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1.1 Bovine mastitis, a burden on the dairy industry  

 

Cow’s milk and dairy products make up a substantial part of the human diet. The Food and Agricultural 

Organization of the United Nations (FAO) estimates that the worldwide milk demand will increase with 

1.3% over the next years due to changing global consumption patterns (FAO, 2013). The European 

Union currently produces around 160 million tons of milk on an annual basis (Eurostat, 2015). In 

contrast to the past decennia, the dairy cattle population has expanded over the past three years in 

Western Europe (Eurostat, 2016). Belgium counted approximately 508.000 lactating dairy cows in 2015 

(FPSE, 2016). The Belgian dairy farms may be dwindling in numbers, but the herds are getting larger: 

the average number of dairy cows per farm has increased with almost 52% since 2000 (from 33 to 50 

cows in 2012 [FPSE, 2012]). This trend towards intensification is also seen at the individual cow level. 

Nowadays, the average Flemish dairy cow produces around 8.500 kg of milk each year, which is an 

increase of more than 7% compared to 10 years ago (CRV, 2015). The higher level of milk yield is 

generally associated with negative health effects, such as an increased incidence of mastitis, i.e. an 

inflammation of the mammary gland (Simianer et al., 1991; Van Dorp et al., 1998; Koeck et al., 2014).  

Despite the implementation of well-known control and treatment strategies, mastitis remains to be a 

burden on the dairy sector. Since the abolition of the European milk quota in 2015, the average annual 

costs of mastitis are estimated at €240 per cow on Dutch dairy farms (van Soest et al., 2016). These 

high costs are not surprising, since mastitis results in milk losses, high treatment costs, higher 

probability of culling, etc. (Lescourret and Coulon, 1994; Halasa et al., 2007). Mastitis also affects the 

milk quality. Milk from inflamed udder quarters, for instance, affects curd formation and produces off-

flavors during the processing of cheese (Le Marechal et al., 2011a). Locally administered 

intramammary antimicrobials account for the majority of antimicrobial consumption in dairy herds, 

either as dry-cow treatment or mastitis therapy (Stevens et al., 2016). Moreover, the use of 

antimicrobials in food-producing animals has been linked to the development of antimicrobial 

resistance (Chantziaras et al., 2014). Furthermore, there is also the issue of animal welfare, since 

clinical mastitis is considered to be a painful condition (Leslie and Petersson-Wolfe, 2012). In Flanders, 
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the mean incidence rate of clinical mastitis is estimated at 7.4 quarters cases per 10,000 cow-days at 

risk (Verbeke et al., 2014). 

 

1.2 Etiology, clinical presentation and immune response 

 

1.2.1. Etiology of bovine mastitis  

Although several microorganisms can infect the mammary gland, the vast majority of bovine mastitis 

cases are caused by bacteria (Watts, 1988). Nearly 80% of the mastitis cases can be attributed to either 

staphylococci (which are routinely classified into coagulase-negative and -positive species), 

streptococci or Escherichia coli (Bradley, 2002). In general, the bacteria enter through the teat canal of 

the udder quarter, resulting in an intramammary infection (IMI) and subsequent inflammation (Blowey 

and Edmondson, 2010).  

In the past, it was generally assumed that the uninfected, healthy bovine mammary gland was a sterile 

environment (Sheather, 1924; Perkins et al., 2009). This view can no longer be supported though, due 

to the growing insight into the milk microbiota. Even healthy, non-mastitic milk samples display great 

bacterial diversity after DNA sequencing (Kuehn et al., 2013; Oikonomou et al., 2014). The bacteria 

found in healthy, uninfected quarters include Pseudomonas spp., Ralstonia spp., Psychrobacter spp., 

Faecalibacterium spp., Propionibacterium spp., Aeribacillus spp. and unclassified Lachnospiraceae 

(Kuehn et al., 2013; Oikonomou et al., 2014). One study also found DNA of Streptococcus spp. and 

Staphylococcus spp. in milk samples from healthy quarters (Oikonomou et al., 2012). Some of these 

bacteria cannot be readily cultured during routine (aerobic) microbiological analyses, leading to 

culture-negative results (Kuehn et al., 2013). It has even been suggested that mastitis could be the 

result of a mammary dysbacteriosis, as opposed to a primary infection (Fernandez et al., 2013). The 

importance of the mammary microbiota is also supported by incidental reports of clinical mastitis 

outbreaks following a ‘blitz’ antimicrobial therapy (i.e. treating the entire herd or multiple infected 

animals with antibiotics, in this case to eradicate Streptococcus agalactiae IMI [Edmondson, 2010]).  
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2.2 Clinical presentation  

Based on the clinical presentation, mastitis can be classified into two types, namely clinical and 

subclinical mastitis. Clinical mastitis is characterized by visual abnormalities in the milk (e.g. clots, 

discoloration), the udder (e.g. swelling and redness) or the animal itself (sickness). Subclinical mastitis, 

on the other hand, occurs when the gland is infected without any observable symptoms of 

inflammation. It can be detected by, for instance, measuring the somatic cell count (SCC) in milk, which 

increases through the influx of polymorphonuclear neutrophil leukocytes (PMN) in response to 

invading pathogens (Harmon, 1994). Though different cut-off values are used in practice to distinguish 

healthy from inflamed quarters, a threshold between 200,000 and 250,000 cells/mL at quarter level is 

ideal to minimize diagnostic error (Schukken et al., 2003). In practice, cow level cell counts of 250,000 

cells/mL and 150,000 cells/mL are often used as a threshold for multiparous cows and heifers, 

respectively. The bulk milk SCC is considered an important indicator of the milk quality.  As stated by 

the Council Directive 92/46/EEC, the geometric average bulk milk SCC over a period of three months 

should not exceed 400,000 cells/mL in the European Union.  

Photo 1.1 shows a dairy cow with clinical mastitis in her left hind quarter, recognizable by the swelling 

of that particular quarter. Photo 1.2 shows the difference between milk from a cow with subclinical 

(i.e. no observable signs of inflammation) and clinical mastitis (in this case watery, yellowish milk with 

few clots).  

   

 Photo 1.1 Cow with clinical mastitis in her left hind quarter. 
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The severity of mastitis cases depends on both the involved pathogen and the immune response 

capacity of the cow. Host factors, such as the lactation stage, parity and genetic predisposition, have 

an effect on the clinical course of an IMI (Burvenich et al., 2003). During early lactation, cows suffer 

from an increased incidence of severe clinical mastitis due to the decreased function of leukocytes 

around parturition (Mehrzad et al., 2001; Vangroenweghe et al., 2005). The clinical outcome of mastitis 

is generally more severe in multiparous cows than in heifers (VanWerven et al., 1997; Mehrzad et al., 

2002; Vangroenweghe et al., 2004a), likely due to an age-associated impairment of the immune system 

(Wojdak-Maksymiec et al., 2013). Managerial factors that affect the health status of the cow (e.g. 

nutrition, housing, …) can also have an impact on the development risk of IMI (Smith et al., 1984; 

Barkema et al., 1999a; Janosi et al., 2003).  

In addition to the inherent and acquired host immune factors, the initial infection dose 

(Vangroenweghe et al., 2004b; Günther et al., 2010) and the virulence of the involved bacterial strain 

(Haveri et al., 2005) also affect the disease progression. Various mastitis pathogens, such as 

Photo 1.2 Milk samples from udder quarters  

with subclinical (left) and clinical mastitis (right). 
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Staphylococcus aureus, Streptococcus uberis or Streptococcus dysgalactiae, display strain-specific 

differences in their ability to cause disease (Higgs et al., 1980; Haveri et al., 2007; Le Marechal et al., 

2011b; Tassi et al., 2013). For semantic clarity, a bacterial strain is defined in this thesis as “an isolate 

or a group of isolates exhibiting characteristics that set it apart from other isolates belonging to the 

same species” (Zadoks and Schukken, 2006). 

 

1.2.3. Mammary gland immunity  

A variety of defense mechanisms protect the mammary gland against invading pathogens (Figure 1.1). 

First, pathogens need to overcome the teat canal, which constitutes an anatomical barrier with keratin 

lining and sphincter muscles at the teat end (Sordillo et al., 1997). When bacteria successfully invade 

the mammary gland, the innate branch of the immune system comes into play. The innate immune 

response is activated within the first few hours, regardless of any previous exposure to the pathogen, 

and is carried out by professional phagocytes (e.g. macrophages, PMN, dendritic cells, etc.) and 

mammary epithelial cells (MEC), which are also able to recognize and respond to pathogens by 

producing pro-inflammatory cytokines (Lahouassa et al., 2007). Foreign, microbial components are 

recognized by immune cells with pattern recognition receptors (PRR), such as the transmembrane toll-

like receptor proteins (TLR). So far, ten different TLR have been described in cattle (Fisher et al., 2011). 

The bacteria are recognized by the PRR due to highly conserved structures, referred to as 

microorganism-associated molecular patterns (MAMP). Lipopolysaccharides (LPS) of Gram-negative 

bacteria, for instance, are recognized by TLR4, whereas lipoteichoic acid of Gram-positive bacteria 

binds to TLR2 (Rainard and Riollet, 2006). Following the recognition of the pathogen, various 

inflammatory pathways are initiated, resulting in the upregulation of different cytokines and 

chemokines (Table 1.1). Virtually every cell type is capable of producing and reacting to cytokines 

(Dinarello, 2000). Though pro-inflammatory cytokines play a vital role in the host response, they can 

also be harmful to the host, depending on the quantity and the extent of their expression (Bannerman, 

2009). Tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) induce a systemic host 



Chapter 1. Introduction 

21 
 

response, resulting in fever and the production of acute phase proteins (Dinarello, 2000). Especially 

IMI caused by Gram-negative bacteria (e.g. E. coli) induce the production of TNF-α, which correlates 

with the clinical severity of mastitis cases  (Burvenich et al., 2003; Bannerman et al., 2004). A well-

described chemokine in bovine mastitis is interleukin 8 (IL-8), which binds to receptors CXC-receptor 1 

(CXCR1) and CXCR2 (Lahouassa et al., 2008). Polymorphonuclear neutrophil leukocytes are drawn to 

the site of infection in massive numbers in response to IL-8 and other inflammatory mediators, such 

as complement component 5a (C5a) (Stevens et al., 2012) or leukotriene B4 (Boutet et al., 2003).  

The SCC can increase dramatically within 12 hours after exposure to bacteria, reaching more than 106 

cells/mL (Rainard and Riollet, 2006). Macrophages and lymphocytes account for the majority of the 

SCC in milk from uninfected quarters, but the cell type distribution shifts during inflammation, making 

PMN the predominant cell population (Pilla et al., 2012; Damm et al., 2017). The accumulation of PMN 

in the mammary gland cuts both ways though. While PMN are essential for the elimination of 

pathogens, they may also damage the surrounding mammary gland tissue through the release of 

extracellular proteolytic enzymes (such as elastase) and reactive oxygen species (Zhao and Lacasse, 

2008). Consequently, their life span is limited: the PMN eventually undergo apoptosis, or programmed 

cell death (Paape et al., 2003). Apoptotic PMN are quickly eliminated by macrophages, while their 

membrane is still intact, to prevent the release of cytotoxic molecules and subsequent tissue damage 

(Kennedy and DeLeo, 2009). The viability of PMN is linked to their activity (Mehrzad et al., 2004).  

When the innate immune system is unable to eliminate the pathogen, the acquired or adaptive 

immune system kicks in. The adaptive immunity, carried out by B- and T-lymphocytes, establishes an 

antigen-specific immunological “memory”, enabling a faster, more efficient response in case of 

repeated exposure to the pathogen (Sordillo et al., 2002; Iwasaki and Medzhitov, 2010). A previous 

encounter with a particular pathogen results, for instance, in a larger influx of milk leukocytes in case 

of repeated exposure (Rainard et al., 2016). The adaptive immune response can be classified into a 

cell-mediated and antibody component, driven by the T-lymphocytes and B-lymphocytes, respectively. 

Before the receptors on T-lymphocytes can recognize an antigen, it must be internalized, processed 
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and bound to the major histocompatibility complex (MHC) on the surface of antigen-presenting cells 

(such as dendritic cells, macrophages and B-lymphocytes) or non-professional antigen-presenting cells 

(such as epithelial cells) (Fitzpatrick et al. 1992; Quinn et al., 2015). Activated B-lymphocytes will 

proliferate and differentiate into antibody-producing plasma-cells, or dormant memory cells (Sordillo 

et al., 2002). However, Schukken et al. (2009a) propose that the mammary gland’s immunological 

memory is limited, since the clinical response of dairy cows suffering from recurring infections is not 

necessarily attenuated. The mastitis pathogens in that particular study were not identified at the strain 

level though.    

The dairy cow’s immune system reacts differently to IMI caused by epidemiologically and ecologically 

varying species (Schukken et al., 2011; Günther et al., 2016). Typically, Gram-negative mastitis 

pathogens (such as E. coli or Klebsiella spp.) evoke a more drastic host response than Gram-positive 

bacteria, given the LPS in their cell walls (Schukken et al., 2011). However, the host response does not 

only depend on the involved pathogen, but also on various cow factors (Burvenich et al., 2003), there 

has been much debate on the “most desirable” type of response in dairy cattle following IMI (Benjamin 

et al., 2015). In case of experimental E. coli mastitis, an early mobilization of PMN leads to lower 

bacterial growth and faster clearance of the infection (Vandeputte-Van Messom et al.; 1993, Mehrzad 

et al., 2005). Some authors even consider very low pre-challenge quarter milk SCC levels (< 20.000 

cells/mL) a risk factor for establishing IMI (Schukken et al., 1999, Wellnitz et al., 2010). Another study 

investigated the potential of the bacterial molecules LPS for enhancing leukocyte recruitment during 

an experimental S. aureus challenge (Kauf et al., 2007). Although LPS increased the SCC levels in the S. 

aureus-infected quarters, it did not facilitate the bacterial clearance.  
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Table 1.1. A non-exhaustive summary of cytokines involved in bovine mastitis (1/2).  

Cytokine Primarily produced by Functions Pathogen-specific response 

IL-1 
Macrophages, lymphocytes, 
epithelial cells, etc. 

The IL-1 family consists of 11 cytokines, including IL-
1α and IL-1β. IL-1 induces local and systemic effects, 
such as fever and the synthesis of acute phase 
proteins. 

Mainly Gram-negative mastitis pathogens 
induce a temporal IL-1β response (ranging 
between 0.3 – 8 ng/mL). The response varies 
greatly between individual cows.   

IL-2 T-helper cells (Th1) 

IL-2 stimulates the clonal expansion of T-
lymphocytes, activates cytotoxic T-cells and natural 
killer (NK) cells, and the proliferation of B-
lymphocytes.  

IL-2 occurs in both healthy and infected 
mammary glands. The transcription of IL-2 
decreases during S. aureus infection.  

IL-4 T-helper cells (Th2) 

IL-4 is a so-called anti-inflammatory cytokine that 
promotes the differentiation of T-cells into Th2 cells. 
It is the primary cytokine expressed by mononuclear 
cells in the post-partum period. 

Little is currently known about the involvement 
of IL-4 in bovine mastitis. 

IL-6 
PMN, macrophages, 
lymphocytes, epithelial cells, 
etc. 

IL-6 has both pro- and anti-inflammatory properties. 
It promotes the synthesis of hepatic APP. It has been 
suggested that IL-6 enables the shift from PMN to 
monocytes during inflammation. 

Although IL-6 is found in milk from mammary 
quarters infected with Gram-negative and -
positive bacteria, the transcription is minimal in 
case of S. aureus infections. 

IL-8 MEC, PMN, lymphocytes, etc. 
IL-8 is a chemotactic cytokine (chemokine) that 
attracts PMN to the site of infection, and enhances 
their activity.  

IL-8 increases within 20h during Gram-negative 
IMI (ranging between 100 – 1000 pg/mL). IL-8 
transcription is diminished or absent in S. aureus 
IMI.   
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Table 1.1. A non-exhaustive summary of cytokines involved in bovine mastitis (2/2).  

Cytokine Primarily produced by Functions Pathogen-specific response 

IL-10 
Th2 cells, B cells, eosinophils, 
mast cells, etc. 

IL-10 is an anti-inflammatory that inhibits the 
production of pro-inflammatory cytokines in PMN, 
and impairs the Th1 response. 

Various mastitis pathogens evoke an IL-10 
response, although the expression is not always 
seen in S. aureus IMI. The production of IL-10 is 
preceded by an increase in TNF-α. 

IL-12 
Monocytes, macrophages, 
dendritic cells 

IL-12 links the innate to the adaptive immune system: 
it promotes the differentiation of T-cells into Th1-
cells, and stimulates the production of IFN- γ. 

Similar elevations in IL-12 are found in E. coli and 
S. aureus infections. The increase in IL-12 
coincides with the elevated IFN- γ levels.  

IL-17 T-helper cells (Th17) 

The IL-17 cytokine family contains 6 members, 
including IL-17A. IL-17A stimulates the inflammatory 
response of MEC, and attracts PMN and macrophages 
to the site of infection. 

IL-17A is expressed in mammary tissue infected 
with E. coli, S. aureus or S. uberis. Intramammary 
infusion of IL-17A in E. coli IMI is associated with 
lower bacterial numbers, increased PMN 
recruitment and lower IL-10 levels. 

IFN-γ Monocytes, lymphocytes 

IFN-γ stimulates the activity of PMN and 
macrophages, and upregulates the expression of the 
major histocompatibility complex (MHC) class I 
molecules, enabling pathogen recognition by T-cells. 

IFN-γ transcription occurs in both Gram-negative 
and –positive mastitis cases, but the highest 
concentrations are found in persistent IMI.  

TNF-α 
Macrophages, lymphocytes, 
PMN, epithelial cells, etc. 

TNF-α induces systemic effects, such as fever and 
the production of APP, and weakens the blood-milk 
barrier. TNF-α is also associated with shock, tissue 
damage and organ failure.  

The TNF-α level increases in the blood and milk 
in a dose-responsive manner during Gram-
negative IMI. The TNF-α response is absent in S. 
aureus IMI. 

References: Sordillo and Streicher, 2002; Waller, 2002; Alluwaimi et al., 2003; Alluwaimi, 2004; Rainard and Riollet, 2006; Dinarello, 2007; Bannerman, 2009; Günther et al., 

2011; Porcherie et al., 2016
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Figure 1.1. Simplified representation of an intramammary infection. Pathogens enter the mammary 

gland through the teat canal and colonize the mammary epithelial cells (arrow). Once the pathogen is 

recognized by macrophages and other immune cells, the host response is triggered. Neutrophils, or 

PMN, travel in massive numbers from the blood stream to the site of infection to kill the invading 

pathogens. Apoptotic PMN are then eliminated by macrophages to minimize tissue damage 
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1.3 Coagulase-negative staphylococci 

 

1.3.1. A complex, heterogeneous group  

Coagulase-negative staphylococci (CNS) are named for their inability to coagulate rabbit plasma in 

vitro. In bovine medicine, CNS is often used as a collective term for non-aureus staphylococci, although 

this is not entirely accurate. For example, Staphylococcus intermedius, a staphylococcal species found 

in bovine milk, is in fact coagulase-positive (Roberson et al., 1996), whereas Staphylococcus hyicus, 

Staphylococcus agnetis and Staphylococcus chromogenes have a variable coagulase activity (Taponen 

et al., 2012; dos Santos et al., 2016). Previously, CNS were often considered to be one large 

homogeneous group of bacteria (Reneau, 1986; Hogan et al., 1987). Novel molecular identification and 

typing techniques, however, have made it easier to study CNS on species level (Da Silva Santos et al., 

2008; Park et al., 2011; Supré et al., 2011; Piessens et al., 2011; Braem et al., 2012). So far, more than 

50 staphylococcal species have been identified and described (Parte, 2014). Over 20 CNS species have 

been found in bovine milk, but only 5 species are isolated on a routine basis: S. chromogenes, 

Staphylococcus epidermidis, Staphylococcus xylosus, Staphylococcus haemolyticus and Staphylococcus 

simulans (Vanderhaeghen et al., 2014).  

 

1.3.2. Epidemiology and ecology  

Coagulase-negative staphylococci are frequently isolated from cows with subclinical mastitis (Barkema 

et al., 1999b; Pitkälä et al., 2004; Sampimon et al., 2009; Piepers et al., 2011; Rall et al., 2014), especially 

in dairy heifers (Tenhagen et al., 2006; Fox, 2009; Sampimon et al., 2009). According to Vanderhaeghen 

et al. (2015), CNS can be divided into two categories based on their epidemiology, namely “contagious” 

and “opportunistic CNS”. Whereas contagious mastitis pathogens are typically transmitted from cow 

to cow through a vector (such as the milking equipment or the milker’s hands) (Zadoks et al., 2011), 

opportunistic mastitis bacteria originate from different sources, do not spread between cows and only 
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cause an IMI “under conditions favouring colonisation of the udder” (Vanderhaeghen et al., 2015). In 

terms of their ecology (i.e. habitat), CNS are usually divided into “host-adapted” and “environmental” 

species (Piessens et al., 2011; De Visscher et al., 2014; Fry et al., 2014). Across multiple studies, S. 

fleurettii is regularly found in the environment of the dairy farm or milking parlor (Piessens et al., 2011; 

De Visscher et al., 2014). The species rarely occurs in the milk of cows (De Visscher et al., 2016). In the 

(occasional) occurrences that S. fleurettii is associated with an IMI, the infection is of a transient nature 

(Supré et al., 2011). At the other end of the ecological spectrum are the host-adapted CNS species and 

strains, which are characterized by their ability to colonize or invade the host. Staphylococcus 

chromogenes is by all means a prime example of host-adapted species. For one, S. chromogenes is the 

most frequently isolated CNS species in milk, especially in heifers (Aarestrup and Jensen, 1997; 

Taponen et al., 2006, Adkins and Middleton, 2016). It has been suggested by some authors that S. 

chromogenes is part of the normal skin microbiome of cattle (White et al., 1989; Taponen et al., 2008; 

Taponen and Pyörälä, 2009), even though the species is not always present on the skin of the teats 

(Braem et al., 2013; De Visscher et al., 2014). Although S. chromogenes can be effectively and swiftly 

neutralized by macrophages (Åvall-Jääskeläinen et al., 2013), the species is known to invade and 

replicate in bovine MEC (Hyvönen et al., 2009; Souza et al., 2016). It is not uncommon for S. 

chromogenes to cause persistent IMI lasting an entire lactation (Taponen et al., 2007; Piessens et al., 

2011; Mørk et al., 2012). Ultimately though, the question remains: why do some CNS species thrive in 

the mammary gland, as opposed to other body sites or the surrounding environment?   

 

1.3.3. Intramammary infections with CNS  

Since the clinical impact of CNS IMI is relatively limited, they are referred to as “minor pathogens” 

(Djabri et al., 2002; Taponen et al., 2006). An IMI with CNS usually manifests itself as subclinical or mild 

clinical mastitis (Waller et al., 2011). In general, the SCC increase caused by CNS is small compared to 

the response seen in IMI with major mastitis pathogens (Sampimon et al., 2010). Some CNS species, 

such as S. chromogenes and S. simulans, provoke a larger SCC increase than others though (Fry et al., 
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2014, De Visscher et al., 2016a). Staphylococcus chromogenes can even evoke an increase in SCC 

similar to the response seen in S. aureus IMI (Supré et al., 2011).  

All in all, not much is known about the interaction between bovine-associated CNS and their host. 

Gram-positive bacteria generally induce a weaker pro-inflammatory cytokine response than Gram-

negative mastitis pathogens (Riollet et al., 2000; Bannerman et al., 2004; Günther et al., 2016). 

Previous challenge studies show that S. epidermidis is able to induce the production of IL-1β, IL-8 and 

TNF-α in cows and ewes (Winter et al., 2003; Simojoki et al., 2011). This is in stark contrast to 

experimental infections with S. aureus, where IL-8 and TNF-α are generally not detected in milk (Riollet 

et al., 2000; Bannerman et al., 2004). The IL-1β response seen in an S. epidermidis or S. simulans 

challenge is similar to S. aureus IMI (Simojoki et al., 2011), but can vary greatly between individual 

animals (Winter et al., 2003; Bannerman, 2009). 

Although it is assumed that most CNS infections resolve without antibiotic treatment (Taponen and 

Pyörälä, 2009), certain species (i.e. S. chromogenes, S. simulans, S. epidermidis and others) can cause 

persistent IMI lasting over several months (Taponen et al., 2007, Thorberg et al., 2009; Piessens et al., 

2011; Fry et al., 2014). A number of virulence factors have been identified in bovine-associated CNS 

species, but the pathogenic potential of CNS is still not fully elucidated. Some CNS species may have 

virulence factors similar to S. aureus, such as the ability to form a biofilm (Simojoki et al., 2012), 

whereas other do not (Taponen and Pyörälä, 2009). In order to evade the host response and cause a 

long-lasting IMI, S. aureus attaches itself to the surface of MEC and invades them (Cifrian et al., 1994; 

Almeida et al., 1996). This strategy of invasion is also seen in mastitis-causing CNS, although to a lesser 

extent (Hyvönen et al., 2009). Similar to S. aureus, certain CNS species and strains are also able to 

adhere to and replicate in MEC (Hyvönen et al., 2009), and resist phagocytosis by macrophages (Åvall-

Jääskeläinen et al., 2013). However, the potential for adhesion and internalization varies between 

species (Almeida and Oliver, 2001) and even within species (Souza et al., 2016). A S. chromogenes 

strain recovered from a chronically infected quarter showed higher adhesion and internalization values 

than another S. chromogenes strain originating from the teat skin (more specifically, the teat apex 
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[Souza et al., 2016]). The indication that some strains of S. chromogenes might be better suited to 

invade and colonize the mammary gland than others sheds new light on the heterogeneity of CNS, 

even within species. 

 

1.3.4. Effect of CNS IMI on milk yield: a paradox? 

Milk production losses associated with mastitis are either due to the bacterial infection itself, or to 

inflammatory response following the infection (Detilleux et al., 2015). Evidently, not all mastitis 

pathogens elicit the same degree of milk loss in dairy cattle (Gröhn et al., 2004). Over the past years, 

the effect of CNS IMI on milk production has received a great deal of attention (Table 1.2). Yet, there 

is no definitive consensus on the impact of CNS IMI on milk yield. Some research indicates that the 

milk yield decreases in response to a CNS IMI (Timms and Schultz, 1987; Gröhn et al., 2004), while 

others have observed barely any effect at all (Pearson et al., 2013; Tomazi et al., 2015). Interestingly 

though, some studies even mention a positive effect on milk yield (Schukken et al., 2009b; Piepers et 

al., 2010). There are multiple possible explanations for this counterintuitive finding. For one, high-

yielding dairy cows might inherently be more prone to CNS infections. Gröhn et al. (2004), for instance, 

remarked that multiparous cows with clinical CNS mastitis produced significantly more milk (between 

2.3 and 2.7 kg/day) one month before diagnosis than their non-infected herd mates. This effect was 

not seen in primiparous cows. According to Piepers et al. (2013), the association between milk yield 

and CNS IMI is only partially confounded by the genetic potential for milk production, as it did not fully 

account for the observed difference in milk yield. Another hypothesis for the higher milk yield in CNS-

infected dairy cattle relies on the lactation hormone prolactin (PRL), which can also act as an 

immunomodulatory factor (see below). Other research suggests that pre-existing CNS IMI or even CNS 

teat apex colonization can have a protective effect against new infection with other (major) mastitis 

pathogens, effectively lowering the risk of developing clinical mastitis and subsequent milk loss 

(Rainard and Poutrel, 1988, Matthews et al., 1991, Nickerson and Boddie, 1994). The protective 
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mechanism of CNS infections might be attributed to bacterial competition between CNS and other 

pathogens in the same niche (Hibbing et al., 2010), the stimulation of the innate immune system (i.e. 

an increased SCC [Schukken et al., 1999]), or the production of bacteriocins and other antibacterial 

substances (Braem et al., 2014). Only a handful of studies have focused on the species-specific effect 

of CNS regarding their protecting outcome. De Vliegher et al. (2003) demonstrated that certain S. 

chromogenes isolates, originating from the teat apex of primiparous cows, are able to inhibit the in 

vitro growth of Gram-positive mastitis pathogens. In mice, the colonization of the mammary gland by 

S. epidermidis attenuates the clinical response to a later challenge with S. aureus or E. coli (Anderson, 

1978).  

