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Abstract

We describe several families of regular partitions of half-spin geometries and
determine their associated parameters and eigenvalues. We also give a general
method for computing the eigenvalues of regular partitions of half-spin geometries.
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1 Introduction

Let q be a prime power and n ∈ N \ {0, 1}. Let Q+(2n− 1, q) be a hyperbolic quadric of
PG(2n− 1, q) and denote by M the set of generators of Q+(2n− 1, q), i.e. the set of all
subspaces of Q+(2n − 1, q) of maximal (projective) dimension n − 1. On the set M, an
equivalence relation can be defined by calling two generators equivalent whenever they
intersect in a subspace of even co-dimension. There are two equivalence classes which we
will denote by M+ and M−.

For every ε ∈ {+,−}, the following point-line geometry HSε(2n−1, q) can be defined:

• the points of HSε(2n− 1, q) are the elements of Mε;

• the lines of HSε(2n− 1, q) are the subspaces of dimension n− 3 of Q+(2n− 1, q);

• incidence is reverse containment.

The isomorphic geometries HS+(2n − 1, q) and HS−(2n − 1, q) are called the half-spin
geometries of Q+(2n− 1, q). We denote any of these geometries by HS(2n− 1, q).

The half-spin geometryHS(3, q) is a line containing q+1 points, HS(5, q) is isomorphic
to PG(3, q) (regarded as a linear space) and HS(7, q) is isomorphic to the geometry of
the points and lines of Q+(7, q).

In this paper, we study regular partitions of half-spin geometries. These are parti-
tions P = {X1, X2, . . . , X|P|} of the point sets for which there are constants aij, i, j ∈
{1, 2, . . . , |P|}, such that every point x ∈ Xi is collinear with precisely aij points of
Xj \ {x}. The eigenvalues of the matrix AP = (aij) are called the eigenvalues of the
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regular partition, and each of these eigenvalues is also an eigenvalue of the collinearity
graph of the geometry.

In this paper, we describe several families of regular partitions of half-spin geometries
and determine their parameters and eigenvalues. Regular partitions have already been
studied for other families of point-line geometries, like generalized polygons [8] and dual
polar spaces [3]. Many regular partitions are associated with nice substructures, and the
eigenvalues of these regular partitions might yield information about the structures from
which they are derived. Indeed, Proposition 2.1 below shows that these eigenvalues are a
helpful tool for determining intersections sizes of combinatorial structures.

This paper is organized as follows. Section 3 contains the main results of this paper.
In this section, we describe several families of regular partitions of half-spin geometries,
many of which are related to nice geometrical substructures, and mention their parameters
and eigenvalues. In Section 4, we describe a general method for computing eigenvalues
of regular partitions of half-spin geometries, and in Section 5 we apply this method to
compute the eigenvalues of all families of regular partitions described in Section 3. Before
we do that, we recall some basic facts about regular partitions, half-spin geometries and
hyperbolic dual polar spaces in the next section.

2 Preliminaries

2.1 Regular partitions of point-line geometries

Let X be a nonempty finite set and R ⊆ X ×X a symmetric relation on X.

A partition P = {X1, X2, . . . , Xk} of size k of X is called R-regular if there exist
constants aij, i, j ∈ {1, 2, . . . , k}, such that for every x ∈ Xi, there are precisely aij
elements y ∈ Xj for which (x, y) ∈ R. The numbers aij are called the parameters of the
R-regular partition. We denote the matrix (aij)1≤i,j≤k by AP and EP denotes the multiset
of the complex eigenvalues of AP .

Given two finite multisets M1 = {λ1, λ2, . . . , λk} and M2 = {µ1, µ2, . . . , µl} whose
elements are complex numbers, we denote byO(M1,M2) the multiplicity of 0 as an element
of the multiset {λi − µj | 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

For a proof of the following proposition, see e.g. De Wispelaere and Van Maldeghem [8,
Lemma 3.3] or De Bruyn [5, Theorem 1.1].

Proposition 2.1 Let R ⊆ X × X be a symmetric relation on a nonempty finite set
X and assume there exists a constant µ ∈ N \ {0} such that for every x ∈ X, there
are precisely µ elements y ∈ X for which (x, y) ∈ R. Let P = {X1, X2, . . . , Xk} and
P ′ = {X ′1, X ′2, . . . , X ′k′} be two R-regular partitions with O(EP , EP ′) = 1. Then |Xi∩X ′j| =
|Xi|·|X′j |
|X| for any (i, j) ∈ {1, 2, . . . , k} × {1, 2, . . . , k′}.

Suppose now that X is the point set of a point-line geometry S and R is the collinearity
relation on X, i.e. if p1, p2 ∈ X, then (p1, p2) ∈ R if and only if p1 6= p2 and there is a
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line containing p1 and p2. An R-regular partition of X will then also be called a a regular
or equitable partition of S. Put X = {p1, p2, . . . , pv} where v = |X| and let A be the
(v × v)-matrix whose (i, j)th entry is equal to 1 if (pi, pj) ∈ R and equal to 0 otherwise.
The eigenvalues of the collinearity matrix A are independent of the ordering of the points
of X and are called the eigenvalues of S. The following lemma and proposition are known,
see e.g. Godsil [9, Section 5.2], Godsil & Royle [10, Theorem 9.3.3] and Cardinali & De
Bruyn [3, Lemmas 1.2 and 1.3].

Lemma 2.2 Suppose A can be partitioned as

A =

 A11 · · · A1k
...

. . .
...

Ak1 · · · Akk

 ,
where each Aii, i ∈ {1, 2, . . . , k}, is square and each Aij, i, j ∈ {1, 2, . . . , k}, has constant
row sum bij. Then the matrix B = (bij)1≤i,j≤k is diagonalizable and any eigenvalue of B
is also an eigenvalue of A.

Proposition 2.3 If P = {X1, X2, . . . , Xk} is a regular partition of S, then every eigen-
value of AP is also an eigenvalue of A (or of S).

Proof. Without loss of generality we may suppose that we have ordered the points of X
in such a way that if pi ∈ Xl and pj ∈ Xm with l < m, then i < j. If we partition the
matrix A in submatrices Aij, i, j ∈ {1, 2, . . . , k}, such that Aij has dimension |Xi| × |Xj|,
then each of these submatrices has constant row sum. Lemma 2.2 then implies that every
eigenvalue of B (as defined there) is also an eigenvalue of A. The proposition then follows
from the fact that B = AP . �

2.2 Half-spin geometries

A connected finite graph of diameter d ≥ 2 is called distance-regular if there exist constants
ai, bi, ci (i ∈ {0, 1, . . . , d}) such that the following hold for any two vertices x and y of
the graph at distance i from each other:

• there are precisely ai vertices adjacent to y at distance i from x;

• there are precisely bi vertices adjacent to y at distance i+ 1 from x;

• there are precisely ci vertices adjacent to y at distance i− 1 from x.

