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Chapter 1: General introduction  

1.1 Problem definition 

Water, energy, food and ecosystems are all essential for human well-being 

and sustainable development. However, water, food, energy and ecosystems are 

closely interconnected and highly interdependent (WWAP, 2014). Global projections 

show that the demand for freshwater, energy and food will increase significantly over 

the next decades due to different pressures such as population growth, economic 

development, urbanization, cultural and technological changes, and climate change 

(Hoff, 2011). The increase in world population and growing wealth are raising the 

demand for energy and food (Pittock et al., 2016). It was estimated that global energy 

consumption is projected to grow by up to 50 percent by 2035 (IEA, 2009). 

Hydropower is a globally recognized source of clean energy, which has played an 

important role for the international energy supply (UNIDO and ICSHP, 2016). Driven 

by the increasing demand for energy and global climate change, many countries 

have given priority to hydropower development for the expansion of their energy 

sectors (UNIDO and ICSHP, 2016). However, it may also result in increased 

competition for water between different sectors (e.g water, energy, agriculture, 

fisheries) and thus damage to ecosystems. Conserving freshwater biodiversity is 

globally important to ensure ecosystem integrity and sustainability (Jun et al., 2016), 

and is part of determining an optimal balance between the different uses of water 

resources. 

Dams have made significant contributions to human development and the 

benefits derived from them have been considerable (World Commission on Dams, 

2000). Dams have been built for many reasons such as flood control, irrigation, 

domestic water supply, navigation, hydropower and recreation (Tullos et al., 2009; Yi 

et al., 2014). Hydropower is an important renewable energy, which accounted for 

16% of the global electricity production in 2011 (Zarfl et al., 2015). In many tropical 

countries, such as Vietnam, hydropower contributed to 40% of the total electricity 

production of the country in 2013 (Pham, 2015). It is clear that hydropower is an 

important energy source for many countries and regions. The most biodiverse river 

basins around the world, such as the Amazon, Congo and Mekong are now 
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experiencing an unprecedented boom in the construction of hydropower dams 

(Winemiller et al., 2016). In South America, 2215 hydropower projects which have 

been planned during the period 2009-2011, will add new dams in 673 undammed 

and 388 dammed rivers (Kareiva, 2012). In contrast, more than 1100 dams have 

been removed for river restoration in the United States over the past 30 years 

(Magilligan et al., 2016). Whilst the increase in the number and frequency of 

hydropower projects addresses important energy needs, it often overestimates 

economic benefits and underestimates far-reaching effects on biodiversity and 

critically important fisheries (Winemiller et al., 2016). Hydropower dams have been 

the subject of controversy due to their complex social, political and environmental 

impacts. In this context, one of the key questions is: ‘What is the optimal portfolio of 

dams for meeting our energy needs while conserving biodiversity for our changing 

world?’ (Kareiva, 2012). Being aware of the trade-offs between water for hydropower 

generation, food production, ecosystems, … can inform policy makers to make a plan 

for hydropower development, licenses issued for new dams and relicensing existing 

dams.  

A typical hydroelectric plant includes three parts: a storage reservoir, an 

electric plant where the electricity is produced, and a dam that can be opened or 

closed to control water flow (Fig. 1.1). The reservoir stores a significant volume of 

water behind the dam. The water then flows by gravity through an intake into a pipe 

(penstock) which is located inside the dam. At the end of the penstock, there is a 

turbine propeller, which is turned by the moving water to generate electricity. This 

same volume of water continues moving by gravity through the tailrace into the river 

below the dam. The amount of electricity that can be generated depends on a 

number of factors including the volume of water and its flow rate (U.S Department of 

the Interior Bureau of Reclamation, 2005). 
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Figure 1.1 A schematic view of a hydroelectric dam (Source: wikimedia.org) 
 

Damming of a river can result in serious negative consequences, including 

changing physical-chemical parameters (e.g. temperature, dissolved oxygen and 

suspended solids) and hydro-morphological conditions (e.g. water depth, stream 

velocity, and substrate). The various specific impacts of dams are described in detail 

in Chapter 2. In general, a dam stores and restricts water within the reservoir, 

regulates water flows, prevents or reduces movements of aquatic and terrestrial 

organisms/animals, and disrupts downstream transport of materials (Castello and 

Macedo, 2016). A case study from the Mekong river basin has shown that dams will 

block critical fish migration routes, in that way a dams can have severe impacts on 

fish productivity and biodiversity (Ziv et al., 2012). In addition, Gerd Marmulla (2001) 

indicated that the major concern throughout Asia is that dams block the movements 

of migratory fishes along river courses. However, dams often produce favourable 

conditions for the development of aquaculture on the reservoir. Therefore, in general, 

the impact of dams on fisheries/productivity depends on spatial (local areas, whole 

basin) and temporal scales (e.g. decades, centuries) of interest as well as specific 

human alteration and exploitations. The proliferation of algal blooms and 

eutrophication have also been recorded in many tropical and subtropical reservoirs, 
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for example in eight tropical hydroelectric reservoirs in Brazil, Paraguay, and 

Argentina. These include the Funil reservoir in Brazil (Rangel et al., 2016) and the El 

Carrizal Reservoir in Argentina (Beamud et al., 2015). Together with eutrophication, 

there is growing concern for high levels of organic carbon burial in sediment and low 

oxygen concentrations in the water close to the bottom of the water column 

(Mendonca et al., 2016) in hydroelectric reservoirs. In addition, depending on its 

design and other environmental and climactic factors, sedimentation in reservoirs can 

be a significant problem; it was estimated that the average volume loss in reservoirs 

due to sediment deposition was 0.93% per year (Luis et al., 2016).  

Ecuador has a land area of 256.370 km2, with a total population of 16.14 

million people in 2015 (FAO, 2016). The country is located in South America, which is 

one of 25 biogeographically distinctive hotspots of biodiversity in the world (Brooks et 

al., 2002). It has 31 river basins, of which 24 are river basins draining into the Pacific 

Ocean and seven river basins draining into the Amazon river (Proano, 2005). Up to 

2012, Ecuador had 31 hydropower dams (Consejo Nacional de Electricidad, 2013). 

By 2016, its existing hydroelectric projects produced about 50% of the national 

electricity (Ecuadorian Rivers Institute, 2016). The economic impact of the 

hydropower plants in Ecuador is positive (Salazar and Rudnick, 2008). In 2013, the 

Government of Ecuador announced its decision to invest 7427 million USD to 

construct 25 new hydro dams in order to meet the country’s predicted increase in 

demand for electricity during the period 2013-2022 (Consejo Nacional de 

Electricidad, 2013). As a consequence, many rivers throughout the country are and 

will be further fragmented. Current plans for hydropower dams in Ecuador may result 

in further degradation of biodiversity and ecosystems. The Guayas and the Portoviejo 

river basins are important watersheds that have experienced significant 

anthropogenic changes in the past several decades. The Poza Honda dam is located 

in the Portoviejo River and started operating in 1971 (U.S. Army Corps of Engineers, 

1998). The Daule-Peripa dam started to operate in 1992 and is located in the Daule 

River in the Guayas River basin (Gelati et al., 2011). Both Daule-Peripa and Poza 

Honda dams were designed, constructed and installed to fulfill the increasing energy 

demands of Ecuadors growing population. Since dam projects have first been 

executed across the country, the formation and development of large carpets of the 

aquatic macrophyte water hyacinth (Eichornia crassipes) on the reservoirs’ surfaces 
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has became in many cases a major challenge for sustainable operation of the 

country’s hydroelectric schemes. In Ecuador, environmental problems are particularly 

severe related to the spread of invasive water hyacinth within the water bodies of 

hydroelectric reservoirs, resulting in the degradation of water quality in the 

downstream regions. The construction of hydropower dams on these major rivers is 

widely viewed as the primary stressor. Unfortunately, detailed information on the 

causal relationship between specific hydropower dams and impacts on water quality 

and associated ecosystems remains scarce in many tropical regions. Studies and the 

evidence base in the peer reviewed or grey literature on the effects of dams are 

generally lacking in an Ecuadorian context. Therefore, it is necessary to identify the 

ecological impacts of hydropower dams on Ecuadorian rivers to support management 

strategies for protecting and restoring Ecuadorian freshwater ecosystems.  

 

 

Figure 1.2 Pictures taken at (A) The inlet of the Daule-Peripa dam and (B) Mat of 

infestion of water hyacinth (Eichhornia crassipes) at the Daule-Peripa hydro reservoir 

1.2 Scope and objectives 

The aim of this study is to analyze the impacts of hydropower dams on water 

hyacinth and aquatic macroinvertebrates in Ecuadorian rivers. For this study, two 

river basins have been selected to make this investigation (cf. Chapter 3): the 

Guayas and Portoviejo river basins. In order to assess the impact of dams on river 

ecosystems, we first need to know how are the macroinvertebrates distributed in 

general along the river system. The information about the distribution of 

macroinvertebrates along the river (gradients), can serve as a basis to clarify the 

impact of damming and how it can be distinguished from other human disturbances. 

It was expected that the interrelation between physical-chemical variables, the 

B A 



Chapter 1: General introduction 
 

 6  

presence of water hyacinth and macroinvertebrate communities are able to illustrate 

the ecological impacts of damming and resulting anthropogenic disturbances in 

Ecuadorian rivers at various spatial scales. The results can serve as the initial steps 

to determine the ecological impacts of hydropower dams on tropical rivers.  

There are four sets of major research questions that this PhD dissertation 

focuses on: 

1. How can models be used to assess the ecological impacts of hydropower dams? 

(Chapter 2).  

2. What are the habitat preferences of macroinvertebrates in a tropical reservoir? 

Does the development of water hyacinth affect the ecological water quality and 

macroinvertebrate communities? What is the link to physical habitat created by water 

hyacinth? (Chapter 4) 

3. How does the ecological water quality change along the Guayas River basin? 

What is the importance of physical-chemical variables in structuring the 

macroinvertebrate communities and how is this affected by additional stress via the 

installation of hydropower dams? Which taxa are most affected by the effects of 

dams (e.g. due to changes in stream velocity)? (Chapter 5) 

4. How does the ecological water quality change from upstream to downstream of a 

dam in the Portoviejo River basin? What are the key environmental factors affecting 

the macroinvertebrate communities? How are macroinvertebrates distribute along the 

river system and what is the effect of the dam on this? What is the link between a 

hydropower dam and the change of ecological water quality? (Chapter 6) 

The thesis is structured around seven chapters (Fig 1.3), that link the general 

objectives with the data collection, data analysis, and ecological assessement related 

to the two selected specific Ecuadorian river basins. 
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Figure 1.3 Flowchart illustrating organization of research and associated chapters 

within the thesis 

Each of the individual chapters of this dissertation describe the specific goals in order 

to achieve the overall objectives of this research: 

Chapter 1 gives a general introduction to the need for the present study, problem 

statements, research hypothesis questions and the objectives of the research.  

Chapter 2 addresses the first research question above. It presents an overview of 

the impacts of hydropower dams on river ecosystems. In this chapter, a search for 

relevant articles was performed using the ISI Web of Science, and the DPSIR 

framework was applied to review different impacts of hydropower dams on water 

quality and ecological quality of riverine ecosystems. This chapter also reviews the 

different ecological models that have been used to assess possible impacts of 

hydropower dams on water quality and habitat suitability of biological communities. 

Then followed by the implementation of SWOT analysis to identify and document 
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strengths, weaknesses, potential shortcomings and opportunities for the use of 

ecological models in impact assessments of hydropower dams. 

Chapter 3 deals with materials and methods applied in this dissertation and includes 

descriptions of the particular study areas. The data were collected in the Guayas 

River basin in the dry season of 2013 and then in the Portoviejo River basin in the dry 

season of 2015. Abiotic variables, habitat characteristics, macroinvertebrate 

community monitoring and analysis methods are described in detail. The chapter also 

provides a background to applied ecological modeling and assessment techniques. 

Chapter 4 addresses the second research question. This chapter is based on our 

case study of the Daule-Peripa hydropower dam reservoir. We applied Generalized 

Linear Models (GLMs) in order to disentangle the key elements determining the 

establishment and spread of invasive water hyacinth (Eichhornia crassipes). The 

relationships between the occurrence of the invasive water hyacinth and water quality 

properties, as well as macroinvertebrate diversity were examined in order to gain 

insight into the drivers causing changes in the physical-chemical water quality and 

diversity of macroinvertebrates in the Daule-Peripa reservoir.  

Chapter 5 addresses the third research question. This chapter is based on our a 

case study of the Guayas River basin. Multivariate analysis was applied to reveal the 

importance of physical-chemical variables in structuring the macroinvertebrate 

communities. Since stream velocity is seen as one of the most important 

environmental factors influencing the distribution of macroinvertebrate communities. 

Then Threshold Indicator Taxa Analysis (TITAN) was used to examine the threshold 

responses of macroinvertebrate communities to stream velocity. The chapter also 

examines which taxa are most affected by changes of stream velocity in the Guayas 

river basin and which may thus be significantly affected by the construction of 

hydropower dams.  

Chapter 6 addresses the fourth research question and is based on our case study of 

the Portoviejo River basin. We assessed the physico-chemical and ecological water 

quality of the Portoviejo River basin. The importance of several environmental factors 

and habitat characteristics were linked to the ecological water quality. TITAN analysis 

was again applied to detect the responses of macroinvertebrate communities to 

changes in key environmental variables and to find potential indicator taxa of 

macroinvertebrate communities in the Portoviejo river basin. 
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Chapter 7 then brings together the previous research and findings to then discuss 

the research tools utilized in data collection, application of ecological modeling, 

ecological assessment based on macroinvertebrates in hydropower dam impact 

assessment and practical issues in river management. Following on from this, the 

thesis concludes with recommendations for further follow on research on hydropower 

dam impacts which builds on the findings of this study. 

This PhD thesis presents case studies in Ecuador. However, the methodology 

and the results described here may be applicable to other watersheds in (tropical) 

countries. The information presented here will be particularly useful for management 

of similar rivers in South-America, as well as the rest of the world facing similar 

situations. 
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Chapter 2: Impact of hydropower dams on river 
ecosystems and the use of ecological models – A review 
 
 

 

Based on: 

 

Thi Hanh Tien Nguyen, Gert Everaert, Pieter Boets, Elina Bennetsen, Martin Volk, 

Thu Huong Thi Hoang, Peter L.M. Goethals. Impact of hydropower dams on river 

ecosystems: A review from a modeller’s perspective. Ecological Engineering (in 

preparation). 
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Chapter 2: Impact of hydropower dams on river 
ecosystems and the use of ecological models – A review 
 
 

Abstract 

 

We critically analyze a set of ecological models that are used to assess the 

impact of hydropower dams on water quality and habitat suitability for biological 

communities. Based on a literature search, we found that the most important 

variables contributing to structural and functional ecosystem changes are variations 

in water flow and water depth coupled with increased nutrient availability. Another 

result is that ecological models can make considerable contribution to the impact 

assessment of hydropower dams, as via simulations of different scenario’s (e.g. with 

and without dam, different operation methods, …) the related ecosystem shifts can 

be predicted and analysed. However, one of the remaining shortcomings of these 

models is the limited capacity to separate dam-related impacts from other 

anthropogenic influences (e.g. agriculture, urbanization). Moreover, collecting 

sufficient high quality data to increase the statistical power remains a challenge, as 

the severely altered conditions (e.g. generation of very deep lakes) also leads to 

difficulties for standardized data collection. Future opportunities can be found in 

integrating models to improve the understanding of the different processes affected 

by hydropower dam development and operation and the use of remote sensing 

methods for data collection. 
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2.1 Introduction 

Human population growth and economic development increased demands for 

energy. Hydropower is a renewable and cheap source of energy (Bratrich et al., 

2004; Castelletti et al., 2008; Jager and Smith, 2008) which contributes to about 16% 

of the global electricity production in 2011 (Zarfl et al., 2015). Dams have been 

continuously constructed for hydropower generation and other purposes (World 

Commission on Dams, 2000; Alison Bartle, 2002; Kumar et al., 2011). Until 2016, 

globally, there are about 58,402 large dams (dam with the height higher than 15 m) 

of which 9,595 dams primarily designed for hydropower generation are in operation 

(International Commission on Large Dams, 2016). Hydropower dams are typically 

operated with the goal of maximizing energy benefit, whilst meeting other legal water 

requirements such as environmental flow to protect aquatic ecosystems (Jager and 

Smith, 2008). However, besides these benefits, hydropower dams can have negative 

environmental impacts on the structure and functioning of aquatic ecosystems (World 

Commission on Dams, 2000; Bunn and Arthington, 2002; Kumar et al., 2011).  

Dam construction is considered one of the major pressures contributing to the 

modification of natural river ecosystems (Tonkin et al., 2009; Zhai et al., 2010). 

Scientists and engineers have developed numerous methods for mitigating the 

environmental impact of dams, such as installation of pool-type fish passes, and 

nature-like bypass channels to facilitate movement of fish from below the dam to the 

reservoir and further upstream. Specially designed fish elevators that collect the fish 

in boxes and then lift them to the level of the impoundment (Berkamp et al., 2000). 

However, not all impacts can be reduced through implementation of a variety of 

mitigating measures (Berkamp et al., 2000). The impacts of dams to freshwater 

ecosystems can be devastating and difficult to restore (Schelle et al., 2004). 

Understanding the trade-offs between water for the environment and water for 

hydropower in regulated rivers can inform decision making about hydropower system 

planning, policy and operations (Rheinheimer et al., 2013). Therefore, the ecological 

impact assessment of hydropower dams on river ecosystems before construction, 

during operational phases and after dam removal, is indispensable.  

Ecological models can support decision making in environmental and 

conservation management (Schmolke et al., 2010) and have already been applied to 
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assess the impact of dams on fish (Hatten and Parsley, 2009; Hatten et al., 2009; 

Garcia et al., 2011; Costa et al., 2012; Fjeldstad et al., 2012; Ziv et al., 2012), 

macroinvertebrates (Marchant and Hehir, 2002; Molozzi et al., 2012; Wang et al., 

2013), amphibians (Yarnell et al., 2012) and vegetation (Benjankar et al., 2011; 

Egger et al., 2012; Guarino et al., 2012). Models have become indispensable in 

environmental assessment, planning and management (Crout et al., 2008). However, 

the type of model implemented, the variables included and the parameterization 

used, strongly differ between different studies. For instance, Freeman et al. (2001) 

used depth, substrate and flow characteristics as input variables in order to assess 

the impact of altered flow regimes on the habitat suitability of juvenile fish. Kunz 

(2011) used dissolved oxygen and nutrient compounds as input variables to develop 

a water quality model taking into account the impact of a tropical reservoir. Biological 

communities reflect watershed conditions since they are sensitive to changes in a 

wide array of environmental factors (Karr, 1981). The biological communities that are 

exposed to pollutants act as integrators of the multiple present and past 

environmental effects (Cranston et al., 1996). Moreover, different aquatic 

communities have different preferences in physical-chemical and morphological 

conditions. Hence, it is expected that changes in the aquatic community reflect the 

impact of the dam on the entire ecosystem.  

The qualification of models depends on both the objective of the research and 

the applicability of the model (Guisan and Zimmermann, 2000). Indeed, integration of 

physical and biological processes helps to select the appropriate input variables and 

modelling techniques in order to assess the impacts of hydropower dams on river 

ecosystems and provides effective management strategies (Imhol et al., 1996). In 

addition, applying the right procedure for model selection, determining the range of 

application, choosing proper input variables and selecting appropriate evaluation 

methods are also crucial to obtain a useful model (Guisan and Zimmermann, 2000). 

Consequently, an overview and critical analysis of the development and use of 

ecological models to assess the impact of hydropower dams is needed and currently 

not available. This chapter reviews studies on impacts of hydropower dams on water 

quality and ecological quality of riverine ecosystems. We begin by describing the 

complex interactions involved in the potential impacts of hydropower dams based on 

the DPSIR (Driver-Pressure-State-Impact-Response) framework. The next section is 



Chapter 2: A review 
 

 15  

a review of ecological models approaches used to assess possible impacts of 

hydropower dams. Finally, we investigate the limitations and opportunities for the use 

of ecological models in hydropower dam impact assessment.  

2.2 Methodology 

The European Environment Agency’s DPSIR (Driver-Pressure-State-Impact-

Response) framework was introduced as general guideline to describe cause effect 

relationship between human activities and environment (Smeets and Weterings, 

1999). Due to the framework, there is a chain of causal links between ‘Drivers’ 

(social, demographic and economic developments) and ‘Pressures’ on the 

environment. The ‘Pressures’ causes change to the current or future ‘State’ of the 

environment. These environmental changes lead to positive or negative ‘Impacts’, 

and the “Response” is the action taken to solve potential environmental problems. It 

can be seen from literature, the DPSIR framework was already applied on water 

resources management, river basin management (Arias-Hidalgo, 2012; Bell, 2012; 

Sekovski et al., 2012; Vermaat et al., 2012), river restoration (Song and Frostell, 

2012) and biodiversity conservation (Spangenberg et al., 2009). In this study, we 

studied the available relevant literature regarding the specific issue of hydropower 

dams and its impacts on river ecosystems. Afterward, the (DPSIR) concept was 

developed based on our own experience in order to disentangle the complex 

interactions involved in the impact assessment of hydropower dams on aquatic 

ecosystems.  

As inferred in the DPSIR framework, three kinds of impacts could be identified, 

characterized by morphological, physical-chemical and biological. In order to provide 

an overview of the different model approaches were used to assess hydropower 

dams impacts on river ecosystem, a search for articles was performed in the ISI Web 

of Science (January 22, 2016, http://apps.webofknowledge.com). Articles were 

derived from a search in ISI Web of Science using search topic = ‘hydropower dam*’ 

AND topic = ‘habitat*’. A sub search was performed using topic = ‘model*’ AND 

document type = article. Fifty-six key articles were extracted, but those dealing with 

terrestrial ecology and in which insufficient detailed information on the model 

development process was given, were discarded. Finally, thirty-two articles were 



Chapter 2: A review 
 

 16  

retained. In this chapter we focus on four major questions (1) what types of modelling 

approaches have been applied for ecological impact assessment, (2) which input 

variables were used, (3) how models were validated and (4) how models can be 

applied? Based on 32 reviewed articles, we listed all main input variables that were 

used; the type of model approached; model validation process and the output of the 

model. Afterwards, we developed an integrated conceptual model that illustrates the 

linkages between the main input variables, model approaches, the output variables 

and biotic, abiotic interactions in the ecosystems related to hydropower dams.  

Different modeling approaches have been used to assess the impact of 

hydropower dams on the watery ecosystem. To further explore the potential of 

ecological models in hydropower dam impact assessment, an analysis in Strengths, 

Weaknesses, Opportunities and Threats (SWOT) was implemented. This 

assessment provides an overview of the advantages and limitations of models which 

have been developed and identifies the challenges and opportunities for future 

models in hydropower dam impact assessment.  

2.3 Results and discussion 

2.3.1 Impacts of hydropower dams on aquatic ecosystems 

Figure 2.1 describes the DPSIR framework related to the links between socio-

economic drivers, pressures, changing state, impacts on river systems and potential 

actions can be taken to minimize the ecological problems cause by hydropower 

dams.  
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Figure 2.1 Drivers-Pressures-State-Impacts-Responses framework presenting the 
impact of hydropower dams on the ecological water quality and habitat suitability for 
aquatic biological communities.  

 

a. Drivers 

Rapid growth of the human population, economic development, climate 

change, and the need to close the electricity access gap have stimulated the search 

for renewable energy such as wind, waves, tides, biomass, biofuels, and hydropower 

(Zarfl et al., 2015). Hydropower was considered as a cheap and renewable-energy 

source (Kumar et al., 2011) because it uses the water from river to generate 

electricity and it produces lower amounts of greenhouse gases compared with 

hydrocarbon fueled power generation (Boavida et al., 2015). The (global) increase in 

energy demand is the driver that triggers the construction of hydropower dams. 

Especially, future hydropower development is expected to be primarily concentrated 

in developing countries and emerging economies of Southeast Asia, South America, 

and Africa (Zarfl et al., 2015).  
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b. Pressures 

Despite their economic benefits, the civil works during the implementation 

period of the dam project such as the road, power house and inlet construction 

impact the surrounding river ecosystem (Bruno and Siviglia, 2012). Moreover, once 

installed and in operation, dams interrupt the natural river continuum (Graf, 2006) and 

this can lead to changes to the natural flow regime and changes in hydraulic 

conditions in general (Meile et al., 2011).  

c. State 

Dam construction and operation are pressures that can cause changes in the 

state of river geomorphology and hydrology (Vörösmarty et al., 2003) and river 

isolation (World Commission on Dams, 2000). Furthermore, the construction and 

presence of hydropower dams can affect the physical-chemical and morphological 

conditions in a river and thus alter the habitat suitability for riverine communities 

(Grand et al., 2006; Garcia et al., 2011). Based on a report of the European Water 

Framework Directive, hydropeaking is one of the main stressors on aquatic 

ecosystems (EU, 2000). It can dramatically induce river modifications such as 

alterations to stream banks and channel morphology, water depth, wetted area, 

velocity distribution, substrate composition, suspended matter, temperature, habitat 

structure and heterogeneity (Scruton et al., 2008). The damming of river causes 

changes in sediment transport (Käiro et al., 2011), water depth, water temperature 

and stream velocity (Ruetz and Jennings, 2000; Sinokrot and Gulliver, 2000; Krause 

et al., 2005; Hatten and Batt, 2010). Moreover, in some cases huge amounts of 

sediment that are highly contaminated with heavy mentals, organic matter and 

pesticides can be deposited in the reservoir (Jacoub and Westrich, 2006; Couillard et 

al., 2008). The reservoir itself may undergo effects of eutrophication processes, such 

as algae blooms and floating plant accumulations (Chapman, 1996). The increase of 

water residence time, eutrophication and decomposition of organic matter can 

moreover cause the increase of toxicants present upstream of a dam. The toxicants 

may be transported downstream by future floods and intensive rainfall events. In 

addition, water level variation due to power generation can propagate and create 

changes in the tidal regime for very long distances (Jay et al., 2015).  
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In particular in combination with the discharge of organic matter (e.g. 

wastewater from urbanized areas) and nutrients (e.g. from intensified agricultural 

activities) an intensified status alteration can occur, resulting in substantial declines in 

dissolved oxygen, increased algae growth, substrate modifications, sediment and 

mud accumulation, toxic algae blooms, etc. In other words, several alterations in the 

hydromorphological and chemical status, can eventually further boil down to 

biological alterations. 

Organisms are physiologically, anatomically, morphologically and behaviorally 

adapted for survival in a specific habitat. Thus, the creation or destruction of such 

habitats can either lead to the rejection or multiplication of related species (Hansen et 

al., 2005). Modifications of physical-chemical water quality may deteriorate spawning 

grounds and nursery areas (Yi et al., 2010), lead to biodiversity loss (Chapman, 

1996), alter species interaction (Allesina and Tang, 2012) and ecosystem processes 

(Chapin III et al., 2000). Dams block migration routes for migratory fish (Han et al., 

2008; Makrakis et al., 2012; Brown et al., 2013) isolating populations and increasing 

their risk of extinction (Navarro et al., 2007). Dam construction and operation have 

also shown to have a significant impact on microzooplankton richness (Zhou et al., 

2009) and density and composition of macroinvertebrate communities (Tonkin et al., 

2009; Wang et al., 2013). In addition, dams can alter periphyton biomass (Tonkin et 

al., 2009), provoke changed phytoplankton densities (Zhou et al., 2009) and cause 

algal blooms (Lessard et al., 2013). Phytoplankton, zooplankton and invertebrates 

are important food sources for fish and other vertebrates. The change in food 

availability affects fish growth and survival (Grand et al., 2006) and reproduction of 

key species (Yarnell et al., 2012). Moreover, hydropower dams change the 

taxonomic and trophic structure of fish communities and can cause a reduction of fish 

species richness (Cerny et al., 2003; de Merona et al., 2005) and abundance (Dauble 

et al., 2003; Yi et al., 2010).  

d. Impacts 

Damming of rivers is used for multiple purposes, such as agricultural irrigation, 

flood control, hydropower generation and recreation, so not all environmental impacts 

associated with dams can be directly attributed to hydroelectric power. Hydroelectric 

facilities can have a major impact on aquatic ecosystems. For example, fish and 

other organisms can be injured and killed by turbine blades. However, assessment of 



Chapter 2: A review 
 

 20  

the environmental impacts of a specific hydropower facility requires case-by-case 

review (EPA, 2013) to determine the affected ecosystem services and related socio-

economic consequences of the status changes. 

e. Responses 

The response is all actions necessary to avoid or control the potential adverse 

environmental and socio-economic impacts concerning hydropower projects and 

enhance environmental opportunities. The societal responses to the corresponding 

drivers, pressures, state of the environment or impacts via various prevention, 

mitigation, or adaptation measures regarding to the environmental problems (Smeets 

and Weterings, 1999).  