Still, the majority of the aforementioned studies do not account for potential differences between or 

within CNS species, which might contribute to the overall conflicting results. Also, the protective effect 

of CNS is more pronounced in experimental challenge studies where major pathogens are infused 

directly into the mammary gland, compared to natural infections with mastitis pathogens (Reyher et 

al., 2012).    
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Table 1.2. An overview of longitudinal field studies on the effect of intramammary infections with 

coagulase-negative staphylococci (CNS) on the milk yield. 

1 Identification of CNS at group level with bacterial culture, or at species level using restriction fragment length 
polymorphism (PCR-RFLP) or transfer RNA intergenic spacer PCR (tDNA-PCR). 2 Standard deviation. 3 Standard 
error of the mean.  

 

  

Authors Animals CNS ID1 Effect on  
milk yield 

Effect size compared  
to uninfected animals  

Timm & Schutlz (1987) Dairy cows 
Bacterial 
culture 

↓ - 2.9 kg/d 

Gröhn et al. (2004) Dairy heifers 
Bacterial 
culture 

↓ - 3.2 to - 1.0 kg/d 

Leitner et al. (2004) Sheep & goats / ↓ - 0.64 to 0 kg/d 

Gröhn et al. (2004) Dairy cows 
Bacterial 
culture 

→ - 

Pearson et al. (2013) Dairy cows 
Bacterial 
culture 

→ - 

Tomazi et al. (2015) Dairy cows PCR-RFLP → - 

Koop et al. (2010) Goats 
Bacterial 
culture 

→ - 

Koop et al. (2012) Goats tDNA-PCR 
Staphylococcus 

caprae: 
 ↑  

/ 

Schukken et al. (2009) Dairy cows 
Bacterial 
culture 

↑ 
+ 0.45 kg/d  
(SD2 ± 0.12)  

Piepers et al. (2010) Dairy cows 
Bacterial 
culture 

↑ 
+ 2.95 kg/d  

(SEM3 ± 0.98) 

Piepers et al. (2013) Dairy cows 
Bacterial 
culture 

↑ + 2.0 kg/d 
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1.4 Prolactin and udder health 

 

1.4.1. Lactation hormone 

Prolactin, thought to be present in all vertebrates (Malven, 1993), is involved in a plethora of biological 

mechanisms. Over 300 distinct actions have been attributed to this versatile hormone (Goffin et al., 

2002). Riddle et al. (1933) were the first to extract and identify the hormone from the anterior lobe of 

the pituitary gland. They proposed the name ‘prolactin’, seeing that the compound was able to 

promote mammary growth and milk secretion in mammals. Even though PRL is historically well-known 

for its role in lactation and mammary gland development, it is also involved in various behavioral 

mechanisms, reproduction and immunoregulation (Freeman et al., 2000). The broad function of PRL is 

evidenced by the vast number of tissues equipped with PRL receptors (Bole-Feysot et al., 1998). Bovine 

pituitary-derived PRL is a polypeptide consisting of 199 amino acids weighing approximately 23 kDa 

(Wallis, 1974). The hormone is primarily – though not exclusively- produced by the lactotrophs in the 

anterior pituitary gland (Freeman et al., 2000). Other production sites include (among others) the 

ovaries, the uterus, various regions of the brain, the skin, the spleen, the thymus, the tonsils and the 

lymph nodes (Figure 1.2). Mammary tissue is also capable of synthetizing PRL (Leprovost et al., 1994). 

Mammary-produced PRL controls the proliferation and differentiation of MEC through an autocrine or 

paracrine mechanism (Naylor et al., 2003; Chen et al., 2012). Bovine PRL also limits the transfer of 

immunoglobulins of the maternal circulation into colostrum, by reducing the expression of the IgG1-

receptor on mammary tissue (Barrington et al., 2001). 
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Figure 1.2. The anterior pituitary gland (1) is the primary site of prolactin synthesis. Extra-pituitary sites 

of prolactin production in mammals include (but are not limited to) various regions of the brain (2), 

the tonsils (3), the thymus (4), the myometrium (5), the ovaries (6), the spleen, (7) the mammary gland 

(8) and the skin. (Adapted from Marano and Ben-Jonathan, 2014) 
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Nowadays, it is generally accepted that PRL is pivotal for the initiation and maintenance of lactation in 

ruminants (Lacasse et al., 2015), although this was debated for many years. Early experiments failed 

to demonstrate an effect on milk yield when suppressing the PRL release with the dopamine agonist 

bromocriptine (Karg et al., 1972; Hart, 1973; Smith et al., 1974). Therefore, it was assumed that PRL 

was not a galactopoetic hormone in cattle. However, newer studies show that the milk production 

significantly drops when dairy cows receive a long-term quinagolide treatment (Lacasse et al., 2011), 

which is a more selective and effective dopamine receptor agonist (Barlier and Jaquet, 2006). The milk 

yield can also be increased by administering domperidone, a dopamine antagonist which increases the 

circulating PRL level (Lacasse and Ollier, 2015). The contradictory findings between the older and 

newer studies might be explained by the use of different compounds (bromocriptine versus 

quinagolide) or duration of treatments (varying between 2 days and nine weeks).  

In general, serum PRL lies between 10 and 60 ng/mL in adult dairy cows (Koprowski et al., 1972; 

Malven, 1977; Fulkerson et al., 1980; Marcek and Swanson, 1984), but it can be affected by many 

factors, such as the ambient temperature (Wetteman and Tucker, 1974), the exposure to light (Dahl 

et al., 2000), or the milking process (Johke, 1970). Stress also has a high impact on circulating PRL levels 

(Karg and Schams, 1974). GarcÍa-Ispierto et al. (2009) observed that dairy cows with intermediate to 

high blood cortisol levels (> 3ng/mL) had higher levels of circulating PRL.  

Approximately one week before calving, the serum PRL concentration starts to rise (80 – 110 ng/mL), 

peaking one day before parturition (230 – 285 ng/mL) (Edgerton and Hafs, 1973; Ingalls et al., 1973). 

The milk PRL level is at its highest (369 ± 56 ng/mL) immediately after parturition (Malven, 1977). 

Besides PRL, there are many other hormones involved in the development of the mammary gland and 

the secretion of milk, such as oxytocin, estrogen, progesterone and various metabolic hormones 

(including glucocorticoids, growth hormone, etc.) (Neville et al., 2002). The mammary gland can 

function as a self-regulating endocrine organ, largely independent from systemic influences (Wilde and 

Peaker, 1990; Weaver and Hernandez, 2016). Nevertheless, the biological significance of autocrine PRL 

has not been studied extensively in cattle. 
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1.4.2. Immunological aspects  

In addition to its role in lactation, PRL also acts as an immunomodulatory factor. Hypophysectomized 

rats, for instance, display signs of immunosuppression (more specifically normochromic normocytic 

anemia, leucopenia and thrombocytopenia), which can be reversed by administering PRL (Berczi and 

Nagy, 1981; Nagy and Berczi, 1991). Other research shows that PRL is able to inhibit the glucocorticoid-

induced apoptosis of T-lymphocytes (Krishnan et al., 2003), stimulate the production of reactive 

oxygen species in macrophages (Edwards et al., 1987) and induces TLR2 expression on the membrane 

of bovine MEC (Medina-Estrada et al., 2015). When challenging peripheral immune cells in the 

presence of PRL, the production of pro-inflammatory cytokines (such as TNF-α and interleukin 12 [IL-

12]] increases while the production of the anti-inflammatory cytokine IL-10 decreases (Brand et al., 

2004). The opposite occurs as well: the expression of the PRL-receptor is upregulated in rat fibroblasts 

in the presence of pro-inflammatory cytokines, making the cells more responsive to PRL (Corbacho et 

al., 2003).  

Previous research indicates that PRL might also play a role in the udder health of dairy cattle. A PRL 

surge occurs around the time of calving (Convey, 1974), coinciding with the phenomenon of 

periparturient immunosuppression (Drackley, 1999). The risk for developing an IMI is very high after 

parturition (Burton and Erskine, 2003), combined with an increased severity of clinical mastitis cases 

(Burvenich et al., 2003). It has previously been hypothesized that PRL counteracts the 

immunosuppression caused by glucocorticoid hormones (Dorshkind and Horseman, 2000; Matalka, 

2003; Fomicheva et al., 2004). Although the blood PRL concentration does not differ between healthy 

cows and cows experiencing a clinical (Hockett et al., 2000; Vanselow et al., 2006) or chronic subclinical 

mastitis (Boutet et al., 2007), a positive correlation exists between the SCC of infected udder quarters 

and the milk PRL concentration (Boutet et al., 2007). Nuclear factor κB (NF-κB), the transcription factor 

for the genes encoding numerous cytokines involved in the pathogenesis of mastitis (Boulanger et al., 

2003), is activated by PRL in a dose-dependent manner, resulting in the up-regulation of IL-1β, IL-6, IL-

8, TNF-α and macrophage colony stimulating factor (GM-CSF) in MEC (Boutet et al., 2007). However, 
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PRL can also elicit anti-inflammatory responses in MEC. Adding PRL to a mammary cell  line infected 

with S. aureus even promotes the internalization of the mastitis pathogen (Gutierrez-Barroso et al., 

2008), hereby enabling a persistent IMI (Hebert et al., 2000). Furthermore, S. aureus has the ability to 

inhibit the PRL-driven activation of NF-κB (Lara-Zarate et al., 2011), which suppresses the host’s innate 

immune response. All in all, the role of bovine PRL as a potential cytokine in the mammary gland 

defense system is not yet well defined. 



Chapter 1. Introduction 

37 
 

1.5 References 

Aarestrup, F. M. and N. E. Jensen. 1997. Prevalence and duration of intramammary infection in Danish 
heifers during the peripartum period. J Dairy Sci 80(2):307-312. 
 
Adkins, P. R. F. and J. R. Middleton. 2016. Potential body site reservoirs for coagulase-negative 
staphylococcal intramammary infection in heifers. J Anim Sci 94:33-33. 
 
Alluwaimi, A. M. 2004. The cytokines of bovine mammary gland: prospects for diagnosis and therapy. 
Res Vet Sci 77(3):211-222. 
 
Alluwaimi, A. M., C. M. Leutenegger, T. B. Farver, P. V. Rossitto, W. L. Smith, and J. S. Cullor. 2003. The 
cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J Vet Med B 50(3):105-
111. 
 
Almeida, R. A., K. R. Matthews, E. Cifrian, A. J. Guidry, and S. P. Oliver. 1996. Staphylococcus aureus 
invasion of bovine mammary epithelial cells. J Dairy Sci 79(6):1021-1026. 
 
Almeida, R. A. and S. P. Oliver. 2001. Interaction of coagulase-negative Staphylococcus species with 
bovine mammary epithelial cells. Microb Pathog 31(5):205-212. 
 
Anderson, J. C. 1978. Absence of bacterial adherence in the establishment of experimental mastitis in 
mice. Vet Pathol 15(6):770-775. 
 
Åvall-Jääskeläinen, S., J. Koort, H. Simojoki, and S. Taponen. 2013. Bovine-associated CNS species resist 
phagocytosis differently. BMC Vet Res 9(1): 227. 
 
Bannerman, D. D., M. J. Paape, J. W. Lee, X. Zhao, J. C. Hope, and P. Rainard. 2004. Escherichia coli and 
Staphylococcus aureus elicit differential innate immune responses following intramammary infection. 
Clin Diagn Lab Immunol 11(3):463-472. 
 
Bannerman, D. D. 2009. Pathogen-dependent induction of cytokines and other soluble inflammatory 
mediators during intramammary infection of dairy cows. J of Anim Sci 87(13):10-25. 
 
Barkema, H. W., Y. H. Schukken, T. J. Lam, M. L. Beiboer, G. Benedictus, and A. Brand. 1999a. 
Management practices associated with the incidence rate of clinical mastitis. J Dairy Sci 82(8):1643-
1654. 
 
Barkema, H. W., H.A. Deluyker, Y.H. Schukken, and T.J.G.M. Lam. 1999b. Quarter-milk somatic cell 
count at calving and at the first six milkings after calving. Prevent Vet Med  38(1), 1-9. 
 
Barlier, A. and P. Jaquet. 2006. Quinagolide - a valuable treatment option for hyperprolactinaemia. Eur 
J Endocrinol 154(2):187-195. 
 
Barrington, G. M., T. B. McFadden, M. T. Huyler, and T. E. Besser. 2001. Regulation of colostrogenesis 
in cattle. Livest Prod Sci 70(1-2):95-104. 
 
Benjamin, A. L., Green, B. B., Hayden, L. R., Barlow, J. W., and Kerr, D. E. 2015. Cow-to-cow variation in 
fibroblast response to a toll-like receptor 2/6 agonist and its relation to mastitis caused by 
intramammary challenge with Staphylococcus aureus. J Dairy Sci 98(3), 1836-1850. 
 



Chapter 1. Introduction 

38 
 

Berczi, I. and E. Nagy. 1981. Immunodeficiency in Hypophysectomized Rats - Restoration by Prolactin. 
Fed Proc 40(3):1031-1031. 
 
Blowey, P. and P. Edmondson. 2010. Mastitis Control in Dairy Herds. 2nd Ed. ed. Cabi, Oxfordshire, UK. 
 
Bole-Feysot, C., V. Goffin, M. Edery, N. Binart, and P. A. Kelly. 1998. Prolactin (PRL) and its receptor: 
Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. 
Endocr Rev 19(3):225-268. 
 
Boulanger, D., F. Bureau, D. Melotte, J. Mainil, and P. Lekeux. 2003. Increased nuclear Factor kappa B 
activity in milk cells of mastitis-affected cows. J Dairy Sci 86(4):1259-1267. 
 
Boutet, P., F. Bureau, G. Degand, and P. Lekeux. 2003. Imbalance between lipoxin A(4) and leukotriene 
B-4 in chronic mastitis-affected cows. J Dairy Sci 86(11):3430-3439. 
 
Boutet, P., J. Sulon, R. Closset, J. Detilleux, J. F. Beckers, F. Bureau, and P. Lekeux. 2007. Prolactin-
induced activation of nuclear factor kappa B in bovine mammary epithelial cells: Role in chronic 
mastitis. J Dairy Sci 90(1):155-164. 
 
Bradley, A. J. 2002. Bovine mastitis: An evolving disease. Vet J 164(2):116-128. 
 
Braem, G., S. De Vliegher, B. Verbist, M. Heyndrickx, F. Leroy, and L. De Vuyst. 2012. Culture-
independent exploration of the teat apex microbiota of dairy cows reveals a wide bacterial species 
diversity. Vet Microbiol 157(3), 383-390. 
 
Braem, G., S. De Vliegher, B. Verbist, V. Piessens, E. Van Coillie, L. De Vuyst, and F. Leroy. 2013. 
Unraveling the microbiota of teat apices of clinically healthy lactating dairy cows, with special emphasis 
on coagulase-negative staphylococci. J Dairy Sci 96(3):1499-1510. 
 
Braem, G., B. Stijlemans, W. Van Haken, S. De Vliegher, L. De Vuyst, and F. Leroy. 2014. Antibacterial 
activities of coagulase-negative staphylococci from bovine teat apex skin and their inhibitory effect on 
mastitis-related pathogens. J Appl Microbiol 116(5):1084-1093. 
 
Brand, J. M., C. Frohn, K. Cziupka, C. Brockmann, H. Kirchner, and J. Luhm. 2004. Prolactin triggers pro-
inflammatory immune responses in peripheral immune cells. Eur Cytokine Netw 15(2):99-104. 
 
Burton, J. L. and R. J. Erskine. 2003. Immunity and mastitis. Some new ideas for an old disease. Vet Clin 
North Am Food Anim Pract 19(1):1-45. 
 
Burvenich, C., V. Van Merris, J. Mehrzad, A. Diez-Fraile, and L. Duchateau. 2003. Severity of E. coli 
mastitis is mainly determined by cow factors. Vet Res 34(5):521-564. 
 
Chantziaras, I., F. Boyen, B. Callens, and J. Dewulf. 2014. Correlation between veterinary antimicrobial 
use and antimicrobial resistance in food-producing animals: a report on seven countries. J antimic 
chemother 69(3):827-834. 
 
Chen, C. C., D. B. Stairs, R. B. Boxer, G. K. Belka, N. D. Horseman, J. V. Alvarez, and L. A. Chodosh. 2012. 
Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a 
direct link between the Akt and Stat5 pathways. Gene Dev 26(19):2154-2168. 
 
Cifrian, E., A. J. Guidry, C. N. O'Brien, S. C. Nickerson, and W. W. Marquardt. 1994. Adherence of 
Staphylococcus aureus to cultured bovine mammary epithelial cells. J Dairy Sci 77(4):970-983. 



Chapter 1. Introduction 

39 
 

 
Convey, E. M. 1974. Serum hormone concentrations in ruminants during mammary growth, 
lactogenesis, and lactation: a review. J Dairy Sci 57(8):905-917. 
 
Corbacho, A. M., Y. Macotela, G. Nava, J. P. Eiserich, C. E. Cross, G. M. de la Escalera, and C. Clapp. 
2003. Cytokine induction of prolactin receptors mediates prolactin inhibition of nitric oxide synthesis 
in pulmonary fibroblasts. Febs Lett 544(1-3):171-175. 
 
CRV. 2015. CRV Jaarstatistieken voor Vlaanderen. Accessed January 5, 2017. 
https://www.crv4all.be/wp-content/uploads/2016/04/Jaarstatistieken-2015-Vlaanderen.pdf 
 
Dahl, G. E., B. A. Buchanan, and H. A. Tucker. 2000. Photoperiodic effects on dairy cattle: A review. J 
Dairy Sci 83(4):885-893. 
 
Damm, M., C. Holm, M. Blaabjerg, M.N. Bro, and D. Schwarz. 2017. Differential somatic cell count—A 
novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. 
J Dairy Sci. In Press. 
 
Da Silva Santos O. C., E. M. Barros, M.A.V.P. Brito, M.D.C. de Freire Bastos, K.R.N.  dos Santos and M. 
Giambiagi-deMarval 2008. Identification of coagulase-negative staphylococci from bovine mastitis 
using RFLP-PCR of the groEL gene. Vet Microbiol 130(1); 134-140. 
 
De Visscher, A., K. Supré, F. Haesebrouck, R. N. Zadoks, V. Piessens, E. Van Coillie, S. Piepers, and S. De 
Vliegher. 2014. Further evidence for the existence of environmental and host-associated species of 
coagulase-negative staphylococci in dairy cattle. Vet Microbiol 172(3-4):466-474. 
 
De Visscher, A., S. Piepers, F. Haesebrouck, and S. De Vliegher. 2016. Intramammary infection with 
coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on 
udder health. J Dairy Sci 99(8):6457-6469. 
 
De Vliegher, S., H. Laevens, L. A. Devriese, G. Opsomer, J. L. Leroy, H. W. Barkema, and A. de Kruif. 
2003. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated 
with low somatic cell count in early lactation. Vet Microbiol 92(3):245-252. 
 
Detilleux, J., J. P. Kastelic, and H. W. Barkema. 2015. Mediation analysis to estimate direct and indirect 
milk losses due to clinical mastitis in dairy cattle. Prev Vet Med 118(4):449-456. 
 
Dinarello, C. A. 2000. Proinflammatory cytokines. Chest 118(2):503-508. 
 
Dinarello, C. A. 2007. Historical insights into cytokines. Eur J Immunol 37:S34-S45. 
 
Djabri, B., N. Bareille, F. Beaudeau, and H. Seegers. 2002. Quarter milk somatic cell count in infected 
dairy cows: a meta-analysis. Vet Res 33(4):335-357. 
 
Dorshkind, K. and N. D. Horseman. 2000. The roles of prolactin, growth hormone, insulin-like growth 
factor-I, and thyroid hormones in lymphocyte development and function: Insights from genetic models 
of hormone and hormone receptor deficiency. Endocr Rev 21(3):292-312. 
 
dos Santos, D. C., C. C. Lange, P. Avellar-Costa, K. R. N. dos Santos, M. A. V. P. Brito, and M. Giambiagi-
deMarval. 2016. Staphylococcus chromogenes, a Coagulase-Negative Staphylococcus Species That Can 
Clot Plasma. J Clin Microbiol 54(5):1372-1375. 
 



Chapter 1. Introduction 

40 
 

Drackley, J. K. 1999. ADSA Foundation Scholar Award. Biology of dairy cows during the transition 
period: the final frontier? J Dairy Sci 82(11):2259-2273. 
 
Edgerton, L. A. and H. D. Hafs. 1973. Serum Luteinizing-Hormone, Prolactin, Glucocorticoid, and 
Progestin in Dairy-Cows from Calving to Gestation. J Dairy Sci 56(4):451-458. 
 
Edmondson, P. 2010. Blitz therapy and Streptococcus agalactiae. Vet Rec 166(11):342. 
 
Edwards, C. K., J. M. Schepper, L. M. Yunger, and K. W. Kelley. 1987. Somatotropin and Prolactin 
Enhance Respiratory Burst Activity of Macrophages. J Neuroimmuno 16(1):49-49. 
 
Eurostat. 2015. Milk and milk product statistics. Accessed on March 9, 2017. 
http://ec.europa.eu/eurostat/statistics-explained/index.php/Milk_and_milk_product_statistics 
 
Eurostat. 2016. Agriculture, forestry and fishery statistics. Accessed on March 9, 2017. 
http://ec.europa.eu/eurostat/documents/3217494/7777899/KS-FK-16-001-EN-N.pdf/cae3c56f-53e2-
404a-9e9e-fb5f57ab49e3 
 
Fernandez, L., S. Langa, V. Martin, A. Maldonado, E. Jimenez, R. Martin, and J. M. Rodriguez. 2013. The 
human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69(1):1-10. 
 
Fisher, C. A., E. K. Bhattarai, J. B. Osterstock, S. E. Dowd, P. M. Seabury, M. Vikram, R. H. Whitlock, Y. 
H. Schukken, R. D. Schnabel, J. F. Taylor, J. E. Womack, and C. M. Seabury. 2011. Evolution of the bovine 
TLR gene family and member associations with Mycobacterium avium subspecies paratuberculosis 
infection. PLoS One 6(11):e27744. 
 
Fitzpatrick, J. L., P.J. Cripps, A.W. Hill, P.W. Bland, and C.R. Stokes. 1992. MHC class II expression in the 
bovine mammary gland. Vet Immunol Immunopathol, 32(1-2), 13-23. 
 
Fomicheva, E. E., E. A. Nemirovich-Danchenko, and E. A. Korneva. 2004. Immunoprotective effects of 
prolactin during stress-induced immune dysfunction. B Exp Biol Med+ 137(6):544-547. 
 
Food and Agriculture Organization of the United Nations. 2013. Milk and Dairy Products in Human 
Nutrition. 
 
Fox, L. K. 2009. Prevalence, incidence and risk factors of heifer mastitis. Vet Microbiol 134(1-2):82-88. 
 
FPSE. Federal Public Service Economy, Small and Medium Enterprises, Self-Employed, and Energy. 
2012. Actualisering van de studie over de zuivelkolom. Accessed on January 3, 2017. 
http://economie.fgov.be/nl/binaries/Actualisering_Zuivelstudie_tcm325-253253.pdf 
 
FPSE. Federal Public Service Economy, Small and Medium Enterprises, Self-Employed, and Energy. 
2016. Statistics Belgium. Accessed on January 3, 2017.  
http://statbel.fgov.be/nl/binaries/PERSBERICHT%20Landbouwcijfers%202015b_tcm325-277894.pdf  
 
Freeman, M. E., B. Kanyicska, A. Lerant, and G. Nagy. 2000. Prolactin: structure, function, and 
regulation of secretion. Physiol Rev 80(4):1523-1631. 
 
Fry, P. R., J. R. Middleton, S. Dufour, J. Perry, D. Scholl, and I. Dohoo. 2014. Association of coagulase-
negative staphylococcal species, mammary quarter milk somatic cell count, and persistence of 
intramammary infection in dairy cattle. J Dairy Sci 97(8):4876-4885. 
 



Chapter 1. Introduction 

41 
 

Fulkerson, W. J., G. J. Sawyer, and C. B. Gow. 1980. Investigations of Ultradian and Circadian-Rhythms 
in the Concentration of Cortisol and Prolactin in the Plasma of Dairy-Cattle. Aust J Biol Sci 33(5):557-
561. 
 
García-Ispierto, I., F. Lopez-Gatius, S. Almeria, J. Yaniz, P. Santolaria, B. Serrano, G. Bech-Sabat, C. 
Nogareda, J. Sulon, N. M. de Sousa, and J. F. Beckers. 2009. Factors affecting plasma prolactin 
concentrations throughout gestation in high producing dairy cows. Domest Anim Endocrin 36(2):57-
66. 
 
Goffin, V., N. Binart, P. Touraine, and P. A. Kelly. 2002. Prolactin: The new biology of an old hormone. 
Annu Rev Physiol 64:47-67. 
 
Gröhn, Y. T., D. J. Wilson, R. N. Gonzalez, J. A. Hertl, H. Schulte, G. Bennett, and Y. H. Schukken. 2004. 
Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J Dairy Sci 87(10):3358-3374. 
 
Günther, J., S. Z. Liu, K. Esch, H. J. Schuberth, and H. M. Seyfert. 2010. Stimulated expression of TNF-
alpha and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens 
contacting bovine mammary epithelial cells. Veterinary immunology and immunopathology 135(1-
2):152-157. 
 
Günther, J., K. Esch, N. Poschadel, W. Petzl, H. Zerbe, S. Mitterhuemer, H. Blum, and H. M. Seyfert. 
2011. Comparative Kinetics of Escherichia coli- and Staphylococcus aureus-Specific Activation of Key 
Immune Pathways in Mammary Epithelial Cells Demonstrates That S. aureus Elicits a Delayed Response 
Dominated by Interleukin-6 (IL-6) but Not by IL-1A or Tumor Necrosis Factor Alpha. Infect Immun 
79(2):695-707. 
 
Günther, J., M. Koy, A. Berthold, H. J. Schuberth, and H. M. Seyfert. 2016. Comparison of the pathogen 
species-specific immune response in udder derived cell types and their models. Vet Res 47. 
 
Gutierrez-Barroso, A., J. L. Anaya-Lopez, L. Lara-Zarate, P. D. Loeza-Lara, J. E. Lopez-Meza, and A. 
Ochoa-Zarzosa. 2008. Prolactin stimulates the internalization of Staphylococcus aureus and modulates 
the expression of inflammatory response genes in bovine mammary epithelial cells. Vet Immunol 
Immunop 121(1-2):113-122. 
 
Halasa, T., K. Huijps, O. Osteras, and H. Hogeveen. 2007. Economic effects of bovine mastitis and 
mastitis management: a review. Vet Q 29(1):18-31. 
 
Hart, I. C. 1973. Effect of 2-Bromo-Alpha-Ergocryptine on Milk Yield and Level of Prolactin and Growth-
Hormone in Blood of Goat at Milking. J Endocrinol 57(1):179-180. 
 
