0. Assume

that V ∈ OM (R+), (Lε)ε ∈ LOM
(R+). Take U = [Uε] ∈ G

(
R2

+

)
such that, for any
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(t, x) ∈ R2
+,

Uε(t, x) = V (L−1
ε (x)) +

∫ t

L−1
ε (x)

F (τ, x, Uε(τ, x)) dτ.

Then U is solution to (
P ∗g
)

:
∂U

∂t
= F(U); R (U) = V.

and, for any (t, x) ∈ R2
+,

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∫ t

L−1
ε (x)

rε(t, x)dτ

∣∣∣∣+ rε(t, x).

where

mε(t, x) =

∫ t

L−1
ε (x)

|F (τ, x, 0)| dτ, rε(t, x) =
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.

Proof. For (t, x) ∈ R2
+, we have

F (t, x, Uε(t, x))− F (t, x, 0) =
∂F

∂z
(t, x, θε(t, x))Uε(t, x)

where θε(τ, x) = θ(τ, x)Uε(τ, x) and 0 < θ(τ, x) < 1. Then

(E1) Uε(t, x) = V (L−1
ε (x)) +

∫ t

L−1
ε (x)

(
∂F

∂z
(τ, x, θε(τ, x))Uε(τ, x) + F (τ, x, 0))dτ.

Assume that L−1
ε (x) ≤ t. According to (E1) we have

(E2) |Uε(t, x)| ≤
∣∣V (L−1

ε (x))
∣∣+M1

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ +

∫ t

L−1
ε (x)

|F (τ, x, 0)| dτ.

Define

Hε(t, x) =

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ

and observe that

(E3)
∂Hε

∂t
(t, x) = |Uε(t, x)| .

That means you can write

∂Hε

∂t
(t, x) ≤M1Hε(t, x) +

∣∣V (L−1
ε (x))

∣∣+mε(t, x).

and multiplying that by an integrating factor

e−M1(t−L−1
ε (x))∂Hε

∂t
(t, x)− e−M1(t−L−1

ε (x))M1Hε(t, x)

≤ e−M1(t−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+mε(t, x)
)

which means

(E4)
d

dt

(
e−M1(t−L−1

ε (x))Hε(t, x)
)
≤ e−M1(t−L−1

ε (x))
(∣∣V (L−1

ε (x))
∣∣+mε(t, x)

)
.
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Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E4) from L−1

ε (x) to t, we get

e−M1(t−L−1
ε (x))Hε(t, x) ≤

∫ t

L−1
ε (x)

e−M1(τ−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+mε(τ, x)
)

dτ

≤
∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+mε (τ, x)
)

dτ.

So

(E5) Hε(t, x) ≤ eM1(t−L−1
ε (x))

(∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+mε (τ, x)
)

dτ

)
.

Substituting (E5) into (E2), you obtain

|Uε(t, x)| ≤M1e
M1(t−L−1

ε (x))

(∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+mε (τ, x)
)

dτ

)
+
(∣∣V (L−1

ε (x))
∣∣+mε (t, x)

)
.

Assume that t < L−1
ε (x). According to (E1) we have

|Uε(t, x)| ≤
∣∣V (L−1

ε (x))
∣∣+M1

∫ L−1
ε (x)

t

|Uε(τ, x)| dτ +

∫ L−1
ε (x)

t

|F (τ, x, 0)| dτ,

that is

|Uε(t, x)| ≤
∣∣V (L−1

ε (x))
∣∣−M1

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ −
∫ t

L−1
ε (x)

|F (τ, x, 0)| dτ

≤
∣∣V (L−1

ε (x))
∣∣−M1

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ +

∣∣∣∣∫ t

L−1
ε (x)

|F (τ, x, 0)| dτ
∣∣∣∣(E6)

According to E3, that means you can write

∂Hε

∂t
(t, x) ≤ −M1Hε(t, x) +

∣∣V (L−1
ε (x))

∣∣+ |mε(t, x)| .

and multiplying that by an integrating factor

eM1(t−L−1
ε (x))∂Hε

∂t
(t, x) + eM1(t−L−1

ε (x))M1Hε(t, x)

≤ eM1(t−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+ |mε(t, x)|
)

which means

(E7)
∂

∂t

(
eM1(t−L−1

ε (x))Hε(t, x)
)
≤ eM1(t−L−1

ε (x))
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E7) from t to L−1

ε (x), we get

−eM1(t−L−1
ε (x))Hε(t, x) ≤

∫ L−1
ε (x)

t

eM1(τ−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

≤
∫ L−1

ε (x)

t

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ.
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So

(E8) −Hε(t, x) ≤ e−M1(t−L−1
ε (x))

(∫ L−1
ε (x)

t

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

)
.