The response related to drivers for dam construction is energy demand 

management. There are many potential management options could take to minimize 

the energy demand. For example, many European countries (e.g. Italy and United 

Kingdom) are applying the energy-saving policies such as interruptible tariffs or time 

of day pricing (Torriti et al., 2010). Another option can be promoting for the use of 

advanced technology (e.g. energy-saving building and appliances) in order to reduce 

energy consumption (Omer, 2008). In addition, the government should apply the 

policies to enthuse people to use alternative renewable-energy resources such as 

solar power, wind power and biomass (Islam et al., 2006). 

To reduce the pressure of hydropower dams, the management options could 

be the development and application of environmental laws to hydropower projects. 

For example, in United States, regulators issue licenses for a limited term of 30 to 50 

years. After the license expires, the operator must obtain a new license compliant 

with current environmental laws. During relicensing, the Federal Energy Regulatory 

Commission evaluates the performance of the dam project and to determine if the 

dam can continue to operate (Federal Energy Regulatory Commission, 2016). 

Literature shows that the impact of dams depends on its location, design and 

operation (Dugan, 2008). Comparing to the large dams built for irrigation, water 

supply and flood control, dams built for hydropower have separate objectives, involve 

distinctive components, respond to unlike markets and are operated in different ways 

(World Commission on Dams, 2000). Therefore, alternatives to classic hydropower 

dams such as run-of-the-river and pumped-storage minimize impacts related to 
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damming construction (Sternberg, 2010). If the dam with storage reservoir needs to 

be constructed, it is important to consider the location of the dam, because the dam 

expansion in regions with high endemism species would become more harm to 

imperiled aquatic resources (McDonald et al., 2012). The dam design is also 

important, as fish passage highly depends on dam design (Schilt, 2007) or the 

construction of fish passage facilities (Yin et al., 2012). 

Although being a renewable electricity source, hydropower is also 

accompanied by significant environmental impacts on river ecosystems which are an 

(in)direct cost to society (McCartney et al., 2001). Hence, to maintain and/or restore 

the initial state of the environment we need to control and minimize the impacts 

(Smeets and Weterings, 1999; Maxim et al., 2009). The ecologically sound dam 

management which mimicking the natural environmental flows (Richter and Thomas, 

2007), changes in release patterns and operation schemes (Grill et al., 2014) which 

aim to improve environmental flows and ecosystem services. For the dams with 

considerable storage reservoir, the hydropower generation interruptions could be 

replaced with temporal increases of flow release in order to offers more protection to 

the most vulnerable stream sections while maintaining the natural flow paradigm in 

rivers affected by hydropeaking (Vezza et al., 2014). In addition, the impacts can be 

mitigated by river restoration actions such as removing barriers to migration and 

restocking rivers.  

2.3.2 Models for hydropower dam impacts assessment  

Table 2.1 provides a synopsis of the ecological modeling approaches that 

have been developed to assess the impact of hydropower dams on aquatic habitat 

suitability. The models were reviewed per aquatic community based on modelling 

approaches, input variables (geomorphology, hydrology, meteorology, physico-

chemistry and biology) and model validation (Table 2.1).  
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Table 2.1 Summary of reviewed articles that used models as a tool to assess the 

impact of hydropower dams on habitat suitability.  

 Total 
Hydrodynamic 

Model 

Water 
Quality 
Model 

Habitat 
Suitability 

Model 
Integrated 

model 
Input variables      
Geomorphology      
Latitude/longitude 2  1  1 
Elevation 6 2 1  3 
Stream gradient 4   2 2 
Sinuosity 1   1  
River Width 4   3 1 
Depth 16   9 7 
Substrate 13   6 7 
Substrate roughness 2 1   1 
Hydrological      
Velocity 16   9 7 
Discharge/flow 19 3 2 4 10 
Hydrological regime 1   1  
Meteorological      
Air temperature 5  2  3 
Air pressure 1  1   
Cloud Cover 3  2  1 
Wind Speed 3  2  1 
Humidity 2  1  1 
Rainfall 1 1    
Solar radiation 2  1  1 
Physical-chemical      
Water temperature 11  3 4 4 
Total dissolved solid 1   1  
Toxicants 1 1    
Suspended sediment 3 1  1 1 
DO 4  1 2 1 
Conductivity 2   2  
pH 2   1 1 
Turbidity 2   1 1 
Nutrient  2  1 1  
Chloride 1   1  
Oxidation reduction 
potential 1   1  
Calcium ion 1   1  
Salinity 1   1  
Ligneous structure 1   1  
Biological 
components      
Fish 16  1 9 6 
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Macroinvertebrates 3   2 1 
Amphibians 1 1    
Algae 1   1  
Model validation      
Cross validation 4 1 1 1 1 
Single validation 12 2 1 5 4 

 

2.3.2.1 Models approached and practical application 

Hydropower dam assessment models can be divided in four categories: 

hydrodynamic models, water quality models, habitat suitability models and integrated 

models. Integrated models combine two or more models (Fig. 2.2). Among the 

reviewed articles, four papers used hydrodynamic models, and three authors used 

water quality models to assess the impact of hydropower dams on the river 

morphology and on the physical-chemical quality of the river. Sinokrot and Gulliver 

(2000) used a water quality model to determine the impact of flow variation caused 

by hydropower dam operation on the river water temperature. A habitat suitability 

model was used in 12 papers to evaluate the impact of the changes in physical-

chemical conditions on the habitat of biotic communities. Li et al. (2011b) used water 

depth, velocity and water temperature as input variables in their habitat suitability 

model to calculate the minimum flow for fish habitat conservation. The majority of 

articles (13) used an integrated model, in which the impact of hydropower dam 

construction on river morphology was linked to water quality, food web ecology or 

biological preferences (Fig. 2.2). There was no individual food web model; however, 

in one paper it was considered as a part of an integrated model.  

Models were also used to assess the success of restoration and mitigation 

actions on habitat suitability of fish (e.g. Bartholow et al., 2004; Fullerton et al., 2009) 

and macroinvertebrates (e.g. Gore and Hamilton, 1996). As can be seen by the study 

of Bartholow et al. (2004) involved the application of a one-dimensional 

hydrodynamic model coupled with a water temperature model. They used the model 

to assess if the growth and survival of brown trout could be improved via thermal 

habitat enhancement by providing an understanding of flow effects on temperature. 

Habitat suitability models and integrated models were mainly developed to support 
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decision making related to the management of multifunctional dams (e.g. hydropower 

generation, water supply) and fish habitat conservation related to flow management 

(e.g. minimal flow requirements). Owen et al. (1997) used stream flow to construct 

fuzzy membership functions in order to model variability in experts’ perceptions 

associated with reservoir operation for hydropower generation, fish habitat, recreation 

(kayaking) and scenery preservation.  
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Figure 2.2 The uses of models in hydropower dam impact assessment (based on the 

32 articles that were retained).  

2.3.2.2 Input variables 

There is a wide spectrum of environmental variables that can change over 

time and space (Ruokolainen et al., 2009). The complex task of dam impact 

assessment needs careful selection, interpretation and weighting of a multitude of 

biotic and abiotic information by means of models and expert knowledge (Grill et al., 

2014). Therefore, before developing the models, it is necessary to select appropriate 

input variables (Guisan and Zimmermann, 2000). It has been highlighted that the 

model outcome depends on the assumptions made in the pre-processing steps of the 

modelling process (Zuur et al., 2010). Thus, the choice of appropriate variables is a 

crucial step in model development (Everaert et al., 2012).  
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Overall, 32 different input variables were used, which can be classified as (1) 

geomorphological, (2) hydrological, (3) meteorological and (4) physical-chemical 

input variables (Table 2.1). The number of input variables used per study ranged 

from one to 15, but usually three to six variables were retained in the model. Mainly 

morphological (e.g. depth, substrate), hydrological (e.g. flow, velocity) and physical-

chemical variables (e.g dissolved oxygen) were implemented. Nineteen reviewed 

articles used flow (discharge) and 16 papers used hydro-morphological variables 

related to flow (e.g. depth, velocity) as input variables. Eleven papers used water 

temperature, and 13 papers used substrate and less than five papers used 

meteorological data as input variables. Many hydro-morphological data such as 

depth, substrate, river flow, velocity and dissolved are commonly easy to collect and 

moreover often freely available in databases. Water depth and current velocity are 

important factors for spawning habitat (Rosenfeld et al., 2011). Moreover, the 

velocity/depth ratio may be the best determinants of habitat type and, which is the 

most distinct among habitat types (Jowett, 1993). However, pH, BOD, metal 

concentration, nutrient concentrations are key factors affecting the presence of 

aquatic organism (e.g. macroinvertebrates) but seemed in most cases neglected in 

ecological impacts assessment. Therefore, those variables should be monitored and 

included into the models (Hoang et al., 2010) as they can contribute to a better 

assessment on ecosystem alterations, but also the social-economical consequences, 

such as increased needs for water purification. 

2.3.2.3 Model processes and outputs 

The models have been used to assess an expanding range of impacts of 

hydropower dam at various spatial and temporal scales. Existing ecological models 

provide a strong basis to assess the impact of changing hydrological regimes and 

water quality on the habitat suitability of fish, macroinvertebrates and algae.  

Flow is the key driver in hydropower dam modeling processes (Fig. 2.3). Flow 

is used as the input variable for hydrodynamic and water quality models to predict the 

physical and chemical impacts such as change in water depth, velocity and other 

variables driven by flow regulations. In some cases, outputs from water quality or 

hydrodynamic models have been used as the input variables for habitat suitability 

models to predict the impact of dams on habitat suitability. For example, Krause et al. 
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(2005) used models to assess the impact of flow manipulation by hydropower on 

water temperature. In a next step, water temperature was used as the input variable 

to assess the habitat suitability of fish. On the other hand, flow has also been used as 

the input variable in habitat suitability models to predict the influences of flow 

management on habitat suitability of fish (Enders et al., 2009) or macroinvertebrates 

(Li et al., 2009). In addition, the biomass of invertebrates is used as an input variable 

in food web models to predict the changes of vertebrate communities (Grand et al., 

2006).  

 

Figure 2.3. Overview of main input variables used for the models, and a 
representation of the biotic and abiotic interactions related to hydropower dams. The 
arrows point from an input variable to an output variable. The number indicates the 
type of model implemented: habitat suitability model (1); water quality model (2); food 
web model (3) and hydrodynamic model (4); (+) Indicates the integrated approach.  

2.3.2.4 Model validation 

Validation (model evaluation) is a testing process to check whether the model 

is acceptable for the intended purpose (Rykiel, 1996). As such, model validation is an 

indispensable step prior to model acceptance (Mayer and Butler, 1993). A good way 

to validate model is a comparison of simulated data with observed data of the real 

system. If the output of a model corresponds with observed data, then the model is 

an adequate representation of the system. In case of lacking field data, model validity 
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can be supported by expert insights on model behavior and results. Ecological 

models are often built for understanding (e.g. scientific research, practical 

management) and prediction (forecasting) purposes. However, an ecological model 

conceptualizes real life (Guisan and Zimmermann, 2000) as it is not feasible to 

integrate all assumptions. In the reviewed papers, models were validated using an 

independent test set (12 papers) or a cross-validation procedure (four papers). In 

sixteen papers, no model validation procedure was reported. For example, Quiroga 

et al (2015) developed a model to predict the losses of fish habitat by the 

construction of two larger hydropower dams, there were thus no data available for 

model validation. Classic model validation included model comparison between 

predictions and observations from an independent dataset (Cerny et al., 2003). 

Alternatively, models were validated by comparing results with field observations 

from a similar ecosystem (Gore and Hamilton, 1996; Krause et al., 2005).  

2.3.3 Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis  

Various models have been developed to get insight into the impact caused by 

hydropower dam construction and operation. However, within the range of 

approaches that have been implemented and described in literature, no best practice 

for model development, validation and use could be found. Model selection in the 

reviewed papers was based on the preference of the model developers and on 

objective parameters. Often site-specific criteria decide which approach is most 

suitable. In order to select the right model, a holistic approach is needed, considering 

the interplay between many elements such as the purpose of the model, the type of 

present data, the available knowledge (Thuiller et al., 2010) and the model outputs 

that are required (Schmolke et al., 2010). Hence, the selection of an appropriate 

model should not only depend on statistical considerations (Guisan and 

Zimmermann, 2000; Everaert et al., 2013; Boets et al., 2014). In general, good 

modelling practices are i) clear purpose, ii) adequate assumptions, implications and 

reporting results, and iii) serious evaluation (Crout et al., 2008). Modelling results 

should be easy to present to different stakeholders and should be widely applicable 

(Conallin et al., 2010). We used a strengths-weaknesses-opportunities-threats 

(SWOT) analysis to discuss challenges and opportunities of applying ecological 

models in hydropower dam assessment (Table 2.2).  
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Table 2.2 SWOT analysis of models used in hydropower dam impact assessment 

Strengths 

-Suitability for exploring various types of 

dam impacts 

- Enabled syntheses of expert knowledge 

and empirical data 

-Applicable at different scales 

Weaknesses 

-Ignore the interactions among physical-

chemical properties and biological 

responses  

-Simplicity in variable selection  

-Lack of clear statistical criteria to assess 

the models and related thresholds 

Opportunities 

-Increasing environmental data quality 

and availability 

-Growing interest and technical advances 

in ecological modeling 

-Integrated models become better and 

more reliable 

Threats 

- Over or under prediction 

- Expenses for data collection 

 

a. Strengths 

The first strength of using models in hydropower dam impact assessment is 

the potential to explore the change of water quality and habitat suitability under 

different dam management strategies (scenario-based analysis). Kunz et al. (2011) 

found for instance that daily discharge data could be used to evaluate the effect of 

future changes in riverine sediment and nutrient concentrations on water quality. 

Hatten and Batt (2010) used depth and velocity simulations to predict the distribution 

of fish under different management scenarios and selected the most successful 

restoration actions. To explore the potential effects of flow variation related to 

hydropower on amphibians, Yarnell et al. (2012) used two-dimensional hydrodynamic 

modeling to simulate how hydraulic conditions vary between distinctive flow 

scenarios. In a next step, the output from the flow simulation was used as input 

variable for a habitat suitability model to quantify biodiversity loss under several 

pulsed flow scenarios. Model simulations can detect specific negative impacts on the 

aquatic biota, allowing restoration strategies to be focused on especially threatened 

species (Vezza et al., 2014). Habitat modeling can be a suitable tool to explore the 

impacts of hydropeaking flows on habitat availability, thus improve the understanding 
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of long-term effects of hydropeaking on different life-stages of organisms and their 

abundance (Boavida et al., 2015).  

Models can be used to quantify the ecosystems’ disturbance level compared 

to a given reference state (Boavida et al., 2015). They can be used for generating 

baseline data (e.g. simulation of conditions without dam) and predicting the habitat 

losses or habitat recovery. Predictive tools can be used to forecast future changes 

due to dam installation or dam removal. In addition, it can identify which restoration 

strategy is best under a variety of alternative management actions. As a 

consequence, predictive tools allow managers to assess potential outcomes before 

making costly decisions (Fullerton et al., 2009).  

The second strength is the possibility to integrate data originating from 

different monitoring campaigns and knowledge from literature and experts. For 

instance, meteorological information is easily obtained from meteorologic stations 

whereas river characteristics such as depth, substrate composition and water 

temperature can be measured in the field using a standardized sampling protocol 

with relatively low cost. In addition, models can assist in reducing amount of data. 

Data collection is often pose difficulties in sampling in large rivers, remote locations 

and extreme high flow conditions (Quiroga et al., 2015). In cases where data are 

lacking or no data are available (e.g. inaccessible location, no pre-impact data 

available), knowledge-based models are useful tools (Ahmadi-Nedushan et al., 2006; 

Jørgensen, 2008) because, information can be obtained from literature or from local 

and academic expert knowledge. Boavida et al (2015) developed a fuzzy logic model 

to investigate the effects of hydropeaking in the habitat of fish in the Ocreza River, 

Portugal. This synthesizing expert knowledge and river engineering allows the use of 

simulated environmental conditions (e.g. depth, velocity) as predictors. Additionally, 

data-driven models can integrate with expert knowledge-based approaches and 

hence improve model reliability (Mouton et al., 2009). A last strength of most models 

is that they can be applied at a wide range of spatial scales varying from small creeks 

(Grand et al., 2006; Cioffi and Gallerano, 2012) to whole river basins (Zhai et al., 

2010) or for different time scales (Grand et al., 2006; Yarnell et al., 2012). 
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 b. Weaknesses 

A notable weakness of existing ecological models used in hydropower dam 

impact assessment is that they are mostly not able to simulate (accurately) 

interactions among physical-chemical properties and biological responses. In the 

ecosystem, there are complex interactions between organisms and their biotic and 

abiotic environments (Anand et al., 2010). Therefore, ecological models must be 

constructed based on the good understanding of the reactions and the processes of 

ecosystems (Jorgensen et al., 2009). However, the models presented in the selected 

papers often disregard the complex processes of ecosystems (Cioffi and Gallerano, 

2012). Although a few models combined two or more model types, no integrated 

protocol for model development has been proposed.  

Understanding which factors are important, as well as being able to describe 

the interaction between factors will help managers to determine the potential 

management strategies (Krause et al., 2005). For instance, flow alteration causes 

changes in water temperature (Sinokrot and Gulliver, 2000; Krause et al., 2005) and 

this change in temperature also affects other variables such as pH and dissolved 

oxygen. These relational shifts can influence the survival, growth and reproduction of 

aquatic species (Yarnell et al., 2012). Most of the models reviewed in this paper have 

not taken important ecological control mechanisms into consideration (such as 

nutrient competition or the effect of zooplankton feeding on phytoplankton 

concentrations). Hydrodynamic models and water quality models only predict the 

changes of the physical-chemical water quality of the river, but often lack biological 

components. Several water quality models considered the impact of discharge on 

water temperature, but did not elucidate on how temperature changes influence 

aquatic biota or how fluctuations in flow determined the habitat of aquatic biota.  

Most papers often just represented one piece of the complicated processes 

related to hydropower dam impact. For example, Sinokrot and Gulliver (2000) studied 

flow impact on river water temperatures, but they did not address the impact of 

temperature changes on aquatic habitat or the impact of flow fluctuations on aquatic 

habitat issues. Although Yarnell et al. (2012) determined habitat suitability based on 

the abiotic or biotic conditions for a single target species or life stage, their models 

were not able to analyze the interaction of environmental variables on the survival, 

growth and successful reproduction of a particular species. Moreover, Null et al. 
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(2014) used estimates of suitable fish habitat for an entire river; however, habitat 

segments were not all connected so model prediction may become overestimated of 

habitat suitability for anadromous fish or other migratory species. Habitat suitability 

models can be used to predict the availability of habitats appropriate for a species 

occupation under varying flow conditions and to assess what flows may potentially 

limit or enhance reproductive output (Bondi et al., 2013). Null et al. (2014) estimated 

fish habitat which is linked to fish population dynamic, but it is not the good substitute. 

Models are not be able to predict future densities of populations because the models 

do not account the effect of non-hydraulic factors (e.g. temperature, riparian 

conditions and food availability) on the survival and ultimately future population 

trajectory (Bondi et al., 2013).  

Another weakness occurring when using ecological models for hydropower 

dam impact assessment is non-transparent variable selection. In the reviewed 

papers, models often use just a few hydraulic (velocity, flow) and hydromorphological 

(water depth, substrate) characteristics to define habitat suitability. For instance, Pert 

and Erman (1994) simply used water depth and average velocity in a 20 m reach of 

river to define habitat preference for rainbow trout due to the difficulty to collect 

information on different habitat variables. Although the outcome of the model was 

valid, the authors suggested to consider other factors related to hydropower dam 

operation such as time during the day (morning, afternoon) and long term changes in 

discharge. It is hard to explore the effects of hydropeaking because it is strongly site 

specific and also depending the highly dynamic interactions between hydrology, 

hydraulics and morphological changes that can be hardly simulated (Boavida et al., 

2015). Li et al. (2011a) used the average annual discharge for model development, 

but they suggested that the variation of hydrologic frequency as well as the maximum 

and minimum amount of water release from dams due to hydro-peaking should be 

taken into account. In many cases, there will be an overlapping effect of general river 

regulation impacts and hydropeaking impacts, being difficult to isolate the stressors 

(Boavida et al., 2015). Fish habitat simulations show that hydropeaking impact is 

strongly dependent on river morphology (Boavida et al., 2015). 

Environmental impacts of dams affect different life stages and different groups, 

which requires a different level of detail in model development. Nevertheless, most 

model approaches base their assessment on physical-chemical water quality or the 
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habitat suitability of adult fish (e.g. Ruetz and Jennings, (2000); Freeman et al., 

(2001); Cerny et al., (2003); Grand et al., (2006); Hatten et al., (2009); Garcia et al., 

(2011); Li et al., (2011b); Cioffi and Gallerano, (2012); Chen et al., (2013); Wang et 

al.,(2013)), including often purely the most common and economic valuable species 

(e.g. trout, salmon) or endangered species. One publication considered the impact of 

flow regulation on algae (Wu et al., 2010), one paper focused on the effect on habitat 

suitability of amphibians (Yarnell et al., 2012) and just three papers considered 

macroinvertebrates (Gore and Hamilton, 1996; Li et al., 2009; Wang et al., 2013) in 

their assessment.  

Another weakness is the lack of clear statistical criteria to assess the model fit. 

In addition, baseline data quantifying the ecological status prior to the building of the 

dam are often not available, which can result in lack of data for model development 

and model validation. Moreover, there is no standard sampling protocol available to 

allow a standardized assessment of the potential impact of a hydropower dam which 

is a crucial for international comparability.  

c. Opportunities 

An important opportunity related to the improvement of model prediction 

capacity is the increasing environmental data availability and data quality. The 

development of advanced environmental monitoring technologies could result in 

datasets with a large number of variables with high quality in order to deal with data 

scarcity and variability when developing models (Li et al., 2011a). Many European 

countries have established environmental monitoring networks to report on their river 

water quality. Apart from increased data availability, there has been substantial 

progress made in ecological modeling with regard to low quality or quantity data. 

When the amount of data is limited, datasets could be split into a training and 

validation set (Goethals et al., 2007) in order to test the robustness of the models. 

Moreover, independent experts could check model performance or the prediction of 

the model could be evaluated if the model output lies within the reliable ecological 

limits (Everaert et al., 2013). Furthermore, the combination of lab results and 

ecological models (Boets et al., 2010) and integration of data-driven models (Hoang 

et al., 2013) can be used to support decision-making in water management. When 

models are used for scenarios’ analysis for which no data exists, a possible way to 

validate predictions may be through creating different models of the same system 
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and then comparing predictions between models (Parrott, 2011), typically applied for 

environmental impacts assessment before hydropower dam construction.  

To solve the problem of the single impact approach, an integrated model can 

be applied. For instance, an integrated model which considers physical-chemical, 

hydraulic and hydro-morphological characteristics could be used to assess the 

multiple effects related to flow variation on the river ecosystem (Holguin-Gonzalez et 

al., 2013; Holguin-Gonzalez et al., 2014). Models can be used qualitatively and 

quantitatively to consider climate change impacts on hydropower systems for 

hydropower relicensing (Rheinheimer et al., 2013). Given their numerous strengths 

and opportunities, using models for hydropower dam impact assessment deserves 

further exploration, especially, for the future the potential to use integrated models 

and to improve data collection to reduce the disadvantages of existing models or 

modeling techniques in hydropower dam impact assessment. Based on the above-

mentioned opportunities in combination with technical advances in modeling it is 

believed that ecological models can be widely used to support hydropower dam 

impact assessment.  

Considering these complicated processes present in ecosystems in the model 

does not mean that we need to make an overly complex model that takes a long 

computational time and that is not transparent for decision makers. A possible 

solution is the development of an integrated model instead of a single disciplinary 

model approach with complex input variables. Using an integrated model allows 

getting insight into the processes that occur on the river besides the direct impacts 

observed related to dam construction or wastewater discharges (Holguin-Gonzalez et 

al., 2014).  

d. Threats 

The management strategies solely developed based on models results could 

potentially pose a serious threat, because the output derived from a model can 

sometimes be inaccurate or deviating from reality. Li et al. (2009) pointed out that the 

physiology of organisms varies over different life stages, and caution is needed when 

applying year-round data. Therefore, using one model for different life stages and for 

the whole year conditions may lead to incorrect prediction results. Besides hydraulic 

characteristics, ecological components (e.g. riparian vegetation, present of predators, 
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life stage of organisms), morphological characteristics (e.g. spectrum of large river 

systems of the river) (Enders et al., 2009; Yarnell et al., 2012) and physical 

conditions (e.g temperature, turbidity, substrate, seasonal variation…) (Ruetz and 

Jennings, 2000; Li et al., 2011b) are important factors, which should be taken into 

account. The study of complex systems thus requires a multi-scale approach, in 

which it is needed to consider the interactions occurring across many scales of 

space, time and organization (Parrott, 2011). Modelers should consider all relevant 

disturbances and predict various types of impacts before presenting the model output 

of ecological impact assessment of dams. Nevertheless, stakeholders involved in 

decision-making processes (e.g. policy makers, water managers, modelers…) need 

to be aware of the uncertainties of the model outputs and the risks/impacts these 

entail for considered actions. 

Most of the models to study hydropower dam impacts were developed for 

particular organisms or a specific location. The habitat suitability criteria used, might 

be suitable for a specific case, but it may not be useful for other locations; therefore, 

it is needed to validate the habitat suitability model on independent data originating 

from different geographic locations (Yarnell et al., 2012). For instance, models 

developed to assess the impact of small hydropower dams in mountainous streams 

might not be applicable to assess the impact on large lowland rivers (Li et al., 2009). 

As a result, the choices of input variables and derived ecological indicators need 

critical review and validation by local experts before being reliable for model 

development. An assessment of hydropower dams based on models must be made 

with great care, because models cannot always separate the dam impact from other 

anthropogenic influences (de Merona et al., 2005).  
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2.4 Conclusions 

Hydropower dams affect the hydromorphological, physical-chemical and 

biological conditions in rivers. The models applied to hydropower dam impact 

assessment have been used to assess an expanding range of impacts at various 

spatial and temporal scales. Existing ecological models provide a basis to assess the 

impact of changing hydrological regimes and water quality on the habitat suitability of 

fish, macroinvertebrates and algae. Empirical data and knowledge have been used 

as input variables for hydrodynamic models, water quality models, food web models, 

habitat suitability models and integrated models to explore the change of water 

quality and habitat suitability at various scales. Although a few models combine two 

or more model types, no integrated model has been proposed so far. Given their 

numerous strengths and opportunities, using models for hydropower dam impact 

assessment deserves further exploration and optimisation, especially, for the future 

the potential to use integrated models and to improve data collection to reduce the 

disadvantages of existing models or modeling techniques in hydropower dam impact 

assessment.  
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Chapter 3: Materials and methods 
 
 
 
Abstract 
 
This chapter provides an overview of the two river basins in which the data were 

collected. The Guayas River basin is located in the central-western part of Ecuador 

and is the largest watershed in the Guayas province. The Portoviejo River basin is 

located along the coast in the western part of Ecuador. Both river basins are affected 

by the installation of hydropower dams, but also water pollution is in general present 

in different locations. Also the monitoring methods and the assessment methods are 

described, in particular related to the hydromorphological inventarisation, the 

physical-chemical measurements as well as the invertebrates and water hyacinth 

inventarisations. The last part deals with the assessment and modeling methods. 

Both Generalized Linear Models (GLMs) and Threshold Indicator Taxa ANalysis 

(TITAN) were applied. The latter was in particular used to detect changes in taxa 

distributions along an environmental gradient over space or time. 
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3.1 Study areas 

3.1.1 The Guayas River basin 

The Guayas River basin, with a total area of 34,000 km2, is located in the 

central-western part of Ecuador and is the largest watershed in the Guayas province 

(Arias-Hidalgo, 2012). The Eastern catchment boundary of the basin is the Andes. 

The Guayas basin consists of two large tributaries being the Daule River and the 

Babahoyo River (Arias-Hidalgo, 2012). The Guayas River is the mouth of the Guayas 

river basin, which is formed by the confluence of two tributaries (Fig. 3.4). The mouth 

of the basin is situated in near Guayaquil, a city which is located along the 

Ecuadorian coast, where the river discharges into the Pacific Ocean at the Gulf of 

Guayaquil.  

The Daule-Peripa hydro-electrical project is located in the upper catchment of 

the Guayas river basin. The Daule-Peripa reservoir was constructed in 1987 and 

receives water from the Daule and Peripa Rivers (Gelati et al., 2011) and is used for 

hydropower generation, irrigation, flood protection and drinking water (Arriaga, 1989). 

The reservoir has a water storage capacity of 6,000 million m3, a maximum surface 

area of approximately 30,000 ha and the water depth fluctuates between 70 and 85 

m due to the operation of the dam (CELEC, 2013).  

