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ABSTRACT

Little  is  known  about  the  abilities  of  people  with  dementia  to
synchronize bodily movements to music.  The lack of non-intrusive
tools  that  do  not  hinder  patients,  and  the  absence  of  appropriate
analysis  methods  may  explain  why  such  investigations  remain
challenging.  This  paper  discusses  the  development  of  an  analysis
framework  for  processing  sensorimotor  synchronization  data
obtained from multiple measuring devices.  The data was collected
during an explorative study, carried out at the University Hospital of
Reims (F), involving 16 individuals with dementia. The study aimed
at  testing  new  methods  and  measurement  tools  developed  to
investigate  sensorimotor  synchronization  capacities  in  people  with
dementia. An analysis framework was established  for the extraction
of  quantity  of  motion  and  synchronization  parameters  from  the
multimodal  dataset  composed of  sensor,  audio,  and video data.  A
user-friendly  monitoring  tool  and  analysis  framework  has  been
established and tested that holds potential to respond to the needs of
complex movement data handling. The study enabled improving of
the hardware and software robustness. It provides a strong framework
for  future  experiments  involving  people  with  dementia  interacting
with music.

I. INTRODUCTION

A. Background

In  the  last  decade,  serious  efforts  have  been  made  to
determine  the  relationship  between  music  and  health  and
wellbeing.  Lesaffre  (2013)  gives  an  overview  of  the
challenges  that  arise  from  using  new  technologies  and
developing new methods when working in a domain that  is
unfamiliar. Especially interesting are the new possibilities that
evolve  from  working  with  the  embodied  music  interaction
paradigm.  This  is  particularly  the  case  for  specific  target
populations such as people with dementia. It has been argued
that  the  use  of  reliable  monitoring  technology  in  a  proper
music interaction context may be beneficial for people with
dementia  (Lesaffre,  2017).  Indeed,  music  is  known  to  be
useful in contexts where people have difficulties with verbal
and emotional  communication.  Music stimulates  the brain’s
reward centres while bodily movement activates its sensory
and  motor  circuits.  Strong  links  between  music  and  motor
functions  suggest  for  example  that  sensorimotor
synchronization to music could be an interesting aid for motor
learning  (Moussard,  Bigand,  Belleville,  &  Peretz,  2014).
However, in view of the development of musical interventions
in dementia,  the rigorous methodological  standards required
are not always met (Samson, Clément, & Narme, 2015). This

can partly be explained by the lack of custom tools that can
support evidence-based research. Therefore, there is a need to
develop monitoring and analysis tools that enable validating
the efficacy of involving music interaction for the benefit of
people with dementia. 

B. Sensorimotor synchronization to music

Humans  are  known  to  have  an  advanced  ability  to
synchronize movements (e.g. steps, hand and finger taps) to
an  external  rhythm.  In  Repp  and  Su  (2013)  sensorimotor
synchronisation  (SMS)  is  defined  as  the  coordination  of
rhythmic movement with an external  rhythm. Repp and Su
surveyed  research  in  the  field  comprising  conventional
tapping  studies,  dance,  ensemble  performance,  and  the
neuroscience  of  SMS.   The  ability  to  synchronise  is
considered as cognitively demanding (Bläsing, Calvo-Merino,
&  Cross,  2012;  Dhami,  Moreno,  &  DeSouza,  2014),  and
temporal regularities in music can entrain cognitive attentional
resources (Jones & Boltz, 1989; Large & Jones, 1999). SMS
is  also  considered  to  have  a  positive  social  and  emotional
significance (e.g. Wiltermuth & Heath, 2009).

Moreover, musical synchronization has proven effective in
the  rehabilitation  of  physical  and  social-emotional  clinical
disorders such as Parkinson’s disease (Nombela, Hughes,  &
Owen, 2013). Fundamental studies on SMS found indications
that  physical  strength  and  spatial  references  are  important
contributing  factors  (Leman,  Moelants  & Varewyck,  2013).
However, due to the lack of appropriate tools for non-intrusive
and  objective  measurement,  there  is  hardly  any  evidence-
based  understanding  of  motoric,  expressive  and  empathic
responding to music of people with dementia.

