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Introduction: 

Neuroblastoma 

 

A little bit of history… 

 

Neuroblastoma (NB) was first described in 1864 by the German physicist Rudolf Virchow 

who observed an abdominal tumor mass in a child and called it, unaware of the origin of the 

tumor, a glioma1. About three decades later, in 1891, the German pathologist Felix 

Marchand reported that the tumor develops from the sympathetic nervous and the adrenal 

medulla. In 1910 James Homer Wright understood that the adrenal tumors were mainly 

composed of an identical cell type and realized that the tumor originates from the primitive 

neural cells -the neuroblasts-, and therefore named it neuroblastoma2.  

While tremendous progress has been made in treatment of childhood leukemia, success 

rates for high risk NB remain disappointing. It is a very complex and heterogeneous disease, 

on the one hand, NB accounts for disproportionate morbidity and mortality among the 

cancer of childhood while on the other hand, it is associated with one of the highest 

proportions of spontaneous and complete regression of all human cancers3. Typically, NB is 

subdivided in four stages based on the International NB Risk Group (INRG) Staging System. 

While stage L1 and L2 are localized or locoregional tumors with a favorable prognosis, 

patients with stage M have a metastatic disease and poor clinical outcome4. A specific 

subgroup of patients are those with stage MS, marked by metastases and the unusual 

capacity of spontaneous differentiation and regression and favorable outcome.  
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NB: when development goes wrong 

 

NB is the most common extracranial pediatric solid tumor in children, accounting for 

approximately 7-10% of pediatric cancers and nearly 15% of all pediatric cancer deaths in 

patients younger than 15 years old3. Tumors develop from precursor cells of the sympatho-

adrenal lineage that arise from the neural crest, a transient component of the ectoderm that 

gives rise to diverse cell types, including the peripheral nervous system, the craniofacial 

skeleton and pigment cells5. Only progenitors from the sympathetic lineage acquire the 

genetic events that lead to neuroblastoma development, resulting in tumors that can arise 

anywhere along the sympathetic nervous system5.  

At the end of the third week and in the beginning of the fourth week of embryonal 

development, sympathoadrenal cells from the neural crest in the trunk region of the embryo 

follow a ventral migratory path from the neural crest and neural tube to give rise to various 

structures, including the sympathetic nervous system that develops from the fate-restricted 

sympatho-adrenal progenitor cells, the so-called neuroblasts5-7. Upon migration, these 

neuroblasts start to express a series of factors that further allow their differentiation into 

either the ganglionic or the chromaffin lineage. Together, these cells form the differentiated 

cells that populate the sympathetic ganglia, paraspinal ganglia and adrenal medulla. 

Interestingly, during normal sympathoadrenal development, expression of MYCN is high in 

the early post-migratory neural crest, where it regulates the ventral migration and expansion 

of the neural crest cells. Later on, MYCN protein levels gradually reduce during 

differentiation of the sympathetic neurons6.  

 

NB: an embryonal precancer 

 

Several clinical and experimental features link neuroblastoma development to defective 

embryogenesis and pathological neuroblast precancer. The idea of an embryonal origin was 

first supported by a study of De Preter et al8, They showed that gene expression profiles of 

human fetal adrenal neuroblasts are remarkably similar to those of NB tumors. Interestingly, 

in some NB patients, new tumors form at different places and at different times early in the 
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life of the child, suggesting the existence of premalignant lesions and linking tumorigenesis 

to deregulated development6.  

 

The NB genomic landscape  

 

DNA copy number alterations 

 

The NB genomic landscape is marked predominantly by structural variants leading to 

amplifications, gains and losses while mutational burden is low. Therefore, NB can be 

considered as a so-called copy number driven cancer disease. The most frequent 

amplification is observed in more than 20% of the cases and encompasses the MYCN 

oncogene (V-Myc Avian Myelocytomatosis Viral Oncogene NB Derived Homolog)9,10. In 

addition to these amplicons which typically consist of 50 to 100 MYCN copies, large gains of 

the distal 2p-arm encompassing the MYCN locus are also frequently observed11. MYCN 

amplification was amongst the first identified prognostic genetic markers being associated 

with rapid disease progression and poor prognosis and was rapidly adopted into clinical 

practice12.  

MYCN is a member of the MYC proto-oncogene family that also includes MYC and MYCL. In 

addition to NB, MYCN amplification has been observed in a variety of other cancers with an 

embryonic and or a neuroendocrine origin like rhabdomyosarcoma, Wilms tumor and 

medulloblastoma13. MYCN protein functions through binding to the E-box sequences 

(CACGTG) in a heterodimeric complex with Max acting as a transcription factor that controls 

the expression of many target genes, which in turn regulate fundamental cellular processes 

including proliferation, cell growth, protein synthesis, metabolism, apoptosis and 

differentiation (Figure 1.1)14. Similar to MYC, MYCN plays an important role during 

embryonic development. Mutations in the human MYCN gene have been linked to birth 

defects, mouse embryos lacking MYCN die around E11.515 with MYCN being implicated in 

the early differentiation of the nervous system amongst others16.  

  



4|Chapter 1 
 

 

 

Figure 1.1: MYCN protein functions 

 

In addition to the frequently observed MYCN amplification, other loci have also been 

reported to be present in high copy numbers, however, with much lower incidence. Often, 

such rare amplifications occur together with MYCN amplifications and a recent study from 

Depuydt et al indicated that this marks a group of ultra-high risk patient with extremely poor 

outcome (Depuydt et al.          in preparation). LIN28B amplification and consequent elevated 

LIN28B expression levels cause down regulation of the let-7 family of miRNAs resulting in 

further increase of MYCN protein levels17. Additional amplifications occurring in NB have 

been reported including in ALK, MDM2, CDK4,…18-20  

Furthermore, typical patterns of large chromosomal gains and losses are observed in NB. 

First, numerical chromosomal imbalances in the absence of structural defects occur in 

localized L1 and L2 and special metastatic MS prognostic favorable cases, while structural 

imbalances including loss of 1p, loss of 11q and gain of 17q are confined to metastatic M 

cases with poor outcome21. Partial gain of chromosome arm 17q (gain of segment 17q23-

qter) is the most frequent abnormality of NB cells, present in more than 50% of cases and 

exclusively associated with poor prognosis. The principal mechanism underlying this partial 

gain is an unbalanced translocation with a variety of partner chromosomes, the most 

common translocation partner being chromosome 1p, resulting in the loss of 1p22. By cloning 

the translocation breakpoint our team could identify a new gene, NB breakpoint family 

member 1 (NBPF1), which is destroyed by the translocation. The translocation truncates 
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NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences 

derived from chromosome 17. On chromosome 17, the translocation disrupts one of the 

isoforms of ACCN1, a potential glioma tumor suppressor gene23
.  

Chromosome 17q driver genes in NB 

 

Partial gain of chromosome 17q is the most commonly observed genetic aberration in 

NB22,24. Because of its high frequency and its correlation with survival, it has long been 

assumed that one or several genes on 17q contribute to NB pathogenesis in a dosage 

dependent way. The specific genes and the molecular mechanisms responsible for 

development and progression of NB remain, however poorly understood. In a first attempt 

to gain better insights into the tumor process, several research groups tried to delineate the 

smallest region (SRO) of 17q gain24,25. This SRO which encompasses 17q23 till 17qter is still 

quite large and contains around 600 genes. Therefore other strategies to identify the culprit 

candidate genes had to be pursued. Interestingly, by performing DNA copy number analysis 

on 25 NB cell lines using comparative genomic hybridization, Saito-Ohara et al. identified a 

minimal region of gain at 17q2326 in one cell line. This region contains only 15 genes 

including BRIP1 and PPM1D, which encodes the phosphates WIP1, a negative regulator of 

p53 activity27. Downregulation of PPM1D using antisense oligonucleotides was shown to 

have a drastic effect on the growth of several NB cell lines26.  

BIRC5 or survivin, a member of the inhibitor of apoptosis (IAP) family, is a well-recognized 

oncogene in a variety of cancers and located on 17q25.3. Because of its well established role 

as an oncogene and its chromosomal location, one wondered if BIRC5 could function as an 

oncogene in NB as well. Indeed, BIRC5 is strongly overexpressed in human neuroblastoma 

tumors and correlates with poor survival outcome independent of 17q gain28. Likewise, 

silencing of BIRC5 in several NB cell lines resulted in mitotic catastrophy28. Another gene that 

has been put forward as a potential important NB 17q gene is NM23-H1 or NME129,30. Higher 

expression levels of NM23-H1 are correlated with a worse outcome in NB patients without 

MYCN amplification and in patients younger than 12 months of age30. It is postulated that 

NME1 together with its binding partner h-Prune acts as a pro-metastatic gene in NB29.  
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Mutations/single base pair variants 

 

The most frequently recurring mutation in NB has been reported in ALK (anaplastic 

lymphoma kinase receptor tyrosine kinase) occurring in 8% of the cases and slightly more 

frequent in metastatic cases18,31. These activating mutations are mostly confined to the 

ATPase activating domain with two major hotspot mutations at positions R1275 and F1174 

and leading to constitutive activation of the receptor32. The discovery of these ALK 

mutations was a landmark for the development of precision oncology for NB patients and 

clinical trials with ALK inhibitors were initiated to evaluate their benefit for treating NB 

patients33,34. Further, studies investigated how ALK activation contributes to the tumor 

phenotype and unraveled downstream signaling offering further opportunities for 

drugging33. While ALK mutations where discovered through the study of familial cases35 (see 

below) and standard candidate gene sequencing18, more recently a comprehensive picture 

was achieved through whole exome and genome sequencing of primary tumors. In addition 

to the previously reported ALK mutations, this provided further insight into the mutational 

landscape of NB. Analysis of 87 whole NB genomes by the Versteeg team uncovered 

recurrent involvement of genes implicated in neuritogenesis and also identified a subset of 

cases showing genomic features of chromothripsis17. Further studies also revealed recurrent 

involvement of loss of function events in ARID1A and ARID1B, either through inactivating 

mutations or focal deletions in 9% of the NB cases36. ARID1A and ARID1B are members of 

the SWI/SNF transcriptional complex that is thought to regulate chromatin structure and 

gene expression. Of interest, mutations in the ARID1 genes are also correlated with a more 

aggressive NB phenotype36. Sequencing efforts also shed further light onto the genetic and 

clinical heterogeneity of NB. Indeed, inactivating ATRX mutations (both base pair 

substitutions and deletions) were observed in a significant portion of older children (> 

5years) and young adolescents37. ATRX mutations were mainly found in the minimal 

overlapping region of deletions involving exon 5 up to exon 10, which encodes a predicted 

nuclear-localization signal. Of particular interest, ATRX mutations were also associated with 

longer telomeres and activation of the ALT pathway in keeping with the finding that ATRX 

functions as a direct repressor of ALT promoting telomere lengthening38. This also fits with 

the mutually exclusive occurrence of ATRX defects with MYCN amplification as MYCN drives 

hTERT overexpression thus excluding the need for alternative mechanisms for telomere 
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lengthening. In line with these observations, yet another sequencing study completed this 

picture showing that non MYCN amplified cases without ATRX mutations showed hTERT 

upregulation due to structural variants near the hTERT locus affecting hTERT expression 

levels39,40.  

Genetic predisposition to NB 

 

Familial NB is rare and only observed in 1% of the NB patients. They differ from sporadic 

tumors by the fact that they are diagnosed at earlier age41,42 and are frequently associated 

with other neural crest-derived developmental disorders such as Hirschsprung disease, 

congenital central hypoventilation syndrome and neurofibromatosis type I43. Due to the link 

of NB tumors with Hirschsprung disease and congenital central hypoventilation syndrome, 

PHOX2B was the first gene for which mutations were described that predispose the NB and 

was subsequently shown to be rarely targeted by somatic mutations. PHOX2B is a homeobox 

containing gene, which plays a crucial role during specification of noradrenergic cells44,45.  

Besides germline mutations, it has been shown that also single nucleotide polymorphisms 

(SNPs) can influence NB development. The Maris team conducted extensive genome wide 

association studies (GWAS) to identify particular SNPs predisposing to a higher risk of NB 

development. Through the Illumina HumanHap550 BeadChip assay, analysis of 1032 NB 

patients and 2043 controls gave a significant association between NB and the common 

minor alleles of three consecutive SNPs at chromosome 6p22 and containing the predicted 

genes FLJ22536 and FLJ44180 46. In a follow up study their analysis was restricted to 397 

high-risk cases and 2043 controls and detected a new significant association of six SNPs at 

2q35 within the BRCA1-associated RING domain-1 (BARD1) locus correlated with high-risk 

(Rs367816 OR= 1,82 p=5xE-14 and Rs643582 OR= 1,82 p= 2xE-15)47. The disease associated 

SNP correlates with the increase of an oncogenetically activated isoform of BARD1, BARD1β. 

BARD1β stabilizes Aurora kinase, which in turn will stabilize MYCN, resulting in a higher 

expression of MYCN.48. In a more comprehensive GWAS study using 2251 patients and 6097 

control samples a significant association in the LIM domain only 1 (LMO1) at 11p15.4 was 

identified. The signal was enriched in the subset of patients with the most aggressive form of 

disease. By analyzing DNA copy number alterations in 701 primary tumors they could also 

show that LMO1 was aberrant in 12,4% of the cases through a duplication event49. The 
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common causal SNP rs2168101 disrupts a GATA transcription factor binding site within a 

tissue specific super-enhancer element50. 
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Zebrafish 

 

Zebrafish as a model organism 

 

Zebrafish, a tropical fish native to Southeast Asia, came in to the fore as a model organism in 

the early sixties for the study of developmental genetics. Its advantages for genetic studies 

are its high fecundity, the generation of transparent embryos that develop outside of the 

mother and the conservation of vertebrate organs, which allows comparison with humans51. 

Importantly, many cellular processes and developmental programs are conserved in 

vertebrates. The true usefulness of the model, however, was recognized as a result of 

several large forward genetic screens52,53 which identified mutants in almost every organ or 

cell, with most of them shared with mammals. This demonstrated for the first time that fish 

could be used to identify genetic mutants for almost any phenotype. 

However, like every model organism, zebrafish also possess some disadvantages. This 

species has undergone a partial genome duplication, so some genes present as two copies 

(approximately 20% of the genome). Next to that, their last shared ancestor with humans 

was 445 million years ago, so they are far more remote from humans than other animals 

such as rodents. Finally, not all genes are conserved in their genome, amongst others BRCA1, 

they are ectothermic (cold-blooded) and they have some anatomical differences compared 

to humans (lack of heart septation, limbs, lungs…)54. 

In the early years the fish were mainly used to study developmental processes and 

regeneration, though, in the beginning of this millennium it was noted that zebrafish can 

also be used to study cancer51,55. 

Zebrafish and its cancer models 

 

In the past it was already observed that zebrafish can develop cancer after mutagenic 

exposure or even spontaneously. In 2003, David Langenau proved for the first time that 

zebrafish also can develop cancer upon ectopic overexpression of a transgene56. He 

demonstrated that overexpression of m-MYC under the control of the recombinase 

activating gene 2 (RAG2) promotor resulted in the rapid onset of adult T-cell acute 
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lymphoblastic leukemia (T-ALL). Leukemia initiated in the thymuses but quickly spread 

throughout the complete body of the fish, which was clearly visualized since m-MYC was GFP 

tagged. Interestingly, it could be shown that these tumors resemble human cancers both on 

the histological and genomic levels57. Since then, zebrafish models have been described for a 

variety of cancers like melanoma, pancreatic cancer, malignant peripheral nerve sheath 

tumors (MPNST), Ewing sarcoma and also NB (Table 1.1)58. Upon overexpression of MYCN 

under the control of the dβh (dopamine β hydroxylase) promotor NB tumors could be 

observed at 9 weeks of age59 . In human cells, NB can be diagnosed by the presence of 

neurosecretory granules within the cytoplasm of the tumors cells. These neurosecretory 

granules were evident in the fish tumors, showing the relevance of NB zebrafish models in 

cancer research. Although the first results were pretty spectacular, the tumor penetrance 

stayed rather low. Only 22% of the MYCN transgenic fish developed tumors within half a 

year. In the past, it was already proven that activated ALK can collaborate in NB 

pathogenesis60 and therefore one wondered if overexpression of ALK in the MYCN 

background fish would accelerate NB development. This turned out to be true, coexpression 

of ALKF1174L with MYCN tripled the penetrance of NB and markedly accelerated tumor onset, 

with tumors starting to develop at 5 weeks of age59,61. Similar processes were observed for 

NF1 (neurofibromatosis type 1), loss of NF1 in tg(dβh:EGFP-MYCN) zebrafish resulted in an 

acceleration of NB onset. Moreover, it was shown that loss of NF1 results in aberrant 

expression of the RAS-MAPK pathway and this could be therapeutically inhibited using the 

MEK inhibitor trametinib62. 

Zebrafish, more than a cancer model… 

 

Besides the development of several cancer models in zebrafish, several technical revolutions 

took place in zebrafish. Because of its small size and its similarity to humans, 71% of the 

zebrafish proteins have a human orthologue, zebrafish are more and more used as a tool for 

drug discovery. Zebrafish are typically used to screen large compound libraries. Researchers 

will then specifically look for compounds that introduce a phenotype of their interest63. For 

example, in a phenotypic screen to identify FDA-approved drugs with activity against T-ALL, 

perphenazine was identified. Perphenazine, an antipsychotic drug, had a drastic effect on 

MYC-overexpressing thymocytes in zebrafish. Moreover, human T-ALLs treated with 



Introduction|11 
 

 
 

perphenazine exhibited suppressed cell growth64. For melanoma, transgenic mitf-BRAFV600E; 

p53-/- embryos were used to identify small molecule suppressors of the neural crest lineage. 

One class of compounds, inhibitors of dihydroorate dehydrogenase (DHODH), such as 

leflunomide, led to an almost complete retraction of neural crest development in zebrafish 

and a reduction in self-renewal of mammalian neural crest stem cells65. Recently, with the 

discovery of CRISPR-CAS a complete new revolution took place in the genome engineering 

field. In zebrafish, zinc finger nuclease (ZFN) technology and TALENs were already 

established techniques (Table 1.1), but because of its relative ease also CRISPR CAS was 

quickly introduced66. Moreover, also tissue specific CRISPR CAS quickly found his way into 

the zebrafish field67 . What’s more is that also our lab contributed to the integration of the 

CRISPR CAS technology in zebrafish. BATCH-GE, an easy to use bioinformatics tool for batch 

analysis of next generation sequencing (NGS) data was introduced68. BATCH-GE identifies 

and reports indel mutations and other precise genome editing events and calculates the 

corresponding mutagenesis efficiencies for a large number of samples in parallel.  

  



12|Chapter 1 
 

 

Table 1.1: Transgenic models of cancers in zebrafish. Updated from58 

Cancer Oncogene Tumor suppressor gene  refs 

melanoma mitfa-BRAFV600E 

mitfa:EGFP:NRASQ61K 

kita:Gal4 x uas:HRAS 

Tp53-/- 

Tp53-/- 

69 

70 

71 

Pancreatic cancer ptf1a-KRASG12V-GFP 

ptfa1:Gal4-VP16 x 

uas:KRASG12V-GFP 

 72 

73 

T cell lymphoma or 

leukemia 

rag2:myc 

rag2:lox-dsRED2-lox-EGFP-

mMYC x hsp70-cre 

rag2:NOTCH1 

rag2:myc x rag2:bcl2 

 56,74 

75 

 

76,77 

78 

B cell Leukemia TEL-AML1 (ETV6-RUNX1)  79 

Rhabdomyosarcoma rag2-KRASG12D  80 

Neuroblastoma dβh:EGFP-MYCN 

dβh:EGFP and dβh:ALKF1174L 

dβh:EGFP-MYCN 

 

 

nfa1+/-; nf1b-/- 

59 

59 

81 

AML  pu1:MYST3/NCOA2-EGFP  82 

MPNST  

sox10:PDGFRA; 

sox10:mCherry 

Tp53-/- 

nfa1+/-; nf1b-/-Tp53-/- 

 

Tp53+/-; BRCA2-/- 

83 

84 

 

85 

Lipoma krt4:Hsa.myrAkt1  86 

Ewing’s sarcoma hsp70 or β-actin:EWSR1-FL1  87 

Liver fabp10:Lex1:EGFP x 

cryB:mCherry: LexA:EGFP-

krasG12V 

fabp10:TA; TRE: xmrk; 

krt4:GFP 

 88 

 

 

 

89 

Pancreatic  

neuroendocrine 

zmyod:MYCN  90 

Myeloproliferative 

neoplasms 

spi:NUP98-HOXA9  91 

Corticotrophin 

adenoma and 

neoplasm 

Pomc:pttg  92 

Testicular germ cell 

tumor 

Flck:tag 

flck:scl 

flck:lmo1 

 93 

Myelodysplastic 

syndrome 

 Tet2-/- 94 
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Replicative stress and cancer 

 

DNA replication stress 

 

DNA replication is a vital process of the living cell that guarantees precise duplication of the 

genetic information and subsequent transfer to the daughter cells. Although DNA replication 

is a highly controlled process, various perturbations originating from exogenous and 

endogenous sources can interfere with this process and can eventually lead to a slowing or a 

stalling replication fork, a phenomenon that is called replication stress95-97. There are 

multiple reasons why replicative stress can occur: 1) depletion of nucleotides required for 

replication or DNA repair; 2) interstrand lesions, 3) strongly bound proteins and complex 

stable DNA structures (e.g. G4 structures, see further) hampering progress of the replisome, 

4) RNA-DNA hybrids (R-loops) causing replication-transcription conflict etc… (Figure 1.2). 

Upon replication fork stalling, dormant origins of replications are activated to permit 

activation of replication. However, if two converging forks stall in regions lacking dormant 

regions, cells must restart at least one of these forks to ensure full genome duplication. 

Single strand DNA at the stalled replication forks will be coated by the ssDNA binding 

replication protein A (RPA). RPA-coated ssDNA stimulates the activation of the DNA damage-

checkpoint kinases ATR (and its obligatory partner ATRIP) and CHK1. Once activated, the 

ATR-CHK1 checkpoint response recruits accessory proteins, which will stabilize the halted 

fork and guarantees rapid resumption of DNA synthesis (Figure 1.3). When the amount of 

ssDNA surpasses the total of available RPA, the fork may collapse (defined as unloading of 

the replisome from the fork) leading to the generation of DNA double strand breaks 

(DSBs)98.  
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Figure 1.2: Mechanisms that can result in DNA replication stress. There are a number of 

mechanisms that can slow or stall DNA replication, including limiting nucleotides, DNA lesions, 

ribonucleotide incorporation, repetitive DNA elements, transcription complex and/or DNA hybrids, 

DNA secondary structures and fragile sites. Figure adapted from95  

 

 

Figure 1.3: The ATR-CHK1 pathway. Figure adapted from99  
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Replication stress and cancer: the story of Jekyll and Hide 

 

Replicative stress drives tumor initiation: Cancer is the result of uncontrolled cell growth, 

and the accumulation of genomic alternations during cell division is a driving force for 

tumorigenesis. Subsequently, it is not surprising that replicative stress can contribute to 

tumorigenesis, given that excessive replication stress can result in DSB causing genomic 

instability (chromosomal rearrangements, deletions and chromosomal loss). In fact, 

replicative stress is a double edged sword, while on the one hand replicative stress can lead 

to genomic instability and in that way promote tumorigenesis, on the other hand replicative 

stress also represents an Achilles heel of the cancer cell where too much replicative stress 

can be fatal and may force the cell to go into apoptosis. For example, several oncogenes are 

known to cause replicative stress. MYC not only promotes cell growth by positively 

regulating the expression of many genes controlling the cell cycle (amongst others), it also 

represses anti-proliferative genes100,101. In addition to the transcriptional regulation, MYC 

also stimulates cell cycle progression by directly controlling replication initiation. It binds 

with the pre-replicative complex and will bind to DNA replication origins. Overexpression of 

MYC causes increased replication origin activity with subsequent DNA damage and 

checkpoint activation102,103. In vitro and in vivo experiments in MYC transgenic mice originally 

showed that transient MYC expression results in increased genomic instability and 

chromosomal aberrations that are typically observed in MYC-dependent human tumors and 

can contribute to cancer initiation and progression104.  

Cancer cells may become addicted to a replicative stress induced DNA damage response 

phenotype: It has been shown that excessive chronic replicative stress can hamper tumor 

growth and in embryonic stem cells accelerate aging105. In keeping with this finding, a mouse 

model overexpressing CHK1 through an extra copy was shown to be more prone to tumor 

development106. Furthermore, in T-ALL the Barrata team demonstrated the upregulation of 

CHK1, indicating that (hyper)activation of the ATR/CHK1 signaling pathway is required for 

survival and growth of these leukemic blast cells. Indeed, pharmacological inhibition or 

silencing of CHK1 using shRNAs impaired T-ALL proliferation and viability107,108. In NB, similar 

mechanisms have been observed. The MRN complex, a major sensor of DNA double 

stranded breaks, is induced by MYCN and is essential to restrain MYCN-dependent 
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replication stress109,110. In glioblastoma, it has been shown that TOP2β, an ATP dependent 

enzyme that catalyzes topological changes of DNA, is highly expressed in glioblastoma stem 

cells111. A recent paper showed that NEAT1 paraspeckle formation prevents accumulation of 

excessive DNA damage in cells undergoing replication stress. NEAT1 will preserve the 

genomic integrity of the tumor cell by modulating ATR signaling112. Interestingly, in mice, 

reduced levels of ATR found in a mouse model of the ATR-Seckel syndrome completely 

prevented the development of Myc-induced lymphomas or pancreatic tumors, both of which 

show abundant levels of replicative stress113. These examples show that replicative stress is a 

difficult balance for the cancer cell: replicative stress may act as initial initiator of the 

malignant process114, but sustained high levels of replication stress will impair the tumor 

cell’s viability. The fact that replication stress is less observed in normal cells but is a 

common feature of most cancer cells opens new possibilities for therapeutical interventions. 

For example, it has been shown that tumors deficient in BRCA2 like ovarian and breast 

cancer, can be specifically targeted using PARP inhibitors115. Since PARP1 is involved in the 

repair of single-strand breaks, upon inhibition, cells are forced to repair the break using the 

homologous recombination (HR) pathway. Nevertheless, tumors that are BRCA2-/- deficient 

cannot engage in the HR pathway so their only option will be to undergo apoptosis115. More 

recently, it was shown that cancer cells can be forced to go in apoptosis by incorporation of 

damaged dNTPs into the cancer cell. This can be reached by targeting MTH1, a protein that 

prevents the misincorporation of oxidized dNTPs during replication, using s-crizotinib. MTH1 

is dispensable in normal cells but since cancer usually move faster through the cell cycle, 

they often heavily rely on this protein116,117. Also molecular targeting of CHK1 has shown to 

be effective in different tumor types including NB107,108,118,119  

Replication stress as a new cancer hallmark 

 

In 2000, Hanahan and Weinberg described in their seminal paper, the hallmarks of cancer. 