The seasons are well defined in Ecuador, in the particular basins: the rainfall is 

concentrated in the wet season (December-April) and the dry season months are 

May-November (Camposano, 2004). The mean temperature and annual rainfall of 

the region vary between 22 ºC and 27 ºC and 300-4000 mm, respectively 

(Madonado, 2011).  
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Figure 3.1 Picture taken at the Daule-Peripa hydroelectric reseroir 

3.1.2 The Portoviejo River basin 

Portoviejo is the capital of the Province of Manabí (Ecuador) and is situated 30 

km from the Pacific coast. The Portoviejo River basin, with a total area of 2,231 km2 

and 132 km long (Pérez, 2003b), is located along the coast in the western part of 

Ecuador (U.S. Army Corps of Engineers, 1998). It discharges water into the Pacific 

Ocean at La Boca. The river provides water to 700,000 inhabitants for domestic use, 

agriculture, recreation and other purposes (Pérez, 2003b). The Portoviejo River basin 

is one of the most productive farming regions in Ecuador, with production of bananas, 

mangoes and other tropical fruits, tomatoes, onions, peppers, coffee, and especially 

cattle and fish (http://www.gutenberg.us, 2016). The Poza Honda dam is located 30 

kilometer upstream from the city of Portoviejo and started operating in 1971 (Fig. 

3.2). The Poza Honda reservoir has a water storage capacity of 100 million m3 (U.S. 

Army Corps of Engineers, 1998), a maximum surface area of approximately 607,5 ha 

and a maximum depth of 37.3 m. The Poza Honda reservoir faces eutrophication 

problems due to intensive agriculture and livestock (Perez, 2004) in the surrounding 

area.  
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Figure 3.2 Picture taken at the tailrace of the Poza Honda hydropower dam. 

Portoviejo has a low latitude and a semi-arid hot climate. The seasons are well 

defined; the rainfall is concentrated in the period December-May, in which 90% of the 

annual rainfall occurs and the dry season months are June-November. The mean 

temperature and monthly rainfall of the region vary between 24ºC and 29ºC and 2 to 

115 mm, respectively (http://www.portoviejo.climatemps.com). Land use in the basin 

consists mostly of arable land, plantations (onions, bananas, and other tropical fruits), 

urban and semi-urban areas.  

3.2 Data collection 

During designing the sampling campaign, several aspects were considered, 

which included (1) appropriate number of sampling sizes, (2) including environmental 

information in the study areas and (3) applying random sampling. Seasonality was 

considered when designing the sampling campaign; we assumed the worst-case 

conditions in terms of water quality (e.g. conductivity) during the dry season (low 

dilution due to rain), possibly indicating severe water quality problems. In that way, a 

single observation of maroinvertebrates is suitable for the ecological water quality 

assessment purpose. Environmental variables that are expected to have a strong 

effect on macroinvertebrates were selected. It was expected that the ecological water 

quality would decrease from source to mouth due to increasing human pressure. 
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Therefore, samples should be taken at disturbance sites and the less human impacts 

sites (e.g in the mountainous area/upstream reaches).  

Hydropower dam was only one of the major factors that affect the river water 

quality. In both Guayas river basin and Portoviejo river basin, the main identified 

sources of disturbance are damming, residential areas, wastewater discharges and 

agricultural activities (Fig. 3.3). Therefore, the standard assessment approach was 

considered and the following selection criteria were applied: 

- including different impacts and various levels of water quality; 

- including sites from upstream of the dam, reservoir and downstream of the dam; 

- distributing sites over the entire basin; 

- being relatively easily accessible. 

 

 
 
Figure 3.3 Major disturbances observed in the Ecuadorian rivers: (A) human 
disturbances, (B) urbanization and land use change, (C) agriculture activities, (D) 
domestic wastewater discharge. 

3.2.1 Data collection in the Guayas River basin 

In total, 120 sampling sites were selected in the Guayas River basin, of which 

32 were located in the Daule-Peripa reservoir (detailed descriptions in Fig. 3.5 and 

Fig. 3.6) and the remaining 88 locations were located along the rivers within the 

Guayas River basin, including upstream and downstream locations (Fig. 3.4). The 
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sites were selected along the Daule River, the Babahoyo River and at the main 

tributaries with an expected gradient of disturbance from upstream (mountainous 

areas with fewer human impacts) to downstream (lowland with more human impacts). 

 

 
 

Figure 3.4 Map of the study area in the Guayas river basin (numbers indicate of 
sampling sites) 
 

The water samples were collected in the dry season of 2013. Temperature 

(°C), pH, Dissolved Oxygen (DO) (mg/L), Chlorophyll a (µg/L), Chloride (mg/L), 

Turbidity (FTU), Conductivity (µS/cm) and Total Dissolved Solids (TDS) (mg/L) were 

measured at the surface water layer with a multiprobe (model YSI 6600 V2 and YSI 
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6600 V1, YSI manufacturer). Moreover, water samples from each sampling location 

were collected and stored in plastic bottles (1l), kept cool and dark immediately after 

collection and transported to the laboratory for further analysis. At the laboratory, the 

water samples were kept in a refrigerator (cool and dark) for nutrient analysis. In the 

laboratory, the Hach Lange DR 3900 photometric method was used to determine 

chemical oxygen demand (COD) (mg/L), total phosphorus (TP) (mg/L), ammonium 

(NH4
+-N)(mg/L), nitrate (NO3

- -N)(mg/L), nitrite (NO2
- -N)(mg/L) and total nitrogen (TN) 

(mg/L). However, the values of all variables analysed at the laboratory except for 

ammonium were below the detection limit of the cuvette test on Hach Lange DR 

3900. Consequently, those variables were not included in the analysis. The lowest 

detection limit of COD was 5 mg/L, TN was 1 mg/L, TP was 0.5 mg/L, NO3
- -N was 

0.23 mg/L, NO2
- -N was 0.015 mg/L and NH4

+-N was 0.015 mg/L. 

The elevation of sampling sites was measured using GPS (Global Positioning 

System) equipment (Garmin GPS). Surface water velocity was measured using the 

techniques for estimating stream velocity described in United States Environmental 

Protection Agency (1997). 

In the Daule-Peripa reservoir, 32 samples were taken, of which eleven 

samples located at non-vegetated sites and 21 sites were characterised by 

vegetation cover (the presence of waterhyacinth) (Fig. 3.3 and Fig. 3.4). At 21 

vegetated sites, water hyacinth was the only floating macrophyte occurring. Only at 

one vegetated site a native emergent plant species (Sagittaria sp) was recorded at 

very low abundance. The percentage of water hyacinth cover was visually estimated 

from the bank along a transect of 100m; the location where water samples were 

taken was considered as the centre of the transect. The vegetation cover classes 

were divided according to the Braun-Blanquet cover/abundance scale: 0 = non-

vegetated/absent, 1 = 1-5% (rare), 2 = 5-25% (occasional), 3 = 25-50% (frequent), 4 

= 50-75% (common) and 5 = 75-100% (abundant). Classes rather than exact values 

for cover of water hyacinth were used as this yields more reliable measures 

(Ellenberg and Mueller-Dombois, 1974). Based on the vegetation cover, sampling 

sites were classified as follows: class 0: 11 sites, class 1: 5 sites, class 2: 0 sites, 

class 3: 2 sites, class 4: 3 sites and class 5: 11 sites. 
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Figure 3.5 Map of study area with indication of the sampling sites and the presence 

(blue) or absence (red) of water hyacinth in the Daule-Peripa reservoir, Ecuador. 

 

 
 

Figure 3.6 Picture taken at the Daule-Peripa dam of a site completely covered by 

water hyacinth. 
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3.2.2 Data collection in the Portoviejo River basin 

In the Portoviejo River basin, 31 sampling sites were taken in the dry season 

of 2015 (Fig 3.7). Eighteen sites were taken starting from 10 km upstream of 

Portoviejo city to the mouth of the river. These sites were considered as more 

impacted sites. Other13 sites located from 20 km upstream of Portoviejo city to the 

source of the river. These sites were chosen as less impacted sites and serve as 

reference locations.  

 
 
Figure 3.7 Map of the study area of the Portoviejo River with indication of the 

sampling sites 

Values of temperature (°C), pH, dissolved oxygen (DO) (mg/l), chlorophyll a 

(µg/l), turbidity (FTU) and electrical conductivity (EC) (µS/cm) were measured at the 

water surface with a multiprobe (model YSI 6600 V2, YSI manufacturer). Moreover, 

water samples from each sampling location were collected and stored in plastic 

bottles at each sampling site (one liter), kept cool and in the dark immediately after 

collection and transported to the laboratory for further analysis. At the laboratory, the 

water samples were kept in a refrigerator (cool and dark) for nutrient analysis. The 
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Hach-Lange DR 3900 spectrophotometer kits were used to determine biological 

oxygen demand (BOD5) (mg/l), total phosphorus (TP) (mg/L), orthophosphate 

(oPO4
3-) (mg/L), ammonium (mg/L), nitrate (NO3

-) (mg/L), nitrite (NO2
-) (mg/L), total 

nitrogen (TN) (mg/L) and total organic carbon (TOC) (mg/L). 

The elevation of sampling sites was measured using GPS (Global Positioning 

System) equipment (Garmin GPS). Stream velocity was measured with a handheld 

flow meter (HFA, Höntzsch, Waiblingen, Germany). The surrounding land use was 

determined and divided into five classes (shrubs/grasses, orchard, residential, arable 

land and forest). The type of dominant substrate was visually assessed at each site 

and divided into five classes (silt or clay, sand, gravel, cobble and boulder). The 

sludge layer was classified into absent, <5cm, 5-20 cm and > 20cm. Six classes of 

the pool-riffle pattern were distinguished (absent due to structural changes, absent, 

poorly developed, moderately developed, well developed and pristine). The hydro-

morphological characteristics of the sampling sites were determined based on field 

inspection and completed per sampling location by a standard field protocol. The field 

protocol was modified from the Australian River Assessment System (AUSRIVAS) 

physical assessment protocol (AUSRIVAS, 1994) and the United Kingdom and Isle of 

Man River Habitat Quality (Raven et al., 1998) (Appendix 3.1).  

3.2.3 Macroinvertebrate community monitoring and analysis 

Macroinvertebrates were collected with a standard hand net consisting of a 

metal frame holding a conical net (mesh-size 300 µm) at the same sites where water 

quality was measured. Macroinvertebrates were collected during five minutes active 

sampling, including all different microhabitats present at the sampling site (Gabriels 

et al., 2010). At sampling sites in the Daule-Peripa reservoir, at the non-vegetated 

sites samples were collected by vigorously sweeping the net along the reservoir 

margins and by disturbing the bank substratum at wading depth. For those sites that 

contained macrophytes, macroinvertebrates were obtained by submerging the hand 

net under the roots of the macrophytes andby disturbing the stalks and leaves. 

Afterwards, the net was quickly and carefully lifted out of the water to prevent the 

escape of mobileorganisms. Macroinvertebrates attached to the roots of water 

hyacinth were manually collected. Similarly, macroinvertebrates were collected from 
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stones and other substrates at both vegetated and non-vegetated sites (Gabriels et 

al., 2010). 

Samples collected were sieved (500 µm mesh size) in the laboratory and 

sorted in white trays. Macroinvertebrates from each location were placed in separate 

small plastic vials containing 80% ethanol for preservation. After sorting, organisms 

were identified and counted under a stereomicroscope.  

Macroinvertebrates were identified to family level using the identification keys 

developed by Domínguez and Fernández (2009) for three reasons. Firstly, previous 

research has shown that using biotic indices based on family level provides sufficient 

information to assess the biological water quality (Dominguez-Granda et al., 2011b; 

Mereta et al., 2013; Everaert et al., 2014). Secondly, family-level identifications have 

been found as useful as species-level for bioassessment (Marchant et al., 2006). 

Thirdly, because of practical implications we could only identify up to family level as 

there are no detailed keys available to lower taxonomic levels.  

3.3 Ecological modeling and assessment methods 

3.3.1 Generalized linear models (GLMs) 

Generalized linear models (GLMs) was formally introduced by Nelder 

and Wedderburn (1972). GLMs are mathematical extensions of linear models that do 

not force data into unnatural scales, as thus GLM allows for non-linearity and non-

constant variance structures in the data (Hastie and Tibshirani, 1990). GLMs are 

based on an assumed relationship (link function) between the mean of the response 

variable and the linear combination of the explanatory variables. Data may be 

assumed to be from several families of probability distributions, including the normal, 

binomial, Poisson, negative binomial, or gamma distribution, many of which better fit 

the non-normal error structures of most ecological data (Guisan et al., 2002). Thus, 

GLMs are more flexible and better suited for analyzing ecological relationships, which 

can be poorly represented by classical Gaussian distributions (Guisan et al., 2002).  

GLMs have been broadly applied in ecology. Some general uses of GLMs in 

studies of species distributions are discussed in Guisan et al. (2002). The overview of 

theory for the applications of GLMs in fisheries research can be found in (Venables 

and Dichmont, 2004). Some specific examples includes the use of GLMs to predict 
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the potential distribution of plant species (Guisan et al., 1998), of fish (Fukushima et 

al., 2007) and of bird habitat suitability (Brotons et al., 2004). In this PhD study, GLM 

was applied to investigate which variables determined the occurrence of water 

hyacinth in the Daule-Peripa reservoir. 

3.3.2 Threshold Indicator Taxa ANalysis (TITAN) 

Baker and King (2010) introduced a technique called Threshold Indicator Taxa 

ANalysis (TITAN) to detect changes in taxa distributions along an environmental 

gradient over space or time. TITAN is a non-parametric technique, which uses 

indicator species scores to integrate occurrence, abundance and directionality of taxa 

responses. TITAN was used to analyze the ecological data (community composition 

and abundance at each sampling location) along each continuous predictor variable 

gradient. TITAN partitioned sample units into two groups at the value of a predictor 

variable that maximizes the association of each taxon with either the negative or 

positive side of the partition. The association is measured by indicator values 

(IndVal), which are calculated for all species for all possible change points along the 

environmental gradient, with permutation tests to assess the uncertainty in these 

scores. TITAN distinguishes negative (z-) (decreasing frequencies and abundance at 

the changing point) and positive (z+) (increasing frequencies and abundance at the 

changing point) taxa responses. The medians of multiple taxa changes were defined 

as entire community thresholds. Two important diagnostic indices measuring the 

quality of the indicator response for any taxon which are obtained from bootstrap 

resampling are purity and reliability. ‘Purity’ is the proportion of change-point 

response directions (positive or negative) among bootstrap replicates that agree with 

the observed response. The ‘pure indicators’ are consistently assigned the same 

response direction, regardless of abundance and frequency distributions generated 

by resampling the original data. ‘Reliability’ is estimated by the proportion of 

bootstrap change points whose IndVal scores consistently result in p-values below 

one or more user-determined probability levels. Permuted IndVal scores are 

standardized as z scores and summed for positive [sum(z+)] and negative value 

[sum(z−)] responses for each possible change point. TITAN was performed in the 

package TITAN 2 (Baker et al., 2015) in R software (version R.3.2.3). Only taxa 

occurring in at least five sites were included in TITAN (Baker et al., 2015). Taxa 
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names which have more than eight characters were coded as eight character 

abbreviations of scientific names. Each environmental variable was used as a 

predictor in separate models. Abundance data was not transformed because 

transformation is unnecessary in TITAN 2. In this study, 1000 repetitions 

(Bootstrapping) was implemented to estimate uncertainties around change point 

locations and response direction (positive or negative) of threshold indicator taxa. 

1000 permutations were used to determine species specific z scores, as this 

calculation is based on a small dataset, thus a higher number of permutations are 

recommended for more precise z scores (Baker et al., 2015). Details of the TITAN 

method can be found in Baker and King (2010), King and Baker (2014) and Baker et 

al. (2015).  

There is an increasing interest in the application of ecological thresholds for 

natural resources management (King and Baker, 2010). In previous studies, TITAN 

has been used to detect thresholds for benthic invertebrates along a gradient of 

chloride concentrations (Wallace and Biastoch, 2016), percent glacier cover and 

percent melt water in the catchment (Khamis et al., 2011), percent vegetation loss 

(Rodrigues et al., 2016) and percent impervious cover (King et al., 2016). Other 

studies used TITAN to identify thresholds for benthic invertebrates and diatom 

communities along a gradient of salinity (Schroder et al., 2015). Additionally, some 

studies used TITAN to determine the response of the macroinvertebrate communities 

to total phosphorus (Baker and King, 2010) or the response of the phytoplankton 

communities to nutrient gradients (e.g. total phosphorus (TP) (Smuckera et al., 2013; 

Cao et al., 2016), total nitrogen (TN) and TN:TP ratios (Cao et al., 2016). Berger et 

al. (2016) used TITAN to look for the relationships between benthic invertebrates and 

various chemical variables related to pesticides, wastewater and fossil fuel-

associated chemicals. Other TITAN applications include response analyses of 

macroinvertebrate, fish, bird, diatom and wetland vegetation communities to changes 

of the landscape (Kovalenko et al., 2014). Species-specific thresholds provide an 

indication of whether and when species are likely to be affected by changing 

environmental conditions (Schroder et al., 2015). TITAN reveals the ecological 

community threshold at which the abundance or frequency of taxa will quickly 

increase or decrease along an environmental gradient (King and Baker, 2014). 

Therefore, from a conservation point of view, it is important to understand which taxa 

are affected by environmental stressors and how threshold values for river biota can 
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be identified. Information about species and community thresholds is useful to further 

delineate the conservation value of a sensitive species or to predict the changes of 

community composition (Schroder et al., 2015). TITAN is able to inform managers 

about critical levels of anthropogenic changes that are related to rapid changes in 

ecological communities (King and Baker, 2014). The TITAN results have valuable 

applications for detecting reference condition boundaries and selecting areas at the 

greatest risk of significant change (Kovalenko et al., 2014). This information could be 

used for aquatic conservation, biological invasions, ecosystem restoration and 

natural resource management (King and Baker, 2010). 

In this study, TITAN was used to detect the responses of macroinvertebrate 

community to the changes of environmental gradients in both Guays River basin and 

Portoviejo River basin.  

3.4 Assessment approaches based on macroinvertebrates 

The use of macroinvertebrates as bio-indicators for freshwater quality has a 

long history. There are several assessment methods based on macroinvertebrates 

have been developed worldwide for stream assessment. Overviews of the existing 

assessment approaches can be found in De Pauw et al. (2006). In this part, a brief 

overview of the three approaches used in this study is presented.  

3.4.1 Diversity approach 

The diversity approach uses three components of community structure, 

namely, richness (number of species present), evenness (uniformity in the 

distribution of individuals among the species) and abundance (total number of 

organisms present) to describe the response of a community to the quality of its 

environment (Metcalfe, 1989). The assumption is that undisturbed environments are 

characterized by a high diversity or richness, an even distribution of individuals 

among the species, and moderate to high counts of individuals. In contrast, the 

disturbance of the water ecosystem leads to a reduction in diversity. The advantages 

and limitations of diversity approach have been reviewed by Metcalfe (1989): The 

advantages include their easiness to use and calculate, applicability to all kinds of 

watercourse with no geographical limitations. Moreover, diversity indices are strictly 

quantitative, dimensionless and rely on statistic analysis and are best suited for 
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comparative purposes (Metcalfe, 1989). In addition, diversity indices are independent 

of sample size and are applied equally to measures of biomass (Metcalfe, 1989). 

However, diversity index values are unable to indicate if the community consists of 

pollution-tolerant or pollution-intolerant species. Furthermore, diversity index values 

vary greatly since they depend on the sampling method and the nature of the study 

site (Metcalfe, 1989). In this PhD study, several diversity indices have been 

calculated, include, Shannon-Wiener Diversity Index (Shannon and Wiener, 1949), 

Evenness index (Menhinick, 1964), Simpson’s diversity index (Simpson, 1949) and 

Margalef index (Margalef, 1968).  

3.4.2 Biotic approach 

The biotic approach, which is combining a quantatitive measure of diversity 

with the qualitative information on the ecological sensitivities of individual species or 

higher taxa or groups into a single index or score. The principle of biotic approach is 

that macroinvertebrate groups disappear as pollution increases and that the number 

of taxonomic groups is reduced as pollution increases (Mackenthun, 1969). The 

advantages of biotic approach are that only qualitative sampling is required and that 

identification is mostly at family or genus level and that there is no need to count 

abundances per taxon (De Pauw et al., 2006). However, the remaining constraints 

are determining representative reference communities to which the investigated 

stations can be compared and optimising biological assessment through regional 

adaptations (De Pauw et al., 2006). 

The Biological Monitoring Working Party (BMWP) (Armitage et al., 1983) is the 

first biotic index developed for the assessment of running water, which is the water 

quality index used in the United Kingdom. Based on a biotic approach and 

predominantly adaptations of the English BMWP index, several bioassessment 

methods have been developed for tropical regions. Examples includes the BMWP 

was adapted for Colombia (Pérez, 2003a), BMWP adapted for Costa Rica (Astorga 

et al., 1997) and BMWP adapted for Thailand (Mustow, 2002). Colombia is the 

country which is closest to Ecuador and having similar environmental conditions and 

the fauna to Ecuador (Dominguez-Granda et al., 2011b). As Ecuador does not have 

its own water quality index but Colombia has biological indices. Therefore, the 

BMWP-Colombia was considered as appropriate index for Ecuador.  
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In this PhD study, the assessment of the water quality was based on the biotic 

macroinvertebrate index BMWP-Colombia (Biological Monitoring Working Party-

Colombia). The BMWP-Colombia index was calculated according to the modified 

method proposed by Zuniga and Cardona (2009). The BMWP-Colombia was 

calculated per site based on a summation of all tolerance scores of the 

macroinvertebrate taxa present. Each macroinvertebrate taxon received a score that 

reflects its susceptibility to pollution, where pollution-intolerant taxa receive high 

scores, whereas pollution-tolerant taxa were given low scores (Zuniga and Cardona, 

2009). The total score for each site indicated the water quality, with categories 

ranging from very bad (0–15), bad (16–35), poor (36–60), moderate (61–100) to 

good (>100). 

3.4.3 Multivariate approach 

Several multivariate techniques have been used in water quality assessment 

using macroinvertebrates, of those classification, ordination, and discriminant 

analysis are some of the most widely used techniques (Norris and Georges, 1993). 

The basis for the multivariate approach is the similarity index (Sandin et al., 2001). 

The most commonly used similarity index is the Jaccard index, which expresses the 

percentage of species shared between two sites (Sandin et al., 2001). Other 

examples are the Bray–Curtis dissimilarity index (Bray and Curtis, 1957), and the 

Euclidean or ecological distance (Williams, 1971). The similarity indices can be used 

to calculate the distance of the biological assemblage at each sampled site from the 

median of all reference communities (Sandin et al., 2001). Multivariate methods allow 

the correct selection of metrics for multimetric systems, avoiding the use of redundant 

variables. In this sduty, the Non-metric Multidimensional Scaling (NMDS), Detrended 

Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) 

ANOSIM (ANalysis Of SIMilarities) (based on the Bray-Curtis similarity), A SIMPER 

(SIMilarity PERcentages) were used.  
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Chapter 4: Habitat suitability of the invasive water hyacinth 
and its relation to water quality and macroinvertebrate 
diversity in a tropical reservoir 
 
Abstract 
 

In this chapter, we assessed the relationship between the occurrence of the 

invasive water hyacinth (Eichhornia crassipes) and water quality properties as well as 

macroinvertebrate diversity in a tropical reservoir, situated in western Ecuador. 

Macroinvertebrates and physico-chemical water quality variables were sampled at 32 

locations (during the dry season of 2013) in both sites covered and non-covered by 

water hyacinth in the Daule-Peripa reservoir. The results indicated that, in terms of 

water quality, only turbidity was significantly different between sampling sites with 

and without water hyacinth (Mann-Whitney U-test, p<0.01). Higher turbidity was 

observed at non-vegetated sites. The habitat suitability model showed that water 

hyacinth was present at sites with a low turbidity but this model is merely generated 

based on ‘correlations’. The cause-effect relationships between the presences of 

water hyacinth and other environmental variables was not investigated. The 

Biological Monitoring Working Party-Colombia score and the Margalef diversity index 

were significantly higher (Mann-Whitney U-test, p<0.01) at sampling sites where 

water hyacinth was present compared to water hyacinth absent sites. However, there 

were no significant differences in the Shannon–Wiener index, Evenness index and 

Simpson index between the sampling sites with and without water hyacinth. Our 

results suggest that water hyacinth cover was an important variable affecting the 

diversity of macroinvertebrates in the Daule-Peripa reservoir, with intermediate levels 

of water hyacinth cover having a positive effect on the diversity of 

macroinvertebrates. Information on the habitat suitability of water hyacinth and its 

effect on the physico-chemical water quality and the macroinvertebrate community 

are essential to develop conservation and management programs for large tropical 

reservoirs such as the Daule-Peripa reservoir and the Guayas river basin, where 

water resources are being at high risk due to expansion of agricultural and industrial 

development activities.  



Chapter 4: Case study: Daule-Peripa reservoir 
 

 57  

4.1 Introduction  
 

Alien invasive plant species, mainly of terrestrial habitats, have recently 

received much attention due to their direct or indirect impact on ecosystem structure 

and functioning (Vilà et al., 2011). The impact of plant invasions in aquatic 

ecosystems has received less attention. Several authors reported that invasive plant 

species can cause serious ecological and economic impacts such as loss of native 

species diversity, hybridization with native species, changes in ecosystem processes 

and functioning, and an increase of pests and diseases (Rodriguez, 2006; Stiers et 

al., 2011; Walsh et al., 2012). Alien invasive plant species may alter the available 

structure in aquatic habitats by creating a shift to a homogeneous habitat, there by 

negatively affecting biological communities (Theel et al., 2008; Schultz and Dibble, 

2012). Indeed, simplification of the macrophyte growth form seems to negatively 

affect the abundance of biotic communities such as macroinvertebrates (Walker et 

al., 2013). Schultz et al. (2012) found that mechanisms underlying the impact of 

aquatic invasive plants are not very different from native aquatic plants species. They 

identified three invasive traits largely responsible for negative effects on biological 

communities: increased growth rate, allelopathic chemical production and phenotypic 

plasticity. Despite the negative impact that is often observed, positive relationships 

between invasion by alien macrophytes and macroinvertebrate diversity have been 

observed as well (e.g. Brendonck et al., 2003; Villamagna, 2009).  

Water hyacinth Eichhornia crassipes (Mart.) Solms is one of the most widely 

spread invasive aquatic macrophytes in the world (Villamagna and Murphy, 2010). 

The species has its origin in the Amazon basin and in the vast wetlands of the 

Pantanal in western Brazil (Parolin et al., 2012). Water hyacinth is a free floating 

aquatic plant, that can spread fast and has a strong growth (Malik, 2007). According 

to Malik (2007), water hyacinth can double its size (area covered) in five days and a 

mat of medium sized plants may contain two million plants per hectare that weigh 

270 to 400 tons. Under favorable conditions the biomass of water hyacinth can be 

doubled within only 12 days (Parolin et al., 2012). Nowadays, water hyacinth is 

distributed worldwide (Parolin et al., 2012) and the International Union for 

Conservation of Nature listed the species as one of the 100 most harmful invasive 

species (Lowe S. et al., 2000).  
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Water hyacinth tolerates a wide range of nutrients, temperature and pH levels 

and grows in a wide variety of ecosystem types (Malik, 2007). Environmental factors 

such as temperature, pH, solar radiation, and salinity of the water can influence the 

growth and performance of water hyacinth (Gupta et al., 2012). The optimum 

conditions for growth of water hyacinth are a pH between 6 to 8 (Malik, 2007) anda 

temperature that ranges between 28 and 30°C (Gupta et al., 2012). A study by 

Wilson et al. (2005) showed that nutrient concentrations and temperature are two of 

the most important factors determining water hyacinth growth and reproduction. 

Salinity on the other hand can cause major constraints for water hyacinth growth, 

since water hyacinth can not survive at a salinity higher than 2‰ (Olivares and 

Colonnello, 2000). 

Water hyacinth can have an effect on the physical and chemical composition 

of water. The introduction of water hyacinth can cause a change in water clarity, 

hydrological regime, dissolved oxygen concentration, nutrient concentrations and 

other pollutants in the water body (Villamagna and Murphy, 2010). Negative as well 

as positive effects have been recorded. Water hyacinth is known to reduce dissolved 

oxygen concentrations because the mats prevent the transfer of oxygen from the air 

to the water surface, while the plant does not release oxygen into the water (Meerhoff 

et al., 2003). Water hyacinth has the potential to stabilize pH and temperature and 

prevent stratification in lotic systems (Giraldo and Garzon, 2002) and in this way 

change ecosystem structure and functioning. Rommens et al. (2003) and Sooknah 

and Wilkie (2004) reported that water hyacinth has the capacity to absorb nutrients 

(e.g. nitrate, ammonium, phosphate) from the water column affecting phytoplankton 

and zooplankton abundance. 