Consider again the hyperbolic quadric Q+(2n−1, q) in PG(2n−1, q), where n ∈ N\{0, 1}
and q is a prime power. Let HS(2n − 1, q) denote one of the two half-spin geometries
associated with Q+(2n − 1, q). The total number of points of HS(2n − 1, q) is equal to
(q+1)(q2+1) · · · (qn−1+1). Every line ofHS(2n−1, q) is incident with precisely q+1 points

and every point of HS(2n − 1, q) is incident with exactly
[
n
2

]
:=
[
n
2

]
q

lines (a Gaussian
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binomial coefficient with respect to q). Distances between points of HS(2n − 1, q) will
be measured in the collinearity graph Γ of HS(2n− 1, q). If α1 and α2 are two points of
HS(2n − 1, q) at distance i ∈ N from each other, then dim(α1 ∩ α2) = n − 1 − 2i. The

graph Γ has diameter d := bn
2
c and is regular with valency k = q ·

[
n
2

]
. If n ≥ 4, then by

[2, Theorem 9.4.8] we know that Γ is distance-regular with parameters

bi = q4i+1 ·
[n− 2i

2

]
, ci =

[2i

2

]
, ai = k − bi − ci,

where i ∈ {0, 1, . . . , d}. Also by [2, Theorem 9.4.8], the eigenvalues of Γ are

θi = q2i+1 ·
[n− 2i

2

]
− q2i − 1

q2 − 1
=
q2n−2i + q2i − qn+1 − qn + q − 1

(q − 1)(q2 − 1)
, i ∈ {0, 1, . . . , d},

and the corresponding multiplicities are

fi = γiq
i ·
[n
i

]
· 1 + qn−2i

1 + qn−i
·

i∏
j=1

1 + qn−j

1 + qj
, i ∈ {0, 1, . . . , d}.

Here, γi = 1 if i < n
2

and γi = 1
2

if n is even and i = n
2
.

For every integer i > d, we define θi := q2n−2i+q2i−qn+1−qn+q−1
(q−1)(q2−1) . Then

θn−i = θi (1)

for every i ∈ {0, 1, . . . , n}, and

m∑
i=0

θi = −(qn+1 + qn − q + 1)(m+ 1)

(q − 1)(q2 − 1)
+

q2n−2m + 1

(q − 1)(q2 − 1)
· q

2m+2 − 1

q2 − 1
, ∀m ∈ N. (2)

2.3 The dual polar space DQ+(2n− 1, q)

It will often be very useful to reason in the dual polar space DQ+(2n − 1, q) associated
with the hyperbolic quadric Q+(2n − 1, q). We recall that DQ+(2n − 1, q) is the point-
line geometry whose points, respectively lines, are the (n − 1)-dimensional, respectively
(n−2)-dimensional, subspaces of Q+(2n−1, q), with incidence being reverse containment.
The collinearity graph of DQ+(2n− 1, q) is a bipartite graph. If α1 and α2 are two points
of DQ+(2n− 1, q), then the distance d(α1, α2) between them in the collinearity graph of
DQ+(2n − 1, q) is equal to n − 1 − dim(α1 ∩ α2). The dual polar space DQ+(2n − 1, q)
is an example of a near polygon, meaning that for every point x and every line L, there
exists a unique point on L nearest to x (with respect to the distance in the collinearity
graph). Since the maximal distance between two points of DQ+(2n − 1, q) is equal to
n, DQ+(2n − 1, q) is a near 2n-gon. There exists a bijective correspondence between
the possibly empty subspaces of Q+(2n − 1, q) and the nonempty convex subspaces of
DQ+(2n − 1, q). Indeed, if α is a subspace of dimension n − 1 − k (k ∈ {0, 1, . . . , n}) of
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Q+(2n− 1, q), then the set Fα of all maximal subspaces of Q+(2n− 1, q) containing α is a
convex subspace of diameter k of DQ+(2n−1, q). If F is a convex subspace and x is a point
of DQ+(2n−1, q), then x is classical with respect to F , meaning that F contains a unique
point x′ = πF (x) such that d(x, y) = d(x, x′) + d(x′, y) for every y ∈ F . If F is a convex
subspace of diameter k, then the maximal distance from a point of DQ+(2n− 1, q) to F
is equal to n− k. If ∗1 and ∗2 are two objects of DQ+(2n− 1, q) (like points or nonempty
sets of points), then 〈∗1, ∗2〉 denotes the smallest convex subspace of DQ+(2n − 1, q)
containing ∗1 and ∗2. The convex subspaces of DQ+(2n − 1, q) through a given point x
of DQ+(2n − 1, q) define a projective space Res(x) isomorphic to PG(n − 1, q). Every
two points x and y of DQ+(2n − 1, q) at distance δ ∈ {0, 1, . . . , n} from each other are
contained in a unique convex subspace of diameter δ. These convex subspaces are called
quads if δ = 2 and they are isomorphic to dual grids of type DQ+(3, q). Note that any
line of such a dual grid has two points and through every point there are precisely q + 1
lines.

Every point of the half-spin geometry HS(2n− 1, q) is also a point of DQ+(2n− 1, q)
and two points x and y of HS(2n − 1, q) are collinear in HS(2n − 1, q) if they lie at
distance 2 as points of DQ+(2n− 1, q), or equivalently, if their convex closure 〈x, y〉 is a
quad. This point of view will be very useful when we will compute the parameters of the
various regular partitions we are going to describe.

For more information on dual polar spaces and half-spin geometries (including proofs
of the above-mentioned facts), we refer to Chapter 8 of [7].

3 Some families of regular partitions of half-spin ge-

ometries

In this section, we list several families of regular partitions of half-spin geometries, many
of which are related to nice geometrical substructures, and mention for each of them the
eigenvalues. Proofs will be postponed till Section 5 after we have described a method in
Section 4 that allows to compute eigenvalues. Note that by Proposition 2.3, the eigenval-
ues of any regular partition of HS(2n− 1, q) are also eigenvalues of the collinearity graph
Γ of HS(2n − 1, q). Recall that Γ has diameter d = bn

2
c and is a distance-regular graph

if n ≥ 4.
If P is the point set of HS(2n− 1, q), then {P} is a regular partition with eigenvalue

k = θ0 and {{p} | p ∈ P} is a regular partition for which each θi, i ∈ {0, 1, . . . , d}, is an
eigenvalue with multiplicity fi. In general, a regular partition of HS(2n − 1, q) can be
constructed from any group G of automorphisms of the geometry by collecting all orbits
of the action of G on P . If n ∈ {2, 3}, then HS(2n − 1, q) is a linear space and every
partition in k ≥ 2 classes is a regular partition with eigenvalues θ0 = k (multiplicity 1)
and θ1 = −1 (with multiplicity k−1). In the sequel, we list nontrivial examples of regular
partitions of HS(2n − 1, q), hereby assuming that n ≥ 4 so that HS(2n − 1, q) is not a
linear space. We also note that if n ∈ {4, 5}, then Γ is a strongly regular graph (the
collinearity graph of Q+(7, q) if n = 4) and regular partitions with only two parts were
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already studied for these geometries, see [1] and [4].

Class 1. (a) Take a fixed point M∗ of HS(2n− 1, q). For every i ∈ {0, 1, . . . , d}, let Xi

denote the set of all points M of HS(2n− 1, q) at distance i from M∗, i.e. the set of all
points M of HS(2n−1, q) for which dim(M∩M∗) = n−1−2i. We will show in Section 5.1
that {X0, X1, . . . , Xd} is a regular partition of HS(2n−1, q) with eigenvalues θ0, θ1, . . . , θd.

(b) Take a fixed element M∗ ∈M that is not a point of HS(2n− 1, q). Then every point
of HS(2n − 1, q) intersects M∗ in a subspace whose dimension is n − 2 − 2i for some
i ∈ {0, 1, . . . , bn−1

2
c}. For every i ∈ {0, 1, . . . , d′}, where d′ := bn−1

2
c, let Xi denote the

set of all points M of HS(2n− 1, q) that intersect M∗ in a subspace whose dimension is
n − 2 − 2i. We will show in Section 5.2 that {X0, X1, . . . , Xd′} is a regular partition of
HS(2n− 1, q) with eigenvalues θ0, θ1, . . . , θd′ .