Substituting (E8) into (E6), we obtain

|Uε(t, x)|

≤M1e
−M1(t−L−1

ε (x))

∫ L−1
ε (x)

t

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

+
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
≤M1e

−M1(t−L−1
ε (x))

∣∣∣∣∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

∣∣∣∣
+
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
So, in the both cases we have

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

∣∣∣∣(E9)

+
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.

Put
rε(t, x) =

(∣∣V (L−1
ε (x))

∣∣+ |mε(t, x)|
)
,

then, we have in the both case

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∫ t

L−1
ε (x)

rε(τ, x)dτ

∣∣∣∣+ rε(t, x).

�

Lemma 6.2. Assume that V ∈ OM (R+), (Lε)ε ∈ LOM
(R+). Let [Uε] ∈ G

(
R2

+

)
be the

solution to
(
P ∗g
)

define in Lemma 6.1. Let S = [Sε] ∈ G
(
R2

+

)
be another solution to(

P ∗g
)
. For (t, x) ∈ R2

+ we have{
∂

∂t
(Sε(t, x)) = F (t, x, Sε(t, x) + Iε (t, x)

Sε (t, lε(t)) = V (t) + Jε (t) .

with (Jε)ε ∈ NOM
(R+) , (Iε)ε ∈ NOM

(
R2

+

)
. Take Wε = (Sε − Uε). Then, for any

(t, x) ∈ R2
+, we have

|Wε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∫ L−1

ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
where, for all ε,

σε (t, x) =

∫ t

L−1
ε (x)

Iε(τ, x)dτ.
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Proof. For any (t, x) ∈ R2
+, we have

Sε(t, x) = V (L−1
ε (x)) + Jε(L

−1
ε (x))

+

∫ t

L−1
ε (x)

F (τ, x, Sε(τ, x)) dτ +

∫ t

L−1
ε (x)

Iε (τ, x) dτ.

Take (t, x) ∈ [0, T ]× [0,∞[. When putting Wε = (Sε − Uε) we get

Wε(t, x) = Jε(L
−1
ε (x)) + σε (t, x)

+

∫ t

L−1
ε (x)

(F (τ, x, Sε(τ, x))− F (τ, x, Uε(τ, x))) dτ.

Moreover we have

F (t, x, Sε(t, x))− F (t, x, Uε(t, x))

= Wε(t, x)

∫ 1

0

dFη
dz

(t, x, Uε(t, x) + θWε((t, x)) dθ.

Assume that L−1
ε (x) ≤ t. We have∣∣∣∣∫ t

L−1
ε (x)

Wε(τ, x)

(∫ 1

0

∂F

∂z
(τ, x, Uε(τ, x) + θWε((τ, x)) dθ

)
dτ.

∣∣∣∣
≤
∫ t

L−1
ε (x)

|Wε(τ, x)|M1 dτ.

We deduce

(E10) |Wε(t, x)| ≤M1

∫ t

L−1
ε (x)

|Wε(τ, x)| dτ +
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

According to E3, that means you can write

dHε

dt
(t, x) ≤M1Hε(t, x) +

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)

and multiplying that by an integrating factor

e−M1(t−L−1
ε (x))dHε

dt
(t, x)− e−M1(t−L−1

ε (x))M1Hε(t, x)

≤ e−M1(t−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)

which means

(E11)
d

dt

(
e−M1(t−L−1

ε (x))Hε(t, x)
)
≤ e−M1(t−L−1

ε (x))
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E11) from L−1

ε (x) to t, we get

e−M1(t−L−1
ε (x))Hε(t, x) ≤

∫ t

L−1
ε (x)

e−M1(τ−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

≤
∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.
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So

(E12) Hε(t, x) ≤ eM1(t−L−1
ε (x))

∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.

Substituting (E12) into (E10), you obtain

|Wε(t, x)| ≤M1e
M1(t−L−1

ε (x))

∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Assume that t < L−1
ε (x), we have∣∣∣∣∫ t

L−1
ε (x)

Wε(τ, x)

(∫ 1

0

∂F

∂z
(τ, x, Uε(τ, x) + θWε((τ, x)) dθ

)
dτ.

∣∣∣∣
≤
∫ L−1

ε (x)

t

|Wε(τ, x)|M1 dτ.