Haveri, M., A. Roslo, L. Rantala, and S. Pyörälä. 2007. Virulence genes of bovine Staphylococcus aureus 
from persistent and nonpersistent intramammary infections with different clinical characteristics. J 
Appl Microbiol 103(4):993-1000. 
 
Haveri, M., S. Taponen, J. Vuopio-Varkila, S. Salmenlinna, and S. Pyörälä. 2005. Bacterial genotype 
affects the manifestation and persistence of bovine Staphylococcus aureus intramammary infection. J 
Clin Microbiol 43(2):959-961. 
 
Hebert, A., K. Sayasith, S. Senechal, P. Dubreuil, and J. Lagace. 2000. Demonstration of intracellular 
Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally 
infected cow milk. Fems Microbiol Lett 193(1):57-62. 
 



Chapter 1. Introduction 

42 
 

Hibbing, M. E., C. Fuqua, M. R. Parsek, and S. B. Peterson. 2010. Bacterial competition: surviving and 
thriving in the microbial jungle. Nat Rev Microbiol 8(1):15-25. 
 
Higgs, T. M., F. K. Neave, and A. J. Bramley. 1980. Differences in Intra-Mammary Pathogenicity of 4 
Strains of Streptococcus Dysgalactiae. J Med Microbiol 13(3):393-399. 
 
Hockett, M. E., F. M. Hopkins, M. J. Lewis, A. M. Saxton, H. H. Dowlen, S. P. Oliver, and F. N. Schrick. 
2000. Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early 
lactation. Anim Reprod Sci 58(3-4):241-251. 
 
Hogan, J. S., D. G. White, and J. W. Pankey. 1987. Effects of Teat Dipping on Intramammary Infections 
by Staphylococci Other Than Staphylococcus Aureus. J Dairy Sci 70(4):873-879. 
 
Hyvönen, P., S. Kayhko, S. Taponen, A. von Wright, and S. Pyörälä. 2009. Effect of bovine lactoferrin on 
the internalization of coagulase-negative staphylococci into bovine mammary epithelial cells under in-
vitro conditions. J Dairy Res 76(2):144-151. 
 
Ingalls, W. G., E. M. Convey, and H. D. Hafs. 1973. Bovine Serum LH, GH, and Prolactin during Late 
Pregnancy, Parturition and Early Lactation. P Soc Exp Biol Med 143(1):161-164. 
 
Janosi, S., M. Kulcsar, P. Korodi, L. Katai, J. Reiczigel, S. J. Dielemann, J. A. Nilolic, G. Salyi, P. Ribiczey-
Szabo, and G. Huszenicza. 2003. Energy imbalance related predisposition to mastitis in group-fed high-
producing postpartum dairy cows. Acta Vet Hung 51(3):409-424. 
 
Johke, T. 1970. Factors Affecting Plasma Prolactin Level in Cow and Goat as Determined by 
Radioimmunoassay. Endocrinol Japon 17(5):393-401.  
 
Karg, H. and D. Schams. 1974. Prolactin-Release in Cattle. J Reprod Fertil (4):463-472. 
 
Karg, H., D. Schams, and Reinhard.V. 1972. Effects of 2-Br-Alpha-Ergocryptine on Plasma Prolactin Level 
and Milk Yield in Cows. Experientia 28(5):574-576.  
 
Kauf, A. C., Vinyard, B. T., & Bannerman, D. D. (2007). Effect of intramammary infusion of bacterial 
lipopolysaccharide on experimentally induced Staphylococcus aureus intramammary infection. Res Vet 
Sci 82(1), 39-46. 
 
Kennedy, A. D. and F. R. DeLeo. 2009. Neutrophil apoptosis and the resolution of infection. Immunol 
Res 43(1-3):25-61. 
 
Koeck, A., S. Loker, F. Miglior, D. F. Kelton, J. Jamrozik, and F. S. Schenkel. 2014. Genetic relationships 
of clinical mastitis, cystic ovaries, and lameness with milk yield and somatic cell score in first-lactation 
Canadian Holsteins. J Dairy Sci 97(9):5806-5813. 
 
Koop, G., T. Van Werven, H.J. Schuiling, and M. Nielen. 2010. The effect of subclinical mastitis on milk 
yield in dairy goats. J Dairy Sci 93(12): 5809-5817. 
 
Koop, G., S. De Vliegher, A. De Visscher, K. Supré, F. Haesebrouck, M. Nielen, and T. Van Werven. 2012. 
Differences between coagulase-negative Staphylococcus species in persistence and in effect on 
somatic cell count and milk yield in dairy goats. J Dairy Sci 95(9): 5075-5084. 
 
Koprowski, J. A., H. A. Tucker, and E. M. Convey. 1972. Prolactin and Growth-Hormone Circadian 
Periodicity in Lactating Cows. P Soc Exp Biol Med 140(3):1012-1014. 



Chapter 1. Introduction 

43 
 

 
Krishnan, N., O. Thellin, D. J. Buckley, N. D. Horseman, and A. R. Buckley. 2003. Prolactin suppresses 
glucocorticoid-induced thymocyte apoptosis in vivo. Endocrinol 144(5):2102-2110. 
 
Kuehn, J. S., P. J. Gorden, D. Munro, R. Rong, Q. Dong, P. J. Plummer, C. Wang, and G. J. Phillips. 2013. 
Bacterial community profiling of milk samples as a means to understand culture-negative bovine 
clinical mastitis. PloS one 8(4):e61959. 
 
Lacasse, P., V. Lollivier, R. M. Bruckmaier, Y. R. Boisclair, G. F. Wagner, and M. Boutinaud. 2011. Effect 
of the prolactin-release inhibitor quinagolide on lactating dairy cows. J Dairy Sci 94(3):1302-1309. 
 
Lacasse, P., S. Ollier, V. Lollivier, and M. Boutinaud. 2015. New insights into the importance of prolactin 
in dairy ruminants. J Dairy Sci 99(1):864–874. 
 
Lacasse, R. and S. Ollier. 2015. The dopamine antagonist domperidone increases prolactin 
concentration and enhances milk production in dairy cows. J Dairy Sci 98(11):7856-7864. 
 
Lahouassa, H., E. Moussay, P. Rainard, and C. Riollet. 2007. Differential cytokine and chemokine 
responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 
38(1):12-21. 
 
Lahouassa, H., P. Rainard, A. Caraty, and C. Riollet. 2008. Identification and characterization of a new 
interleukin-8 receptor in bovine species. Mol Immunol 45(4): 1153-1164. 
 
Lara-Zarate, L., J. E. Lopez-Meza, and A. Ochoa-Zarzosa. 2011. Staphylococcus aureus inhibits nuclear 
factor kappa B activation mediated by prolactin in bovine mammary epithelial cells. Microb 
Pathogenesis 51(5):313-318. 
 
Leitner, G., U. Merin, A. Glickman, L. Weisblit, O. Krifucks, A. Shwimmer, and A. Saran. 2004. Factors 
influencing milk quantity and quality in Assaf sheep and goat crossbreds. S Afr J Anim Sci 34(5): 162-
164. 
 
Le Marechal, C., R. Thiery, E. Vautor, and Y. Le Loir. 2011a. Mastitis impact on technological properties 
of milk and quality of milk products-a review. Dairy Sci Technol 91(3):247-282. 
 
Le Marechal, C., J. Jardin, G. Jan, S. Even, C. Pulido, J. M. Guibert, D. Hernandez, P. Francois, J. Schrenzel, 
D. Demon, E. Meyer, N. Berkova, R. Thiery, E. Vautor, and Y. Le Loir. 2011b. Staphylococcus aureus 
seroproteomes discriminate ruminant isolates causing mild or severe mastitis. Vet Res 42. 
 
Leprovost, F., C. Leroux, P. Martin, P. Gaye, and J. Djiane. 1994. Prolactin Gene-Expression in Ovine and 
Caprine Mammary-Gland. NeuroEndocrinol 60(3):305-313. 
 
Lescourret, F. and J. B. Coulon. 1994. Modeling the Impact of Mastitis on Milk-Production by Dairy-
Cows. J Dairy Sci 77(8):2289-2301. 
 
Leslie, K. E. and C. S. Petersson-Wolfe. 2012. Assessment and Management of Pain in Dairy Cows with 
Clinical Mastitis. Vet Clin N Am-Food A 28(2):289-305. 
 
Malven, P. V. 1977. Prolactin and Other Protein Hormones in Milk. J Anim Sci 45(3):609-616. 
 
Malven, P. V. 1993. Prolactin. Mammalian Neuroendocrinology. P. V. Malven, ed. CRC Press, Boca 
Raton, Florida. 



Chapter 1. Introduction 

44 
 

Marano, R. J., and N. Ben-Jonathan. 2014. Minireview: extrapituitary prolactin: an update on the 
distribution, regulation, and functions. Mol Endocrinol 28(5): 622-633. 
 
Marcek, J. M. and L. V. Swanson. 1984. Effect of Photoperiod on Milk-Production and Prolactin of 
Holstein Dairy-Cows. J Dairy Sci 67(10):2380-2388. 
 
Matalka, K. Z. 2003. Prolactin enhances production of interferon-gamma, interleukin-12, and 
interleukin-10, but not of tumor necrosis factor-alpha, in a stimulus-specific manner. Cytokine 
21(4):187-194. 
 
Matthews, K. R., R. J. Harmon, and B. E. Langlois. 1991. Effect of Naturally-Occurring Coagulase-
Negative Staphylococci Infections on New Infections by Mastitis Pathogens in the Bovine. J Dairy Sci 
74(6):1855-1859. 
 
Medina-Estrada, I., N. Alva-Murillo, J. E. Lopez-Meza, and A. Ochoa-Zarzosa. 2015. Non-classical effects 
of prolactin on the innate immune response of bovine mammary epithelial cells: Implications during 
Staphylococcus aureus internalization. Microb Pathogenesis 89:43-53. 
 
Mehrzad, J., H. Dosogne, E. Meyer, R. Heyneman, and C. Burvenich. 2001. Respiratory burst activity of 
blood and milk neutrophils in dairy cows during different stages of lactation. J Dairy Res 68(3):399-415. 
 
Mehrzad, J., L. Duchateau, S. Pyörälä, and C. Burvenich. 2002. Blood and milk neutrophil 
chemiluminescence and viability in primiparous and pluriparous dairy cows during late pregnancy, 
around parturition and early lactation. J Dairy Sci 85(12):3268-3276. 
 
Mehrzad, J., Duchateau, L., & Burvenich, C. (2005). High milk neutrophil chemiluminescence limits the 
severity of bovine coliform mastitis. Vet Res 36(1), 101-116. 
 
Mørk, T., H. J. Jorgensen, M. Sunde, B. Kvitle, S. Sviland, S. Waage, and T. Tollersrud. 2012. Persistence 
of staphylococcal species and genotypes in the bovine udder. Vet Microbiol 159(1-2):171-180. 
 
Nagy, E. and I. Berczi. 1991. Hypophysectomized Rats Depend on Residual Prolactin for Survival. 
Endocrinol 128(6):2776-2784. 
 
Naylor, M. J., J. A. Lockefeer, N. D. Horseman, and C. J. Ormandy. 2003. Prolactin regulates mammary 
epithelial cell proliferation via autocrine/paracrine mechanism. Endocrine 20(1-2):111-114. 
 
Neville, M. C., T. B. McFadden, and I. Forsyth. 2002. Hormonal regulation of mammary differentiation 
and milk secretion. J Mammary Gland Biol 7(1):49-66. 
 
Nickerson, S. C. and R. L. Boddie. 1994. Effect of Naturally-Occurring Coagulase-Negative 
Staphylococcal Infections on Experimental Challenge with Major Mastitis Pathogens. J Dairy Sci 
77(9):2526-2536. 
 
Oikonomou, G., M. L. Bicalho, E. Meira, R. E. Rossi, C. Foditsch, V. S. Machado, A. G. Teixeira, C. 
Santisteban, Y. H. Schukken, and R. C. Bicalho. 2014. Microbiota of cow's milk; distinguishing healthy, 
sub-clinically and clinically diseased quarters. PloS one 9(1):e85904. 
 
Oikonomou, G., V. S. Machado, C. Santisteban, Y. H. Schukken, and R. C. Bicalho. 2012. Microbial 
diversity of bovine mastitic milk as described by pyrosequencing of metagenomic 16s rDNA. PloS one 
7(10):e47671. 
 



Chapter 1. Introduction 

45 
 

Paape, M. J., D. D. Bannerman, X. Zhao, and J. W. Lee. 2003. The bovine neutrophil: Structure and 
function in blood and milk. Vet Res 34(5):597-627. 
 
Park Y., L. K. Fox, K.S. Seo, M.A. McGuire, Y.H. Park, F. R. Rurangirwa, W.M. Sischo, and G.A. Bohach. 
2011. Comparison of phenotypic and genotypic methods for the species identification of coagulase-
negative staphylococcal isolates from bovine intramammary infections. Vet Microbiol 147(1-2): 142-
148. 
 
Parte, A. C. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 
42(D1):D613-D616. 
 
Pearson, L. J., J. H. Williamson, S. A. Turner, S. J. Lacy-Hulbert, and J. E. Hillerton. 2013. Peripartum 
infection with Streptococcus uberis but not coagulase-negative staphylococci reduced milk production 
in primiparous cows. J Dairy Sci 96(1):158-164. 
 
Perkins, N. R., D. F. Kelton, K. J. Hand, G. MacNaughton, O. Berke, and K. E. Leslie. 2009. An analysis of 
the relationship between bulk tank milk quality and wash water quality on dairy farms in Ontario, 
Canada. J Dairy Sci 92(8):3714-3722. 
 
Waller, K. P. 2002. Mammary gland immunology around parturition. In Biology of the Mammary Gland 
(p 231-245). Springer US. 
 
Piepers, S., G. Opsomer, H. W. Barkema, A. de Kruif, and S. De Vliegher. 2010. Heifers infected with 
coagulase-negative staphylococci in early lactation have fewer cases of clinical mastitis and higher milk 
production in their first lactation than noninfected heifers. J Dairy Sci 93(5):2014-2024. 
 
Piepers, S., K. Peeters, G. Opsomer, H.W. Barkema, K. Frankena, and S. De Vliegher. 2011. Pathogen 
group specific risk factors at herd, heifer and quarter levels for intramammary infections in early 
lactating dairy heifers. Prevent Vet Med 99(2): 91-101. 
 
Piepers, S., Y. H. Schukken, P. Passchyn, and S. De Vliegher. 2013. The effect of intramammary infection 
with coagulase-negative staphylococci in early lactating heifers on milk yield throughout first lactation 
revisited. J Dairy Sci 96(8):5095-5105. 
 
Piessens, V., E. Van Coillie, B. Verbist, K. Supré, G. Braem, A. Van Nuffel, L. De Vuyst, M. Heyndrickx, 
and S. De Vliegher. 2011. Distribution of coagulase-negative Staphylococcus species from milk and 
environment of dairy cows differs between herds. J Dairy Sci 94(6):2933-2944. 
 
Pilla, R., D. Schwarz, S. Konig, and R. Piccinini. 2012. Microscopic differential cell counting to identify 
inflammatory reactions in dairy cow quarter milk samples. J Dairy Sci 95(8):4410-4420. 
 
Pitkälä, A., M. Haveri, S. Pyörälä, V. Myllys, and T. Honkanen-Buzalski. 2004. Bovine mastitis in Finland 
2001 - prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci 87(8): 2433-2441. 
 
Porcherie A., F.B. Gilbert, P. Germon, P. Cunha, A.Trotereau, C. Rossignol, N. Winter, P. Berthon and P. 
Rainard. 2016. L-17A Is an Important Effector of the Immune Response of the Mammary Gland to 
Escherichia coli Infection. J Immunol 196 (2): 803-812. 
 
Pyörälä, S. and S. Taponen. 2009. Coagulase-negative staphylococci-Emerging mastitis pathogens. Vet 
Microbiol 134(1-2):3-8. 
 



Chapter 1. Introduction 

46 
 

Quinn, P. J., B.K. Markey, F.C. Leonard, E.S. FitzPatrick, and S. Fanning. 2015. Concise review of 
veterinary microbiology. John Wiley & Sons. 
 
Rainard, P. and B. Poutrel. 1988. Effect of Naturally-Occurring Intramammary Infections by Minor 
Pathogens on New Infections by Major Pathogens in Cattle. Am J Vet Res 49(3):327-329. 
 
Rainard, P. and C. Riollet. 2006. Innate immunity of the bovine mammary gland. Vet Res 37(3):369-
400. 
 
Rall V.L.M., E.S. Miranda, I.G. Castilho, C.H. Camargo, H. Langoni, F.F. Guimarães, J.P. Araújo Júnior, 
and A. Fernandes Júnior. 2014. Diversity of Staphylococcus species and prevalence of enterotoxin 
genes isolated from milk of healthy cows and cows with subclinical mastitis. J Dairy Sci 97(2): 829-837.  
 
Reneau, J. K. 1986. Effective Use of Dairy-Herd Improvement Somatic-Cell Counts in Mastitis Control. 
J Dairy Sci 69(6):1708-1720. 
 
Reyher, K. K., D. Haine, I. R. Dohoo, and C. W. Revie. 2012. Examining the effect of intramammary 
infections with minor mastitis pathogens on the acquisition of new intramammary infections with 
major mastitis pathogens-A systematic review and meta-analysis. J Dairy Sci 95(11):6483-6502. 
 
Riddle, O., R. W. Bates, and D. S.W. 1933. The preparation, identification and assay of prolactin—a 
hormone of the anterior pituitary. Am J Physiol 105(1):191-216. 
 
Riollet, C., P. Rainard, and B. Poutrel. 2000. Differential induction of complement fragment C5a and 
inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus 
aureus. Clin Diagn Lab Immunol 7(2):161-167. 
 
Roberson, J. R., L. K. Fox, D. D. Hancock, J. M. Gay, and T. E. Besser. 1996. Prevalence of coagulase-
positive staphylococci, other than Staphylococcus aureus, in bovine mastitis. Am J Vet Res 57(1):54-58. 
 
Sampimon, O., B. H. P. van den Borne, I. Santman-Berends, H. W. Barkema, and T. Lam. 2010. Effect of 
coagulase-negative staphylococci on somatic cell count in Dutch dairy herds. J Dairy Res 77(3):318-324. 
 
Sampimon, O. C., H. W. Barkema, I. M. G. A. Berends, J. Sol, and T. J. G. M. Lam. 2009. Prevalence and 
herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch 
dairy herds. Vet Microbiol 134(1-2):37-44. 
 
Schukken, Y. H., K. E. Leslie, D. A. Barnum, B. A. Mallard, J. H. Lumsden, P. C. Dick, G. H. Vessie, and M. 
E. Kehrli. 1999. Experimental Staphylococcus aureus intramammary challenge in late lactation dairy 
cows: Quarter and cow effects determining the probability of infection. J Dairy Sci 82(11):2393-2401. 
 
Schukken, Y. H., D. J. Wilson, F. Welcome, L. Garrison-Tikofsky, and R. N. Gonzalez. 2003. Monitoring 
udder health and milk quality using somatic cell counts. Vet Res 34(5):579-596. 
 
Schukken, Y.H., J. Hertl, D. Bar, G.J. Bennett, R.N. González, B.J. Rauch, C. Santisteban, H.F. Schulte, L. 
Tauer, F.L. Welcome, Y.T. Gröhn. 2009a. Effects of repeated gram-positive and gram-negative clinical 
mastitis episodes on milk yield loss in Holstein dairy cows. J Dairy Sci 92(7): 3091-3105. 
 
Schukken, Y. H., R. N. Gonzalez, L. L. Tikofsky, H. F. Schulte, C. G. Santisteban, F. L. Welcome, G. J. 
Bennett, M. J. Zurakowski, and R. N. Zadoks. 2009b. CNS mastitis: Nothing to worry about? Veterinary 
Microbiol 134(1-2):9-14. 
 



Chapter 1. Introduction 

47 
 

Schukken, Y. H., J. Günther, J. Fitzpatrick, M. C. Fontaine, L. Goetze, O. Holst, J. Leigh, W. Petzl, H. J. 
Schuberth, A. Sipka, D. G. Smith, R. Quesnell, J. Watts, R. Yancey, H. Zerbe, A. Gurjar, R. N. Zadoks, H. 
M. Seyfert, and c. members of the Pfizer mastitis research. 2011. Host-response patterns of 
intramammary infections in dairy cows. Veterinary immunology and immunopathology 144(3-4):270-
289. 
 
Sheather, A. 1924. The diagnosis of bovine mastitis by milk examination. J. of Comp. Path. and Ther. 
37(4):227-242. 
 
Simianer, H., H. Solbu, and L. R. Schaeffer. 1991. Estimated Genetic Correlations between Disease and 
Yield Traits in Dairy-Cattle. J Dairy Sci 74(12):4358-4365. 
 
Simojoki, H., P. Hyvönen, C. P. Ferrer, S. Taponen, and S. Pyörälä. 2012. Is the biofilm formation and 
slime producing ability of coagulase-negative staphylococci associated with the persistence and 
severity of intramammary infection? Vet Microbiol 158(3-4):344-352. 
 
Simojoki, H., T. Salomaki, S. Taponen, A. Iivanainen, and S. Pyörälä. 2011. Innate immune response in 
experimentally induced bovine intramammary infection with Staphylococcus simulans and S. 
epidermidis. Vet Res 42. 
 
Smith, K. L., J. H. Harrison, D. D. Hancock, D. A. Todhunter, and H. R. Conrad. 1984. Effect of Vitamin-E 
and Selenium Supplementation on Incidence of Clinical Mastitis and Duration of Clinical Symptoms. J 
Dairy Sci 67(6):1293-1300. 
 
Smith, V. G., T. W. Beck, E. M. Convey, and H. A. Tucker. 1974. Bovine Serum Prolactin, Growth-
Hormone, Cortisol and Milk-Yield after Ergocryptine. Neuroendocrinol 15(3-4):172-181. 
 
Sordillo, L. M., K. Shafer-Weaver, and D. DeRosa. 1997. Immunobiology of the mammary gland. J Dairy 
Sci 80(8):1851-1865. 
 
Sordillo, L. M. and K. L. Streicher. 2002. Mammary gland immunity and mastitis susceptibility. J 
Mammary Gland Biol 7(2):135-146. 
 
Souza, F. N., S. Piepers, A. M. Della Libera, M. B. Heinemann, M. M. Cerqueira, and S. De Vliegher. 2016. 
Interaction between bovine-associated coagulase-negative staphylococci species and strains and 
bovine mammary epithelial cells reflects differences in ecology and epidemiological behavior. J Dairy 
Sci 99(4):2867-2874. 
 
Stevens, M., S. Piepers, K. Supré, J. Dewulf, and S. De Vliegher. 2016. Quantification of antimicrobial 
consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, 
milk quality, and production performance. J Dairy Sci 99(3):2118-2130. 
 
Stevens, M. G. H., B. De Spiegeleer, L. Peelman, X. J. A. Boulougouris, A. V. Capuco, and C. Burvenich. 
2012. Compromised neutrophil function and bovine E. coli mastitis: Is C5a the missing link? Veterinary 
immunology and immunopathology 149(3-4):151-156. 
 
Supré, K., F. Haesebrouck, R. N. Zadoks, M. Vaneechoutte, S. Piepers, and S. De Vliegher. 2011. Some 
coagulase-negative Staphylococcus species affect udder health more than others. J Dairy Sci 
94(5):2329-2340. 
 



Chapter 1. Introduction 

48 
 

Taponen, S., H. Simojoki, M. Haveri, H. D. Larsen, and S. Pyörälä. 2006. Clinical characteristics and 
persistence of bovine mastitis caused by different species of coagulase-negative staphylococci 
identified with API or AFLP. Vet Microbiol 115(1-3):199-207. 
 
Taponen, S., J. Koort, J. Björkroth, H. Saloniemi, and S. Pyörälä. 2007. Bovine intramammary infections 
caused by coagulase-negative staphylococci may persist throughout lactation according to amplified 
fragment length polymorphism-based analysis. J Dairy Sci 90(7):3301-3307. 
 
Taponen, S., J. Björkroth, and S. Pyörälä. 2008. Coagulase-negative staphylococci isolated from bovine 
extramammary sites and intramammary infections in a single dairy herd. J Dairy Res 75(4):422-429. 
 
Taponen, S. and S. Pyörälä. 2009. Coagulase-negative staphylococci as cause of bovine mastitis-Not so 
different from Staphylococcus aureus? Vet Microbiol 134(1-2):29-36. 
 
Taponen, S., K. Supré, V. Piessens, E. Van Coillie, S. De Vliegher, and J. M. K. Koort. 2012. Staphylococcus 
agnetis sp nov., a coagulase-variable species from bovine subclinical and mild clinical mastitis. Int J Syst 
Evol Micr 62:61-65. 
 
Tassi, R., T. N. McNeilly, J. L. Fitzpatrick, M. C. Fontaine, D. Reddick, C. Ramage, M. Lutton, Y. H. 
Schukken, and R. N. Zadoks. 2013. Strain-specific pathogenicity of putative host-adapted and 
nonadapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96(8):5129-5145. 
 
Tenhagen, B. A., G. Köster, J. Wallmann, and W. Heuwieser. 2006. Prevalence of mastitis pathogens 
and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci 
89(7), 2542-2551. 
 
Thorberg, B. M., M. L. Danielsson-Tham, U. Emanuelson, and K. P. Waller. 2009. Bovine subclinical 
mastitis caused by different types of coagulase-negative staphylococci. J Dairy Sci 92(10):4962-4970. 
 
Timms, L. L. and L. H. Schultz. 1987. Dynamics and Significance of Coagulase-Negative Staphylococcal 
Intramammary Infections. J Dairy Sci 70(12):2648-2657. 
 
Tomazi, T., J. L. Gonalves, J. R. Barreiro, M. A. Arcari, and M. V. dos Santos. 2015. Bovine subclinical 
intramammary infection caused by coagulase-negative staphylococci increases somatic cell count but 
has no effect on milk yield or composition. J Dairy Sci 98(5):3071-3078. 
 
Vandeputte-Van Messom, G., Burvenich, C., Roets, E., Massart-Leën, A. M., Heyneman, R., Kremer, W. 
D., & Brand, A. 1993. Classification of newly calved cows into moderate and severe responders to 
experimentally induced Escherichia coli mastitis. J Dairy Res 60(01), 19-29. 
 
Van Dorp, T. E., J. C. M. Dekkers, S. W. Martin, and J. P. T. M. Noordhuizen. 1998. Genetic parameters 
of health disorders, and relationships with 305-day milk yield and conformation traits of registered 
Holstein cows. J Dairy Sci 81(8):2264-2270. 
 
Van Soest, F. J., I.M. Santman-Berends, T.J. Lam, and H. Hogeveen. 2016. Failure and preventive costs 
of mastitis on Dutch dairy farms. J Dairy Sci 99(10): 8365-8374. 
 
Vanderhaeghen, W., S. Piepers, F. Leroy, E. Van Coillie, F. Haesebrouck, and S. De Vliegher. 2014. 
Invited review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species 
associated with ruminant udder health. J Dairy Sci 97(9):5275-5293. 
 



Chapter 1. Introduction 

49 
 

Vanderhaeghen, W., S. Piepers, F. Leroy, E. Van Coillie, F. Haesebrouck, and S. De Vliegher. 2015. 
Identification, typing, ecology and epidemiology of coagulase negative staphylococci associated with 
ruminants. Vet J 203(1):44-51. 
 
Vangroenweghe, F., L. Duchateau, and C. Burvenich. 2004a. Moderate inflammatory reaction during 
experimental Escherichia coli mastitis in primiparous cows. J Dairy Sci 87(4):886-895. 
 