C. Tools

In  general,  the  measurement  and  analysis  of  human
movements  in  a  musical  context  is  inherently  multi-
disciplinary  and  is  a  real  challenge  in  science  today.  This
multi-disciplinary  research  requires  a  methodology  that
combines  both  a bottom-up and a  top-down approach.  The
bottom-up  approach  is  concerned  with  the  observation  of
body movement, which is based on sensing technologies. The
top-down  approach  is  concerned  with  the  identification  of
music  related  and  non-music  related  actions,  based  on  the
observer’s  interpretation  in  combination  with  survey  data
related to the participants. 

Measuring movement in people with dementia is even less
straightforward,  because  attaching  sensors  or  other
measurement  devices  to  their  bodies  might elicit  stress  and
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fear.  Furthermore,  capturing  information  about  body
movement  requires  a  data  acquisition  system  (a)  that  can
measure, sample, and digitize physical properties; (b) that can
send that  information to  a  computer  for  further  processing;
and  above  all,  (c)  that  is  not  invasive  and  usable  in  an
ecological setting. 

To  meet  these  requirements  a  force  plate  system  was
developed  aiming  at  providing  a  balance  between
functionality for the patient, sensitivity for measuring smaller
movements,  and  data  reliability. The  system  consists  of  a
square wooden force plate (90 x 90 cm), mounted on a frame
containing four weight sensors, one in each corner. The four
calibrated  sensors provide  weight  values  and  are  read  out
individually  by  Arduino  Due,  an  open-  source  prototyping
platform, which can be used to calculate movement direction
and  quantity  of  movement.  A  software  program  was
developed that can read multiple force plates simultaneously.
The  system  was  tested  for  the  first  time  in  a  study  that
investigates  spontaneous  movement  response  to  music  in
people with dementia.  A detailed description is provided in
Lesaffre, Moens, and Desmet (2017). 

There is hardly any research that investigates sensorimotor
synchronization  to  music  in  people  with  dementia.
Experimental  research  on synchronization  abilities  typically
collects  information  from  different  types  of  instruments,
measurement  techniques,  and  experimental  setups.  The
increasing availability  of  several  acquisition tools  generates
complex datasets, which are not easy to handle and therefore
require new analysis frameworks. 

This paper describes the analysis framework developed for
processing sensorimotor synchronization data obtained from
multiple measuring devices,  such as a  pressure sensor data,
audio and video recording.  The data was collected during an
explorative  study,  carried  out  at  the  University  Hospital  of
Reims (F), involving individuals with dementia.  

II. EXPERIMENT

A. Participants

16 participants (13 female and 3 male; range 79 - 94 years;
mean MMSE = 14,21) were recruited for this study. The study
was carried out in accordance with the approved guidelines of
the  University  Hospital  of  Reims.  Each  subject  provided
informed consent prior to participation. 

B. Experiment design

Synchronisation was tested in the following conditions: (1)
in the presence of a musical beat vs. a familiar song of the
same  tempo,  (2)  under  auditory,  visual  and  audio-visual
conditions, and (3) in live vs. recording conditions (see Table
1).  The  9  conditions  were  presented  in  randomised  order.
Throughout the experiment patients were encouraged to tap
along with the music or performer.

Table 1.  Conditions used in the experiment.

Auditory & visual Auditory Visual
Tapping & Pulse 
(video)

Pulse (audio only) Tapping (video)

Tapping & Pulse (live) -- Tapping (live)

Song (video & audio)
Song 
(instrumental) --

Song (live & audio)
Song (audio 
recording of live 
performance)

--

Patients  were  encouraged  to  tap  along  with  the  music  or
performer.  Each  session  took  about  one  hour,  including
picking up and taking back the patient to his or her room.

The participants were exposed to a cheerful familiar song
(Ah! Le petit vin blanc), a musette waltz with a tempo of 84
bpm. This tempo is in agreement with the spontaneous motor
tempo of normal persons of the similar age, as described by
McAuley, Jones and Holub (2006).