They proposed that in general, cancer cells acquire six different hallmarks during their 

development. Typically, cancer cells will have a self-sufficiency in growth signals, they will be 

insensitive to growth inhibition signals, they will evade programmed cell death (apoptosis), 

limit their replication potential, sustain their angiogenesis and will invade tissues and 

metastasize120. About one decade later, several new breakthroughs in the cancer field and 
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subsequently an update of the hallmarks of cancer was warranted. In this update, four new 

cancer hallmarks were introduced and one of them was genomic instability121. While 

increased genomic instability in cancer is now a very well established concept as best 

exemplified by the rare cancer predisposition syndromes caused by germline loss of function 

mutations in DNA repair genes122, hyperactivation of the DNA repair machinery has thus far 

received much less attention, despite accumulating evidence that this phenotype indeed is 

present in various cancer types123. This is also illustrated and supported by this thesis in 

which we convincingly show that cancer cells are dependent for growth on high BRIP1 levels 

and also show that BRIP1 overexpression leads to accelerated tumor formation (Chapter 3). 

Moreover, in this thesis we also demonstrate that MYCN drives a FOXM1 activated DNA 

damage repair network that protects the tumor cells from excessive replicative stress 

induced DNA damage (Chapter 4).  
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BRIP1 (alias FANCJ or BACH1) 

 

BRIP1: the BRCA1 binding protein 

 

BRIP1, also known as FANCJ or BACH1, was first described by Cantor et al, as an interaction 

partner of BRCA1 (Breast Cancer Gene 1)124. The BRCA1 protein is a very large protein with 

only a few recognizable domains of which the RING domain and the BRCT domain are the 

most studied. Earlier, it was already shown that the RING domain of BRCA1 dimerizes with 

BARD1125. Since several clinical relevant point mutations were identified in the BRCT domain, 

it was important to identify the protein(s) that could bind to this domain. A GST fusion 

protein containing the BRCT motifs was used for a far western blot, and a 130kDa protein, 

BRIP1, was identified that binds to this tag. One mutation in BRIP1 (P1749R) led to greatly 

reduced binding, while the mutation M1775R completely abolished BRCA1 binding through 

the BRCT domain124. Radiation experiments in U20S osteosarcoma cells further showed a 

role for BRIP1 in DNA double strand break repair through BRCA1 binding, where BRCA1 

binding defective BRIP1 mutants showed a remarkable delay in DNA repair 6 hours after 

radiation124. In a follow-up study it was shown that the interaction between BRCA1 and 

BRIP1 depends on the phosphorylation status of BRIP1 and that this phosphorylation-

dependent interaction is required for DNA damage induced checkpoint control during the 

G2/M phase of the cell cycle126. Further in silico structural analysis revealed that BRIP1 also 

consists of 7 helicase domains, and that only the 3’ part of the BRIP1 protein binds to the 

BRCT domain (Figure 1.4). The helicase domains shows strong homology to the catalytic and 

nucleotide binding domains of known members of the DEAH helicases and it was shown that 

BRIP1 is a member of the DEAH helicase family124. 

 

 

Figure 1.4: The BRIP1 protein. BRIP1 consists of 7 helicase domains, a nuclear localization signal 

(NLS), a FE-S domain and a BRCA1 binding domain located at its 3’end.  

 



Introduction|19 
 

 
 

BRIP1 is a Fanconi anemia gene 

 

Fanconi anemia (FA) is an autosomal recessive disorder characterized by increased cancer 

susceptibility, congenital abnormalities, short stature and bone marrow failure causing 

anemia. FA patients are strongly predisposed to several types of cancer but are particularly 

prone to acute myeloid leukemia (AML)127. The FA cells show marked chromosomal 

instability and enhanced sensitivity to bifunctional alkylating agents that cross-link DNA (like 

mitomycin c, cisplatin) which is therefore used as diagnostic test. FA is a multigenic disorder, 

with at least twenty-one distinct complementation groups128,129 .The main function of the FA 

pathway seems to be the coordination of several distinct DNA repair pathways like, 

nucleotide excision repair (NER), translesion synthesis (TLS) and the homologous 

recombination pathway (HR).Originally thought to be involved in removing DNA crosslinks, 

more recent data have shown that the FA pathway also has an important role in the 

protection of stalled and repair of collapsed replication forks and resolving replication-

transcription conflicts130,131. 

 

 

Figure 1.5: The FA complex. The pathway is activated when a replication fork stalls at an interstrand 

crosslink (ICL). The FA core complex binds to the stalled fork, leading to monoubiquitination and 

recruitment of the I and D2 proteins. The downstream FA proteins are recruited to DNA repair 

complexes. Figure adapted from132 
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The FA proteins can typically be divided in two groups, whereby the majority of proteins 

belong to the core complex, which is a large multi-subunit ubiquitin ligase, the remainder of 

the proteins act downstream of this core complex. Upon DNA damage, the core complex will 

be recruited to the nucleus and bind to the stalled DNA replication fork. Subsequently, the 

core complex will then ubiquitinate FANCD2 and FANCI (Figure 1.5). Downstream of 

FANCD2, act FANCD1, FANCJ and FANCN. These proteins will then repair the DNA damage128 

(Figure 1.5). Interestingly, in 2005, BRIP1 and FANCJ were shown to be the same protein 133-

135. Moreover, in a following study it was shown that the BRCT-binding domain of BRIP1 is 

not required for its role in DNA crosslink repair or cell cycle arrest, showing that the BRIP1 

helicase acts independently of BRCA1 in Fanconi anemia for repairing DNA crosslink 136.  

 

BRIP1 as a potential tumor suppressor gene 

 

FA is a penetrant cancer susceptibility syndrome and several members of the complex are 

well known tumor suppressors (TSG), amongst others, BRCA2 and FANCN. Since BRIP1 is a 

member of the FA complex, researchers studied if germline BRIP1 mutations have an effect 

on tumor incidence. Indeed, heterozygous BRIP1 germline sequence variants were identified 

in familial breast, ovarian and prostate cancer124,137-139. However, a recent large scale case-

control study found no evidence of an association with breast cancer for 10 truncating 

variants of BRIP1. The upper 95% confidence limit excludes a twofold risk of breast cancer, 

often taken as the lower threshold for a moderate risk allele140. 

 

BRIP1 and interstrand crosslink (ICL) repair  

 

Interstrand DNA crosslinks can be formed as a natural product of metabolism or through 

induction of chemotherapeutic agents. In E. coli ICLs are repaired via a two-cycle repair 

mechanism. In the first round, incisions will be made on one strand on either side of the ICL, 

producing a gapped intermediate with the incised oligonucleotide attached to the intact 

strand. This gap is then filled by recombination repair or lesion bypass synthesis. In a final 

step, the remaining monoadduct is removed by the Nucleotide Excision Repair (NER) 

pathway141. Despite intensive research, the exact mechanism in mammals remains unclear. 
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In the paper that described BRIP1 for the first time, it was shown that BRIP1 deficient cells 

are more sensitive for agents that introduce ICLs124. Since this acts independent of BRCA1136, 

Peng and colleagues used a two-step immunoaffinity strategy to identify new interaction 

partners of BRIP1. BRIP1 was found to exist in a protein complex with MutLα, a mismatch 

repair complex consisting of MLH1 and PMS1. Like BRIP1, MutLα was found to act 

downstream of FANCD2 monoubiquitination. BRIP1 interacts directly with MLH1 and 

independent of BRCA1. The interaction was mapped to the helicase domain of BRIP1, more 

specifically to lysine 141 and 142. Interestingly, disruption of the native MLH1/BRIP1 

interaction generates sensitivity to ICLs142. Although PMS1 does not directly associate with 

BRIP1, it stabilizes the BRIP1/MLH1 interaction. The functional role of BRIP1 in ICL processing 

remains largely unclear and controversial, in part, due to differences between experimental 

systems143. For instance, in DT40 chicken cells, loss of BRIP1 did not affect homologous 

recombination. This is probably due to the binding sites for MLH1 and BRCA1 that are not 

conserved in chicken BRIP1143.   

 

BRCA1 and its binding partner BRIP1 

 

BRCA1 is located on chromosome 17q21 and is best known for its tumor suppressor function 

in breast and ovarian cancer. Several functions have been attributed to BRCA1, but its role in 

dsDNA break repair is the most studied. One of the earliest indications that BRCA1 is 

involved in DNA repair was the observation that BRCA1 associates and co-localizes with 

RAD51 in nuclear foci in mitotic cells144. Co-localization with RAD51 has shown to be 

required for the strand invasion during HR (Figure 1.6)145. BRCA1 is also found to be 

associated with another DNA damage response protein, RAD50, which forms a tight complex 

with Mre11 and Nijmegen breakage syndrome gene 1. This complex of 

Mre11/Rad50/Nijmegen breakage syndrome gene 1 (MRN) is implicated in both homologous 

recombination and non-homologous end joining145 (NHEJ). 

BRIP1 binds to BRCA1 during HR and interestingly, when BRIP1 is uncoupled from BRCA1, the 

DNA damage response is altered. Specifically cells that express BRIP1S990A, a variant that 

cannot bind to BRCA1, are sensitive to dsDNA breaks and have a reduced RAD51-based 

HR146. Therefore, BRIP1 likely has a complex role in HR, it contributes to HR when bound to 
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BRCA1 and inhibits HR when unbound to BRCA1146, however, the exact role of BRIP1 in HR is 

not clear. Possibly, BRIP1 has an indirect role in HR as a ‘place-holder’ to prevent other 

proteins from disrupting HR, such as the anti-recombination helicases BLM or RTEL146.   

Although the mutation burden in NB patients is very low, an extremely rare homozygous 

nonsense germline mutation in BRCA1 (c.1151T>G/ p. Leu384Stop) has been described. The 

affected girl was five years of age and diagnosed with stage IV NB and FA147. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Key steps of dsDNA break repair by HR. Figure adapted from145 

 

The helicase function of BRIP1 

 

The first germline mutations found in BRIP1, were located in the helicase domains indicating 

that these sequence changes disrupt its protein function. Later, it was shown that BRIP1 is 

both a DNA dependent ATPase and a 5’ to 3’ DNA helicase148 . A biochemical study showed 

that the dimeric form of BRIP1 displays maximal catalytic ATPase and DNA helicase activity 



Introduction|23 
 

 
 

on relatively short forked duplex substrates of 20 base pairs long149. BRIP1 is limited in its 

processivity, poorly unwinding substrates with duplexes of fifty base pairs or greater. 

Interestingly, BRIP1 is able to unravel forked duplex substrates of 47bp, but only in the 

presence of high concentrations of RPA150 .Next to that, a DNA junction is also required for 

BRIP1 to initiate unwinding of the adjacent duplex. BRIP1 is even able to unravel DNA-RNA 

hybrids (R-loops), however it fails on RNA-RNA hybrids. In C. elegans it was shown that dog-

1, the worm homologue of BRIP1, is required to maintain genetic stability of guanine rich 

DNA151. Mutations in dog-1 resulted in a mutant phenotype characterized by deletions 

throughout genomic DNA that was initiated at tracts of consecutive cG/dG bases. Here it 

was shown for the very first time that in addition of unwinding conventional duplex DNA 

substrates, BRIP1 also resolves alternate DNA structures like DNA G- quadruplexes. In this 

thesis we have explored the role of BRIP1 in NB through functional in vitro assays and in vivo 

modeling. Interestingly, in a parallel study, I observed a MYCN driven FOXM1 pathway 

activation as a dominant transcriptional perturbed signature during tumor formation 

(Chapter 4). FOXM1 is a well-known transcription factor controlling cell cycle and DNA 

damage repair and amongst others also regulates BRIP1 levels together with many other 

DNA repair genes.  
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FOXM1: a central regulator of cell cycle and DNA damage 

 

FOXM1 in normal development and disease 

 

The forkhead box protein M1 (FOXM1), located on chromosome 12p33, belongs to the large 

family of the forkhead transcription factors. This forkhead family consists of more than 50 

members, and all of them have a central role during normal development and 

organogenesis. Three isoforms of FOXM1 protein have been previously described, FOXM1b 

and FOXM1c function as transcriptional activators while FOXM1a is transcriptionally 

inactive152. Several studies used in situ hybridization and immunohistochemistry to show 

that FOXM1 is expressed in many cell types during embryogenesis. These include precursor 

cells for liver and heart, smooth muscle and endothelial cells, pancreatic cells, thymocytes, 

precursors of granule neurons as well as epithelium and mesenchyme of the embryonic lung 

and intestine152-154. Because of its essential role in the embryogenesis, it is no surprise that 

knock out of FOXM1 in mouse is embryonic lethal155. Complete FOXM1 null mice die in utero 

18.5 days post coitus (dpc) due to multiple abnormalities in various organs including liver, 

lungs, blood vessels and heart. The other cell types in FOXM1-/- mice show no visible changes 

in either size or proliferation rates raising the possibility that FOXM1 has different functions 

according to the cell type156. 

 

FOXM1 functions as a transcription factor and mainly acts as a regulator of the cell cycle and 

DNA damage. FOXM1 preferentially binds to promotor regions with a consensus sequence 

“TAAACA”, although with lower affinity then his other family members of the forkhead 

proteins157. Its expression is restricted to proliferating cells and is both at the mRNA and 

protein level regulated by the cell cycle. The expression increases during the entry of the S-

phase, peaks during G2 and M and is diminished during mitotic exit158. Likewise, its 

transcriptional activity is tightly regulated throughout the cell cycle by multisite 

phosphorylation by different kinases, sumo proteins and its counteracting phosphatases, 

reaching its maximum activity in the G2 phase of the cell cycle159-161. More recently, it was 

shown that FOXM1 not only binds to “TAAACA” repeats but also to cell cycle genes 

homology region elements (CHR). In mammalian cells, these repeats control the 

transcription of a cluster of genes at the G2/M transition. Previously, it was already shown 
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that the dimerization partner of the DREAM complex (RB-like, E2F and multi-vulval class B) 

binds to these CHR sequences162-164. The DREAM complex is a protein complex responsible 

for the regulation of cell cycle dependent gene expression, its main function is to repress 

gene expression during quiescence (G0). One of the genes repressed by the complex is the 

proto-oncogene MYC162,165. In G0 p130 will prevent E2F4/5 from binding to its gene 

promotors, while entry into G1 will cause dissociation of p130 of the complex (Figure 1.7). 

During the G0 phase there is no expression of BMYB (MYBL2), however, during G1 BMYB will 

be expressed and will bind to MuvB during S phase to promote the expression of the key 

G2/M phase genes (CDK1, CCNB1). During G2 phase FOXM1 will then be recruited to further 

promote gene expression (Figure 1.8)162.  

 

 

 

Figure 1.7 DREAM complex in quiescence and mitosis. Figure adapted from166 

 

Since FOXM1 has such an important role in cell proliferation and cell cycle progression, it is 

not surprising that increased expression of FOXM1 was detected in numerous cancer cell 

lines and human cancers167. One of the first studies detected upregulation of FOXM1 in basal 

cell carcinoma compared to normal skin samples168. Interestingly, in a meta-analysis of 

expression signatures of over 18,000 human tumors, FOXM1 was identified as a major 
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predictor of adverse patient outcome169. Up until today, overexpression of FOXM1 has been 

observed in more than 25 different tumor entities, including lung cancer, AML and NB170. In 

NB, FOXM1 serves as a critical activator of the tumorigenic properties of the aggressive 

forms of the NB cells. Next to that, FOXM1 has a direct connection with the pluripotency-

associated gene SOX2 in mediating the anchorage independent growth of the cells. NB cells 

with diminished FOXM1 expression undergo spontaneous differentiation with reduced levels 

of SOX2171.  

 

 

 

Figure 1.8: cell cycle control by the DREAM complex. Figure adapted from162 

 

Molecular targeting of FOXM1 

 

Because of its involvement in cancer biology, FOXM1 was awarded the title “molecule of the 

year” in 2010. Since then several research groups tried to develop molecules that target 

FOXM1. Since FOXM1 is a transcription factor and therefore the compounds needs to 

translocate to the nucleus and bind to FOXM1 at the membrane, targeting is challenging. 

Despite this hurdle, several compounds that target FOXM1 have already been described, 

although most of them are assumed to affect FOXM1 indirectly. Siomycin A, thiostreptin and 

in general all proteasome inhibitors can be used to inhibit the expression of FOXM1170. 
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Gartel et al, hypothesized that proteasome inhibitors stabilize NRFM, which is a negative 

regulator of FOXM1. NRFM binds to FOXM1 and hence will inhibit the transcriptional activity 

of FOXM1. Since FOXM1 has a positive effect on its own expression through an 

autoregulation loop, expression of FOXM1 will decrease172,173. In addition to that, 

Balasubramanian et al. proposed an alternative mechanism, where thiostreptin binds to 

FOXM1 and consequently causes a blockage of the binding to the promoters of its target 

genes174 . Although proteasome inhibitors can be useful, such drugs act very broadly and 

unspecific thus requiring more specific compounds to target FOXM1.  

To achieve this goal, using an assay based on fluorescence polarization, a small molecule 

(FDI6) that disrupts the FOXM1-DNA interaction could be identified from a library consisting 

of 54211 molecules175. By using mass spectrometry, it was confirmed that FDI6 specifically 

binds to FOXM1. Treatment of MCF7 cells with FDI6 showed already after 3h a clear 

transcriptional effect of the known downstream targets of FOXM1 (like CDKN3, CENPA…)175. 

While these results are promising, recent data indicate that thus far, despite these reports 

and their validation, the effective " on target" effects of these drugs on FOXM1 are seriously 

questioned thus hampering reliable drugging studies to study e.g. dependency of tumor cells 

to FOXM1 and assess cancer types as possible targets for clinical FOXM1 drugging (Bollen, 

personal communication). 

The role of FOXM1 in the DNA damage response 

 

The first indications of a role for FOXM1 in DNA damage response came from an observation 

that FOXM1 deficient cells have an increased level of DNA damage176. Mouse embryonic 

fibroblasts (MEFs) derived from FOXM1 knockout mice showed high levels of γH2AX (a 

biomarker for DNA double stranded breaks) compared to wild type MEFs176. Those cells also 

had an increased number of TUNEL foci, suggesting a defect in DNA repair.  

When performing FOXM1 knock down experiments using siRNAs in osteosarcoma U2OS 

cells, high levels of spontaneous γH2AX foci were detected. This increase also correlated 

with decreased levels of the X-ray repair cross-complementing protein 1 (XRCC1) and 

decreased levels of the breast cancer-associated gene 2 (BRCA2), two genes involved in DNA 

repair. Remarkably, however, this observation could not be confirmed in breast cancer 

cells176.  
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In a cisplatin resistant breast cancer cell line, upregulation of FOXM1, BRCA2 and XRCC1 was 

observed upon cisplatin treatment, while downregulation of BRCA2 and XRCC1 was not 

observed prior to FOXM1 downregulation, suggesting that FOXM1 might regulate the 

expression of other genes involved in the DNA damage repair pathway177. In a follow up 

study, it was shown that double stranded breaks (through yH2AX staining) accumulate in 

breast cancer cells sensitive for epirubicin compared to breast cancer epirubicin resistant 

cells. Moreover, it was proven that FOXM1 overexpression was responsible for obtaining 

epirubicin resistance and it was demonstrated for the first time that FOXM1 is required for 

DNA double strand break (DSB) repair by homologous recombination (HR). In respect to that, 

BRIP1 (BRCA1 associated C-terminal helicase) was identified as a direct transcriptional target 

of FOXM1. Interestingly, ectopic overexpression of BRIP1 was able to partially rescue the 

increased DNA damage and repair in FOXM1 null cells160,178. 
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The G4 genome 

 

G4-DNA 

 

G-quadruplex structures (also known as G4–DNA) are tertiary structures formed in nucleic 

acids by guanine rich sequences. Four guanine bases can associate through Hoogsteen 

hydrogen bonding to from a square planar structure called a guanine tetrad, and two or 

more guanine tetrads can stack on top of each other to form a G-quadruplex (Figure 1.9)179.  

 

 

 

Figure 1.9: Structures of G-quadruplexes. G-quadruplexes contain tracts of three to four guanines 

and can be formed in DNA or RNA. The building blocks of G4 DNA are G-quartets that arise from the 

association of four guanines into a cyclic arrangement stabilized by Hoogsteen hydrogen bonding. 

The planar G-quartets pack on top of each other, forming four stranded helical structures. Figure 

adapted from180.  
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Quadruplexes can be formed from one, two or four separate strands of DNA (or RNA) and 

can present a wide variety of topologies, which are in part a consequence of various possible 

combinations of strand directions, as well as variations in loop size and sequence179 (Figure 

1.9). Typically, the length of the nucleic acid sequences involved in the tetrad formation will 

determine how the quadruplex will fold180. 

In the early 1950’s it was already discovered that guanine-rich nucleic acids can self-

associate but their scientific value was at that moment neglected. Only after realizing that 

these G4-structures can be formed at the end of telomere regions and in this way will 

decrease the activity of the telomerase enzyme, researchers started to study these functions 

in depth. By using computational analysis of the human genome it was revealed that the 

human genome contains over 300 000 sequences that have the potential to form G-

quadruplexes, which further strengthens their possible important role in the human 

genome181. Next to that, it was found that the localization of G4-structures is not ad random, 

G4-DNA colocalizes with functional regions in the genome and furthermore are highly 

conserved between different species pinpointing to a selection pressure to maintain such 

sequences at specific genomic areas. Moreover, G4-DNA is also present in bacteria and in 

viruses180,182-185.  

The highest abundance of G4-structures is still in the telomeres, where it was shown that 

stabilization of the G4-structures using a G4 stabilizing compounds impairs proper telomerase 

activity and telomere shortening. It has been hypothesized that G-quadruplexes can 

sequester the 3’ end of the telomere. Indeed, in vivo data have indicated that parallel G-

quadruplexes can form at human telomeres, and that telomeres containing a G-quadruplex 

are a site of localization for human telomerase186.  

 

G4 structures regulate transcription and translation 

 

The finding that about 50% of the human genes contain a G4-structure near their promotor 

regions suggests a role for quadruplex structures in regulating gene expression. 

Fascinatingly, G4-structures are more frequently observed in oncogenes than in 

housekeeping or tumor suppressor genes181 . The first oncogene described with a G4-

structure in the promotor was cMYC, where it was shown that stabilizing the G4-structure in 
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its promotor resulted in aberrant transcription. Next to transcription, it has also been 

described that G-quadruplex structures are important to control translation. Andrew Wolfe 

and colleagues from our lab could show that genes dependent on transcription of eIF4A 

contain a 12-nucleotide pG4 signature that can form RNA G-quadruplex structures. eIF4A 

helps by the translation of mRNAs with long and complex UTRs, like MYC, NOTCH, BCL2, 

known oncogenes in T-ALL. Consequently, this paper showed for the first time that RNA G-

quadruplex structures are important for proper translation187. Blocking these RNA G-

quadruplex structures using silvestrol resulted in cell death in T-ALL cell lines and primary T-

ALL patient samples. 

 

G4 structures in replication and genome instability and the role of BRIP1  

 

Since single stranded DNA (ssDNA) is formed during DNA replication and G4-structures have 

the tendency to form during DNA replication, G4-structures can have a great impact on DNA 

replication. Upon creation, they have to be resolved as fast as possible, since otherwise this 

can lead to replication stress and eventually genome instability. By using Xenopus egg 

extracts to replicate exogenous G4 sequence on single-stranded DNA plasmids, it could be 

shown for the first time that DNA replication forks stall at G4 structures188. Mapping of the 

nascent strands at nucleotide resolution demonstrated that replication proceeded to within 

a few nucleotides from the G4. Furthermore, it has been shown that when cells face stable 

G-quadruplex structures, cells will activate dormant origins of DNA replication, in order to 

further control DNA replication189. If cells are unable to maintain processive DNA replication 

this will lead to the uncoupling of the DNA synthesis and recycling of the histones. In the 

original C. Elegans paper, mutations in dog-1, the homologue of BRIP1, resulted in a mutant 

phenotype characterized by deletions throughout genomic DNA that was initiated at tracts 

of consecutive cG/dG bases151. Since that report, several other observations were made 

confirming that BRIP1 has a role in unraveling G4-DNA structures. In Fanconi anemia patients 

with mutations in BRIP1, the loss of BRIP1 G4 unwinding function, correlates with the 

accumulation of large genomic deletions in the neighborhood of G4 sequences190. 

Furthermore, in human cells, BRIP1 deficiency resulted in a hypersensitivity to the G4 

stabilizing ligand Telomestatin (TMS), neither FANCA or FANCD2 mutant human cell lines 
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were sensitive to TMS, suggesting that BRIP1 functions in G4 DNA metabolism independently 

from the classical FA pathway191. Finally, BRIP1 also has a G4 recognition site. Interestingly, 

the two lysine residues (K141/142) that are involved in G-quadruplex recognition also 

interact with MLH1 for repairing interstrand crosslinks192. 

So far, two different mechanisms for the unraveling of G4 DNA have been described. In C. 

Elegans loss of the BLM orthologue resulted in a massive increase in G-tract deletions, 

suggesting that BRIP1 and BLM may have an overlapping function in resolving G4 secondary 

structures193. Next to that, it was also observed that BRIP1 can interact with BLM helicase, 

further alluding that both of them function together in facilitating efficient DNA synthesis 

past the leading or lagging strand of G4 structures during replication194. In another in vitro 

study it was demonstrated that also WRN (Werner Helicase) smoothens DNA synthesis past 

a G4 structure in a DNA template195. Therefore, it was hypothesized that BLM and WRN 

would translocate on the opposite strand as BRIP1, and together these helicases collaborate 

to efficiently resolve the G4 structure so the unfolded G-rich sequence can be copied196 

(Figure 1.10). Another mechanism for the unraveling of G4 structures requires the 

involvement of REV-1 helicase. In this situation, REV1 will bind to the opposite strand of 

BRIP1 and together they will unwind the G4 structure197 (Figure 1.10). Up till today, it is 

largely unknown how BLM/WRN or REV1 exactly collaborate with BRIP1 for the unwinding of 

G4 structures196 .  

 

Targeting G4 structures 

 

The specific geometry of the G4 structure, with four grooves of unequal width coupled with 

an unusual electrostatic potential, is predicted to allow specific recognition by small 

compounds that bind within the grooves or intercalate with the DNA triple-helix. Indeed, 

several compounds, including porphyrins and anthraquinones, target G4 DNA and inhibit 

telomerase in vitro198. Up till today, several compounds have been described, each with their 

advantages and disadvantages. TMPYP4 tosylate has a strong affinity for G4 structures but 

turns out to be toxic for mice199. Similar effects were observed for pyridostatin200. BRACO-19 

on the other side, has a less strong affinity for G4 DNA but is tolerated pretty well by mice. 
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Moreover, BRACO-19 was highly active on a broad range of tumors and reduced tumor size 

in average with 96% compared with untreated controls201 .   