(c) Take a subspace α of Q+(2n − 1, q) of dimension k ∈ {0, 1, . . . , n − 2}. For every
i ∈ {0, 1, . . . , k + 1}, let Xi denote the set of all points M of HS(2n− 1, q) that intersect
α in a subspace of dimension k − i. We will show in Section 5.3 that {X0, X1, . . . , Xk+1}
is a regular partition of HS(2n− 1, q). We also show the following.

• If k + 1 ≤ d = bn
2
c, then the eigenvalues are θ0, θ1, . . . , θk+1.

• If n is even and k + 1 > d = n
2
, then the eigenvalues are θ0, θ1, . . . , θn−k−2 and θd

with multiplicity 1, and θn−k−1, θn−k, . . . , θd−1 with multiplicity 2.

• If n is odd and k + 1 > d = n−1
2

, then the eigenvalues are θ0, θ1, . . . , θn−k−2 with
multiplicity 1 and θn−k−1, θn−k, . . . , θd with multiplicity 2.

Class 2. Consider a subspace Π that intersects Q+(2n− 1, q) in either a Q+(2m− 1, q),
Q(2m, q) or Q−(2m+ 1, q) with m ∈ {2, 3, . . . , n− ε}, where ε = 0 if Π∩Q+(2n− 1, q) =
Q+(2m − 1, q), ε = 1 if Π ∩ Q+(2n − 1, q) = Q(2m, q) and ε = 2 if Π ∩ Q+(2n − 1, q) =
Q−(2m+ 1, q). For every i ∈ {0, 1, . . . , m̃}, where m̃ := min(m,n−m− ε), let Xi denote
the set of all points M of HS(2n− 1, q) that intersect Q+(2n− 1, q)∩Π in a subspace of
dimension m− 1− i. We show in Section 5.4 that {X0, X1, . . . , Xm̃} is a regular partition
of HS(2n− 1, q) with eigenvalues θ0, θ1, . . . , θm̃.

Class 3. A (partial) ovoid of Q+(2n− 1, q) is a set of points of Q+(2n− 1, q) intersecting
every maximal subspace in (at most) one point. Suppose now that O1, O2, . . . ,Ok is
a collection of k ≥ 1 non-empty mutually disjoint sets of points of Q+(2n − 1, q) such
that O1 ∪ O2 ∪ · · · ∪ Ok is a partial ovoid of Q+(2n − 1, q), but not an ovoid. For every
i ∈ {1, 2, . . . , k}, let Xi denote the set of all points M of HS(2n− 1, q) having nonempty
intersection with Oi. Denote by Xk+1 6= ∅ the set of all points of HS(2n − 1, q) not
contained in X1 ∪ X2 ∪ · · · ∪ Xk. We show in Section 5.5 that {X1, X2, . . . , Xk+1} is a
regular partition of HS(2n−1, q) with eigenvalues θ0 (multiplicity 1) and θ1 (multiplicity
k).
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Class 4. Put x = (x0, x1, . . . , x2n−1) and let φ(x) be a nondegenerate quadratic form
over Fq defining an elliptic quadric Q−(2n − 1, q) in PG(2n − 1, q) and a hyperbolic
quadric Q+(2n − 1, q2) in PG(2n − 1, q2). We regard PG(2n − 1, q) as (naturally) em-
bedded into PG(2n − 1, q2). Let θ be the automorphism of PG(2n − 1, q2) defined by
(x0, x1, . . . , x2n−1) 7→ (xq0, x

q
1, . . . , x

q
2n−1). Then the fixpoints of θ are precisely the points of

PG(2n−1, q). LetM+ andM− denote the two families of generators of Q+(2n−1, q2) and
let HS(2n−1, q2) be one of the two half-spin geometries of Q+(2n−1, q2). By [6, Lemma
2.2], (M+)θ =M− and (M−)θ =M+. Hence, for every point M of HS(2n− 1, q2), we
have dim(M ∩M θ) = n−2−2i for some i ∈ {0, 1, . . . , bn−1

2
c}. For every i ∈ {0, 1, . . . , d′},

where d′ := bn−1
2
c, let Xi denote the set of all points M of HS(2n − 1, q2) for which

dim(M ∩M θ) = n − 2 − 2i. In Section 5.6, we show that {X0, X1, . . . , Xd′} is a regular
partition of HS(2n− 1, q2) with corresponding eigenvalues θ0, θ1, . . . , θd′ .

4 General method to determine eigenvalues of regu-

lar partitions of half-spin geometries

If n is even, then for every i ∈ {0, 1, . . . , n
2
}, consider the polynomial

λi(x) := x2i(1 + x2 + · · ·+ xn−2i−2) · (x+ x2 + · · ·+ xn−2i−1)− (1 + x2 + · · ·+ x2i−2)

of Z[x]. If n is odd, then for every i ∈ {0, 1, . . . , n−1
2
}, consider the polynomial

λi(x) := x2i(1 + x+ · · ·+ xn−2i−1) · (x+ x3 + · · ·+ xn−2i−2)− (1 + x2 + · · ·+ x2i−2)

of Z[x]. For every i ∈ {0, 1, . . . , bn
2
c}, put λ′i(x) := x2n−2i + x2i ∈ Z[x]. Clearly,

deg(λ′i(x)) = 2n− 2i.

Lemma 4.1 For every i ∈ {0, 1, . . . , bn
2
c}, we have θi = λi(q).

Proof. We have

λi(q) = q2i · (qn−2i − 1)(qn−2i − q)
(q − 1)(q2 − 1)

− q2i − 1

q2 − 1

= q2i+1 · (qn−2i − 1)(qn−2i − q)
(q2 − 1)(q2 − q)

− q2i − 1

q2 − 1

= q2i+1 ·
[
n− 2i

2

]
− q2i − 1

q2 − 1

= θi.

�

Lemma 4.2 For every i ∈ {0, 1, . . . , bn
2
c}, we have λ′i(x) = (x−1)(x2−1) ·λi(x)+xn+1+

xn − x+ 1.
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Proof. We have

(x− 1)(x2 − 1) · λi(x) = x2i(xn−2i − 1)(xn−2i − x)− (x− 1)(x2i − 1)

= x2i(x2n−4i − xn−2i − xn−2i+1 + x)− (x2i+1 − x2i − x+ 1)

= x2n−2i − xn − xn+1 + x2i + x− 1.

�

The proof of the following proposition is similar to the proofs of Lemmas 2.1 and 2.3 of
[3].

Proposition 4.3 Let k ≥ 1 and let aij(x) ∈ Z[x] for all i, j ∈ {1, 2, . . . , k}. Let Q be
an infinite set of prime powers. Suppose that for every q ∈ Q, all eigenvalues of the
matrix A(q) := (aij(q))1≤i,j≤k belong to the set {λ0(q), λ1(q), . . . , λd(q)}. Suppose also
that i1, i2, . . . , ik are k not necessarily distinct elements of {0, 1, . . . , d} such that

λi1(q) + λi2(q) + · · ·+ λik(q) = a11(q) + a22(q) + · · ·+ akk(q)

for every q ∈ Q. Then for every q ∈ Q, λi1(q), λi2(q), . . . , λik(q) are all the k not neces-
sarily distinct eigenvalues of the matrix A(q).

