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A note on the Martin-Löf test for unidimensionality

Tom Verguts and Paul De Boeck, University of Leuven1

Abstract

One test which is often used to investigate fit of the Rasch model to a dataset, is the

Martin-Löf test for unidimensionality. This paper investigates whether (and when) its

asymptotic chi-square distribution can be assumed to be appropriate. We also study the

power of this test.

1. Introduction

Martin-Löf (cited in Glas & Verhelst, 1995 and Gustafsson, 1980) proposed a statistic

to test for unidimensionality in a given dataset. More specifically, the statistic concerns

the fit of the Rasch model, which is defined as

Pr(success) = exp( )
1 exp( )

! "
! "
!

" !
,

for a person parameter " and item (difficulty) parameter #. Under the Rasch model,

this statistic is asymptotically $2 distributed. This note is on what �asymptotically�

means in the  case of the Martin-Löf statistic.

Denote I the number of items in a dataset. Martin-Löf�s test consists of splitting

this set in two parts (containing I1 and I2 items respectively) and calculating the

maximum likelihood associated with the two parts. If the Rasch model holds, both sets

tap the same dimension and the product of the maximum likelihoods of both parts

should be approximately equal to the maximum likelihood calculated on both sets

together.

                                     

1 We wish to thank Norman Verhelst for his useful comments on the topic. Correspondence concerning

this paper should be sent to Tom Verguts, Tiensestraat 102, 3000 Leuven, Belgium.
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Formally, let t denote a score on the total test (t = 0, �, I), and nt denotes the

number of persons attaining this score. Further, denote t1 the score on the first and t2

the score on the second subset respectively (t1 = 0, �, I1; t2 = 0, �, I2). The variable t

denotes a combined score (t1, t2). The number of persons attaining the combined score t

equals nt.

Then, the statistic is defined as ML = �2ln(LR), where LR is the likelihood ratio
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The L(�)�s in (1) denote (conditional) likelihood functions of response patterns x

evaluated in the conditional likelihood estimators for the item parameters of the model.

The parameters % are theoretical proportions of the different scores; they are replaced

by their �saturated� estimators (e.g., �# t = nt / n, where n denotes the total number of

persons). The variables x1 and x2 denote partial response patterns, corresponding to the

first and second subtest respectively. Under the null hypothesis, this statistic is $2

distributed with I1I2-1 parameters (Verhelst, 1993).

The test is based on two frequency tables, one for the numerator in (1), where

the number of cells equals the number of score groups, and one for the denominator in

(1), where the number of cells equals (I1 + 1)(I2 + 1), the combination of all scores in

the two subtests (containing I1 and I2 items respectively). Since the $2 distribution only

holds asymptotically, some rules of thumb have been proposed to assess whether a

multinomial table is �full� enough to apply the $2 distribution (e.g., Siegel & Castellan,

1989; von Davier, 1997). We will follow von Davier, who notes that all expected

frequencies should be at least equal to five (von Davier, 1997, p. 30). With this rule, if I

= 20, and I1 = I2 = I/2 , one would need at least 605 (= 5 (I/2 + 1)2 ) persons to

satisfy this rule. This is however a minimum, since 605 persons is enough only in the

trivial case that all cells have equal probability (see von Davier, 1997, p. 31). Hence, if

the t1 & t2 score table is large, even with moderately large sample sizes, the Martin-Löf

test, under the null hypothesis, may not follow the stipulated $2
  distribution.
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2. Simulation study

We will illustrate the phenomenon discussed in the previous paragraph with a

simulation study; the computer program used for the calculations is attached to the

paper. Person abilities " of the Rasch model are sampled from a standardnormal

distribution. The number of persons (i.e., the sample size) can take on the values 500,

1000, or 5000.

The parameter vector #### = (-1, -0.5, 0.5, 1) is taken as the building block for

constructing item parameter vectors. If I = 8, we will take the item parameter vector to

be (####, ####); If I = 16, we take the item parameter vector to be (####, ####, ####, ####), and so on,

always in this order. So if I = 16, for example, item number 9 has a difficulty parameter

# = -1. Possible values of I will be I = 8, 16, 24 in our study.

Suppose the model is tested by splitting the item set in two equal parts, items 1, �,

I/2 and I/2 + 1, �, I (called a �split-half� procedure) and thus performing a Martin-

Löf test. For every factor combination, 500 datasets were generated.