 

Figure 1.10: Proposed model how BRIP1 resolves G4 structures. (A) BRIP1 acts together with BLM 

(or WRN) helicase to resolve the G quadruplex structure (B) BRIP1 interacts with REV1 at the site of 

the G4 structure, allowing it the catalyze DNA synthesis past the G4 structure. Figure adapted from196 
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DNA is like a computer program, but far far more  

advanced than any software ever created 

~Bill Gates~ 
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Research objectives: 

 

After decades of intensive research, the cancer entity NB remains an enigmatic disease and 

advances in unraveling the genome biology have been slow and challenging. This is reflected 

in the little amount of personalized therapeutic options and the slow progress in the survival 

changes of patients with aggressive disease. This, however, can partly be explained by the 

unique features of NBs. While in most other tumors several mutations can be identified, the 

mutational burden in NBs is low. Instead, several genomic aberrations are often identified, 

and this is why NB is typically regarded as a copy number disease. One of the irregularities 

that is typically observed is the gain of chromosome 17q, which is correlated with poor 

patient outcome. Despite thorough research, up till today, it is still unclear which genes on 

chromosome 17q contribute to the development of NB.  

Aim1: Unraveling the role of BRIP1 in NB development  

The first aim of my thesis was to follow up on a previous bio-informatics approach intended 

to identify candidate oncogenes on chromosome 17q (paper 1). This strategy identified 

BRIP1 as a potential driver gene in NB oncogenesis. BRIP1 is a member of the Fanconi 

anemia pathway and therefore in general considered as a tumor suppressor. To study its 

oncogenic capacities in NB, knock down experiments were performed in NB cell lines and a 

transgenic zebrafish model that overexpresses BRIP1 was developed.  

Aim2: Establishing a miRNA ESC signature score for the stratification of NB patients 

NB has been regarded as a developmental disorder, hence in this study, we wanted to 

deeper explore whether an ESC derived expression signature could capture a stemness 

phenotype in NB cells that is associated with therapy resistance (paper 2). FOXM1 was 

identified as a major driver and several compounds that target FOXM1 were therefore 

evaluated for use in NB in a follow-up study (paper 3).  
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Aim3: Identification of expressed repeat elements (EREs) in zebrafish to use for normalization 

in RT-qPCR.  

RT-qPCR is an elegant technique for performing gene expression analyses. Because of its 

relative ease and simplicity it is frequently applied. To correct for technically induced 

variation and thus measure true biological variation in samples, it is important to apply a 

good normalization strategy. Since in zebrafish, many commonly used reference genes are 

not always applicable because of their variability in expression levels, we evaluated a new 

normalization strategy using EREs. 
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PART III: Results 

 

 

 

 

 

 

 

 

 

The important thing is not to stop questioning. 

Curiosity has its own reason for existing. 

~Albert Einstein~ 
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Abstract: 

Neuroblastoma is the most common extracranial tumor in children and despite multimodal 

therapies the survival rates for children with aggressive neuroblastoma are still 

disappointingly low. Chromosome 17q gain is by far the most common DNA copy number 

alteration in high stage neuroblastoma. Due to the large size of the recurrently involved 

chromosome segments, the causal 17q drivers still remain to be identified.  

In this study, using an integrated bio-informatics approach, we identified the DNA helicase 

BRIP1 as top ranked candidate 17q driver gene. High expression of BRIP1 correlates with 

poor patient outcome. In neuroblastoma cell lines, we show that BRIP1 knock down 

significantly reduced cell viability and colony forming capacity. Next, overexpression of BRIP1 

in tg(dβh-MYCN-eGFP) transgenic zebrafish caused accelerated tumor formation. Given 

BRIP1‘s roles in preserving genome integrity, we show that knock down results in increased 

pRPA32 protein indicative for replication stress and that BRIP1 creates a cellular state what 

we call “replicative stress resistance”. BRIP1 is a downstream target of FOXM1 and moreover 

our data strongly suggest that FOXM1, a known important mediator of the MYCN driven 

oncogenic transformation of fetal neuroblasts controls the expression of several dosage 

sensitive 17q genes.  

In conclusion, we identified a new cooperative oncogene, BRIP1, involved in neuroblastoma 

oncogenesis opening perspectives for new therapeutic approaches.  
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Introduction: 

Neuroblastoma is the most common extracranial tumor in children and is characterized by a 

variable clinical course and genetic heterogeneity1. Tumors are subdivided in four 

subclasses, stage L1 and L2 cases present with localized or locoregional disease with 

favorable prognosis, while patients with stage M have metastatic disease and poor clinical 

outcome. Stage MS cases have an unusual presentation with tumor spread to only the skin, 

liver, and/or bone marrow (less than 10% bone marrow involvement) in patients younger 

than 18 months and the majority of patients remarkably show regression with little or no 

treatment2. 

Recent sequencing efforts in neuroblastoma established a mutational landscape with a low 

mutational burden in comparison to other cancer types. In addition to the previously noted 

ALK activating mutations in only 10% of cases3,4, further rare mutations were noted in RAS-

pathway genes, epigenetic regulators and genes implicated in neuritogenesis5-8. Given these 

overall low mutation frequencies, selecting patients for precision treatment for molecular 

targets is challenging at present. In contrast to mutations, large copy number alterations 

(CNAs) in neuroblastoma are frequent and show remarkable recurrent patterns9,10. The 

metastatic tumor subtype almost invariably presents with partial 17q gain (often in 

combination with 1p loss, MYCN amplification and 2p-gains) which is also highly correlated 

with poor survival outcome10. Since gain of 17q is so frequently observed, it is assumed that 

one or several genes on 17q contribute to the development of the disease in a dosage 

dependent way. 

CNAs are a hallmark of cancer and can drive the expression of oncogenes or delete tumor 

suppressor genes and thus represent a source for therapeutic gene target discovery11. 

However, such CNAs typically harbor many genes hampering classical candidate gene 

approaches and require in vitro or in vivo screens or bio-informatics approaches to identify 

the culprit candidates. Of further note, using an in vivo screening approach, Mohankumar et 

al. identified eight new ependymoma oncogenes and 10 ependymoma tumor suppressor 

genes remarkably converging on a small number of cell functions contributing to the cellular 

state of the transformed cell12. Considering neuroblastoma as a CNA driven cancer, we 

decided to apply an integrated bio-informatics approach using CNA and gene expression 
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data from primary human neuroblastomas in combination with transcriptome data from 

dynamic regulation of gene expression in Th-MYCN driven tumor formation.  

Using this approach, we identified BRIP1 (previously also called FANCJ or BACH1), located on 

17q23 within the commonly gained region on chromosome 17q, as top candidate 

cooperative driver. Subsequently we showed that forced overexpression in sympathetic 

progenitor cells caused accelerated MYCN driven tumor formation in a zebrafish model. 

BRIP1 is a downstream target of FOXM1, a transcription factor with key roles in cell cycle and 

the DNA damage pathway. Interestingly, also BRCA1, another FOXM1 downstream target, 

and many member of the Fanconi anemia pathway are highly upregulated during 

neuroblastoma development. We therefore propose that BRIP1 is a key play together with 

other FOXM1 targets in protecting neuroblastoma cells from excessive levels of replicative 

stress thus allowing smooth DNA replication and avoiding replication-transcription conflicts 

in these highly proliferative cancer cell.   
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Material and methods: 

Neuroblastoma 17q gene ranking 

A subset of 356 patients with a 17q gain was selected from a large neuroblastoma cohort 

with aCGH data available (Depuydt et al, in preparation). Each gene presenting at least once 

in one of these 17q gains was ranked according to the sum logarithmic of the following 

ranked criteria: 1) percentile of 17q gains the gene is part of; 2) impact of high median gene 

expression on survival in the Fischer cohort7; and 3) the linear regression coefficient of the 

gene in our prior TH-MYCN model, indicating genes having a potential driving role in early 

neuroblastoma development14. 

 

17q dosage impact on BRIP1 

In order to validate an overall impact of 17q gain on BRIP1 expression, copy number data 

and paired expression data was retrieved from the NRC cohort for BRIP1. Copy number fold 

changes above 0.3 were considered as a BRIP1 gain. High and low expression were 

considered in respect to median expression in the cohort. 

 

Survival analysis  

Kaplan Meier analysis and Log Rank analysis was performed on the NRC neuroblastoma 

dataset (283 neuroblastoma patients) and the Fisher dataset7.  

 

Th-MYCN 

Experiments were performed as described by Beckers et al14. In brief, we sacrificed Th-

MYCN+/+ mice at one (n = 4) and two weeks (n = 4) after birth to harvest superior cervical 

and celiac ganglia containing foci of neuroblast hyperplasia, and 6-week old (n = 4) Th-

MYCN+/+ mice to dissect advanced neuroblastoma tumors, arisen from the neuroblast 

hyperplasia. Additionally, we dissected the superior cervical and celiac ganglia from Th-

MYCN-/- mice at one (n = 4), two (n = 4) and six weeks (n = 4) after birth to control for gene 
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expression changes during normal postnatal development of the sympathetic ganglia. We 

assayed each individual harvested sample with a murine-specific gene expression 

microarray.  

 

Cell Culture 

Neuroblastoma cell lines were grown as monolayer cultures at 37°C and 5% CO2 as in a 

humid atmosphere. The culture medium was RPMI 1640 (GIBCO, Life Technologies) 

containing 10% Fetal Calf Serum (FCS), 2mmol/l glutamine and the following antibiotics: 

Penicillin (1%), Kanamycin (1%) and Streptomycin (1%). Used cell lines were SH-SY5Y (MYCN 

non amplified, ALKF1174L mutant, partial 17q gain, high expression of BRIP1, FOXM1 and 

BRCA1) and IMR-32 (MYCN amplified, partial ALK amplification, partial 17q gain, high 

expression of BRIP1, FOXM1 and BRCA1).   

 

Lentiviral transduction BRIP1 

 

shRNA knock down for BRIP1 was achieved using MISSION shRNA clones TRCN0000049916 

and TRCN0000049917 (Sigma-Aldrich, St Louis, USA). Virus production was performed with 

15µg of plasmid in 3*106 HEK293TN cells using a calcium phosphate trans lentiviral 

packaging system, according to the protocol provided by the company (Thermofisher 

Scientific). Virus was harvested and concentrated with the PEG-it virus precipitation protocol 

(system Bioscience) and subsequently used for lentiviral transduction of IMR-32 and SH-SY5Y 

neuroblastoma cell lines.  

shRNA knock down for FOXM1 was achieved using MISSION shRNA clones 

(TRCN0000015544) in IMR-32 cells and was performed as described above. 

RT-qPCR,  Caspase glo, colony forming assays and cell cycle analysis 

 

Knock down after puromycin selection (0.5µg/ml for IMR-32 and 1µg/ml for SH-SY5Y) was 

confirmed using RT-qPCR. RNA isolation was performed using the protocol provided by the 

company (miRNEASY catalogue number 217004, Qiagen) followed with DNAse on column 
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treatment (RNAse-free DNAse set catalogue number 79254, Qiagen). cDNA synthesis was 

executed with 500ng RNA input according to the protocol of the company (iScript catalogue 

number 170-8891, Bioké). RT-qPCR reactions were carried out in duplicate with a total 

volume of 5µl, including 2µl of cDNA, 2.5µl SsoAdvanced (172-5204, Bio-rad) and 0.25µl per 

primer pair (0.5µM). Following RT-qPCR primers were used for BRIP1 

(TGCTGTTTAATCCTCTGAGAATAG; CATGTTTAATCTGTTAGGAATCTGA), FOXM1 

(AGACACCCATTAAGGAAACG, TTTGTACTGGGCTGAAATCC) and reference genes 

HPRT1(TGACACTGGCAAAACAATGCA ,GGTCCTTTTCACCAGCAAGCT), 

YWHAZ(ACTTTTGGTACATTGTGGCTTCAA, CCGCCAGGACAAACCAGTAT). Cycling conditions 

were: 95°C (15s) – 60°C (15s) – 72°C (60s) with in total 44 cycli. Data were analyzed via 

qBasePlus software (Biogazelle).  

Caspase 3/7 was measured 24, 48 and 72h after seeding, using the caspase-glo 3/7 assay 

(Promega) according to the guidelines of the company. In brief, cells were seeded in a 96-

well plate with a density of 10 000 cells per well. Experiments were performed in triplicates 

(technical and biological) and GloMax luminometer was used for luminescence 

measurements.  

For the colony forming assays, cells were seeded, 2000 cells in a 6 cm dish, 72h upon 

lentiviral transduction to see the immediate effects upon BRIP1 knock down. 14 days after 

seeding cells were fixed with 0.5ml formaldehyde and subsequently stained with 0.005% 

crystal violet. Colonies were counted using the Image J software.  

Cell cycle analysis with PI Staining was performed according to the guidelines of the 

company (ab14083, Abcam). Cells were trypsinized and resuspended in 70% ice cold ethanol. 

Following several washing steps, cells were resuspended in PBS and RNAseA was added 

(final concentration 0.2mg/ml). After addition of PI the cells were immediately analyzed on 

the flow sorter (S3 cell sorter, Biorad). 
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DNA combing assay 

 

DNA fiber combing analysis was conducted using logarithmically growing IMR-32 and SH-

SY5Y cells as described by Schwab et al15. Cells were pulsed with iodo-deoxyuridine (IdU), 

and then pulsed with 5-chloro-2’-deoxyuridine thymidine (CldU) combined with hydroxyurea 

(HU). The cells were harvested and washed. A portion of the cells was lysed on a glass slide 

and the DNA fibers were straightened (combed) and fixed. Cells were subjected to 

immunofluorescence staining with mouse anti-bromodeoxyuridine (BrdU) (1/100, mouse 

anti-BrdU clone 44, 347580, BD Bioscience) or rat anti-BrdU (1/100, Rat monoclonal Anti-

BrdU antibody [BU1/75 5(ICR1)], ab6326, Abcam). The cells were washed with cold PBS, and 

incubated with Alexa 546-labeled anti-mouse (1/500, A21123, life technologies) and Alexa 

488 labeled anti-rat (1/1000, A21470, life technologies) at room temperature in the dark for 

1h.  

 

Western blotting and immunofluorescence 

 

Protein extraction was done via RIPA buffer and protein concentration was measured using 

the Lowry protein assay. Protein extracts were separated with SDS-PAGE, blotted on a 

nitrocellulose membrane and probed with antibodies against BRIP1 (1/1000 ; 4578S cell 

signaling), RPA32 (1/500, 14170S; cell signaling), pCHK1 (1/750, 2348S, cell signaling) and 

vinculin (1/10000, V9131, Sigma-Aldrich). Proteins were detected with HRP-conjugated goat 

anti mouse/rabbit IgG antibody (1/15000, sc2005, Bio-connect; 1/15000 A27036 thermo 

fisher scientific) and developed with ChemiDoc-it imaging system (UVP). 

For immunofluorescence, the cells were fixed in 4% paraformaldehyde and stained with anti-

y-H2AX (1/500) antibodies.  
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RNA sequencing 

 

Poly-A captured RNA library preparation was done on biological triplicates of BRIP1 

knockdown in IMR-32 and SH-SY5Y and control samples, using the TruSeq stranded mRNA kit 

LT. Concentration was measured via qPCR using the Kapa Library Quantification Kit (Illumina) 

and 1.4pM was loaded on a NextSeq 500. The NextSeq 500 High Output V2 75 cycles kit was 

used for single end sequencing to obtain approximately 20 million reads for every sample.  

Sample and read quality was checked with FastQC (v0.11.3). Reads were subsequently 

aligned to the human genome GRCh38 with STAR aligner (v2.5.2b). Final gene count values 

were obtained with RSEM (v1.2.31), which takes read mapping uncertainty into account. 

Counts were quantile normalized, followed by voom transformation and differential 

expression analysis with limma (R-package limma). Gene Set Enrichment Analysis (GSEA)16 

was performed on the list ordered according to differential expression statistic value (t) with 

limma functions romer and barcodeplot. 

 

Zebrafish experiments 

 

Experiments were performed as described by Zhu et al17. Human BRIP1 was cloned behind 

the dβh-promotor and subsequently injected into the one cell stage of tg(dβh:EGFP-MYCN) 

offspring. These fish were screened every 2 weeks starting at 5 weeks post fertilization (wpf) 

for fluorescent EGFP expressing cell masses indicative of tumors. All experiments were 

approved by the Ghent University ethical committee (ECD 14/86).  
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Results 

Integrated bio-informatics analysis identifies BRIP1 as top dosage sensitive candidate 

cooperative driver oncogene in neuroblastoma 

In a first step of our analysis, we used CONEXIC, a computational framework that integrates 

CNAs and gene expression data to identify dosage sensitive driver genes18. Using this 

approach, the expected MYCN oncogene was amongst the top ranked drivers, validating the 

tool (Table 3.1). Next, we established a further ranking, which we will call ICON, for 17q 

genes based on (1) Percentile of 17q gains the gene is part of (2) gene expression profiles for 

each of the identified candidate drivers in different stages of tumor development in the Th-

MYCN mouse model14 (Figure 3.1A) and (3) impact of high median gene expression on 

survival in the Fischer cohort7 (Table 3.2) (Figure 3.1B-C). In the CONEXIC analysis BRIP1 was 

identified as the second highest gene, while in the ICON analysis BRIP1 was the top-ranked 

candidate. Highly elevated BRIP1 expression levels were correlated with poor prognosis in 

several data sets in keeping with the presumed oncogenic (cooperative) driver role for BRIP1 

(Figure 3.1B). Importantly, also in high risk patients for which often prognostic signatures 

poorly perform to discriminate survivors from children that died of disease, high BRIP1 

expression correlates with poor patient outcome (Figure 3.1C). Finally, further suggesting 

the oncogenic effect of BRIP1 overexpression in neuroblastoma cells, BRIP1 levels were 

amongst the highest in neuroblastoma only preceded by T-ALL (Figure 3.1D).  

 

Table 3.1: Top 10 dosage sensitive driver genes identified by CONEXIC 

gene Chromosomal location Deletion/gain 

MYCN 2p24.3 Amplification 
BRIP1 17q23.2 Gain 
DDX1 2p24.3 Gain 
EXO1 1q43 Gain 
VSP13D 1p36.22 Deletion 
MLL 11q23.3 Deletion 
EIF2C4 (AGO4) 1p34.3 Deletion 
HNRNPN 1q44 Gain 
DNAJC16 1p36.21 Deletion 
LCK 1p35.1 Deletion 
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Table 3.2: Top 10 genes identified through ICON looking at % 17q gain, expression in the Th-MYCN 

mice and survival. 

Gene %gain survival Th-MCYN Combined 

BRIP1 78 0.28 1.019 21.668 
INTS2 78 0.09 0.53 21.56 
KPNA2 78 0.12 0.33 21.56 
BIRC5 77 0.35 1.24 21.53 
TK1 77 0.23 1.07 21.51 
PTRH2 78 0.23 0.25 21.5 
SMARCD2 78 0.02 0.44 21.48 
LIMD2 78 0.03 0.35 21.47 
PYCR1 77 0.21 0.57 21.46 
TSEN54 77 0.21 0.26 21.42 

 

BRIP1 knock down affects proliferation, apoptosis and cell cycle in neuroblastoma cells 

To understand the role of BRIP1 in the development of neuroblastoma, we first performed a 

series of functional tests. Knock down experiments with 2 different hairpins targeting BRIP1 

in neuroblastoma cell lines IMR-32 (MYCN amplified) and SH-SY5Y (MYCN non-amplified) 

were performed. For both shRNAs around 70% knock down was achieved (Figure 3.2A-B, 

Supplemental Figure 3.1A-B). Using the caspase-Glo assay we demonstrated increased 

apoptotic rates for the transduced cell lines versus controls after 72h (Figure 3.2C, 

Supplemental Figure 3.1C). Colony forming capacity of the BRIP1 depleted cells was 

dramatically reduced after BRIP1 knock down after 2 weeks (Figure 3.2D, Supplemental 

Figure 3.1D). Finally, cell cycle analysis showed a perturbed pattern with increased G1 phase 

arrested cells upon BRIP1 knock down as compared to the controls (Figure 3.2E, 

Supplemental Figure 3.1E). Collectively, these data indicate that neuroblastoma cells are 

dependent on high BRIP1 levels. 
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Figure 3.1:BRIP1 as a new cooperative oncogene in neuroblastoma development. (A) Dynamic 

upregulation of Brip1 during tumor formation. Expression of Brip1 is upregulated during tumor 

formation as is seen in hyperplastic ganglia of Th-MYCN mice, starting to develop tumors from 6 

weeks after birth. In contrast, Brip1 is downregulated in wild type mice. Error bars represent the 

standard deviation of 4 biological replicates. (B) Kaplan-Meier survival plot of BRIP1 expression in 283 

neuroblastoma patients. Low expression of BRIP1 is significantly associated with better survival 

(p=3.3E-7). (C) Kaplan-Meier curve within the subset of neuroblastoma stage 4 tumors. Low 

expression of BRIP1 is correlated with better survival (p=0.03). (D) Expression of BRIP1 in the cancer 

cell line encyclopedia database. BRIP1 expression is the second highest in neurobastoma cell lines, 

highest expression is observed in T-ALL cell lines. 
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Figure 3.2: BRIP1 knock down affects apoptosis, colony forming capacity and cell cycle in 

neuroblastoma cells. (A) SH-SY5Y cells were transduced with shRNA targeting BRIP1, followed by 

quantitative RT-PCR assessment of BRIP1 mRNA levels shown relative to the level in cells transduced 

with a scrambled shRNA. Error bars represent the standard error of mean (technical duplicates) (B) 

Corresponding western blot analysis of BRIP1 protein levels upon BRIP1 knock down. (C) Caspase glo 

assay in SH-SY5Y cells measuring caspase 3 activity upon BRIP1 knock down, error bars represent 

standard deviation of 3 biological replicates (D) Colony formation assays using SH-SY5Y cells depleted 

for BRIP1 compared to controls. Representative images of 3 independent experiments. (E) Cell cycle 

analysis in control cells and cells reduced for BRIP1 .Error bar represent standard deviation of 2 

biological replicates. 

 

High BRIP1 expression accelerates neuroblastoma development in zebrafish 

To corroborate our initial findings, we sought in vivo evidence for the oncogenic role of 

BRIP1 in MYCN driven neuroblastoma formation. To this end, we did forced overexpression 

of BRIP1 in MYCN overexpressing sympathetic progenitor cells in a stable tg(dβh:EGFP-

MYCN) zebrafish line. First, we performed mosaic injection of dβh-BRIP1 into stable 
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conditional tg(dβh:EGFP-MYCN) overexpressing zebrafish embryos and subsequently 

monitored tumor formation in two independent cohorts ( 10 and 8 tg(dβh:BRIP1) zebrafish, 

52 and 38 tg(dβh:EGFP-MYCN) zebrafish and 33 and 30 tg(dβh:EGFP-MYCN; dβh:BRIP1) 

zebrafish). While tg(dβh:EGFP-MYCN) transgenic fish develop tumors as of week eleven on17 

reaching a penetrance of 22%, double transgenic tg(dβh:EGFP-MYCN; dβh-BRIP1) fish 

develop the first tumors earlier at week 9 and reach a higher penetrance of 60% (Figure 

3.3A).The histopathology of the tumors was analyzed using H&E staining, and showed the 

expected large blue round cell typically observed in embryonal undifferentiated tumors 

(Figure 3.3B).  

 

Figure 3.3: Overexpression of dβh-BRIP1 into tg(dβh:EGFP-MYCN) results in the acceleration of 

neuroblastoma tumor formation and increases tumor penetrance. (A) Tumor free survival of 

tg(dβh:EGFP-MYCN), tg(dβh:BRIP1) and tg(dβh:EGFP-MYCN; dβh:BRIP1) zebrafish. (B) 

immunohistochemistry of tg(dβh:EGFP-MYCN; dβh:BRIP1) zebrafish.  

BRIP1 controls replication stress to maintain tumor genome integrity 

BRIP1 is one of the many Fanconi anemia genes acting in concert with other binding 

partners, including BRCA120. BRIP1 has been reported to be implicated in multiple functions 

related to replicative stress control including control of both CHK1 signaling and homologous 

DNA repair versus translesion DNA synthesis, promoting replication fork stability, recovery 

and restart, unwinding of stable G-quadruplex DNA structures and dissociation of RNA:DNA 

(R-loops) hybrids ahead of replication21.  

In order to confirm the need for elevated BRIP1 levels to control elevated replicative stress 

levels in rapidly dividing neuroblastoma cells, we evaluated the effect of reduced BRIP1 

levels on phosphorylated RPA (pRPA, S33) on western blot. RPA decorates ssDNA and pRPA 
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is typically induced upon replicative stress as part of the activation of the DNA damage 

response ATR/CHK1 pathway and therefore considered as reliable marker for replicative 

stress induction. As expected, strongly upregulated levels of pRPA were observed following 

BRIP1 knock down in neuroblastoma cells on both western blots (Figure 3.4A). A second 

assay to monitor increased replicative stress is based on DNA combing and allows to 

visualize several aspects of DNA replication and fork dynamics. To explore this, DNA combing 

assays were performed in the presence and absence of hydroxy urea (HU), a well-known 

compound that induces replicative stress through blocking ribonucleotide reductase activity 

causing depletion of the nucleotide pool. Combined BRIP1 knock down and exposure to HU 

significantly increased replication fork stalling in keeping with the role of BRIP1 in control of 

replicative stress and dependency of neuroblastoma cells to high BRIP1 levels (Figure 3.4B-C, 

Supplementary Figure 3.2). Interestingly, reduced BRIP1 levels also induced increased pCHK1 

levels, suggesting that CHK1 signaling is still intact and elevated upon BRIP1 knock down 

(Figure 3.4A).  
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Figure 3.4: BRIP1 controls replicative stress in the neuroblastoma tumor genome. (A) western blot 

analysis of phospho CHK1 (s345), phospho RPA32/RPA2 (S33), and γH2AX in SH-SY5Y and IMR-32 

cells upon BRIP1 knock down. (B) DNA combing analysis in IMR-32 cells with HU treatment. (C) 

Analysis of replication fork stalling in IMR-32 cells upon treatment of HU and BRIP1 knock down, p-

values were calculated using paired t-test. For each group, the median (horizontal line), the 

interquartile range (box), and the upper and lower range of the data (whiskers) are shown.  