Proof. Denote by Ik the k × k identity matrix. We need to prove that

det(X · Ik − A(q)) = (X − λi1(q))(X − λi2(q)) · · · (X − λik(q)) (3)

for every q ∈ Q. The right-hand and left-hand sides of (3) can be regarded as polynomials
of degree k in the variable X whose coefficients are polynomials in q. So, in order to prove
(3) for every q ∈ Q, it suffices to prove that (3) holds for an infinite number of elements
of Q. We shall prove that equation (3) holds for all prime powers q ∈ Q which are bigger
than a certain number K.

Since deg(λ′0(x)) > deg(λ′1(x)) > · · · > deg(λ′d(x)), we know that there exists a K > 0
such that λ′i(q) > k · λ′i+1(q) > 0 for every i ∈ {0, 1, . . . , d− 1} and every element q > K
of the set Q.

Now, take an arbitrary prime power q ∈ Q bigger than K. We know that there exist
k not necessarily distinct elements j1, j2, . . . , jk of {0, 1, . . . , d} such that

det(X · Ik − A(q)) = (X − λj1(q))(X − λj2(q)) · · · (X − λjk(q)). (4)

Equating the coefficients of Xk−1 in the left-hand and right-hand sides of (4), we find that
λj1(q) + λj2(q) + · · ·+ λjk(q) = a11(q) + a22(q) + · · ·+ akk(q). Hence,

λi1(q) + λi2(q) + · · ·+ λik(q) = λj1(q) + λj2(q) + · · ·+ λjk(q). (5)

Now, equation (5) and Lemma 4.2 imply that

λ′i1(q) + λ′i2(q) + · · ·+ λ′ik(q) = λ′j1(q) + λ′j2(q) + · · ·+ λ′jk(q). (6)

Since λ′i(q) > k · λ′i+1(q) > 0 for every i ∈ {0, 1, . . . , d − 1}, there exist by equation (6)
constants Mi, i ∈ {0, 1, . . . , d}, such that:
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(1) among the numbers λ′i1(q), λ
′
i2

(q), . . . , λ′ik(q), there are precisely Mi that are equal
to λ′i(q);

(2) among the numbers λ′j1(q), λ
′
j2

(q), . . . , λ′jk(q), there are precisely Mi that are equal
to λ′i(q).

So, the multisets {λ′i1(q), λ
′
i2

(q), . . . , λ′ik(q)} and {λ′j1(q), λ
′
j2

(q), . . . , λ′jk(q)} are equal,
implying by Lemma 4.2 that also the multisets {λi1(q), λi2(q), . . . , λik(q)} and {λj1(q),
λj2(q), . . . , λjk(q)} are equal. Hence,

det(X · Ik − A(q)) = (X − λj1(q))(X − λj2(q)) · · · (X − λjk(q))

= (X − λi1(q))(X − λi2(q)) · · · (X − λik(q)),

as we needed to show. �

5 Determination of the parameters and eigenvalues

5.1 Treatment of Class 1(a)

Take a fixed point M∗ of HS(2n− 1, q). For every i ∈ {0, 1, . . . , d} with d = bn
2
c, let Xi

denote the set of all points of HS(2n− 1, q) at distance i from M∗. The fact that Γ is a
distance-regular graph implies that {X0, X1, . . . , Xd} is a regular partition. If A = (aij)
denotes the coefficient matrix of this regular partition, then

• aij = 0 for all i, j ∈ {0, 1, . . . , d} with |i− j| ≥ 2,

• ai,i−1 = ci = q4i−1−q2i−q2i−1+1
(q−1)(q2−1) for all i ∈ {1, 2, . . . , d},

• aii = ai = k − bi − ci for all i ∈ {0, 1, . . . , d},

• ai,i+1 = bi = q2n−qn+2i+1−qn+2i+q4i+1

(q−1)(q2−1) for all i ∈ {0, 1, . . . , d− 1},

where ai, bi, ci are the parameters of the distance-regular graph Γ. We show that θ0, θ1, . . . ,
θd are the eigenvalues of this regular partition. In fact this follows from [2, §4.1.B], but
we can also use Proposition 4.3 to prove that. By that proposition, it suffices to prove
that

d∑
i=0

θi =
d∑
i=0

aii =
d∑
i=0

ai

for all prime powers q. Taking into account that k = q2n−qn+1−qn+q
(q−1)(q2−1) , we compute that

ai = aii = k − bi − ci is equal to

− q2 + 1

q(q − 1)(q2 − 1)
· q4i +

(qn+1 + 1)

q(q − 1)2
· q2i − qn+1 + qn − q + 1

(q − 1)(q2 − 1)

9



for every i ∈ {0, 1, . . . , d}. Hence,

d∑
i=0

ai = − q4d+4 − 1

q(q − 1)(q2 − 1)2
+

(qn+1 + 1)(q2d+2 − 1)

q(q − 1)2(q2 − 1)
− (qn+1 + qn − q + 1)(d+ 1)

(q − 1)(q2 − 1)
.

On the other hand, from equation (2) we know that

d∑
i=0

θi = −(qn+1 + qn − q + 1)(d+ 1)

(q − 1)(q2 − 1)
+

q2n−2d + 1

(q − 1)(q2 − 1)
· q

2d+2 − 1

q2 − 1
.

Using the fact that d = n
2

if n is even and d = n−1
2

if n is odd, it is now straightforward

to verify that
∑d

i=0 θi =
∑d

i=0 ai.

5.2 Treatment of Class 1(b)

Let M∗ be a maximal subspace of Q+(2n − 1, q) that is not a point of HS(2n − 1, q).
Put d′ := bn−1

2
c. For every i ∈ {0, 1, . . . , d′}, let Xi 6= ∅ denote the set of all points of

HS(2n− 1, q) that intersect M∗ in a subspace of dimension n− 2− 2i. If M ∈ Xi, then
the distance between M and M∗ in the dual polar space DQ+(2n−1, q) is equal to 2i+1.

Lemma 5.1 Let x and y be two points of DQ+(2n−1, q) at distance 2i+1 from each other,
where i ∈ {0, 1, . . . , bn−1

2
c}. Let F denote the unique convex subspace of DQ+(2n− 1, q)

of diameter 2i+ 1 through x and y. For every quad Q through y, let AQ denote the set of
q points of Q at distance 2 from y. Then one of the following three cases occurs for such
a quad.

(1) The quad Q is contained in F . Then one point of AQ lies at distance 2i− 1 from x
and the other q − 1 lie at distance 2i+ 1 from x.

(2) The quad Q intersects F in a line. Then all q points of AQ lie at distance 2i + 1
from x.

(3) The quad Q intersects F in the singleton {y}. Then all q points of AQ lie at distance
2i+ 3 from x.

Proof. The collinearity graph of DQ+(2n − 1, q) is bipartite and so every point of AQ
has distance 2i− 1, 2i+ 1 or 2i+ 3 from x, and every point of Q \AQ lies at distance 2i
or 2i+ 2 from x.

(1) If the quad Q is contained in F , then the maximal distance that a point of F can
have to Q is 2i− 1. As d(x, y) = 2i+ 1 and x is classical with respect to Q, the quad Q
contains a unique point x′ at distance 2i− 1 from x. This point x′ is the unique point of
AQ at distance 2i− 1 from x and any other point of AQ has distance 2i+ 1 from x.