Vangroenweghe, F., I. Lamote, and C. Burvenich. 2005. Physiology of the periparturient period and its 
relation to severity of clinical mastitis. Domestic animal Endocrinol 29(2):283-293. 
 
Vangroenweghe, F., P. Rainard, M. Paape, L. Duchateau, and C. Burvenich. 2004b. Increase of 
Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. J Dairy 
Sci 87(12):4132-4144. 
 
Vanselow, J., W. Yang, J. Herrmann, H. Zerbe, H. J. Schuberth, W. Petzl, W. Tomek, and H. M. Seyfert. 
2006. DNA-remethylation around a STAT5-binding enhancer in the alpha S1-casein promoter is 
associated with abrupt shutdown of alpha S1-casein synthesis during acute mastitis. J Mol Endocrinol 
37(3):463-477. 
 
Van Werven, T., E. N. NoordhuizenStassen, A. J. J. M. Daemen, Y. H. Schukken, A. Brand, and C. 
Burvenich. 1997. Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of 
CD11/CD18 receptors and their predictive capacity on the outcome of mastitis induced in dairy cows 
with Escherichia coli. J Dairy Sci 80(1):67-74. 
 
Verbeke, J., S. Piepers, K. Supré, & S. De Vliegher. 2014. Pathogen-specific incidence rate of clinical 
mastitis in Flemish dairy herds, severity, and association with herd hygiene. J Dairy Sci 97(11), 6926-
6934. 
 
Waller, K. P., A. Aspan, A. Nyman, Y. Persson, and U. G. Andersson. 2011. CNS species and antimicrobial 
resistance in clinical and subclinical bovine mastitis. Vet Microbiol 152(1-2):112-116. 
 
Wallis, M. 1974. Primary Structure of Bovine Prolactin. Febs Lett 44(2):205-208. 
 
Watts, J. L. 1988. Etiological Agents of Bovine Mastitis. Vet Microbiol 16(1):41-66. 
 
Weaver, S. R. and L. L. Hernandez. 2016. Autocrine-paracrine regulation of the mammary gland. J Dairy 
Sci 99(1):842-853. 
 
Wellnitz, O., Baumert, A., Saudenowa, M., & Bruckmaier, R. M. 2010. Immune response of bovine milk 
somatic cells to endotoxin in healthy quarters with normal and very low cell counts. J Dairy Res 77(04), 
452-459. 
 
Wetteman, R. P. and H. A. Tucker. 1974. Relationship of Ambient-Temperature to Serum Prolactin in 
Heifers. P Soc Exp Biol Med 146(3):908-911. 
 
White, D. G., R. J. Harmon, J. E. S. Matos, and B. E. Langlois. 1989. Isolation and Identification of 
Coagulase-Negative Staphylococcus Species from Bovine Body Sites and Streak Canals of Nulliparous 
Heifers. J Dairy Sci 72(7):1886-1892. 
 
Wilde, C. J. and M. Peaker. 1990. Autocrine Control in Milk Secretion. J Agr Sci 114:235-238. 
 



Chapter 1. Introduction 

50 
 

Winter, P., F. Schilcher, K. Fuchs, and I. G. Colditz. 2003. Dynamics of experimentally induced 
Staphylococcus epidermidis mastitis in East Friesian milk ewes. J Dairy Res 70(2):157-164. 
 
Wojdak-Maksymiec, K., J. Szyda, and T. Strabel. 2013. Parity-dependent association between TNF-
alpha and LTF gene polymorphisms and clinical mastitis in dairy cattle. Bmc Vet Res 9. 
 
Zadoks, R. N., J. R. Middleton, S. McDougall, J. Katholm, and Y. H. Schukken. 2011. Molecular 
Epidemiology of Mastitis Pathogens of Dairy Cattle and Comparative Relevance to Humans. J 
Mammary Gland Biol 16(4):357-372. 
 
Zadoks, R. N. and Y. H. Schukken. 2006. Use of molecular epidemiology in veterinary practice. Vet Clin 
N Am-Food A 22(1):229-+. 
 
Zhao, X. and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis: causes and control. J 
Anim Sci 86(13 Suppl):57-65. 
  



Chapter 1. Introduction 

51 
 



 

52 
 

 

Chapter 2 

Aims of the thesis  

 



Chapter 2. Aims 
 

53 
 



Chapter 2. Aims 
 

54 
 

Coagulase-negative staphylococci are a broad, heterogeneous group of bacteria that occupy a wide 

range of habitats. Certain CNS species, such as S. chromogenes, are routinely found in bovine milk, 

whereas other species, e.g. S. fleurettii, mostly occur in the environment of dairy cattle. A number of 

studies indicate that CNS-infected dairy cattle produce more milk than their non-infected herd mates, 

although the involved bacteria were never identified at the species or strain level. All in all, current 

knowledge on the host-pathogen interaction of CNS in dairy cattle is limited, and the mechanism 

behind the reported elevated milk yield in CNS-infected cattle remains unexplained at present. 

 

The general  aim of this thesis is to broaden the current knowledge on the interaction between 

primiparous cows and CNS. This work focuses on two representative species from both the 

environmental and the host-associated habitat: S. fleurettii (Photo 2.1.A) and S. chromogenes, 

respectively. Staphylococcus fleurettii was selected for this research, because the species epitomizes 

the group of so-called environmental CNS. Staphylococcus chromogenes, on the other hand, is both 

part of the normal microflora, and the most prevalent species in CNS mastitis. Therefore, two different 

strains will be considered in this work; one isolated from the left hind quarter of a multiparous cow 

with a persistent IMI lasting more than 300 days (Photo 2.1.B), and another from the teat apex of a 

heifer, which is able to inhibit the growth of mastitis pathogens under laboratory conditions (Photo 

2.1.C). In light of the apparent increased milk yield in CNS-infected cows, this thesis will also examine 

the role of PRL in CNS mastitis, as a potential autocrine lactation hormone and immunomodulatory 

factor. Heifers in mid-lactation are used as a study model, since the prevalence of CNS IMI appears to 

be higher in primiparous cows than in multiparous cows. We specifically selected heifers in mid-

lactation, to circumvent the periparturient immunosuppression seen in dairy cattle.  
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 A B C 

 

Photo 2.1. The three strains used in this thesis plated on esculin-blood agar: Staphylococcus fleurettii 

(A), Staphylococcus chromogenes from a persistent intramammary infection (B) and S. chromogenes 

from the teat apex of a heifer (C).  

 

The following specific research questions were addressed: 

 Do host-associated CNS species (i.e. S. chromogenes) evoke a different local host response in 

the mammary glands of primiparous cows than environmental CNS species (i.e. S. fleurettii)? 

(Chapter 3). 

 Do different strains of S. chromogenes from varying habitats (isolated from either extra- or 

intramammary sites) evoke a different local host response in the mammary glands of 

primiparous cows? (Chapter 3) 

 Does the milk PRL concentration increase in response to an experimental infection with S. 

chromogenes or S. fleurettii? (Chapter 4.1)  

 Can the local PRL expression in the mammary gland be increased by an experimental infection 

with S. chromogenes or S. fleurettii? (Chapter 4.2)
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3.1 Abstract 

 

Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The 

CNS inhabit various ecological habitats, ranging between the environment and the host. In order to 

obtain a better insight into the host response, an experimental infection was carried out in eight 

healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain 

originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating 

from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated 

from a heifer’s teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 

1.0 x 106 colony forming units of each bacterial strain (one strain per udder quarter), whereas the 

remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local 

host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the 

strain was eliminated within 12h. The two S. chromogenes strains were shed in larger numbers for a 

longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after 

inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest 

that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, 

not all S. chromogenes strains induce the same local host response. 

 

Key words: coagulase-negative staphylococci, dairy heifer, mastitis, host response 
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3.2 Introduction 

 

Coagulase-negative staphylococci are the principal cause of subclinical mastitis in dairy cattle (Pyörälä 

and Taponen, 2009),  especially in primiparous cows (Sampimon et al., 2009a). The impact of CNS on 

the udder health of dairy cattle has gained more attention in the past decade. The CNS were initially 

reported as one large, uniform group of bacteria (Hogan et al., 1987; Nickerson and Boddie, 1994). 

However, thanks to recent advances in molecular identification techniques, individual CNS species 

have become easier to identify and study (Supré et al., 2009; Braem et al., 2011). Over 20 different 

CNS species have been isolated from bovine milk (Vanderhaeghen et al., 2014). Nonetheless, the 

bovine-associated CNS cover a wide range of ecological habitats, varying from essentially 

environmental species to host-adapted species (De Visscher et al., 2014). Some CNS species rarely 

occur in bovine milk, but rather thrive in the environment of the cow and the barn (e.g. air, sawdust, 

bedding, and floors) (Piessens et al., 2011). These so-called environmental CNS species include, among 

others, Staphylococcus equorum and Staphylococcus fleurettii (De Visscher et al., 2014). On the other 

end of the spectrum are the so-called host-adapted CNS species, specialized in survival in the udder 

and on the cow. Staphylococcus chromogenes is considered such a species (Fry et al., 2014), since it is 

the predominant CNS species found in milk (Waller et al.,2011; De Visscher et al., 2014). Furthermore, 

S. chromogenes is also present on the teat apex (De Vliegher et al., 2003; De Visscher et al., 2016), 

streak canal, and other extra-mammary body sites (Taponen et al., 2008). Staphylococcus 

chromogenes is one of the main CNS species involved in IMI (Sampimon et al., 2009; Park et al., 2011). 

In general, S. chromogenes causes a minor to moderate increase in the milk somatic cell count (SCC)  

(Tomazi et al., 2015), although one study noted a rise in SCC comparable to that of S. aureus infections 

(Supré et al., 2011). On the other hand, teat apex colonization with S. chromogenes has also been 

associated with a lower quarter milk SCC in early lactating heifers (De Vliegher et al., 2003), whereas 

some strains can even inhibit the growth of other mastitis pathogens in vitro (De Vliegher et al., 2004).  
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Epidemiological data suggest that not all CNS species exhibit the same degree of pathogenicity (Supré 

et al., 2011), but little is known about the different host responses caused by an IMI with 

representatives of the supposed environmental or host-adapted species (or strains). Therefore, the 

first objective of the research was to examine the host response and bacterial shedding following an 

experimental intramammary inoculation in heifers with one distinctive host-adapted CNS species and 

another typical environmental one (S. chromogenes versus S. fleurettii). The second objective was to 

evaluate whether the elicited host response and bacterial shedding differs between strains belonging 

to the same species, in this case S. chromogenes. 

 

3.3 Materials and Methods  

 

The study is in compliance with the European Directive 2010/63/EU, and was approved by the Ethics 

Committee of the Faculty of Veterinary Medicine, Ghent University (EC2012/73).  

 

Animals 

The experiment was performed at the research dairy farm of Ghent University (Biocentrum Agri-Vet, 

Melle, Belgium). Eight clinically healthy Holstein-Friesian heifers in mid-lactation (78 – 278 days in milk) 

were selected. Heifers with a previous history of clinical mastitis or persistent high SCC (>150,000 

cells/mL) on Dairy Herd Improvement records were not included. To increase the likelihood that all 

quarters were free from IMI, the animals received 15 days before the start of the experiment 3 daily 

intramuscular injections of 10 g penethamate hydroiodide (Mamyzin, Boehringer Ingelheim GmbH) 

combined with an intramammary treatment of 200 mg cephalexin and 100,000 I.U. kanamycin 

(Ubrolexin, Boehringer Ingelheim GmbH) in each quarter for 2 days. The heifers were moved to a 

separate tie-stall barn 48h prior to inoculation, and kept there until the end of the experiment (i.e. 78h 

after inoculation). The heifers were milked twice a day, at 08:00h and 20:00h. After milking, the teats 
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were dipped with an iodine-based barrier dip (Io-Shield, Ecolab, Northwich, UK) and before sampling, 

the teats were cleansed with a lactic acid based foam product (Oxy-Foam D, Ecolab, Northwich, UK).  

 

Study design 

All heifers were challenged following a split-udder design (Piccart et al., 2015; Verbeke et al., 2015). 

Three quarters of each heifer were simultaneously inoculated with 1.0 x 106 colony forming units (CFU) 

of the bacterial strains (one strain per udder quarter) in 5 mL sterile phosphate-buffered saline (PBS) 

using a sterile polyvinyl chloride catheter of 18 cm. The remaining quarter was inoculated in the same 

manner with 5 mL sterile PBS (Thermo Scientific, Waltham, USA) and served as a control. All inocula 

were directly infused into the gland cistern. To ensure a balanced distribution between the quarter 

positions, the inocula were allocated to the quarters using restricted randomization. The heifers were 

examined clinically and their rectal temperature was registered at each sampling.  

 

Inocula 

Three different CNS strains were used in this experimental challenge (Table 3.1). Two field strains of S. 

chromogenes were used; one isolated from the teat apex of a heifer with no signs of mastitis (S. 

chromogenes TA) (De Vliegher et al., 2004) and the other from the left hind quarter of a multiparous 

cow with a persistent, intramammary infection lasting over 300 days (S. chromogenes IM) (Piessens et 

al., 2011). Although no genotypic strain typing was performed, there were notable phenotypic 

differences between both S. chromogenes isolates (Table 3.1). For instance, the bacterial inhibitory 

capacities of the present strains were tested against a field isolate of S. aureus in a previously described 

modified cross-streaking culture (De Vliegher et al., 2004). Staphylococcus chromogenes TA is able to 

inhibit the growth of S. aureus, whereas S. chromogenes IM is not. Both strains elicit a different 

immune response in mice (Breyne et al., 2015) and interact differently with MEC (Souza et al., 2016). 

The third CNS strain used in this study was S. fleurettii (Piessens et al., 2011b). The strains were initially 

stored at -80°C (Microbank, Pro-Lab Diagnostics). A growth curve was set up for each strain by 
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incubating one colony in brain-heart infusion broth at 37°C. The bacteria were collected during the late 

logarithmic growth phase. The bacteria were washed 3 times in sterile PBS by centrifugation at 4,000 

x g for 10 minutes. The pellet was resuspended in PBS with 15% (v/v) glycerol and stored at -80°C. To 

confirm the viable bacterial count in the stock solution, serial dilutions were plated on tryptic soy agar 

(TSA, Oxoid, Basingstoke, UK). An infection dose of 1.0 x 106 CFU was selected based on the results of 

a preliminary challenge trial to induce subclinical mastitis rather than clinical mastitis (Verbeke et al., 

2015b). 

 

Table 3.1 The characteristics of the coagulase-negative staphylococcal isolates used in this study. 

Strain Origin 

Colony characteristics 

Author 
Color Shape Consistency 

In vitro 
growth 

inhibition of  
S. aureus 

S. fleurettii Sawdust Grey Round Creamy No 
Piessens et al. 

(2011) 

S. chromogenes 
(teat apex; TA) 

Heifer’s teat 
apex 

Beige Round Creamy Yes 
De Vliegher et al. 

(2004)  

S. chromogenes 
(intramammary; 

IM) 

Intramammary 
infection in a 
cow lasting > 

300 days 

Orange Round Creamy No 
Piessens et al. 

(2011) 

 

 

Milk samples  

Collection. Milk samples were collected aseptically from the CNS-challenged and control quarters in 

duplicate 24h before inoculation (b.i.) and at 0, 4, 6, 9, 12, 18, 24, 28, 32, 36, 48, 54, 60, 72, and 78h 

post-inoculation (p.i.) for microbiology, SCC and cytokine measurements. The apoptosis and necrosis 

of polymorphonuclear neutrophil leukocytes (PMN) was determined 24h b.i. and at 0, 6, 12, 18, 24, 48 

and 72h p.i.. Additional milk samples were collected after the actual experiment, at 144 and 216h p.i., 

to evaluate the progression of bacterial shedding and quarter milk SCC. Milk samples were kept on ice 
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during transportation to the laboratory of Mastitis and Milk Quality Research Lab (Faculty of Veterinary 

Medicine, Ghent University, Merelbeke, Belgium).  

 

Microbiology and somatic cell counts. The SCC was determined by a DeLaval Cell counter (DeLaval, 

Tumba, Sweden). The milk samples (10 µL) were plated in duplicate on aesculin-blood and MacConkey 

agar (Oxoid, Basingstoke, UK) according to the guidelines of the National Mastitis Council (Hogan et 

al., 1999). The plates were incubated at 37°C in aerobic conditions, and examined after 24 and 48h. 

Additionally, serial dilutions of the milk were plated in duplicate on TSA for counting the CFU. Every 

morphologically dissimilar colony type on TSA was collected, and subjected to Gram staining, together 

with catalase, DNAse and tube coagulase testing (i.e. the routine identification methods for CNS). One 

colony of each morphologically dissimilar Gram-positive, catalase-positive and coagulase-negative 

isolate was stored at -80°C (Microbank, Pro-Lab Diagnostics, Richmond Hill, Canada) and subjected to 

transfer RNA-intergenic spacer PCR (tDNA-PCR) for further identification at the species level (Supré et 

al., 2009). Only if the isolates could not be identified using tDNA-PCR, rpoB sequencing was carried out 

(Mollet et al., 1997).  

 

Apoptosis and necrosis of milk PMN. The apoptosis and necrosis of the milk PMN, considered an 

indirect indicator of their impaired functionality (Mehrzad et al., 2004), were determined 24h b.i. and 

at 0, 6, 12, 18, 24, 48 and 72h p.i. by means of flow cytometry (Piepers et al., 2009). This dual staining 

technique with annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) differentiates the 

(early) apoptotic (FITC+/PI-) and necrotic (FITC+/PI+) PMN from the intact, viable cells (FITC-/PI-). The 

raw data were acquired and analyzed with FACSDiva Software (BD Biosciences, San Jose, USA).  

 

Cytokine measurement. The cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-

α), together with the chemokine interleukin 8 (IL-8) were measured. First, the fresh milk samples were 

centrifuged at 16,000 x g for 30 minutes at 4°C (Centrifuge 5418R, Eppendorf, Hamburg Germany). The 
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fat-depleted whey fraction was stored at -80°C. The concentration of IL-1β, IL-8 and TNF-α was 

determined by sandwich ELISA. A commercially available kit was used to measure IL-8 (DY208, R&D 

Systems, Minneapolis, USA) and IL-1β (ESS0027, Thermo Scientific, Waltham, USA) according to the 

manufacturer’s instructions. The TNF-α measurement was based on another study (Simojoki et al., 

2011) (MCA2334, PBP005 and MCA2335B, AbD Serotech, Oxford, UK). 

 

3.4 Statistical analysis 

 

The entire data of one quarter were not included in the final analysis due to an elevated SCC at the 

moment of inoculation. The data of another quarter were also omitted from the analysis due to a 

naturally occurring IMI with Staphylococcus epidermidis, but only 12h after the inoculation. Linear 

mixed regression analysis was used to model the relationship between the inoculum (categorical 

variable: control, S. fleurettii, S. chromogenes IM and TA), the time of sampling (continuous variable: 

from 4h until 78h p.i.), the quadratic term of time of sampling (continuous variable) and the different 

outcome variables (bacterial count, SCC, % apoptotic milk PMN, and % necrotic milk PMN) (PROC 

MIXED, SAS 9.4, SAS Institute Inc.). The bacterial count was log10-transformed, whereas the % apoptotic 

PMN, % necrotic PMN, and SCC/µL underwent a natural logarithmic transformation to obtain a 

normalized distribution. Heifer and quarter were incorporated as random effects in every model to 

account for the correlated nature of the data. Compound symmetry was selected as a covariance 

pattern to correct for the clustering of multiple samplings per quarter. To emphasize the response 

after challenge, measurements prior to inoculation were not included in the analysis. The interaction 

between inoculum and time of sampling was tested each time, and kept in the model when significant. 

The significance level was set at P ≤ 0.05. For pairwise comparisons between the different bacterial 

strains and control, a Bonferroni adjustment was used.  
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3.5 Results 

 

Clinical parameters  

None of the inoculated quarters showed physical signs of clinical mastitis during the trial. A short 

period of fever was observed in three heifers though (> 39.5°C and < 40.6°C) between 9h and 12h p.i..  

  

Somatic cell count  

The milk SCC was significantly higher in the quarters inoculated with any of the isolates compared to 

the control quarters (adjusted P < 0.01; Table 3.2). No significant difference was found between the 

SCC response in quarters challenged with S. fleurettii, and those challenged with either S. chromogenes 

strain (S. chromogenes IM and TA: adjusted P = 0.43 and P = 1.00). However, the SCC tended to be 

more pronounced in the quarters challenged with S. chromogenes IM than with S. chromogenes TA 

(adjusted P = 0.06). The evolution over time of the quarter milk SCC after challenge differed 

significantly between quarters (interaction inoculum x time of sampling: P < 0.01; Table 3.2). After 78h, 

the SCC continued to decline in the challenged quarters (Figure 3.1).  

 

Bacterial shedding 

The control quarters remained culture-negative throughout the trial. The bacterial shedding was 

significantly higher in the S. chromogenes TA- and S. chromogenes IM-challenged quarters than in the 

control quarters (adjusted P-values < 0.01). It was significantly more pronounced in S. chromogenes 

IM than S. chromogenes TA (adjusted P ≤ 0.01). The bacterial shedding was so low in the S. fleurettii-

inoculated quarters, that there was no significant difference with the control quarters (adjusted P-

value = 0.25). The evolution over time of bacterial shedding differed significantly between quarters 

(interaction inoculum x time of sampling: P < 0.01; Table 3.2). In each cow, S. fleurettii was eliminated 

from the mammary gland within 12h, whereas S. chromogenes IM and TA remained present for a 

longer period of time (Figure 3.2). No CNS were found in the inoculated quarters after 144h p.i. though.  
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Milk PMN apoptosis and necrosis  

The highest proportion of apoptotic and necrotic PMN was found in the control quarters. Compared 

to the control quarters, only the S. fleurettii- and S. chromogenes IM-challenged quarters yielded 

significantly less apoptotic milk PMN (adjusted P-value < 0.01 and 0.02 respectively; Table 3.2). No 

significant difference was found in the number of apoptotic PMN between the control quarters and S. 

chromogenes TA (adjusted P-value = 0.13). Staphylococcus fleurettii was the only strain that resulted 

in significantly less necrotic PMN than in the control quarters (pairwise comparison: P = 0.03; Table 

3.2). No significant differences were found when comparing the different CNS isolates with each other 

in terms of PMN apoptosis or necrosis. The evolution over time of the proportion of apoptotic and 

necrotic PMN differed significantly between quarters though (interaction inoculum x time of sampling: 

P = 0.02 and P = 0.01; Table 3.2). It should also be noted that the proportion of apoptotic and necrotic 

PMN was reduced in all quarters immediately before the inoculation, compared to 24h previously 

(Figure 3.3 and Figure 3.4). 

 

Milk IL-1β, IL-8 and TNF-α 

The IL-8 and IL-1β ELISA had an intra- and inter-assay coefficient of variation (CV) of < 6% and < 15%, 

respectively. The TNF-α ELISA showed lower precision (intra- and inter CV: 13% and 28%, respectively). 

Since the inoculation of the CNS strains generally elicited a minimal, or non-detectable cytokine 

response, the IL-1β, IL-8 and TNF-α levels were not statistically analyzed. Instead, descriptive statistics 

were generated. In the S. fleurettii- and S. chromogenes IM-challenged quarters, a low, transient IL-8 

response (< 30 pg/mL) was observed within 28h after inoculation (Figure 3.5). These quarters also 

showed limited, erratic TNF-α peaks (< 10 ng/mL; Figure 3.6). Staphylococcus chromogenes IM caused 

a higher, long-lasting IL-1β response compared to the TNF-α response, starting at 12h p.i. (Figure 3.7). 

Staphylococcus chromogenes TA did not evoke a detectable IL-8 response, but the strain caused a 

major increase in IL-1β (peaking at 300 pg/mL 60h p.i.) in one heifer. This particular heifer was also the 

only animal that demonstrated a TNF-α reaction to S. chromogenes TA peaking at 60 h p.i.. Notably, 
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the data of the S. fleurettii quarter of the same heifer were omitted from the analysis 12h p.i. due to 

the occurrence of a spontaneous, natural infection in that quarter. Another heifer showed no 

discernable cytokine response in any challenged quarter. No cytokines were found in the control 

quarters. 
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Table 3.2. Linear mixed regression model for somatic cell count (Ln SCC), bacterial count (log[CFU/ml+1]), apoptotic neutrophils (Ln Apoptotic PMN) and 

necrotic neutrophils (Ln Necrotic PMN) in quarter milk after experimental infection with Staphylococcus fleurettii, the teat apex strain of S. chromogenes (TA), 

the intramammary strain of S. chromogenes (IM) and phosphate-buffered saline (control).  

 

Predictor Variables Ln SCC (cells/µL)  Log(CFU/ml + 1)  Ln Apoptotic PMN (%)  Ln Necrotic PMN (%) 

β 1 SE2 LSM3 P  β SE LSM P  β SE LSM P  β SE LSM P 

Intercept 3.43 0.34 - <0.014  0.52 0.16 - <0.014  3.16 0.19 - <0.014  2.72 0.11 - <0.014 

Inoculum 

Control 

S. fleurettii 

S. chromogenes TA 

S. chromogenes IM 

 

 

Ref.5 

 

- 

 

 

3.91 

6.07 

5.78 

6.71 

<0.014 

- 

<0.016 

<0.016 

<0.016 

  

Ref. 

 

 

- 

 

 

 

-0.03 

0.22 

0.50 

0.89 

<0.014 

- 

0.256 

<0.016 

<0.016 

  

Ref. 

 

 

- 

 

 

 

3.48 

2.85 

3.06 

2.92 

<0.014 

- 

0.016 

0.136 

0.026 

  

Ref. 