BRIP1 promotes maintenance of genomic stability  

In cells undergoing high chronic increased levels of replicative stress stalled replication forks, 

the replisome dissociates from the fork leading to fork collapse. Collapsed forks with longer 

stretches of single strand DNA are prone to double strand breaks and causing genomic 

instability. While this might initially contribute to the tumor initiation process, chronic 

replicative stress may become detrimental for rapidly dividing cancer cells. To avoid this, 

cancer cells can become addicted to hyperactivated DNA damage response for their survival.  

In order to better understand the functional role of BRIP1 in neuroblastoma cells, we first 

tested yH2AX levels in IMR-32 cells undergoing increased replicative stress levels upon 
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exposure to HU and indeed could demonstrate elevated levels of DNA damage (Figure 3.5A-

B). Next, we also performed RNA sequencing upon BRIP1 knock down in neuroblastoma cell 

lines IMR-32 and SH-SY5Y and observed cell cycle and DNA damage repair as major GO term 

for gene functions affected upon BRIP1 downregulation, in keeping with its presumed 

function in DNA repair (Figure 3.5C). 

Several recent studies have explored the protein interaction network at the DNA replication 

fork under normal conditions or replicative stress. From this, it became evident that a large 

number of proteins are implicated. In a comparison of proteins binding to nascent DNA at 

normal, stalled or collapsed forks, increased BRIP1 activity and interaction was detected at 

collapsed forks22. In a first step to explore the BRIP1 interactome in more detail in the 

context of neuroblastoma cells, IP-MS is currently ongoing.  

BRCA1 and other members of the FA- pathway are highly upregulated and possibly co-

regulated with BRIP1 

 

BRIP1 is known to interact with BRCA1 to execute several of the above mentioned functions. 

Correlation analysis using R2 for a large neuroblastoma tumor set (283 samples) showed 

very high level of correlation in expression levels for BRIP1 and BRCA1 (Figure 3.6A). In 

keeping with this finding, like BRIP1, BRCA1 is as expected also very high expressed in 

neuroblastoma (CCLE, R2, ..) and also linked to poor survival (Figure 3.6 B-C). In view of this 

observation, the important role of BRIP1 in replication fork protection and repair and the 

recently emerging role for the activated Fanconi anemia (FA) pathway in stabilizing 

replication forks and protection from collapse, we further investigated the expression levels 

of the FA-pathway in different stages of the neuroblastoma development. Overall, for 

all/most FA-genes, significant elevated to very high levels of expression were observed 

(Supplemental Figure 3.3) and almost all of them, except PALB2, correlated with poor 

survival (Supplemental Figure 3.4), suggesting an overall activation of the FA-pathway in 

neuroblastoma.  
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Figure 3.5 BRIP1 maintains genome integrity. (A) Immunofluorescence of γH2AX in control IMR-32 

neuroblastoma cells with and without HU treatment and IMR-32 cells depleted for BRIP1 with and 

without treatment with HU. (B) Quantification of γH2AX spots described in (A), γH2AX is significantly 

increased in BRIP1 knock down cells treated with HU. The median (horizontal line), the interquartile 

range (box) and the upper and lower range of the data (whiskers) are shown (n= 2 biological 

replicates). (C) Important genesets to be found enriched upon knock down of BRIP1 in IMR-32 and 

SH-SY5Y cells. .  
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Figure 3.6: BRCA1 is highly upregulated in neuroblastoma and is correlated with BRIP1. (A) 

correlation plot of BRCA1 and BRIP1. R-value= 0.92, P=value= 3E-116. (B) Dynamic upregulation of 

Brca1 during tumor formation. Expression of Brca1 is upregulated during tumor formation as is seen 

in hyperplastic ganglia of Th-MYCN mice, starting to develop tumors from 6 weeks after birth. In 

contrast, BRCA1 is downregulated in wild type mice. Error bars represent standard deviation of 4 

biological replicates. (C) Kaplan-Meier survival plot of 283 NB patients of BRCA1 expression. High 

expression of BRCA1 is significantly associated with poor survival 
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CNAs act as transcriptional amplifiers for FOXM1 target genes including BRIP1 

 
While copy number changes have been shown to collectively install an oncogenic cellular 

state driving a hallmark phenotype in ependymoma, to what extent transcription factors 

controlling expression of these genes has not been addressed so far. First, we investigated 

whether BRIP1 was regulated by FOXM1 in neuroblastoma as BRIP1 was previously shown to 

be a bona fide target of this transcription factor23. To explore this we performed lentiviral 

knock down of FOXM1 in the neuroblastoma cell line IMR-32 and could indeed observe 

downregulation of BRIP1 upon FOXM1 depletion (Figure 3.7A-B). 

 

 

Figure 3.7: BRIP1 is a downstream target of FOXM1. (A) IMR-32 cells were transduced with shRNA 

targeting FOXM1, followed by quantitative RT-PCR assessment of FOXM1 and BRIP1 mRNA levels 

shown relative to the level in cells transduced with a scrambled shRNA. Error bars represent the 

standard error of mean (technical duplicates) (B) Corresponding western blot analysis of FOXM1 

levels (C) Venn diagram showing the overlap on 17q genes in the study of Olsen et al, Beke et al24, 

and Beckers et al14. genes included in triple overlap are BRCA1, TOP2A, BRIP1, BIRC5, SPAG5 and 

PRR11 

 

Next, we looked whether previously identified FOXM1 target genes were located on 17q and 

also generated a list of human 17q genes that were upregulated during Th-MYCN tumor 

formation in mice, either through an established mouse model14 or based on a novel neural 

crest derived model system (Olsen et al. Oncogene, accepted) and downregulated upon 

inhibition of FOXM124. Remarkably, several of the top regulated FOXM1 target genes 
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including TOP2A, BIRC5 and BRCA1 were identified (Figure 3.7C). Further testing of dosage 

sensitivity for these genes is ongoing as well as their regulation through FOXM1 in 

neuroblastoma cells. Taken together, these data strongly suggest that FOXM1, a known 

important mediator of the MYCN driven oncogenic transformation of fetal neuroblasts 

(Olsen et al. Oncogene, accepted), controls the expression of several dosage sensitive 17q 

genes which are canonical target genes implicated in DNA repair (or more specifically 

replicative stress resistance) and G2/M transition located. In other words, one can envision a 

mechanism through which 17q gain acts as a genomic amplifier for FOXM1 target genes 

implicated in the MYCN/FOXM1 controlled process of neuroblastoma formation. Therefore, 

we propose FOXM1 as a major novel drug target for children with high risk neuroblastoma. 
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Discussion: 

Chromosome 17q gain is the most frequent genetic alteration occurring in neuroblastoma 

while, except for ALK, mutations are rare in this tumor thus offering limited targets for 

precision oncology. Recent work in ependymoma has shown that large chromosomal 

imbalances can impact on gene expression levels of multiple oncogenes and tumor 

suppressor genes and that these broad genomic driven multiple gene dosage effects can 

impact on a given cellular state contributing to the tumor phenotype. 

Using a data mining driven approach, employing copy number and gene expression data 

from human neuroblastomas in combination with transcriptome data from dynamic 

regulation of gene expression in mouse neuroblastomas, we identified BRIP1, located on 

chromosome 17q23, as a cooperative oncogene in neuroblastoma oncogenesis. The gain-of 

function role for BRIP1 is unexpected given its well established tumor suppressor role as 

member of the Fanconi anemia complex and partner of the well-known BRCA1 tumor 

suppressor gene13,20,25,26. BRIP1 therefore joins the growing list of genes that can act both as 

oncogene and tumor suppressor depending on timing and cellular context, such as NOTCH1 

and EZH2 27,28. Reduction of BRIP1 levels in neuroblastoma cells drastically impacted on 

proliferation, increased apoptosis and blocked cell cycle progression. Forced overexpression 

of dβh-BRIP1 into the tg(dβh:EGFP-MYCN) zebrafish resulted in acceleration of tumor onset 

and an increase of tumor penetrance confirming its proposed role as an oncogene.  

The BRIP1 protein can interact with BRCA120 and, either in combination with BRCA1, or 

independently, acts to preserve the integrity of the genome. BRIP1 is required for 

homologous recombination-mediated double strand break repair, the execution of the 

G2/M cell cycle checkpoint29 and for normal progression through S phase by assisting in the 

resolution of stalled replication forks30, a phenomenon called replicative stress. Given that 

increased replicative stress can result in DNA damage and genome instability31, we 

wondered whether upregulation of BRIP1 is required to protect neuroblastoma genome 

integrity. Knock down of BRIP1 in neuroblastoma cells resulted in the upregulation of the 

ATR-CHK1 pathway, indicative for replicative stress. While contradictory at first sight, it has 

been shown that excessive replicative stress can be fatal for cancer cells. In fact, replicative 

stress is a double edged sword: on the one hand it can lead to genomic instability and 
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promote tumorigenesis, while on the other hand replicative stress also represents an 

Achilles heel of the cancer cell since excessive replicative stress levels can be fatal to the 

cancer cell forcing it into apoptosis. In keeping with this latter aspect it is of interest that in 

mice an extra copy of CHK1 can predispose to cancer, which was shown to be associated 

with a reduction in the level of replicative stress induced by oncogenes32. By performing RNA 

sequencing upon BRIP1 knock down we observed enrichment for cell cycle and DNA 

replication, further strengthening our hypothesis that overexpression of BRIP1 is necessary 

to restrain replication stress observed by the tumor genome.  

In conclusion, we could show for the first time that BRIP1 is an important cooperative 

oncogene for the development of neuroblastoma. Moreover, we show that BRIP1 creates a 

replicative resistance stress cell state necessary for maintaining the neuroblastoma tumor 

genome.  
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Supplementary Figures: 

 

Supplementary Figure 3.1: BRIP1 knock down affects apoptosis, colony forming capacity and cell 

cycle in neuroblastoma cells. (A) IMR-32 cells were transduced with shRNA targeting BRIP1, followed 

by quantitative RT-PCR assessment of BRIP1 mRNA levels shown relative to the level in cells 

transduced with a scrambled shRNA. Error bars represent the standard error of mean (technical 

duplicates) (B) Western blot analysis of BRIP1 protein levels upon BRIP1 knock down. (C) Caspase glo 

assay in IMR-32 cells measuring caspase 3 activity upon BRIP1 knock down, error bars represent 

standard deviation of 3 biological replicates (D) Colony formation assays using IMR-32 cells depleted 

for BRIP1 compared to controls. Representative images of 3 independent experiments. (E) Cell cycle 

analysis in control cells and cells reduced for BRIP1 .Error bar represent standard deviation of 3 

biological replicates. 
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Supplementary Figure 3.2: DNA combing analysis in SH-SY5Y cells with HU treatment 

 

 

Supplementary Figure 3.3: Expression of FA genes during neuroblastoma development in mice. 
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Supplementary Figure 3.4: Kaplan-Meier curves of several members of the FA pathway.  
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Statement of translational relevance: 

Despite intensive multimodal therapies, survival rates for aggressive neuroblastoma patients 

are still disappointingly low. In this study, we wanted to deeper explore whether an ESC 

derived expression signature could capture a stemness phenotype in neuroblastoma cells 

that is associated with therapy resistance. An ESC miRNA signature could be defined that 

allows to discriminate patients with worse survival outcome in the global cohort of 

neuroblastoma patients, but most interestingly also in a subset of high-risk tumors, i.e. stage 

4 tumors without MYCN amplification. Analysis of the protein coding genes that are 

correlated with the ESC miRNA signature score in neuroblastoma patients, pointed at a 

FOXM1 driven cell cycle and DNA repair activation in therapy resistant tumors. These 

findings reveal new targets for molecular therapy of tumors where current treatment 

regimens fail. 
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Abstract: 

Purpose: Chemotherapy resistance is responsible for high mortality rates in high-risk 

neuroblastomas. MYCN is a major oncogenic driver in neuroblastoma controlling 

pluripotency genes including LIN28B. Therefore, we hypothesized that enhanced embryonic 

stem cell (ESC) gene regulatory programs could mark tumors with increased risk for therapy 

failure enabling the selection of patients for novel therapy approaches.    

Material and Methods: An ESC microRNA expression signature was established based on 

publically available data. In addition, an ESC mRNA signature was generated including the 

500 protein coding genes with the highest positive correlation with the miRNA ESC signature 

score in 200 neuroblastoma tumors. 

Results: High ESC miRNA signature scores were significantly correlated with poor 

neuroblastoma patient outcome in the global patient cohort and more importantly also 

within the subset of stage 4 tumors without MYCN amplification. In addition, in 

neuroblastoma tumors with MYCN amplification the ESC mRNA signature scores were 

significantly increased. Further data-mining identified FOXM1, member of the DREAM 

complex, as the major driver of the ESC mRNA signature score, controlling a large set of 

genes implicated in cell cycle control and DNA damage response. In addition, re-analysis of 

published data showed that MYCN transcriptionally activates FOXM1 in neuroblastoma cells.  

Conclusion: A novel ESC miRNA signature score stratifies neuroblastomas with poor 

prognosis, enabling the identification of tumors that are therapy resistant. The finding that 

this signature is strongly FOXM1 driven, warrants for drug screens and drug design targeted 

at FOXM1 or key components controlling this pathway.  
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Introduction 

Childhood cancers have been regarded as developmental disorders and differ in many 

aspects from adult cancers. Typically, most childhood cancers show low mutational burden1 

and present with a very immature phenotype. It is assumed that embryonal tumors such as 

medulloblastoma, Wilms’ tumor, embryonal rhabdomyosarcoma and neuroblastoma arise 

from immature progenitor cells that still have a high level of stemness characteristics1. In 

these immature cells, disruption of normal early developmental pathways can cause 

differentiation arrest creating pre-malignant lesions that can subsequently develop to full 

blown tumors.  

Neuroblastomas that arise mainly in very young children with a median average age of 

diagnosis of 17 months1, are believed to emerge from cells of the developing adreno-

sympathetic nervous system1. In an earlier study, we provided support for this hypothesis 

through analysis of human fetal adrenal neuroblast transcriptomes which showed close 

similarity to malignant neuroblastoma gene expression profiles2. Also the few 

neuroblastoma driver genes that were identified so far, including MYCN, ALK, PHOX2B and 

LIN28B, are all involved in early stages of the sympathetic nervous system development3-5 

with both LIN28B and MYCN implicated as major drivers of stemness6. Novel therapies 

targeting these neuroblastoma driver genes such as ALK inhibitors and inhibitors of the 

BRD4-MYCN-promotor interaction are already emerging7. While these developments are 

promising, outcome of high-risk neuroblastoma patients is still disappointingly low and 

insights into therapy resistance mechanisms and new venues for targeting these resistant 

cells are needed. High treatment failure rates could possibly be explained by the stemness 

features of cancer initiating cells, including enhanced DNA repair capacity8. Therefore, 

scrutinizing in more detail the stemness features of pediatric cancers may provide new 

insights into therapy resistance and may also offer novel targets for therapeutic 

intervention.  

In this study, we explored the stemness features of neuroblastoma tumor cells using an in 

silico analysis starting from a normal embryonal stem cell driven miRNA signature. This 

approach was based on three important concepts. First, several hallmark characteristics of 

stem cells, including the capacity to self-renewal and differentiation are mimicked in the 

highly proliferative cancer cells, suggesting that similar regulatory networks are active in 



86|Chapter 4 
 

 

normal stem cells and cancer stem cells9. Secondly, miRNAs are key players in the tight 

control of (stem) cell fate10. These small non-coding RNA molecules play a crucial role in 

stem cell pluripotency, control of self-renewal, lineage-specific differentiation, and cell 

reprogramming10. The miRNA pathway has been shown to be crucial in embryonic 

development and in embryonic stem cells (ESCs), as shown by Dicer knockout analysis11. 

Specific patterns of miRNAs have been reported to be expressed only in ESCs and in early 

phases of embryonic development. Hence, regulatory networks tightly controlled by miRNAs 

can be assumed to play important roles in normal and cancer stem cell biology. Third, miRNA 

expression patterns can distinguish tumor types and tissue types better than mRNA 

expression patterns12. From these observations we anticipated that miRNAs could act as a 

proxy to capture stem cell features in neuroblastoma cells. 

To this end, we used an unique in silico approach to investigate the stemness characteristics 

in neuroblastoma tumor cells and obtained three important results: (1) a 60 miRNA ESC 

signature could discriminate patients with poor survival within a subset of the high-risk 

neuroblastoma patients; (2) biological function enrichment analysis on the coding genes 

correlated with the miRNA ESC signature score in neuroblastoma revealed increased DNA 

repair mechanisms in tumors with high stem cell capabilities driven by the FOXM1 

transcription factor, which was further confirmed by FOXM1 knock down experiments; (3) 

analysis of transcriptional changes after FOXM1 knock-down in neuroblastoma cells and re-

analysis of published datasets strongly supports the contribution of FOXM1 to the MYCN 

driven tumor and stemness phenotype of neuroblastoma cells. In view of these findings, our 

data should fuel renewed efforts for identifying novel on target compounds to block FOXM1 

activation in high-risk neuroblastomas. 
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Materials & Methods 

Re-analysis of publically available datasets 

In this study, we reanalyzed several published expression datasets: miRNA expression data 

of different embryonal stem cell lines and differentiated tissue (GSE34199)13-17, 2) miRNA 

expression data of 200 neuroblastoma tumor samples18, 3) matching mRNA expression 

profiling data of the same 200 samples (GEO85047), 4) RNA sequencing data of 498 

neuroblastoma tumors (GSE62564, GSE49711)19, 5) miRNA and mRNA expression data of the 

Th-MYCN neuroblastoma progression model (E-MTAB-2618)20, 6) miRNA expression data of 

the different neuroblastoma mouse models5,20, 7) mRNA expression data of the shMYCN 

knock-down system (GSE39218)21 , 8) mRNA expression data of JQ1 and OTX015 treated 

neuroblastoma cell lines (GSE43392, E-MTAB-3672)22,23, 9) mRNA expression profiling data 

of siFOXM1 treated breast cancer cells (GSE55204, GSE25741)24,25 and shFOXM1 treated 

glioma cells (GSE63963)26, 10) mRNA expression profiling data of glioma, prostate, and 

breast cancer cell lines after pharmacological inhibition of FOXM1 with siomycin A and FDI-6 

(GSE50227, GSE36531, GSE58626)27-29, 11) data of the cancer cell line encyclopedia30 and 12) 

medulloblastoma mRNA expression data (GSE30530)31. The R-package GEOquery and 

ArrayExpress were used to download the publically available (normalized) data directly into 

the R-environment. ChIP-seq data of MYCN and H3K27ac in BE2C, Kelly, NGP and SHEP21N 

were downloaded from ArrayExpress (E-GEOD-80154) and converted to bigwig files to 

visualize the ChIP tracks in IGV. 

 

miRNA profiling of normal neuroblasts and human embryonic stem cell lines  

miRNA expression of 8 embryonal stem cell lines32 and 7 normal neuroblast samples2 was 

profiled and normalized as previously described33 (data will be submitted to a data 

repository).  

 

Data-mining and statistical analysis 

We performed signature score analysis on both mRNA and miRNA expression data using a 

rank-scoring algorithm as described in34. In brief, for each tumor sample (mRNA or miRNA) 

expression values were transformed to ranks (a rank of 1 matching with the lowest 
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expressing gene). Next, rank scores for the signature genes were summed for each sample 

generating a signature score.  

Correlation of the score with survival was tested using Kaplan-Meier plots and log-rank 

analysis by grouping the samples in 2 equal groups (score above or below the median value) 

(R-survival package). Comparison of signature scores or expression between groups of 

samples was done using the parametric t-test or non-parametric Mann-Whitney test (R-base 

package). Signature score and gene expression correlation analysis was performed using 

Pearson correlation analysis (R-base package). Gene set enrichment analysis (GSEA)35 was 

performed using the version 5.2 geneset catalogue. Multivariate logistic regression analysis 

was performed on a subset of samples including only the patients that died of disease or 

survived for at least 3 years after diagnosis. 

 

FOXM1 gene silencing through shRNA knock-down and verification of knock down by RT-

qPCR and Western Blot analysis 

ShRNA knock down for FOXM1 was achieved using MISSION shRNA (Sigma) 

TRCN0000015544. Viral production was performed with 15 µg of plasmid in 3 million 

HEK293TN cells using the calcium phosphate trans-lentiviral packaging system, according to 

the protocol provided by the manufacturer (Lifetechnologies). The viral particles were 

concentrated using the PEG-it virus precipitation protocol (System Biosciences) and 

afterwards transduced in the neuroblastoma cell line IMR-32.  

24h after transduction the medium was refreshed and cells were selected with puromycin 

(0.5µg/ml). Cells were harvested for RNA 96h after transduction. RNA isolation was 

performed using the miRNeasy micro kit, according to the guidelines of the company 

(Qiagen, catalogue number 217084), including DNAse treatment on column (RNAse-free 

DNAse set, Qiagen, catalogue number 79254). cDNA synthesis was carried out using 500ng 

of RNA with the iScript cDNA synthesis kit (Bio-Rad, catalogue number 170-8891). RT-qPCR 

primers for FOXM1 (AGACACCCATTAAGGAAACG,TTTGTACTGGGCTGAAATCC) and reference 

genes HPRT1(TGACACTGGCAAAACAATGCA ,GGTCCTTTTCACCAGCAAGCT), 

YWHAZ(ACTTTTGGTACATTGTGGCTTCAA, CCGCCAGGACAAACCAGTAT), SDHA 

(TGGGAACAAGAGGGCATCTG, CCACCACTGCATCAAATTCATG) were designed using primerXL 

(www.primerXL.org). RT-qPCR reactions were performed in duplicate in a total volume of 

5µl, including 2µl of cDNA and 3µl of ssAdvanced SYBR Green qPCR mastermix (Bio-Rad). 

http://www.primerxl.org/
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Cycling conditions were 95°C (15s) – 60°C (15s) – 72°C (60s) and 44 cycli. Data analysis was 

performed using the qBasePlus software (Biogazelle). Protein extraction was done via RIPA 

buffer and protein concentration was measured using the Lowry protein assay. Protein 

extracts were separated with SDS-PAGE, blotted on a nitrocellulose membrane and probed 

with antibodies against FOXM1 (1/1000 ; 5436S cell signaling),  and β-actin (1/10000, A2228, 

Sigma-Aldrich). Proteins were detected with HRP-conjugated goat anti rabbit IgG antibody ( 

1/15000, A27036, thermos fisher scientific) and developed with ChemiDoc-it imaging system 

(UVP). 

 

Differential gene expression analysis by RNA sequencing of FOXM1 knock-down in 

neuroblastoma cells 

Poly-A captured RNA library preparation was done on biological triplicates of FOXM1 knock-

down and control samples, using the TruSeq stranded mRNA kit LT. Concentration was 

measured via qPCR using the Kapa Library Quantification Kit (Illumina) and 1.4pM was 

loaded on a NextSeq 500. The NextSeq 500 High Output V2 75 cycles kit was used for single 

end sequencing to obtain approximately 20 million reads for every sample.  

Sample and read quality was checked with FastQC (v0.11.3). Reads were subsequently 

aligned to the human genome GRCh38 with STAR aligner (v2.5.2b). Final gene count values 

were obtained with RSEM (v1.2.31), which takes read mapping uncertainty into account. 

Counts were normalized with the TMM method (R-package edgeR), followed by voom 

transformation and differential expression analysis with limma (R-package limma). Gene Set 

Enrichment Analysis (GSEA)35 was performed on the list ordered according to differential 

expression statistic value (t). 

 

ChIP-sequencing of MYCN and H3K27ac in neuroblastoma cell line CLB-GA  

In addition to published ChIP-seq data, we also performed ChIP-seq in the non-MYCN 

amplified CLB-GA cell line. Chromatine immunoprecipitation for MYCN and H3K27ac was 

done in fifty million CLB-GA cells using 12.5 µg of MYCN-specific (Santa-Cruz, B8.4.B, sc-

53993) and H3K27ac-specific (Abcam, ab4729) antibody according the ChIP-protocol 

described in36. DNA was subsequently adaptor ligated and amplified using the NebNext Ultra 

DNA Library Prep Kit (E7370S) and sequenced on the NextSeq500 using the NextSeq 500 

High Output Kit V2, 75 cycles kit (Illumina). Raw reads were mapped to hg19 reference 
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genome using Bowtie2 and peakcalling was performed using MACS2. Bigwig files were 

generated to visualize the ChIP-seq tracks in IGV. 

 

Information of the used neuroblastoma cell lines 

The CLB-GA cell line was obtained from the lab of Valerie Combaret (Lyon, France). 

The IMR-32 cell line was obtained from the lab of Rogier Versteeg (Amsterdam, The 

Netherlands). 

All cell lines in our laboratory were screened upon arrival with the MycoAlert Detection 

Assay (cat nr. LT07-318, Lonza) and immediately expanded for freezing in order to assure 

Mycoplasma free cells as a stock. Routinely monthly random screenings were done, which 

were each time completely negative. 

Both cell lines used in the paper (CLB-GA and IMR-32) were brought in culture, and passaged 

two times before starting the experiments. Cells were kept in culture for maximum 20 

passages. After that: new cells were brought in culture. 

All cell lines were routinely STR genotyped, to confirm the authenticity of the cell lines.  
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Figure 4.1: Identification of a ESC miRNA signature score that stratifies neuroblastoma patients 

within a subset of high-stage neuroblastoma. 

(A)ESC miRNA signature scores in embryonic stem cells (ESC line)32, neuroblastoma tumors (NB 

tumors)18 and normal neuroblasts2. (B) ESC miRNA signature scores in MYCN non amplified 

neuroblastoma tumors (MNA) compared to MYCN amplified neuroblastoma tumors (MA). (C-D) 

Kaplan-Meier and log rank analysis of 200 neuroblastoma patients with a high or low ESC miRNA 

signature score (using median as cut-off). DOD, dead of disease. (E-F) Kaplan-Meier and log rank 

analysis within the subset of stage 4 MYCN non amplified patients. (H) ESC miRNA signature score 

during tumor development in Th-MYCN transgenic mice. (G) ESC miRNA signature scores for MYCN, 

ALKF1174L and Lin28b neuroblastoma mice tumors and their normal counterparts (adrenal gland and 

brain tissue).  