Water hyacinth plays a important role for phytoplankton, zooplankton and fish 

in freshwater ecosystems by providing habitat complexity, shelter and feeding 

grounds (Brendonck et al., 2003; Meerhoff et al., 2003; Villamagna and Murphy, 

2010). According to de Marco et al. (2001) and Brendonck et al. (2003) the roots and 

the leaves of water hyacinth offer an important substratum and habitat for 

macroinvertebrate colonisation. Indeed, a positive relationship between 

macroinvertebrate diversity and the cover of water hyacinth has been found 

(Schramm et al., 1987; Kouame et al., 2011). Kouame et al. (2011) found a high 

diversity and density of macroinvertebrate assemblages associated with root masses 
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of water hyacinth in Lake Taabo (Ivory Coast). They ascribed this to improvements in 

physico-chemical properties (e.g. conductivity, nutrients, temperature, turbidity), 

which positively influenced the macroinvertebrate community. Moreover, Bailey and 

Litterick (1993) also found a positive effect of water hyacinth on dissolved oxygen 

and a variety of potential food resources for aquatic invertebrates in water 

hyacinth root-mats resulting in higher abundances of macroinvertebrates. However, 

water hyacinth limits the development of phytoplankton via preventing light 

penetration and absorbing nutrients which reduces phytoplankton and leads to a 

decrease in zooplankton abundance (Villamagna and Murphy, 2010). In addition, 

water hyacinth causes significant ecological alterations in the invaded community by 

modifying the habitat, disrupting the food chain and nutrient cycling, and 

consequently changing invertebrate and fish assemblage structure and finally the 

entire food web (Brendonck et al., 2003; Toft et al., 2003). Hence, water hyacinth 

influences species richness, diversity and composition of invaded communities and 

causes huge impacts to ecosystems structure and functioning (Villamagna and 

Murphy, 2010).  

Next to its ecological impact, water hyacinth has attracted global attention due 

to serious problems caused to power plants, navigation, irrigation andrecreation 

(Epstein, 1998; Lu et al., 2007; Malik, 2007). According to Malik (2007), many large 

hydropower plants have to spend considerable time and money in clearing water 

hyacinth in order to prevent it from entering in the turbines and causing damage and 

power interruptions. In China, water hyacinth is reported to clog lakes and rivers, 

impede water flows, obstruct navigation, and damage irrigation and hydroelectricity 

facilities, thus the total cost for water hyacinth control is estimated to be more than 

$12.35 million each year (Lu et al., 2007). Indeed, the invasion of water hyacinth 

causes huge ecological and economic consequences worldwide (Lu et al., 2007). 

However, their effects to human society vary according to the magnitude of invasion, 

the ecosystem services of the water body and the response of water hyacinth to 

management efforts (Villamagna and Murphy, 2010). 

There have been several studies carried out on the effect of water hyacinth on 

water quality and aquatic diversity, the invasion mechanism and the utilization in 

temperate regions (Fan et al., 2013). However, until now the habitat suitability of 

water hyacinth and the relationship between water hyacinth and ecological 
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communities largely remains understudied in tropical reservoirs. Therefore, the aim of 

this chapter was to determine the habitat suitability of water hyacinth and to assess 

the effect of water hyacinth cover on the chemical water quality and on the 

macroinvertebrate community in a tropical reservoir. This information is essential to 

develop conservation and management programs for tropical reservoirs and 

specifically the Guayas river basin, situated in western Ecuador, where water 

resources are being at high risk due to expansion of agricultural and industrial 

development activities.  

4.2 Data analysis  

In this chapter, we used the data from 32 sampling sites in the Daule-Peripa 

reservoir for analysis. The Shannon-Wiener Diversity Index (Shannon and Wiener, 

1949), Evenness index (Menhinick, 1964), Simpson’s diversity index (Simpson, 1949) 

and Margalef index (Margalef, 1968) were calculated to assess the taxa evenness 

and taxa richness for each sampling site. A combination of several diversity and 

biotic indices was calculated in order to take advantages of the strengths of each and 

develop a more complete understanding of community structure (Hooper et al., 

2005). 

Generalized linear models were developed in R software (version 3.0.3) (R 

Core Team, 2015), to investigate which variables determined the occurrence of water 

hyacinth. Prior to developing the GLM, correlations and variance inflation factors 

(VIFs) between the predictor variables were examined, in order to avoid problems of 

collinearity (Zuur et al., 2009). All variables with a correlation of 0.7 or higher were 

removed. The presence or absence of water hyacinth was the predicted variable, 

whereas temperature, conductivity, chlorophyll a, oxygen saturation and turbidity 

were retained as predictor variables. We started fitting the full model, i.e. including all 

candidate predictor variables. Next, a stepwise backward selection procedure was 

followed based on the Akaike Information Criterion (AIC), where the model with the 

lowest AIC value was retained as the final model. Relations between the residuals 

(the differences between observations and predictions by the retained model) and 

predictor variables were evaluated and the normality of the residuals was tested 

using a QQ-plot (probability plot). Retained models were only considered reliable if 
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no relations between the residuals and the predictor variables were visually observed 

and residuals were normally distributed (Zuur et al., 2009); the retained models were 

rejected otherwise. 

Non-parametric tests were performed, since the data were non-normal 

distributed (tested with Shapiro-Wilk Normality test). A Mann-Whitney U-test was 

used to compare physico-chemical variables between sampling sites with and without 

water hyacinth. Spearman’s rank correlation was used to explore the relationships 

between percentage water hyacinth cover and macroinvertebrate metrics. A Kruskal-

Wallis ANalysis Of VAriance followed by post-hoc multiple comparisons was 

performed to test whether significant differences in ecological indices existed 

between different classes of vegetation cover. Species data were log(x+1) 

transformed before multivariate analysis to ensure data normality (Clarke, 1993). 

Non-metric Multidimensional Scaling (NMDS) was used to visualize the similarity of 

macroinvertebrate communities between habitatstypesonto two-dimensional charts. 

ANOSIM (ANalysis Of SIMilarities) was used for testing the similarities (based on the 

Bray-Curtis similarity) of macroinvertebrate community composition between sites 

with and without water hyacinth. A SIMPER (SIMilarity PERcentages) analysis was 

applied for identifying which species primarily contributedto the observed differences 

in macroinvertebrate assemblages between habitat types. All multivariate analyses 

were performed using the PRIMER software package (Clarke, 1993).  

4.3 Results 

4.3.1 Physico-chemical water quality 

Table 4.1 shows the water quality results measured at the Daule-Peripa reservoir. 

Based on a Mann-Whitney U-test it was found that only turbidity differed significantly 

between sampling sites with and without water hyacinth (Table 4.1). Based on the 

low conductivity and high oxygen levels, a relatively good water quality was observed 

for most sampling sites, regardless of the presence or absence of water hyacinth.  
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Table 4.1 Median, minimum and maximum values of the measured environmental 

variables of the sampling sites with and without water hyacinth, statistical significance 

levels between both are indicated (Mann-Whitney U-test). 

 
Water hyacinth 

absent 
Water hyacinth present p-value 

 Median Min Max Median Min Max  

Temperature (°C) 28 26 29 27 26 30 0.63 

Conductivity (µS/cm) 79 70 109 74 37 89 0.07 

Total Dissolved Solids (mg/L) 0.1 0.1 0.1 0.1 0.1 0.1 0.20 

pH 7 7 8 7 7 8 0.06 

Chlorophyll a (µg/L) 7.0 5.5 25.4 6.9 4.7 10.1 0.61 

Chlorides (mg/L) 2.2 1.7 2.5 2.5 1.3 2.9 0.10 

Dissolved Oxygen (mg/L) 8 6 11 7 4 9 0.22 

Oxygen Saturation (%) 102 81 131 90 52 118 0.22 

Turbidity (FTU) 5 4 10 4 1 5 0.00 

4.3.2 Habitat suitability of water hyacinth 

After model selection only turbidity was retained in the final model (Appendix 4.1). 

Based on the generalized linear model we found that water hyacinth is present at 

sites with a low turbidity (Fig. 4.1). The Pearson correlation showed that there was a 

positive linear relationship between turbidity and chlorophyll a (r=0.65). Higher 

turbidity was observed at non-vegetated sites (Appendix 4.1, Fig. 4.2).  
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Figure 4.1 Generalized linear model for the presence/absence of water hyacinth in 

function of turbidity. 

 

 
 
Figure 4.2 Turbidity in function of water hyacinth cover classes (0=absent, 1=1-5%, 

2=5-25%, 3= 25-50%, 4 = 50-75%, 5 = 75-100%).  
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4.3.3 Relationship between the macroinvertebrate community and habitat 

characteristics 

Based on the BMWP-Colombia scores the sampling sites of the Daule-Peripa 

reservoir were categorized in four water quality classes: moderate, poor, bad and 

very bad (Fig. 4.3). The BMWP-Colombia score and Margalef index were significantly 

higher (Mann-Whitney U-test, p<0.01) forsites containing water hyacinth compared to 

sites containing none. However, there were no distinct differences in the Shannon–

Wiener index, Evenness index and Simpson index between the sampling sites with 

and without water hyacinth (all p>0.05). Figure 4.3 showed that, non-vegetated sites 

are close to each other and they are located near the dam. On the other hand, sites 

with high vegetation cover (class 5) are also close to each other, which are located 

far from the dam (Figure 4.3). Figure 4.6 showed that non-vegetated and high turbidiy 

sites are close to each other. 
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Figure 4.3 Geographic distribution of the ecological water quality in the Daule-Peripa 

reservoir based on the BMWP-Colombia score, with indication of the different 

vegetation cover classes of water hyacinth (numbers indicate sampling sites). 

A Spearman rank-order correlation was run to determine the relationship 

between percentage of cover by water hyacinth and the ecological indices. There 

was a significant, positive correlation between percentage cover by water hyacinth 

and the BMWP-Colombia and Margalefindex (r = 0.64, r = 0.54 respectively; p < 

0.05). Based on a Kruskal-Wallis ANOVA a significant difference was detected in 

BMWP-Colombia scores (chi-squared = 13.8, df = 4, p = 0.008) and in Margalef 

index between different vegetation classes (chi-squared = 12.6, df = 4, p = 0.01). 

Based on post-hoc tests we found a significant difference for the BMWP-Colombia 

index between vegetation class 0 and class 5 and for the Margalef index between 

vegetation class 3 and all other classes (p<0.05) (Fig. 4.4). When turbidity was 

plotted in function of the BMWP-Colombia, samples with a high percentage water 

hyacinth cover were clearly separated from sites without water hyacinth or sites with 

a low cover (Fig. 4.5). At non-vegetated sites, the turbidity was higher than 4 FTU 
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and the BMWP-Colombia values were lower than 50 (water quality ranged from very 

bad to poor).  

 
 

Figure 4.4 Values of BMWP-Colombia (a), Margalef index (b),Shannon-Wiener index 

(c), Simpson index (d) and Evenness (e) for different percentages of water hyacinth 

cover (0=absent, 1=1-5%, 3= 25-50%, 4 = 50-75%, 5 = 75-100%). 

 

 
 

Figure 4.5 Scatter plot of the Biological Monitoring Working Party-Colombia (BMWP-

Colombia) and the turbidity, with indication of the different vegetation cover classes of 

water hyacinth (0=absent, 1=1-5%, 3= 25-50%, 4 = 50-75%, 5 = 75-100%). 
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Figure 4.6. Geographic distribution of the ecological water quality in the Daule-Peripa 

reservoir based on the BMWP-Colombia score, with indication of the different 

vegetation cover classes of water hyacinth (numbers indicate turbidity values) 

In total, 32 different macroinvertebrate taxa were found at the different sites 

with a maximum of 19 different taxa for sites without water hyacinth and a maximum 

of 25 taxa for sites covered by water hyacinth (Appendix 4.2). Sites with an 

intermediate vegetation cover (25-50%) had a relatively high abundance and 

diversity of macroinvertebrate taxa. SIMPER (SIMilarityPERcentages) analysis 

indicated that the similarity in species composition between samples with water 

hyacinth was 49.4%, while similarity between samples without water hyacinth was 

29.6%. Dissimilarity in species composition between samples with and without water 

hyacinth was 67.6%. Densities of Chironomidae, Hyallelidae, Prostigmata, 

Dugesiidae, Libellulidae, Baetidae, Notonectidae, Coenagrionidae, Tubificidae, 

Mesoveliidae and Caenidae reached higher densities at sampling sites with water 

hyacinth, while Glossiphoniidae, Thiaridae, Gerridae and Corixidae reached higher 

densities at sampling sites without water hyacinth (Appendix 4.2). ANOSIM (ANalysis 

Of SIMilarity) indicated that there was a significant difference in macroinvertebrate 
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community composition between sites with and without water hyacinth (R=0.47; 

p<0.01). Non-metric Multidimensional Scaling (NMDS) also indicated that samples 

with water hyacinth were more similar in macroinvertebrate composition to each other 

than samples without water hyacinth (Fig. 4.7). 

 

Figure 4.7 Non-metric Multidimensional Scaling (NMDS) plot with indication of 

samples with present (green) and absence (yellow) water hyacinth and turbidity. 
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Figure 4.8 Non-metric Multidimensional Scaling (NMDS) plot with indication of 

samples with (large symbols) and without (small symbols) water hyacinth and the 

ecological water quality class according to the Biological Monitoring Working Party 

(BMWP) Colombia. Numbers indicate sampling sites which will be further analysed in 

taxa composition in the Table 4.2.  
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Table 4.2 showed that some higher BMWP-Colombia score taxa (e.g. Veliidae, 

Lymnaeidae, Naucoridae and Planorbidae) were alway presented at sites with water 

hyacinth.  

Table 4.2: Macroinvertebrate composition at some sampling sites in the Daule-

Peripa reservoir. 

 
BMWP 
score Absence of water hyacinth Presence of water hyacinth 

 Taxa Site 91 67 69 70 76 93 87 18 86 92 74 78 83 89 73 82 68 81 19 

 
Water 
quality Very bad Bad Poor Bad Poor Moderate 

Acari  -   p  p p p p p p p p p  p p p p p p 
Cambaridae  -   p          p         p     p 
Dytiscidae  -                            p 
Gerridae  - p         p p             p p   
Tubificidae 1          p   p     p  p p   p p   
Chironomidae 2 p p p p p    p  p p p  p p p p p p 
Culicidae 2                        p p    
Hydrophilidae 3                          p    
Limoniidae 3              p               
Physidae 3                            p 
Ceratopogonidae 5                            p 
Corixidae 5        p     p             p 
Glossiphoniidae 5    p p p p p p p p           p p p 
Libellulidae 5          p p p p p  p p p p p p p 
Mesoveliidae 5                          p  p 
Notonectidae 5        p    p p         p p  p 
Thiaridae 5        p  p  p             p 
Aeshnidae 6             p      p       p  p 
Ampullariidae 6           p                p 
Caenidae 6                      p p  p p 
Dugesiidae 6      p   p    p   p  p p p p p   
Baetidae 7        p    p p p p  p p p p p p 
Coenagrionidae 7                p   p p p p p p 
Hyallelidae 7 p           p   p p p   p p p p p 
Veliidae 7                    p     p    
Lymnaeidae 8                      p   p p   
Naucoridae 8                           p   
Planorbidae 8                                 p     
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4.4 Discussion 

This chapter is one of the few studies investigating the relationship between 

the occurrence of the invasive water hyacinth and physico-chemical water quality 

conditions and macroinvertebrate diversity in a tropical reservoir. In terms of physico-

chemical characteristics, our results show that only turbidity differed significantly 

between sampling sites with and without water hyacinth. Water hyacinth reduces the 

effect of waves caused by the wind and motorboats, which explains the lower 

average turbidities that were observed at stations containing water hyacinth in the 

Daule-Peripa reservoir. On the other hand, water hyacinth will also more easily 

establish at sites where the wave action is not too strong, where there is a low flow 

velocity (c.f. chapter 5) and where consequently turbidity is low as well (Opande et 

al., 2004). Our habitat suitability model, indicating that water hyacinth is present at 

sites with a low turbidity, supports this finding. The Pearson correlation showed that 

there was a positive linear relationship between turbidity and chlorophyll (r = 0.65). It 

is possible that water hyacinth limits the development of phytoplankton via preventing 

light penetration and absorbing nutrients. In this way, water hyacinth reduces 

turbidity. Nevertheless, turbidity cannot be considered as a main cause for the 

presence of water hyacinth in Daule-Peripa reservoir, this relation should be rather 

considered as a correlation. 

There was no significant difference in average chlorophyll a concentrations 

between covered and non-covered sites, however, the maximum concentration 

measured at water hyacinth absent sites was more than two times higher than that at 

sites where water hyacinth was present. This may be attributed to water hyacinth 

absorbing nutrients from the water column and reducing light penetration when 

forming dense vegetation mats (McVea and Boyd, 1975), thus limiting the 

productivity of phytoplankton at sites where water hyacinth is present (Villamagna 

and Murphy, 2010). Dissolved oxygen concentration, although not significantly 

different, was lower at sites where water hyacinth is present compared to sites where 

the species is absent. The lower oxygen levels measured, can be ascribed to the 

water hyacinth mats that prevent the transfer of oxygen from the air to the water and 

the reduced effects of mixing due to wind (Hunt and Christiansen, 2000). Since water 

hyacinth is a floating plant, the turbidity will not directly affect the growth, but water 
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hyacinth growth can contribute to the clarity of the water by suppressing growth of 

algae due to light and nutrient competition, and moreover help to settle suspended 

solids due to the reduction of flows (e.g. induced via wind). Nevertheless, the cause-

effect relationships between the presences of water hyacinth and other 

environmental variables was not investigated. Therefore, dedicated experiments 

need to be set up to have better understanding of this relation. 

A positive relationship between the occurrence of water hyacinth and 

macroinvertebrate diversity was observed. Higher BMWP-Colombia and Margalef 

scores were reported for sites containing water hyacinth compared to locations 

without water hyacinth. The ecological water quality ranged from moderate to bad at 

sites with water hyacinth, while it ranged from poor to very bad at non-vegetated sites 

(Table 4.2). The Margalef index reveals that sites covered for 25-50% with water 

hyacinth have a higher species diversity compared to water hyacinth absent sites. 

Similarly, Kouame et al. (2011) found that the vegetation cover by water hyacinth 

positively altered the biodiversity of benthic invertebrate assemblages. Indeed, 

macrophytes can provide excellent microhabitats that promote the establishment and 

colonization of macroinvertebrates. Furthermore, macroinvertebrates use 

macrophytes for refuge and shelter against predation (Walker et al., 2013). In 

addition, the root mat of water hyacinth can provide new habitats for colonization by 

macroinvertebrates and in this way increase the diversity of aquatic 

macroinvertebrates (Masifwa et al., 2001; Rocha-Ramirez et al., 2007; Barker et al., 

2014). When the percentage of water hyacinth cover was higher than 50% we did not 

observe an increase in positive effect, because the cover might be too dense, which 

negatively affects the physico-chemical water quality conditions and consequently 

also the diversity of macroinvertebrates. This may be explained by the intermediate 

cover hypothesis that was put forward by Villamagna (2009) to explain the observed 

patterns in invertebrate abundance and diversity of Lake Chapala in Mexico. This 

hypothesis suggests that the biotic community (e.g. fish) increases with increasing 

prey abundance and provision of refuge as a consequence of increased vegetation. 

However, a too high vegetation density may reduce oxygen availability and increase 

the competition between organisms thereby negatively affecting the density of the 

biotic community. Another aspect to consider is the indirect effect of water hyacinth 

cover on diversity and abundance of waterbird. Villamagna (2009) and Villamagna et 
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al. (2012) found evidence for a more indirect influence on water birds via changes in 

trophic structure, prey community composition (e.g. macroinvertebrates) and energy 

flows throughout the system.  

Our study showed that the dissimilarity in species composition between 

samples with and without water hyacinth was 67.6%, indicating differences in the 

taxa associated with water hyacinth. At sampling sites where water hyacinth was 

present, both pollution tolerant (e.g. Tubificidae and Chironomidae) and pollution 

sensitive (e.g. Hyallelidae, Baetidae and Coenagrionidae) families reached higher 

abundances compared to sites where water hyacinth was absent. In addition, some 

sensitive taxa (e.g. Veliidae, Lymnaeidae, Naucoridae and Planorbidae) are only 

presence at site with water hyacinth (Table 4.2). According to Rocha-Ramirez et al. 

(2007), the density of invertebrates is not only affected by the presence of water 

hyacinth, but also by environmental variables such as temperature, salinity, dissolved 

oxygen, and turbidity. Particular groups of invertebrates are correlated with specific 

variables (e.g. mayflies prefer a lower conductivity) (Rocha-Ramirez et al., 2007) and 

can respond differently to water hyacinth (Villamagna, 2009). In our study, it seems 

that the measured environmental conditions in combination with the presence of 

water hyacinth positively influenced the diversity and abundance of 

macroinvertebrates.  

Water hyacinth is considered one of the world’s worst weeds (Holm et al., 

1977). The explosive growth of water hyacinth has caused serious socio-economic 

effects such as obstruction of water ways and reducing hydropower production 

(Masifwa et al., 2001). Our study showed that water hyacinth is positively related to 

macroinvertebrate diversity and water quality. This benefit should be weighed and 

compared to other impacts on ecosystem services before management actions are 

initiated. It was reported that about one third of the Daule-Peripa reservoir is covered 

by water hyacinth and that the presence of water hyacinth causes blockage of 

navigation between different communities in the reservoir and increases the 

incidence of infectious diseases (e.g. malaria, dengue and mosquito born infectious 

diseases) (Gerebizza, 2009). However, studies of water hyacinth effects on local 

economy (e.g. cost for removal of water hyacinth, cost of local people for 

transportation by boats, medical treatment and the problems with hydropower 

generation) in the Daule-Peripa reservoir have not been assessed. Small and 
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isolated mats of water hyacinth can probably provide a unique habitat that 

contributes to overall biotic diversity and ecosystem functioning (Villamagna and 

Murphy, 2010). In case of the Daule-Peripa reservoir, we found that an intermediate 

vegetation cover of water hyacinth was positively related with the diversity of 

macroinvertebrates, whereas the impact of water hyacinth on hydropower generation 

is expected to be limited. However, further investigation is needed to quantify these 

findings and to assess the cost and benefits related to the presence of water 

hyacinth. Integrating the ecological knowledge obtained from this study with 

economic assessments and public perception could help decision makers to identify 

priority habitats to be targeted for the control of water hyacinth and to prioritize 

conservation actions in an operative way (Caplat and Coutts, 2011).  

4.5 Conclusions 

In conclusion, the findings of this chapter revealed that only turbidity was 

significantly different between sampling sites with and without water hyacinth. The 

presence of water hyacinth was an important variable affecting the diversity of 

macroinvertebrates in the Daule-Peripa reservoir. Despite the overall positive 

relationship between macroinvertebrate diversity and the occurrence of water 

hyacinth, it is important to consider the socio-economic costs related to the 

management of water hyacinth. This work is believed to serve as baseline data for 

further studies on tropical reservoirs and as an incentive to assess the indirect effect 

of water hyacinth on other communities (e.g. fish, phytoplankton, zooplankton and 

waterbird).  
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Chapter 5: Threshold responses of macroinvertebrate 
communities to stream velocity: a case study from the 
Guayas River basin in Ecuador 
 
 
 
 
Abstract 
 

The Guayas River basin is one of the most important water resources in 

Ecuador, but the expansion of human activities has led to a degraded water quality. 

The purpose of this study was: (1) to explore the importance of physical-chemical 

variables in structuring the macroinvertebrate communities and (2) to determine if the 

thresholds in stream velocity related to macroinvertebrate community composition 

could be identified in the Guayas River basin. Macroinvertebrates and physical-

chemical water quality variables were sampled at 120 locations during the dry season 

of 2013 in the Guayas River basin. Canonical Correspondence Analysis (CCA) was 

performed to identify relevant physical-chemical characteristics of the river 

influencing the distribution of the macroinvertebrate communities. According to the 

CCA, the most important environmental factors influencing the distribution of 

macroinvertebrate communities are stream velocity, chlorophyll a, conductivity, 

temperature and elevation. Threshold Indicator Taxa ANalysis (TITAN) was able to 

discriminate between the macroinvertebrate communities related to stagnant water 

(Daule-Peripa reservoir) and the macroinvertebrate community related to running 

waters. The results provide essential information to further support water 

management plans of the Guayas River basin. Information obtained will be useful for 

management of similar rivers in South-America, as well as the rest of the world.  
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5.1 Introduction  
 

Rivers are ecosystems, which provide great ecological value (Benetti et al., 

2012). They are also an important source of renewable water supply for humans and 

freshwater ecosystems (Vorosmarty et al., 2010) and provide many ecosystem 

services such as sources of drinking water and recreational areas and provide 

nursing grounds and food for many organisms (Berger et al., 2016). However, the 

increase of human activities such as industrialization, urbanization and intensive 

agriculture cause river degradation (Carpenter et al., 2011). Freshwater organisms 

are impacted via various stressors, such as water pollution, erosion, alterations in 

stream hydrology and changing habitat structures (Allan, 2004). It is estimated that at 

least 10,000–20,000 freshwater species are extinct or at risk of extinction 

(Vorosmarty et al., 2010). The water needs for human and natural ecosystems are 

often considered as competing with each other (Richter et al., 2003). At the same 

time, water managers and political leaders need to manage water to meet human 

requirements, to protect endangered species and to support freshwater ecosystems 

(Richter et al., 2003).  

The Guayas river basin is one of the most important river systems in Ecuador 

(Arias-Hidalgo, 2012) and provides a high contribution to Ecuador’s gross domestic 

income (Andres, 2009). The Guayas basin is facing many water resources problems 

such as increasing modification of the natural flows by dams and water extractions 

for agriculture and urban water supply (Waite, 1982). The intensive use of natural 

resources in the Guayas basin leads to exhaustion and disequilibrium of the 

ecosystem and the ecological integrity (Madonado, 2011). Because of the Daule-

Peripa hydropower dam, the discharge in the Daule River is highly variable. We 

expected that stream velocity plays a strong role affecting the macroinvertebrate 

community. However, the macroinvertebrate community of the Guayas River basin 

has been little studied and research investigating the tipping point where species are 

likely to be affected by changing stream velocity is lacking. There is a strong need for 

information about how macroinvertebrate communities are affected by environmental 

stressors in the Guayas river basin in order to support the management for 

conservation and restoration of aquatic systems. Therefore, the aim of this study was 

to explore which physical-chemical water quality variables are most important in 
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structuring the macroinvertebrate communities. Furthermore, we checked whether 

thresholds in stream velocity related to macroinvertebrate community composition 

could be identified. These threshold values are needed in order to inform policy 

makers about critical levels of stream velocity, which can cause rapid changes in 

macroinvertebrate communities. The results provide useful information for prioritizing 

management actions in the Guayas river basin and it will be particularly useful for 

management of similar rivers in South-America, as well as the rest of the world.  

5.2 Data analysis 

All statistical analyses, including data exploration and model development were done 

using R software (version 3.2.3) (R Core Team, 2015). A protocol for data exploration 

as described by Zuur et al. (2010) was used to avoid common statistical problems. 

Prior to the actual data analysis, the initial data set was tested for outliers and 

normality. The boxplots were made to visualize the variability of all measured 

variables (Appendix 5.1). The Shapiro-Wilk test was used to check the normality of 

the data. As the data were non-normal distributed, the Spearman's correlation 

coefficient was used to investigate correlations between physical-chemical variables. 

Following the procedure suggested by Zuur et al. (2010), TDS and pH were excluded 

from further analysis because they were highly correlated to conductivity and DO (r = 

0.95, r = 0.75, respectively) and to avoid problems of collinearity (Appendix 5.2). 

Kruskal–Wallis tests followed by Dunn test post hoc multiple comparisons 

were performed to test whether significant differences existed between the five 

ecological water quality classes for elevation, temperature, conductivity, chlorophyll a 

and stream velocity. The Dunn test was used because there was unequal number of 

sampling sites in different water quality classes (Zar, 2010). The Dunn test was 

performed using the DunnTest function in the DescTools package (Signorell, 2016) in 

R software (version R.3.2.3). All tests were determined at the 5% significance level.  

Detrended Correspondence Analysis (DCA) was performed to test the 

appropriate response model of the macroinvertebrate metrics to the environmental 

data. The first axis of the DCA gradient length was 4.71, which is more than three 

standard deviations, therefore, the unimodal ordination method was used as 

recommended by Šmilauer & Lepš (2014). A unimodal relationship was expected for 



Chapter 5: Case study: Guayas river basin 
 
 

 80  

macroinvertebrate taxa along the gradient defined by the explanatory environmental 

variables. The Canonical Correspondence Analysis (CCA) is a constrained ordination 

technique, in which the response variable set is constrained by the set of explanatory 

variables (Paliy and Shankar, 2016). Thus, CCA was developed to explore which 

environmental variables could be important in structuring the macroinvertebrate 

communities in the Guayas River basin. One sampling location, where no 

macroinvertebrates were found, was excluded from DCA and CCA analysis. As the 

data were non-normal distributed, all data were log10(x + 1) transformed prior to the 

DCA and CCA analysis for normalization. DCA and CCA were performed using the 

vegan package (Oksanen et al., 2016) in R software (version R.3.2.3).  