 

 

- 

 

 

3.15 

2.79 

2.90 

2.85 

<0.014 

- 

0.036 

0.296 

0.106 

Time of sampling 0.06 0.01 - <0.014  -0.05 0.01 - <0.014  0.01 0.00 - <0.014  0.02 0.15 - <0.014 

Quadratic term of 

time of sampling 

0.00 0.00 - <0.014  0.00 0.00 - <0.014     NS7     NS 

Inoculum x time of 

sampling 

- - - <0.014  - - - <0.014  - - - 0.024  - - - 0.014 

1 Regression coefficient; 2 Standard error; 3 Least square means; 4 P-value for overall effect; 5 Reference; 6 Bonferroni-adjusted P-value for comparing different inocula with control;  

7 Not significant. 
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Figure 3.1. The average somatic cell count (SCC) (expressed as a natural logarithm of SCC; Ln SCC/µL) 

in quarter milk after intramammary challenge of 8 dairy heifers with  Staphylococcus fleurettii, S. 

chromogenes TA (teat apex strain), S. chromogenes IM (intramammary strain) and phosphate-buffered 

saline (control). The error bars represent the standard error of the mean (+ SEM).
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Figure 3.2. The average bacterial count Log CFU/mL in quarter milk following experimental 

intramammary challenge of 8 dairy heifers with Staphylococcus fleurettii, S. chromogenes TA (teat apex 

strain), S. chromogenes IM (intramammary strain) and phosphate-buffered saline (control). The error 

bars represent the standard error of the mean (+ SEM). The control quarters remained culturally 

negative throughout the study. 
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Figure 3.3. Proportion of apoptotic neutrophils (% Apoptotic PMN) in quarter milk following 

experimental intramammary challenge of 8 dairy heifers with Staphylococcus fleurettii, S. chromogenes 

TA (teat apex strain), S. chromogenes IM (intramammary strain) and phosphate-buffered saline 

(control). The error bars represent the standard error of the mean (+ SEM). 
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Figure 3.4. Proportion of necrotic neutrophils (% Necrotic PMN) in quarter milk following experimental 

intramammary challenge of 8 dairy heifers with Staphylococcus fleurettii, S. chromogenes TA (teat apex 

strain), S. chromogenes IM (intramammary strain) and phosphate-buffered saline (control). The error 

bars represent the standard error of the mean (+ SEM). 
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Figure 3.5. The average concentration of IL-8 (pg/mL) in quarter milk following experimental 

intramammary challenge of 8 dairy heifers with Staphylococcus fleurettii, S. chromogenes TA (teat apex 

strain), S. chromogenes IM (intramammary strain) and phosphate-buffered saline (control). The error 

bars represent the standard error of the mean (+ SEM). IL-8 was not detected in the control quarters. 
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Figure 3.6.  The average concentration of TNF-α (ng/mL) in quarter milk following experimental 

intramammary challenge of 8 dairy heifers with Staphylococcus fleurettii, S. chromogenes TA (teat apex 

strain), S. chromogenes IM (intramammary strain) and phosphate-buffered saline (control). The error 

bars represent the standard error of the mean (+ SEM). TNF-α was not detected in the control quarters.  
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Figure 3.7. The average concentration of IL-1β (pg/mL) in quarter milk following experimental 

intramammary challenge of 8 dairy heifers with Staphylococcus fleurettii, S. chromogenes TA (teat apex 

strain), S. chromogenes IM (intramammary strain) and phosphate-buffered saline (control). The error 

bars represent the standard error of the mean (+ SEM). IL-1β was not detected in the control quarters. 
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3.6 Discussion 

 

First, we wanted to compare the host responses in dairy cattle with subclinical mastitis caused by 

representative isolates of either an “environmental” or a “host-associated” CNS species. For this 

purpose, S. fleurettii was selected as the environmental species, and S. chromogenes as the host-

adapted species. The second objective was to study the host’s reaction to different strains of the same 

species, in this case S. chromogenes. Due to the split-udder design, which partially circumvents variation 

between heifers, the host response could be studied using only a limited number of experimental 

animals. In contrast to other experimental CNS trials (Simojoki et al., 2009; Simojoki et al., 2011), all CNS 

species found in the milk samples were identified with tDNA-PCR, in addition to conventional culturing 

techniques. Through the molecular identification of the CNS species, a natural infection with S. 

epidermidis was detected. The data of this particular quarter were subsequently discarded from the 

analysis.  

Based on the changes in SCC and bacterial shedding, all quarters were successfully challenged with the 

different CNS strains, whereas the control quarters remained culture-negative throughout the entire 

trial. Staphylococcus fleurettii was fairly quickly (i.e. within 12h) eliminated from the mammary gland, 

and the bacterial shedding was lowest for this species. The latter finding was also observed in an 

experimental trial in mice using the same CNS isolates (Breyne et al., 2015). Both S. chromogenes strains, 

on the other hand, persisted in the mammary gland for at least 3 days, accentuating the host-adapted 

nature of this species. Altogether, this is still a short period, considering that S. chromogenes IM was 

originally isolated from a cow suffering from a persistent IMI lasting over 300 days (Piessens et al., 2011). 

The bacterial count of S. chromogenes TA was significantly lower than S. chromogenes IM though. In 

fact, S. chromogenes IM seemed to be the only strain able to multiply in the mammary gland in the first 

6 hours after inoculation. The S. chromogenes IM strain also elicited a significantly larger increase in SCC 

than S. chromogenes TA. The lower cellular response in the S. chromogenes TA-infected quarters could 

possibly explain the slower bacterial clearance. These results might indicate a difference in pathogenicity 
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and in vivo growth capacity between the different strains. Interestingly, in the murine experimental trial, 

no differences in bacteriological shedding nor in neutrophil influx were observed between S. 

chromogenes IM and S. chromogenes TA (Breyne et al., 2015). 

The intramammary challenge had a significant effect on the apoptosis of PMN in milk, which was likely 

the result of an influx of young, activated PMN from the blood stream to the site of infection along with 

a potentially delayed PMN apoptosis. Aging PMN eventually undergo apoptosis (or programmed cell 

death), impairing the functionality of the cells (Whyte et al., 1993; Van Oostveldt et al., 2002). Delayed 

apoptosis might therefore contribute to a faster clearing of the bacterial infection (Mehrzad et al., 2004). 

However, PMN apoptosis and subsequent phagocytosis by macrophages is a physiological necessity to 

curb unbridled inflammatory responses that result in tissue damage (Whyte et al., 1993). Since the 

lactation stage and parity may affect the survival of PMN (Van Oostveldt et al., 2001; Mehrzad et al., 

2004), only mid-lactation heifers were used in this experiment, allowing us to study the effect of the 

infection (Boutet et al., 2004). Staphylococcus fleurettii evoked the greatest decrease in PMN apoptosis 

during the first 48 p.i., at least partly explaining the higher (albeit insignificant) SCC increase compared 

to S. chromogenes TA. Still, the PMN apoptosis was already decreased in all quarters right before the 

inoculation. The pre-inoculation drop in apoptosis might have been caused by stress (Liles et al., 1995) 

associated with the beginning the experiment, although this could not be confirmed. A longer 

adaptation period (> 48h) in the tie-stall facility prior to the inoculation might have mitigated these 

findings.  

Pro-inflammatory cytokines, such as TNF-α and IL-1β, are involved in a plethora of immune functions on 

a local and systemic level (e.g. the endothelial adhesion of immune cells, induction of fever or the 

production of other cytokines) (Bannerman et al., 2004a; Schukken et al., 2011). The further recruitment 

of PMN to the infection site is mediated by IL-8 and other chemokines (Harada et al., 1994). In contrast 

to E. coli  infections, S. aureus mastitis does not evoke a significant IL-8 or TNF-α response, which might 

partially explain the chronic nature of S. aureus IMI (Riollet et al., 2000; Bannerman et al., 2004b). As 

demonstrated in previous research (Simojoki et al., 2011), other CNS species (S. epidermidis and 
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Staphylococcus simulans) appear to induce a clear pro-inflammatory response with TNF-α, IL-8 and IL-

1β nonetheless.  

In this study, S. chromogenes IM induced the largest overall pro-inflammatory cytokine response, 

starting with an increase in IL-8 at 9h p.i.. The production of IL-1β occurred later at 12h p.i., but lasted 

longer (> 78h p.i.). The IL-1β response was less pronounced in the S. fleurettii-challenged quarters than 

in the S. chromogenes IM quarters. The IL-8 response induced by these strains seemed to be smaller 

than the response described for S. epidermidis or S. simulans (Simojoki et al., 2011). However, a higher 

infection dose was used in the latter study. Furthermore, the authors transformed the IL-8 data by 

multiplying it by 100, since they observed that the human IL-8 ELISA measures bovine IL-8 100-times less 

efficiently. That might explain why their IL-8 results fall in the ng/mL range, whereas our results are 

found in the pg/mL range. Also, we did not find a distinction between early (peaking at 12h) or late 

(peaking at 30h) IL-8 responders as seen in (Simojoki et al., 2011). In fact, none of our animals displayed 

any IL-8 response after 30 h p.i.. 

Staphylococcus chromogenes TA did not elicit any detectable cytokine response, except in one particular 

heifer. In a similar murine infection trial, some mice displayed a disproportionate reaction to S. 

chromogenes TA as well, resulting in a high IL-1β response and an intense clinical reaction (Breyne et al., 

2015). Another heifer showed no cytokine response at all to any CNS strain. Everything considered, the 

pro-inflammatory cytokine response appeared to vary greatly between individual animals in our 

research.  

As discussed in other research (Sipka et al., 2014), the split udder design used in this experiment is 

founded on within-cow comparisons. On the one hand, this study design partly circumvents high 

variation between individual animals, and reduces the needed number of research animals substantially. 

On the other hand, it assumes that all mammary quarters are completely separate anatomical entities 

within the udder. This is not necessarily the case, as demonstrated by previous research that illustrated 

that the immune response of the neighboring (uninfected) quarters is affected by an experimental 

challenge with major mastitis pathogens (Jensen et al., 2013). This should be kept in mind when 
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interpreting the results of this study. Nonetheless, we were still able to demonstrate different host 

responses to each CNS strain while using the split-udder design. 

None of the heifers in our study showed any local signs of clinical mastitis (such as clots in the milk or 

swelling of the quarters), although 3 animals experienced a brief bout of fever in the first 12h after 

inoculation. In a similar challenge study with S. chromogenes, the heifers only developed very mild 

clinical signs of inflammation, even though the inoculation dose was more than double ours (2.1 x 106 

CFU versus 1.0 x 106 CFU) (Simojoki et al., 2009). In the preliminary challenge trial conducted prior to 

this study (Verbeke et al., 2015) higher doses of the same S. chromogenes strain evoked a more 

pronounced immune response as opposed to lower doses with the appearance of mild clinical signs at 

a dose of 2 x 106 CFU. Observational research has demonstrated that approximately half of all cows with 

an intramammary S. chromogenes infection showed clinical signs of mastitis (Taponen et al., 2006; 

Waller et al., 2011). Notwithstanding a different infection dose or host-immune status, this could 

suggest that not all S. chromogenes strains are equally pathogenic. This is in accordance with S. aureus, 

where certain strains have also been linked to a more severe clinical outcome, with a reduced 

persistence in the mammary gland (Haveri et al., 2005). When extrapolating the current results to 

practice, it should be noted that natural infection doses might vary from doses used here, and that the 

experimental strains were directly infused into the teat cistern (as opposed to natural infections, where 

CNS have to overcome the teat barrier.) The results of our experimental trial with dairy heifers should 

be interpreted with caution, since the outcome of an IMI may vary with parity, lactation stage and other 

cow factors. 

 

3.7 Conclusion 

 

Even in case of large inoculation doses, bovine-associated S. chromogenes and environmental S. 

fleurettii strains trigger a similar, relatively mild local response. The environmental CNS species, S. 

fleurettii, evokes a profound cellular response in dairy heifers nonetheless, akin to the host-adapted 
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species S. chromogenes. However, S. fleurettii is eliminated more rapidly from the mammary gland than 

S. chromogenes. This might indicate that certain bovine-associated CNS species, like S. chromogenes, 

are better able to withstand and thrive in the environment of the mammary gland. Still, the present in 

vivo study also suggests that not all S. chromogenes strains exhibit the same degree of pathogenicity. 

The clinical outcome of a natural S. chromogenes mastitis might therefore not only depend on the 

infection pressure and the resistance of the cow, but also on the pathogenicity of the particular strain. 
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4.1.1  Abstract 

 
Coagulase-negative staphylococci (CNS) are the most common bacteria involved in subclinical mastitis 

in dairy cows. Remarkably, CNS-infected dairy heifers produce more milk than uninfected heifers. 

Because the lactation hormone prolactin (PRL) is also involved in mammary gland immunity, we 

investigated the milk PRL response and the mammary quarter milk yield following experimental CNS 

challenge. Eight healthy Holstein-Friesian heifers in mid-lactation were experimentally infected using 

a split-udder design with 3 different CNS strains: one Staphylococcus fleurettii (from sawdust bedding) 

and 2 Staphylococcus chromogenes strains (one isolate from a teat apex, the other isolate from a 

chronic intramammary infection). Three mammary quarters per heifer were simultaneously inoculated 

with 1.0 × 106 CFU, whereas the remaining mammary quarter was infused with sterile phosphate-

buffered saline, serving as a control. An existing radioimmunoassay was modified, validated, and used 

to measure PRL frozen-thawed milk at various time points until 78 h after challenge. The mean milk 

PRL level tended to be higher in the CNS-challenged mammary quarters compared with the control 

mammary quarters (7.56 and 6.85 ng/mL, respectively). The increase in PRL over time was significantly 

greater in the CNS-challenged mammary quarters than in the control mammary quarters. However, 

no difference was found in the PRL response when comparing each individual CNS strain with the 

control mammary quarters. The mean mammary quarter milk yield tended to be lower in the CNS-

infected mammary quarters than in the control mammary quarters (1.73 and 1.98 kg per milking, 

respectively). The greatest milk loss occurred in the mammary quarters challenged with the 

intramammary strain of S. chromogenes. Future observational studies are needed to elucidate the 

relation between PRL, the milk yield, and the inflammatory condition, or infection status, of the 

mammary gland. 

 

Key words: coagulase-negative staphylococci, dairy heifer, experimental mastitis, prolactin 
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4.1.2  Introduction 

 

Bovine mastitis, an inflammation of the mammary gland, creates a huge economic burden on the 

global dairy industry (Bradley, 2002). Coagulase-negative staphylococci are the predominant group of 

bacteria involved in subclinical mastitis (Pyörälä and Taponen, 2009) and can cause clinical mastitis 

with mild symptoms (Taponen et al., 2006). Thus far, more than 10 species of CNS have been isolated 

from bovine milk (Piessens et al., 2011) with documented species-specific differences in putative 

virulence (Vanderhaeghen et al., 2014), ecology, and epidemiology (Vanderhaeghen et al., 2015). 

Contrary to what one might expect, various studies have observed a higher test-day milk yield in CNS-

infected dairy heifers and multiparous cows com- pared with noninfected cows (Compton et al., 2007; 

Schukken et al., 2009; Piepers et al., 2010). Some studies have attributed a protective effect to pre-

existing CNS IMI against IMI with more virulent mastitis pathogens (e.g. Piepers et al., 2010). A meta-

analysis could not confirm this finding in observational studies, but nonetheless revealed a pronounced 

protective effect in challenge trials (Reyher et al., 2012). Still, the positive effect on milk yield could be 

an indirect result of the reduced incidence of clinical mastitis observed in CNS-infected animals 

(Piepers et al., 2010). High-producing dairy cows might also be more susceptible to CNS IMI than low-

yielding animals (Compton et al., 2007). However, even after correcting for these factors, an 

unexplained difference in milk yield of 2.0 kg/d remained between CNS-infected and uninfected herd 

mates (Piepers et al., 2013), leaving the exact mechanism to be determined. 

Prolactin has been associated with over 300 different biological actions, including lactation and 

mammary gland development (Bole-Feysot et al., 1998). In dairy cattle, PRL is required to initiate 

(Akers et al., 1981) and maintain the milk production after parturition (Lacasse et al., 2012). The 

protein hormone also acts as a cytokine on molecular and functional levels (Goffin et al., 2002). The 

ubiquitous PRL receptor belongs to the class I cytokine receptor superfamily, which also includes the 

receptors of several interleukins and hematopoietic growth factors (Bazan, 1989; Bazan, 1990). The 

hormone promotes the activity of macrophages (Edwards et al., 1987), inhibits the apoptosis of T-
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lymphocytes caused by glucocorticoids (Krishnan et al., 2003), and stimulates the production of tumor 

necrosis factor-α and IL-12 (Brand et al., 2004). Considering the immunomodulatory actions of PRL, 

several studies have focused on its potential involvement in bovine mastitis. The periparturient PRL 

peak coincides with the principal risk period for developing mastitis (Burton et al., 2001). The hormone 

induces the in vitro synthesis of several cytokines in bovine MEC through the activation of nuclear 

factor kappa B (Boutet et al., 2007). Although the circulating PRL level is not affected by acute, clinical 

mastitis (Hockett et al., 2000; Vanselow et al., 2006), a positive correlation was found between SCC 

and PRL concentration in milk of chronically infected mammary quarters (Boutet et al., 2007). 

Because PRL is recognized as a pro-inflammatory cytokine, we hypothesize that milk PRL increases in 

response to an IMI with CNS. Furthermore, we hypothesize that the quarter milk yield (QMY) also 

increases after CNS IMI, assuming PRL stimulates the production of milk. To investigate this, an 

experimental challenge trial was set up using 8 clinically healthy, mid- lactating dairy heifers using 3 

different CNS strains. An existing radioimmunoassay for fresh milk was modified and subsequently 

validated to measure bovine PRL in frozen-thawed milk samples. To assess the epithelial integrity of 

the blood-milk barrier, the sodium, potassium, and chloride levels were also determined in milk. 

 

4.1.3 Materials and methods 

 

The study is in compliance with the European Directive 2010/63/EU and was approved by the ethical 

committee of the Faculty of Veterinary Medicine, Ghent University (EC2012/73). 

 

Animals 

The study took place between December 2012 and May 2013 at the research dairy farm of Ghent 

University (Biocentrum Agri-Vet, Melle, Belgium). Eight clinically healthy Holstein-Friesian heifers in 

mid-lactation (78– 278 DIM) were selected. Heifers with a known history of clinical mastitis or 
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persistent high SCC (>150,000 cells/mL) were excluded from the trial. Milk samples were cultured 

according to NMC guidelines 48 and 24 h before inoculation to ensure all mammary quarters were free 

from IMI (NMC, 1999). 

 

CNS Strains 

All heifers were inoculated with 2 different wild strains of Staphylococcus chromogenes and 1 

Staphylococcus fleurettii strain. The S. fleurettii isolate was recovered from sawdust bedding in a dairy 

barn (Piessens et al., 2011; Breyne et al., 2015). The first S. chromogenes strain originated from a cow 

suffering from a persistent IMI (hereafter referred to as S. chromogenes IM; Supré et al., 2011; Breyne 

et al., 2015), whereas the second S. chromogenes isolate was cultured from the teat apex of a heifer 

(hereafter referred to as S. chromogenes TA; De Vliegher et al., 2004; Breyne et al., 2015). The S. 

chromogenes TA strain has the ability to inhibit the growth of several major pathogens under 

laboratory conditions (De Vliegher et al., 2004), whereas the S. chromogenes IM strain does not. The 

2 strains also elicit a different immune response in mice (Breyne et al., 2015), and the TA strain is 

unable to grow in anaerobic iron-depleted medium unlike the IM strain (Souza et al., 2016). An 

inoculum of 1.0 × 106 CFU of each strain was prepared to induce an experimental infection. The live 

number of CFU was determined by plating serial dilutions of the bacterial stock on tryptic soy agar. 

 

Experimental Study Design 

A split-udder design was used. The concept of the split-udder model is grounded on within-heifer 

comparisons to reduce individual variation (Sipka et al., 2014). Following the morning milking, 3 

mammary quarters of each heifer were instantaneously inoculated with the 3 aforementioned CNS 

strains (one per mammary quarter) diluted in 5 mL of PBS using a sterile catheter (Vygon, Ecouen, 

France). The fourth mammary quarter, serving as a control, was infused in the same manner with 5 mL 

of sterile, pyrogen-free PBS. Milk samples for PRL analysis and microbiological culturing were collected 

from each mammary quarter at 0, 4, 6, 9, 12, 18, 24, 28, 32, 36, 48, 54, 60, 72, and 78 h post-inoculation 
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(PI). Milk samples for ion analysis were collected at 0, 24, and 48 h PI. The milk SCC was determined 

using a DeLaval Cell Counter (DeLaval, Tumba, Sweden). Bacteriological culturing was performed 

according to NMC guidelines (NMC, 1999). The milk samples for the PRL and ion analysis were stored 

at −20°C. The cows were milked twice a day with 12-h intervals, and QMY was registered using a 

mammary quarter milking device. The cow were examined clinically at each sampling. Rectal 

temperature, heart rate, respiratory rate, rumen motility, fecal consistency, and milk appearance were 

registered. 

 

Milk Analysis  

Prolactin RIA. Milk PRL was determined by a double antibody, homologous RIA adapted from Malven 

and McMurtry (1974). Because this protocol was developed for fresh, whole milk, we first modified 

and validated the RIA for frozen milk samples in particular. For the validation, mammary quarter milk 

samples (n = 4) were collected from randomly selected, multiparous Holstein-Friesian cows at a Belgian 

commercial dairy farm. The samples were then stored at −20°C for 96 h. Afterward, the milk samples 

were thawed in a warm water bath at 40°C for 30 min (Chew et al., 1977) and centrifuged at 1,800 × g 

for 15 min at 20°C (Sigma 2–16K, Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany). Bovine 

PRL (NIH-B5) was used both as a standard and tracer. To generate the tracer, bovine PRL was 

radiolabeled with 125I using the lactoperoxidase technique (Thorell and Johansson, 1971). A standard 

curve ranging from 0.8 to 100 ng/ mL was prepared in Tris buffer (25 mM Tris; 0.01 mM MgCl2; 1.5 

mM NaN3) containing 0.1% (wt/vol) BSA at pH 7.5. To analyze each standard concentration, 100 μL 

was added to duplicate tubes containing 200 μL of Tris-BSA buffer. A sample volume of 50 μL was used 

for milk to minimize potential incubation damage to the labeled antigen (Malven and McMurtry, 1974). 

Afterward, 100 μL of tracer of approximately 30,000 cpm was added, followed by 100 μL of antiserum 

(R#144). This antiserum was collected from a rabbit after injection with biological bovine PRL (NIH-B5; 

Boutet et al., 2007). An antibody titer of 1:120,000 was previously selected for this assay, resulting in 



Chapter 4. Milk PRL response in CNS IMI 
 

97 
 

the binding of circa 30 to 40% of the total amount of 125I-PRL. The amount of radiolabelled bPRL bound 

to the antiserum in tubes containing no bPRL (B0) was designated as 100% 125I bound. After an 

overnight incubation at room temperature, the antibody-bound fraction of PRL was precipitated using 

a secondary antibody polyethylene glycol solution (Ayad et al., 2007). The radioactivity of the 

precipitated 125I-PRL was measured with a gamma counter (LKB Wallac 1261 Multigamma automatic 

counter, Breda, the Netherlands). Five parameters were taken into account to validate the RIA: (1) 

inter- and intra-assay coefficient of variation, (2) minimal detection limit (MDL), (3) parallelism, (4) 

accuracy, and (5) specificity. Three milk samples with a low (2.4 ng/mL), medium (12.9 ng/mL), and 

high (19.7 ng/mL) PRL concentration were used to calculate the inter- and intra-assay coefficient of 

variation. To assess the intra-assay coefficient of variation, the samples were assayed 10 times within 

the same run. The interassay coefficient of variation was evaluated by measuring each sample in 10 

consecutive assays. The MDL was calculated by measuring the mean concentration of 20 B0 (zero 

standard) replicates minus twice the standard deviation within the same assay. For the evaluation of 

parallelism, a sample dilution curve of a frozen-thawed sample was generated to detect any potential 

interference of the sample matrix. The accuracy or spike-recovery of the assay was studied by adding 

a series of known amounts of PRL to a sample with a low endogenous PRL concentration. To evaluate 

potential cross-reactivity (specificity), 2 structurally similar compounds were tested: native ovine 

growth hormone (oGH) and bovine placental lactogen (bPL). The validated RIA was then applied to all 

mammary quarter milk samples from the 8 heifers in the present experimental trial. 

 

Indicators of Epithelial Integrity. The milk samples were thawed and subsequently centrifuged at 

16,000 × g for 30 min at 4°C. The sodium, potassium, and chloride concentrations were analyzed in the 

fat-depleted fraction using an ion-selective electrode analyzer (Roche, Basel, Switzerland). 
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Statistical Analyses  

The response of mammary quarter milk PRL after CNS challenge was evaluated using a linear mixed 

regression model (SPSS 22.0, Chicago, IL), with the time of sampling, quadratic term of time of 

sampling, and inoculum as predictor variables. Time of sampling and its quadratic term were included 

as a continuous variable, whereas inoculum was considered as a categorical variable. The interaction 

between inoculum and time of sampling was also tested, but only kept in the model when significant. 

A similar model was constructed to assess the association between QMY, and time of sampling, its 

quadratic term, and inoculum as predictor variables. For both outcome variables, the inoculum was 

initially considered a dichotomous variable (challenged versus control). In a second approach, the 

effect of all different CNS strains was examined (S. chromogenes IM, S. chromogenes TA, and S. 

fleurettii). To determine the relationship between inoculation (challenge versus control) and the milk 

ion concentration, comparable linear mixed regression models were constructed for sodium, 

potassium, and chloride. Sampling time was included as a 3-level categorical variable (0, 24, and 48 h). 

A natural logarithmic transformation of sodium and chloride was performed to obtain a normalized 

distribution of the residuals. In all aforementioned analyses, heifer and mammary quarter were 

included as random effects to account for the correlated nature of the data. Compound symmetry was 

selected as a covariance pattern to account for the clustering of repeated samplings within mammary 

quarter. Statistical significance was set at P ≤ 0.05. 

 

4.1.4 Results 

 

Experimental Infection 

The data of one mammary quarter were omitted from the analysis due to a naturally occurring IMI. 

Another mammary quarter was also excluded from the analysis for the same reason, but only 12 h 

after inoculation. An increase in SCC was observed in all challenged mammary quarters, indicating the 

establishment of IMI, whereas the SCC in the control mammary quarters remained low [geometric 
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mean of 47,000 cells/ mL; interquartile range (IQR) of 31,000–71,000 cells/ mL]. Twenty-four hours PI, 

the S. fleurettii, S. chromogenes TA, and S. chromogenes IM challenged mammary quarters had a 

geometric mean SCC of 2,400,000 cells/ mL (IQR: 442,000–3,420,000 cells/mL), 669,000 cells/ mL (IQR: 

441,000–1,681,000 cells/mL), and 2,596,000 cells/mL (IQR: 1,662,000–4,775,000 cells/mL), 

respectively. The challenged mammary quarters did not show any visual signs of clinical mastitis. 

However, 3 heifers did experience a short bout of fever (>39.5°C) between 9 and 12 h PI. The S. 

chromogenes IM and TA strains were recovered from milk up to 78 h PI. In all mammary quarters, the 

S. fleurettii strain was eliminated within 9 h PI. No pathogens other than CNS were isolated during the 

study. The PBS-infused mammary quarters remained free from infection during the entire study period 

as demonstrated by bacteriological culture. 

 

Prolactin 

RIA Validation. The intra-assay coefficient of variation for samples with a low, medium, and high PRL 

concentration was 9.7, 8.3, and 8.1%, respectively. The interassay coefficient of variation for the 

corresponding samples was 11.9, 14.4, and 16.1%, respectively. The MDL of the assay was 0.536 

ng/mL. Serial dilutions showed a dose-response curve parallel to the standard curve (data not shown). 

The recovery ratio of the spiked PRL was consistently >85%. The binding of radiolabeled PRL remained 

unaltered when testing the cross-reactivity, except for very high concentrations of oGH (starting at 6.2 

× 103 ng/mL). This slightly interfered with the assay (B/B0 < 0.80), resulting in an apparent increase of 

the PRL concentration. 

Milk PRL. The overall mean PRL concentration tended to be higher in the challenged mammary 

quarters than in the control mammary quarters (LSM = 7.56 and 6.85 ng/mL, respectively) throughout 

the study (P = 0.10, Table 4.1.1). The PRL level varied over time in both challenged and control 

mammary quarters, although not in a linear manner (P < 0.001). The evolution of PRL over time was 

different between the challenged and the control mammary quarters (interaction inoculum × time of 

sampling: P = 0.05, Figure 4.1.1). No significant difference was observed in the PRL response between 
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each of the 3 CNS strains and the control mammary quarters (P = 0.77), nor in the evolution over time 

between strains (interaction inoculum × time of sampling: P = 0.14). 

 

Quarter Milk Yield 

The overall mean QMY per milking tended to be lower in the CNS challenged mammary quarters than 

in the control mammary quarters (LSM = 1.73 and 1.98 kg, respectively) throughout the study (P = 

0.06, Table 4.1.2). The decline of the QMY over time was greater in the CNS-challenged mammary 

quarters than in the control mammary quarters (interaction inoculum × time of sampling: P < 0.001, 

Figure 4.1.2). The difference in QMY compared with the control mammary quarters was more 

pronounced in the mammary quarters challenged with S. chromogenes IM (−0.38 kg per milking) than 

with S. chromogenes TA (−0.21 kg per milking) or S. fleurettii (−0.17 kg per milking; Table 4.1.2). 