 

ESCline NBtumor neuroblast

40

60

80

100

E
S

C
 m

iR
N

A
 s

ig
n
a
tu

re
 s

c
o
re

MYCN

non amp

MYCN

  amp

60

80

100

120

140

E
S

C
 m

iR
N

A
 s

ig
n
a
tu

re
 s

c
o

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

160

p=4.28E-05

A B

0 5 10 15

20

40

60

80

100

p=9.13E-05

years

n=99 (17 DOD)

n=100 (43 DOD)

low  ESC miRNA score
high ESC miRNA score

p
e
rc

e
n
t 
o
v
e
ra

ll 
s
u
rv

iv
a
l

C

global NB population

0 5 10 15

20

40

60

80

100

years

n=98 (25 event)

n=100 (51 event)

years

low  ESC miRNA score
high ESC miRNA score p=2.6E-04

p
e
rc

e
n
t 
e
v
e
n
t-

fr
e
e
 s

u
rv

iv
a
l

D

global NB population

0 5 10 15

20

40

60

80

100

n=29 (8 DOD)

n=29 (18 DOD)

years

low miRNA ESC score
high miRNA ESC score p=1.6E-3

p
e
rc

e
n
t 
o
v
e
ra

ll 
s
u
rv

iv
a
l

0 5 10 15

20

40

60

80

100

low miRNA ESC score
high miRNA ESC score

years

n=29 (11 event)

n=29 (21 event)

p=

p
e
rc

e
n
t 
e
v
e
n
t 
fr

e
e
 s

u
rv

iv
a
l

E F

stage 4 NB without MYCN amp stage 4 NB without MYCN amp

A
LK

F11
74

L Tu
m

or

A
LK

F11
74

L /M
Y
C
N

Tu
m

or

LI
N
28

b 
A
dr

en
al

LI
N
28

b
Tu

m
or

M
Y
C
N
 B

ra
in

M
Y
C
N

Tu
m

or

30

35

40

45

50

55

E
S

C
 m

iR
N

A
 s

ig
n
a
tu

re
 s

c
o
re

60

4.3

 14

1 2 6

Th-MYCN

Wild-type

H

E
S

C
 m

iR
N

A
 s

ig
n
a
tu

re
 s

c
o
re

weeks

p=1.9E-02G

120



92|Chapter 4 
 

 

Results 

Embryonic stem cell miRNA signature score analysis identifies patients with poor survival 

within a subset of high-risk neuroblastoma patients 

In order to evaluate the stem cell features of neuroblastoma cells, we first established a 

robust miRNA embryonic stem cell (ESC) signature based on literature data. To this end, 

gene lists were retrieved from 4 published studies reporting on differential miRNA 

expression analysis of ESCs versus more differentiated cells (Supplemental Table 4.1)14-17. 

miRNA genes that were listed in at least 2 of the publications were included in the ESC 

signature (Table 4.1). A gene cluster with a well-known role in ESCs is the miR-302/367 

cluster, of which all components are present in the signature. Using signature score analysis 

(see M&M), we could validate the signature in an independent dataset of ESCs with high 

miRNA signature scores for the ESC samples compared to differentiated somatic tissue 

(Supplemental Figure 4.1)13 . 

Next, we generated miRNA expression data of ESCs32, normal neuroblasts and 

neuroblastoma tumor samples2,18. We confirmed high scores for the ESCs compared to those 

of neuroblastoma tumor samples (Figure 4.1A). The normal counterpart cells, i.e. the normal 

neuroblasts isolated from fetal adrenal glands, have ESC miRNA signature scores in the 

higher range of the scores identified in neuroblastoma tumors samples. The large dynamic 

range of scores in neuroblastoma tumors warranted us to evaluate whether this 

heterogeneous expression pattern could reflect tumor characteristics including MYCN status 

and patient survival. Indeed, tumors presenting with MYCN amplification have significantly 

higher signature scores than MYCN single copy tumors (t-test, p-value = 4.282e-05) (Figure 

4.1B). In addition, Kaplan-Meier and log-rank analysis pointed at a significant correlation 

with survival, i.e. patients with higher scores have lower survival chances (Figure 4.1C and 

D). According to multivariate logistic regression analysis, this significant correlation is 

independent of the currently used risk markers, i.e. MYCN status, stage (stage 4 versus other 

stage) and age at diagnosis (below or above 1 year) (Odds’ ratio 3.08, p=2.16E-2 for the 

signature score using median cut-off). More specifically, MYCN single copy stage 4 tumors 

with high ESC miRNA signature scores (above the median score) have extremely low survival 

probability, i.e. 19.6% overall survival at 5 years after diagnosis (95% confidence interval: 

7.52%-51.1%) versus 69.5% (52.6%-91.9%) in tumors with low ESC miRNA signature score 



A MYCN activated FOXM1 driven embryonal pathway|93 
 

 
 

(Figure 4.1E and F). This relation cannot be generalized to all other tumor types as we could 

not confirm this link in published miRNA expression datasets of ovarian cancer and 

glioblastoma (data not shown)37,38.  

Taken together, these data indicate that highly aggressive neuroblastoma cells in patients 

with ultra-high risk and very poor survival are enriched for a stemness ESC derived gene 

signature and that application of this signature could be helpful for early detection of 

patients for novel treatment strategies. 

 

The ESC miRNA signature score is dynamically upregulated during MYCN driven tumor 

formation and is highest in the ALKF1174L/MYCN double transgenic mice 

In the tyrosine hydroxylase (Th)-MYCN neuroblastoma mouse model, a clear increase in the 

ESC miRNA signature score during tumor development from pre-neoplastic lesions in the 

ganglia at week 1 and 2 to full-blown tumors at week 6 after birth is observed (Figure 

4.1H)20. Furthermore, Th-MYCN- and also dβh-iCre; LSL- ALKF1174L-, and dβh-iCre; LSL-LIN28B-

driven mice tumors are characterized by higher ESC miRNA signature scores compared to 

normal adrenal gland (Figure.4.1G)5,39. Interestingly, the ESC miRNA signature score in 

double transgenic mice tumors (MYCN/ALKF1174L) is significantly higher than in ALKF1174L-

driven tumors (significant difference with p=1.905E-2), in concordance with shorter time to 

tumor appearance and thus more tumor aggressiveness in double transgenic mice compared 

to ALKF1174L-transgenic mice. 

Overall, these results generated in human and mice tumors show that a high ESC signature 

score is linked to higher tumor aggressiveness, in keeping with the observed poor survival in 

patients with tumors with high miRNA ESC score. 

 

The ESC mRNA gene signature in neuroblastoma is highly enriched for FOXM1 driven cell 

cycle and DNA repair genes 

In order to understand the underlying biological functions of high miRNA ESC signature 

scores in aggressive neuroblastoma, GSEA analysis was performed on the list of coding genes 

ranked according to degree of expression correlation with the ESC miRNA signature score in 

200 NB tumor samples (Supplemental Table 4.2). Gene sets enriched among the positively 

correlated genes are involved in chromatin remodeling, response to DNA damage (double 

strand DNA breaks) and cell cycle (MSigDB c5-gobp) as well as embryonic stem cells (MSigDB 
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c2-cgp) and MYC and E2F targeting (MSigDB Hallmark genesets) (adjusted p-values < 0.001) 

(Figure 4.2A-F). These findings were confirmed by DAVID-gene ontology analysis on the top 

500 correlated genes showing enrichment for cell cycle and DNA damage/repair genes 

(functional annotation clustering: first cluster with cell cycle gene sets has enrichment score 

of 41.93, second cluster with DNA damage/repair functional classes has enrichment score of 

29.52, cut-off for significance is 1.3).  

We also performed motif enrichment analysis using iRegulon40 to identify transcription 

factors that drive the expression of the top 500 correlated genes, further referred to as the 

ESC mRNA signature (Supplemental Table 4.3)40. Within the top 10 most significantly 

enriched transcription factors, several members of the DREAM complex, which has an 

important role in transcriptional repression of cell cycle genes and maintaining quiescence, 

are present including E2F, MYBL2 and FOXM141. DREAM-complex members FOXM1, MYBL2, 

E2F1/2/3/7/8 and LIN9 are all part of the top 500 correlated gene list. Furthermore, FOXM1 

is a transcription factor known to target several genes involved in the enriched DNA repair 

pathway, including EXO1, BRIP1, BRCA1, BRCA2, CHEK1, BUB1B, XRCC2 and RAD51AP1k, all 

of which are in the top 50 of the ESC mRNA signature42. Also part of the gene list is CENPF 

which is a known FOXM1 target that cooperates with FOXM1 as recently shown for prostate 

cancer43, as well as MELK, CDK6, PLK1 which are all described as regulators of FOXM1 

phosphorylation44. Interestingly, the expression of 3 of these genes i.e. MELK, MYBL2 and 

PLK1 is remarkably highly correlated with FOXM1 expression levels in 200 neuroblastoma 

tumors (correlation coefficients > 0.9) suggesting a very tight co-regulated transcriptional 

control.  

Collectively, our findings support that the ESC mRNA gene signature in neuroblastoma is 

driven by the FOXM1 transcription factor. 

 

Differentially expressed genes after FOXM1 knock-down in neuroblastoma cells are enriched 

for mRNA ESC signature genes  

To provide more direct proof that the ESC mRNA gene signature is strongly FOXM1 driven, 

we next performed FOXM1 knock down and gene expression profiling in the neuroblastoma 

cell line IMR-32 with high ESC mRNA signature score and high FOXM1 expression levels 

(Supplemental Figure 4.2A-B). Subsequent GSEA of down regulated genes after FOXM1 

knock-down revealed enrichment for gene sets related to DNA repair, E2F and MYC targeting 
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(MSigDB Hallmark genesets) and in cell cycle and double strand break repair (MSigDB c5-

gobp) (Figure 4.3A-D). Of further note, the 500 ESC geneset is also significantly enriched in 

the IMR-32 FOXM1 knock-down data (Figure 4.3E) (GSEA-analysis, adjusted p-values < 

0.001). This is also confirmed in other cancer types where the ESC mRNA signature goes 

down upon chemical and pharmacological FOXM1 knock-down (Supplemental Figure 4.3)27-

29.  

Taken together, this experimental analysis further supports the data-mining driven 

observation that the ESC mRNA gene signature in neuroblastoma cells is enriched for genes 

that are transcriptionally regulated by FOXM1.   

 

The ESC mRNA signature is activated by MYCN activity in vivo and in vitro in keeping with 

direct binding of MYCN to the FOXM1 promotor  

Previous work has provided evidence for a coordinated role of MYC and FOXM1 in 

controlling normal S-phase progression in mouse embryonic stem cells45. Furthermore, as 

indicated above, we observed MYC target gene enrichment in the genes downregulated 

upon FOXM1 knock-down. Therefore, we further investigated MYCN controlled regulation of 

the FOXM1 gene signature. To this end, we reanalyzed data of several in vitro MYCN 

neuroblastoma model systems. In these datasets, we observed decreased ESC mRNA 

signature scores and FOXM1 expression levels upon MYCN knock-down and pharmacological 

MYCN activity inhibition using JQ1 and OTX015 (Figure 4.4A, B, C)21-23. Also in the Th-MYCN 

mouse model an increase in ESC mRNA signature score and FOXM1 expression is observed 

upon MYCN driven development from hyperplastic ganglia towards full-blown 

neuroblastoma tumors (Figure 4.4D)20. Remarkably, the expression of all top 50 correlated 

genes from the ESC mRNA signature, including FOXM1, increases upon Th-MYCN driven 

neuroblastoma development (Figure 4.4D). In neuroblastoma tumors, the ESC mRNA 

signature score is significantly higher in tumors with versus without MYCN amplification 

(both in the global cohort and the subset of stage 4 tumors) (Figure 4.4E-F, Supplemental 

Figure 4.4I-J). Interestingly, higher ESC mRNA signature scores were also observed in other 

tumor cell lines with MYCN amplification (Supplemental Figure 4.5)31. Altogether, these data 

point to an important role of MYCN in the regulation of the ESC signature genes. Therefore, 

we further investigated the possible binding of MYCN to the FOXM1 promotor region using 

ChIP sequencing data for MYCN and subsequent analysis of binding sites at or near the 



96|Chapter 4 
 

 

FOXM1 promotor. In these data, direct binding of MYCN on the FOXM1 promotor is clearly 

observed in both MYCN amplified and non-amplified cell lines. Clear peaks for H3K27ac were 

also observed showing open chromatin and active transcription (Figure 4.4H) (E-GEOD-

80154).  

Furthermore, similar as to the ESC miRNA signature, ESC mRNA signature scores are related 

to survival in a global cohort of neuroblastoma tumors, but also in a subgroup of stage 4 

tumors without MYCN amplification (Supplemental Figure 4.4A-D). This observation is 

confirmed in an independent dataset of 498 neuroblastoma tumors  (Supplemental Figure 

4.4E-H)19.  

Altogether, these data point at a MYCN activated FOXM1 driven ESC signature that is 

prognostic in neuroblastoma tumors. 

 

 

Figure 4.2: Important genesets found to be enriched using gene set enrichment analysis (GSEA) on 

the list of coding genes ranked according to the degree of correlation with the ESC miRNA 

signature score in 200 neuroblastoma patient samples. NES= normalized enrichment score, FDR= 

false discovery rate. 

A B C

D E F

NES= 3,92; FDR < 0.001 NES= 3,42; FDR < 0.001 NES= 3,22; FDR < 0.001

NES= 3,59; FDR < 0.001 NES= 3,19; FDR < 0.001 NES= 1,98; FDR < 0.001
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Figure 4.3: Important genesets found to be enriched using gene set enrichment analysis (GSEA) 

upon knock down of FOXM1 in IMR32. NES= normalized enrichment score, FDR= false discovery 

rate. 

  

A B C

E FNES= 3,12; FDR < 0.001 NES= 2,70; FDR < 0.001 NES= 1,69; FDR =0.008975

NES= 2,11; FDR < 0.001 NES= 2,65; FDR < 0.001
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Figure 4.4: Association between MYCN and FOXM1 in the ESC mRNA signature score 

(A) ESC mRNA signature score upon lentiviral knock-down of MYCN in IMR-32 neuroblastoma cells, 

(B) upon pharmacological inhibition of MYCN with JQ1 in SKNBE(2)-C and Kelly neuroblastoma cells, 

(C) after inhibition of MYCN with JQ1 and OTX015 in IMR5 neuroblastoma cells, and (D) during tumor 

development in Th-MYCN mouse model. (E-F) ESC mRNA signature score in neuroblastoma patient 

samples with and without MYCN amplification in a global cohort (F) and in stage 4 neuroblastoma 

patient samples. (G) Heatmap of expression of the top 50 correlated genes of the ESC mRNA 

signature in the Th-MYCN mouse model. (H) ChIP-seq profiles of H3K27ac and MYCN transcription 

factor binding at the FOXM1 promotor in both MYCN amplified (NGP, BE2C, KELLY) and MYCN non 

amplified (CLB-GA, qval=6.3x10-5) cell lines as well as the SHEP21N cell line with induced MYCN 

expression. 
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Discussion 

Several studies have shown that a stem cell like (stemness) gene signature may offer 

prognostic information in certain cancer types9. Given that (1) neuroblastoma is an 

embryonal neural crest derived tumor, (2) MYCN is critical for the maintenance of embryonic 

stem cell-derived neural crest stem cells6 and (3) LIN28B, a known stem cell marker, acts as 

oncogene in neuroblastoma5, we wanted to deeper explore whether an ESC derived miRNA 

signature could capture a stemness phenotype in neuroblastoma cells and be applied as tool 

to select neuroblastoma patients with therapy resistant tumors. Having established an ESC 

derived miRNA prognostic classifier, we could indeed show that within the subgroup of high-

risk patients we were able to predict with high confidence patients that would not benefit 

from current treatment regimes. Indeed, neuroblastoma patients with high ESC miRNA 

signature score have higher chance to die of disease or relapse as illustrated in Kaplan-Meier 

analyses. The survival difference for tumors with different scores is most striking for high-

stage neuroblastoma tumors without MYCN amplification, while all tumors with MYCN 

amplification have higher ESC miRNA signature scores. Such a prognostic classifier could be 

helpful to identify patients in a subset of high-stage cases that would be eligible for phase I 

trials for novel compounds in so-called basket trials46.  

 

To understand the key drivers of the high ESC signature scores and possible cause of therapy 

resistance mechanisms in ultra-high risk neuroblastomas and as a prelude to drugging the 

stemness phenotype in neuroblastoma, we applied a unique data mining approach. We 

established a mRNA signature derived from correlation analysis of the initial ESC miRNA 

signature score with gene expression profiling data in a large set of primary human 

neuroblastomas. Functional and motif enrichment analysis on the top 500 correlated genes, 

further referred to as the ESC mRNA signature, pointed at a central role of transcription 

factor FOXM1 and several other members of the DREAM complex, including MYBL2, E2F and 

LIN9 in controlling the stem cell characteristics of aggressive neuroblastoma cells, by keeping 

cell cycle and DNA repair mechanisms in check. The DREAM complex has an important role 

in cell cycle by coordinating the shift from quiescence to proliferation41. When cells exit the 

G0 phase, FOXM1 and MYBL2 are recruited to promote mitotic gene expression41 thereby 

controlling proper DNA replication and avoiding excessive genomic damage41. Both genes 
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have been described to have a role in sustaining the self-renewal capacity of pluripotent 

stem cells45, as also shown in neuroblastoma cells47. This regulatory axis may represent an 

important novel therapeutic vulnerability for neuroblastoma. These results are also in 

keeping with earlier findings of Wang et al47 who reported FOXM1 regulation of Sox2 and 

Bmi1 expression impacting on renewal of neural progenitor cells and survival of 

neuroblastoma cells.  

 

Next, we further explored the link between MYCN and stemness6 through further analysis of 

several MYCN model systems, i.e. the dynamic regulated transcriptome of Th-MYCN driven 

mouse neuroblastomas20, neuroblastoma cell lines upon knock-down of MYCN expression21 

and upon pharmacological inhibition of MYCN activity22,23. Collectively, these data 

demonstrate correlation of high ESC mRNA signature scores with high MYCN activity, further 

confirmed by high ESC mRNA signature scores in MYCN amplified human tumors compared 

to non-MYCN amplified cases. Not unexpectedly, a subset of high-stage neuroblastoma 

tumors without MYCN amplification also have elevated ESC signature scores, in keeping with 

high MYC activity in these cells. Similar as with the miRNA ESC signature, this subgroup of 

neuroblastoma patients is marked by very poor survival outcome.  

Interestingly, our ESC mRNA gene set shows a very strong overlap with a gene set recently 

derived by Olsen et al. (Oncogene, accepted) in a novel mouse neural crest derived 

neuroblastoma model. In brief, this study describes how mouse neural crest cells are grown 

and differentiated in vitro to generate sympathetic progenitor cells. Subsequently, these 

cells were transduced with MYCN and injected into mice to generate neuroblastomas. 

Analysis of the MYCN upregulated genes in the resulting mouse tumors also showed a strong 

enrichment of FOXM1 controlled genes involved in cell cycle and DNA damage control 

corroborating our data in human primary tumors and the Th-MYCN mouse model.  

 

In a huge pan-cancer dataset including ~18.000 tumors, a FOXM1 regulatory network was 

identified as a major predictor of adverse outcome across different tumor entities48, 

matching with the described link of FOXM1 with cancer therapy resistance49 and its role in 

DNA damage control42 as described in stem cells and tumors like neuroblastoma. In the light 

of the studies that pinpoint FOXM1 as an important pan-cancer gene, several labs are 

undertaken efforts to identify drugs that target FOXM1. The past years, several drugs 
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presumed to target FOXM1 activity have been reported but so far none of these drugs has 

been successfully applied in the clinic, possibly due to off target and or insufficient on target 

effects of these drugs. While our study warrants further drug screening for more potent and 

specific FOXM1 inhibitors29, it is also of great interest that the FOXM1 upstream regulatory 

kinase MELK is also highly expressed, suggesting that this could act as a good candidate drug 

target for ultra-high risk neuroblastoma patients. Recently, a specific MELK inhibitor, MELK-

T1 was tested, and could represent a useful novel drug for improving survival rates for 

children with neuroblastoma50. 

 

Similar as our ESC miRNA signature, Ittai Ben-Porath et al. 9 has built an ESC mRNA signature 

consisting of 380 genes overexpressed in ESC according to 5 or more out of 20 profiling 

studies and could show an associated to prognosis in breast cancer. We tested this mRNA 

signature in expression data of 200 neuroblastoma tumors and could show correlation of 

high signature score with worse outcome in the global patient cohort, but not in the subset 

of high-stage tumors without MYCN amplification (data not shown). Moreover, the signature 

did not contain the DREAM complex genes, FOXM1, MYBL2, LIN9 and E2F. Thus, our unique 

approach did not only lead to more strong and robust prognostic signatures, but also 

revealed some putative mechanism of therapy resistance in neuroblastoma. 

 

In conclusion, by (re)analysis of published and unpublished expression profiling data, we 

could unravel a MYC(N)-FOXM1-ESC signaling axis that is active in therapy resistant 

neuroblastoma tumors and that unveils new vulnerable nodes for targeted therapy of 

tumors where current treatment regimens fail. 
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Tables 

Table 4.1: ESC miRNA signature 

 

Upregulated in 

ESC 

Downregulated in 

ESC 

hsa-miR-141 hsa-let-7a 

hsa-miR-148a hsa-let-7e 

hsa-miR-187 hsa-let-7f 

hsa-miR-18a hsa-let-7g 

hsa-miR-18b hsa-miR-100 

hsa-miR-20a hsa-miR-125a 

hsa-miR-20b hsa-miR-125b 

hsa-miR-200c hsa-miR-132 

hsa-miR-19a hsa-miR-137 

hsa-miR-19b hsa-miR-143 

hsa-miR-302a hsa-miR-145 

hsa-miR-302astar hsa-miR-152 

hsa-miR-302b hsa-miR-181a 

hsa-miR-302bstar hsa-miR-181b 

hsa-miR-302c hsa-miR-21 

hsa-miR-302d hsa-miR-22 

hsa-miR-367 hsa-miR-222 

hsa-miR-363 hsa-miR-23a 

hsa-miR-363star hsa-miR-23b 

hsa-miR-372 hsa-miR-24 

hsa-miR-498 hsa-miR-27a 

hsa-miR-512-3p hsa-miR-27b 

hsa-miR-515-5p hsa-miR-28 

hsa-miR-517a hsa-miR-29a 

hsa-miR-517b hsa-miR-376a 

hsa-miR-518b hsa-miR-495 

hsa-miR-518c hsa-miR-99a 

hsa-miR-520f  
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hsa-miR-520g  

hsa-miR-520h  

hsa-miR-524star  

hsa-miR-92b  

hsa-miR-96  
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Supplementary data: 

 

Supplemental Figure4. 1: Validation of the miRNA ESC signature in an independent dataset  

 

 

 

Supplemental Figure 4.2: Lentiviral transductions of FOXM1 

(A) ESC mRNA signature score and FOXM1 expression levels in 29 neuroblastoma cell lines. (B) IMR-

32 cells were transduced with shRNA targeting FOXM1, followed by quantitative RT-PCR assessment 

of FOXM1. Error bars represent the standard error of mean (technical duplicates). (C) Western Blot 

results for FOXM1 knock down with shRNA (loading control tubulin). 
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Supplemental Figure 4.3: FOXM1 also drives the ESC mRNA signature score in other cancer entities 

A) ESC mRNA signature score upon lentiviral inhibition of FOXM1 in glioma cells, (B-C) upon siRNA 

FOXM1 inhibition in breast cancer cells, (D) upon inhibition of FOXM1 with siomycin A in glioma stem 

cells, (E) upon inhibition of FOXM1 with siomycin A in prostate cancer cells and (F) in breast cancer 

cells treated with FDI-6 to inhibit FOXM1. 
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Supplemental Figure 4.4: ESC mRNA signature score is related to survival 

(A-B) Kaplan-Meier and log rank analysis on 200 neuroblastoma patients with a high or low ESC 

mRNA signature score. (C-D) Kaplan-Meier and log rank analysis within the subset of stage 4 

neuroblastoma without MYCN amplification. Kaplan-Meier and log rank analysis of 498 

neuroblastoma patients with high or low ESC mRNA signature score (independent validation), in the 

global cohort (E-F) and with the subset of stage 4 neuroblastoma without MYCN amplification (G-H). 

(I-J) ESC mRNA signature score in neuroblastoma patients with or without MYCN amplification in the 

global cohort and stage 4 neuroblastomas only.  
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Supplemental Figure 4.5: ESC mRNA signature scores in other cancer entities with or without 

MYCN amplification 

A) CCLE database analysis of the ESC mRNA signatures in MYCN non-amplified and MYCN amplified 

cancer cell lines. (B) ESC mRNA signature scores in medulloblastoma samples with and without MYCN 

amplification.  

 

Supplementary Table 4.1: Genelists from 4 published studies reporting of differential 

miRNA expression analysis of ESC versus more differentiated cells.  

 

Supplementary Table 4.2: list of coding genes ranked according to the degree of expression 

correlation with the ESC miRNA signature score in 200 neuroblastoma tumor samples.  

This list is available in a digital format only and can be sent upon request. 

 

Supplementary Table 4.3: results obtained by iRegulon. 

Full list can be sent upon request   
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Supplementary table 4.1: Genelists from 4 published studies reporting of differential 

miRNA expression analysis of ESC versus more differentiated cells. 
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Supplementary Table 4.3: results obtained by iRegulon. 

 

  # Rank AUC NES Cluster code Transcription 

1 0.233221 9.52503 T1 E2F4 

2 0.209607 8.43827 T2 TFDP1 

3 0.169315 6.58396 T1 E2F4 

4 0.166763 6.46649 T1 E2F4 

5 0.156578 5.99775 T3 E2F7 

6 0.149856 5.68839 T4 SIN3A 

7 0.136635 5.07995 T4 SIN3A 

8 0.134474 4.98049 T5 MYBL2 

9 0.13371 4.94532 T6 FOXM1 

10 0.131124 4.8263 T1 E2F4 

11 0.128446 4.70306 T6 FOXM1 

12 0.127633 4.66564 T6 FOXM1 

13 0.120746 4.34869 T6 FOXM1 

14 0.110909 3.89598 T4 SIN3A 

15 0.108158 3.76937 T4 SIN3A 

16 0.10726 3.72801 T7 E2F1 

17 0.102885 3.52669 T4 SIN3A 

18 0.101739 3.47394 T4 SIN3A 

19 0.0987036 3.33424 T4 SIN3A 

20 0.0928438 3.06456 T6 FOXM1 
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Abstract: 

Neuroblastoma is the most common extracranial pediatric solid tumor in children, 

accounting for approximately 7-10% of pediatric cancers. Despite intensive multimodal 

therapies, survival rates for patients with aggressive forms of neuroblastoma are still 

disappointingly low and therefore new treatment options are warranted. The forkhead box 

protein M1 (FOXM1) is a transcription factor mainly involved in cell cycle and the DNA 

damage repair pathway and has been described as an oncogene in many cancer, including 

neuroblastoma. Siomycin A and FDI6 are two compounds that target FOXM1 and were 

evaluated for their efficacy in neuroblastoma cells. Unfortunately no convincing results could 

be obtained, in fact, both drugs only introduced a modest effect on FOXM1 levels and either 

resulted in antagonistic effects in combination experiments with frequently applied 

chemotherapeutics (Siomycin A) or experienced fast drug resistance (FDI6). 
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Short Report: 

Introduction: 

FOXM1 is a transcription factor and mainly acts as a regulator of the cell cycle and the DNA 

damage repair pathway. In normal tissues, FOXM1 is detectable in progenitors with 

extensive proliferating capacity, whereas its expression is depleted in differentiated or 

resting cells. Because of its role in cell proliferation and DNA damage, it is not surprising that 

FOXM1 has been described as an oncogene in many cancers including neuroblastoma1 

(Vanhauwaert et al. CCR, submitted). Interestingly, in a meta-analysis of expression 

signatures of over 18 000 human tumors, FOXM1 was identified as a major predictor of 

adverse patient outcome2. In neuroblastoma, an increasing body of data is pointing at a 

crucial role of FOXM1 in MYCN driven oncogenesis. First, multiple highly transcriptionally 

upregulated genes such as BRIP1, BIRC5 and TOP2A are direct targets of FOXM1. Second, 

several of these genes are located on chromosome regions commonly affected by copy 

number alterations, most notably chromosome 17q (Vanhauwaert et al. this thesis). Finally, 

a recent study describing the transcriptional alteration in mouse neural crest derived MYCN 

overexpressing neuroblastomas, a strong FOXM1 signature was also noted (Olsen et al., 

Oncogene, accepted). Given the recent identification of compounds proposed to target 

FOXM1, we decided to evaluate their effects on neuroblastoma cell growth and survival.  