Threshold Indicator Taxa ANalysis (TITAN) was used to detect community 

responses to stream velocity in the Guayas River basin. In total, 83 

macroinvertebrate taxa were found in 120 sampling sites within the Guayas river 

basin. Among these, 54 had five or more occurrences and were included in the 

TITAN analysis (Baker et al., 2015). Taxa names which have more than eight 

characters were coded as eight character abbreviations of scientific names. Stream 

velocity was used as a predictor variable. Abundance data were not transformed 

because transformation is unnecessary in TITAN 2. Bootstrapping (1000 repetitions) 

was implemented to estimate uncertainties around change point locations and 

response direction (positive or negative) of threshold indicator taxa. 1000 

permutations were used to determine species specific z scores. Multiple 

permutations (e.g. 500 or 1000) are recommended in order to have more precise z 

scores (Baker et al., 2015). We set as a requirement that the minimum number of 

observations on either side of any partition had to be ≥ 3. TITAN was performed in 

the package TITAN 2 (Baker et al., 2015) in R software (version R.3.2.3). Details of 

the TITAN method can be found in Baker and King (2010), King and Baker (2014) 

and Baker et al. (2015).  
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5.3 Results 

5.3.1 Relationship between physical-chemical conditions and 
macroinvertebrate communities 
 
Table 5.1 summarizes the physical-chemical water quality measured at 120 sampling 

locations within the Guayas river basin. In addition, the boxplots refect the 

variabilities of all measured variables are presented in the Appendix 5.1. The water 

was stagnant at all sampling sites in the Daule- Peripa reservoir. There was one 

sampling site located at the tributary of the Daule River, which had the highest 

observed values of DO (14 mg/L), chlorophyll a (67 µg/L), chlorides (167 mg/L) and 

conductivity (1981 µS/cm). Conductivity values measured at all sampling sites at the 

Daule-Peripa reservoir were less than 110 µS/cm.  

Table 5.1 Median, mean, maximum, minimum values and standard deviation of 
continuous environmental variables measured in the Guayas river basin 

Variable Median Mean Max. Min. Std. 

Temperature (◦C) 26 26 34 19 2.5 

pH 7 7 9 6 0.5 

Dissolved Oxygen (mg/L) 8 8 14 2 1.7 

Chlorophyll a (µg/L) 3 6 67 0.7 8.7 

Chloride (mg/L), 2 7 182 0.5 22.8 

Turbidity (FTU) 3 10 356 0 35.1 

Conductivity (µS/cm) 123 200 1981 36 238 

Total Dissolved Solids (TDS)  0.0 0.1 1.3 0.0 0.15 

Elevation (m a.s.l.) 82 135 1075 2 187 

Velocity (m/s) 0.1 0.2 1.5 0.0 0.3 
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Figure 5.1 Canonical Correspondence Analysis (CCA) diagram showing the different 
macroinvertebrate taxa (A) or stations (B) and their correlation with environmental 
variables (blue vectors). Letters indicate taxa, numbers indicate sampling sites.  
 

A 

B 



Chapter 5: Case study: Guayas river basin 
 
 

 83  

CCA analysis indicated an association between macroinvertebrate taxa and 

chlorophyll a, conductivity, temperature, elevation and stream velocity. The first two 

ordination axes of the CCA analysis explained 45% and 22% of the total variance, 

respectively (Fig. 5.1, Appendix 5.4). The first axis was positively correlated with 

velocity and elevation, while negatively correlated with temperature and chlorophyll a. 

However, the correlations are strong for velocity and temperature and weak relations 

with elevation and chlorophyll a (Appendix 5.4). Regarding the first axis, sampling 

sites with a high elevation and high velocity are located at higher altitude areas with 

fewer anthropogenic disturbances. On the other hand, sampling sites by increased 

levels of chlorophyll, conductivity and temperature were collected at the downstream 

part of both the Daule and Babahoyo River (Fig. 5.1). The second axis was strongly 

negatively correlated with conductivity (Appendix 5.4). Conductivity and chlorophyll a 

might have strong impacts at some particular sites. In general, stream velocity is key 

variable influencing the distribution of the macroinvertebrate communities. 

Based on the BMWP-Colombia scores, the sampling sites within the Guayas 

River basin were categorized into five water quality classes: good, moderate, poor, 

bad and very bad (Fig.5.2). The result of the Kruskal–Wallis test shows that there 

was no significant difference in conductivity between different water quality classes 

(p>0.05). However, there were significant differences in elevation, temperature, 

chlorophyll a and stream velocity between different water quality classes (p<0.05). 

Good water quality was observed for sampling sites characterized by high elevations, 

high stream velocities, low temperatures and low levels of chlorophyll a (p<0.05) (Fig. 

5.3).  
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Figure 5.2 Map of the study area in the Guayas river basin with indication of the 

ecological water quality based on the BMWP-Colombia for each sampling site 

 

Daule River 

Babahoyo River 

 

Legend: 
Good 
Moderate 
Poor 
Bad 
Very bad 

Ecuador 
Colombia 

Peru 

Daule-Peripa Reservoir 

Guayaquil 

Guayas River 



Chapter 5: Case study: Guayas river basin 
 
 

 85  

 
 

Figure 5.3 Boxplots of the different ecological water quality classes for the main 

environmental variables (elevation, temperature, velocity, conductivity and chlorophyll 

a) in the Guayas River basin. Bold horizontal lines represent median, boxes 

represent interquartile ranges (25–75% percentiles) and range bars show maximum 

and minimum values, small black squares show outliers 

When the presence/absence of water hyacinth was plotted in function of flow 

velocity, the result indicated that the water hyacinth was only presence at sites with 

flow velocity lower than 0.4 m/s (Figure 5.4). Moreover, when water hyacinth cover 

classes were plotted in function of the flow velocity, the result showed that the 

percentage cover of water hyacinth was higher (class 4 and class 5, >50%) at sites 

characterized by a flow velocity lower than 0.1 m/s (Figure 5.5). 
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Figure 5.4. Plot illustrating the presence/absence of water hyacinth in the function of 
flow velocity. 
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Figure 5.5. Plot with water hyacinth cover class in the function of flow velocity 

 

5.3.2 Threshold change points and indicator taxa 
 

Threshold Indicator Taxa ANalysis was implemented to test the 

macroinvertebrate community response to stream velocity in the Guayas river basin. 

The result of TITAN showed clear tipping points for the thresholds defined by stream 

velocity at 0.03 m/s and 0.4 m/s. TITAN revealed 34 taxa (63%) as the reliable 

indicators of stream velocity, of which 20 taxa are indicated as indicators of high 

stream velocity and 14 taxa as indicators of low stream velocity in the Guayas river 

basin (Fig. 5.6). 
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Figure 5.6 Threshold Indicator Taxa Analysis and change points (dots) for 
macroinvertebrate community response to stream velocity (p ≤0.05, purity = 0.95, 
reliability = 0.95 for 5 minimum number of observations, 1000 bootstrap and 1000 
permutation replicates). Negative indicator taxa (z–) are indicated by black symbols 
and lines and positive indicator taxa (z+) are indicated by red symbols and dashed 
lines. Solid and dashed lines are cumulative frequency distributions of sum(z-) and 
sum(z+) maxima (respectively) across bootstrap replicates. The size of change point 
symbol (dots) is proportional to the magnitude of the taxa response. Z− species 
responded negatively to an increase in stream velocity, Z+ species responded 
positively to an increase in stream velocity. Horizontal lines suggest 5-95% quantiles 
from the bootstrapped change point distribution. Abbreviations and tabular results for 
individual taxa are found in the Appendix 5.3. 
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5.4. Discussion 

5.4.1 Environmental influences on macroinvertebrate community 
 

According to the CCA results, there was a strong association between 

macroinvertebrate taxa and chlorophyll a, conductivity, stream velocity, temperature 

and elevation. This suggests an important linkage between physical-chemical 

variables and macroinvertebrate community in the Guayas River basin. Our results 

show that good water quality was observed at sampling sites at high elevation, low 

temperature, high stream velocity and low levels of chlorophyll a. Those 

characteristics were observed at upstream sites, which have fewer human impacts. 

In general, water quality of rivers often deteriorates as one moves downstream due to 

the accumulating effects of different types of anthropogenic activities (Selvanayagam 

and Abril, 2015). Low ecological water quality was observed at sites with high 

chlorophyll a concentrations and high conductivity. The few sampling sites at small 

tributaries of both the Daule and Babahoyo Rivers and which were almost dry during 

the sampling, were characterized by a high conductivity. In addition, the distribution 

of data of the Guayas river basin (Appendix 5.1) showed that the conductivity has a 

median value = 123 µS/cm, 75th Percentile = 192 µS/cm; chlorophyll has a median 

value = 3.1 µg/l, 75th Percentile = 6.7 µg/l, velocity has a median value = 0.1 m/s and 

75th percentile = 0.4 m/s. Thus conductivity and chlorophyll might affect the 

invertebrates strongly at some particular sites, but stream velocity is key variable 

influencing the distribution of the macroinvertebrate communities in whole Guayas 

river basin. Water extraction and irregular water release from Daule-Peripa dam 

caused low water levels at some sampling sites. It is possible that conductivity and 

chlorophyll reached to high values because of high concentration effects and 

increased residence time. In this way, damming, water extraction, intensive 

agriculture and urbanization can generate negative effects to water quality in the 

Guayas River basin. 

The Daule-Peripa reservoir receives water from the Daule and Peripa Rivers 

(Gelati et al., 2011). The water depth of the reservoir fluctuates between 70 and 85 m 

due to the operation of the dam, while the natural water depth of the reservoir ranges 

between 79 to 81 m due to changes in rainfall (CELEC, 2013). Dams cause 
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fluctuations in flow rate and accumulation of fine sediment within the reservoir (Käiro 

et al., 2011). Stream velocity and sediment substrate affect taxa distribution, 

abundance, richness and diversity (Alvarez-Mieles et al., 2013), especially sensitive 

macroinvertebrate taxa (Timm et al., 2011). It has been shown that changes in the 

flow regime from water regulation and desiccation cause a significant reduction in 

macroinvertebrate density (Theodoropoulos et al., 2015). The results of this research 

were supported by previous relevant studies carried out from different locations with 

varying climatic and habitat conditions. For examples, in Malaysian streams, stream 

velocity is one of the most important variables, which influences macroinvertebrate 

diversity (Rawi et al., 2013). The case study in the Sacramento River in California, 

United State, where dams control water for flood prevention, hydropower and 

irrigation purposes revealed that current velocity was the most important factor 

explaining community composition of macroinvertebrates (Nelson and Lieberman, 

2002). In Kangaroo River (Australia), velocity was the most important characteristic 

affecting the spatial pattern of macroinvertebrate abundance and diversity (Brooks et 

al., 2005). The Daule-Peripa dam is characterized by stagnant water and there might 

be a high volume of sediment accumulation, which can affect the macroinvertebrate 

community.  

Our study showed that sites with a good water quality has a median value of 

chlorophyll a of 1.7 µg/L, a conductivity of 126 µS/cm and stream velocity of 0.5 m/s. 

Algae are good bioindicators for eutrophication (Hausmann et al., 2016). High 

chlorophyll a concentrations indicate the occurrence of algal blooms (Huanga et al., 

2011). The growth of algae can provide evidence of eutrophication and degradation 

of water quality in streams and rivers (Porter et al., 2008). In general, the conductivity 

values at sampling sites within the Guayas River basin are quite low (median = 123 

µS/cm), except some locations that were almost dry. Low rainfalls during the dry 

season decrease the water level and as a consequence, possibly indicating severe 

water quality problems (little water remained and high conductivity values (maximum 

value was 1981 µS/cm) at some sampling sites. The Guayas river basin covers nine 

provinces with a total population of 4.8 million (Arias-Hidalgo, 2012). The main 

economic sectors of the Guayas basin are hydropower, fisheries and agriculture (e.g. 

banana, rice, maize, African oil palm Elaeis guineensis and cacao) (Alvarez-Mieles et 

al., 2013). The anthropogenic activities are key issues, which can lead to drastic 
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changes in aquatic ecosystems and which can heavily impact the water quality of this 

river basin (Forio et al., 2015; Damanik-Ambarita et al., 2016b). The study in the 

United State showed that river flow fluctuations associated with dam operations, 

water pollution and invasive species have been identified as three leading causes of 

the imperilment of aquatic animals (Richter et al., 1997).  

5.4.2 The threshold responses of the macroinvertebrate community to 
stream velocity 

In this study, the TITAN identified the tipping points for the thresholds defined 

by stream velocity at 0.03 m/s and 0.4 m/s. The TITAN method was only developed 

in 2010 and therefore, only a few studies used TITAN to detect thresholds for 

changes in macroinvertebrate community composition. We did not find other studies 

related to thresholds for stream velocity, thus, this research is probably the first that 

identified threshold responses of macroinvertebrates to stream velocity using 

Threshold Indicator Taxa Analysis. The results obtained during the present study are 

in accordance with previous studies. According to the study conducted at the upper, 

mountainous reaches of four rivers in central Greece, the Boosted Regression Tree 

models revealed that high macroinvertebrate abundance and diversities were 

detected in flow velocities between 0.3 m/s and 0.75 m/s (Theodoropoulos et al., 

2017). The habitat suitability model indicates the suitable current velocity for certain 

macroinvertebrate taxa such as Baetis ranges within 0.3–0.7 m/s, and the optimum 

current velocity is 0.4 m/s (Li et al., 2009). Furthermore, it was reported that at a 

stream velocity higher than 1 m/s, velocity acts as a constraint for most living 

organisms and the habitat is colonized only by species that tolerate such a high 

velocity (Wang and Xu, 2012).  

TITAN revealed 34 taxa (63%) as the reliable indicators of stream velocity, of 

which 20 taxa are associated with a high stream velocity and 14 taxa are associated 

with a low stream velocity in the Guayas river basin. Everaert et al (2014) found that 

an increase in stream velocity was correlated with an increasing probability of 

occurrence of Leptophlebiidae in the Chaguana river basins in Ecuador. Our findings 

are in line with previous studies that the Leptohyphidae were frequently living at 

stream velocities ranging from 0.37 to 0.64 m/s and that increasing stream velocity is 
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correlated to increased abundance of mayflies Leptophlebiidae in the Bento Gomes 

River, Brazil (Nolte et al., 1997). We also found that high stream velocities are 

associated with numerous sensitive taxa such as Perlidae and Psephenidae (tolerant 

scores 10), Leptoceridae (tolerant score 8) and Hydropsychidae (tolerant score 7). 

These results provide evidence for the possible influence of stream velocity on the 

macroinvertebrate community and the water quality.  

TITAN revealed that 14 taxa such as Caenidae, Hyalellidae, Notonectidae, 

Dugesiidae and Glossiphoniidae displayed a negative response to an increasing 

stream velocity. When examining the habitat preferences for those taxa, the majority 

is strongly associated with vegetation (e.g. Notonectidae, Hyalellidae, 

Glossiphoniidae, Mesoveliidae, Aeshnidae, Libellulidae), bottom sediments (e.g. 

Hyalellidae) and shallow lakes (e.g. Dugesiidae, Gerridae, Mesoveliidae, Dytiscidae). 

Caenidae are dominant in stagnant water (Nolte et al., 1997). Nelson and Lieberman 

(2002) found the highest abundance of Chironomidae was observed at low velocities. 

High flow velocity is associated with the absence of water hyacinth. Therefore, this 

finding may be explained by a combination of unfavorable stream velocity and the 

absence of water hyacinth, which negatively affects the abundance and frequency of 

occurrence of the negatively associated taxa. It is possible that taxa which did not 

respond to environmental variables are more tolerant, or they are able to use 

different types of habitat. Moreover, case studies from Neotropical region (e.g. Bento 

Gomes River, Brazil) emphasized the seasonal discharge variation and velocity 

fluctuations affect macroinvertebrate community (e.g. mayfly) assemblages (Nolte et 

al., 1997). Therefore, study over the wet and dry season is needed to have full 

understanding of how the seasonal stream velocity differences affect the 

macroinvertebrate community in the Guayas River basin.  

TITAN results provide information of the habitat preference (stream velocity) of 

macroinvertebrates and the evidence of local community shifts due to the change of 

stream velocity in the Guayas river basin. In other words, TITAN indicates the change 

of macroinvertebrate community due to the installation and operation of hydropower 

dams related to overall impacts on the flow. The sensitive taxa like Leptophlebiidae 

will increase in abundance and frequency of occurrence due to the increase of 

stream velocity. In this way, the management of flow of the dam (translated to flow 

velocity) can assist sensitive groups in increasing abundance and frequency by a 
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proper operation. Moreover, the change point values can be used for detecting 

ecological flow. For example, the threshold for positively associated taxa (sensitive 

taxa) = 0.4 m/s, thus, a hydraulic model can be used to quantify how much water 

should be discharged. Nevertheless, the obtained tipping-point values should be 

considered as primary results as this is only the first analysis and publication on 

macroinvertebrate communities in the Guayas River and therefore future validation is 

needed based on additional data. 

5.5 Conclusions  

In conclusion, this chapter provides an understanding of the relationships 

between macroinvertebrates and environmental characteristics in the Guayas river 

basin. Chlorophyll a, conductivity and stream velocity are influential variables that 

need to be considered as important ecological drivers for macroinvertebrate 

communities. The results provide clear tipping points in stream velocity. TITAN was 

able to discriminate between the macroinvertebrate community related to stagnant 

water (Daule-Peripa reservoir) and the macroinvertebrate community related to 

running waters. The results indicate the importance of multiple factor assessments 

for reliable predictions of macroinvertebrate responses.  
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Chapter 6: Use of Threshold Indicator Taxa ANalysis 
(TITAN) to detect macroinvertebrate community responses 
to environmental gradients in the Portoviejo River 
(Ecuador) 
 

 
Abstract 
 

The Portoviejo River, located in the central western part of Ecuador, has been 

heavily impacted by human activities. Information on water quality is indispensable 

for sustainable decision-making and water management. The aims of this chapter 

were to assess the water quality, to analyze the change of community structure along 

the key environmental variables and to find potential indicator taxa of 

macroinvertebrate communities in the Portoviejo River. In this chapter, 

macroinvertebrates and physico-chemical variables were sampled and hydro-

morphological conditions were recorded at 31 locations during the dry season of 

2015 in the Portoviejo River. The Biological Monitoring Working Party-Colombia 

(BMWP-Colombia) values were calculated to assess the ecological water quality. The 

BMWP-Colombia scores indicated that water quality of the sampling sites within the 

Portoviejo River ranged from good to bad. Threshold Indicator Taxa ANalysis 

(TITAN) was used to examine changes in macroinvertebrate communities along 

environmental variables. TITAN revealed clear tipping points in elevation, 

conductivity and nitrate-nitrogen concentrations affecting the macroinvertebrate 

community. Atyidae, Corbiculidae, Thiaridae, Acari, Baetidae and Leptohyphidae can 

be considered as indicator taxa to assist in identifying environmental thresholds of 

the Portoviejo River. This chapter suggests that conductivity and nitrate-nitrogen 

concentrations are influential variables, which need to be considered as important 

ecological drivers for the conservation efforts in the Portoviejo river, in particular 

related to the future investment in wastewater treatment. This approach could be 

applied as a useful management tool to support future management of other similar 

rivers, and determine protection and restoration actions.  
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6.1 Introduction 

Rivers are one of the most important freshwater resources for human life 

(Chapman, 1996). Rivers provide many ecosystem services such as source of 

drinking water, irrigation of croplands, industrial and municipal water supply, waste 

disposal, fishing, sightseeing, shipping and aesthetic value (Chapman, 1996; Pan et 

al., 2012). However, rivers are highly vulnerable to anthropogenic disturbance (e.g. 

urbanization, changes in land use, intensification of agriculture) (Bredenhand and 

Samways, 2008). The increase in population and human activities often lead to 

habitat degradation, poor water quality (Kibena et al., 2014) and reduced ecosystem 

services (Pan et al., 2012). River systems are affected severely by natural flow 

manipulation, altered water temperatures, river channel modification, floodplain 

transformation and the disruption of river continuity. Human disturbance, for example, 

the construction of dams in the river leads to a change of the hydrological conditions, 

modification of the flow regime and sediment transportation (Takao et al., 2008), thus 

influences aquatic ecosystems strongly (Zhang et al., 2010).  

Freshwater organisms are impacted via various stressors, such as water 

pollution, erosion, and alterations in stream hydrology and changing habitat structure 

(Allan, 2004). Aquatic macroinvertebrates have been used for freshwater monitoring 

and assessment for several decades (Smith et al., 2007). They are considered good 

indicators of the overall ecosystem health (Water Framework Directive, 2002) 

because of their close association with the stream bed, their relatively long life cycles, 

limited mobility (Pan et al., 2012) and because they are sensitive to environmental 

changes. Macroinvertebrates reflect stream conditions, integrate human and natural 

stressors over a long period of time and thus give a good representation of the 

quality of their surroundings (Cairns and Pratt, 1993). Their presence, abundance 

and activities are a representation of the water quality and may effectively reveal the 

ecological status of the ecosystem (Bredenhand and Samways, 2008).  

 The effects of hydro-morphological and physico-chemical conditions on 

macroinvertebrate communities at different spatial scales have been well-studied. For 

example, some studies assessed the responses of macroinvertebrates to nutrient 

levels (e.g. total phosphorus (TP) and nitrate (NO3
−) (Smith et al., 2007), salinity 

(Eggermont et al., 2006) and sediment (Brown et al., 2000). Next to chemical 
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variables, some studied the relationship between macroinvertebrate and habitat 

characteristics (Tolonen et al., 2001) as well as land cover (Black et al., 2004; Utz et 

al., 2009; Cuffney et al., 2010). The understanding of macroinvertebrate communities 

in relation to their environment is of great significance to water quality managers to 

identify the most appropriate actions for a successful river restoration or protection of 

non-impacted sites (Theodoropoulos et al., 2015).  

Portoviejo is considered as the center of economic, political and cultural 

events in the province of Manabi. During recent years, a high pressure has been 

exerted on water quality and natural ecosystems in the Portoviejo River basin driven 

by the growing population and increasing anthropogenic activities. The pollution of 

the Portoviejo River causes scarcity of clean water for domestic consumption and 

irrigation, loss of fishing grounds (Párraga and Aguirre, 2010) and strongly affects 

biodiversity and mangrove ecosystems in the Portoviejo River Estuary (ACBIO, 

2012). There are only a few studies that assessed the water quality based on 

macroinvertebrate communities in Ecuadorian watersheds. However, the Portoviejo 

River is an understudied area. To our knowledge no research has been carried out 

on the assessment of water quality and macroinvertebrate communities in this 

watershed. Due to the high anthropogenic impacts that have been reported, there is 

an urgent need to monitor and assess the water quality and biodiversity of the 

Portoviejo River, as this information is needed for planning and management. 

Therefore, the main objective of this study was to assess the ecological water quality 

of the Portoviejo River based on the benthic macroinvertebrate communities. More 

specifically, we attempted to analyze the change of community structure along key 

environmental variables and to find potential indicator taxa of macroinvertebrate 

communities in the Portoviejo River. This information could be used to establish 

priorities for conservation efforts for the Portoviejo River and other similar river 

basins, where water resources are suffering from multiple threats.  

6.2 Data analysis 

All statistical analyses were done using R software (version 3.2.3) (R Core 

Team, 2015). The protocol for data exploration as described by Zuur et al. (2010) 

was used to avoid common statistical problems. Prior to the actual data analysis, the 
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initial data set was tested for outliers and correlations between explanatory variables. 

Following the procedure suggested by Zuur et al. (2010), one sampling location 

which is located close to the river mouth with five extreme high and low values 

compared to the majority of observations (e.g. conductivity = 49384 µS/cm, TN 

=below detection limit, elevation = - 4 m a.s.l.), was discarded from the analysis. To 

obtain a more complete understanding of the community structure, species 

abundances were calculated, and taxonomic richness and Shannon–Wiener Diversity 

Index (Shannon and Wiener, 1949) were computed using the Vegan package 

(Oksanen et al., 2016) for each sampling site.  

Spearman's correlation coefficient is a non-parametric technique, which was 

used to explore the relationship among physico-chemical variables and the water 

quality index (Appdendix 6.1). Scatter plots were made to visualize the relationship 

between the BMWP-Colombia water quality index and all measured variables. A 

Mann–Whitney U-test was used to compare physico-chemical variables between 

more impacted and less impacted sampling sites. A Kruskal–Wallis test followed by 

post hoc multiple comparisons was performed to test whether significant differences 

in ecological indices existed between different types of land use, dominant substrate, 

sludge layer and pool-riffle pattern.  

Threshold Indicator Taxa ANalysis (TITAN) was used to detect community 

responses to the environmental gradients in the Portoviejo River. 

6.3 Results 

6.3.1 Physico-chemical water quality 

Table 6.1 and Figure 6.1 shows the water quality results measured at sampling sites 

within the Portoviejo River. High oxygen levels were observed for most sampling 

sites. The lowest water velocity (0 m/s) was measured at the reservoir. There was a 

significant, negative correlation between elevation and conductivity, NO3
-, NO2

-, 

oPO4
3-, TP and TOC (r = -0.84, r = -0.81, r = -0.78, r = -0.76, r = -0.73, r = -0.86, 

respectively) (Appendix 6.1). The lower conductivity values (< 600 µS/cm) were 

observed at upstream sites, while higher conductivity values (900-2447 µS/cm) were 

measured at the impacted and more downstream sites. Based on the Mann–Whitney 
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U-test (p < 0.05), it was found that conductivity and concentrations of NO3
-, NO2

-, 

oPO4
3-, TN, TP, TOC and chlorophyll a were significantly higher for more impacted 

sites compared to reference (less impacted) sites.  

Table 6.1 Mean, median, maximum, minimum values and standard deviation of 

continuous environmental variables measured in the Portoviejo River and their 

Spearman’s Rank correlation coefficients with the BMWP-Colombia index (* p<0.05, 
** p <0.01). 

 Variable Mean Median Max. Min. Std r 
Velocity (m/s) 0.4 0.4 0.9 0.0 0.3  0.48** 
Temperature (◦C) 28 28 31 26 1.4 - 0.38* 
Conductivity (µS/cm) 880 385 2447 164 722 - 0.39* 
pH 8 8 9 7 0.4 - 0.05 
Dissolved Oxygen (mg/L) 8 8 18 2 2.5  0.08 
Chlorophyll a (mg/L) 13.5 7.2 55.2 1.9 15 - 0.47** 
Turbidity (NTU) 15 12 34 0 11  0.09 
BOD5 (mg/L) 3.0 2.9 5.9 0.8 1.5 - 0.21 
Nitrate-Nitrogen (mg/L) 1.1 0.5 2.8 0.2 0.9 - 0.27 
Nitrite-Nitrogen (mg/L) 0.1 0.1 0.1 0.0 0.1 - 0.33 
Ammonium-Nitrogen (mg/L) 0.1 0.1 0.2 0.04 0.04  0.30 
Total Nitrogen (mg/L) 1.8 1.2 5.7 0.5 1.5 - 0.18 
Orthophosphate (mg/L) 0.2 0.2 0.3 0.1 0.1 - 0.17 
Total Phosphorus (mg/L) 0.2 0.2 0.5 0.1 0.1 - 0.39* 
Total Organic Carbon (mg/L) 15.8 16.8 37.7 3.0 10.4 - 0.35 
Elevation (m.a.s.l.) 61 59 121 0 37  0.39* 
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Figure 6.1 Map of the study area of the Portoviejo River with indication of the 
ecological water quality based on the BMWP-Colombia for each sampling site 
 
Lower BMWP-Colombia score was observed for sites characterized by high 

conductivity, high chlorophyll a, high nitrate-nitrogen and high nitrite-nitrogen (Figure 

6.2).  
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Figure 6.2. Plots of physical–chemical variables in relation to BMWP-Colombia for 
sampling sites in the Portoviejo River.  
 

6.3.2 Relationship between macroinvertebrate communities, physico-
chemical conditions and habitat characteristics 

In total, more than 8,300 individuals belonging to 53 macroinvertebrate 

families were found (Appendix 6.2). The taxon richness is varying from 4 to 22 taxa 

per sampling site. Chironomidae was the most frequently encountered taxon, 

followed by Coenagrionidae and Libellulidae (29, 21 and 20 sites, respectively). 