 

Blood-Milk Barrier  

The concentration of potassium in milk was not significantly influenced by the challenge with CNS 

strains (P = 0.37). A small, but significant increase in the natural logarithmic of sodium and chloride 

was noted in the challenged quarters (interaction inoculum × time of sampling P < 0.05). However, the 

sodium and chloride levels did not exceed the upper limit of the normal reference ranges (Figure 4.1.3; 

Gaucheron, 2005). 
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Figure 4.1.1. The average prolactin (PRL) (± SEM, standard error of the mean) concentration in milk 

following experimental inoculation in the challenged quarters (_


_) versus the control quarters (…□…). 

The challenged quarters were inoculated with Staphylococcus fleurettii, the teat apex strain of S. 

chromogenes and the intramammary strain of S. chromogenes. 
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Figure 4.1.2. Mean quarter milk yield (QMY) (±SEM, standard error of the mean) following 

experimental inoculation in the challenged quarters (_


_) versus the control quarters (…□…). The 

challenged quarters were inoculated with Staphylococcus fleurettii, the teat apex strain of S. 

chromogenes and the intramammary strain of S. chromogenes. 
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Figure 4.1.3. The average (± SEM, standard error of the mean) milk sodium (Na+), potassium (K+) and 

chloride (Cl-) levels in the control (…□…) and challenged quarters (_


_). The dashed horizontal lines 

represent the upper and lower reference range of the respective ions in bovine milk from non-infected 

mammary glands. The challenged quarters were inoculated with Staphylococcus fleurettii, the teat 

apex strain of S. chromogenes and the intramammary strain of S. chromogenes.
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Tabel 4.1.1. Linear mixed regression model for milk prolactin after experimental infection, including all three CNS strains combined (model 1; left) and with 

Staphylococcus chromogenes TA1, S. chromogenes IM² and S. fleurettii considered seperately (model 2; right). 

 Prolactin (ng/mL)  Prolactin (ng/mL)  

Predictor variable 
  

β3 SE4 LSM5 P-value6 
 

β SE LSM P-value 

Intercept 7.56 0.01 … …  7.56 0.71 … … 

Inoculum    0.10     0.77 

Control Ref. … 6.85 …  Ref. … 6.85 … 

Challenge7 0.21 0.48 7.56 …  … … … … 

S. fleurettii … … … …  0.38 0.59 7.60 … 

S. chromogenes TA … … … …  -0.11 0.59 7.45 … 

S. chromogenes IM … … … …  0.37 0.59 7.62 … 

Time of sampling  0.005 0.01 … 0.28  0.018 0.013 … 0.17 

Quadratic term of Time of sampling - 0.001 < 0.001 … < 0.001   -0.001 < 0.001 … < 0.001 

Inoculum x Time of sampling … … … 0.05  … … … 0.14 

1 Teat apex strain of S. chromogenes; ² Intramammary strain of S. chromogenes; ³ Regression coefficient; 4 Standard error; 5 Least square means; 6 P-value for overall 

effect; 7 Quarters challenged with S. chromogenes TA, S. chromogenes IM and S. fleurettii combined.  
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Tabel 4.1.2. Linear mixed regression model for quarter milk yield after experimental infection, including all three CNS strains combined (model 1; left) and 

with Staphylococcus chromogenes TA1, S. chromogenes IM² and S. fleurettii considered seperately (model 2; right). 

 Quarter milk yield (kg)  Quarter milk yield (kg) 

Predictor variable 
  

β3 SE4 LSM5 P-value6 
 

β SE LSM P-value 

Intercept 1.86 0.18 … …  1.86 0.18 … … 

Inoculum    0.06     0.44 

Control Ref. … 1.98 …  Ref. … 1.98 … 

Challenge7 0.15 0.17 1.73 …  … … … … 

S. fleurettii … … … …  0.29 0.20 1.81 ... 

S. chromogenes TA … … … …  0.15 0.20 1.77 … 

S. chromogenes IM … … … …  0.02 0.20 1.60 … 

Time of sampling  -0.02 0.004 … < 0.001  -0.02 0.005 … 0.001 

Quadratic term of Time of sampling < 0.001 < 0.001 … < 0.001   < 0.001  < 0.001 … < 0.001 

Inoculum x Time of sampling … … … < 0.001  … … … 0.001 

1 Teat apex strain of S. chromogenes; ² Intramammary strain of S. chromogenes; ³ Regression coefficient;4 Standard error; 5 Least square means;6 P-value for overall effect; 

7 Quarters challenged with S. chromogenes TA, S. chromogenes IM and S. fleurettii combined.
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4.1.5 Discussion 

 

Because CNS-infected cows appear to produce more milk than non-infected cows (Compton et al., 

2007; Piepers et al., 2010; Schukken et al., 2009), we investigated the milk yield and the response of 

milk PRL after CNS challenge in clinically healthy dairy heifers. There is a plethora of evidence 

implicating PRL as a immunomodulating factor (Edwards et al., 1987; Krishnan et al., 2003; Brand et 

al., 2004; Boutet et al., 2007). Therefore, we hypothesized that PRL increases in the milk after CNS 

infection. Milk PRL might then simultaneously stimulate the secretion of milk as a galactopoetic 

hormone (Lacasse et al., 2012) in a paracrine or autocrine manner (Clevenger et al., 1997), potentially 

explaining the aforementioned milk yield increases in CNS-infected cows. First, the modified PRL 

radioimmunoassay for frozen-thawed milk samples proved to be reproducible, accurate and specific. 

Only high concentrations of GH interfered with the assay, resulting in an apparent increase of PRL. This 

might be due either to cross-specificity, or to the presence of trace amounts of pituitary PRL in the 

native GH preparation. Either way, any cross-reactivity is irrelevant since the endogenous GH amount 

is limited in bovine milk (Burton et al., 1994).   

This study confirmed that milk PRL indeed increases in challenged mammary quarters compared to 

control mammary quarters after CNS inoculation. This corresponds with the results from Boutet et al. 

(2007), demonstrating that the PRL level is elevated in chronically infected mammary quarters with 

high SCC (Boutet et al., 2007). Even though others have observed an increased milk production in 

naturally CNS-infected cows (Schukken et al., 2009; Piepers et al., 2013), this study reported a 

substantial milk loss in both challenged and control mammary quarters. Then again, this observation 

is not entirely unexpected. Unlike the previous observational studies, our experimental trial only 

monitored the milk yield for a short period of time during the acute phase of inflammation. This 

experimental challenge might not necessarily reflect a natural infection, based on the high infection 

dose and the direct intracisternal inoculation of CNS. Also, the aforementioned observational studies 

(Schukken et al., 2009; Piepers et al., 2013) focused on milk production at animal level, where 
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uninfected glands could compensate for the production loss in CNS-infected mammary quarters 

(Leitner et al., 2004). Our study measured the production at the mammary quarter level, and found 

transitory milk loss in all mammary quarters. The extent of production loss in the unchallenged 

mammary quarters has previously been used to score the severity of experimental mastitis (Burvenich 

et al., 2003). Since the production of the control mammary quarters was practically restored in all cows 

after 48 hours, we conclude that the systemic and long-term effects of the induced CNS IMI -even 

when using a high inoculum dose- were limited. As seen in other experimental infection trials, the CNS 

in this study evoke a mild inflammatory response despite the high infectious dose (Simojoki et al., 

2009; 2011). It should, however, be noted that the overall milk yield during the experimental trial was 

unexpectedly low in all mammary quarters for Holstein-Friesian heifers. We believe this could be 

related to the different housing conditions and milking routines during the experimental trial.    

Under physiological conditions, circulating pituitary PRL is transported from the bloodstream to the 

milk compartment via transcytosis. After binding on the membrane receptor, PRL is internalized by the 

mammary epithelial cell and subsequently released into the milk through secretory vesicles (Ollivier-

Bousquet, 1998). Mastitis increases tight junction permeability, hereby enabling the paracellular 

transport of blood-borne components (Nguyen and Neville, 1998). Changes in milk ion concentration 

can indicate the disruption of the blood-milk barrier (Stelwagen et al., 1994). In this study, the sodium 

and chloride levels increased significantly in the challenged mammary quarters. This might imply that 

the PRL merely leaks from the bloodstream into the milk compartment, as a result of an increased tight 

junction permeability. Whether the milk PRL increase is entirely due to passive diffusion, can neither 

be confirmed nor denied in this experimental set-up. The biological significance of plasma-borne 

proteins in the milk could be questioned. Future research should address the origin of PRL in milk. 

Other ruminants, such as sheep and goats (Le Provost et al., 1994), are able to produce extra-pituitary 

PRL in the mammary gland. So far, this has never been demonstrated in cattle, but it would support 

the hypothesis of PRL as a pro-inflammatory cytokine and autocrine lactation hormone. Although 

Boutet et al. (2007) found no association between bacterial species and PRL concentration, we also 
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wonder if the release of PRL during IMI is pathogen dependent. Additional longitudinal studies on 

mammary quarter level will shed more light on the true association between QMY and CNS infections, 

and clarify the role of PRL in IMI. 

 

4.1.6 Conclusion 

 

This study demonstrated that milk PRL increases after an experimental intramammary CNS challenge 

in dairy heifers. The mechanism behind this PRL response, and whether it is biologically relevant, 

remains to be determined. 
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4.2.1 Abstract  

This study addresses the hypothesis that the expression of the prolactin (PRL) gene increases in bovine 

mammary epithelial cells (MEC) following an infection with coagulase-negative staphylococci (CNS). 

Various studies have demonstrated in the past that dairy cattle with an intramammary infection caused 

by CNS have a higher milk yield than non-infected dairy cows. It has been suggested that this could be 

the result of an increased synthesis of the autocrine lactation hormone PRL, since PRL is also involved in 

the inflammatory response of MEC during mastitis. Bovine MEC (more specifically MAC-T cells) were 

therefore inoculated using three well-defined CNS strains from varying habitats: one strain of 

Staphylococcus fleurettii originating from sawdust, and two different strains of Staphylococcus 

chromogenes (one isolated from a heifer’s teat apex [Staphylococcus chromogenes TA], the other from 

a persistent intramammary infection [S. chromogenes IM]). Although PRL was expressed in all samples, 

the expression was not higher in CNS-challenged cells compared to the unchallenged control cells. The 

elevated PRL level previously observed in milk from cows with CNS infection might rather be the result 

of a disruption of the blood-milk barrier, although this needs further substantiation. 

 

Key words: prolactin – expression – mammary – coagulase-negative staphylococci
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4.2.2 Introduction  

Coagulase-negative staphylococci (CNS) are one of the most frequently isolated bacteria in dairy cattle 

with subclinical mastitis (Pyörälä and Taponen, 2009; Vanderhaeghen et al., 2014). Bovine-associated 

CNS occupy a diverging range of habitats, varying from environmental sites in the dairy barn to host-

specific sites, such as the mammary gland and udder skin (Pyörälä and Taponen, 2009; De Visscher et 

al., 2014). Even though it seems counterintuitive, several studies indicate that dairy cattle infected with 

CNS have a higher milk yield than non-infected cows (Schukken et al., 2009; Piepers et al., 2010; Piepers 

et al., 2013). Various hypotheses for this unexpected observation have been put forward. On the one 

hand, high-producing dairy cows might be more prone to develop CNS mastitis compared to low-

yielding cows (Gröhn et al., 2004). On the other hand, the presence of CNS might protect the mammary 

gland against major mastitis pathogens, such as S. aureus or E. coli, through competitive exclusion 

(Hibbing et al., 2010), the activation of the immune system (Schukken et al., 1999), or the production 

of antibacterial components (Braem et al., 2014). We previously postulated that the lactation hormone 

prolactin (PRL) might stimulate the milk production in an autocrine manner in response to a CNS 

infection (Piccart et al., 2015).  

Besides being a key hormone in lactation (Akers et al., 1981; Lacasse et al., 2012), PRL also exhibits 

immunomodulatory characteristics. For instance, PRL can activate human macrophages (Edwards et 

al., 1987), stimulate the production of pro-inflammatory cytokines (Brand et al., 2004), and alter the 

expression of multiple genes regulating the activity of leukocytes (Dogusan et al., 2001). Even though 

the blood PRL level of dairy cows is not affected by intramammary infection (IMI [Hockett et al., 2000]), 

the PRL concentration is higher in the milk of infected mammary quarters compared to healthy, 

uninfected quarters (Boutet et al., 2007). Although the anterior pituitary gland is the major source of 

PRL, the hormone can also be synthetized in the mammary gland of humans, rodents and small 

ruminants (Fields et al., 1993; Le Provost et al., 1994; Lkhider et al., 1997). Gene expression profiling 

data previously submitted to the NCBI Gene Expression Omnibus (GDS4406, GDS4437, GDS4009) show 
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that PRL is also expressed in the MEC of dairy cattle, even in cells challenged with the major mastitis 

pathogen S. aureus (Brand et al., 2011; Günther et al., 2011). 

Recent work has shown that the milk PRL concentration also increases when mammary quarters of 

dairy heifers are inoculated with strains of S. chromogenes and S. fleurettii (Piccart et al., 2015). While 

S. fleurettii is mostly found in the environment of dairy cattle, S. chromogenes is able to colonize the 

skin of the cow’s teats (Piessens et al., 2011; De Visscher et al., 2014). At the same time, S. 

chromogenes is one of the more common CNS species involved in IMI (Vanderhaeghen et al., 2014). It 

has been demonstrated that these CNS strains originating from diverging habitats elicit a clearly 

differential host response in mice (Breyne et al., 2015) and dairy heifers (Piccart et al., 2016), and differ 

in their capacity to adhere to and invade MEC (Souza et al., 2016).  

The objective of the present study was to determine whether the well-studied, epidemiologically 

diverging strains of S. chromogenes and S. fleurettii can promote the PRL expression in bovine MEC.  

 

4.2.3 Materials & Methods  

 

Bacterial strains  

Three different field strains of  CNS were used to challenge the MAC-T cells: one S. fleurettii strain and 

two S. chromogenes strains. The S. fleurettii-strain was isolated from sawdust bedding in a dairy barn, 

whereas both S. chromogenes-strains were isolated from dairy cattle: one strain originating from the 

skin of a heifer’s teat apex (referred to as S. chromogenes TA), and another strain from a cow with 

persistent IMI (S. chromogenes IM). These particular strains have been used in other studies as well 

(Breyne et al., 2015; Piccart et al., 2016; Souza et al., 2016). The growth conditions are described in 

Souza et al., 2016.  
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Bovine mammary epithelial cells  

An immortalized line of bovine MEC (MAC-T), originally established from mammary alveolar cells to 

mimic bovine lactation (Huynh et al., 1991), was used to study the in vitro expression of PRL. The MAC-

T cells were cultured according to Souza et al., 2016 and incubated overnight in a humidified incubator 

with 5% CO2 at 37°C.  

 

Inoculation  

Three replicate 6-well plates were prepared per inoculum (including three replicate unchallenged 

controls) per sampling time. Each well was inoculated with 4 mL of the respective staphylococcal 

suspension (3 x 105 CFU/mL; 1:1 ratio of staphylococci to cells). A negative, unchallenged control was 

set up in parallel. Following the inoculation, the cell cultures were incubated at 37°C in 5% CO2. The 

MAC-T cells were harvested after 0.25% trypsin treatment (Gibco, Paisley, UK) at 1h, 3h, 6h and 12h. 

Then, 1mL of Dulbecco’s modified Eagle’s medium (Gibco, Paisley, UK) supplemented with 10% fetal 

calf serum was added to each well. The MAC-T cell suspensions were pooled accordingly (per sampling 

time), centrifuged at 400 x g for 8 minutes and adjusted to 5 x 106 cells using trypan blue staining and 

a Neubauer chamber. The pooled samples were stored for less than 3 months at -20°C in 1 mL of total 

RNA isolation reagent (TRIR; Ambion, Austin, USA). 

 

RNA extraction  

Following extraction and DNase treatment with the Aurum Total RNA Fatty and Fibrous Tissue kit (Bio-

Rad, Hercules, USA), the RNA concentration and purity was measured using a ND-1000 

spectrophotometer (Nanodrop, Wilmington, USA). The RNA concentration ranged between 108 ng/µL 

and 1.626 ng/µL, whereas the A260/280 ratio was ≥ 2.00 (range 2.09 – 2.18)  for all RNA samples. The 

RNA integrity of all samples was visually assessed using agarose gelelectrophoresis. Additionally, a 

representative subset of RNA samples was subjected to microfluidic analysis (Experion; Bio-Rad, 

Hercules, USA), revealing an RQI number of ≥ 7.5. All samples were free of gDNA contamination after 
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DNase treatment, as demonstrated by the minus reverse transcriptase (RT) control. The minus RT 

control was performed using a PCR mix of 10 μL, containing 1 μL of diluted sample (corresponding with 

approximately 30 ng RNA), 1 μL 10 × FastStart Taq DNA Polymerase Buffer (Roche Applied Science, 

Indianapolis, USA), 0.2 μl dNTP Mix (10 mM each; Bioline, London, UK), 0.1 μL Taq DNA Polymerase (5 

U/μl, Roche Applied Science, Indianapolis, USA), 0.5 μL forward primer [BtauPRL +1, 5 µM, 5’-

TGGAGCCAAAGAGACTGAGC-3’] (Integrated DNA Technologies, Leuven, Belgium) and 0.5 µL reverse 

primer [BtauPRL -1, 5 µM, 5’-GCAGTTGTTGTTGTAGATGATTCTG-3’] (Integrated DNA Technologies, 

Leuven, Belgium). The PCR program consisted of an initial 4-min denaturation step at 95°C, followed 

by 40 cycles of denaturation (10s at 95°C), annealing (10s at 58°C) and synthesis (20s at 72°C), with a 

final extension step of 2 minutes at 72°C. The final product was examined using gel electrophoresis on 

ethidium bromide-stained agarose (2%) gel (150 V, 30 min). 

 

cDNA synthesis  

cDNA was synthetized with approximately 1 µg RNA using the enzyme Improm-II reverse transcriptase 

(Promega, Fitchburg, USA). The reaction further contained 0.8 μL random hexamer primers (10 μM; 

IDT, Coraville, USA) and 0.8 μL oligo(dT)15 primer (10 μM, IDT, Coraville, USA). The mix was incubated 

for 5 min at 70°C, and subsequently incubated for 5 min on ice. Afterwards, 1 μL Improm-II reverse 

transcriptase (20 U/μL), 4 μL Improm-II 5x reaction buffer, 2.4 μL MgCl2 (25 mM), 1 μL dNTP Mix (10 

mM each; Bioline, London, UK) was added to the mix. The solution (20 µL) was incubated for 5 min at 

25°C for primer annealing, followed by 60 min at 42°C for first-strand cDNA synthesis and heat-

inactivation of the reverse transcriptase at 70°C for 15 min. The cDNA samples were diluted 10 times 

and stored at -20°C. The cDNA integrity was assessed using the same PCR conditions and primers as 

described above for the minus RT control. 

 

Quantitative real-time PCR 
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The relative expression level of PRL was determined using qPCR on the CFX96 Touch™ Real-Time PCR 

Detection System (Bio-Rad, Hercules, USA) with FastStart Essential DNA Green Master (Roche 

Diagnostics, Basel, Switzerland). Information on the primers, amplicons and amplification efficiency is 

listed in Table 4.2.1. A PCR mix (10 µL) was prepared for each sample with 5 µL ready-made FastStart 

Essential DNA Green Master (Roche Diagnostics, Basel, Switzerland), 1 µL forward and reverse PRL 

primer (5 µM) and 2 µL cDNA sample. The PCR program, performed on a C1000 Touch Thermal Cycler 

(Bio-Rad, Hercules, USA), consisted of an initiation step of 10 min at 95°C, followed by 40 cycles of 

denaturation (20s at 95°C) and annealing-elongation (40s at the optimal annealing temperatures). A 

melt curve was then generated by heating the samples from 75°C to 95°C in 0.5°C increments while 

measuring the fluorescence. The optimal annealing temperature for the amplification of PRL and PCR 

efficiency was determined by gradient qPCR of a 4-fold dilution series of the cDNA of a bovine uterine 

tissue sample. Four reference genes (ubiquitin C [UBC], histone-2-alpha [H2A], succinate 

dehydrogenase [SDHA], and ribosomal protein S15A [RPS15A]) were selected based on previous 

research (Verbeke et al., 2015c) and evaluated via geNorm for normalization of the data from MAC-T 

cells (Vandesompele et al., 2002). The PRL primers were designed using Primer3Plus (Untergasser et 

al., 2007) based on the sequence available in NCBI Genbank. The pooled samples were analyzed in 

triplicate.  

 

Data analysis  

The raw quantification cycles (Cq) of each sample were transformed to a relative quantity (Q) using 

the ∆ΔCt-method. The expression data of the CNS-inoculated cells were normalized against the control 

data for each sampling time, and a one sample t-test (SPSS 23.0, Armonk, USA) was used to determine 

if the mean PRL gene expression was affected by the challenge with CNS for each sampling time. The 

significance level was set at P ≤ 0.05.   
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4.2.4 Results & discussion 

The aim of this research was to determine if the PRL gene expression increases in cells challenged with 

S. fleurettii, S. chromogenes IM and S. chromogenes TA. RT-PCR revealed that PRL mRNA was present 

in all tested samples, including the unchallenged MAC-T cells. The geNorm analysis showed that UBC, 

H2A and RPS15A were the most stable reference genes in the MAC-T cells, and the geometric mean of 

the expression level of these three genes was used to normalize the PRL gene expression data.  

 

 

 

 

Figure 4.2.1. Overall average normalized PRL expression in mammary epithelial cells challenged with 

Staphylococcus fleurettii, S. chromogenes TA (teat apex strain) and S. chromogenes IM (intramammary 

strain). The mean is expressed relative to unchallenged control cells per sampling time. The dashed 

line corresponds with the expression level of the control cells. The error bars represent the standard 

deviation. The asterisk denotes a statistically significant difference (P-value ≤ 0.05) in the mean 

expression between challenged and unchallenged cells. 

 

  

0

1

2

3

1h 3h 6h 12h

A
ve

ra
ge

n
o

rm
al

iz
ed

P
R

L 
ex

p
re

ss
io

n
 r

el
at

iv
e 

to
 c

o
n

tr
o

l 

Hours after challenge

* 



Chapter 4. Milk PRL response in CNS IMI 
 

123 
 

At 1h post-infection, the PRL expression was indeed higher in the CNS-challenged cells compared to 

the control, but the increase was not statistically significant (P-value = 0.17; Figure 4.2.1). Conversely, 

the PRL expression was slightly lower in the CNS-challenged cells at 3h, 6h and 12h after infection, 

although the difference was only significant at 3h (respective P-values = 0.05, 0.84 and 0.22). It should 

be noted that, due to the pooling of the 6-well plates per inoculum and per sampling time, this 

experimental set-up was not suitable for comparing the PRL expression between the individual CNS 

strains.  

To our knowledge, this is the first study that demonstrates that MAC-T cells are capable of expressing 

PRL. The MAC-T cell line is a frequently used immortalized mammary cell line for in vitro studies on 

lactation or the mammary immune response (Jedrzejczak and Szatkowska, 2014; Günther et al., 2016). 

Although the immortalized cell line consists of a heterogeneous cell population (Zavizion et al., 1995) 

with a limited production of milk-specific proteins (Rose and McConochie, 2006), MAC-T cells respond 

with the same kinetic (albeit weaker) to mastitis pathogens as primary MEC (Günther et al., 2016).  

However, the cell line used in this study cannot account for other external factors that might have 

otherwise influenced the PRL expression. For instance, the lactation stage and reproductive phase also 

affect the expression of PRL and its receptor in the mammary glands of other animals (Iwasaka et al., 

2000; Morammazi et al., 2016). Prolactin and the PRL receptor might not only be synthetized by the 

epithelial cells, but also by the stromal tissue of the mammary gland (Camarillo et al., 2001; Zinger et 

al., 2003). Furthermore, the amount of mRNA does not necessarily correlate with the amount of 

protein that is produced (Guo et al., 2008).  

Normally, pituitary-derived PRL is transported through the MEC via transcytosis following the binding 

on its respective membrane receptor (Ollivier-Bousquet, 1998). However, an intramammary 

inflammation promotes the paracellular passage of macromolecules due to the disruption of the 

blood-milk barrier (Nguyen and Neville, 1998). Based on the results of this study, we speculate that 

the elevated PRL level found in the milk of CNS-challenged dairy cattle (Piccart et al. 2015) might rather 

be the result of leaky tight junctions. 



Chapter 4. Milk PRL response in CNS IMI 
 

124 
 

4.2.5 Conclusion 

 

In conclusion, we observed that the PRL gene is indeed expressed in bovine MAC-T cells, but we did 

not find a higher PRL expression in cells challenged with S. chromogenes TA, S. chromogenes IM or S. 

fleurettii. The expression of PRL does not appear to be upregulated in MAC-T cells by these particular 

CNS strains.  
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Table 4.2.1. Gene, primer, amplicon and qPCR information.  

 

Gene 

Symbol 
Gene name 

NCBI  

Gene 

ID 

Genbank accession 

number 
Sequence (5’ to 3’) 

Product 

size (bp) 
Ta (°C) E (%) R2 

         

H2A Histone-2-alpha 506900 NM_001205596.1 GTCGTGGCAAGCAAGGAG 182 60 91.3 0.999 

    GATCTCGGCCGTTAGGTACTC     

         

RSP15A Ribosomal protein 337888 NM_001037443.2 AATGTCCTGGCTGATGCTCT 218 59 90.1 0.999 

 S15a   GGGCTGATCACTCCACACTT     

         

PRL Prolactin 280901 NM_173953.2 TGGAGCCAAAGAGACTGAGC 181 58 103.0 0.998 

    TGGAGCCAAAGAGACTGAGC     

         

UBC Ubiquitin C 444874 NM_001206307.1 AGTTCAGTCTTCGTTCTTCTGTG 88 58 89.2 0.995 

    GGTTTTACCAGTGAGGGTCTT     

         

ACTB Actin, beta 280979 NM_173979.3 CCTCACGGAACGTGGTTACA 87 58 90.2 0.996 

    TCCTTGATGTCACGCACAATTT     

         

TA (°C) = Optimal annealing temperature; E (%) = PCR efficiency; R2 = squared correlation coefficient  
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5.1  Introduction 

Coagulase-negative staphylococci are among the most prevalent bacteria involved in subclinical bovine 

mastitis (Barkema et al., 1999; Pitkälä et al., 2004; Sampimon et al., 2009; Tenhagen et al., 2009; 

Pankey et al., 2011; Piepers et al., 2011; Rall et al., 2014). Initially, bovine-associated CNS were 

considered as one uniform group (Hogan et al., 1987; Nickerson and Boddie, 1994), even though they 

cover a wide range of habitats; from the dairy cow’s surrounding environment to the external and 

internal milieu of the mammary gland (De Visscher et al., 2014). Also, CNS-infected dairy cattle produce 

more milk than their non-infected herd mates according to certain studies (Schukken et al., 2009; 

Piepers et al., 2013).  

Over the past decennium, numerous studies have shown that the clinical impact of CNS on bovine 

udder health varies considerably between different species. However, knowledge on intraspecies 

diversity is still limited. The main objective of this thesis was to develop a deeper understanding of 

how a dairy heifer’s immune system responds to different CNS strains from diverging habitats by 

means of a live challenge study. In addition, we examined the role of the lactation hormone PRL in CNS 

mastitis. This work focused on three particular CNS strains, each representative for their particular 

habitat: S. fleurettii from the dairy barn environment, S. chromogenes IM from a persistent IMI and S. 

chromogenes TA from the teat apex of a heifer (Chapter 2). To characterize the host response of dairy 

heifers infected with these CNS strains, eight Holstein heifers were subjected to an experimental 

challenge (Chapter 3). The same experiment was used to study the milk PRL concentration in response 

to CNS-infection (Chapter 4.1). Finally, the PRL expression in MEC following CNS-infection was 

examined using an in vitro study with MAC-T cells (Chapter 4.2). 