 

Results and Discussion 

Inhibition of FOXM1 using thiazole antibiotics 

Siomycin A and in general all proteasome inhibitors have been described to target FOXM1, 

through stabilization of its negative regulator NRFM3. Indeed, upon administration of 

Siomycin A in the neuroblastoma cell line N206, a modest depletion of FOXM1 could be 

observed after 72h (Figure 5.1 A-B, Supplemental Figure 5.3A-B) together with evidence for 

reduced cell viability (Figure 5.1 C)4. Next, we tested Siomycin A in combination with 

chemotherapeutics frequently used in current neuroblastoma patient treatment protocols. 

Cisplatin has been described before to act synergistically with Siomycin A in 

gastroenteropancreatic neuroendocrine tumors5 and was hence chosen to test in 
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neuroblastoma cells. Despite previous reports, no synergism could be observed in 

neuroblastoma cells lines N206, SK-N-SH, IMR-32 and SK-N-AS. In fact, surprisingly, in all cell 

lines strong antagonistic effects were seen (combination index > 1.5) (Figure 5.1D). Also 

other combinations with etoposide and doxorubicin resulted in strong antagonistic results 

(data not shown). Siomycin A is a thiazole antibiotic that targets FOXM1 indirectly via 

proteasome degradation and therewith also affecting the expression of several other 

proteins resulting in off target effects and possibly explaining our results.  

 

Figure 5.1: Effect of Siomycin A treatment on neuroblastoma cells. (A) Western blots of FOXM1 and 

the loading control β-actin upon Siomycin A treatment. (B) mRNA levels of FOXM1 after treatment 

with Siomycin A measured with RTqPCR. Error bars represent the standard error of mean (technical 

duplicates) (C) N206 neuroblastoma cells with and without Siomycin A treatment. Size of the white 

bar is 1000µM. (D) Dose response curves of Siomycin A, cisplatin and the combination 72h after 

treatment in N206 Combination index (CI) is 2.8. Error bars represent standard deviation of 2 

biological replicates.  
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Inhibition of FOXM1 using FDI-6 

FDI-6 was identified through a high-throughput library screen and was described as the first 

presumed "on target" FOXM1 compound6. The authors showed that FDI-6 binds directly to 

the FOXM1 protein and displaces FOXM1 from it genomic targets in MCF-7 breast cancer 

cells. Indeed, when tested on IMR-32 neuroblastoma cells, knock down of FOXM1 

downstream targets was observed 6 hours. after addition of the drug (Figure 5.2A). 

However, 24h after adding FDI6, FOXM1 downstream targets were upregulated (Figure 

5.2B). We tested whether this was also the case in IMR-32 cells depleted for FOXM1 by 

shRNAs, but in this cell system the expected knock down was still observed (Figure 5.2C). To 

exclude effects due to fast degradation of the FDI-6 compound, we administered the drug 

every 12h to the cells, however this didn’t affect the outcome (data not shown). 

Interestingly, in the original report, the authors only showed knock down data no longer 

than 9h after administration, thus not allowing to compare our results for longer drug 

exposure.  

 

Figure 5.2: Administration of FDI6 in the neuroblastoma cell line IMR-32 (A-B) RT-qPCR results of 

FOXM1 downstream targets (A) 6 hours after administration of FDI6 (B) and after 24 hours. Error 

bars represent the standard error of mean (technical duplicates) (C). Relative mRNA expression of 

FOXM1 and downstream targets after FOXM1 knock down with shRNAs. Error bars represent the 

standard error of mean (technical duplicates) 
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Discussion  

Because of its important roles in cell proliferation and DNA damage in cancer cells, FOXM1 

has been proposed as an important putative novel drug target. So far, several approaches 

have been described for molecular targeting of FOXM1, amongst others, Siomycin A and FDI-

6. We evaluated both Siomycin A and FDI-6 in neuroblastoma cells; however no convincing 

results could be obtained. In fact, both drugs only introduced a modest effect on FOXM1 

levels and either resulted in antagonistic effects in combination experiments with frequently 

applied chemotherapeutics (siomycin A) or experienced fast drug resistance (FDI-6). Recent 

discussion revealed that several unpublished data are in line with our observations and 

support the notion that neither Siomycin A nor FDI-6 are on target compounds to inactivate 

FOXM1 activity. More recently, a kinase inhibitor MELK-T1, identified through a drug screen 

by Johnson and Johnson, shown to target the FOXM1 upstream regulator MELK, has been 

shown to have significant on target effects and will soon be tested extensively in the host 

lab. While our results were disappointing, this novel drug may hold great promise while 

further efforts to screen for FOXM1 targeting drugs are warranted.  
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Material and methods: 

 

Compound administration 

Neuroblastoma cell lines were grown as monolayer cultures at 37°C and 5% CO2 as in a 

humid atmosphere. The culture medium was RPMI 1640 (GIBCO, Life Technologies) 

containing 10% Fetal Calf Serum (FCS), 2mmol/l glutamine and the following antibiotics: 

Penicillin (1%), Kanamycin (1%) and Streptomycin (1%). Siomycin A (Sigma Aldrich) and FDI-6 

(STK166499; Merlin Consultancy) were dissolved in DMSO and stored as 2mM (Siomycin A) 

and 5mM (FDI-6) stock solutions at -20°C. Keeping the final concentration of DMSO constant, 

cells were treated with Siomycin A with concentration ranging from 0 to 0.8µM, with 

Cisplatin with concentration ranging from 0µM to 48µM and for FDI-6 with a concentration 

of 10µM, for the time periods indicated. CI for the drugs was calculated using calcusyn. 

 

Western blotting 

Protein extraction was done via RIPA buffer and protein concentration was measured using 

the Lowry protein assay. Protein extracts were separated with SDS-PAGE, blotted on a 

nitrocellulose membrane and probed with antibodies against FOXM1 (1/1000; 5436S cell 

signaling), and β-actin (1/10000, A2228, Sigma-Aldrich). Proteins were detected with HRP-

conjugated goat anti rabbit IgG antibody (1/15000, A27036, thermos fisher scientific) and 

developed with ChemiDoc-it imaging system (UVP). 

 

RT-qPCR 

RNA isolation was performed using the miRNeasy micro kit, according to the guidelines of 

the company (Qiagen, catalogue number 217084), including DNAse treatment on column 

(RNAse-free DNAse set, Qiagen, catalogue number 79254). cDNA synthesis was carried out 

using 500ng of RNA with the iScript cDNA synthesis kit (Bio-Rad, catalogue number 170-

8891). RT-qPCR primers for FOXM1 (AGACACCCATTAAGGAAACG,TTTGTACTGGGCTGAAATCC) 

and reference genes HPRT1(TGACACTGGCAAAACAATGCA ,GGTCCTTTTCACCAGCAAGCT), 

YWHAZ(ACTTTTGGTACATTGTGGCTTCAA, CCGCCAGGACAAACCAGTAT), SDHA 
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(TGGGAACAAGAGGGCATCTG, CCACCACTGCATCAAATTCATG) were designed using primerXL 

(www.primerXL.org). RT-qPCR reactions were performed in duplicate in a total volume of 

5µl, including 2µl of cDNA and 3µl of ssAdvanced SYBR Green qPCR mastermix (Bio-Rad). 

Cycling conditions were 95°C (15s) – 60°C (15s) – 72°C (60s) and 44 cycli. Data analysis was 

performed using the qBasePlus software (Biogazelle) 

FOXM1 silencing through shRNAs 

ShRNA knock down for FOXM1 was achieved using MISSION shRNA (Sigma) 

TRCN0000015544. Viral production was performed with 15 µg of plasmid in 3 million 

HEK293TN cells using the calcium phosphate trans-lentiviral packaging system, according to 

the protocol provided by the manufacturer (Life technologies). The viral particles were 

concentrated using the PEG-it virus precipitation protocol (System Biosciences) and 

afterwards transduced in the neuroblastoma cell line IMR-32.  

 

Cell growth assessment 

xCELLigence MP (Roche Diagnostics) was used to monitor cell proliferation. Background 

impedance was measured before seeding the cells using 40µl of RPMI 1640 containing 10% 

FCS and always subtracted as blank value. 1xE4 cells in 50µl of RPMI supplemented with 10% 

FCS were added. Cell proliferation was measured with a programmed signal detection every 

hour. Data acquisition and analysis was performed with the RTCA software (version 1.2, 

Roche Diagnostics).  

  

http://www.primerxl.org/
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Supplementary Figure: 

 

Supplemental Figure 5.3: Validation of Siomycin A efficacy in neuroblastoma cell lines. (A) Western 

blots of FOXM1 and the loading control β-actin upon Siomycin A treatment in CLB-GA and SK-N-SH. 

(B) Relative mRNA expression of FOXM1 downstream targets after FOXM1 knock down with Siomycin 

A. Error bars represent the standard error of mean (technical duplicates) 
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Abstract  

The selection and validation of stably expressed reference genes is a critical issue for proper 

RT-qPCR data normalization. In zebrafish expression studies, many commonly used 

reference genes are not generally applicable given their variability in expression levels under 

a variety of experimental conditions. Inappropriate use of these reference genes may lead to 

false interpretation of expression data and unreliable conclusions. In this study, we 

evaluated a novel normalization method in zebrafish using expressed repetitive elements 

(ERE) as reference targets, instead of specific protein coding mRNA targets. We assessed and 

compared the expression stability of a number of EREs to that of commonly used zebrafish 

reference genes in a diverse set of experimental conditions including a developmental time 

series, a set of different organs from adult fish and different treatments of zebrafish 

embryos including morpholino injections and administration of chemicals. Using geNorm 

and rank aggregation analysis we demonstrated that EREs have a higher overall expression 

stability compared to the commonly used reference genes. Moreover, we propose a limited 

set of ERE reference targets (hatn10, dna15ta1 and loopern4), that show stable expression 

throughout the wide range of experiments in this study, as strong candidates for inclusion as 

reference targets for qPCR normalization in future zebrafish expression studies. Our applied 

strategy to find and evaluate candidate expressed repeat elements for RT-qPCR data 

normalization has high potential to be used also for other species. 
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Introduction 

Reverse transcription quantitative PCR (RT-qPCR) is currently regarded as the gold standard 

for efficient measurement of mRNA gene expression, especially because of its high 

sensitivity, specificity, accuracy and precision, but also because of its practical simplicity and 

processing speed. However, variable yields of RNA extraction and reverse transcription and 

also variable amplification efficiencies can affect RT-qPCR results1,2. To correct for technically 

induced variation and thus measure true biological variation in samples, it is important to 

apply a good normalization strategy. The use of multiple reference genes as internal controls 

is the most frequently applied and recommended procedure for normalizing RT-qPCR data3-

7. In this respect, specific attention should be given to the correct selection and validation of 

reference genes for normalization, as stated in the MIQE (Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments) guidelines1. The selected reference 

genes should be stably expressed in the studied samples and should thus show a strong 

correlation with the total amount of mRNA present in the samples. Importantly, many 

commonly used reference genes are not generally applicable as their expression stability 

greatly varies under different experimental conditions8-11. Therefore, it is essential to 

determine the optimal number and choice of reference genes for the specific experimental 

conditions in every study. A number of studies have measured and compared the expression 

stability of a set of commonly used reference genes in samples derived from different 

species, organs, cells, developmental stages, and treatments, using one of the available tools 

that automatically calculate expression stability values (geNorm, BestKeeper, Normfinder)8-

11. These studies propose the set of most stably scored reference genes as being the most 

suitable for normalizing gene expression data. However, the determination of stable 

reference genes only occurs in a comparative fashion and the detection of the ‘most stably’ 

expressed genes does not necessarily mean they are stably expressed in other conditions. 

Especially developmental time series and the comparison of different tissues are challenging 

experimental conditions to normalize8,11,12. Therefore, the ideal situation of using only one 

set of reference genes to cover all experimental conditions in a specific species has not been 

feasible up to now.  

 

To tackle the aforementioned issues, we build upon a new concept, first proposed for 
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human samples13-15. This novel normalization method uses expressed repetitive elements 

(ERE) as reference targets, instead of protein coding mRNAs. Here, we illustrate the 

usefulness of this approach for zebrafish expression data. The zebrafish (Danio rerio), a small 

teleost fish, is a popular vertebrate model organism for a number of reasons, including the 

low maintenance cost, short reproductive cycle, external fertilization and development, 

production of large numbers of synchronous and rapidly developing embryos per mating and 

the optical transparency of zebrafish embryos. Moreover, the availability of a wide range of 

molecular techniques, such as overexpression/knockdown approaches, transgenesis, large-

scale genome mutagenesis and lately also highly efficient targeted mutagenesis (using ZFN, 

TALEN and CRISPR-Cas technology) make zebrafish an excellent tool for high-throughput 

disease modeling. Finally, molecular genetic mechanisms and cellular physiology are highly 

similar between zebrafish and other vertebrates, underscoring the relevance of zebrafish for 

the modeling of human diseases.  

 

We assessed and compared the expression stability of a number of EREs in the zebrafish 

transcriptome to a set of commonly used zebrafish reference genes in a developmental time 

series, in different organs from adult fish and under different treatments of zebrafish 

embryos including morpholino injections and administration of chemicals. Here we 

demonstrate that EREs outperform classically used reference genes and put forward a 

selection of EREs as strong candidates for inclusion as reference targets for qPCR 

normalization in a diverse set of zebrafish experiments. The procedure followed here for 

identification of zebrafish reference EREs can also easily be applied for other species. 
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Materials and Methods 

 

Zebrafish maintenance and imaging  

Wild-type AB zebrafish, obtained from the zebrafish international resource center (ZIRC) 

were maintained in 3.5 liter tanks in Zebtec semi-closed recirculation housing systems 

(Tecniplast, Italy) at a constant temperature of 28 °C and a 14 h light 10 h dark photoperiod. 

Fish were fed 4 times a day with both dry feed (SDS, UK) and brine shrimps (Ocean Nutrition, 

Belgium). After in vitro fertilization, dead embryos were removed at 8 hpf (hours post 

fertilization) and at 24 hpf surviving embryos were dechorionated with pronase (Sigma, St. 

Louis, MO, USA). At 48 hpf or 72 hpf, embryos were anesthetized with 0.016% tricaine 

methanesulfonate (tricaine) and mounted in 2 % methylcellulose and imaged using a Leica 

M165FC stereomicroscope. Approval for this study was provided by the local committee on 

the Ethics of Animal Experiments (Ghent University Hospital, Ghent, Belgium; Permit 

Number: ECD 11/37). All efforts were made to minimize pain and discomfort.  

 

Morpholino injections 

Morpholinos (MOs) are small antisense oligonucleotides that bind the mRNA of interest, 

resulting in a down regulation of the gene expression. In this screen, MOs targeting chordin 

and slc2a10 were injected. A scrambled MO was also included as a negative control. Chordin 

encodes for a secreted protein that dorsalizes early vertebrate embryonic tissues and is 

often used as a positive control in MO experiments16. Chordin-MO injected embryos display 

abnormal u-shaped somites, an expanded blood island and an abnormal tail fin with multiple 

folds. Slc2a10 encodes for GLUT10, a member of the glucose transporter family. Recessive 

mutations in this gene are causing the arterial tortuosity syndrome (ATS)17. In zebrafish 

embryos, knockdown of slc2a10 using MO injection causes a wavy notochord and 

cardiovascular abnormalities with a reduced heart rate and blood flow, which was coupled 

with an incomplete and irregular vascular patterning18. Morpholino oligonucleotides were 

obtained from Gene Tools, LLC (Philomath, OR, USA). The MO against slc2a10 (5′-

CAAATAAAGTCCACTTACTTGGTCC-3′) is directed against the exon 2–intron 2 donor splice site 

of the slc2a10 pre-mRNA 18. For chordin, the MO is directed against the start codon (5’-
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ATCCACAGCAGCCCCTCCATCATCC–3´)16. A control MO (5’-CCTCTTACCTCAGTTACAATTTATA-

3’) was used as a negative control in each experiment. MOs were microinjected in 1.5 nl 

volume into 1- to 2-cell stage embryos at 7.5 ng for slc2a10, 2 ng for chordin, and 5 ng for 

the control MO. All MOs were dissolved in 0.1 % phenol red and 1x Danieu’s buffer [58 mM 

NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5.0 mM HEPES (pH 7.6)]. 

Microinjection procedures were performed using a Leica M80 stereomicroscope. At 48 hpf, 

embryos were dechorionated, euthanized with 0.4% tricaine, and triplicate pools of 20 

embryos were collected in RNAlater (Sigma-Aldrich, St. louis, USA).  

 

Compound treatments 

Two different chemical treatments were performed: embryos were treated with 40 µM of 

TGFβ type 1 receptor kinase inhibitor (TGFBRI, LY-364947, #L6293, Sigma, St. Louis, USA), or 

194 µM of warfarin (Coumadin, #45706 Sigma, St. Louis, USA). TGFBRI specifically targets the 

TGFBR1 kinase function resulting in the inhibition of phosphorylation of SMAD2 and SMAD3 

and down regulation of TGFβ signaling. Treatment of early embryos with this inhibitor 

results in cardiovascular abnormalities including condensation of the caudal vein plexus, low 

heart rate and reduced blood flow18. Warfarin, is an oral anticoagulant drug used in 

treatment of thromboembolic diseases19. Warfarin acts as a vitamin K antagonist, and 

vitamin K is needed as a cofactor for the carboxylation of glutamate residues of several 

clotting factors. Administration of warfarin to early embryos produces teratogenic effects 

including developmental delay, growth retardation, eye defects, scoliosis and ear defects20. 

TGFBRI and warfarin were prepared as a 20 mM and 80 mM stock solution respectively in 

DMSO. Working solutions, 0 and 40 µM for TGFBRI and 0 and 194 µM for warfarin, were 

made in E3 chemical screening medium21 and as previously described18,20, embryos were 

incubated in the compounds starting at 8 hpf (TGFBRI) and 2.5 hpf (warfarin), dechorionated 

at 24 hpf, euthanized with 0.4% tricaine, and collected in triplicate pools of 20 embryos in 

RNAlater at 48 hpf (TGFBRI) or 72 hpf (warfarin). 

 

Developmental time series embryos/larvae and dissection of organs from adult zebrafish 

At several time points (0 hpf, 8 hpf, 24 hpf, 48 hpf, 72 hpf, 96 hpf, 6 dpf, 8 dpf, 10 dpf and 12 

dpf), triplicate pools of 20 embryos/larvae were collected, euthanized with 0.4% tricaine, 

and stored in RNAlater. Dissection of the eye, brain, skin, testis, liver, intestines and ovaria 
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from two adult fish was performed as previously described 22. After dissection, the organs 

were immediately snap frozen using liquid nitrogen. Subsequently they were sectioned (50 

µm) using a Leica CM1900 cryotome and lysed in 700 µl of Qiazol (Qiagen, Germantown, 

USA).  

 

RT-qPCR 

RT-qPCR reactions were performed and reported according to MIQE guidelines1. If needed, 

RNAlater was first removed from samples with a glass Pasteur pipette and RNA isolation was 

performed using the miRNeasy mini kit (Qiagen) in combination with on-column DNase I 

treatment using the RNase-Free DNase set (Qiagen) according to the manufacturer’s 

guidelines. RNA quality index (all RQI>8) was measured for all the samples using an Experion 

automated electrophoresis system (software version 3.2, Bio-Rad). As the RNA 

concentration of the adult tissue samples was low, whole transcriptome amplification for 

these samples was executed as previously described (NuGEN) 23. cDNA was synthesized from 

1µg RNA in a 20 µl reaction with the iScript kit (Bio-Rad) using a blend of oligodT and random 

hexamer primers. qPCR reactions were performed in a total volume of 5 µl, comprising 2.5 µl 

SsoAdvanced SYBR Green Supermix (Bio-Rad), 5 ng (total RNA equivalents) cDNA and 250 

nM (final concentration) of each primer on a LightCycler 480 qPCR instrument (Roche) in 

384-well white plates (Bio-Rad). Thermocycling conditions were as follows: 95°C for 2 min, 

followed by 44 cycles of 95°C for 5 s, 60°C for 30s, 72°C for 1s and finally a melting curve 

analysis was performed at 95°C for 5s followed by 60°C for 1 min, gradual heating to 95°C at 

a ramp-rate of 0.11°C/s followed by cooling to 37°C for 3 min. Primers for bactin2, elfa, 

cyp19a1b, hprt1, rps18, tbp, rpl13a, tuba1 and b2m were designed using primerXL software 

(http://primerxl.org/). Primer sequences for gapdh were taken from literature11. Primers for 

the newly identified expressed repeats were designed with primer3 software 

(http://primer3.ut.ee/) using default settings24. Primer efficiencies were tested using a 

standard dilution series: RNA extracted from different developmental stages of zebrafish 

embryos (8, 24, 30, 48, 72, 96 hpf) was pooled and converted to cDNA to make a standard 

dilution series ranging from 16 ng to 0.0625 ng (Supplemental Figure 6.1A). Primer specificity 

was evaluated using melt-curve analysis (Supplemental Figure 6.1B). Primer efficiencies were 

also determined using LinRegPCR software25. For this, the raw, non-baseline-corrected qPCR 

data were exported from the LightCycler 480 software and imported into the LinRegPCR 

http://primer3.ut.ee/


140|Chapter 6 
 

 

Table 6.1. Reference target primer design and calculation of amplification efficiencies.  

 

software. A complete overview of all primer sequences and concomitant PCR efficiencies 

used in this study can be found in Table 6.1 and Supplemental Table 6.1.  

 

Statistics and data analysis 

The geNorm module in qbase+ version 2.5 (Biogazelle, http://www.qbaseplus.com) was used 

to compute expression stability values for all reference targets. As input for geNorm analysis, 

either Cq values exported directly from the LightCycler 480 software or efficiency-corrected 

Cq values from LinRegPCR that were calculated based on the raw, non-baseline-corrected 

LightCycler 480 qPCR data, were used. GeNorm calculates the gene expression stability 

measure M (M-value) for a reference gene as the average pairwise variation V for that gene 

with all other tested reference genes. Stepwise exclusion of the gene with the highest M 

value allows ranking of the tested genes according to their expression stability. GeNorm was 

also used to dertermine the optimal number of reference targets for every experiment. The 

geNorm algorithm determines the pairwise variation Vn/n+1, between two sequential 

normalization factors containing an increasing number of genes. A large variation means 

that the added gene has a significant effect and should preferably be included for calculation 

of a reliable normalization factor. Vandesompele et al. (2002) 7 used 0.15 as a cut-off value, 

below which the inclusion of an additional reference gene is not required. 
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Rank aggregation analysis was performed in the R statistical programming environment 

(version 3.0.2) using the Rankaggreg package (version 0.4-3) 26 to determine the best ranked 

reference genes across all experiments.  

  



142|Chapter 6 
 

 

Results 

 

Identification of candidate expressed repeat element (ERE) reference targets in the zebrafish 

genome  

Candidate ERE reference targets in the zebrafish genome were extracted from Repbase 

(http://www.girinst.org/repbase), a database of repetitive DNA elements from different 

organisms27 (Figure 6.1). From an initial set of 1172 repetitive elements present in the 

zebrafish genome, only those having more than 100 copies in the genome were retained, 

leaving us with 74. To identify the number of expressed loci per repetitive element, a blastn 

search against all RefSeq and non-RefSeq annotated transcripts known for zebrafish was 

carried out using the consensus repeat sequence listed in Repbase. Only repeats with a total 

number of combined RefSeq and non-RefSeq blast hits above 30 and with a mean 

conservation rate higher than 85% (indicated by Repbase) were retained, resulting in 10 

candidate EREs for further analysis (tc1n1, dna11ta1, tdr7, dna15ta1, cr1-1, hatn8, hatn10, 

hatn4, loopern4, sine3). The thresholds of 30 and 85% were empirically determined in order 

to have a top-ranked list containing a manageable number of candidate expressed repeat 

elements. Next, qPCR assays were designed to target the most conserved region of the 

selected EREs (Table 6.1 and Supplemental Figure 6.2). Blasting of the primer sequences 

against the zebrafish RefSeq RNA database using primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) revealed that the amplified ERE 

fragments are exclusively located in untranslated gene regions, predominantly 3’UTR. 

To investigate the potential of EREs for qPCR normalization, we aimed to compare the 

expression stability of the 10 candidate EREs with that of 10 commonly used reference genes 

in zebrafish studies. The reference genes bactin2, elfa, cyp19a1b, hprt1, rps18, tbp, rpl13a, 

tuba1, b2m and gapdh were selected because of their frequent use in zebrafish expression 

studies. The amplification efficiency of all primer pairs was assessed using a zebrafish cDNA 

dilution series as a template, wherein efficiencies between 90 and 110% were attained 

indicating sufficient reaction efficiencies (Table 6.1 and Supplemental Table 6.1). 

http://www.girinst.org/repbase
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Determination of reference target expression stabilities under a wide range of conditions 

For the 20 candidate reference targets (10 EREs and 10 commonly used reference genes) 

mRNA expression levels were measured in a wide range of experimental settings including a 

zebrafish developmental time series (0 hpf up to 12 dpf), a set of different organs dissected 

from adult fish and a set of different treatments of zebrafish embryos including the 

administration of chemicals and injection of morpholinos (MO) (see Methods). The average 

expression stability for each of the reference targets in the 4 different types of experiments 

was calculated using the geNorm algorithm. Reference genes are ranked according to their 

expression stability value (referred to as the M-value) 7; in addition, the optimal number of 

genes for normalization is determined for each experiment. Reference targets with M-values 

below 0.5 and 0.2 are considered having a ‘high’ and ‘very high’ expression stability, 

respectively 12. In the experiments where embryos were treated with compounds or injected 

Figure 6.1. Workflow to identify candidate expressed repeat elements. 
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with MOs almost all reference targets had a ‘high’ expression stability and a considerable 

number of reference targets showed a ‘very high’ expression stability (Figure 6.2A-D). 