Thiaridae was the most abundant taxon, followed by Chironomidae (5231 and 805 

individuals, respectively). Based on the BMWP-Colombia scores, the sampling sites 

of the Portoviejo River were categorized into four water quality classes: good, 

moderate, poor and bad (Fig.6.1). The Shannon-Wiener index ranged from 0.23 to 

2.58. There was a strong positive correlation between the BMWP-Colombia scores 

and taxonomic richness (S) (Spearman's correlation coefficient = 0.94). Spearman's 

correlation coefficient between BMWP-Colombia and Shannon’s diversity index (H) 

was 0.58. However, the Spearman's correlation coefficient between the BMWP-

Colombia and taxa abundance was only 0.30. The highest BMWP-Colombia value 

(140) was recorded at one sampling site where the taxonomic richness was also the 
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highest (22 taxa). This location is surrounded by forest, has gravel substrate and a 

moderately developed pool-riffle pattern.  

 

Figure 6.3. Boxplots of the different classes of land use, type of sediment, sludge 

layer and pool–riffle class in relation to BMWP-Colombia for sampling sites in the 

Portoviejo River. Bold horizontal lines represent median, boxes represent 

interquartile ranges (25–75% percentiles) and range bars show maximum and 

minimum values, small black dots show outliers.  

The Spearman’s rank correlation coefficients between the biological water 

quality index (BMWP-Colombia) and the physico-chemical variables indicated that 

the BMWP-Colombia scores were positively correlated with elevation and stream 

velocity. In addition, BMWP-Colombia values showed a negative association with 

temperature, conductivity, chlorophyll a, NO3
-, NO2

-, TP and TN (Table 6.1). Higher 

BMWP-Colombia values were observed at sampling sites surrounded by arable land 

use, gravel sediment, absence of a sludge layer and at least a moderately developed 
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pool-riffle pattern. However, statistical analysis did not reveal any statistically 

significant differences. 

6.3.3 Threshold change points and indicator taxa 

TITAN was used to evaluate the variation in taxonomic composition of 

macroinvertebrate communities in response to all physico-chemical variables. 

However, due to the low number of reliable indicator taxa, TITAN could only reveal 

the community change along the gradient of elevation, conductivity and nitrate-

nitrogen concentration (Fig. 6.4). Change point analysis identified a negative 

response of macroinvertebrate communities (sumz-) at an elevation below 30 m a.s.l. 

(Fig. 6.4A), conductivity values above 1200 µS/cm (Fig. 6.4C) and nitrate-nitrogen 

values higher than 0.6 (mg/L) (Fig. 6.4E). In addition, the change points revealed a 

positive response of macroinvertebrate taxa (sumz+) at elevations above 62 m a.s.l. 

(Fig. 6.4A), conductivity values below 1433 µS/cm (Fig. 6.4C) and nitrate-nitrogen 

values lower than 2.3 (mg/L) (Fig. 6.4E). Atyidae, Thiaridae and Corbiculidae 

displayed a negative response to an increasing elevation, while they showed a 

positive response to the increase of conductivity and nitrate-nitrogen. In contrast to 

those taxa, Acari, Baetidae and Leptohyphidae showed a positive response to an 

increasing elevation (Fig. 6.4B) and displayed a negative response to an increasing 

conductivity (Fig. 6.4D) and increasing nitrate-nitrogen values (Fig. 6.4F). Naucoridae 

showed a positive response to an increase in elevation (Fig. 6.4B), whilst Veliidae 

and Libellulidae showed a negative response to an increase of conductivity and 

nitrate-nitrogen, respectively (Fig. 6.4D and 6.4F).  
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Figure 6.4 Threshold Indicator Taxa Analysis and change points (dots) for 
macroinvertebrate community response to elevation (A,B), conductivity (C,D) and 
nitrate-nitrogen (E,F) gradient (p ≤0.05, purity = 0.95, reliability = 0.95 for 5 minimum 
number of observations, 1000 bootstrap and 1000 permutation replicates). 
Negatively associated taxa (z–) are indicated by black symbols and lines, and 
positively associated taxa (z+) are indicated by red symbols and dashed lines. Solid 
and dashed lines are cumulative frequency distributions of sum(z-) and sum(z+) 
maxima (respectively) across bootstrap replicates. Size of change point symbol 
(dots) is proportional to the magnitude of the taxa response. Z− species responded 
negatively to an increase in the environmental gradient, Z+ species responded 
positively to an increase in the gradient. Horizontal lines suggest 5-95% quantiles 
from the bootstrapped change point distribution.  
ACARI = Acari, ATYIDAE = Atyidae, BAETIDAE = Baetidae, CORBICUL = 
Corbiculidae, LEPTOHYP = Leptohyphidae, LIBELLUL = Libellulidae, NAUCORID = 
Naucoridae, THIARIDA = Thiaridae, VELIIDAE= Veliidae. 
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6.4 Discussion 

6.4.1 Water Quality of the Portoviejo River  

The majority of the sampling locations have DO concentrations ranging from 7 

to 10 mg/l. The lowest value of DO (2.2 mg/L) was observed at the Poza Honda 

reservoir, which was characterized by the highest BOD5 (5.9 mg/L), a sludge layer 

between 5-20 cm, a water hyacinth coverage of 50-75% and stagnant water. Based 

on the ecological water quality index (BMWP-Colombia), this sampling site had a bad 

water quality. This finding may be explained by a combination of unfavorable 

conditions and the fact that when the percentage of water hyacinth cover is higher 

than 50%, the cover might be too dense, which negatively affects the physico-

chemical water quality (e.g. DO, BOD5) (Nguyen et al., 2015). Damming causes 

unfavorable changes in the riverine biota through changes in flow regime, sediment 

transport and habitat modification (Käiro et al., 2011). As the Poza Honda dam 

started operating in 1971, there might be sediment accumulation, which can 

negatively affect the macroinvertebrate community. Moreover, the interconnection 

between dams caused the wide spread of the invasive water hyacinth from the 

Daule-Peripa Reservoir (Guayas River) where about one third of the Daule-Peripa 

reservoir is invaded by water hyacinth (Eichhornia crasssipes) (Gerebizza, 2009) to 

the Poza Honda Reservoir. Unfortunately, detailed information about the impact of 

water hyacinth on water quality in the Poza Honda Reservoir and Portoviejo River are 

not available.  

The negative correlation between elevation and conductivity, nutrient 

concentrations (e.g. NO3
-, NO2

-, oPO4
3-, TP) and TOC indicates the cumulative 

negative impacts of human disturbance on water quality from upstream to 

downstream in the Portoviejo River. The Portoviejo River suffers from a high level of 

environmental deterioration caused by deforestation, burning of vegetation, drainage 

of agrochemicals and fertilizers, garbage disposal and discharge of sewage without 

adequate previous treatment (Párraga and Aguirre, 2010; ACBIO, 2012). As such, 

nutrients (e.g. NO3
-) can get into the water as a result of domestic wastewater 

discharges, agricultural activities (e.g. using manure and fertilizer containing NO3
-) 

and from oxidation of nitrogenous waste products in human and animal excreta 
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(Singh and Sharma, 2014). Moreover, Wang et al. (2012) emphasized that watershed 

urbanization levels are significantly associated with increased conductivity, total 

nitrogen, ammonia, phosphate and chemical oxygen demand. Our observations are 

in agreement with Dominguez-Granda et al. (2011a) that low conductivity values 

were measured at sites with low human impact in the Chaguana River basin, 

Ecuador. The increase of human activities negatively affects the water quality in the 

Portoviejo River which is shown by the increase of nutrient concentrations (NO3
-, 

NO2
-, TN and TP) and conductivity in the downstream locations.  

We found that the lower BMWP-Colombia scores were reported for sites 

located near residential areas and right after the outlet of a new municipal 

wastewater treatment plant of the Portoviejo city; chlorophyll a value was higher than 

30 mg/l at those sites. High concentration of chlorophyll is likely to be caused by the 

discharge of algae from the wastewater stabilisation pond. It is estimated that each 

year roughly 20 million cubic meters of wastewater are discharged into the Portoviejo 

River (ACBIO, 2012). As such, the Portoviejo River continues to suffer from 

sewage pollution. Indeed, the increase of nutrient levels by domestic waste of 

residential areas with incompletely treated wastewater probably caused poor water 

quality by an increase of phytoplankton abundance (expressed as chlorophyll a 

concentration). Sampling sites at the higher reach of the river are less affected by 

anthropogenic disturbances; hence more diverse macroinvertebrate communities are 

present in that area due to a better chemical water quality status. Our results are also 

in line with Jacobsen (1998), who found that the BMWP-Colombia index tended to 

increase at the upstream sites and decrease at the downstream sites in the dry 

season in highland streams in Ecuador. The results of the ecological indices are in 

accordance with our expectations and other research results. Our study, in 

accordance with others, indicates strong negative effects of anthropogenic 

disturbances on biological diversity and water quality in the Portoviejo River. 
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6.4. 2 Relevance of the TITAN method: Indicator taxa of environmental 
change and threshold for macroinvertebrates 
 

In the present research, we show for the first time the thresholds for the 

changes in macroinvertebrate communities along an environmental gradient in the 

Portoviejo River. TITAN uncovered a clear community change along the gradient of 

elevation, conductivity and nitrate-nitrogen. Furthermore, we revealed a community 

threshold for salt-sensitive taxa at 1200 µS/cm and salt-tolerant taxa at 1433 µS/cm, 

which is close to the findings of Schroder et al. (2015), who determined a community 

threshold for salt-sensitive taxa at 926 µS/cm and community threshold for salt-

tolerant taxa at 1464 µS/cm in the Lippe River, Germany. Following the German 

chemical classification of conductivity (Schroder et al., 2015), in the range from 725 – 

1207 µS/cm, water becomes critically saline and thus less suitable for certain 

macroinvertebrates. This result is in line with the findings of Dunlop et al. (2005), who 

investigated that the shift of macroinvertebrate communities with a high proportion of 

salinity-sensitive taxa to communities of more tolerant individuals is between 800 and 

1000 µS/cm in Queensland, Australia. Indeed, conductivity is an important variable 

which affects macroinvertebrate community composition (Boets et al., 2010). 

Moreover, conductivity was a key variable to the shift of macroinvertebrate, according 

to the decision trees applied in Flanders (D’heygere et al., 2003). In the present 

study, there was a strong relationship between conductivity and NO3
- (r = 0.82), NO2

- 

(r= 0.75) and TOC (r = 0.73). It is possible that the increase of nutrient levels are a 

factor which promoted individual taxon (and thus community) conductivity thresholds 

(Schroder et al., 2015). Our results, in agreement with other studies, imply that the 

conductivity thresholds identified could be applied in similar river systems. 

Community thresholds may be applied to define conductivity thresholds in order to 

protect the macroinvertebrate community in the Portoviejo River. As such, this 

information has a valuable implication because the degradation of river water quality 

in Ecuador could be addressed more effectively.  

In this study, TITAN identified the points at which the macroinvertebrate 

community negatively responds to an elevation of 30 m a.s.l., a nitrate-nitrogen value 

of 0.6 mg/L and the points corresponding to a positive effect at elevations of 62 m 

a.s.l. and a nitrate-nitrogen value of 2.3 (mg/L). However, TITAN did not find strong 

evidence of a threshold for stream velocity, pH, TN, TP and organic matter (DO, 
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BOD5 and TOC), as biological communities are always affected by multiple factors 

and it is not possible to separate the effects of each factor when they co-vary (Berger 

et al., 2016). The difference between community thresholds and biodiversity trends 

could be explained by the fact that aggregate metrics (e.g. biodiversity) are 

confounded by synchronous changes in tolerant and sensitive taxa (King et al. 2011, 

Baker and King 2013). Therefore, it is not possible to consider a single threshold 

value to explain the change of the entire community. Differences of elevation and 

habitat conditions lead to differences in macroinvertebrate assemblages among river 

systems. In this study, the elevation ranged between 0 and 121 m.a.s.l., which is very 

low. In addition, there is a negative correlation between elevation and conductivity, 

nutrient concentrations and TOC. In the literature, it has been shown that there is a 

strong relation between nutrient concentrations and macroinvertebrate communities 

(Ashton et al., 2014). Moreover, community composition was related to conductivity 

and mean velocity (Black et al., 2004). As such the reported tipping points for 

elevation may be not representing the influence of altitude on the community, but 

indicating the cumulative negative impacts of human disturbance on water quality 

from upstream to downstream in the Portoviejo River. For sustainable river 

management, it is recommended to limit the nutrient and chemical loads into the 

river, but also to protect the natural hydromorphological conditions.  

TITAN revealed that Atyidae, Corbiculidae and Thiaridae showed a positive 

response to the increase of conductivity and nitrate-nitrogen, whilst they were 

assigned a negative response to an increasing elevation. In contrast to those taxa, 

Acari, Baetidae and Leptohyphidae showed exactly opposite responses. Based on 

the present analyses, the three tolerant taxa are widely distributed and are 

considered invasive alien species in several parts of the world. Atyidae is 

a family of shrimp in the order Decapoda, which occur in all tropical and 

most temperate waters of the world (Torati et al., 2011). Corbiculidae is a family 

of clams in the order Veneroidea (Gofas, 2015), that were introduced to America from 

Asia (Strayer, 1999). Thiaridae is a family of snails in the order Gastropoda, which is 

pantropically distributed including Central and South America, Africa, South East 

Asia, Caribbean Islands, Pacific and Australia (Glaubrecht et al., 2009).  

The sensitive taxa, Leptohyphidae and Baetidae mayflies, belong to the order 

Ephemeroptera. The mayfly family Leptohyphidae is indigenous in South American 
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and widely distributed throughout North, Central, and South America (Baumgardner 

and Ávila, 2006). Baetidae have a global distribution and a high species diversity 

(Múrria et al., 2014). In general, Ephemeroptera are typically classified as a sensitive 

group. Our finding is supported by a previous study, which indicated Ephemeroptera 

as a salinity sensitive indicator (Schroder et al., 2015). Veliidae belonged to the order 

Hemiptera and live in a wide variety of aquatic habitats. Veliidae comprise a globally 

distributed family of predatory semi-aquatic bugs with more than 960 known species 

and the Neotropical fauna corresponds to approximately 30% of the total species 

(Moreira and Barbosa, 2011). The dragonfly family Libellulidae, is also broadly 

distributed throughout the world (Heckman, 2008). The family of Naucoridae 

(Creeping Water Bugs) is found in stagnant and running freshwater in tropical 

regions, with the highest diversity in the Neotropics (Zettel and Lane, 2011). All the 

indicator species identified in this study have a worldwide distribution; therefore, they 

could be used as potential indicator taxa of different ecoregions. TITAN has the 

potential to inform decision makers about critical levels of anthropogenic changes, 

which correlated with great changes in ecological communities (King and Baker, 

2014). Each sensitive taxon displayed a significant increase or decrease at a specific 

threshold. As such, the TITAN results show that many taxa could increase or 

decrease with only a small change in certain environmental variables. For example, 

in this study, the dragonfly family Libellulidae has a nitrate-nitrogen threshold value of 

1.5 mg/L. The adults and larvae of dragonflies are able to help to control endemic 

diseases (e.g. malaria, yellow fever and dengue fever) (Heckman, 2008) as they are 

important predators of for example mosquito larvae. As such, it is important to 

manage the nitrate-nitrogen level in order to control the presence of dragonflies and 

consequently also the presence of diseases.  

TITAN uncovered a clear community change along both human affected 

gradients (e.g. conductivity and nitrate-nitrogen) and natural gradients (e.g. 

elevation). The negative taxa for the increase of pollution (e.g. conductivity and 

nitrate-nitrogen) are the positive taxa for the increase of elevation. The indicator taxa 

revealed by thte method are in line with several related literature sources and general 

ecological insights on these taxa. TITAN provided thus additional evidence for the 

community shifts due to the change of water quality along the Portoviejo River. 

Among the tolerant taxa, three widely distributed taxa were present: Atyidae, 
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Thiaridae and Corbiculidae. Moreover, these taxa are also considered to be invasive, 

which highlights the importance of identifying tipping-points in order to conserve 

sensitive species (Schroder et al. 2015). With increasing conductivity and nitrate-

nitrogen, sensitive taxa like Baetidae and Leptohyphidae will show a decrease in 

abundance and frequency of occurrence, which will reduce the indigenous 

community composition and allow for invasive species to take over. Based on these 

observations, management related to aquatic conservation, biological invasions, 

ecosystem restoration and natural resources can be performed (King & Baker, 2010). 

Moreover, these tipping-point values have valuable applications for detecting 

reference condition boundaries such as the conductivity and nitrate nitrogen should 

not exceed the threshold values and selecting sites at greatest risk of significant 

change (e.g. conductivity higher than 1400 µS/cm and nitrate nitrogen value is higher 

than 2.3 mg/L). Nevertheless, the obtained tipping-point values should be considered 

as primary results as this is only the first work on macroinvertebrate communities in 

the Portoviejo River.  

In this study, elevation, conductivity and nitrate-nitrogen concentrations 

appeared to be strongly linked to the macroinvertebrate community composition. To 

our knowledge, water quality issues, aquatic ecosystems and ecosystem services 

received very limited attention in Ecuador. No standardized sampling procedures and 

no environmental monitoring program are available to assess the water quality 

(Nolivos et al., 2015) resulting in limited availability of information on the physical, 

chemical and ecological status of Ecuadorian rivers (Andres, 2009; Nolivos et al., 

2015). Therefore, the thresholds relevant to the macroinvertebrate communities’ 

response in the Portoviejo River will be particularly useful for early warning in 

Ecuadorian rivers. However, this is the first publication on macroinvertebrate 

communities in the Portoviejo River and this region. The results may serve as a 

starting point for future study, which is needed to check if the thresholds and indicator 

taxa identified from this case study are consistent and applicable at a larger scale.  
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6.5 Conclusions 

In the present chapter, we provided baseline information about the physico-

chemical water quality, the hydromorphological conditions and the macroinvertebrate 

community composition in the Portoviejo River (Ecuador). The BMWP-Colombia 

scores showed that water quality of the sampling sites within the Portoviejo River 

ranged from good to bad. TITAN was used to relate macroinvertebrate community 

composition changes with the physical-chemical and hydromorphological conditions 

in the river. We revealed clear tipping points in elevation, conductivity and nitrate-

nitrogen concentrations and associated indicator taxa. Atyidae, Corbiculidae and 

Thiaridae showed a positive response to the increase of conductivity and nitrate-

nitrogen, whilst they were assigned a negative response to an increasing elevation. 

In contrast to those taxa, Acari, Baetidae and Leptohyphidae showed a negative 

response to the increase of conductivity and nitrate-nitrogen, whilst they were 

assigned a positive response to an increasing elevation. Based on these correlations, 

these taxa can be considered as indicator taxa to assist in identifying environmental 

thresholds of the Portoviejo River. TITAN could provide a useful management tool to 

support water quality management in the status of the Portoviejo River and similar 

rivers in the region. Indeed, based on the patterns that are characterized in this 

research novel management approaches can be developed and implemented. 
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Chapter 7: General discussion and further research  
 
 
 
 
Abstract 
 
 

The overall results from this PhD study demonstrate specific practical issues 

associated with the impacts of hydropower generation on river ecosystems and water 

quality management. The main issues are the intensive development of water 

hyacinth on the hydropower reservoirs and the accumulation of multiple human 

impacts affecting ecological water quality and the composition of the associated 

macroinvertebrate communities. This chapter provides a general discussion about 

the research methodologies used in data collection, application of ecological 

modeling, ecological assessment based on macroinvertebrates in hydropower dam 

impact assessment and practical issues in river management. It also suggests 

recommendations for further research about hydropower dam impacts.  
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7.1 Introduction 

The results from this PhD study demonstrate several practical issues 

associated with the impacts of hydropower generation on river ecosystems and water 

quality management in Ecuador. Hydropower generation causes river fragmentation 

in its creation and development of a hydropower reservoir. The case study of the 

Guayas river basin showed that certain physical-chemical variables (e.g. stream 

velocity, chlorophyll a, conductivity, temperature and elevation) were the major 

environmental factors influencing the distribution of macroinvertebrate populations 

and species specific habitats (c.f. chapter 5). On a local scale (with a focus on Daule-

Peripa reservoir), habitat characteristics (the presence of water hyacinth) was an 

important variable affecting the diversity of macroinvertebrates of the reservoir (c.f. 

chapter 4). However, in the Daule-Peripa reservoir, the cause-effect relationships 

between the presence of water hyacinth and environmental variables remain unclear. 

The threshold indicator taxa analysis showed the shift between the macroinvertebrate 

communities related to the change of stream velocity (c.f. chapter 5) and elevation, 

conductivity and also nitrate nitrogen concentrations (c.f. chapter 6). In the Portoviejo 

river basin, the BMWP-Colombia scores were positively correlated with elevation and 

stream velocity while they showed a negative correlation with temperature, 

conductivity, chlorophyll a, NO3
-, NO2

-, TP and TN. However, TITAN revealed clear 

tipping points in elevation, conductivity and nitrate-nitrogen concentrations. Results of 

these individual analyses were presented and discussed in detail in each chapter. 

Our results indicated the importance of multiple factor assessments at various spatial 

scales for better understanding the impacts of hydropower generation on river water 

quality and biodiversity.  

Hydropower dams can produce huge environmental impacts induced by the 

change in river morphology, physical-chemical conditions and biological composition 

and ecosystem functioning. However, in this study, many effects of hydropower dams 

on rivers such as sedimentation, thermal stratification and eutrophication in the 

reservoir have not yet been assessed. In addition, the ecological impacts of 

hydropower dams on other resident communities such as algae, amphibians, fishes 

and birds have not been included in this study. Nevertheless, assessments of the 
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shifts in plant cover and macroinvertebrate communities are major steps towards a 

more integrated biological assessment and a wider, more balanced understanding. 

The aim of this chapter is to link the results and discussions in the previous 

chapters and present some general aspects regarding the application of ecological 

models for dam impact assessment and river management. This chapter will discuss 

some practical issues, including data collection, model development, assessment 

methods and recommendations for river management. The dissertation ends with 

some recommendations for further research on this topic. 

 

7.2 Data collection  

 Data collection is one of the crucial steps in impact assessment. However, 

many statistic predictive modeling exercises are still based on field data from 

observational studies and still lacking a designed sampling strategy (Guisan and 

Zimmermann, 2000). Here, we will discuss some useful considerations for ecological 

impact assessment of hydropower generation related to data collection.  

Firstly, we would like to address where the samples should be collected. Dams 

are known for their impacts on ecosystems at the catchment scale, with both 

upstream and downstream effects stemming from inundation, flow manipulation and 

fragmentation (Nilsson et al., 2005). The results from previous chapters of this study 

show the cumulative negative impacts of human disturbances on water quality and 

biological diversity from upstream to downstream of a river. Moreover, some 

sampling sites within the associated tributaries were indicating severe water quality 

problems, for example, low water levels and high conductivity values. Therefore, the 

sampling sites should be taken along the river, including: river at upstream reservoir, 

hydropower reservoir and river below the reservoir at both the main river and its main 

tributaries. A case study from Schinegger et al (2012) showed that various human 

pressures affected running water ecosystems in Europe. In total 47% of the sites are 

multi-impacted and 90% of lowland rivers are impacted by a combination of all four 

pressure groups (hydrology, morphology, water quality and connectivity) (Schinegger 

et al., 2012). Results of this study also showed that hydropower dams are one of the 

main drivers causing detrimental changes in the riverine biota through changes in the 
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flow regime. At the same time, Ecuadorian rivers are facing many other problems 

such as changes in land use and intensification of agriculture. Hence, target 

sampling sites should represent a range of different impacts and various levels of 

water quality from polluted to unpolluted sites. The distribution of macroinvertebrates 

constitutes a complex process associated with many factors at different scales. 

Macroinvertebrate community analysis revealed river degradation due to different 

anthropogenic disturbances and habitat destruction. In addition, the small number of 

samples in the Portoviejo river basin (31 sites) limited the ability to transfer the results 

to other watersheds. Hence, it is useful to assess the ecological impact at the river 

and river basin scales in order to obtain a better understanding of the relationship 

between macroinvertebrate communities and environmental conditions. In other 

words, a significant number of samples is needed if a diverse set of human activities 

is putting pressure on the river system. In general, most studies were based on a 

very limited number of sampling sites. They often only focused on the assessment of 

an area near to the dam. Consequently, results reported tend to underestimate or 

overestimate the impacts of dams on upstream and downstream sites. 

Secondly, we would like to focus on the variables that should be measured 

because this is crucial for model development. The appropriate selection of sampling 

variables is crucial because different models can be developed for the same taxon 

when different databases are used (Goethals, 2005). Furthermore, the type of 

variables collected clearly influenced the derived data driven models (Goethals, 

2005). Our results pointed out the importance of carrying out multiple factor 

assessments for reliable predictions of habitat suitability. Results from chapter 4 

indicated that water hyacinth was present at sites with a low turbidity of what ??. 

Surprisingly, there is no clear relationship between the presence of water hyacinth 

and temperature, conductivity, TDS, pH, chlorophyll a, chlorides, DO, oxygen 

saturation. Note that a major limitation of this study was the lack of data on water 

column nutrients for the Guayas river basin. Therefore, the cause-effect relationships 

between the presences of water hyacinth and environmental variables remain 

unclear. Nevertheless, the presence of water hyacinth was a major variable affecting 

the diversity of macroinvertebrates in the Daule-Peripa hydropower reservoir. 

Chapter 5 indicated that chlorophyll a, conductivity and stream velocity were key 

drivers affecting the change in the macroinvertebrate community while chapter 6 



Chapter 7: General discussion and further research 
 
 

 116  

suggested that conductivity and nitrate-nitrogen concentrations were influential 

variables, which needed to be considered as important ecological drivers. Paulsen et 

al. (2008) revealed the most widespread stressors for river in the United States were 

known to be nutrients (e.g. nitrogen and phosphorus), riparian disturbance and 

streambed sediments. Ecuadorian rivers in the past and up to the present are facing 

many threats such as gravel mining, gold mining, deforestation, hydroelectric projects 

and contamination (Ecuadorian Rivers Institute, 2016). Although flow is the key driver 

in hydropower dam impact, other factors such as conductivity and nutrients are also 

major concerns in structuring macroinvertebrate communities. In-depth analyses of 

relationships among various pressure types such as hydrology, continuum disruption 

and combined pressure effects, and linkages to biotic classifications may also yield a 

better understanding of restoration and mitigation requirements (Paulsen et al., 

2008). Therefore, it is recommended to measure hydro-morphological, physical-

chemical variables, biological and habitat characteristics a synthesis assessment 

should be implemented in order to understand the multiple spatial, temporal and 

interactive impacts of dams. Several types of variables are needed for integrated 

impact assessment. However, this can be expensive if multiple variables have to be 

measured, especially when the research is covering a large and complicated 

topography area (e.g. Guayas River basin). Therefore, from a practical point of view, 

it is needed to find the key drivers and work further on the economically appropriate 

and easy collectable variables such as velocity and conductivity, depth and DO.  

Thirdly, we discuss when samples should be taken. In this study, both of the 

sampling campaigns in the Guayas and Portoviejo river basins were performed only 

one time in the dry season for safety reasons and also accessibility to the sampling 

sites. It was estimated that the highest conductivity value, the lowest water level and 

other extreme values were obtained during the dry season. It was assumed that the 

worst conditions occur in the dry season, causing harsh conditions for 

macroinvertebrates and other communities in the ecosystem. Under those particular 

circumstances, the results were adequate for water quality assessment purposes. 

Since both the Daule-Peripa and the Poza Honda dams were designed for multiple 

purposes, including hydropower and irrigation, the discharge might be managed in 

different ways. For irrigation purpose, the discharges tend to fluctuate by season; 

discharges increase during the irrigation season to meet irrigation water demands, 
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but decrease in other months to restore reservoir storage for the next irrigation 

season. On the other hand, hydropower dams are operated based on stated energy 

demands. Therefore, the water uses or seasonal management should be considered. 

It is advised to repeat sampling during the wet season to test this assumption made, 

and to check if the results are similar. Although our results from the dry season 

provided valuable insights, the conclusions may need to be verified.  

7.3 Model development and impacts assessment 

In this study, we primarily used multivariate analysis to understand which 

variables are important, then TITAN was applied to identify the thresholds and to 

elucidate how certain variables (e.g. stream velocity) influence resident 

macroinvertebrate communities. This approach can be applied to answer the 

question regarding dam and river management. For example, what are the most 

important factors in defining macroinvertebrate communities? Which velocities of flow 

are needed? Which taxa will be influenced if the stream velocity is changed? This 

dissertation can contribute to the transparency of the thresholds defining the process 

in river management. TITAN allows the identification of specific thresholds which can 

be applied to predict the fluctuations and changes in macroinvertebrate communities 

under an alternative water management scheme. 