(2) Suppose Q intersects F in a line {y, z}. Then AQ ∩ F = ∅, d(x, z) = 2i and every
point of AQ is collinear with z. Since every point of AQ is classical with respect to F , the
distance of such a point to x is equal to 1 + d(z, x) = 2i+ 1.
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(3) Suppose Q intersects F in the singleton {y}. If z ∈ AQ, then the unique point
z′ ∈ F nearest to z lies on a shortest path from z to y, implying that z′ = y and
d(z, x) = d(z, z′) + d(z′, x) = d(z, y) + d(y, z) = 2i+ 3. �

For every j ∈ {1, 2, 3}, let N
(j)
i denote the number of quads Q as in (j) of Lemma 5.1.

Using the fact that Res(y) ∼= PG(n− 1, q), we see that

N
(1)
i =

(q2i+1 − 1)(q2i − 1)

(q − 1)(q2 − 1)
, N

(2)
i =

(q2i+1 − 1)(qn−2i−1 − 1)

(q − 1)2
q2i,

N
(3)
i =

(qn − 1)(qn−1 − 1)

(q − 1)(q2 − 1)
−N (1)

i −N
(2)
i =

(qn − q2i+1)(qn−1 − q2i+1)

(q − 1)(q2 − 1)
.

The following is an immediate consequence of Lemma 5.1, taking into account the follow-
ing two facts from Section 2.3:

• two points of HS(2n− 1, q) lie at distance 1 from each other if and only if they lie
at distance 2 regarded as points of DQ+(2n− 1, q);

• two points of DQ+(2n − 1, q) that lie at distance 2 from each other are contained
in a unique quad.

Corollary 5.2 The set {X0, X1, . . . , Xd′} is a regular partition of DQ+(2n − 1, q). If
A = (aij) denotes the coefficient matrix, then

• aij = 0 for all i, j ∈ {0, 1, . . . , d′} with |i− j| ≥ 2;

• ai,i−1 = N
(1)
i for all i ∈ {1, 2, . . . , d′};

• aii = (q − 1)N
(1)
i + qN

(2)
i for all i ∈ {0, 1, . . . , d′};

• ai,i+1 = qN
(3)
i for all i ∈ {0, 1, . . . , d′ − 1}.

We show that θ0, θ1, . . . , θd′ are the eigenvalues of this regular partition. By Proposi-
tion 4.3, it suffices to prove that

d′∑
i=0

θi =
d′∑
i=0

aii

for all prime powers q. We compute that

aii =
(q2i+1 − 1)(q2i − 1)

q2 − 1
+

(q2i+1 − 1)(qn − q2i+1)

(q − 1)(q − 1)

= − q(q2 + 1)

(q − 1)2(q + 1)
q4i +

qn+1 + 1

(q − 1)2
q2i − qn+1 + qn − q + 1

(q − 1)(q2 − 1)
.
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Hence,

d′∑
i=0

aii = − q(q4d
′+4 − 1)

(q − 1)(q2 − 1)2
+

(qn+1 + 1)(q2d
′+2 − 1)

(q − 1)2(q2 − 1)
− (qn+1 + qn − q + 1)(d′ + 1)

(q − 1)(q2 − 1)
.

On the other hand, by equation (2) we know that

d′∑
i=0

θi = −(qn+1 + qn − q + 1)(d′ + 1)

(q − 1)(q2 − 1)
+

q2n−2d
′
+ 1

(q − 1)(q2 − 1)
· q

2d′+2 − 1

q2 − 1
.

Using the fact that d′ = n−2
2

if n is even and d = n−1
2

if n is odd, it is now straightforward

to verify that
∑d′

i=0 θi =
∑d′

i=0 aii.

5.3 Treatment of Class 1(c)

Let α be a nonempty subspace of Q+(2n−1, q) for which k := dim(α) ≤ n−2, let Xi 6= ∅
for i ∈ {0, 1, . . . , k + 1} denote the set of all points M of HS(2n − 1, q) that intersect α
in a subspace of dimension k − i.

Let Fα denote the set of all maximal subspaces of Q+(2n− 1, q) that contain α. Then
Fα is a convex subspace of diameter n−1−k of the dual polar space DQ+(2n−1, q). The
generators of Q+(2n − 1, q) intersecting α in subspaces of dimension k − i are precisely
the points of DQ+(2n− 1, q) at distance i from Fα, see e.g. [7, Chapter 8].

Lemma 5.3 Let x be a point of DQ+(2n−1, q) at distance i ∈ {0, 1, . . . , k+ 1} from Fα.
Then the following hold:

(a) The number of points of DQ+(2n− 1, q) collinear with x and at distance i− 1 from

Fα is equal to N−i := qi−1
q−1 .

(b) The number of points of DQ+(2n− 1, q) collinear with x and at distance i from Fα,

not including the point x itself, is equal to Ni := qi+n−1−k−qi
q−1 .

(c) The number of points of DQ+(2n− 1, q) collinear with x and at distance i+ 1 from

Fα is equal to N+
i := qn−qi+n−1−k

q−1 .

Proof. Let x′ be the unique point of Fα at distance i from x and let y′ be a point of Fα
at maximal distance n − 1 − k from x′. Then 〈x, x′〉 is a convex subspace of diameter i.
As there exists a shortest path from x to y′ containing x′, the smallest convex subspace
containing x and Fα coincides with 〈x, y′〉 and has diameter i+ n− 1− k.

If L is a line through x containing a point u having distance i−1 from a point u′ ∈ Fα,
then necessarily u′ = x′ and so L must be one of the qi−1

q−1 lines through x contained in

〈x, x′〉.
In the convex subspace 〈x, y′〉 of diameter i + n − 1 − k, every point has distance at

most i from Fα. So, if L is one of the qi+n−1−k−qi
q−1 lines through x contained in 〈x, y′〉, but

not in 〈x, x′〉, then the unique point in L \ {x} has distance i from Fα.
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Suppose L is one of the qn−qi+n−1−k

q−1 lines through x not contained in 〈x, y′〉. The unique

point v in L\{x} is classical with respect to 〈x, y′〉 and so d(v, Fα) = d(v, x) + d(x, Fα) =
i+ 1. �

If j ∈ Z \ {0, 1, . . . , k + 1}, then we define Nj = N+
j = N−j = 0.

As every two points of DQ+(2n− 1, q) at distance 2 from each other have precisely q + 1
common neighbours, we see from Lemma 5.3 that {X0, X1, . . . , Xk+1} is a regular partition
whose coefficient matrix A = (aij) is as follows:

• aij = 0 if i, j ∈ {0, 1, . . . , k + 1} with |i− j| > 2;

• (q + 1) · ai,i−2 = N−i ·N−i−1 for every i ∈ {2, 3, . . . , k + 1};

• (q + 1) · ai,i−1 = Ni ·N−i +N−i ·Ni−1 for every i ∈ {1, 2, . . . , k + 1};

• (q+1)·aii = Ni·(Ni−1)+N+
i ·(N−i+1−1)+N−i ·(N+

i−1−1) for every i ∈ {0, 1, . . . , k+1};

• (q + 1) · ai,i+1 = Ni ·N+
i +N+

i ·Ni+1 for every i ∈ {0, 1, . . . , k};

• (q + 1) · ai,i+2 = N+
i ·N+

i+1 for every i ∈ {0, 1, . . . , k − 1}.