 

 

Figure 6.2. Average expression stability of common reference genes and expressed repeat 

elements. 

Ranking of reference targets depending on their M-values calculated by geNorm. Reference targets 

with M-values below 0.5 and 0.2 are considered having a ‘high’ and ‘very high’ expression stability, 

respectively. EREs are indicated in black, commonly used reference mRNAs in grey.   
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In general, the EREs showed higher expression stabilities (lower M-values) compared to the 

reference genes, although differences in M-values are small. In the developmental time 

series and the comparison of the different zebrafish organs, the M-value distribution was 

more dispersed with relatively low expression stability (M>0.5) for the reference genes and 

‘high’ to ‘very high’ expression stability for a considerable number of EREs (Figure 6.2E,F). In 

the time series, the ERE hatn10, was identified as the best reference target, with an M-value 

around 0.3, while the best performing mRNA reference gene was rps18 with an M-value 

around 0.6 (Figure 6.2E). Of note, gapdh, a frequently used reference target in zebrafish, had 

an M-value of 1.5, which is considered as highly unstable. In the different zebrafish organs 

(Figure 6.2F) the best reference target is the ERE hatn10, with an M-value of 0.3, while the 

best classically used reference gene, bactin2, had an M-value of only 0.8. Similar results were 

obtained by performing a geNorm analysis for the 6 different experiments, using efficiency-

corrected Cq values that were determined by linear regression analysis of qPCR fluorescence 

data using LinRegPCR software (Supplemental Figure 6.3)25. To determine the optimal 

number of reference targets to be used in the different experiments, the Vn/n+1 value was 

calculated using geNorm (see Materials and Methods). This analysis indicated that for each 

experimental condition the inclusion of the best two reference targets is sufficient for 

adequate normalization as indicated by V2/3 values below 0.15 (Supplemental Figure 6.4, 

0.15 threshold according to Vandesompele et al. (2002)7). In 5 out of 6 conditions the best 

two reference targets were EREs.  

Finally, we aimed to identify the most stably expressed reference targets throughout the 

different experiments performed. A rank aggregation method based on voting theory (Borda 

count) was used to combine the 6 ranked lists of reference targets, generated for the 6 

different experiments. This method tries to find an ordered list of reference assays as close 

as possible to all individual ordered lists by calculating the weighted Spearman’s footrule 

distance, and using a cross-entropy Monte Carlo algorithm or genetic algorithm. The analysis 

of the 6 ordered reference target lists, clearly demonstrated that most of the EREs showed a 

higher overall expression stability compared to most of the commonly used reference genes, 

as evidenced by lower ranks and by the lower median M-value (Student’s t-test; p<0.001) 

and smaller spread of the M-value (Student’s t-test; p<0.001) (Figure 6.3A,B), with the 

highest stability for ERE hatn10. In each of the 6 experiments, hatn10 had an M-value below 
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0.5 and this ERE was found to be the most stably expressed reference target in 4 out of 6 

experiments, indicating that hatn10 is an interesting candidate for inclusion as a reference 

target in a broad range of experiments.  

 

Assessment of the validity of ERE reference targets versus common reference genes to 

normalize genes of interest 

To test the accuracy of qPCR results after normalization with either frequently used 

reference genes (gapdh, bactin2 and elfa) or ERE reference targets (hatn10, dna15ta1 and 

loopern4), the expression of known differentially expressed genes was measured in a diverse 

set of experimental conditions (developmental time series, different organs, morpholino and 

compound treatments).  

According to earlier reports, zorba transcripts are only present in zebrafish embryos until the 

mid-blastula transition (MBT) at about 3.5 hpf, after which zygotic transcription is 

initiated28,29. This means that zorba transcripts are strictly maternally derived with almost no 

zygotic transcription. This was validated by microarray data reported by Yang et al. (2013)30, 

where transcriptomes were compared between different developmental stages in zebrafish 

embryos. We looked at zorba expression in a developmental time series using RT-qPCR and 

normalized the data either with frequently used reference genes or with ERE reference 

targets. When using the ERE’s as reference targets, a more than 20 fold expression 

difference was noted between the 0 hpf (maternal) and 8 hpf (zygotic) time points, 

confirming that zorba transcripts are almost exclusively maternally derived (Figure 6.4A). 

When applying the classic reference genes for normalization, only a threefold expression 

difference was observed, falsely indicating a relatively small expression difference for zorba 

between maternal and zygotic transcription stages.  

During early embryogenesis, the pax6a gene is expressed in specific parts of the developing 

brain, although from larval stages on, expression gets more restricted to the eye31. 

Predominant eye expression of pax6a is further evidenced by microarray expression analysis 

(own data, not shown) revealing a 25% higher pax6a expression in the adult zebrafish eye 

compared to the brain. We looked at pax6a RT-qPCR expression levels in different organs 

from adult zebrafish. When expression levels were normalized to the ERE reference targets, 

the higher expression of pax6a in the eye versus the brain could be confirmed (Figure 6.4B). 
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In contrast, normalization to the common reference genes resulted in an unexpectedly 

higher expression of pax6a in the brain compared to the eye.  

In zebrafish embryos, knockdown of slc2a10 using MO injection affects the expression of a 

number of genes involved in cardiovascular development, as evidenced by microarray 

expression analysis18. One of these prototypical affected genes is acta2, showing a small 

upregulation upon slc2a10 knockdown. We conducted RT-qPCR expression analysis for acta2 

and revealed that both common reference gene and ERE normalization resulted in a similar 

slight upregulation of the acta2 gene after slc2a10 MO injection (Figure 6.4C). The acta2 

gene is also known to be upregulated upon treatment with TGFBRI compound to a greater 

extent than after slc2a10 MO injections18. We confirmed a threefold overexpression of acta2 

upon administration of TGFBRI compound, both after common reference gene and ERE 

normalization (Figure 6.4D). 
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Figure 6.3. Rank aggregation analysis. 

A: Box plot representation of dispersion of the M-value. Boxes depict first and third quartile and the median is indicated with a line in the middle of the box, 

outliers are drawn as circles. Reference targets are ranked according to rank aggregation outcome (most stable reference targets on the left). B:Rank 

aggregation analysis ordering the reference genes, based on their rank position according to each stability measurement (grey lines), from the most stable 

(left) to the least stable (right). Mean rank position of each gene is shown in black, as well the model computed by the Monte Carlo algorithm (red line). All 

EREs, except for sine3, are ranked better than the commonly used reference genes. .
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Figure 6.4. Fold change expression of selected genes of interest after normalization with common 

reference genes (ref. genes) and with ERE reference targets (ERE).  

A: Fold change expression of zorba between 0 hpf and 8 hpf. B: Fold change expression of pax6a 

between adult zebrafish eye and brain tissues. C: Fold change expression of acta2 between slc2a10 

MO and scrambled MO injections. D: Fold change expression of acta2 between TGFBRI compound and 

screening medium treatment. 
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Discussion 

 

Several reports indicate that, even within a species, no single gene can be regarded as an 

ideal reference gene for the normalization of qPCR data across diverse sample types and 

experimental situations8,10,32. This is due to variations in expression levels of these genes 

across different experimental conditions, developmental stages or across different tissues or 

cells. In this study, we specifically aimed to identify a set of reference targets that are stably 

expressed over a diverse set of samples obtained from the zebrafish, a model organism 

which is becoming increasingly popular in disease modeling, developmental studies and 

toxicology. Our strategy was based on the identification of specific types of repetitive 

elements that have spread throughout the zebrafish genome during evolution and that are 

also present in genomic sequences that are transcribed to RNA. With a single pair of RT-

qPCR primers, one specific expressed repetitive element (ERE) can be amplified, thereby 

simultaneously detecting numerous different transcripts in which the specific ERE is present. 

The underlying assumption is that by measuring many transcripts at the same time, 

differential expression of a few of them will not drastically alter the total level of ERE 

expression. Therefore, expression of this set of repeats is expected to be highly stable 

throughout different experimental situations, as it serves as an estimation of the general 

mRNA fraction abundance. The use of expressed repeat elements was first presented by 

Vandesompele et al. (2nd International qPCR Symposium, Freising-Weihenstephan, 

Germany, September 6, 2005) and subsequently confirmed by Marullo et al. (2010)13 where 

primate specific Alu repeats were used for normalization of biomarkers in human blood. 

Recently, it has been reported that expressed Alu repeats can be successfully used as a 

normalization factor in RT-qPCR experiments where human cancer cells were subjected to 

various perturbations14 or in human embryonic stem cell differentiation experiments15.  

In this study, 10 different zebrafish EREs were selected as candidate normalization targets 

based on a minimal number of expressed copies and conservation score. Subsequently, 

expression stability of these EREs and 10 commonly used reference mRNAs for zebrafish 

studies were compared. The standard reference genes are involved in different cellular 

processes and structures such as metabolism (hprt1, gapdh), transcription (tbp), translation 

(elfa), cytoskeletal structure (bactin2, tuba1), major histocompatibility complex (b2m) and 

steroid biosynthesis (cyp19a1b), thus avoiding co-regulation upon different 
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treatments11,32,33. We did not include the frequently used rRNA transcripts (e.g. 18S and 28S 

rRNA) into this study. Indeed, while rRNA represents more than 90% of total RNA, it has 

been shown that the rRNA to mRNA ratio can vary depending on the experimental 

condition34-36. Moreover, the high abundance of rRNA compared to mRNA may hamper the 

correction of the baseline fluorescence in qPCR data analysis7,37. Finally, rRNA is transcribed 

by a different endogenous RNA polymerase, is not polyadenylated, and has a different 

function compared to mRNA, making ribosomal RNA a non-representative form of RNA for 

normalization of mRNA. Therefore, the use of rRNA as a normalization factor in qPCR 

experiments is not recommended and could lead to false interpretation of the data.  

Expression stabilities were tested in a diverse sample set, covering different experimental 

setups in zebrafish research, including morpholino and compound treated samples and 

samples from different developmental stages and from different adult tissues. Especially for 

the latter two sample types, good quality normalization factors are difficult to find11, most 

likely because of dramatic changes in expression profiles during zebrafish development and 

major differences in expression between different matured organs30,38. Indeed, expression 

analysis in different developmental stages and tissues from zebrafish, revealed a poor 

expression stability of all commonly used reference mRNAs with M-values higher than 0.5, 

implying that these genes are not suitable for reliable normalization of expression data in 

these experimental conditions. Strikingly, the expression of one of the most frequently used 

reference genes, gapdh, is the least stable of all reference targets tested in this study. In 

keeping with this observation, previous studies in vertebrate tissues and cell lines have 

already reported on the poor performance of gapdh as an internal reference gene and on its 

expression variability39-43. Consequently, we would strongly discourage further use of gapdh 

as reference gene for normalization in zebrafish experiments. Remarkably, most of the 

zebrafish EREs performed very well, with in many cases M-values below 0.5, signifying a high 

expression stability, thus clearly marking EREs as the reference target of choice in these 

experimental conditions. The robustness of ERE normalization for expression analysis in 

different developmental stages and tissues from zebrafish was further evidenced by the 

validation of known differential expression levels for respectively the zorba and pax6a 

genes. Normalization with common reference genes resulted in completely different 

expression patterns, leading to false interpretation of the data. The performance of EREs in 

terms of stability is less pronounced in perturbation experiments such as compound 
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treatments or morpholino injections. While almost all reference targets scored relatively 

well, again expression stability of the EREs was generally better than for the common 

reference genes. The relatively good performance of all reference targets, regardless of their 

nature, in compound and morpholino experiments reflects the more subtle impact of these 

treatments on the general expression profile in zebrafish embryos. Indeed, validation of 

known differential expression levels for the acta2 gene in these conditions revealed no 

major difference between both normalization strategies. 

To identify the most stably expressed reference targets throughout all different experiments 

performed, we conducted a rank aggregation analysis. This analysis indicates that the 

expression stability of the EREs was better than for the common reference genes. ERE 

hatn10, dna15ta1 and loopern4 represent the most stable reference targets with M-values ≤ 

0.5 in all 6 experiments. We recommend including at least these 3 genes in zebrafish gene 

expression studies for evaluation of their suitability as normalization targets.  

The MIQE guidelines from 2009 emphasize the need for accurate normalization of RT-qPCR 

data in order to obtain reliable expression data. However, a recent paper in Nature Methods 

that surveyed 1700 publications with qPCR-based data from 2009 to 2013 reported the poor 

application of these guidelines including inadequate normalization procedures with 

widespread use of single, unvalidated reference genes44. It has long been recognized that 

this can lead to unreliable results, in particular for measuring subtle differences in expression 

levels. Our study fully complies with the MIQE guidelines and tackles the issue of proper 

normalization in zebrafish expression studies, by providing for the first time a set of robust 

candidate reference targets to normalize RT-qPCR data in a wide range of zebrafish 

experiments. EREs have the potential to dramatically facilitate and improve gene expression 

studies in zebrafish. In addition, the bio-informatics strategy outlined for identification and 

validation of such EREs in this study can be applied to other organisms. As such, we expect 

similar ERE qPCR assays to be developed and used in other model organisms for 

normalization purposes. 
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Supplemental Figure 6.1. Representative example of an ERE standard dilution and melting curve.  

A: Standard dilution curve, used to determine the primer amplification efficiency of the dna15ta1 

primer set. In this example Cq values obtained for the dna15ta1 primer set are plotted against the 

cDNA quantity (ng) (exported from qbase+ software). For each quantity two technical replicates are 

included. B: Melting curve analysis for the dna15ta1 primer set (exported from LightCycler 480 

software). On top, the sample fluorescence is plotted against temperature. Below, the first negative 

derivative of the sample fluorescence is plotted against temperature, displaying the melting 

temperature as a peak. In this example, there is a single sharp peak from an amplicon having a Tm of 

76 °C, indicating the specificity of the dna15ta1 primer set. 
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Supplemental Figure 6.2. Schematic representation of ERE primer design (hypothetical example). 

The full-length repeat element (dark grey line, top) and a number of aligned repeat element 

containing fragments obtained from a combined RefSeq/non-RefSeq blastn search are depicted. In a 

first step we determine the part of the ERE sequence that is most frequently expressed. To delineate 

this area, all RefSeq and non-RefSeq blast results are aligned with the consensus repeat sequence 

and sequences that are commonly present in most of the fragments are used as a template for 

primer design using primer 3 with default settings.  
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Supplemental Figure 6.3. Average expression stability of common reference genes and expressed 

repeat elements (based on LinRegPCR corrected Cq values). 
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Supplemental Figure 6.4. GeNorm calculated pairwise variation Vn/n+1 values for the different 

experimental conditions.  

The optimal number of reference targets (n) is reached, when the inclusion of the next reference 

target (n+1) reduces the Vn/n+1 value below 0.15. For every experiment the V2/3 value is lower than 

0.15, indicating that the inclusion of only two reference targets, the ones with the lowest M-value, is 

sufficient for adequate normalization. 
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Supplemental Table 6.1. Target specific amplification efficiency parameters. 

Reference 

target 

E computed E (SE) 

computed 

R2 

computed 

Slope 

computed 

Efficiency 

(%) 

Efficiency 

LinRegPCR 

cr1-1 2.012 0.018 0.999 -3.293 101.22 1.85 

dna11ta1 2.076 0.04 0.994 -3.153 107.57 1.89 

dna15ta1 2.012 0.027 0.997 -3.295 101.14 1.94 

hatn10 2.043 0.013 1 -3.224 104.25 1.88 

hatn4 2.05 0.02 0.999 -3.208 104.98 1.87 

hatn8 2.025 0.027 0.997 -3.265 102.43 1.84 

loopern4 2.095 0.035 0.996 -3.114 109.47 1.87 

sine3 2.014 0.036 0.996 -3.288 101.44 1.86 

tc1n1 2.034 0.049 0.993 -3.242 103.45 1.88 

tdr7 2.022 0.036 0.996 -3.271 102.17 1.87 

b2m 1.946 0.057 0.992 -3.459 94.6 1.86 

bactin2 1.993 0.054 0.991 -3.340 99.3 1.86 

cyp19a1b 2.015 0.045 0.994 -3.288 101.5 1.84 

elfa 2.060 0.049 0.993 -3.187 106.0 1.88 

hprt1 1.957 0.042 0.994 -3.430 95.7 1.86 

rpl13a 1.912 0.040 0.994 -3.553 91.2 1.87 

rps18 1.987 0.042 0.994 -3.352 98.7 1.86 

tbp 1.954 0.055 0.990 -3.438 95.4 1.85 

tuba1 2.077 0.024 0.998 -3.150 107.7 1.89 

gapdh 2.025 0.07 0.976 -3.263 102.5 1.89 
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PART IV: Discussion 

 

 

 

 

 

 

 

 

 

They stumble that run fast 

~William Shakespeare’s Romeo and Juliet~ 
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Discussion and future perspectives 

 

NB is an embryonal tumor of the autonomic nervous system, emerging from neural crest 

derived precursor cells committed to the sympathetic neuronal lineage1. As a typical 

embryonal tumor, NB occurs mainly in very young children with the median age at diagnosis 

of 17 months2 and presents with low mutational burden. The ALK gene is the only major 

mutational target occurring in 8 to 10 percent of NB patients at diagnosis3,4. In contrast to 

the low mutation rates, recurrent DNA copy number alterations (CNAs) including MYCN and 

ALK amplifications and recurrent large and focal DNA partial gains and losses as well as 

whole chromosome imbalances are observed with a very high frequency5. Hence, NB has 

been coined a DNA copy number disease. One of the most prominent CNAs is gain of a large 

segment of the long arm of chromosome 17, with breakpoints being located within 

chromosome band 17q23 or distal thereof. Partial gains occur both in high risk NBs with and 

without MYCN amplification and are associated with poor patient outcome6. While 

mutations are rare and thus offering limited options for precision oncology, a better 

understanding of the molecular perturbations installed through these large CNAs can offer 

novel therapeutic targets and options for design of novel therapies. The search for these 

genes however is difficult: while it can be logically assumed that genes on 17q contribute to 

the tumor phenotype through dosage effects as has been described recently in 

ependymoma7, thus far, the size of the commonly gained region, estimated to be around 25 

Mb, has precluded the identification of these culprit genes.  

 

BRIP1 as a new cooperative oncogene in NB oncogenesis 

 

Through previous bio-informatic analysis using the CONEXIC algorithm, BRIP1 was selected 

as a strong 17q candidate cooperative driver oncogene (Fieuw A., thesis id 4390537). While 

the latter study was conducted on a relative small number of high stage tumors (with and 

without MYCN amplification), a further integrated and cross species genomics bio-informatic 

analysis described in this thesis confirmed BRIP1 (located on chromosome 17q23) as top 

candidate. This stimulated further research towards providing functional and mechanistic 
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support for this hypothesis as described in paper 1. Our data convincingly show that BRIP1 

acts through a gain of function mechanism, with tumor cells relying on high levels of BRIP1 

for survival and in vivo modeling in zebrafish demonstrating that elevated BRIP1 levels 

accelerate MYCN driven tumor formation thus in keeping with a cooperative oncogene 

function.  

The attribution of an oncogenic gain of function to BRIP1 in NB may be, at first glance, 

confusing given the well-established role of BRIP1 as tumor suppressor gene and its known 

role as Fanconi anemia gene. Indeed, BRIP1 is known to interact with BRCA1 and plays a 

crucial role in several DNA repair processes. This places BRIP1 in a growing list of genes that 

now have been recognized to act both as oncogenes and tumor suppressors depending on a 

given cellular or temporal context with best examples being NOTCH1 and EZH28,9. 

Interestingly, in familial breast cancer, in addition to inactivating BRIP1 mutations also a rare 

M299I variant was detected shown to result in a more robust repair of DNA interstrand 

crosslinks than wild type BRIP110, thus also pinpointing to an oncogenic role. In further 

support, BRIP1 expression levels are often elevated in breast cancer and infer a poor 

prognosis. While intriguing, further in depth mechanistic and functional studies, as done in 

this thesis for NB, are needed to better understand the possible opposing oncogenic 

functions of BRIP1 in breast cancer.  

BRIP1 protects NB cells from replicative stress  

As pointed out in detail in the introduction, replicative stress is the process characterized by 

the slowing or stalling of the replication fork11. Several causes for replicative stress have 

been described including shortage of nucleotides and replication factors, G-quadruplex 

structures, covalent protein-DNA adducts, R-loops, heterochromatin and DNA damage. Also, 

several oncogenes, including MYC and RAS,12 have been shown to cause replicative stress. 

Interestingly, while MYC is typically known as transcription factor controlling a broad range 

of genes driving cell cycle (amongst others)13,14, it has also been shown to directly interfere 

with control of initiation of replication through binding to origins of replication15. As such, 

MYC will boost overall replication speed which may render developing cancer cells 

particularly vulnerable to the above describes triggers for replicative stress. Of further 

importance in understanding the complex yin and yang like interaction of DNA repair and 
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replicative stress versus oncogenesis, MYC also promotes the expression of DNA damage 

response proteins such as CHK1 and WRN helicase, both of which are required for MYC 

dependent cancer cell proliferation and survival16,17. Surprisingly, abolished ATR levels in 

mice with ATR seckel syndrome, completely prevented the development of MYC induced 

lymphomas16 indicating that replication stress resistance is necessary for MYC driven 

oncogenesis and that MYC is intrinsically boosting this process. In keeping with these 

findings, using a SHEP Tet 21/n inducible MYCN system, it was also shown that MYCN 

induces replication stress in NB cells. MYCN induction resulted in the phosphorylation of 

RPA, a marker for replication stress18,19, suggesting similar replicative stress control by both 

MYC and MYCN. Petroni et al. could show that overexpression of MYCN induces the DNA 

damage response and leads to the stabilization of p5319 and interestingly similar 

mechanisms were also described in zebrafish 20. In this MYCN driven model for NB, also used 

in this thesis, tumor penetrance was 20%, with evidence of dramatic loss of initiating tumor 

cells at week 5.5 and formation of full blown tumors at week 9. In tg(dβh:EGFP-MYCN; 

dβh:ALK F1174L) double transgenic fish, penetrance increases above 50%. More detailed 

analysis showed that MYCN overexpression induced adrenal sympathetic neuroblast 

hyperplasia, blocked chromaffin cell differentiation and ultimately triggered a 

developmentally timed apoptotic response20. It has been assumed that co-expression of 

activated ALK with MYCN provides pro-survival signals that block this apoptotic response and 

allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, 

thus promoting progression to NB20. We could show that overexpression of dβh:BRIP1 into 

the tg(dβh:EGFP-MYCN) transgenic background also enhanced the penetrance three-fold. 

My current working hypothesis is that increased BRIP1 expression will repress replicative 

stress induced DNA damage during the early phase of neuroblast hyperplasia. To investigate  

this we will perform more in depth DNA damage and replicative stress assays on the 

different stages of tumor formation in zebrafish and monitor how elevated BRIP1 levels 

impact on DNA damage levels.  

BRIP1, one protein, many functions 

While multiple functions have already been assigned to BRIP1 in relation to DNA damage 

signaling, DNA repair and protecting cells from replicative stress, it is assumed that further 

roles of BRIP1 in these and possibly also other processes are still to be uncovered. Of further 
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notice, although BRIP1 was initially found to be implicated in homologous recombinant (HR) 

pathway through binding with BRCA1, several other functions are assumed to act 

independent of BRCA1. At present, based on the work presented in this thesis, it is difficult 

to assign involvement of any of these functions in the BRIP1 mediated tumor acceleration 

process and possibly most or all functions could indeed be implicated. Here below I will 

discuss some of the BRIP1 functions in further detail and how they could impact on the 

observed accelerated tumor formations process. 

As an established Fanconi anemia gene, BRIP1 is implicated in the two major processes that 

are perturbed in the affected cells: interstrand crosslink (ICL) DNA repair and replication 

stability and integrity. ICLs represent a major challenge for DNA replication and transcription 

as they preclude DNA strand separation. It has been shown that cells depleted for BRIP1 are 

more sensitive for DNA cross-linking agents (mitomycin C, cisplatin)21,22, indicative for an 

involvement of BRIP1 in unraveling of ICLs. Indeed, processing of ICLs requires activation of 

the Fanconi anemia pathway and ubiquitination of FANCI and FANCD223. Subsequently, 

BRIP1 will be recruited to the ICL and will resolve this through binding with MLH122,24. In 

relation to replication fork stability, several recent proteomics studies have shown direct 

interaction of BRIP1 in stalled and/or collapsed forks25. 

BRIP1 has a DNA helicase domain and this function has been extensively studied in relation 

to unwinding and resolving so-called G-quadruplex DNA structures. As explained in more 

detail above, such G-quadruplexes are extremely stable structures sterically impeding DNA 

replication and thus posing a potential threat when not removed timely26. As such, one can 

imagine that depletion of BRIP1 protein in highly challenged initiating tumor cells can lead to 

increased unresolved G-quadruplexes thus leading to increased replication fork stalling and 

thus replicative stress. In addition, BRIP1 is also important to dissociate DNA:RNA hybrids (R-

loops) known to occur due to replication transcription conflicts27,28. Interestingly, even in the 

absence of agents that exogenously induce replication stress, BRIP1 helicase activity is 

important to maintain genome integrity. BRIP1 is involved in intra-S phase checkpoint 

signaling through interaction with TopBP1, allowing phosphorylation of CHK1 and RPA 

following replication stress29,30. Taken together, it is clear that unraveling the exact 

contribution of BRIP1 to the NB oncogenic phenotype will require dedicated further research 

using the appropriate assays. Also, I plan on a follow up study to demonstrate not only BRIP1 
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driven tumor acceleration but also tumor dependency using a new generation inducible 

dβ(i)BRIP1 overexpression transgenic zebrafish. In a first step, the BRIP1 overexpression 

construct will be switched on in a MYCN background leading to a high NB tumor penetrance. 