We deduce

(E13) |Wε(t, x)| ≤ −M1

∫ t

L−1
ε (x)

|Wε(τ, x)| dτ +
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

According to E3, that means you can write

dHε

dt
(t, x) ≤

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)
−M1Hε(t, x)

and multiplying that by an integrating factor

eM1(t−L−1
ε (x))dHε

dt
(t, x) + eM1(t−L−1

ε (x))M1Hε(t, x)

≤ eM1(t−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)

which means

(E14)
d

dt

(
eM1(t−L−1

ε (x))Hε(t, x)
)
≤ eM1(t−L−1

ε (x))
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E14) from t to L−1

ε (x), we get

−eM1(t−L−1
ε (x))Hε(t, x) ≤

∫ L−1
ε (x)

t

eM1(τ−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

≤
∫ L−1

ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.

So

(E15) −Hε(t, x) ≤ e−M1(t−L−1
ε (x))

∫ L−1
ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.
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Substituting (E15) into (E13), you obtain

|Wε(t, x)| ≤M1e
−M1(t−L−1

ε (x))

∫ L−1
ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

So, in the both cases we have

|Wε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∫ t

l−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

∣∣∣∣
+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

�

Definition 6.3. The generalized function [uε] is solution to Problem
(
P ∗∗g
)

if there are

U = [Uε] ∈ G
(
R2

+

)
, V ∈ OM (R+), (Lε)ε ∈ LOM

(R+) such that

(1) U is solution to
(
P ∗g
)

(2)

{
uε = Uε|[0,T ]×[0,∞[ ; lε = Lε|[0,T ]×[0,∞[ ;

uε (t, lε(t)) = V |[0,T ] (t) = v(t);

(3) {[uε] ∈ GOM
([0, T ]× [0,∞[).

Moreover, for (t, x) ∈ R2
+, we have

Uε(t, x) = V (L−1
ε (x)) +

∫ t

L−1
ε (x)

F (τ, x, Uε(τ, x)) dτ.

Take mε(t, x) =
∫ t
l−1
ε (x)
|F (τ, x, 0)| dτ , assume that (mε)ε ∈MOM

(
(R+)2).

Theorem 6.4. Suppose that (lε)ε is taken in LOM
([0, T ]). Then, if v ∈ OM ([0, T ]),

the generalized function u = [uε]GOM
([0,T ]×[0,∞[), where uε is defined in Definition 6.3,

depends only on l = [lε]GOM
([0,T ]).

Moreover u is the unique solution to
(
P ∗∗g
)

in GOM
([0, T ]× [0,∞[).

Proof. The first step is to prove the existence, and it is not possible to do that in
GOM

(R2) if F 6= 0 ([2], Remark 3).
Let LOM

(R+) be the subset in MOM
(R+) of families (gε)ε such that g′ε > 0,and

[g−1
ε ] ∈MOM

(R+) preserves slow scale points, limε→0,D′(R) gε = 0.
From Lemma (6.1), we have for any (t, x) ∈ R2

+,

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∫ t

L−1
ε (x)

rε(τ, x)dτ

∣∣∣∣+ rε(t, x).

where

mε(t, x) =

∫ t

L−1
ε (x)

|F (τ, x, 0)| dτ , rε(t, x) =
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.
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As (Lε)ε ∈ LOM
([0, T ]), we know that (L−1

ε )ε ∈ MOM
(R+) moreover V ∈ OM (R)

so (|V ◦ L−1
ε |)ε ∈MOM

(R+). We have also (mε)ε ∈MOM

(
(R+)2). Thus

(rε)ε =
(∣∣V ◦ L−1

ε

∣∣+ |mε|
)
ε
∈MOM

(
R2

+

)
.

Put

aε (t, x) =

∣∣∣∣∫ t

L−1
ε (x)

rε(τ, x)dτ

∣∣∣∣
then (aε)ε ∈MOM

(
(R+)2). Thus ∃m ∈ N, ∃p ∈ N, ∃ε0, ∀ε < ε0,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−prε(t, x) ≤ sup
(t,x)∈(R+)2

(1 + |t|+ |x|)−prε(t, x) ≤ ε−m

and : ∃m ∈ N, ∃p ∈ N, ∃ε0, ∀ε < ε0,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−paε (t, x) ≤ sup
(t,x)∈(R+)2

(1 + |t|+ |x|)−paε (t, x) ≤ ε−m.

Take uε = Uε|[0,T ]×[0,∞[. So, we have

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |uε(t, x)|

≤M1( sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)|)ε−m + ε−m.

Take lε = Lε|[0,T ]. Then, for (lε)ε ∈ LOM
([0, T ]), we have

sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)| = sup

(t,x)∈[0,T ]×[0,∞[

eM1|t−l−1
ε (x)| ≤ eM1T .

So: ∃k ∈ N, ∃p ∈ N, ∃ε1, ∀ε < ε1,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |uε(t, x)| ≤ ε−k.