TITAN was used to detect the variation in taxonomic composition of 

macroinvertebrate communities in response to stream velocity in the Guayas river 

basin (c.f. chapter 5) and all physico-chemical variables in the Portoviejo River (c.f. 

chapter 6). TITAN revealed 14 and 20 taxa as the positive/negative indicators for the 

change of stream velocity in the Guayas river basin (c.f. chapter 5). In chapter 6, 

TITAN could only reveal the community change along the gradient of elevation, 

conductivity and nitrate-nitrogen concentration. Only three or four taxa are defined as 

positive/negative indicator for the change of each variable. In this case, it is possible 

that the thresholds and taxa responses are basin specific because of taxa presence 

and the ranges of investigated variable. In addition, due to the low number of reliable 

indicator taxa, TITAN did not find strong evidence of a threshold for temperature, pH, 

DO, chlorophyll, turbidity, BOD5, TP, oPO4
3-, NH4+, NO2, TN, TOC and stream 

velocity. Although, several physico-chemical variables (e.g. velocity, chlorophyll and 



Chapter 7: General discussion and further research 
 
 

 118  

TP) are considered important in the distribution of macroinvertebrates, their 

thresholds were not discovered by the TITAN methods, most probably as a result 

from limited amount of sampling sites, the environmental variable range and a too 

limited number of cases for both good and affected sites. In addition, the results are 

also influenced by other factors (e.g. habitat characteristics that were not measure).  

Generalized linear models were developed to investigate which variables 

determined the occurrence of water hyacinth. The regression modelling paradigms 

(e.g. generalized linear models GLM’s) showed advantages in dealing with non water 

quality variables (e.g. land use); GLMs can be used as effective tools for the analysis 

of aquatic habitat-species relationships (Ahmadi-Nedushan et al., 2006). Moreover, it 

also provided the solution for the main bottleneck in the application of other modeling 

techniques, for example, the requirement of ecological expert knowledge for the 

implementation of fuzzy logic models (Mouton, 2008) or the need for reference 

conditions in the Ecological Potential assessment approach (Molozzi et al., 2012).  

This study provides insights in the ecological impacts of hydropower dams on 

river ecosystems. The results of this work show the diverse sets of impacts on the 

physical habitats, chemical water quality as well as plant and invertebrate 

communities during hydropower operation stage. The adverse environmental impacts 

of hydropower generation are diverse and complex (Abbasi and Abbasi, 2000). 

Besides the impact of the dam as a physical structure, ie river fragmentation, the 

most serious detrimental impacts of hydropower dams on the aquatic ecosytems are 

caused by hydropeaking (Bruder et al., 2016). Hydropeaking is the intense unnatural 

discharge of excessive water volumes of power plants due to energy demand (Bruder 

et al., 2016). During periods of high energy demand, power is generated and water is 

rapidly released producing significantly higher and faster flows (Jones, 2014). In 

contrast, when energy demand is low, flow decreases and ranges from only dam 

‘leakage’ to an imposed minimum discharge (Clarke et al., 2008). Hydropeaking 

causes severe daily and sub-daily fluctuations in discharge and water levels (Meile et 

al., 2011). As a consequence, hydropeaking quickly reduces the quality and 

availability of suitable habitats for aquatic organisms through dewatering, and 

suitable shore habitats are displaced or lost, fine sediments are re-suspended, 

increasing erosion and water turbidity (Tonolla et al., 2017). In this study, 

macroinvertebrates were used as indicators for the change of water quality. As 
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macroinvertebrates have a limited mobility, they are more sensitive to local 

disturbances, and are able to detect structural changes and habitat loss, and different 

species have different degrees of tolerance towards pollution (Molozzi et al., 2012). 

Therefore, the presence or absence of specific macroinvertebrates in conjunction 

with ecological modeling can provide the ecological evidence to assess the impact 

within the context of long-term assessment and current and future river management.  

Damming can create a multitude of different impacts on aquatic ecosystems. 

Dams often severely alter the functioning of river systems, both locally as well as 

upstream and downstream. The ecological impacts of the dams can begin 

immediately during the initial dam construction, operational phases and after dam 

removal. Many previous research studies have demonstrated the impact of 

hydropower dams on fish (Brown et al., 2013), amphibians (Yarnell et al., 2012) and 

phytoplankton (Silva et al., 2014). In addition, eutrophication has been extensively 

reported in many other tropical hydropower reservoirs such as Lake Gilgel Gibe I 

(Ethiopia) (Ambelu et al., 2013). However, the assessment methods used within 

these studes has not as yet been standardized. Marchant et al. (2006) suggested the 

appropriate assessment methods should: (1) provide early warning of a wide range of 

environmental stressors at the appropriate temporal and spatial scales, (2) indicate 

the cause of change and degradation status of the environment, (3) require cost- 

effective tools and the needed resources should be available for assessment and (4) 

provide easily interpretable, user friendly outputs that relate to management 

objectives. Moreover, a simple and accessible model is needed, because a number 

of the previously utilised comprehensive models are too complex for a local 

administrative officer in charge (Ueda et al., 2015). Under these circumstances, there 

is a need for the development of practical tools such as an assessment index or 

modeling toolbox. Therefore, we provide a checklist for impact assessment of 

hydropower dams. This checklist provides major contemporary research issues 

related to the development and application of ecological models in hydropower dam 

impact assessment that should be taken into consideration (Table 7.1). Table 7.1 

summarizes the variables that were used in the reviewed papers (chapter 2) and key 

variables that were found in our study (chapter 4, 5, 6). Various models have been 

developed to get insights in the diverse potential impacts of dams. According to the 

objectives of the models, model developers can select different types of 
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environmental inputs, ecological assessment levels (species, communities or 

ecosystems) and scales (temporal and spatial) to develop models according to their 

specific objectives. 

Table 7.1 Checklist for hydropower dams impact assessments 

Data collection 

Abiotic characteristics 

- Elevation 

- Rainfall/ precipitation 

- Flow 

- Velocity 

- Depth 

- Substrate 

- Water temperature 

- Turbidity 

- Conductivity 

- DO 

- pH 

- Nutrients 

- Chlorophyll a 

- Toxicants 

- BOD 

- COD 

- Total organic carbon 

Biotic components 

- Vertebrates 

- Invertebrates 

- Macrophytes 

- Phytoplankton 

Assessment levels 

- Species 

- Communities 

- Ecosystems 
Sources of data 
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- Field data 

- Lab results 

- Expert knowledge 

Assessment scales 

Time scales 

- Before dam construction 

- During dam construction 

- During dam operation: day/night, week day/weekend, monthly, seasonally 

- After dam removal 

Spatial scales 

- Upstream of the dam 

- Reservoir 

- Downstream of the dam 

Type of models 

- Hydrodynamic models 

- Water quality models 

- Habitat suitability models 

- Foodweb models 

- Integrated models 

 

7.4 The use of macroinvertebrates to assess the ecological impact 
of hydropower dams 

In this study, macroinvertebrates were used as bioindicators to assess the 

impact of the hydropower dams on water quality and biodiversity. The understanding 

of the relationship between environmental factors and aquatic communities is crucial 

in order to conserve freshwater biodiversity and sustain ecological integrity (Jun et 

al., 2016). Freshwater macroinvertebrates are widely used as bioindicators in water 

quality monitoring and assessment, because they have limited mobility, are sensitive 

to local disturbances, are able to detect structural changes and habitat loss, and 

different species have different degrees of tolerance towards pollution (Molozzi et al., 

2012). Using macroinvertebrates as bioindicators to assess the ecological impacts of 
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hydropower dams has several advantages. Firstly, ecological assessments based on 

macroinvertebrates are generally simple and cheap to implement (Marchant et al., 

2006). The construction of hydropower dams is booming in certain developing 

countries, however physico–chemical methods require good laboratories with 

expensive analytical equipment . In addition, hydropower dams are often constructed 

in remote areas, as such it is not practical to transport water quality samples to the 

lab for analysis due to the long distances. Moreover, some of these developing 

countries have limited technical and financial resources for the regular monitoring 

and regulation of environmental issues. Therefore, cost-effective monitoring 

programs are needed (Dominguez-Granda et al., 2011b). Secondly, sampling 

macroinvertebrates and related assessment methods have a long tradition and can 

count on many standard approaches. Therefore, the results can easily be shared and 

compared between countries and reported to policy makers. Thirdly, biological 

indices based on macroinvertebrates have many advantages for testing water quality 

(Zamora-Muñoz et al., 1995). It has been shown that macroinvertebrate-based 

indices reflect water quality conditions better compared to physico-chemical indices 

alone (Sharifinia et al., 2016). A combination of several diversity and biotic indices 

could take advantages of the strengths of each and develop a more complete 

understanding of community structure (Hooper et al., 2005). The results from this 

study also indicated that macroinvertebrate communities accurately reflect factors 

such as stream velocity and habitat condition (e.g. presence of water hyacinth) and 

are thus suitable for dam impact assessment.  

The results from TITAN showed that there was discrimination between the 

macroinvertebrate communities in stagnant water (Daule-Peripa hydro reservoir) and 

those in running waters. Dams shift macroinvertebrates composition from lentic to 

lotic fauna in the reservoir in relation to the change of stream velocity. For example, 

the Notonectidae and Dugesiidae exhibited a general preference for lotic habitats, 

while the Helicopsychidae and Leptophlebiidae were found at sites with lentic 

habitats. This information is of particular importance for river management practices 

and biodiversity conservation.  

Nevertheless, certain limitations should be taken into account. Firstly, 

ecological assessment based on macroinvertebrate distribution can be labour 

intensive and time-consuming at the identification stage (Marchant et al., 2006). 
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However, it was indicated that only less than six percent of the information was lost 

by identifying taxa to family (or genus) level, as opposed to species level, and that 

quantifying the abundance of taxa provided greater resolution for pattern 

interpretation than simply noting their presence/absence (Marshall et al., 2006). 

Therefore, identification to family level is recommended. Secondly, many 

macroinvertebrate taxa exhibit seasonal life cycles to take advantage of optimal 

environmental conditions, or avoid unfavorable conditions for certain environmental 

variables such as temperature, water flow status, and food availability (Johnson et 

al., 2012). The taxon abundance variations of macroinvertebrates related to their life-

cycle seasonalities can potentially confound bioassessments (Johnson et al., 2012). 

However, a previous neotropical study in the Guapimirim River, Brazil, found that the 

faunal composition was not influenced by seasonal changes, but the densities of 

macroinvertebrates were negatively influenced by rainfall (Buss et al., 2004). In 

addition, a case study on stream macroinvertebrates stressed that similar results and 

biological information in daytime/nighttime data (Guareschi et al., 2016). Therefore, 

macroinvertebrates are not able to quantify the impact over short time scales (e.g. 

hydropeaking, day/night pattern); in this way, macroinvertebrates should be used to 

assess the long-term impact of the dam on ecological water quality and ecosystems.  

7.5 Recommendations for river management 

The results highlighted the strong association between macroinvertebrate 

communities and physical-chemical and habitat characteristics. The hydropower dam 

is a key driver for the change of land use. Agricultural activities, urbanization and 

untreated wastewater can lead to increased nutrient concentrations, higher 

conductivity and enhanced chlorophyll concentrations in water. Damming resulted in 

river fragmentation and altered stream velocity. Therefore, in order to conserve 

biodiversity and improve water quality in Ecuadorian rivers, some practical aspects 

should be taken into consideration.  

Firstly, sustainable land management is required. It has been shown that land 

use has a strong impact on chemical quality of water and biological community 

across the river (Ometo et al., 2000). Land use within the Guayas River basin 

consists mostly of arable land, plantations (banana, rice, maize, African oil palm 
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Elaeis guineensis and cacao), urban area and semi-urban areas. The Portoviejo 

River basin is one of the most productive farming regions in Ecuador, with production 

of bananas, mangoes and other tropical fruits, tomatoes, onions, peppers, coffee, 

and especially cattle and fish (http://www.gutenberg.us 2016). Intensive agriculture 

often involved mono-cropping with high inputs of fertilizers, pesticides and herbicides, 

which may lead to groundwater contamination and biodiversity degradation (Aude et 

al., 2003). It has been shown that pesticides used in banana production may enter 

watercourses and bring ecological risks to aquatic ecosystems (Castillo et al., 2006). 

Therefore, sustainable land use management can improve river water quality by 

nutrient limitation (Damanik-Ambarita et al., 2016a) and reduce pesticide run-off into 

ecosystems. However, further studies regarding the impact of land use on water 

quality and macroinvertebrate communities distributions are required. 

Secondly, damming caused changes in the natural flow regime and could 

negatively affect stream ecosystems. The first evident change was the flow velocity. 

Stream velocity has been shown to be an important parameter affecting the 

distribution of biological communities. One of the key objectives of government 

policies is meeting human needs for energy and food while minimizing resource 

consumption (Pfister et al., 2011). Hydropower generation transforms rivers and their 

ecosystems by fragmenting channels, altering river flows and thus reducing flow 

velocity (Renofalt et al., 2010). The stream velocity of the Guayas River basin can be 

regulated and managed by the Daule-Peripa dam. This dam was constructed for 

hydropower generation, irrigation, flood protection and drinking water (Arriaga, 1989). 

This study revealed that flow velocity was one of the major variables influencing 

macroinvertebrate communities. However, the flow of the river was controlled by the 

dam for various purposes. During dam operation, the water is being released, thus 

increasing flow and velocity in the downstream river. Understanding the effect of 

variability in stream velocity on the macroinvertebrate communities can provide basic 

information to define environmental flows. Dam managers can manipulate dam 

operating rules to maintain economic benefits while simultaneously conveying 

adaptive environmental flows for biodiversity (Arthington et al., 2006). Information 

about community thresholds, such as the one obtained in this study, can be used to 

adjust stream velocity levels for Ecuadorian rivers. Acreman and Dunbar (2004) 

suggested that defining the environmental flow was only one step in river protection; 
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the natural flow of the river and flow needed to maintain local human needs (e.g. 

navigation, downstream uses) should also be considered (Acreman and Dunbar, 

2004). Both the Guayas and the Portoviejo River basins need to be better explored in 

order to improve knowledge regarding the impact of damming and other human 

activities on aquatic ecosystems. To our knowledge, no environmental/ecological flow 

is required to support aquatic life in the Ecuadorian rivers. However, it is necessary to 

perform a comprehensive cost-benefit analysis of the dam in order to maximize the 

‘profit’.  

Thirdly, our study showed that water hyacinth cover was an important variable 

affecting the diversity of macroinvertebrates and ecological water quality in the 

Daule-Peripa reservoir. In the case of the Daule-Peripa reservoir, an intermediate 

vegetation cover of water hyacinth was positively related with the diversity of 

macroinvertebrates. Macrophytes can provide excellent microhabitats that promote 

the establishment and colonization of macroinvertebrates. Although, the spreading of 

water hyacinth in both Daule-Peripa and Poza Honda reservoirs has been blamed for 

serious socio-economic consequences such as obstruction of waterways and 

reducing hydropower production, the benefit of water hyacinth should be weighed 

and compared to other impacts on ecosystem services before management actions 

are initiated. It might be a good approach to keep part of water hyacinth cover to 

support the macroinvertebrate communities and improving ecological water quality. 

On the other hand, other areas of water hyacinth cover can be harvested for other 

purposes such as biogas production for local uses. Water hyacinth is considered as a 

promising material for fuel ethanol production in tropical countries because of its high 

availability and high biomass yield (Das et al., 2016). Some studies have explored 

the possibility of (co-) digestion related to (enhanced) biogas/methane production. 

For example, the mix water hyacinth with sheep waste was tested in different 

combinations for anaerobic co-digestion, to generate biogas and at the same time 

digested sludge that can be used as fertilizer for agricultural applications (Patil et al., 

2014). Water hyacinth is a very good biogas producer, but needs pre-treatment to 

enhance the biogas yield (Patil et al., 2014). The use of water hyacinth for biogas 

production might be promising approach. In some places, water hyacinth can be 

harvested and used as feedstock in anaerobic digesters to produce methane and 

generate renewable energy. Biofuels produced from water hyacinth may be an 
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economic management solution in order to control the water hyacinthin the 

hydropower reservoir. However, as part of the cost-benefit of this methane/biogas 

generation, a major challenge of water hyacinth is the transport, as it contains floating 

structures rich in air, and also high quantities of water, in this way, the quotient 

solids/volume is relatively low. 

Conductivity, chlorophyll a and nutrient concentration are considered as major 

ecological drivers for the protection of the aquatic ecosystem in Ecuadorian rivers. 

Conductivity integrates several variables like minerals from pollutant degradation 

(wastewater) and inorganic pollutants (D’heygere et al., 2003). Nutrients (e.g. NO3-) 

get into the water as a result of domestic wastewater discharges, agricultural 

activities (e.g. application of manure and fertilizer containing NO3-) and as a result of 

oxidation of nitrogenous waste products in human and animal excreta (Singh and 

Sharma, 2014). Therefore, in order to improve the ecological water quality, we 

emphasize the need of integrated management actions to control the diffuse pollution 

and future investment in wastewater treatment in order to reduce the pollutant load 

entering into the river. A potential option to improve the water quality is the 

investment in wastewater treatment. Cuenca is one of the cities in Ecuador which has 

treatment plants for sewage; even so, it could process only 9% of the sewage 

(Proano, 2005). Therefore, water quality can be improved by providing sanitation 

infrastructure (e.g. waste stabilization ponds and constructed wetlands) in order to 

treat the wastewater before discharge into the river (Troyer et al., 2016). In Ecuador, 

water quality issues, aquatic ecosystems and ecosystem services have received very 

limited attention (Nolivos et al., 2015). Although Ecuador has a legal water 

framework, there are no minimum flow requirements for dam operators, and no 

standards are available for chlorophyll a concentration and conductivity. In the 

Guayas River basin, the lack of an appropriate management structure for maintaining 

the natural conditions caused losses in biodiversity, eutrophication and reduced 

water availability (Andres, 2009). Nevertheless, integrated management actions 

should be taken to protect and restore ecosystems and sustainable hydroelectric 

development in Ecuador as well as the rest of the world.  
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7.6 Further research  

In case of the Daule-Peripa hydropower reservoir, we found that an 

intermediate vegetation cover of water hyacinth was positively related to the diversity 

of macroinvertebrates. However, data on the more detailed impact of water hyacinth 

coverage on electricity generation is not available. The interrelation between different 

aspects (e.g. impact of water hyacinth on water quality and macroinvertebrates, 

impact of water hyacinth on electricity production) is necessary. It supports to gain 

insight in how to steer and control water and ecosystems in a sustainable manner, 

considering social, economic and political processes (Goethals, 2013). Therefore, 

further research should quantify these findings and assess the costs and benefits 

related to the presence of water hyacinth. Integrating the specific ecological 

knowledge with economic assessments and public perception would deliver valuable 

information to identify priority habitats to be targeted for the control of water hyacinth 

and to prioritize conservation actions in an operative way. Understanding of both 

ecological aspects and socio-economic dimensions can enhance sustainable river 

management. 

Only turbidity was significantly different between sampling sites with and 

without water hyacinth (c.f. chapter 4). Nevertheless, turbidity should not be 

considered as a main factor for the presence of water hyacinth in the Daule-Peripa 

reservoir, but rather should be considered as an effect. Results from chapter 5 

showed that flow velocity is the key variable for the establishment of water hyacinth in 

the Guayas river basin; water hyacinth was only established at sites with a flow 

velocity lower than 0.4 m/s. However, there is no clear relationship between the 

presence of water hyacinth and the other physical-chemical variables (e.g. 

temperature, conductivity, TDS, pH, chlorophyll a, chlorides, DO). The lack of data of 

water nutrient levels in the Guayas river basin was a major limitation of this study. 

Therefore, the cause-effect relationships between the presence of water hyacinth 

and environmental variables remain unclear. Further studies on cause-effect 

relationships between water hyacinth coverage and nutrient concentrations are 

needed in order to have better understanding of the habitat suitability of water 

hyacinth.  
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In this study, TITAN revealed thresholds for the change of macroinvertebrate 

communities along a gradient of stream velocity in the Guayas River basin and 

conductivity and nitrate-nitrogen in the Portoviejo River basin in the dry season. This 

is the first publication determining the thresholds on macroinvertebrate communities 

in this region. Further studies in the wet and dry seasons are needed to obtain a full 

understanding of how the seasonal differences affect the macroinvertebrate 

communities. The results may serve as a starting point for future studies, which is 

requiredto check if the thresholds identified from this case study are consistent and 

applicable at a larger scale and for other species in the ecosystems.  

Hydropower generation can cause both direct as well as indirect detrimental 

impacts on river systems by altering the water flow pattern and reshaping natural 

habitats (Chen et al., 2015). However, the impacts of hydropower generation on other 

taxa in the ecosystems such as fishes, algae, vascular plants and birds in Ecuador 

remain unclear. The change in natural flow patterns can severely disrupt natural 

riverine production systems. A case study from the Mekong river basin showed that 

hydropower generation will reduce fish productivity, as well as biodiversity loss (Ziv et 

al., 2012). Therefore, it is needed to extensively study the impacts of damming on 

localized fisheries and agriculture production in Ecuadorian rivers. Furthermore, 

future research should reveal long-term effects of damming on biodiversity and 

ecological services of rivers in order to have fuller understanding of the ecological 

impacts.  
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Summary 
 

 

Hydropower dams have gained high attention as ecological friendly energy 

resources. During recent years, rivers in Ecuador have been heavily impacted by 

human activities, especially due to the expansion of hydropower dams. There is an 

urgent need to assess the ecological impacts of hydropower dams and evaluating the 

water quality of Ecuadorian rivers, as this information is indispensable for future 

decision-making and management in relation to hydropower dam development, as 

well as controlling impacts resulting from anthropogenic disturbances. The aim of this 

thesis is to gain insight the ecological impacts of the hydropower dams on river 

systems.  

Based on the literature search, we found that the models applied to 

hydropower dam impact assessment have been used to identify an expanding range 

of impacts at various spatial and temporal scales. Existing ecological models provide 

a basis to assess the impact of changing hydrological regimes and water quality on 

the habitat suitability of fish, macroinvertebrates and algae. Field data and expert 

knowledge have been used as input variables for hydrodynamic models, water 

quality models, food web models, habitat suitability models and integrated models to 

explore the change in water quality and habitat suitability at various scales. Given 

their numerous strengths and opportunities, using models for hydropower dam 

impact assessment deserves further exploration to improve the understanding of the 

different processes affected by hydropower dam development and operation. In 

general, most studies were based on a very limited number of sampling sites. They 

often only focused on the assessment of an area near to the dam. Consequently, 

results reported tend to underestimate or overestimate the impacts of dams on 

upstream and downstream sites. Therefore, an integrated environmental impact 

assessment of dams at a different level of detail is required.  

The field data were collected in the Guayas River basin in 2013 and the 

Portoviejo River basin in 2015. Different statistical and modeling methods were 

applied in order to gain insight into the ecological impacts of hydropower dams on 

Ecuadorian rivers. The macroinvertebrates and physico-chemical variables were 

sampled, hydro-morphological conditions and habitat characteristics were recorded 
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at each sampling site. The Biological Monitoring Working Party-Colombia (BMWP-

Colombia) values were calculated to assess the ecological water quality.  

In the Daule-Peripa reservoir, a generalized linear model shows that water 

hyacinth is present at sites with a low turbidity. However, there is no clear relationship 

between the presence of water hyacinth and temperature, conductivity, TDS, pH, 

chlorophyll, chlorides, DO, oxygen saturation. Therefore, the cause-effect 

relationships between the presences of water hyacinth and environmental variables 

remain unclear. The presence of water hyacinth was an important variable positively 

affecting the diversity of macroinvertebrates in the Daule-Peripa reservoir.  

In the Guayas river basin, the BMWP-Colombia scores indicated that water 

quality of the sampling sites within the Guayas River basin ranged from good to very 

bad. Canonical Correspondence Analysis revealed the most important environmental 

factors influencing the distribution of macroinvertebrate communities in the Guayas 

river basin were stream velocity, chlorophyll a, conductivity, temperature and 

elevation. Water hyacinth was only present at sites with flow velocities of lower than 

0.4 m/s. Threshold Indicator Taxa ANalysis (TITAN) was able to discriminate 

between the macroinvertebrate community related to stagnant water (Daule-Peripa 

reservoir) and the macroinvertebrate community related to running waters. TITAN 

also revealed change points for the thresholds defined by stream velocity at 0.03 m/s 

and 0.4 m/s. 34 taxa (63%) were considered as the reliable indicators of stream 

velocity, of which 20 taxa are indicated as indicators of high stream velocity and 14 

taxa as indicators of low stream velocity in the Guayas river basin.  

In the Portoviejo river basin, the BMWP-Colombia scores indicated that water 

quality of the sampling sites within the Portoviejo river basin ranged from good to 

bad. The BMWP-Colombia scores were positively correlated with elevation and 

stream velocity while negatively associated with temperature, conductivity, 

chlorophyll, NO3
-, NO2

-, TP and TN. However, TITAN could only revealed change 

points in elevation, conductivity and nitrate-nitrogen concentrations. Change point 

analysis identified a negative response of macroinvertebrate communities at an 

elevation of 30 m a.s.l., conductivity values of 1200 µS/cm and nitrate-nitrogen 

values of 0.5 mg/L. In addition, the change points revealed a positive response of 

macroinvertebrate taxa at elevations of 62 m a.s.l., conductivity values of 1433 
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µS/cm and nitrate-nitrogen values lower of 2.3 mg/L. Atyidae, Corbiculidae, 

Thiaridae, Acari, Baetidae and Leptohyphidae can be considered as indicator taxa to 

assist in identifying environmental thresholds of the Portoviejo River. 

This study investigated some key issues of hydropower generation on 

Ecuadorian rivers. Dams often severely alter the functioning of river systems, both 

locally as well as upstream and downstream. This PhD research provides insights 

into the ecological impacts of hydropower dams, based on research executed in two 

river basins in Ecuador. The results of this work show the diverse sets of impacts on 

the physical habitats, chemical water quality as well as plant and invertebrate 

communities at various spatial scales. The hydropower dams are one of the main 

drivers causing unfavourable changes in the riverine biota through changes in the 

flow (translated to stream velocity). Stream velocity is one of the key drivers 

influencing the distribution of macroinvertebrate communities in the Guayas river 

basin. It also plays a strong role in the presence of water hyacinth in the reservoir. 

Water hyacinth provide positive effects for macroinvertebrates. In that way, 

hydropower dams create both direct and indirect effects on ecosystems. Besides the 

impacts from damming, Ecuadorian rivers are facing many other pressures such as 

changes in land use and intensification of agriculture. Our results pointed out the 

importance of multiple factor assessments at various spatial scales for better 

understanding impacts of hydropower generation on river water quality and 

biodiversity. Consequently, this research is highly valuable for environmental impact 

assessment studies related to the construction and operation of hydropower dams 

and necessary mitigating management actions. 
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Samenvatting  
 
 
 

Waterkrachtcentrales kregen de voorbij jaren veel belangstelling als 

ecosysteemvriendelijke manieren om elektriciteit op te wekken. De voorbije jaren 

werden verschillende waterkrachtcentrales gebouwd in Ecuador, en blijken deze toch 

een duidelijke ecologische impact teweeg te brengen, zoals ondermeer de sterke 

ontwikkeling van drijvende waterplanten op de stuwmeren. Vandaar dat er dringende 

vragen rijzen om deze ecologische impacten nader en ook kwantitief te bepalen, 

gezien dergelijke informatie onmisbaar is om goede beslissingen te nemen inzake de 

verdere uitbouw van energie-opwekking via waterkrachtcentrales. Deze thesis heeft 

als doel om ecologische inzichten te verwerven inzake de ecologische impact van 

waterkrachtcentrales op riviersystemen. 

Op basis van internationale literatuur kon worden vastgesteld dat heel wat 

modellen reeds in het verleden werden ontwikkeld en gebruikt om de diverse en 

toenemende set van toestandswijzigingen van rivieren te beschrijven en voorspellen 

op verschillende ruimtelijke en temporele schalen. Bestaande modellen geven een 

basis om de impact van wijzigende hydrologische regimes, waterkwaliteit en 

habitatgeschiktheid voor vissen, invertebraten en algen te beoordelen. Zowel 

gegevens als expertkennis werden gebruikt als input voor het ontwikkelen van 

modellen die hydrodynamische processen, waterkwaliteit, voedselwebben en 

habitatgeschiktheid beschrijven op verschillende ruimtelijke en temporele schalen. 

Gezien hun talrijke sterkten en mogelijk opportuniteiten voor modellen in de 

toekomst, verdienen dergelijk modelleerinstrumenten meer aandacht om de effecten 

van waterkrachtcentrales te beschrijven en analyseren. 