In a second step when full blown tumors are observed, the overexpression (i)BRIP1 will be 

switched off and I hypothesize that upon loss of (i)BRIP1 in MYCN/BRIP1 double transgenic 

tumors, a regression of the already established NB tumors will be observed 

 

In relation to the interaction of BRIP1 with BRCA1, it is of interest that in this thesis we also 

show that BRCA1 is highly expressed in NB tumors. In addition to the well-established role of 

BRCA1 in DNA double strand break repair, recent studies indicate that this protein is also 

implicated in many other processes including replication stress and activation of the 

ATR/CHK1 pathway, control of R-loop mediated DNA damage31, facilitating phosphorylation 

of CHK1 upon sensing of ssDNA32and even acting as transcription factor amongst other 

controlling levels of the ribonucleotide reductase component RRM2 essential for DNA 

replication and DNA repair33. These findings, like for BRIP1, suggest that BRCA1 also acts as a 

cooperative oncogene in NB. Preliminary data from our lab and data from the Molenaar lab 

(personal communication) indeed support this hypothesis by in vitro data showing that NB 

cells depend on high BRCA1 levels for survival. To study this in vivo we overexpressed BRCA1 

in the MYCN zebrafish model but observed no tumor acceleration. However, as BRCA1 is not 

conserved in the zebrafish genome, the relevant functional context for BRCA1 operation may 

be lacking explaining the observed results. Further modeling therefore should be done in a 

mouse model or the newly described mouse neural crest derived NB model (Olsen et al. 

Oncogene, accepted).  

Finally, it has been reported that BRIP1 is a downstream target of FOXM134 and thus forms 

part of a broad DNA damage response network regulated by FOXM1. Indeed, upon lentiviral 

knockdown of FOXM1 in IMR-32 NB cells, we clearly observed an enrichment for DNA repair 

by gene set enrichment analysis (GSEA) and we could also confirm BRIP1 as a downstream 

target of FOXM1. In the second part of my thesis, I described the major impact of FOXM1 

driven DREAM complex targets on an embryonal stem cell derived gene signature and 
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hypothesize that this controls stem cells characteristics of aggressive NB cells by keeping the 

cell cycle and DNA repair mechanisms in check (paper 2). 

 

FOXM1 as master regulator of the DNA damage response 

 

The main function of the DREAM complex is to repress gene expression during quiescence 

(G0). When cells exit the G0 phase, FOXM1 and MYBL2 are recruited to promote mitotic 

gene expression thereby controlling proper DNA replication and avoiding excessive DNA 

damage35,36. Besides being a member of the DREAM complex, FOXM1 is also an integral 

component of the DNA damage checkpoint signaling network, driving the transcription of a 

diverse range of genes encoding for DNA damage sensors, signaling mediators and effectors 

for cell cycle checkpoints, cell death and senescence37. Using Chip-seq data, we could show 

that FOXM1 is a downstream target of MYCN, thus illustrating one mechanism through 

which MYCN can restrain replication stress and control the DNA repair pathway. Using the 

MYCN zebrafish NB model, I recently initiated FOXM1 targeted overexpression in order to 

monitor effects on accelerated tumor formation as a prelude to gain further insights into 

how FOXM1 and MYCN cooperate in NB oncogenesis.  

Sumoylation is an important posttranslational modification for the FOXM1 protein. 

Importantly, recent evidence showed that increased sumoylation of FOXM1 by SUMO2 

during M-phase specifically inhibits the negative regulatory domain of FOXM1, leading to an 

enhanced FOXM1 transcriptional activity. In response to treatment with DNA damaging 

agents such as epirubicin, or mitotic inhibitors, FOXM1 sumoylation was enhanced in MCF-7 

breast cancer cells38. In this respect, it has also been shown that sumoylation plays a critical 

role in the DNA damage response, as it has been linked to DNA repair through studies on the 

base excision repair pathway. Moreover, it was shown that SUMO2 (and SUMO1/3) 

accumulate at sites of double stranded breaks or replication fork stalling39,40. The close 

coordination between the processes of DNA repair and sumoylation has recently been 

confirmed by demonstrating that FOXM1 and many of its direct and indirect target genes, 

including BRCA1, BARD1 and RRM2, are posttranslationally regaled through so called sumo-

waves or group protein modifications.41. Interestingly, I modelled overexpression of 
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dβh:SUMO2 into tg(dβh:MYCN-EGFP) zebrafish and indeed showed acceleration of NB onset 

(preliminary results), suggesting that sumoylation is an important process in NB 

development. 

 

Targeting BRIP1, FOXM1 and the DNA damage response as entry point for precision oncology 

for children suffering from high risk NB: towards a durable cure with fewer side effects 

 

Finding a new cure or strategy for the treatment of cancer patients, is probably the holy grail 

for every cancer researcher. Both BRIP1 and FOXM1 are promising therapeutical targets 

since drastic phenotypic effects are observed in NB cells upon knock down (paper 1 and 

paper 2). Currently, chemotherapy in combination with additional treatment (including bone 

marrow transplantation and immunotherapy) are still failing in roughly half of the high risk 

cases. Moreover, follow up studies of long term survivors are now showing increasingly the 

dramatic impact of the aggressive therapy schemes on their quality of life, not in the least 

through significant increase in the risk for therapy induced cancers later in life. Clearly, to 

cope with these urgent clinical needs, more potent, durable and targeted strategies are 

needed.   

Despite intensive screening, no specific compound targeting BRIP1 could be identified so far 

(Brosh lab, personal communication). Although direct inactivation of BRIP1 is therefore 

currently not possible, several indirect approaches can be pursued. In breast cancer, it was 

shown that BRIP1 is controlled by the E2F/retinoblastoma (RB1) pathway through a 

conserved E2F responsive site in the BRIP1 promotor and that BRIP1 could be repressed 

using dihydroxyvitamin D3 binding on this site42. Also other therapeutic options targeting the 

E2F/RB1 pathway, such as the CDK4/6 inhibitor palbociclib, have been described. 

Interestingly, it has been shown in the past that NB cells are sensitive for this inhibitor43. 

Another option is through the stabilization of G-quadruplex structures. BRIP1 is 

indispensable for the unraveling of G4 structures26, and stabilizing these structures would 

induce replication stress in the cancer cells. Several G4 stabilizers have been described 

(telomestatin, TMPYP4 tosylate, pyridostatin, BRACO-19) and some of them, amongst others 

BRACO-19, are well tolerated in mice opening perspectives for clinical use44. Importantly, 
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since G4 structures are mainly formed at the telomeres, using these compounds would also 

affect hTERT, which was recently identified as an important oncogene in NB 

development45,46. Stabilizing quadruplex structures could also be a strategy in the NB patient 

subgroup with ATRX deletions47, since ATRX null neuroprogenitor cells are hypersensitive to 

the G4 stabilizing ligand telomestatin48. Finally, as BRIP1, WRN and BLM function together in 

a complex for the unraveling of G-quadruplex structures26, an alternative approach for 

targeting BRIP1, would be through the use of the WRN helicase inhibitor (NSC 617145). As 

such, inhibiting WRN would indirectly also affect BRIP1 function.  

In contrast to BRIP1, several compounds have been described targeting FOXM1. Siomycin A 

and thiostreptin inhibit the transcriptional activity and the expression of FOXM1 through 

acting as proteasome inhibitors49. Indeed, we could observe a downregulation of FOXM1 

upon addition of Siomycin A in the NB cell line N206, however only starting 72h after 

addition (paper 3). In gastroenteropancreatic neuroendocrine tumors slightly synergistic 

effects were observed upon addition of Siomycin A and cisplatin, however, we could not 

confirm this synergistic effect in NB cells50. Siomycin A is a promiscuous molecule with 

potent off-target effects, most notably inhibition of the 20S proteasome, therefore also 

targeting several other proteins, possibly explaining our results. 

By performing a library screen of 54211 small molecules, a small molecule inhibitor of 

FOXM1 (FDI-6) was discovered in the group of Balasubramanian51. FDI-6 binds directly to 

FOXM1 and displaces FOXM1 from its genomic targets. The authors performed 

transcriptome profiling after 0, 3, 6 and 9 hours of FDI-6 treatment and could clearly 

demonstrate downregulation of FOXM1 target genes51. Upon addition of FDI-6 to IMR-32 NB 

cells, we could indeed confirm downregulation of FOXM1 target genes 6h after 

administration. However, 24h after administration, to our surprise we consistently observed 

upregulation of the FOXM1 target genes. To exclude that this loss off FDI-6 efficacy is due to 

compound degradation, we administrated the drug every 12h to the cells, however, this did 

not result in a sustained downregulation of FOXM1 activity, indicating that compound 

degradation is not the reason for the observed phenotype (data not shown). These results 

precluded further studies using this compound. The reason for the short lived response of 

the cells to the drug are unclear. One could imagine that the cells respond through classical 

drug resistance mechanisms such as activation of drug efflux pumps or the sequestering of 
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the drug into cellular vesicles that are then eliminated by exocytosis52 but one would think 

that such mechanism requires more time to be installed. Alternatively, cells may be strongly 

dependent on FOXM1 activity and undergo fast pathway rewiring that leads to reactivation 

of FOXM1 activity through an as yet unknown mechanism. In any case, given the strong 

focus of the research community on FOXM153 and the drug being available for several years 

it is indeed disturbing that no follow up studies have been reported, neither by the 

Balasubramanian lab nor by other labs.  

Fortunately, the activity of FOXM1 is fine-tuned by several post-translational modifications, 

thus offering alternative opportunities for drugging. Phosphorylation of FOXM1 by phospho-

like kinase 1 (PLK1) at the G2/M phase results in the activation of FOXM1 activity and the 

expression of key mitotic regulators54. PLK1 is only expressed in dividing cells and to a much 

lesser extent than cancer cells thus offering a therapeutic window. Several compounds 

targeting PLK1 have been described and many of them compete with ATP for the substrate 

binding site55 including volasertib (BI6727). Several preclinical experiments have 

demonstrated that volasertib is potent in inducing tumor regression. Therefore, this agent 

has recently been awarded the “Breakthrough Therapy Status” by the FDA for its significant 

benefit in treating AML patients55. Interestingly, recently it was shown that PLK1 inhibitors 

induce reduced proliferation, cell cycle arrest and cell death in NB cells56, indicating that this 

is an important pathway. Another indirect FOXM1 drugging approach is through targeting 

maternal embryonic leucine zipper kinase (MELK). FOXM1 forms a protein complex with 

MELK and resulting in the phosphorylation and activation of FOXM157. While several studies 

have been conducted with the MELK inhibitor OTS16758, experts in the field strongly doubt 

the on target specificity of OTS167 (Bollen lab, personal communication) precluding the use 

of this drug for pre-clinical studies. Interestingly, through a large kinase inhibitor screen, a 

novel MELK inhibitor, MELK-T1 was recently identified59, opening new perspectives for 

specific inhibition of MELK dependent FOXM1 activation. The posttranslational sumoylation 

of FOXM1 offers yet another therapeutic opportunity. A compound library screen resulted in 

the identification of compound 21 that decreases sumoylation with 85%60. 

Besides targeting BRIP1 and FOXM1, further therapeutic approaches can also be pursued. In 

this thesis we show that NB cells experience replication stress and that ATR/CHK1 signaling 

for sensing of ssDNA is (highly) activated. Therefore, other compounds and mechanisms that 



172|Chapter 7 
 

 

enhance replication stress and that target the ATR/CHK1 axis could also be of great interest 

for treating NB patients. Several novel drugs targeting CHK1 (LY2606368, CCT245737) and 

ATR (ATR-101, VX-970) already entered clinical trials, opening perspectives for treatment of 

NB patients. Of interest, an alternative approach to inhibit CHK1 is to target WEE1 (MK-

1775), a kinase that phosphorylates cell cycle regulators CDK1 and CDK2. Inhibition of WEE-1 

leads to enhanced CDK1/2 activity causing cells in S phase to enter mitosis prematurely 

before DNA replication is complete61 causing mitotic catastrophy. Interestingly, the 

combination of WEE1 and CHK1 inhibitors has been tested in NB cells and indeed resulted in 

a synergistic effect61,62. 

 

In this thesis we show that FOXM1 is a downstream target of MYCN, presenting yet another 

therapeutic option. Given the impact of MYCN in NB biology, MYCN is amplified in around 

20% of the tumors63, an enormous effort has already been invested in the identification of 

compounds that target MYCN. Hence, direct inhibition of MYCN in vivo is cumbersome, since 

MYC proteins are composed of two extended alpha-helices with no obvious surfaces for 

small molecule binding. However, several indirect approaches can be pursued, BET family 

adaptor proteins localize to MYC promotors , and therefore targeting BET also indirectly 

influences MYCN activity. Several BET inhibitors have been described, amongst others JQ1 

and OTX015. In NB cell lines, responses to JQ1 inhibition varied from highly sensitive to 

resistant64, with amplification of MYCN as a top predictive marker of response to JQ1 

treatment. Also OTX015 has been shown to have therapeutic effects against preclinical 

MYCN driven NB models65.  

 

Proteins that prevent dephosphorylation at T58 stabilize MYCN, which may be the case with 

AURKA in NB66. Interestingly, increased expression of AURKA is found in MYCN amplified NB, 

mediated potentially by MYCN itself67. Therefore, promoting dissociation of the AURKA-

MYCN complex, which results in rapid proteosomal degradation of MYCN, represent another 

strategy to target oncogenic stabilization of MYCN. Certain AURKA inhibitors, such as 

MLN8237, induce a particular conformational change in the kinase that actively reinitiates 

MYCN degradation through this mechanism68. MLN8237 was identified as a promising agent 
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for NB but has not displayed robust antitumor activity in early-phase pediatric studies, 

warranting the development of improved inhibitors69,70.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Schematic overview of the MYCN-FOXM1-BRIP1(17q) axis and possible therapeutic 

interventions.  

 

BRIP1 and 17q gain: one done, more to go? 

 

I consider the identification of BRIP1 as a cooperative oncogene for MYCN driven tumor 

formation as a major novel finding in NB biology offering novel unexpected opportunities for 

drugging. While my data convincingly show the importance of BRIP1 as putative effector of 

the dosage effects caused by chromosome 17q gain, I believe that further genes on 17q are 
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important in NB. Which would explain the apparent tremendous high selective pressure 

towards retaining chromosome 17 imbalances causing 17q gain as an almost invariable 

feature of the high risk NB genome. Most notably, in a MYCN driven NB mouse model, gain 

of chromosome 11 (which is syntenic to chromosome 17q in human) is also observed in 

about 25% of the tumors71, showing that this process is conserved. A further search for 

dosage sensitive genes on 17q is certainly warranted. First, the involved large segment 

(17q23-qter) is large, suggesting that in addition to BRIP1 at least one additional gene, 

possibly located much more distal towards the 17q telomere could be implicated. Second, 

based on a time course analysis of gene expression (1,2 and 6 weeks after birth) in the 

superior cervical ganglia and the celiac ganglia of Th-MYCN and wild type mice during several 

stages of NB development 72, several downstream targets of FOXM1 (TOP2A, BIRC5, TLK1…) 

were found amongst the top upregulated genes and in keeping with being FOXM1 targets 

involved in DNA metabolism and DNA repair (Durinck et al, in preparation). These data are in 

keeping with the presently proposed hypothesis in the host lab that gain of chromosome 

17q, through combined dosage effects of multiple genes, drives a cellular state characterized 

by replicative stress resistance and highly efficient DNA repair. Recent work from the 

Gilbertson team indeed demonstrated such a phenomenon to be active in the brain tumor 

ependymoma. Genome wide copy number alterations are also frequently observed in these 

tumors and to sift through the many putative candidates the team used a large in vivo 

screen of 84 candidate oncogenes and 39 candidate tumor suppressor genes (TSG) located in 

28 copy number aberrations. As such, they identified eight new oncogenes and ten new 

tumor suppressor genes, all involved in similar cell functions7. This study thus indeed 

illustrates that multiple dosage sensitive genes residing in the commonly affected 

chromosome regions can be actively involved in tumor initiation and/or progression through 

installing a so-called cellular state driven through one or more altered cellular functions7.  

Zebrafish as a model to study NB tumor acceleration and validation of candidate cooperative 

oncogenes 

The MYCN driven zebrafish NB model was demonstrated to be useful for testing the effect of 

cooperative oncogenes on tumor acceleration as illustrated by the pioneering work of the 

Look lab for mutant ALK and confirming earlier observations in mouse. More recently, NF1 

loss-of-function mutations were also shown to accelerate MYCN driven tumor formation in 
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zebrafish73. My study adds yet another gene to the list of those impacting on MYCN driven 

tumor onset and penetrance and thus further reinforces the relevance of this animal model 

for these experiments. Indeed, many additional genes are now under study in the host lab 

for leukemia and NB, all in the slip stream of my initial BRIP1 work. Further, the zebrafish 

cancer core of the host lab is rapidly expanding and exploring further novel paths including 

genomic profiling methods of tumor cells (including single cells) as well as using zebrafish for 

drug testing, amongst others. 

Optimizing of RT-qPCR normalization in zebrafish studies 

 

Much of my early PhD work was focused on introducing modeling of cancer in zebrafish in 

the Ghent zebrafish lab, following my stay in the Look lab at the Dana Farber Cancer Institute 

(Boston, USA). Given the worldwide recognized expertise of the Center for Medical Genetics 

in Ghent in normalization strategies for qPCR based gene expression studies74,75, I decided to 

exploit this know how in the context of the zebrafish model system. Indeed, gene expression 

analysis is increasingly important in many fields of biological research and RT-qPCR is 

currently frequently used given its practical simplicity and processing speed. However, 

different critical factors can influence the outcome of the RT-qPCR studies and these have to 

be applied properly to obtain biologically meaningful results. Since under specific biological 

conditions the frequently used reference genes in zebrafish did not perform up to standard, 

we applied a new normalization strategy based on expressed repeat elements (paper 4). 

Starting from a database encompassing all repetitive elements expressed in zebrafish, we 

selected 10 EREs for further validation. Comparing the 10 most frequently used reference 

genes in zebrafish with the 10 selected EREs, we could convincingly show that in almost 

every situation the EREs perform much better than the standard reference genes. Especially 

in challenging situations (such as time series or comparing different tissues) the EREs were 

more stably expressed resulting in biologically more reliable and robust results. This work 

has broader application possibilities as we suggest that this strategy can be applied to other 

model organisms as well. Indeed, using a similar workflow we could identify and validate 

EREs for the usage in mice (Renard, Vanhauwaert et al. Scientific Reports, under minor 

revision).  
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General conclusions and perspectives 

 

When I started on the BRIP1 modeling in NB, ALK was the only gene known to drive 

accelerated tumor formation in the MYCN targeted overexpressing zebrafish NB model (see 

above). Selecting zebrafish at the start of this work therefore was a major challenge but 

fortunately, in the end, turned out to be successful. My pioneering work in the lab has now 

evolved into a fully equipped and operational zebrafish cancer modeling unit currently 

actively exploring the mode of action for many novel candidate genes. Despite these 

successes important challenges remain. Most notably, MYCN amplification only represents 

about half of all high risk NBs. Most of the remaining half carry a large 11q deletion and 17q 

gain with no subset specific associated mutations. This currently precludes the modeling of 

this important group of tumors with poor prognosis. Recent work in the host lab has led to 

the identification of several 11q candidates following the same bioinformatics approach 

applied here. Therefore, yet another major breakthrough may be ahead of us as modeling 

the high risk NB without MCYN amplification is considered as one of the major aims for 

ongoing NB research.  

Further, as indicated, BRIP1 function in relation to NB tumor formation needs further 

investigation and also direct drugging of BRIP1 would possibly add yet another drug to the 

currently rapidly growing repertoire of compounds for precision treatment for NB. Further, 

also the additional 17q candidate cooperative genes need further modeling and 

investigation as they themselves can also represent novel drug targets. Then, a further 

challenge is to test the optimal combination therapies as single compound treatment 

invariably leads to resistance. 
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Science may set limits to knowledge, 

but should not set limits to imagination 

~Bertrand Russell ~ 
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Summary: 

Neuroblastoma is a neural crest derived childhood tumor. The majority of these tumors arise 

in the adrenal gland and the sympathetic ganglia of infants and young children. These 

tumors display a broad spectrum of clinical heterogeneity ranging from spontaneous 

regression to aggressive metastatic disease. Especially for the latter group of patients, no 

adequate therapy is available yet and survival chances remain very poor. Advanced targeted 

treatment strategies may provide solutions for this problem, however, in order to benefit 

from these personalized treatments, it is of utmost importance to identify molecular targets. 

So far, only a limited number of genes have been identified that play a role in neuroblastoma 

oncogenesis, with mutations in ALK being the most prevalent and only occurring in 10% of 

the cases. In contrast to the paucity of mutations, copy number aberrations are frequently 

observed in neuroblastoma tumors, with gain of chromosome 17q being the most common 

abnormality detected and correlated with poor patient outcome. A better knowledge of 

which genes on 17q are important in neuroblastoma development can offer novel 

therapeutic targets and options for design of novel therapies.  

 

The first goal of my thesis was to follow-up on an initial bio-informatics approach intended 

to identify candidate 17q oncogenes. With this strategy, BRIP1 located on chromosome 

17q23 was identified as a cooperative oncogene in neuroblastoma development. High 

expression of BRIP1 correlated with poor patient outcome and stable BRIP1 knock-down in 

neuroblastoma cell lines significantly reduced cell viability and colony forming capacity. 

Moreover, overexpression of dβh-BRIP1 into the transgenic tg(dβh-EGFP-MYCN) zebrafish 

resulted in acceleration of neuroblastoma onset and tripled the penetrance compared to 

transgenic tg(dβh-EGFP-MYCN) zebrafish. Finally, we could show that overexpression of 

BRIP1 is indispensable to control replicative stress experienced by the neuroblastoma tumor 

genome and that BRIP1 creates a cellular state what we call “replication stress resistance”. 

 

In the second part, we wanted to explore whether an ESC derived expression signature could 

capture a stemness phenotype in neuroblastoma cells that is associated with therapy 
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resistance. An ESC miRNA signature could be identified that allows to discriminate patients 

with worse survival in the global cohort of neuroblastoma patients, but most interestingly 

also in a subset of high-risk tumors, i.e. stage 4 tumors without MYCN amplification. Analysis 

of the protein coding genes that are correlated with the ESC miRNA signature score in 

neuroblastoma patients, pointed at a FOXM1 driven cell cycle and DNA repair activation in 

therapy resistant tumors. Interestingly, these findings can reveal new therapeutic 

approaches for tumors where current treatment regimens fail.  

In the last part of this thesis, we identified new reference genes for the normalization of RT-

qPCR experiments in zebrafish. Proper selection of reference genes is a critical step to obtain 

biologically meaningful results. Starting from a database encompassing all repetitive 

elements expressed in zebrafish, we selected 10 expressed repeat elements (ERE’s) for 

further validation. Comparing the 10 most frequently used reference genes in zebrafish with 

the 10 selected EREs, we could convincingly show that in almost every situation, our 

identified expressed repeat elements perform much better than the standard reference 

genes.  
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Samenvatting: 

Neuroblastoom is een kinderkanker met een neuronale oorsprong die voornamelijk optreedt 

in de bijnieren en de sympathische ganglia van baby’s en jonge kinderen. Deze tumoren 

vertonen een zeer gevarieerd klinisch beeld dat kan gaan van spontane regressie tot zeer 

agressieve tumoren die uitzaaien. Vooral voor die laatste groep van patiënten zijn er tot op 

heden geen efficiënte therapieën beschikbaar en blijven de overlevingskansen laag. 

Geavanceerde gerichte therapeutische strategieën kunnen mogelijks een oplossing bieden 

voor dit probleem. Om van deze gepersonaliseerde therapieën gebruik te kunnen maken is 

het echter een vereiste dat er moleculaire doelwitten geïdentificeerd worden. Tot op 

vandaag is er slechts een beperkt aantal genen geïdentificeerd met een rol in neuroblastoom 

ontwikkeling, waarbij mutaties in het ALK gen het meest worden waargenomen en dat in 

slechts 10% van de neuroblastoom patiënten. In tegenstelling tot het beperkt aantal 

mutaties worden in neuroblastoom zeer frequent copynumbervariaties waargenomen, 

waarbij winst van chromosoom 17q, dat gecorreleerd is met een slechte overleving voor de 

patiënten, de frequentste kopie nummer afwijking is. Een beter inzicht in welke genen op 

17q belangrijk zijn voor de ontwikkeling van neuroblastoom kan helpen voor de identificatie 

van nieuwe doelwitgenen en therapieën.  

 

Het eerste doel van mijn thesis was het verder onderzoeken van 17q oncogenen die in een 

eerdere bio-informatica analyse waren geïdentificeerd als potentieel kandidaat genen. 

BRIP1, gelokaliseerd op chromosoom 17q23, werd geïdentificeerd als een belangrijk 

coöperatief oncogen in de ontwikkeling van neuroblastoom. Hoge expressie van BRIP1 is 

gecorreleerd met een slechte overleving van neuroblastoom patiënten en stabiele 

neerregulatie van BRIP1 in neuroblastoom cellijnen resulteerde in een verminderde cel 

viabiliteit en kolonie vormende capaciteit. Daarnaast resulteerde overexpressie van dβh-

BRIP1 in de transgene zebravislijn tg(dβh:EGFP-MYCN) in een versnelling van neuroblastoom 

ontwikkeling en werd ook de penetrantie voor tumorvorming verdrievoudigd. Finaal konden 

we aantonen dat BRIP1 noodzakelijk is voor het controleren van replicatie stress in het 

neuroblastoom tumor genoom en dat BRIP1 een cellulaire toestand induceert die wij 

beschrijven als ‘replicatie stress resistentie’. 
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In het tweede deel werd nagaan of een signatuur afkomstig van embryonale stamcellen een 

stamcel fenotype kan bepalen in neuroblastoom cellen die resistent zijn aan therapie. We 

konden een ESC miRNA signatuur bepalen die in staat was om neuroblastoom patiënten met 

een slechte prognose te identificeren. Bovendien, kon deze signatuur ook gebruikt worden 

voor het bepalen van ultra hoog risico patiënten in de hoog risico neuroblastoom subgroep, 

namelijk de stadium 4 patiënten zonder MYCN amplificatie. Analyse van de eiwit coderende 

genen gecorreleerd met de ESC miRNA signatuur toonden aan dat FOXM1 belangrijk was 

voor het aansturen van deze signatuur. Deze bevindingen kunnen leiden tot nieuwe 

therapeutische strategieën voor tumoren waar de huidige behandelingsschema’s falen.  

In het laatste deel van deze thesis werden nieuwe referentie genen voor de normalisatie van 

RT-qPCR experimenten in zebravis geïdentificeerd. Correcte selectie van referentie genen is 

belangrijk om biologisch relevante resultaten te verkrijgen. Hiervoor zijn we gestart van een 

databank waarin alle repetitieve elementen die in zebravis tot expressie worden gebracht 

zijn gebundeld en vervolgens werden uit deze databank 10 repeat element geselecteerd 

voor verdere validatie. Wanneer we de 10 meest gebruikte referentie genen gebruikt in 

zebravis, vergeleken met onze repeat elementen, konden we zeer overtuigend aantonen dat 

in bijna iedere situatie onze repeat elementen veel beter presteerden dan de standaard 

referentie genen.  
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