 

5.2  Response of heifers to host-adapted versus environmental CNS species  

In terms of ecology, CNS can be roughly divided into “host-adapted” and “environmental” species or 

strains (Piessens et al., 2012a; Fry et al., 2014; De Visscher et al., 2014). As the name suggests, 

environmental CNS species are typically found at different sites in the farm environment (e.g. floors, 
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sawdust, air… [Piessens et al., 2011]), and they do not require a host for their survival (Zadoks and 

Schukken, 2006). Environmental CNS species are rarely associated with IMI (De Visscher et al., 2014). 

Still, for some mastitis-causing CNS species, the environment can act as a reservoir. For instance, 

species such as S. haemolyticus and S. simulans survive well in the environment, yet they are often 

implicated in IMI as an opportunistic pathogen (Piessens et al., 2011; De Visscher et al., 2014). A 

number of live challenge studies have sought to define the host response following an IMI with 

staphylococci (Table 5.1). This work is the first to study the host response of dairy heifers following an 

infection with the archetypical environmental CNS species S. fleurettii. However, since these studies 

all use a different inoculum dose or host species, it is difficult to compare their results. We chose to 

inoculate the primiparous cows with S. fleurettii, although other CNS species, like S. equorum (another 

typical environmental CNS species), would have been a suitable alternative (Vanderhaeghen et al., 

2015).  

The main question of this thesis comes down to why some CNS (such as S. chromogenes) are commonly 

found in bovine milk causing IMI, whereas other species (like S. fleurettii) only rarely appear in milk. In 

Chapter 3, we demonstrated that the S. fleurettii-strain is unable to survive in the mammary gland for 

a long period of time, indicating that it is not a matter of lack of exposure. Staphylococcus fleurettii 

was rapidly (i.e. within 12h) eliminated from the challenged quarters, as opposed to the two S. 

chromogenes strains. The limited bacterial growth is in line with findings of Breyne et al. (2015), who 

retrieved less CFU of S. fleurettii than of both S. chromogenes strains 28h and 48h after challenging the 

mammary glands of mice, using the exact same isolates. Staphylococcus fleurettii did not appear to 

grow in the mammary gland of mice, since the retrieved bacterial numbers were lower than the 

bacterial count of the initial inoculum. In Chapter 3, we showed that the challenge with S. fleurettii 

triggered a slightly faster immune response than S. chromogenes IM or TA. Although the overall 

magnitude of the SCC response did not differ between S. fleurettii and either S. chromogenes strain, 

the influx of PMN occurred somewhat earlier in the S. fleurettii-challenged quarters, as indicated by 

the higher SCC and lower proportion of apoptotic (Annexin V-FITC+/PI-) and necrotic (Annexin V-
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FITC+/PI+) PMN at 6h after inoculation. This was in all likelihood the result of the earlier IL-8 response. 

The chemotactic cytokine IL-8 was seen to be increased more rapidly (i.e. within 6h) in some of the S. 

fleurettii-challenged quarters, although the cytokine response was generally very low and varied too 

much between individual animals and quarters to draw any definite conclusions.  

One potential immune evasion tactic of the staphylococci is to invade the host cells (Dego et al., 2002). 

Based on the fast elimination of S. fleurettii in the mammary gland, one might expect that S. fleurettii 

would invade MEC slower than S. chromogenes. Indeed, Souza et al. (2016) -using the exact same 

isolates- observed that the adhesion and internalization capacity of S. fleurettii was lower than that of 

S. chromogenes IM after 12h of incubation, yet higher than that of S. chromogenes TA. The efficacy 

with which bacteria can attach to MEC is presumably also influenced by various host factors (Van 

Belkum et al., 2002). As such, Hyvönen et al., (2009) could not find any differences in the in vitro 

adhesion or internalization between CNS strains (including S. chromogenes, S. epidermidis and S. 

haemolyticus) causing persistent IMI and transient IMI.  

All in all, S. fleurettii evoked a mild clinical response in the dairy heifers. For one, there were no visible, 

clinical signs of mastitis in any of the challenged quarters. Also, the overall loss in milk yield following 

inoculation was less pronounced in S. fleurettii-challenged quarters compared to quarters challenged 

with either S. chromogenes strain (Chapter 4.1).  
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Table 5.1. An overview of experimental challenge studies with staphylococci that outline the host response of ruminants.  

Staphylococcus spp. Inoculum dose Animals N1 DIM2 Host response Authors 

S. aureus 

72 CFU Holstein cows  8 214 ± 8.67 

- Mild clinical symptoms 
- No detectable quantities of IL-8 or TNF-α 
- Increase in IL-1β, IL-10, IL-12, and IFN-γ 
- Increase in SCC within 24h  
- S. aureus recovered in 6/8 challenged 

quarters after 7 days  

Bannerman et al., 2004 

50 – 100 CFU Holstein cows 6 
Mid-

lactation 

- Subclinical mastitis  
- No detectable quantities of IL-1β, TNF-α or 

IL-8 
- Slow and moderate increase in SCC after 

24h 
- Bacterial growth peaked at day 6 

Riollet et al., 2000 

S. simulans 

5.7  x 106 CFU 

Ayrshire & 
Holstein 

primiparous 
cows  

8 
Mid-

lactation 

- Mild to moderate clinical symptoms 
- Increase in IL-1β, IL-8 and TNF-α 
- After 2 weeks, the infection persisted in 

6/16 quarters 

Simojoki et al., 2011 

5.0  x 107 CFU 
Welsh-Mountain 
& Dorset-Horn 

ewes 
17 6 – 16  

- Subclinical mastitis 
- Increase in SCC 
- S. simulans was isolated (intermittently) 

for at least 20 days after inoculation  

Fthenakis and Jones, 1990 

S. fleurettii 1.0 x 106 CFU 
Holstein 

primiparous 
cows 

8 78 – 278 

- No visual symptoms of mastitis 
- Increase in SCC within 6h & significant 

increase in PMN viability 
- Infection eliminated within 12h 

Chapter 3 
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Staphylococcus spp. Inoculum dose Animals N1 DIM2 Host response Authors 

S. epidermidis 

3.3 x 107 CFU Merino ewes  5 3 months 

- Mild clinical symptoms 
- Increase in IL-8 from 4h until day 3 
- Significant elevation of IL-1β in 1 ewe 
- SCC increased after 4h and peaked after 1 

day 
- S. epidermidis was found sporadically in 

the milk of 4 ewes until 10 weeks, while 1 
ewe eradicated the infection after 8h  

Winter et al., 2003 

5.7  x 106 CFU 

Ayrshire & 
Holstein 

primiparous 
cows 

8 
Mid-

lactation 

- Mild to moderate clinical symptoms 
- Increase in IL-1β, IL-8 and TNF-α 
- After 2 weeks, the infection persisted in 

5/16 quarters  

Simojoki et al., 2011 

2.8 x 106 CFU Merino ewes 5 3 months 

- Mild clinical symptoms 
- Increased leukocyte count in milk  
- Increase in IL-6, IL-8, IL-1β 
- S. epidermidis was shed intermittently 

until the end of the trial (144h)  

Winter and Colditz, 2002 

S. chromogenes 

2.1 × 106 CFU 
Holstein 

primiparous 
cows 

6 4 weeks 

- Mild clinical symptoms 
- Increase in SCC within 12h, peaking at 30h 
- S. chromogenes was eliminated within 

46h, except in 1 cow that developed a 
persistent infection 

Simojoki et al., 2009 

1.0 x 106 CFU 
Holstein 

primiparous 
cows 

8 78 – 278 

- No visual symptoms of mastitis 
- Increase in SCC within 9h & significant 

increase in PMN viability in S. 
chromogenes IM challenged quarters 

- S. chromogenes still present in milk at 78h 

Chapter 3 

1 Number of challenged animals; 2 Days in lactation at the moment of inoculation.
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5.3  Intraspecies diversity within Staphylococcus chromogenes 

Thanks to the increasing availability of low-cost molecular identification techniques, we have recently 

gained more insight into the strain-specific virulence of mastitis pathogens. The heterogeneity of the 

mastitis pathogen S. aureus is well documented, in contrast to that of other staphylococci. Although 

most of the S. aureus strains causing bovine mastitis can be traced back to a limited number of lineages 

or clonal complexes (Kapur et al., 1995; Barkema et al., 2006; Delgado et al., 2011), the strains often 

differ in their ability to invade MEC, produce biofilm, respond to antibiotic treatment, affect milk yield, 

evoke a SCC response or spread from cow to cow (Barkema et al., 2006; Zadoks et al., 2011; Bardiau et 

al., 2014). While some studies conclude that extramammary S. aureus strains (e.g. isolated from skin, 

perineum, nares, etc.) are indistinguishable by molecular typing from strains involved in IMI (Haveri et 

al., 2008; Capurro et al., 2010), others do report the existence of tissue-specific strains (Zadoks et al., 

2002; Van Leeuwen et al., 2005).  

The intraspecies diversity of CNS, on the other hand, has long been overlooked. Although several studies 

have used molecular typing (e.a. pulsed field gel electrophoresis [PFGE]) for strain differentiation of 

bovine CNS (Thorberg et al., 2006; Mørk et al., 2012; Bexiga et al., 2014), there is not much known at 

the present time about the clinical importance of these different individual strains. Chapter 3 of this 

thesis therefore focused on the host response and clinical impact of different strains of S. chromogenes, 

the most commonly isolated CNS species in dairy cattle with an IMI (Sampimon et al., 2009; Thorberg et 

al., 2009; Piessens et al., 2011). To address the potential tissue-specificity of S. chromogenes, two 

separate strains were selected; i.e. the so-called “teat apex strain” and “intramammary strain”. The S. 

chromogenes strains challenged the innate immune system in varying degrees (Table 5.2). The S. 

chromogenes IM strain appeared to be better equipped to invade and colonize the bovine mammary 

gland than S. chromogenes TA. Consequently, S. chromogenes IM induced the largest cellular response 

and resulted in the greatest production loss. Even though S. chromogenes IM was originally isolated 

from a cow with a persistent IMI lasting for more than 10 months, both S. chromogenes-strains were 

eliminated within 6 days. In another live challenge study with S. chromogenes (Simojoki et al., 2009), 
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one out of six heifers developed a persistent IMI, seeing that the bacteria were still present after 7 days 

in the challenged quarter. It should be emphasized that the duration of the infection not only depends 

on the virulence of the strain, but also on various host factors and the initial inoculum dose. The host 

response of the mammary gland also responds to pathogens in a dose-dependent manner (Günther et 

al., 2010). In case of experimental E. coli mastitis, lowering the inoculum dose results in a slower 

bacterial clearance, and is preceded by excessive bacterial growth (Shuster et al., 1996; Vangroenweghe 

et al., 2004). We assume that the high inoculum dose used in our experimental study (i.e. 1.0 x 106 CFU) 

might have triggered a more aggressive host response than is the case with natural infections, possibly 

shortening the duration of infection.  

Yet, S. chromogenes is also able to colonize the host (i.e. the cow's body) without causing damage (i.e. 

mastitis). The species can be found on the teat skin, streak canal, hair coat, nares, vagina and perineum 

of healthy dairy cattle (White et al., 1989; De Vliegher et al., 2003; Taponen et al., 2008; De Visscher et 

al., 2016), though not necessarily on every cow (Braem et al., 2013; De Visscher et al., 2014). While S. 

chromogenes is rarely found on the teat skin of lactating cows (Braem et al., 2013; De Visscher et al., 

2014), the species appears to be omnipresent on the teats of dry cows and pregnant heifers (De Visscher 

et al., 2016b). Certain pulsotypes of S. chromogenes are found both in the milk and on extramammary 

sites (Taponen et al., 2008). Some authors reported an association between the extramammary 

colonization by S. chromogenes and IMI (Taponen et al., 2008; Quirk et al., 2012; De Visscher et al., 

2016a), while others found no such relation (De Vliegher et al., 2003). In fact, De Vliegher et al. (2003) 

stated that teat apex colonization with S. chromogenes might be protective against IMI in early lactation, 

although no strain typing was performed in this study.  
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Table 5.2. A basic summary of the known differences between strains of S. chromogenes isolated  from 

a teat apex (TA) and from an intramammary infection (IM) in terms of their interaction with the host. 

Parameter Study object S. chromogenes TA S. chromogenes IM Author 

Adhesion capacity MAC-T cells + + + Souza et al. (2016) 

Invasion capacity MAC-T cells + + +  Souza et al. (2016) 

SCC increase Heifers + + + N.S.  Chapter 3 

% Apoptotic milk PMN Heifers  + + N.S. + Chapter 3 

Bacterial growth in the 

mammary gland 
Heifers + + + Chapter 3 

Milk yield Heifers  − −  −N.S. Chapter 4.1 

Milk PRL increase Heifers + + Chapter 4.1 

Local IL-1β level Mice + + N.S. + Breyne et al. (2015) 

 Heifers + D.S. +  Chapter 3 

Local TNF-α level Mice − − Breyne et al. (2016) 

 Heifers +D.S. + Chapter 3 

Local IL-8 level Heifers − + +D.S. Chapter 3 

N.S. No statistically significant difference. 

D.S. Based on descriptive statistics.  

 

5.4 The role of PRL in CNS mastitis 

Although certain CNS species and strains are associated with persistent IMI and elevated SCC levels, 

some studies suggest that CNS-infected dairy cattle produce more milk throughout the lactation period 

than their non-infected herd mates (Compton et al., 2007; Schukken et al., 2009; Piepers et al., 2010). 

Several hypotheses have been put forward, but there is still no sound biological explanation for this 

unexpected observation (Piepers et al., 2013). In Chapter 4.1, the milk production was monitored for 

only three days following the experimental challenge with S. fleurettii, S. chromogenes TA and S. 

chromogenes IM. Even though the milk production was suppressed in all challenged quarters, the overall 

production losses were minimal. These results align with the work of Pearson et al., 2013 and Tomazi et 
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al., 2015, who observed little or no decline in milk yield in dairy cattle following a CNS IMI. Still, the 

experiment in Chapter 4.1 only focused on the acute phase of inflammation, and is therefore not 

suitable for inferring definitive conclusions regarding the milk production throughout lactation following 

an IMI with the 3 CNS strains. 

The hypothesis that PRL stimulates the milk production in response to an infection with CNS was 

examined in Chapter 4. It had previously been demonstrated that PRL is involved in the pathogenesis of 

bovine mastitis by stimulating the inflammatory response in the MEC through the activation of the NF-

κB (Boutet et al., 2007). Consequently, this thesis postulated that the local production of PRL would 

increase in the mammary gland following an infection with CNS. The inflammation-induced PRL might 

then possibly stimulate autocrine milk production, although this association was not directly studied in 

this work. Chapter 4.1 shows that, over time, PRL is higher in the milk of CNS-infected quarters compared 

to uninfected quarters. No significant difference was found in the PRL level between the three different 

CNS strains. Approximately 28 hours after the inoculation, the PRL concentration started to decline in 

both the challenged and control quarters. The final PRL levels at the end of the experiment, 78h after 

the inoculation, were lower than the initial, pre-challenge values. One possible explanation for the 

overall decline in milk PRL, is that the sampling interval lengthens as the experiment progresses. It has 

previously been demonstrated that a higher milking frequency leads to higher circulating PRL levels (Bar-

Peled et al., 1995). Therefore, the overall higher PRL concentration at the beginning of the experiment 

might be the result of the higher sampling frequency. Another possibility is that the secretion of 

(pituitary) PRL is controlled through a classic negative feedback loop (Anderson et al., 2006), either by 

promoting the hypothalamic dopamine release or by directly inhibiting the release of PRL in the 

lactotrophs (Bernard et al., 2015).  

Chapter 4.2 confirmed that the bovine mammary gland is indeed able to synthesize PRL, similar to 

humans, rats or goats. No increase in mRNA of PRL was found in MEC after challenging them with S. 

chromogenes TA, S. chromogens IM or S. fleurettii. The results imply that the expression of the PRL gene 
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is not directly altered by these CNS strains. To date, little is known about the physiological factors that 

steer the secretion of mammary PRL (Chen et al., 2012).  

The elevated milk PRL concentration observed in Chapter 4.1 might not be the result of a local response 

of the MEC. Normally, systemic PRL is transported to the milk via transcytosis (Ollivier-Bousquet, 1998), 

except when the epithelial integrity is disrupted (in this case, due to the intramammary infection). 

Hence, it is likely that PRL leaked from the capillaries of the challenged udder quarters into the milk 

compartment. The slightly increased levels of sodium and chloride found in the milk of challenged 

quarters also support this idea. One could question the biological significance of blood-borne proteins 

in the pathogenesis of mastitis. Still, it should be kept in mind that the general correlation between 

mRNA and the final protein levels is known to be poor (Maier et al., 2009). It is therefore difficult to infer 

definitive conclusions about the abundance of mammary PRL based only on the expression study in 

Chapter 4.2. 
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5.5  Evaluation of the experiments 

5.5.1 In vivo experiment 

During the in vivo experiment (Chapter 3 & 4.1), eight Holstein heifers received an intramammary 

infusion with either S. fleurettii, S. chromogenes TA, S. chromogenes IM or PBS in each udder quarter. 

Three quarters were inoculated with a bacterial dose of 1.0 x 106 CFU suspended in 5 mL PBS, whereas 

the fourth quarter –infused with an equal volume of sterile PBS- was used as an internal control. This 

type of experimental set-up is referred to as a "split-udder design", which has its inherent strengths and 

weaknesses. 

One advantage of this particular study design is that the heifers act as their own control group, allowing 

for a smaller number of required experimental animals and a reduction in variability owing to individual 

differences. This is in agreement with the reduction principle of the “3Rs” (Replacement, Reduction and 

Refinement), the ethical framework for humane experimentation. A split-udder design assumes that all 

neighboring udder quarters are separate, individual anatomical entities within the same animal. 

However, previous research has demonstrated that this is not necessarily the case. An experimental 

infection of an udder quarter with E. coli or S. aureus results in changes in gene expression in 

neighboring, uninfected quarters (Mitterhuemer et al., 2010; Jensen et al., 2013). But even though genes 

associated with the local immune response are upregulated in untreated control quarters (Jensen et al., 

2013), the SCC or the PMN viability does not seem to increase significantly in uninfected quarters 

compared to naturally infected quarters (Blagitz et al., 2015). In the experimental CNS-challenge 

described in Chapter 3, the SCC nor the viability increased considerably, and the cytokines TNF-α, IL-8 

or IL-1β were not detected in uninfected control quarters following the challenge with sterile PBS. 

Therefore, we believe that the effect of any potential “cross-talk” between neighboring quarters on our 

results is of minor importance. 

In vivo experiments in dairy cattle also have certain disadvantages. For one, the animals have to be taken 

out of their usual environment, which affects their stress level. It has been well documented that stress 

can modulate the immune response and circulating PRL levels of animals (Carroll & Forsberg, 2007; 
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GarcÍa-Ispierto et al., 2009). Glucocorticoid hormones, associated with a stress response, can delay the 

apoptosis in human PMN (Liles et al., 1995). This might explain why the proportion of apoptotic PMN 

(Chapter 3) already decreased in all mammary quarters before the actual inoculation procedure had 

taken place. For future in vivo experiments, we suggest incorporating a longer (> 48h) adaptation period 

for letting the cows adjust to their new surroundings, or -if feasible- performing the experiment in their 

usual setting together with familiar herd mates.  

Another limitation of our study, is that only heifers in mid-lactation were challenged with the CNS 

strains, making it difficult to extrapolate our results to multiparous cows, or cows in a different stage of 

lactation. As mentioned in Chapter 2, we chose to only include primiparous cows in our study, because 

the prevalence of CNS IMI is higher in primiparous cows than in multiparous cows (Sampimon et al., 

2009; De Visscher et al., 2016). The heifers were knowingly selected according to their CXCR1 genotype 

for an additional experiment studying the effect of a polymorphism (c.980 A>G) in the CXCR1 gene on 

the innate immune response (Verbeke et al., 2015). Although the PMN migration was slightly slower in 

the S. chromogenes IM-infected quarters of the c.980AG heifers than the c.980GG heifers, it is unlikely 

to have had any effect on the conclusions of this thesis. Whether or not the heifers had previously been 

infected with either CNS strain under natural circumstances (and therefore might have established an 

antigen-specific memory through the adaptive immune system [Rainard et al., 2016]) can never be 

completely ruled out though. 

Because of these limitations, alternative in vivo models for exploring bovine mastitis have been 

developed in mice (Brouillette and Malouin, 2005). They are less expensive, less cumbersome and easier 

to control. The mammary glands of mice and cows share certain anatomical characteristics. For one, 

both species have one teat opening and one primary duct per mammary gland. Similar to cows, the 

glands of mice are structurally independent from each other (Notebaert and Meyer, 2006). On the other 

hand, the composition of murine milk is fundamentally different (Gors et al., 2009), and mice have less 

resident phagocytic cells in their mammary glands (Notebaert and Meyer, 2006). All limitations 
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considered, we believe that an in vivo challenge in dairy cattle is still the most accurate method for 

mimicking natural IMI in bovines.  

 

5.5.2 In vitro experiment  

In vitro or ex vivo studies, using an immortalized cell line (as in Chapter 4.2) or primary bovine cells, have 

also contributed to our understanding of bovine mastitis. These types of studies are generally 

inexpensive, fast and easy to handle, making it a popular model for studying intramammary infections. 

However, in vitro studies cannot fully account for the various host factors that affect the course of an 

infection, such as parity (Mehrzad et al., 2002), stage of lactation (Mallard et al., 1998), and genetic 

variability (Rupp and Boichard, 2003). Primary cultures of bovine MEC, taken from mammary tissue, are 

thought to be a better model for studying the in vivo conditions of the mammary gland (Rabot et al., 

2006). Although they reflect the physiological and metabolic processes of epithelial cells more closely, 

primary MEC quickly lose their original characteristics after a number of passages (Matitashvili et al., 

1997). In Chapter 4.2,  we chose to infect MAC-T cells to study the PRL expression in response to the 3 

CNS strains. MAC-T cells, immortalized by originally transfecting mammary cells with Simian virus 40 

(SV40), consist of a heterogeneous cell population (excluding myoepithelial cells [Zavizion et al., 1995]). 

The MAC-T cell line has the ability to express milk proteins (i.e. β-casein, α-lactalbumin, etc.), GH-

receptors, and various cytokines in response to an infection (Zhou et al., 2008; Günther et al., 2016). 

Although the cytokine response of MAC-T cells is weaker than that of primary MEC, the cell line responds 

in a similar manner (Günther et al, 2016). Primary bovine MEC might have displayed a higher PRL 

expression than MAC-T cells in Chapter 4.2, but we assume that this would not have affected the 

conclusion of the study.  

 

5.5.3 The inoculum dose 

Simulating a natural IMI under experimental conditions is inherently difficult. One particular issue is 

selecting an inoculum dose that corresponds with natural infections. The in vivo study of Chapter 3 and 
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Chapter 4.1 was preceded by a limited dose-response trial, in which a multiparous cow was challenged 

in each quarter with increasing doses of S. chromogenes IM (2.5 x 105, 5.0 x 105, 1.0 x 106 and 2.0 x 106 

CFU in 5 mL PBS)  as described by Verbeke et al. (2015). Only the highest dose, 2.0 x 106 CFU, resulted in 

local, clinical symptoms (i.e. a swollen, reddish mammary quarter). However, in the quarter that was 

challenged with the lowest inoculum dose, 2.5 x 105 CFU, the bacteria were eliminated within 20h. 

Unlike Simojoki et al. (2009), we did not necessarily want to induce clinical mastitis in the dairy heifers. 

Generally speaking, CNS infections are mostly associated with subclinical or mild clinical symptoms 

(Taponen et al., 2006; Supré et al., 2011). That is why we chose for the inoculum dose of 1.0 x 106 CFU.  

Still, only a limited number of strains were studied in this thesis, which is insufficient to represent entire 

communities of CNS within the host-associated or environmental niche. Furthermore, considering the 

strain differences we found in S. chromogenes, we cannot exclude that S. fleurettii strains are equally 

diverse in terms of pathogenicity.  

 

5.6  Conclusions and practical implications 

In this work, we focused on the host response in dairy heifers following three CNS field strains from 

diverging environments: S. chromogenes TA, S. chromogenes IM and S. fleurettii. The effects of these 

strains have been studied in MEC (Chapter 4.2; Souza et al., 2016), mice (Breyne et al., 2015) and dairy 

heifers (Chapter 3 and Chapter 4.1). These results confirm that (quarters of) dairy heifers respond 

differently to host-adapted versus environmental CNS. Staphylococcus fleurettii (or at least the 

particular strain used in this research) is less accustomed to the bovine mammary gland than the 

typically host-adapted species S. chromogenes. Furthermore, strains within S. chromogenes can differ in 

their ability to cause damage to the host (Chapter 3 and Chapter 4.1). The S. chromogenes strain derived 

from an extramammary site, i.e. the teat apex, is less able to grow in the mammary gland than the other 

S. chromogenes strain isolated from a mastitis case. Overall, S. chromogenes TA induced a less 

pronounced inflammatory response. The results in Chapter 3, combined with experimental challenge 

studies in mice and MEC, suggest that the strains within S. chromogenes show a variable degree of 
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pathogenicity and tissue-specificity. Of course, intraspecies diversity in terms of pathogenicity is not 

unique to S. chromogenes, and has been observed in other mastitis bacteria as well, such as S. uberis 

(Tassi et al., 2013), S. aureus (Middleton and Fox, 2002; Haveri et al., 2007) and E. coli (Dogan et al., 

2006; Lippolis et al., 2014). The degree in which bacteria cause damage to their host, is the result of a 

complex interplay between both the microorganism and the host. Distinguishing pathogenic from less 

pathogenic strains or isolates within one species, and anticipating their clinical impact, is therefore not 

a straightforward process. In practice, it often boils down to the decision on whether or not to treat a 

case of bovine mastitis, and whether or not to cull a chronically infected cow. However, in case of the 

two S. chromogenes strains studied in this thesis, the difference in the clinical impact and loss in milk 

yield in dairy heifers is ultimately limited (Chapter 3 and Chapter 4.1). Since the use of veterinary 

antimicrobials is under scrutiny in the European Union, subclinical and mild cases of mastitis are often 

left untreated, assuming that the infection is self-limiting. Spontaneous cure rates in CNS are generally 

thought to be as high as 60 – 70% (McDougall, 1998; Wilson et al., 1999), although more recent studies 

report lower numbers (i.e. 12 to 45% [Deluyker et al., 2005; Taponen et al., 2006]). Because of their 

limited clinical importance, CNS are currently not routinely identified in veterinary laboratories at the 

species level. Therefore, routine strain-typing of CNS in practice seems out of the question for now. Still, 

addressing CNS infections can be of great value for dairy farms with a low bulk milk SCC that specifically 

strive for an even lower bulk milk SCC. In herds with a bulk milk SCC below 200,000 cells/mL, CNS 

infections contribute on average 17.9% of all somatic cells in the bulk tank (Schukken et al., 2009). 

It was beyond the scope of this thesis  to assess the effect of CNS as a bacterial group on the milk yield. 