The  experimental  setup  consisted  of  two  force  plates
developed  at  Ghent  University  (IPEM),  each  with  a  chair
mounted on it, one for the patient and one for the performer
(see Figure 1). The two boards were placed in front of each
other. The force plates have each four sensors (one in each
corner) to measure the movement of the person sitting in the
chair.  A small  table  is  mounted  on  each  chair  providing  a
comfortable position for tapping along with the music. Below
this table was a microphone so that the tapping of a participant
was measured as an audio signal. Two webcams were placed
so that from both balance boards a video was recorded during
the  experiment.  Furthermore,  a  projection  screen  with  a
projector  behind  it  was  placed  at  the  backside  of  the
experimenter  board  in  order  to  enable  pre-recorded  video
projections needed for the video conditions of the experiment.

Figure  1.  Example  of  the  analysis  framework  in  ELAN,
representing video of performer (top left) and subject (top right),
normalized  intensity  of  quantity  of  movement  time-  series  of
subject (red) and performer (blue); and audio recording of the
tapping.

III. ANALYSIS FRAMEWORK
The  aim  of  the  analysis  framework  was  to  develop  a

method for the analysis of the tapping time series in different
conditions; to evaluate the hardware and software robustness,
and  experimental  setup;  and  to  formulate  recommendations
for future experiments.

A. Data considerations

Using  a  hardware  setup  based  on  the  two  force  plates
developed at IPEM (see supra), in combination with webcam



video  capture  and  audio  recording  of  tapping,  audio  time
series  in  different  conditions  were  measured.  After  a  data
control and repeated viewing of the video and audio data four
participants  had  to  be  excluded  from  the  analysis  due  to
incomplete data, for example by lack of response and missing
conditions. 

Data were recorded at 8000 Hz. The obtained data structure
consisted of  two csv files  containing the force plate  sensor
data and the audio of the tapping, two audio signals (wav) of
the tapping and two mp4 video files from the webcam. 

The  SyncSink application (Six & Leman, 2015) was used
to  synchronize  the  data.  After  synchronization  an  initial
ELAN (Wittenburg, Brugman, Russel, Klassmann, & Sloetjes,
2006)  structure  for  each  participant/condition  combination
was setup in order to enable data inspection and determination
of the start and stop time for analysis. Every ELAN structure
contains the video of the performer (with audio), the video of
the participant (without audio) and the audio recordings of the
tapping (see Figure 1).

Finally, the csv files were imported in Matlab (Mathworks,
2014)  using  a  toolbox  developed  at  IPEM.  In  each
participant/condition data structure a Matlab folder was added
containing all results from Matlab calculations. By doing so
data integrity was assured.

B. Analysis method

The aim of the analysis was to determine the amount of
movement, the  regularity  of  the  tapping,  and  the
synchronization  of  the  tapping  with  the  external  tapping
source of the condition. 

To begin with, the sensor data were trimmed to new start
and  stop  time  positions  obtained  by  inspecting  the  ELAN
structures.  Trimming  was  necessary  due  to  additional
unwanted  noise  at  the  beginning  and  the  end  of  the
experiment  and to select  the parts  of the time series where
actual tapping occurred.

Calculation of Quantity of Motion (QoM)

The four  sensor  outputs  of  the force  plate  were  used  to
determine  QoM.  The  method  used  was  as  follows:  First,
Cartesian  coordinates  [(1),(2)]  were  calculated  so  that  the
center of the balance board equals [0,0] and the positions of
the sensors are at [-0.5,0.5], [0.5,0.5], [0.5,-0.5] and [-0.5,-0.5]
(see Figure 2).

Figure 2. (a) Force plate layout and definition of coordinates, (b)
polar plot example
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(Where s is the sensor and i is the result at point i in the time series.)

The resulting Cartesian coordinates are then transformed to
polar coordinates [(3),(4)]:

ρ=√x i
2
+ y i

2 (3)

θ=atan2 ( xi , yi ) (4)

Second,  the  polar  coordinates  are  translated  so  that  the
point  of  gravity  is  [0,0].  The  latter  is  done  to  enable
comparisons  between  subjects  by  making  the  recorded
movement  independent  from  the  point  of  gravity  of  the
participants. 