We compute that

(q + 1) · aii =
qi − 1

q − 1
·
(qn − qi+n−k−2

q − 1
− 1
)

+
qi+n−1−k − qi

q − 1
·
(qi+n−1−k − qi

q − 1
− 1
)

+
qn − qi+n−1−k

q − 1
· q

i+1 − q
q − 1

.

It is possible to rewrite aii in the following way

aii =
1

(q2 − 1)(q − 1)
(Aq2i +Bqi + C),

where

A = q2n−2k−2 − qn−k−2(q + 1)2 + 1,

B = qn−k−2(q + 1)(qk+2 + 1),

C = −(qn+1 + qn − q + 1).

It is straightforward to verify that

k+1∑
i=0

aii =
1

(q2 − 1)(q − 1)

(
A · q

2k+4 − 1

q2 − 1
+B · q

k+2 − 1

q − 1
+ C(k + 2)

)
is equal to

k+1∑
i=0

θi =
C(k + 2)

(q2 − 1)(q − 1)
+

(q2n−2k−2 + 1)(q2k+4 − 1)

(q − 1)(q2 − 1)2
.

So, by Proposition 4.3, the eigenvalues of the regular partition are θ0, θ1, . . . , θk+1. Using
equation (1) of Section 2.2, we can then conclude the following:
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• If k + 1 ≤ d = bn
2
c, then the eigenvalues are θ0, θ1, . . . , θk+1.

• If n is even and k + 1 > d = n
2
, then the eigenvalues are θ0, θ1, . . . , θn−k−2 and θd

with multiplicity 1, and θn−k−1, θn−k, . . . , θd−1 with multiplicity 2.

• If n is odd and k + 1 > d = n−1
2

, then the eigenvalues are θ0, θ1, . . . , θn−k−2 with
multiplicity 1 and θn−k−1, θn−k, . . . , θd with multiplicity 2.

5.4 Treatment of Class 2

Let X0, X1, . . . , Xm̃ with m̃ := min(m,n−m− ε) be the sets of points of HS(2n− 1, q)
as described in Section 3. We show that these sets determine a regular partition and
compute the corresponding parameters and eigenvalues. We achieve these goals using a
reasoning in the dual polar space DQ+(2n− 1, q). The following lemma was proved in [3,
Section 6] (consider the special case e = 0).

Lemma 5.4 Let x be a point of DQ+(2n−1, q) intersecting Π in a subspace of dimension
m− 1− i. Then every point of DQ+(2n− 1, q) collinear with x intersects Π in a subspace
of dimension m− 1− (i+ ε) where ε ∈ {0, 1,−1}. Moreover:

(a) The number of points of DQ+(2n − 1, q) collinear with x that intersect Π in a

subspace of dimension m− 1− (i− 1) is equal to N−i := (qi−1)(qi+ε−1+1)
q−1 .

(b) The number of points of DQ+(2n − 1, q) collinear with x that intersect Π in a
subspace of dimension m− 1− i, not including the point x itself, is equal to Ni :=
qn−m+i−1

q−1 − (qi−1)(qi+ε−1+1)
q−1 + q2i+ε q

m−i−1
q−1 .

(c) The number of points of DQ+(2n − 1, q) collinear with x that intersect Π in a

subspace of dimension m− 1− (i+ 1) is equal to N+
i := q2i+ε (q

m−i−1)(qn−m−ε−i−1)
q−1 .

For every j ∈ Z \ {0, 1, . . . , m̃}, we put Nj = N+
j = N−j = 0.

Lemma 5.5 {X0, X1, . . . , Xm̃} is a partition of the point set of HS(2n− 1, q).

Proof. Note that X0 6= ∅. Since DQ+(2n − 1, q) is connected and N+
m̃ = 0, we see that

X0 ∪X1 ∪ · · · ∪Xm̃ coincides with the whole point set.
Note that N0 6= 0 and that N+

i 6= 0 for every i ∈ {0, 1, . . . , m̃ − 1}. So, for every
j ∈ {0, 1, . . . , m̃}, there exists a path of even length in DQ+(2n− 1, q) connecting a point
of X0 with a point of Xj, implying that Xj 6= ∅. �

As every two points of DQ+(2n− 1, q) at distance 2 from each other have precisely q + 1
common neighbours, we see from Lemmas 5.4 and 5.5 that {X0, X1, . . . , Xm̃} is a regular
partition whose coefficient matrix A = (aij) is as follows:

14



• aij = 0 if i, j ∈ {0, 1, . . . , m̃} with |i− j| > 2;

• (q + 1) · ai,i−2 = N−i ·N−i−1 for every i ∈ {2, 3, . . . , m̃};

• (q + 1) · ai,i−1 = Ni ·N−i +N−i ·Ni−1 for every i ∈ {1, 2, . . . , m̃};

• (q+1)·aii = Ni ·(Ni−1)+N+
i ·(N−i+1−1)+N−i ·(N+

i−1−1) for every i ∈ {0, 1, . . . , m̃};

• (q + 1) · ai,i+1 = Ni ·N+
i +N+

i ·Ni+1 for every i ∈ {0, 1, . . . , m̃− 1};

• (q + 1) · ai,i+2 = N+
i ·N+

i+1 for every i ∈ {0, 1, . . . , m̃− 2}.

From this we compute that

aii =
1

q + 1

((qi − 1)(qi+ε−1 + 1)

q − 1
·
(q2i−2+ε(qm−i+1 − 1)(qn−m−i+1−ε − 1)

q − 1
− 1
)

+
(qn−m+i − 1)− (qi − 1)(qi+ε−1 + 1) + q2i+ε(qm−i − 1)

q − 1
·((qn−m+i − 1)− (qi − 1)(qi+ε−1 + 1) + q2i+ε(qm−i − 1)

q − 1
− 1
)

+
q2i+ε(qm−i − 1)(qn−ε−m−i − 1)

q − 1
·
((qi+1 − 1)(qi+ε + 1)

q − 1
− 1
))
.

Theorem 5.6 The eigenvalues of the regular partition {X0, X1, . . . , Xm̃} are as follows.

(1) If m ≤ (n− ε)/2, then there are m+ 1 eigenvalues with multiplicity 1. They are the
first m+ 1 eigenvalues θ0, θ1, . . . , θm of Γ.

(2) If m > (n− ε)/2, then there are n−m− ε+ 1 eigenvalues with multiplicity 1. They
are the first n−m− ε+ 1 eigenvalues θ0, θ1, . . . , θn−m−ε of Γ.

Proof. It is possible to rewrite aii in the following way

aii =
1

(q2 − 1)(q − 1)
(Aq4i +Bq3i + Cq2i +Dqi + E), (7)

where

A = q2ε−3(q2 + 1)(q2 + q + 1),

B = −q−m+ε−3(q + 1)(q2 + q + 1)(qn+1 + q2m+ε+1 + qm+ε − qm+1),

C = q−2m−2(q2n+2 + qn+2m+ε+3 + 2qn+2m+ε+2 + qn+2m+ε+1 + qn+m+ε+2 +

2qn+m+ε+1 + qn+m+ε − qn+m+3 − 2qn+m+2 − qn+m+1 + q4m+2ε+2 + q3m+2ε+2 +

2q3m+2ε+1 + q3m+2ε − q3m+ε+3 − 2q3m+ε+2 − q3m+ε+1 +

q2m+2ε − q2m+ε+2 − 2q2m+ε+1 − q2m+ε + q2m+2),

D = −q−m−1(q + 1)(qn+m+ε − qn+m+1 − qn − q2m+ε),

E = −qn+1 − qn + q − 1.
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Suppose m ≤ (n− ε)/2. Then m ≤
⌊
n
2

⌋
. By Proposition 4.3, we need to prove that

m∑
i=0

aii =
m∑
i=0

θi (8)

for all prime powers q. By equations (2) and (7), equation (8) can be rewritten as

A · q
4(m+1) − 1

q4 − 1
+B · q

3(m+1) − 1

q3 − 1
+ (C − q2n−2m − 1) · q

2(m+1) − 1

q2 − 1
+D · q

(m+1) − 1

q − 1
= 0.