Results of this procedure are shown in the left part of Table 1, for different numbers

of persons (�Sample size�) and items (I). In this Table, we report the rejection rate in

the upper half (at level ' = .05), and the mean Martin-Löf values in the lower half

(over all 500 replications). The theoretically expected rejection rate equals '; the

expected mean Martin-Löf value is shown in the bottom row of the Table.

The Table shows that for I = 8, the statistic performs well for all sample sizes.

However, if I = 24 its performance is bad and the observed statistic much too

conservative (as can be observed from the zero rejection rate).

What if the number of cells in the t1 & t2 table is lowered, for example by not

splitting the item set in half but at another point? (Splitting in half results in the

maximal number of cells in the t1 & t2 table). The outcome should be a less conservative

ML statistic. We investigate this by creating similar datasets as before, but splitting the

item set as 1, �, I/4, and I/4 + 1, �, I, which is called a �split-left� procedure. The

right part of Table 1 shows the result. The test performs similarly for I = 8 as in the

split-half method. But for larger values of I, the split-left procedure does much better,

although its behavior is still not very good for I = 24 and a relatively small sample size

(of 500 or 1000 persons).
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Table 1: Unidimensional data

Procedure

Rejection rate Split-half Split-left

Sample size I = 8 I = 16 I = 24 I = 8 I = 16 I = 24

500 .070 .010 .000 .044 .044 .004

1000 .052 .018 .000 .040 .038 .002

5000 .054 .030 .000 .068 .038 .012

Mean ML

value

Sample size

500 15.627 57.343 111.359 11.314 44.887 89.572

1000 15.528 58.137 115.898 11.155 45.355 92.460

5000

Expectation

15.450

15

60.362

63

124.534

143

11.514

11

46.958

47

96.759

107

3. Power of the Martin � Löf  test

Next, we investigate the power of the test by violating the model and checking the

resulting rejection rate. Now, two different abilities "1 and "2 determine the responses;

both have a standardnormal distribution and the correlation between "1 and "2 equals

0.40; note that this correlation is about the size one may expect in a typical dataset

(e.g., Carroll, 1993, p. 92). In a first power study, the first I/2 items are governed by "1

and the last I/2 items by "2. Results of this procedure are shown in Table 2. It can be

noted that if the correct splitting point is chosen (i.e., in this case, the split � half

procedure), then the power is very high; the model is almost always rejected. On the

other hand, if the correct splitting point is not known (the split � left  procedure), the

power is much lower.

Conversely, we can let the first I/4 items be governed by "1, the other items by "2,

and look at the rejection rate. The results of this procedure are shown in Table 3.

Again, if the correct splitting point is known (in this case, the split � left procedure),

the power is high. On the other hand, if the splitup is incorrect, the power can be low

(see left part of Table 3).
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Table 2: Twodimensional data (1)

Procedure

Rejection rate Split-half Split-left

Sample size I = 8 I = 16 I = 24 I = 8 I = 16 I = 24

500 .974 1 1 .176 .328 .400

1000 1 1 1 .356 .768 .928

5000 1 1 1 .982 1 1

Mean ML

value

Sample size

500 47.532 183.994 374.676 14.921 58.905 128.383

1000 81.173 301.037 609.441 18.182 74.896 163.873

5000

Expectation

337.053

15

1229.360

63

2443.688

143

42.475

11

186.176

47

424.498

107

Table 3: Twodimensional data (2)

Procedure

Rejection rate Split-half Split-left

Sample size I = 8 I = 16 I = 24 I = 8 I = 16 I = 24

500 .324 .346 .142 .958 1 1

1000 .634 .774 .822 .998 1 1

5000 1 1 1 1 1 1

Mean ML

value

Sample size

500 22.528 77.141 152.178 37.529 134.619 276.328

1000 29.332 95.111 192.294 62.986 222.674 445.385

5000

Expectation

83.977

15

230.869

63

459.590

143

267.981

11

913.167

47

1767.194

107
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4. Conclusion

 The ML statistic is a useful one, but it will tend to be conservative if many cells in

the t1 & t2 table are low (e.g., lower than five), which is rather common; Indeed, in order

to have a reliable test, the test needs to have a reasonable number of items. For 24

items, a sample size of even 5000 does not suffice. The condition of not too many low

frequency cells can easily be checked. If this condition is not met, a useful alternative to

the asymptotic $2 reference distribution might be the bootstrap procedure (von Davier,

1997). Second, the power of the test is good, but only if the correct splitup between

items governed by different dimensions is made. Otherwise, very large datasets are

needed to reliably detect the model violation. Hence, the investigator must have good

knowledge of the content of the items involved in order to usefully apply the Martin-Löf

test.
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