In 2013 en 2015 werden de veldgegevens voor deze studies respectievelijk 

verzameld in de stroombekkens van de Guayas en Portoviejo rivieren. Verschillende 

statistische gegevensanalysemethoden en modellen werden gebruikt om inzicht te 

verwerven in de ecologische impacten van waterkrachtcentrales in Ecuadoriaanse 

rivieren. Daarnaast werd de Biological Monitoring Working Party-Colombia (BMWP-

Colombia) gebruikt als een kwaliteitsindex om de waterkwaliteit a.d.h.v. invertebraten 

te beoordelen. 
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Via Generalized Linear Models (GLMs) kon de relatie aangetoond worden 

tussen lage turbiditeitswaarden en de aanwezigheid van waterhyacint 

stroomopwaarts van de Daule-Periba dam in het Guayas stroombekken. De 

aanwezigheid van deze waterplanten had bovendien op zijn beurt een grote invloed 

op de samenstelling van de invertebratengemeenschap. In het algemeen 

schommelde de BMWP-Colombia van zeer slecht tot goed in dit stroombekken. Via 

Canonische Correspondentie-analyse kon bovendien aangetoond worden dat 

stroomsnelheid, chlorofielconcentratie, conductiviteit, temperatuur en hoogteligging 

van de rivier in sterke mate een verklaring konden geven voor de aangetroffen 

invertebratenfamilies. Aansluitend kon via Threshold Indicator Taxa ANalysis (TITAN) 

analyses een onderscheid gemaakt worden tussen invertebratenfamilies die typisch 

voorkomen bij lage stroomsnelheden (stroomopwaarts van de dam) en hoge 

stroomsnelheden. In het Portoviejo stroombekken, schommelden de BMWP-

Colombia  scores van slecht tot goed. In dit bekken kon via de gegevens te 

analyseren via TITAN aangetoond worden wat omslagpunten waren voor 

hoogteligging, conductiviteit en nitraatstikstof in relatie tot invertebratenfamilies. 

Deze studie analyseerde dus enkele sleutelelementen inzake gekoppelde 

ecologische wijzigingen van waterkrachtcentrales in rivieren inzake hydromorfologie, 

waterkwaliteit en biologie. Op die manier is deze studie een belangrijke basis om de 

ecologische impacten stroomopwaarts- en stroomafwaarts te analyseren, tevens in 

relatie tot andere impacten, en vormt ze en basis voor verder onderzoek m.b.t. 

ecologische impacten van waterkrachtcentrales, evenals de vertaling naar de praktijk 

toe voor milieu-impactstudies en het duurzamer inplanten en beheren van deregelijke 

systemen. 
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Appendices  
 
Appendix 3.1 
 
 

SAMPLING PROTOCOL: SITE DESCRIPTION 
 
- Site Name: 

- Time and date: 

- Sample ID: 

- Investigator: 

 
Stream name/lake 
 

 

Type of watercourse 
 

River 
Lake 

Coordinates 
 

 

Altitude of sampling sites [m.a.s.l] 
 

 

Photos of the sampling location (numbering the photos) 
- Downstream  
- Upstream 
- Left bank 
- Right bank 
- Substrate 
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Description of sites (exceptional, weather conditions, main interruption, …) 
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Land use of the bank top (Estimate at both banks for the stretch of 100m * 10m) 
 
Type of land use  % on left bank % on right bank 

forests    

arable land   

residential areas   

road, paths   

urban area   

quarrying or mining   

orchard   

other   

 
Shading 

partly shaded, limited stretch <33%   

partly shaded, longer stretch 33-90%  

partly shaded, whole stretch >90%  

completely shaded, limited stretch >33%  

completely shaded, longer stretch 33-90%  

completely shaded, whole stretch >90%  

 
Presence of macrophytes (% of the bed covered by Macrophytes) (Estimate 
area cover at the littoral zone of 100m * 10m) 
 

 Submerged 
aquatic 

macrophytes 

Emerged aquatic 
macrophytes 

 

Floating aquatic 
macrophytes 

 
Contigous/Interrupted    

Abundant = 75-100%    

Common = 50-75%    

Frequent = 25-50%    

Occasional = 5-25%    

Rare = 1-5%    

Invisible    
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River morphology 
 

 
 
 
Free drawing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
variation in 
width             
        
 
         

 
3 cross sections 
Section 1:  a) [m]   b) [m]    c) [m]    
  d) [m]   e) [m]    f) [m]     
 
Section 2:  a) [m]   b) [m]    c) [m]    
  d) [m]   e) [m]    f) [m]     
 
Section 3:  a) [m]   b) [m]    c) [m]    
  d) [m]   e) [m]    f) [m]     
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Bank 
 
erosion   Absent/Limited/Abundant 

curvature erosion Absent/Limited/Abundant 

width-

erosion  Absent/Limited/Abundant 

 
 
Profile of the bank 
Vertical        steep (>45°)      gradually not trampled    composite not trampled 
 

    
 
  
 
Stream Depth 
 
(Measure the depth across the stream, from right bank to left bank, the measure 
should be done at approximately 1/6, 2/6, 3/6, 4/5 and 5/6 of the way across the 
stream, 5 measurements) 
Section 1 

M1 M2 M3 M4 M5 
     

 
Section 2 

M1 M2 M3 M4 M5 
     

 
Section 3 

M1 M2 M3 M4 M5 
     

 
 
Variation in flow 

absent 

at human constructions 

low  

moderate 

high 
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Sludge layer 
 

invisible absent <5cm  5 - 20 cm > 20 cm 
     

 
Dead wood 

twigs d<3cm 
branches 3-30 

cm 
branch >30 

cm 
Absent Absent  Absent   
Limited  Limited  Limited   
Abundant Abundant Abundant 

Current Velocity  
 
(Should be measured at the same location where the depth measurements were 
taken) 
Section 1 
 

S1 
 
 
 

S2 S3 S4 S5 
 

B1  
 
 
 

B2 B3 B4 B5 
 

      
Section 2 
 

S1 
 
 
 

S2 S3 
 

S4 S5 

B1  
 
 
 

B2 B3 
 

B4 B5 

Section 3 
 

S1 
 
 
 

S2 S3 
 

S4 S5 

B1  
 
 
 

B2 B3 
 

B4 B5 
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Mineral substrates (% of the bed covering) 
 

% 0 0-20 20-40 40-60 60-80 >80 
Invisible       
Boulder  
(D>256mm) 

      

Cobble  
(D=64-256mm) 

      

Gravel  
(D=2-64mm) 

      

Sand  
(D=0.062-2mm) 

      

Silt  
(D=4-62 um) 

      

Clay  
(D=0.24-4um) 

      

 
 
Pool/Riffle class 
 
Class 1 

Pool-riffle pattern is (nearly) pristine: 
extensive sequences of pools and 
riffles.  

 

Class 2 

Pool-riffle pattern is well developed: 
high variety in pools and riffles.  

 

Class 3 
 
Pool-riffle pattern is moderately 
developed: variety in pools and riffles 
but locally.   

Class 4 
 
Pool-riffle pattern is poorly developed: 
low variety in pools and riffles.   

Class 5 
 
Pool-riffle pattern is absent: uniform 
pool-riffle pattern.  

 
 

Class 6 
 
Pool-riffle pattern is absent due to 
structural changes: uniform pool-riffle 
pattern due to reinforced bank and 
bed structures.   
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Appendix 4.1 

 

Call: glm(formula = Water_hyacinth ~ Turbidity, family = binomial, data = Data_dam) 

 

Deviance Residuals:  

    Min       1Q   Median      3Q      Max   

-1.8578  -0.3930   0.3955   0.6790   1.4323   

 

Estimate Std. Error  z value  Pr(>|z|)   

(Intercept)   7.6551      3.1163    2.457    0.0140 * 

Turbidity    -1.5468     0.6856   -2.256    0.0241 * 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 35.165 on 27 degrees of freedom 

Residual deviance: 24.414 on 26 degrees of freedom 

AIC: 28.414 

Number of Fisher Scoring iterations: 5 
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Appendix 4.2 

Overview of the different macroinvertebrate taxa found in the samples with indication of the average abundance per vegetation cover 

class and the percentage of sites where the taxon was found within a certain vegetation cover class (0=absent, 1=1-5%, 2=5-25%, 3= 

25-50%, 4 = 50-75%, 5 = 75-100%).  

  
Average  

abundance %sites 
Average 

 abundance %sites 
Average 

 abundance %sites 
Average 

 abundance %sites 
Average 

 abundance %sites 
  class 0 class 0 class 1 class 1 class 3 class 3 class 4 class 4 class 5 class 5 
Acari 14.1 81.8 77.8 100.0 12.5 100.0 353.0 100.0 33.5 81.8 
Aeshnidae 0.2 18.2 0.0 0.0 1.5 50.0 0.0 0.0 0.5 45.5 
Ampullariidae 0.2 9.1 2.0 40.0 9.0 50.0 0.0 0.0 0.0 0.0 
Ancylidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 9.1 
Baetidae 2.3 36.4 3.2 40.0 5.0 100.0 8.7 100.0 5.2 72.7 
Caenidae 0.0 0.0 0.0 0.0 0.5 50.0 0.7 66.7 1.2 54.5 
Cambaridae 0.3 18.2 0.0 0.0 2.0 50.0 0.0 0.0 0.5 27.3 
Ceratopogonidae 0.0 0.0 0.0 0.0 0.5 50.0 0.0 0.0 0.0 0.0 
Chaoboridae 0.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chironomidae 122.2 81.8 39.6 80.0 309.5 100.0 110.7 100.0 174.6 90.9 
Coenagrionidae 0.1 9.1 0.2 20.0 2.5 100.0 0.7 33.3 6.1 81.8 
Corixidae 6.3 27.3 0.0 0.0 0.5 50.0 0.0 0.0 0.0 0.0 
Culicidae 0.0 0.0 0.0 0.0 0.0 0.0 1.0 33.3 0.5 36.4 
Dugesiidae 3.9 27.3 22.0 100.0 0.5 50.0 5.0 100.0 16.0 81.8 
Dytiscidae 0.0 0.0 0.2 20.0 1.5 50.0 0.0 0.0 0.4 18.2 
Gerridae 1.8 45.5 1.2 40.0 0.0 0.0 1.0 33.3 1.4 27.3 
Glossiphoniidae 10.1 72.7 2.8 40.0 20.5 50.0 0.0 0.0 1.6 45.5 
Hyallelidae 3.8 36.4 7.2 80.0 102.5 50.0 10.0 100.0 45.1 100.0 
Hydrophilidae 0.0 0.0 0.2 20.0 0.0 0.0 0.0 0.0 0.1 9.1 
Hydroptilidae 0.0 0.0 0.2 20.0 0.0 0.0 0.0 0.0 0.1 9.1 
Libellulidae 0.8 36.4 0.4 40.0 6.0 100.0 5.7 66.7 10.3 100.0 
Limoniidae 0.2 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lymnaeidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 27.3 
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Mesoveliidae 0.1 9.1 2.4 80.0 13.5 50.0 0.0 0.0 0.5 27.3 
Naucoridae 0.0 0.0 0.2 20.0 0.0 0.0 0.3 33.3 0.2 18.2 
Notonectidae 2.8 27.3 6.6 60.0 36.0 50.0 2.7 33.3 2.3 45.5 
Physidae 0.0 0.0 0.0 0.0 0.5 50.0 0.0 0.0 0.0 0.0 
Planorbidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 18.2 
Stratiomyidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 9.1 
Thiaridae 125.5 36.4 0.0 0.0 0.5 50.0 0.0 0.0 0.0 0.0 
Tubificidae 0.3 18.2 0.8 20.0 0.5 50.0 3.0 66.7 0.9 45.5 
Veliidae 0.0 0.0 0.0 0.0 0.5 50.0 0.0 0.0 0.5 9.1 
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A
ppendix 5.1: Boxplots reflect sam

ple variabilities of all m
easured variables in the 

G
uayas 

river 
basin. 

Bold 
horizontal 

lines 
represent 

m
edian, 

boxes 
represent 

interquartile ranges (25–75%
 percentiles) and range bars show
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axim

um
 and 

m
inim

um
 values, sm

all black dots show
 outliers.  
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Appendix 5.2: Spearman's rank correlation matrix of the 10 environmental variables of the Guayas river basin dataset (n=120). 

Correlation coefficients with an absolute value of at least 0.70 are marked in bold. 

 
 
 Temperature Conductivity TDS pH Chlorophyll Chloride DO Turbidity Velocity Elevation 

Temperature 1          

Conductivity -0.11 1         

TDS -0.18 0.95 1        

pH -0.22 0.43 0.38 1       

Chlorophyll 0.58 -0.24 -0.25 -0.35 1      

Chloride 0.24 0.44 0.47 0.15 0.24 1     

DO -0.08 -0.05 -0.07 0.75 -0.13 -0.01 1    

Turbidity 0.43 0.03 0.03 -0.2 0.59 0.24 -0.22 1   

Velocity -0.62 0.34 0.35 0.57 -0.69 -0.08 0.26 -0.33 1  

Elevation -0.43 -0.31 -0.33 0.29 -0.26 -0.39 0.39 -0.42 0.31 1 
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Appendix 5.3: Threshold Indicator Taxa Analysis of individual taxa in response to stream velocity (m/s) in the Guayas River basin. Taxa 
are listed in alphabetic order. ienv.cp—environmental change point for each taxon based on IndVal maximum; zenv.cp—environmental 
change point for each taxon based on z maximum; freq—number of times each taxon occurred in the data set; maxgrp—1 if z- (negative 
response); 2 if z+ (positive response); IndVal-Dufrene and Legendre 1997 IndVal statistic, scaled 0-100% (with 100 indicating a taxon 
that occurred in all of the samples above or below a change point value and in none of the samples on the other side of the change 
point); obsiv.prob—the probability of obtaining an equal or larger IndVal score from random data; (number of random IndVals > = 
observed IndVal)/ numPerm); zscore—IndVal z score; 5%, 10%, 50%, 90%, 95%—change point quantiles among bootstrap replicates; 
purity—proportion of replicates matching observed maxgrp assignment; reliability—proportion of replicate obsiv.prob values < = 0.05; 
z.median—median score magnitude across all bootstrap replicates; filter—logical (if >0) indicating whether each taxa met purity and 
reliability criteria, value indicates maxgrp assignment. Negative and positive indicators are shown in bold.  
 

Taxa  Shortcode ienv.cp zenv.cp freq maxgrp IndVal obsiv.prob zscore 5% 10% 50% 90% 95% purity reliability z.median filter 
Acari ACARI 0.01 0.01 56 1 65.04 0.001 5.45 0 0 0 0.03 0.08 0.99 1 6.06 1 
Aeshnidae AESHNIDA 0 0 11 1 28.95 0.001 8.76 0 0 0 0.02 0.03 1 0.99 8.58 1 
Ampullariidae AMPULLAR 0 0.1 6 1 10.91 0.011 3.45 0 0 0 0.11 0.11 0.99 0.90 4.68 0 
Ancylidae ANCYLIDA 0.4 0.4 13 2 26.57 0.001 6.24 0.35 0.35 0.4 0.47 0.5 0.99 0.98 6.38 2 
Baetidae BAETIDAE 0 0.03 64 1 42.04 0.041 2.02 0 0 0 0.4 0.5 0.86 0.79 2.91 0 
Belostomatidae BELOSTOM 0 0 6 1 12.26 0.016 3.07 0 0 0.15 0.2 0.22 0.96 0.66 2.87 0 
Caenidae CAENIDAE 0 0 12 1 30.33 0.001 8.93 0 0 0 0.02 0.03 1 1 8.86 1 
Calopterygidae CALOPTER 0.45 0.42 14 2 37.8 0.001 9.22 0.28 0.3 0.42 0.45 0.47 1 1 9.61 2 
Cambaridae CAMBARID 0.05 0.06 7 1 14 0.002 4.79 0 0 0.01 0.06 0.07 0.99 0.96 5.70 1 
Ceratopogonidae CERATOPO 0 0 22 2 22.22 0.077 1.57 0 0 0.05 0.47 0.5 0.67 0.64 2.23 0 
Chironomidae CHIRONOM 0.03 0.01 100 1 81.75 0.001 4.01 0 0 0.02 0.05 0.07 0.99 0.99 4.01 1 
Coenagrionidae COENAGRI 0 0 50 1 47.22 0.014 3.32 0 0 0.1 0.4 0.5 0.79 0.83 3.04 0 
Corbiculidae CORBICUL 0.04 0.11 22 2 24.79 0.004 3.41 0.01 0.03 0.11 0.2 0.5 0.98 0.96 4.06 2 
Corixidae CORIXIDA 0.72 0.72 28 2 48.62 0.017 3.89 0 0 0.6 0.72 0.72 0.88 0.80 3.83 0 
Corydalidae CORYDALI 0.65 0.65 11 2 57.38 0.001 8.89 0.15 0.15 0.65 0.8 0.9 1 1 9.17 2 
Coryphoridae CORYPHOR 0.72 0.4 7 2 21.88 0.001 7.55 0.35 0.37 0.42 0.75 0.77 0.99 0.99 8.42 2 
Crambidae CRAMBIDA 0.6 0.6 13 2 60.22 0.001 11.14 0.2 0.32 0.47 0.6 0.65 1 1 10.42 2 
Culicidae CULICIDA 0.03 0.03 14 1 23.1 0.001 5.06 0 0 0 0.04 0.05 0.99 0.97 5.52 1 
Dugesiidae DUGESIID 0 0 33 1 56.91 0.001 7.51 0 0 0 0.01 0.02 0.99 0.99 6.79 1 
Dytiscidae DYTISCID 0 0 13 1 23.32 0.001 5.57 0 0 0 0.05 0.06 0.96 0.99 6.24 1 
Elmidae ELMIDAE 0.72 0.72 20 2 81.1 0.001 10.89 0.3 0.37 0.6 0.72 0.8 1 1 10.76 2 
Gerridae GERRIDAE 0 0.03 26 1 26.41 0.004 3.84 0 0 0 0.2 0.25 0.99 0.95 4.75 1 
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Glossiphoniidae GLOSSIPH 0 0 28 1 37.13 0.002 5.59 0 0 0 0.06 0.07 0.99 0.99 6.15 1 
Gomphidae GOMPHIDA 0.4 0.09 17 2 25 0.001 5.6 0.06 0.07 0.1 0.4 0.47 1 1 6.22 2 
Helicopsychidae HELICOPS 0.72 0.37 14 2 32.55 0.001 8.32 0.32 0.34 0.4 0.72 0.72 1 1 9.40 2 
Hyallelidae HYALLELI 0 0.01 26 1 54.39 0.001 10.78 0 0 0 0.03 0.03 1 1 11.00 1 
Hydrobiidae HYDROBII  0.45 0.2 7 2 13.73 0.001 4.71 0.17 0.2 0.3 0.47 0.5 1 0.96 5.30 2 
Hydrophilidae HYDROPHI 0.26 0.26 13 1 15.37 0.023 2.63 0 0 0.2 0.27 0.3 0.97 0.87 3.23 0 
Hydropsychidae HYDROPSY 0.72 0.45 31 2 70.88 0.001 11.15 0.32 0.37 0.45 0.6 0.6 1 1 12.26 2 
Hydroptilidae HYDROPTI 0.6 0.04 12 2 12 0.086 1.71 0 0.03 0.2 0.65 0.65 0.90 0.71 2.91 0 
Leptoceridae LEPTOCER 0.75 0.1 27 2 37.45 0.001 5.03 0.04 0.04 0.13 0.8 0.9 1 1 6.20 2 
Leptohyphidae LEPTOHYP 0.72 0.4 52 2 84.56 0.001 8.94 0.14 0.2 0.32 0.5 0.60 1 1 9.65 2 
Leptophlebiidae LEPTOPHL 0.6 0.42 30 2 69.6 0.001 11.52 0.35 0.37 0.42 0.5 0.5 1 1 12.48 2 
Libellulidae LIBELLUL 0 0 55 1 58.54 0.001 5.94 0 0 0 0.04 0.05 0.99 0.99 5.88 1 
Limoniidae LIMONIID 0.6 0.6 14 2 28.46 0.006 4.39 0.11 0.12 0.42 0.6 0.72 0.97 0.94 5.01 0 
Lymnaeidae LYMNAEID 0.5 0.5 10 1 10.42 0.179 1.06 0 0 0.17 0.5 0.5 0.61 0.39 1.71 0 
Megapodagrionidae MEGAPODA 0.6 0.2 6 2 12.24 0.001 4.38 0.15 0.17 0.2 0.6 0.65 0.99 0.89 4.32 0 
Mesoveliidae MESOVELI 0 0.03 15 1 22.18 0.002 4.13 0 0 0.01 0.26 0.27 0.99 0.97 4.85 1 
Naucoridae NAUCORID 0.72 0.45 33 2 44.95 0.001 5.6 0.05 0.08 0.46 0.72 0.72 1 1 6.94 2 
Notonectidae NOTONECT 0 0 17 1 38.91 0.001 8.74 0 0 0 0.03 0.07 1 1 9.09 1 
Perlidae PERLIDAE 0.65 0.5 12 2 42.53 0.001 10.29 0.45 0.47 0.5 0.65 0.65 1 0.99 11.33 2 
Philopotamidae PHILOPOT 0.65 0.07 17 2 22.76 0.006 3.28 0.01 0.03 0.41 0.77 0.9 0.99 0.99 4.54 2 
Physidae PHYSIDAE 0.77 0.4 9 2 13.44 0.026 2.56 0 0 0.4 0.8 0.9 0.79 0.80 3.73 0 
Planorbidae PLANORBI 0 0.5 8 1 8.33 0.248 0.73 0 0 0.35 0.45 0.5 0.40 0.39 1.76 0 
Platystictidae PLATYSTI 0.75 0.42 11 2 21.89 0.001 5.21 0.01 0.03 0.42 0.6 0.72 1 0.97 5.85 2 
Pleidae PLEIDAE 0.15 0.15 7 1 11.29 0.014 3 0 0 0.1 0.17 0.2 0.99 0.87 3.58 0 
Polycentropodidae POLYCENT 0.11 0.11 6 2 9.38 0.028 2.82 0.1 0.1 0.11 0.42 0.55 0.98 0.69 2.99 0 
Psephenidae PSEPHENI 0.72 0.45 17 2 53.03 0.001 11.84 0.37 0.4 0.47 0.72 0.72 1 1 12.022 2 
Simuliidae SIMULIID 0.45 0.42 8 2 16.47 0.011 3.94 0.07 0.11 0.45 0.65 0.77 1 0.93 5.02 0 
Stratiomyidae STRATIOM 0.5 0.5 7 1 7.29 0.152 0.58 0 0 0.1 0.42 0.45 0.65 0.34 1.75 0 
Tabanidae TABANIDA 0.72 0.72 6 2 42.42 0.002 8.75 0 0.5 0.67 0.72 0.72 0.93 0.91 7.94 0 
Thiaridae THIARIDA 0.77 0.12 36 1 28.26 0.12 1.33 0 0 0 0.2 0.47 0.84 0.54 1.99 0 
Tubificidae TUBIFICI 0.31 0.31 29 1 25.79 0.054 1.69 0 0 0.2 0.32 0.32 0.87 0.73 2.46 0 
Veliidae VELIIDAE 0.45 0.37 40 2 61.38 0.001 7.44 0.3 0.31 0.4 0.5 0.6 1 0.99 8.06 2 
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Appendix 5.4 Summary of the canonical correspondence analysis 
 
Partitioning of mean squared contingency coefficient: 
 
 Inertia Proportion 
Total 4.38 1.00 
Constrained 1.01 0.23 
Unconstrained 3.37 0.77 

 
Accumulated constrained eigenvalues 
Importance of components: 
 
 
 CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 CCA8 
Eigenvalue 0.45 0.22 0.11 0.08 0.05 0.04 0.03 0.02 
Proportion Explained 0.45 0.22 0.11 0.08 0.05 0.04 0.03 0.02 
Cumulative Proportion 0.45 0.66 0.77 0.85 0.91 0.95 0.98 1.00 
 
 
Biplot scores for constraining variables 
 
 
 CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 
Temperature -0.80 -0.40 0.05 -0.42 0.04 -0.04 
Conductivity 0.19 -0.92 -0.14 0.11 -0.08 0.13 
Chlorophyll -0.67 -0.04 0.27 0.30 -0.40 0.12 
Cloride -0.17 -0.42 -0.32 -0.03 -0.17 0.09 
DO 0.30 0.09 0.13 -0.48 -0.73 -0.29 
Turbidity -0.37 -0.15 -0.09 -0.04 -0.35 0.76 
Velocity 0.89 0.11 -0.06 -0.15 0.07 -0.05 
Elevation 0.65 0.42 0.59 0.00 -0.02 0.00 
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Appendix 6.1 

Spearman's rank correlation matrix of the 16 environmental variables of the Portoviejo River dataset (n=30). Correlation coefficients with 

an absolute value of at least 0.70 are marked in bold. 
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Elevation 1                
Velocity -0.22 1               
Temperature -0.33 -0.39 1              
Conductivity -0.84 0.05 0.46 1             
pH 0.03 -0.21 0.36 0.1 1            
DO -0.07 -0.31 0.38 0.11 0.69 1           
Chlorophyll -0.57 -0.33 0.53 0.58 0.23 0.49 1          
Turbidity -0.28 0.42 -0.25 -0.23 -0.28 -0.13 -0.15 1         
BOD5 0.51 -0.51 0.05 -0.3 -0.12 -0.05 0.08 -0.43 1        
NO3

- -0.81 0.05 0.43 0.82 0 -0.08 0.52 -0.06 -0.31 1       
NO2

- -0.78 0.01 0.41 0.75 0.03 0.34 0.79 -0.05 -0.18 0.7 1      
NH4

+ -0.08 0.23 -0.16 -0.08 -0.16 -0.22 -0.32 0.37 -0.37 0.08 -0.1 1     
TN -0.61 -0.06 0.47 0.63 0.1 0.07 0.36 -0.07 -0.21 0.79 0.48 0.03 1    
oPO4

3- -0.76 0.34 -0.06 0.54 -0.08 -0.07 0.33 0.38 -0.39 0.52 0.58 0.08 0.22 1   
TP -0.73 0.09 0.14 0.55 -0.04 -0.02 0.58 0.21 -0.13 0.66 0.7 -0.07 0.44 0.83 1  
TOC -0.86 0.15 0.48 0.73 0.11 0.23 0.65 0.21 -0.41 0.74 0.76 0 0.68 0.58 0.68 1 
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Appendix 6.2 
 
List of all families and their tolerance score of macroinvertebrate taxa collected in the 

Portoviejo River 
 

Taxa Shortcode BMWP-Colombia 
score No of present Frequency 

Acari ACARI - 184 6 
Atyidae ATYIDAE 8 199 6 
Baetidae BAETIDAE 7 181 19 
Belostomatidae BELOSTOM 4 12 9 
Calopterygidae CALOPTER 7 93 11 
Cambaridae CAMBARID - 16 6 
Ceratopogonidae CERATOPO 5 19 8 
Chironomidae CHIRONOM 2 805 29 
Coenagrionidae COENAGRI 7 124 21 
Corbiculidae CORBICUL - 247 9 
Corydalidae CORYDALI 6 19 3 
Culicidae CULICIDA 2 1 1 
Dryopidae DRYOPIDA 6 28 3 
Elmidae ELMIDAE 6 8 6 
Ephydridae EPHYDRID 4 1 1 
Gelastocoridae GELASTOC 5 1 1 
Gerridae GERRIDA - 8 5 
Glossiphoniidae GLOSSIPH 5 8 1 
Gomphidae GOMPHIDA 9 71 17 
Haliplidae HALIPLID 4 13 9 
Hydrobiidae HYDROBII 7 59 1 
Hydrophilidae HYDROPHI 3 29 5 
Hydropsychidae HYDROPSY 7 74 9 
Hydroptilidae HYDROPTI 8 7 4 
Lampyridae LAMPYRID 10 2 1 
Leptoceridae LEPTOCER 8 22 9 
Leptohyphidae LEPTOHYP 7 175 11 
Leptophlebiidae LEPTOPHL 9 61 8 
Libellulidae LIBELLUL 5 231 20 
Limoniidae LIMONIID 3 15 7 
Littorinidae LITTORIN - 20 1 
Lymnaeidae LYMNAEID 8 1 1 
Mysidae MYSIDAE - 1 1 
Naucoridae NAUCORID 8 42 12 
Nepidae NEPIDAE 5 8 3 
Notonectidae NOTONECT 5 135 2 
Ochteridae OCHTERID - 1 1 
Palaemonidae PALAEMON 8 30 4 
Perlidae PERLIDAE 10 3 1 
Philopotamidae PHILOPOT 9 7 1 
Physidae PHYSIDAE 3 2 2 
Pleidae PLEIDAE 6 12 6 
Polycentropodidae POLYCENT 9 5 1 
Ptilodactylidae PTILODAC 10 1 1 
Pyralidae PYRALIDA 7 11 4 
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Scirtidae SCIRTIDA 4 4 3 
Simuliidae SIMILIID 7 2 2 
Spionidae SPIONIDA - 14 2 
Stratiomyidae STRATIOM 3 12 5 
Tabanidae TABANIDA 5 6 3 
Thiaridae THIARIDA 5 5231 17 
Tubificidae TUBIFICI 1 18 6 
Veliidae VELIIDAE 7 56 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

 
 
 
 