Plugging in the previous equation the above values of A, B, C and D, we obtain an
identity (after a lengthy, tedious, but straightforward computation). So, part (1) of the
theorem is proved.

Suppose m > (n− ε)/2. Then n−m− ε ≤
⌊
n
2

⌋
. We need to prove that

n−m−ε∑
i=0

aii =
n−m−ε∑
i=0

θi (9)

for all prime powers q. By equations (2) and (7), equation (9) can be rewritten as

A · q
4(n−m−ε+1) − 1

q4 − 1
+B · q

3(n−m−ε+1) − 1

q3 − 1
+ (C − q2m+2ε − 1) · q

2(n−m−ε+1) − 1

q2 − 1
+

D · q
(n−m−ε+1) − 1

q − 1
= 0.

Plugging in the previous equation the above values of A, B, C and D, we again obtain
an identity. So, also part (2) of the theorem is proved. �

5.5 Treatment of Class 3

During the treatment of Class 3, we need to rely on the following lemma.

Lemma 5.7 Let k ∈ N \ {0}. Then for all n1, n2, . . . , nk ∈ N \ {0}, there exists a Q ∈ N
such that for every prime power q > Q the quadric Q+(2n − 1, q) has a collection of
n1 + n2 + · · ·+ nk mutually noncollinear points that is not an ovoid.

Proof. The total number of generators of Q+(2n − 1, q) is equal to 2(q + 1)(q2 +
1) · · · (qn−1 + 1). Put Q := n1 + n2 + · · · + nk. We show by induction on i that for
every prime power q > Q and every i ∈ {1, 2, . . . , n1 + n2 + · · · + nk + 1}, there are i
mutually noncollinear points on Q+(2n − 1, q). Clearly, this holds if i = 1. So, sup-
pose i ∈ {2, 3, . . . , n1 + n2 + · · · + nk + 1}. By the induction hypothesis, there ex-
ists a collection x1, x2, . . . , xi−1 of i − 1 mutually noncollinear points of Q+(2n − 1, q).
The number of generators of Q+(2n − 1, q) containing one of these points is equal to
(i − 1) · 2(q + 1)(q2 + 1) · · · (qn−2 + 1) < 2(q + 1)(q2 + 1) · · · (qn−2 + 1)(Q + 1) < 2(q +
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1)(q2 + 1) · · · (qn−2 + 1)(qn−1 + 1), and so there exists a generator α of Q+(2n− 1, q) not
containing any of the points x1, x2, . . . , xi−1. The set of points of α collinear with a point
xj ∈ {x1, x2, . . . , xi−1} is a hyperplane containing qn−2 + qn−1 + · · ·+ 1 points. These i−1
hyperplanes cover at most (i− 1)(qn−2 + qn−1 + · · ·+ 1) < q(qn−2 + qn−1 + · · ·+ 1) points,
and so there exists a point xi ∈ α collinear with neither of x1, x2, . . . , xi−1. �

In the literature, one can find better lower bounds for q. However the above lemma will
suffice for our purposes.

Let O1, O2, . . . ,Ok be a collection of k ≥ 1 non-empty mutually disjoint sets of points of
Q+(2n− 1, q) such that O1 ∪O2 ∪ · · · ∪Ok is a partial ovoid of Q+(2n− 1, q), but not an
ovoid. For every i ∈ {1, 2, . . . , k}, let Xi denote the set of all points of HS(2n− 1, q) that
have nonempty intersection with Oi. Then X1, X2, . . . , Xk are mutually disjoint. Denote
by Xk+1 6= ∅ the set of all points of HS(2n − 1, q) not contained in O1 ∪ O2 ∪ · · · ∪ Ok.
Put ni := |Oi| for every i ∈ {1, 2, . . . , k}.

Lemma 5.8 Let α be a generator of Q+(2n− 1, q).

(1) If x is a point of Q+(2n − 1, q) not contained in α, then x is contained in qn−1−1
q−1

generators intersecting α in a subspace of co-dimension 2.

(2) If x is a point of α, then x is contained in q ·
[
n−1
2

]
q

generators intersecting α in a

subspace of co-dimension 2.

Proof. (1) Let β denote the unique generator through x intersecting α in a subspace of

dimension n− 2. There are qn−1−1
q−1 hyperplanes γ of α∩ β, and for each such hyperplane,

we denote by γ̃ the unique generator of the same family as α that contains 〈x, γ〉. In this

way, we find all q
n−1−1
q−1 generators through x that intersect α in a subspace of co-dimension

2.

(2) Look at the quotient space at the point x. Then the required number is equal to
the number of generators of Q+(2n− 3, q) intersecting a given generator in a subspace of

co-dimension 2. This number is equal to q ·
[
n−1
2

]
q
. �

A consequence of Lemma 5.8 is that {X1, X2, . . . , Xk+1} is a regular partition with the
following intersection numbers:

• aii = (ni − 1) q
n−1−1
q−1 + q ·

[
n−1
2

]
q

for all i ∈ {1, 2, . . . , k},

• aij = nj · q
n−1−1
q−1 for all i, j ∈ {1, 2, . . . , k} with i 6= j,

• ai,k+1 = q ·
[
n
2

]
q
− ai1 − ai2 − · · · − aik = (qn−1 + 1− n1 − n2 − · · · − nk) · q

n−1−1
q−1 for

all i ∈ {1, 2, . . . , k},
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• ak+1,i = ni · q
n−1−1
q−1 for all i ∈ {1, 2, . . . , k},

• ak+1,k+1 = q ·
[
n
2

]
q
− (n1 + n2 + · · ·+ nk) · q

n−1−1
q−1 .

We have

a11 + a22 + · · ·+ akk + ak+1,k+1 = q ·
[n

2

]
q

+ k
(
q ·
[n− 1

2

]
q
− qn−1 − 1

q − 1

)
= θ0 + kθ1.

By Proposition 4.3 and Lemma 5.7, the eigenvalues of the regular partition are θ0 (with
multiplicity 1) and θ1 (with multiplicity k).

5.6 Treatment of Class 4

Put x = (x0, x1, . . . , x2n−1) and let φ(x) be a nondegenerate quadratic form over Fq
defining an elliptic quadric Q−(2n − 1, q) in PG(2n − 1, q) and a hyperbolic quadric
Q+(2n − 1, q2) in PG(2n − 1, q2). We will regard PG(2n − 1, q) as naturally embedded
in PG(2n− 1, q2). Let θ be the automorphism (x0, x1, . . . , x2n−1) 7→ (xθ0, x

θ
1, . . . , x

θ
2n−1) of

PG(2n − 1, q2). The points of PG(2n − 1, q) are precisely the fixpoints of θ. For every
subspace α of PG(2n−1, q), let α denote the unique subspace of PG(2n−1, q2) containing
α and having the same dimension as α. The following hold:

(1) If γ is a subspace of PG(2n − 1, q2), then γ ∩ γθ = β for some subspace β of
PG(2n− 1, q).