Finally, the total QoM (5) is calculated as follows:

QoM=

∑
i=1

N

ρi

T

(5
)

(Where T is the duration of the time series)

The division by T makes the results independent of the dura-
tion of the time series, so that the values of QoM can be com-
pared between subjects/conditions.

Peak detection of taps

The  tapping  was  recorded  by  means  of  a  microphone
mounted under the table. The microphone recorded not only
the  taps  but  also  any  other  sound  (e.g.  talking,  music,
metronome and surrounding noise) that was present during the
experiment. 

Therefore,  it  was  challenging  to  detect  peaks  in  the
complex mixed signals. Furthermore the sampling frequency
was high (8000 Hz),  so that the original signal was blurred
with shoulders, spikes etc. Figure 3 shows an example of a
typical signal in this dataset with indication of the parameters
used in the peak detection algorithm (O'Haver, 1997).



Figure 3. Example of peaks in the obtained signals. Detection is
based on amplitude,  slope onset,  width at  half high,  and peak
type.

Before the peak detection algorithm could be applied it was
necessary to clean up the complex signals. First, the noise had
to  be  removed.  Tapping  peaks  occurred  as  wavelets  in  the
signal  so  that  wavelet  decomposition  based  on  the  Hilbert
transform was used to filter the data (Hahn, 1996). Second the
data were filtered and smoothed using a Savitzky-Golay filter
(Savitzky  &  Golay,  1964).  An  example  of  this  process  is
shown in Figure 4.

Figure 4. Example of wavelet decomposition and Savitzky-Golay
filtering. The gray signal is the original series, the black signal is
the resulting filtered and smoothed series.

Peak  detection  was  based  on  the  Matlab  PeakFinder
toolbox  (O’Haver,  2009).  Here  peak  detection  depends  on
amplitude, slope onset, width at half high, and peak type (eg.
Gaussian).  An initial  set  of  these threshold parameters  was
used as seed. The 4 parameters were then manually adapted to
obtain correct peak detection.

Inter Tap Interval (ITI) variability

The  first  variable  calculated  from  the  detected  peak
intervals  is  the  variability  of  the  intra-subject  tapping
sequences. The standard deviation of inter-response intervals
for  a  trial  was  calculated  by  measuring  the  mean  inter-
response  interval  and  by  then  expressing  the  variability  of
intervals around that mean in terms of the standard deviation
(SDITI).

ITI=∑
i=1

N −1 ⌊t i+1 −t i ⌋
N − 1

(5)

SD ITI=√ 1
N
∑
i=1

N − 1

(t i− ITI )
2 (6)

SDITI provides  information  on  how  regular  a  participant
tapped. Histogram analysis was used to detect  outliers.  The
presence of outliers due to high ITI values is the result of a
participant who interrupted tapping during the task.

Sensorimotor Synchronization (SMS)

In this experiment the external rhythm sources depended on
the  conditions.  This  means  that  for  each  condition  the
modeling had to be adapted (Elliott, Chua, & Wing, 2016).
The  event  asynchronies  are  used  to  calculate  the
synchronization.  

Figure 5 shows the different intervals used to calculate the
synchronization.

Figure  5.  Example  of  tapping  time  series  and  definition  of
intervals. IOI is the inter onset interval of the external rhythm
source, ITIn is the nth Inter Tap Interval and An is the nth event
asynchrony.

SD asy=√ 1
N
∑
i=1

N −1

( A i− Á ) (7
)

IV RESULTS
QoM was calculated for all selected participants (N = 12)

and for all conditions. The results show that most tapping was
performed in the condition with live singing performance. The
least  tapping  occurred  in  the  pulse  conditions  without  live
performance.

In  order  to  evaluate  the  hardware,  software  and  the
analytical method 4 participants in 3 conditions were selected
for  a  full  analysis.  The conditions were live tapping of  the
performer to a pulse (condition 2), pre-recorded video of the
performer  hand  tapping  and  singing  (condition  3),  live
performance involving hand tapping  and  singing  (condition
4). Table 2 shows the results of the analysis.