Although PRL does increase in the quarters challenged with the three CNS strains (Chapter 4.1), there is 

inconclusive evidence that this is the result of a local PRL production in the mammary gland (Chapter 

4.2).   
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5.7  Future research  

The effect of CNS on the milk yield of dairy cattle remains unclear. A longitudinal study throughout 

lactation on the association between the milk yield and CNS infections can offer more insights. It might 

be opportune to monitor the milk production at quarter level (for instance at farms equipped with 

automatic milking systems), so one can compare the milk production of CNS-infected quarters to 

healthy, uninfected quarters. This minimizes the effect of confounding variables at the cow or herd level 

(Pyörälä and Taponen, 2009; Tomazi et al., 2015). Future studies should ideally identify the involved CNS 

at the subtype or strain level using genotypic methods. Strain typing is required in observational studies 

to ascertain whether the CNS infections are transient or persistent in nature. Pulsed field gel 

electrophoresis used to be considered the “gold standard”, although it is quite labor-intensive and 

expensive (van Belkum et al., 2007). Depending on the study objective, multi locus sequence typing or 

whole genome sequencing might be more appropriate to differentiate isolates (Smith et al., 2005; Köser 

et al., 2012; Vanderhaeghen et al., 2015). 

Strain typing is required in observational studies to ascertain whether the CNS infections are transient 

or persistent in nature. The results from Chapter 3 also clearly demonstrate the existence of pathogenic 

diversity within CNS species (in this case S. chromogenes). Species and strain differences might account 

for the seemingly contradicting research findings regarding the milk production of CNS-infected cattle 

(Gröhn et al., 2004; Piepers et al., 2010; Tomazi et al., 2015). Studies considering CNS as one 

homogeneous group inevitably fall prey to ecological fallacy, i.e. the error that arises when drawing 

conclusions about individuals based on the observations of groups (Morgenstern, 1982). The same 

reasoning may hold true for studies focusing on the species level of CNS, given the strain diversity we 

found in S. chromogenes.  

Strain typing of S. chromogenes is essential to further elucidate the association between teat apex 

colonization and IMI, or the inhibition of IMI. The teat apex strain used in this work, S. chromogenes TA, 

is capable of inhibiting the in vitro growth of mastitis field isolates of S. aureus, S. uberis and S. 

dysgalactiae to some extent (De Vliegher et al., 2004). This is likely the result of extracellular bacteriocins 
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produced by the S. chromogenes TA strain, as has been demonstrated in other CNS (Nascimento et al., 

2005; Braem et al., 2014). Bacteria produce these substances as a tool for defending their niche against 

similar, competing microorganisms (Kommineni et al., 2015). It is still uncertain though whether teat 

apex colonization with S. chromogenes TA, or any other strain with similar inhibitory properties, is 

actually able to prevent IMI caused by Gram-positive mastitis pathogens in dairy cattle. Additional 

challenge studies are needed to verify this assumption. One possible experimental set-up is an split-

udder or split-herd trial where the cows receive a “protective strain” on the skin of their teats (for 

instance, through swabbing or dipping of the teats). By determining the incidence of new IMI in the 

challenged and control teats over a period of time, one could determine the efficacy of the protective 

strain. However, such a trial is cumbersome, and moreover, restricted by biosafety legislations (Van 

Vaerenbergh et al., 2010). Therefore, this type of trial cannot be performed in commercial dairy farms. 

Another possibility is to inoculate a protective strain of interest directly into the teat or gland cistern of 

dairy cows (as described in this thesis), followed by an experimental superinfection with a major mastitis 

pathogen.  

All in all, the concept of using live microflora to combat bacterial infections is not new (Woodward et 

al., 1987; Bouchard et al., 2015). One could wonder if certain strains of CNS can be utilized as an 

alternative (preventive) therapy for bovine mastitis. At this time, there is insufficient scientific evidence 

to presume that one or more CNS strains might be suitable as an intramammary probiotic. For one, the 

purported protective effect in vivo has never been traced back to a particular species or strain. 

Furthermore, their safety cannot be warranted. Multiple antimicrobial resistance genes (e.g. mecA, blaZ) 

have been found in CNS from bovine milk (Frey et al., 2013), creating a potential reservoir for 

transferring resistance to other bacteria (Piessens et al., 2012b). Even so, the notion of intramammary 

probiotics remains a promising track to combat and prevent bovine mastitis, and should be further 

investigated.   
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Mastitis, an inflammation of the mammary gland, is a major issue in the dairy industry. It not only 

undermines the welfare of cows, but it also leads to considerable financial losses for the dairy farmer. 

Furthermore, mastitis is the primary indication for antimicrobial use in dairy cattle. That is why this 

disease requires our continuous attention.  

Chapter 1 illustrates the importance of coagulase-negative staphylococci (CNS), the most common 

causative agent of mastitis in dairy cattle. Although CNS were initially considered as one large, 

homogenous group of bacteria, recent epidemiological studies demonstrate that some CNS species 

have a more severe clinical impact than others. However, the relative importance of intraspecies 

differences in terms of pathogenicity is unexplored. All in all, little is known about the host response 

of dairy cattle to different CNS species and strains. 

Ecologically speaking, CNS can be divided into “host-adapted” and “environmental” species. Host-

adapted species, such as Staphylococcus chromogenes, are mainly found in the milk or on the cow’s 

body. Environmental species, like Staphylococcus fleurettii, on the other hand, mostly occur in the 

immediate surroundings of the cow and rarely in milk. Why some species thrive in the mammary gland, 

as opposed to other body sites or the surrounding environment, is not entirely clear. Furthermore, 

there are a number of observational studies showing that CNS-infected cows, against all odds, produce 

more milk than their non-infected herd mates. However, the involved CNS were never identified at 

species or strain level. The underlying mechanism for this apparent increased milk yield is still unclear. 

Chapter 2 states the objectives of the thesis. The general purpose of this work is to broaden the existing 

knowledge of the host-pathogen interactions between heifer and ecologically diverse CNS species and 

strains, in order to explain the dichotomy between host-adapted and environmental CNS. This work 

focused on 3 different field strains: one particular environmental S. fleurettii strain originating from 

sawdust and two representative host-adapted S. chromogenes strains. One of those strains (S. 

chromogenes IM) was initially isolated from the left hind quarter of a multiparous cow with a persistent 

(> 300 days), while the other strain (S. chromogenes TA) was isolated from the teat apex of a heifer. 

Furthermore, the latter strain is able to inhibit the in vitro growth of major mastitis pathogens. An 
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additional objective of this thesis is the examination of prolactin (PRL) as a potential autocrine lactation 

hormone and immunomodulatory factor in CNS mastitis. 

Eight healthy Holstein heifers in mid-lactation were inoculated with the three respective CNS strains 

to examine the species differences between S. fleurettii and S. chromogenes on the one hand, and the 

strain differences within S. chromogenes on the other hand (Chapter 3). Each mammary quarter was 

inoculated with one strain, or a sterile phosphate-buffer saline solution as control. Despite the high 

inoculum dose (1.0 x 106 colony-forming units), the three CNS strains evoked a relatively mild and self-

limiting inflammatory response. These results confirm that the environmental species S. fleurettii is 

less adjusted to the internal milieu of the mammary gland than the host-adapted S. chromogenes. 

Contrary to S. chromogenes, S. fleurettii was rapidly (within 12h) eliminated from the quarters. The 

influx of polymorphonuclear neutrophils occurred a little sooner (within 9h) in the S. fleurettii-infected 

quarters, evidenced by the slightly higher somatic cell count (SCC) and the lower proportion of 

apoptotic neutrophils. The two S. chromogenes strains also differed in pathogenicity. Staphylococcus 

chromogenes IM showed a more distinct bacterial growth than S. chromogenes TA,  and induced a 

higher SCC response. Even though S. chromogenes IM was originally isolated from a chronically 

infected quarter, the same exact isolate was not capable of colonizing the mammary tissue in this 

study. After all, the strain was eliminated from the quarters within one week. 

Chapter 4 evaluates the PRL level in the milk during an experimental challenge with the three 

respective CNS strains. Chapter 4.1 is based on the same in vivo challenge described in the previous 

chapter. During this trial, the quarter milk yield was determined and the milk PRL level was measured 

using a radioimmunoassay in the following 78h after inoculation. This study showed that the milk 

production decreased compared the control quarters, which is not entirely unexpected, since we only 

measured the milk yield during the acute phase of inflammation. Staphylococcus chromogenes IM 

resulted in the largest numeric production loss. The PRL-concentration was higher in the milk of CNS-

infected quarters, although we found no considerable difference between the CNS strains. After 

inoculation, the sodium and chloride content of the milk slightly increased in the infected quarters, 
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indicating that the blood-milk barrier was somewhat disintegrated. This might indicate that the 

increased PRL is the result of circulatory PRL leaking from the blood to the milk component.  

Chapter 4.2 is consistent with these findings. We investigated in an in vitro study whether the MEC 

respond to a CNS challenge by expressing the PRL gene. An immortalized epithelial cell line (MAC-T) 

was challenged with the same three CNS strains (in a 1:1 ratio of staphylococci to cells). Next, the 

expression of the PRL gene was quantified using qPCR. We found no evidence for a higher PRL 

expression in the infected cells compared to the control cells. Although bovines can produce PRL locally 

in the mammary gland, the expression of PRL does not appear to be regulated by an infection with 

these strains. However, it should be noted that the general correlation between mRNA and the final 

protein can be low, and that MAC-T cells might possibly not be the best reflection of a dairy cow’s 

biological mammary tissue. 

Finally, Chapter 5 provides a summary of the obtained results and relates these findings to the existing 

body of research on CNS.    
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Mastitis, oftewel ontsteking van het melkklierweefsel, is een van de belangrijkste aandoeningen in de 

melkveesector. Het ondermijnt niet alleen het welzijn van de koeien, maar leidt ook tot zware 

economische verliezen voor de melkveehouder. Bovendien is mastitis de primaire indicatie van 

antimicrobiële middelen bij melkvee. Daarom verdient deze aandoening bijzondere aandacht.  

In Hoofdstuk 1 wordt er dieper ingegaan op de coagulase-negatieve stafylokokken (CNS), de meest 

voorkomende mastitisverwekkers bij melkvee. Hoewel de CNS aanvankelijk als één grote, homogene 

groep bacteriën aanschouwd werden, tonen recente epidemiologische studies aan dat sommige CNS-

soorten een zwaardere klinische impact hebben dan andere. Of er binnen één species ook onderlinge 

verschillen bestaan tussen stammen, is niet duidelijk. Bovendien is er weinig geweten over de 

afweerreactie van vaarzen tijdens CNS-infecties.  

Ecologisch gezien kunnen CNS ingedeeld worden in “gastheergebonden” en “omgevingsgebonden” 

soorten. Gastheergebonden CNS-soorten, zoals Staphylococcus chromogenes, worden voornamelijk 

teruggevonden in de melk of op het lichaam van de koe. Omgevingsgebonden soorten, zoals 

Staphylococcus fleurettii, worden daarentegen zelden geïsoleerd uit melk, maar komen voornamelijk 

voor in de stalomgeving. Waarom sommige CNS soorten vaker voorkomen in de uier dan anderen, is 

echter niet geheel duidelijk. Daarnaast blijkt uit een aantal observationele onderzoeken dat CNS-

geïnfecteerde koeien -tegen alle verwachtingen in– een hogere melkgift hebben dan niet-

geïnfecteerde koeien, ook al werden de betrokken isolaten in deze studies meestal niet nader 

geïdentificeerd op species- of stamniveau. Het onderliggende mechanisme achter deze zogenaamde 

productieverhoging is vooralsnog onduidelijk.  

In Hoofdstuk 2 worden de doelstellingen van de thesis aangehaald. Het overkoepelende doeleinde van 

dit werk is het verbreden van de bestaande kennis rond de gastheer-pathogeen interactie tussen 

vaarzen en ecologisch diverse CNS soorten en stammen, om de dichotomie tussen gastheer- en 

omgevingsgebonden CNS soorten te helpen verklaren. Er wordt gefocust op drie verschillende 

veldstammen, waarvan één specifieke omgevingsgebonden S. fleurettii-stam uit zaagsel en twee 

representatieve gastheergebonden Staphylococcus chromogenes-stammen.  De ene S. chromogenes-
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stam (IM) werd oorspronkelijk geïsoleerd uit het linker achterkwartier van een multipare koe met een 

chronische infectie (> 300 dagen), terwijl de andere stam (TA) teruggevonden werd op de speentop 

van een vaars. Tevens kan deze stam ook de groei van andere mastitiskiemen in cultuur inhiberen. Een 

bijkomende doelstelling van deze thesis is het bestuderen van de rol van prolactine (PRL) in CNS 

mastitis, als mogelijk autocrien lactatiehormoon en immunomodulerende factor.  

Om enerzijds de soortverschillen tussen S. fleurettii en S. chromogenes, en anderzijds de 

stamverschillen binnen S. chromogenes te bestuderen, werden acht gezonde Holstein vaarzen in mid-

lactatie geïnoculeerd met de respectievelijke stammen (Hoofdstuk 3). De vier uierkwartieren van elke 

vaars werden simultaan geïnoculeerd met één van de drie beschreven CNS-stammen, of een steriele 

fosfaatgebufferde zoutoplossing ter controle. Uit het experiment bleek dat, ondanks de hoge 

infectiedosis van 1,0 x 106 kolonievormende eenheden, de drie stammen een zelflimiterende infectie 

en milde ontstekingsreactie uitlokten. De resultaten bevestigen dat  de omgevingsgebonden kiem S. 

fleurettii wel minder goed geadapteerd is aan het inwendige milieu van de uier dan de 

gastheergebonden S. chromogenes. Staphylococcus fleurettii werd immers snel (binnen 12u) 

geëlimineerd uit het kwartier, in tegenstelling tot S. chromogenes. Hoewel het celgetal (SCC) op 

dezelfde manier doorheen de tijd evolueerde, kwam de influx van neutrofielen in de S. fleurettii-

geïnfecteerde kwartieren iets vroeger (binnen 9u) op gang. Dit blijkt uit het hogere SCC en het lagere 

aandeel apoptotische neutrofielen in de melk. Ook tussen beide S. chromogenes-stammen blijkt er een 

verschil te bestaan wat betreft de virulentie. Staphylococcus chromogenes IM vertoonde een meer 

uitgesproken bacteriële groei dan S. chromogenes TA, en wekte eveneens een hogere SCC respons op. 

Hoewel S. chromogenes IM oorspronkelijk geïsoleerd werd uit een chronisch geïnfecteerd kwartier, 

was hetzelfde isolaat in deze studie niet in staat om het melkklierweefsel te koloniseren. Ongeveer 

een week na inoculatie waren alle bacteriën immers verdwenen uit de geïnfecteerde kwartieren. 

In Hoofdstuk 4 wordt het PRL gehalte in de melk bestudeerd tijdens de experimentele infectie met de 

drie CNS-stammen. Hoofdstuk 4.1 stoelt op dezelfde in vivo studie die reeds aangehaald werd in het 

vorige hoofdstuk. Tijdens deze proef werd ook de melkproductie per kwartier gemeten en het PRL 
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gehalte in de melk bepaald tot 78u na inoculatie via een radioimmunoassay. Uit deze studie bleek dat 

de melkproductie in de geïnfecteerde kwartieren daalde ten opzichte van de controlekwartieren. Dit 

lag in de lijn der verwachtingen, aangezien we de melkproductie enkel tijdens de acute fase van de 

inflammatie opgemeten hebben. Het productieverlies was op zich het grootst in de S. chromogenes 

IM-geïnfecteerde kwartieren. Het PRL gehalte lag ook hoger in de melk van de CNS-geïnfecteerde 

kwartieren dan in de niet-geïnfecteerde kwartieren, hoewel er geen noemenswaardig verschil 

aangetoond kon worden tussen de CNS-stammen onderling. Na inoculatie, steeg het Na+ en Cl- gehalte 

in de melk van de geïnfecteerde kwartieren, wat aangeeft dat de bloed-melk barrière enigszins 

aangetast werd. Dit kan er mogelijks op wijzen dat PRL vanuit de bloedbaan naar het melk-

compartiment doorsijpelt.  

Hoofdstuk 4.2 sluit aan op deze bevindingen. Of de epitheliale cellen van de melkklier überhaupt 

kunnen reageren op een CNS-infectie door middel van expressie van het PRL-gen werd onderzocht in 

een in vitro studie. Een geïmmortaliseerde epitheliale cellijn (MAC-T) werd namelijk geïnfecteerd met 

dezelfde 3 CNS-stammen (volgens een 1:1 ratio van stafylokokken op cellen). Vervolgens werd de 

expressie van het PRL gen gekwantificeerd via qPCR. Deze studie toont aan de PRL-expressie na infectie 

met de 3 CNS-stammen niet hoger is dan in de controle cellen. Dit suggereert dat de aanmaak van PRL 

weliswaar mogelijk is ter hoogte van de melkklier (zoals reeds aangetoond werd bij andere 

diersoorten), maar dat de expressie niet noodzakelijk beïnvloed wordt door deze 3 CNS-stammen. Het 

verhoogde PRL gehalte uit Hoofdstuk 4.1 is wellicht dus niet het gevolg van een verhoogde PRL 

productie ter hoogte van de melkklier. Toch moet men zich er van bewust zijn dat de correlatie tussen 

mRNA en het uiteindelijke eiwit notoir slecht is, en dat de MAC-T cellen in deze studieopzet mogelijks 

niet de beste weerspiegeling zijn van het natuurlijke melkklierweefsel van koeien.  

Hoofdstuk 5 is tenslotte een synthese van de verkregen onderzoeksresultaten, waarin deze 

geïntegreerd in en afgetoetst worden aan de bestaande wetenschappelijke kennis. 
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gebleken dat “uit het oog, uit het hart” niet altijd klopt. Rina -Limburger, Wereldburger- ik heb zoveel 

respect voor jouw kracht en doorzettingsvermogen. Hoeveel keer heb ik geen tranen gelachen met 

jouw verhalen… Ik kijk al uit naar de dag dat jij hier vooraan in dit auditorium zal staan. Die dag komt 

sneller dan je denkt. Ik wens jou en Ruben dan ook het allerbeste toe. En Visserke, waar moet ik 

beginnen met jou te bedanken? Jij bent één van de meest behulpzame mensen die ik ooit ontmoet 
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heb. Jij stond letterlijk op elk moment klaar met raad & daad (& koffie). Respect voor alles wat je de 

laatste jaren opgebouwd hebt, en veel succes in dit nieuwe luik van je leven met Anthony en “mini”. 

Ik wil gewoon nog één ding zeggen…. jij stinkende spons.  

Ook dank aan de andere M-team leden (“emmertjes”) met wie ik al dan niet kortstondig een bureau 

gedeeld heb: Ameline, Justine, Zyncke, Katelijne, Wannes, Pieter en Bert. De opvolging is intussen ook 

al verzekerd met Chloë en Lisa. Bert, organisator van de befaamde wildfeestjes, ik kijk al uit naar de 

piek van het scheerseizoen en hoop dat mijn rug het dit keer uithoudt!  

Maar de vakgroep beslaat meer dan enkel het M-team. Dank aan alle collega’s voor de fijne babbels, 

kerstquizzen, hilarische kettingmails (“zwaluwen: pro of contra?”), Eluna bezoekjes, en meer. Bedankt 

om epjes te helpen labelen, Johan, ik ben het nog niet vergeten! Ilse en Lotte, merci dat ik mee op 

uitstap mocht naar het slachthuis, een heuse afwisseling voor mij. Miel en Jenne, merci voor het 

aangename gezelschap in Kansas, inderdaad één van de tofste congressen en tevens ook 

huwelijksreizen die ik meegemaakt heb. Dan denk ik natuurlijk ook nog aan Vanessa, Mieke, Kristof, 

Steven, Bénédicte, Merel, Jeroen, Ann, Dominique, Catharina, Maarten, Jan, Hilde, Eline, Kim, Valérie, 

Rubèn, Osvaldo, en zovele anderen.  

Het administratieve en technische personeel is echter de ruggengraat van de vakgroep. Dagelijks 

zetten zij zich in om de zaak draaiende te houden. Leïla & Sandra, bedankt voor de goede zorgen (zelfs 

nadat ik de Universiteit verlaten heb). Ria, bedankt voor je luisterend oor en spannende verhalen. 

Veronique, op jou kon ik ook altijd rekenen. Lars, wat had ik zonder jou aangevangen in het labo? Ik 

ken niet veel laboranten die bereid zijn om op zulke ongoddelijke uren melkstalen te gaan nemen voor 

een doctoraatsstudent! Bedankt om alle uren die ik in het labo doorbracht wat kleur te geven. Steven, 

jij was de steeds de redder in IT-nood. Els, jij knuffelbeer, bedankt voor alles en wie zien elkaar wel 

weer in de Eurotuin. Natuurlijk wil ik ook Willy, Marnik, Dirk, Petra en Isabel in de spreekwoordelijke 

bloemetjes zetten. De vakgroep is echter zo’n grote, dynamische groep… ik ben ongetwijfeld nog vele 

belangrijke mensen vergeten. Mea culpa.  
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Daarnaast wil ook het team van Landbouwleven en Sillon Belge vermelden. Bedankt voor de weliswaar 

korte, maar desalniettemin aangename samenwerking: André, Tim, Ivan, Marc, Delphine, Pierre-Yves, 

Jérémy et tous les autres. En natuurlijk mogen de ILVO collega’s, die zich sinds augustus 2015 over mij 

ontfermd hebben, niet ontbreken in dit dankwoord. In de eerste plaats wil ik Stephanie bedanken, die 

altijd voor mij klaarstaat en mij de kans geeft om mezelf te ontplooien. Merci om me binnen te halen 

bij ILVO: ik ben serieus met mijn gat in de boter gevallen! Mijn nieuwe (maar intussen al niet meer zo 

nieuwe) bureaugenootjes –Jarissa, Tim, Olga, Zee – ik wil jullie bedanken voor alle dingen die ik 

dagelijks van jullie opsteek, gaande van het veilig verwijderen van hoornaars tot communicatie 

protocollen voor RFID. Fijn om deel te mogen uitmaken van zo’n diverse groep. Jürgen, Annelies, Ingrid, 

Philippe, Pieterjan, Katrien B., Eva, Simon, Caroline, Raphaël, Lieve H., Dieter, Ingrid, Veerle, Ruben, 

Gerlinde, Donald, Maarten, Jef, Ludwig, Tim D., Sophie, Elsy, Lieve D., Johan, Katrien V., Nathalie, 

Claudia, Loes, Eric, Bart L., Lorenzo, Bart E., Marie-José, Marleen, Peter, Bert B., Davy, Brecht, Olav, Els, 

Sofie, Ronny, Filip, Joren, Koen en alle andere collega’s: bij deze beloof ik jullie om opnieuw meer tijd 

vrij te maken voor niet-werkgerelateerde personeelsactiviteiten. (Zei daar iemand “Feestpaleis”?) 

Maar in de eerste plaats wil ik vanaf nu meer tijd maken voor mijn familie en vrienden. “Nee, ik moet 

nog werken”, was zowat mijn standaardrespons in de afgelopen weken (maanden?). Aan mijn 

Limburgse vrienden, bij wie ik de navelstreng nooit zal doorknippen, salute! De “Tunesian Girls” –

Hanne, Inge en Fee – van de kleuterklas tot in het rusthuis blijven jullie in m’n hart. (Ugh, zo melig.) 

Bedankt om de vriendengroep te verbreden met de tofste aanhangsels denkbaar: Marco, Zander en 

Fredje. Ook hier staat de volgende generatie al klaar met Alexander en Fema (een samentreksel van 

Federica & Marco, bij gebrek aan een gepaste naam voor jullie nog ongeboren spruit). Jeroen, Annelies 

en kleine Robin, ik kijk al uit naar het moment dat we samen de straten van Sint-Amandsberg gaan 

onveilig maken, Campo Santo-style. Abbie, Lieve en Pia, jullie mogen altijd aansluiten bij onze crew! 

Sofie en Joël, vanaf nu ga ik jullie deur platlopen, u weze gewaarschuwd. Stephen, het spijt me, maar 

helaas heb ik geen tickets voor wetenschappelijke congressen rond kernenergie te geef. Noami, jou 

bombardeer ik tot mijn gids in het Gentse nachtleven. Peter, jij wordt die voor Hasselt en daarbuiten. 
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Janneman en Sofie, waar blijft die dinner-date? Jullie gaan er niet onderuit kunnen muizen! Aan alle 

andere leden van de Orde van de Rode Draak -met  Aurelia, Joost, Peter, Thomas, Lotje - stay stong. 

Brecht, onze logeerkamer is beschikbaar als je heimwee krijgt naar je studententijd in Gent. Merci ook 

aan de CAVA-werkgroep voor al het professionele advies dat ik krijg, en bedankt aan alle 

studiegenootjes die m’n tijd in Merelbeke zo plezierig maakten.  

Dank aan mijn familie, een zotte collectie van tantes, nonkels, nichtjes en neefjes en een resem 

aanhangsels. Als ik jullie allemaal apart zou bedanken, dan moet ik een tweede volume aan dit 

doctoraat toevoegen :) Wel een speciale vermelding voor het allerliefste metekindje ter wereld, Oscar 

Ignoul, en mijn grootouders (oma “van Ciet”, oma “van soep”, opa & Maria, en de opa die ik helaas 

nooit heb mogen kennen). Ook dank aan mijn lieve schoonfamilie – een hechtere schoonfamilie zou ik 

me niet kunnen inbeelden! Pieter en Rosalie, geniet nog van jullie studententijd– want voor je het 

weet sta je vooraan een auditorium één of ander obscuur onderzoek te verdedigen :) Eef en Kevin, ik 

hoop dat jullie binnenkort eens een weekendje plannen naar Gent (ook hier geldt het aanbod van het 

logeerbed uiteraard!). En Kevin, als je per se wilt koken, hou ik je niet tegen! Ivo… ondanks het feit dat 

je zelf door een enorm moeilijke periode gaat, sta je op ieder moment klaar om ons te helpen in het 

huis en daarbuiten. Ik weet niet hoe we je ooit kunnen bedanken voor alles dat je voor ons, en de 

andere kinderen, doet. Wat zou ik Carine er graag op deze dag bij gehad hebben. Ik ben er zeker van 

dat ze fier zou geweest zijn op ons! 

Natuurlijk wil ik ook mijn ouders bedanken, zonder wie dit werk er helemaal niet zou geweest zijn. 

Dankuwel, mam & pap, voor alle financiële en morele steun, van de eerste dag dat jullie me gingen 

afzetten aan mijn kot in Gent tot nu, in het huisje te Sint-Amandsberg. Bedankt om mij in al mijn keuzes 

onvoorwaardelijk te steunen. Wie had kunnen denken dat het tot dit boek zou leiden? Ik ben blij dat 

mijn slaapkamer nog steeds in ere bewaard wordt, en dat wij op ieder moment welkom zijn. Het 

omgekeerde geldt vanaf nu ook, als jullie Gent eens willen bezoeken. (Ik blijf doorheen dit dankwoord 

maar de logeerkamer aanprijzen…. Misschien moet ik een B&B openen.)  
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Soit, tijd om dit dankwoord, en bijgevolg ook dit doctoraat, af te ronden. Er blijft nog één persoon over 

die ik per se wil bedanken, en dat is … Loopy!  

Nee, mopje, natuurlijk ben jij dat, Hans! :) We hebben in die 14 jaar samen al zoveel meegemaakt, 

maar het lijkt alsof we de laatste 2 jaar in een exponentiële stroomversnelling terecht gekomen zijn. Ik 

ben zo ongelofelijk trots op al wat je doet, en wie je geworden bent. Wie had kunnen denken dat ik 

met “die knappe jongen aan de bibliotheek” de rest van mijn leven zou delen… Puber-Kristine heeft 

onmiddellijk de hoofdvogel afgeschoten! :p Bedankt voor alles wat je dag in dag uit voor mij doet. 

Hopelijk mogen wij nog enkele decennia aan ons verhaal verderbreien. Ik ben al benieuwd waar de 

toekomst ons heen zal leiden…  