According to Theorem 5.4,

(uε)ε ∈MOM
([0, T ]× [0,∞[)

and the class of (uε,)ε in GOM
([0, T ][× [0,∞[) is a solution to problem

(
P ∗∗g
)
.

Uniqueness.
Let s = [sε] ∈ GOM

([0, T ]× [0,∞[) be another solution to
(
P ∗∗g
)
. That is to say

there are [Sε] ∈ G
(
R2

+

)
, V ∈ OM (R+), (Lε)ε ∈ LOM

(R+), (Jε)ε ∈ NOM
(R+) , (Iε)ε ∈

NOM

(
R2

+

)
. such that

(1)

{
∂Sε
∂t

(t, x) = F (t, x, Uε(t, x)) + Iε (t, x) ;

Sε (t, Lε(t)) = V (t) + Jε (t) ;

(2)

{
sε = Sε|[0,T ]×[0,∞[ ; lε = Lε|[0,T ] ; v = V |[0,T ] ;

sε (t, lε(t)) = V |[0,T ] (t) + Jε|[0,T ] (t) = v(t) + Jε|[0,T ] (t) ;

(3) {[sε] ∈ GOM
([0, T ]× [0,∞[).

Take Wε = (Sε − Uε).
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From Lemma (6.2), for any (t, x) ∈ R2
+, we have

|Wε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

∣∣∣∣
+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

where, for all ε,

σε (t, x) =

∫ t

L−1
ε (x)

Iε(τ, x)dτ.

As (Lε)ε ∈ LOM
(R+), we know that (L−1

ε )ε ∈ MOM
(R+) moreover V ∈ OM (R+)

so V ◦ L−1
ε ∈MOM

(R+).
Furthermore, as (Jε)ε ∈ NOM

(R+), (L−1
ε )ε ∈ MOM

(R+) and they preserve slow scale
points, we have that (Jε ◦ L−1

ε )ε ∈ NOM
(R+).

We set, for all ε,

σε (t, x) =

∫ t

l−1
ε (x)

Iε(τ, x)dτ.

We have to check that

(|σε|)ε ∈ NOM

(
R2

+

)
.

Let [(tε, xε)ε] ∈ R̃2
+ be a slow scale point. Then [(xε)ε] ∈ R̃+ is a slow scale point and

[(yε)ε] = [(L−1
ε (xε))ε] is also a slow scale point. We have

∀ε,∃cε ∈ [yε, tε], |σε(tε, xε)| =
∣∣∣∣∫ tε

yε

Iε(τ, xε)dτ

∣∣∣∣ = |tε − yε| Iε(cε, xε)

but as |cε| ≤ max(|yε| , |tε|), [(cε)ε] is also a slow scale point. But then [(cε, xε)ε] is a

slow scale point of R̃2
+ so that (Iε(cε, xε))ε ∈ NR+ and finally (|σε(tε, xε)|)ε ∈ NR+ , thus

(|σε|)ε lies in NOM

(
R2

+

)
.

We have (|σε|)ε ∈ NOM

(
R2

+

)
and (V ◦ L−1

ε )ε ∈ NOM
(R+), thus(

(t, x) 7→
∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
ε
∈ NOM

(
R2

+

)
.

Put

bε(t, x) =

∣∣∣∣∫ t

l−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

∣∣∣∣ ,
then (bε)ε ∈ NOM

(
R2

+

)
.

So, for each ∀m ∈ N, ∃p ∈ N,∃ε0, ∀ε < ε0,

sup
(t,x)∈R2

+

(1 + |t|+ |x|)−p
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
≤ εm

and

sup
(t,x)∈R2

+

(1 + |t|+ |x|)−p |(bε(t, x))| ≤ εm.

Thus

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
≤ εm
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and

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |(bε(t, x))| ≤ εm.

Consequently (∀m ∈ N) (∃ε0) (∀ε < ε0)

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |wε(t, x)|

≤ sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
+M1( sup

(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)|) sup

(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |(bε(t, x))|

≤ εm +M1( sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)|)εm.

Take lε = Lε|[0,T ]. Then, for (lε)ε ∈ LOM
([0, T ]), we have

sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)| = sup

(t,x)∈[0,T ]×[0,∞[

eM1|t−l−1
ε (x)| ≤ eM1T .

So ∀k ∈ N, ∃p ∈ N, ∃ε1, ∀ε < ε1,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |wε(t, x)| ≤ εk.

According to Theorem 5.4, we deduce that

(wε)ε ∈ NOM
([0, T ]× [0,∞[) .

Thus the solution is unique in GOM
([0, T ]× [0,∞[). �
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