Table2. Summary of results

ID Condition QoM (mV) ITI SDasy (mV)
22 2 20.10 1.35 234
22 3 16.64 1.21 498
22 4 31.74 0.98 369
23 2 24.74 0.92 269
23 3 32.95 1.42 375
23 4 45.02 1.12 296
24 2 5.62 1.23 245
24 3 5.15 1.14 258
24 4 4.57 1.13 269



32 2 19.35 1.21 452
32 3 27.77 1.09 398
32 4 39.40 1.05 475

V DISCUSSION AND CONCLUSION
The  aim  of  this  exploratory  study  was  testing  new

monitoring tools and developing an analysis framework for
multimodal synchronization data. 

Experimental design

Due to several  issues  related to  the experimental  design,
such as involving patients with varying types of dementia and
degrees  of  cognitive  impairment  (MMSE  range  3-23),  a
complete  analysis  of  all  participant/condition  combinations
could not be done. Some participants did not move at all or
tapped only during short times. It was observed the ability to
bodily  respond  is  related  to  the  degree  of  cognitive
impairment,  suggesting  that  in  future  experiments  on
synchronization  patients  with  severe  cognitive  impairment
should not be included.

Hardware and software

In general the newly developed hardware was stable during
the whole experiment.  Only in 2 cases there was a drift of a
sensor and in 1 case a sensor failed. The main drawback of the
hardware  is  the  recording  of  the  taps  by  means  of
microphones.  The microphones register  a lot  of  noise from
different sources during the experiment. This results in time
series,  which are difficult  to synchronize and to analyze.  A
further refinement is to calibrate the sensor output in order to
obtain meaningful values for QoM instead of millivolt (mV).

Meanwhile,  an  adapted  system  has  been  developed  for
follow-up experiments. The tapping is now registered using a
sensor mounted in the table, and additional sensors are added
in a footplate on top of the force plate to register the leg and
feet  movements.  Furthermore a new device is  added to the
system generating 4 beeps at the start of the experiment. The
beeps are simultaneous recorded by the webcams and by the
interface,  which  records  the  sensor  data.  This  adaptation
makes it possible to generate synchronized files automatically.

The software performed well. However, a workaround had
to be established because there was no direct connection with
a server available at the location of the experiment so that the
data were not accessible at  other  (distant)  locations.  An ftp
server was used that caused very long download times. 

The original mp4 video files from the webcams were not
compatible  with  ELAN  software.  Conversion  to  an  mp4
format suitable for ELAN was possible using ffmpeg but in
the resulting mp4 files the audio was out of sync. A solution
was found by conversing mp4 to mov (using ffmpeg). 

The  SyncSink  application  worked  mostly  fine.  Some
difficulties  to  synchronize  occurred  when  the  tapping  was
very weak and a lot of audio noise was present in the data.

Methodology

Up till  now, the analysis  framework  enables  to  calculate
QoM, ITI and SDasy. The bottleneck in this exploratory study
was the  peak detection.  Detecting peaks in  complex mixed
signals  is  not  straightforward.  In  some  cases  the  peak
detection failed due to very soft tapping in combination with a

lot  of  background noise.  In  other  cases  the audio  from the
tapping could not be synchronized with the audio from the
videos.  Selecting  the  appropriate  thresholds  for  wavelet
decomposition and Savitzky-Golay filtering is still a trial and
error procedure.

Adding two new variables could enhance the methodology.
First, the number of actual taps of a participant compared to
the maximum number of taps in the reference source could be
added.  The  percentage  of  actual  taps  compared  to  the
maximum  number  of  taps  is  then  a  measure  of  tapping
activity.  Second,  following  Stergiou  nonlinear  dynamics
(chaotic structures) could be added to the analysis (Stergiou &
Decker, 2011). Apart from this, Approximate Entropy (ApEn)
and/or Sampling Entropy (SampEn) of the tapping time series
could be an added value to the classical variance analysis. 

Taking into account these findings, a follow-up experiment
has been designed that focuses on synchronization abilities in
people  with  dementia  (see  Ghilain,  Schiatura,  Lesaffre,
Desmet et al, 2017).
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