(2) If γ is a subspace of Q+(2n − 1, q2), then γ ∩ γθ = β for some subspace β of
Q−(2n− 1, q).

Put d′ := bn−1
2
c. For every i ∈ {0, 1, . . . , d′}, let Xi denote the set of all points x of

HS(2n− 1, q2) for which dim(x ∩ xθ) = n− 2− 2i.

Lemma 5.9 Let x be a point of DQ+(2n−1, q2) such that x∩xθ has dimension n−2−2i.
Then for every point y of DQ+(2n − 1, q2) collinear with x, we have dim(y ∩ yθ) =
dim(x ∩ xθ) + ε for some ε ∈ {−2, 0, 2}. Moreover:

(a) The number of points y of DQ+(2n − 1, q2) collinear with x such that y ∩ yθ has

dimension n− 2− 2(i− 1) is equal to N−i := (q2i−1)(q2i+1+1)
(q−1)(q+1)

.

(b) The number of points y 6= x of DQ+(2n − 1, q2) collinear with x such that y ∩ yθ

has dimension n− 2− 2i is equal to Ni := qn−1−2i−1
q−1 · q4i+2 + q4i+2−1

q2−1 −
(q2i−1)(q2i+1+1)

q2−1 .

(c) The number of points y of DQ+(2n − 1, q2) collinear with x such that y ∩ yθ has

dimension n− 2− 2(i+ 1) is equal to N+
i := q4i+3

q2−1 (qn−2i−1 − 1)(qn−2i−2 − 1).
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Proof. Since y ∩ yθ ⊆ y and x ∩ y is a hyperplane of y, we have dim(x ∩ y ∩ yθ) ≥
dim(y ∩ yθ) − 1. Since x ∩ y ∩ yθ ⊆ yθ and xθ ∩ yθ is a hyperplane of yθ, we have
dim(x∩xθ ∩ y∩ yθ) ≥ dim(x∩ y∩ yθ)−1 ≥ dim(y∩ yθ)−2. It follows that dim(x∩xθ) ≥
dim(y ∩ yθ) − 2. By symmetry, we then also know that dim(y ∩ yθ) ≥ dim(x ∩ xθ) − 2.
Since both dim(x ∩ xθ) and dim(y ∩ yθ) are congruent to n − 2 modulo 2, we have that
dim(y ∩ yθ) = dim(x ∩ xθ) + ε for some ε ∈ {−2, 0, 2}.

(a) Suppose y is a point of DQ+(2n − 1, q2) collinear with x such that y ∩ yθ has
dimension n−2−2(i−1). By the above, we know that dim(x∩xθ∩y∩yθ) ≥ dim(y∩yθ)−2 =
dim(x ∩ xθ). It follows that (x ∩ y) ∩ (x ∩ y)θ = x ∩ xθ ∩ y ∩ yθ = x ∩ xθ, implying that
x ∩ xθ ⊆ y ∩ x.

The subspace y of Q+(2n− 1, q2) is therefore obtained as follows. Put x ∩ xθ = β for
some subspace β of Q−(2n−1, q) of dimension n−2−2i, let γ be a subspace of Q−(2n−1, q)
for which β is a hyperplane, and let y be the unique generator of Q+(2n− 1, q2) through
γ intersecting x in a subspace of dimension n−2. Note that such a γ cannot be contained
in x, as otherwise it would be contained in x ∩ xθ = β. Also, since γ ⊆ y ∩ yθ and
dim(γ) = n− 2− 2i+ 1, we indeed have dim(y ∩ yθ) = n− 2− 2(i− 1).

The quotient polar space of Q−(2n+1, q) determined by β is a Q−(4i+1, q) containing
(q2i−1)(q2i+1+1)

q−1 points. So, there are that many possibilities for γ. Each such γ gives rise

to a y. However, for each such γ, we have dim(y ∩ yθ) = (n − 2 − 2i) + 2 and so each y
arises from q + 1 possible γ’s. The number N−i is therefore equal to

N−i =
(q2i − 1)(q2i+1 + 1)

(q − 1)(q + 1)
.

(b) Put x∩ xθ = β for some subspace β of Q−(2n− 1, q) of dimension n− 2− 2i. Let
y be a point of DQ+(2n− 1, q2) collinear with x.

Suppose there exists a hyperplane γ of β such that γ is contained in x∩y. Then y∩yθ
contains γ. As γ has dimension n− 2− 2i− 1, the dimension of y ∩ yθ should be at least
n− 2− 2i.

Conversely, suppose that y∩ yθ has dimension at least n− 2− 2i and that there exists
no hyperplane γ of β such that γ is contained in x ∩ y. Then β is not contained in x ∩ y
and so the subspace x ∩ y ∩ β is a hyperplane of β. Since dim(y ∩ yθ) ≥ n − 2 − 2i and
dim(x ∩ y ∩ β) = n − 2 − 2i − 1, there exists a point u of PG(2n − 1, q) contained in y,
but not in x ∩ β = β. Then u is not contained in x, as every point of x ∩ PG(n− 1, q) is
also contained in x ∩ xθ = β. So, y is the unique generator of Q+(2n − 1, q2) through u
meeting x in a subspace of dimension n − 2. As β is a subspace of Q−(2n − 1, q) and u
is a point of Q−(2n − 1, q), there exists a hyperplane η of β consisting only of points of
Q−(2n− 1, q) collinear with u. Then η ⊆ y and hence η = x ∩ y, a contradiction.

So, every point y of DQ+(2n − 1, q2) at distance 1 from x satisfying dim(y ∩ yθ) ≥
n− 2− 2i is obtained as follows. Take a hyperplane µ of x containing a subspace γ with
γ a hyperplane of β, and let y be the unique generator through µ distinct from x. The
number of such y is easily counted:

qn−1−2i − 1

q − 1
· q4i+2 +

q4i+2 − 1

q2 − 1
.

19



Indeed, there are q4i+2−1
q2−1 hyperplanes in x that contain β, and through each of the qn−1−2i−1

q−1

hyperplanes of β there are q4i+2 = q4i+4−1
q2−1 −

q4i+2−1
q2−1 hyperplanes of x not containing β.

Taking into account part (a), the number of points y of DQ+(2n − 1, q2) at distance
1 from x such that dim(y ∩ yθ) = n− 2− 2i is equal to

Ni =
qn−1−2i − 1

q − 1
· q4i+2 +

q4i+2 − 1

q2 − 1
− (q2i − 1)(q2i+1 + 1)

q2 − 1
.

(c) Every point of the dual polar space DQ+(2n− 1, q2) is collinear with q2n−1
q2−1 other

points. So, the number N+
i is equal to

N+
i =

q2n − 1

q2 − 1
−Ni −N−i =

q2n − 1

q2 − 1
− q4i+2 − 1

q2 − 1
− qn−1−2i − 1

q − 1
q4i+2

=
q4i+3(qn−2i−1 − 1)(qn−2i−2 − 1)

q2 − 1
.

�

For every j ∈ Z \ {0, 1, . . . , d′}, we put Nj = N+
j = N−j = 0.

Lemma 5.10 {X0, X1, . . . , Xd′} is a partition of the point set of HS(2n− 1, q2).

Proof. If β is a generator of Q−(2n − 1, q) and γ is the unique point of HS(2n − 1, q2)
containing β, then γ ∩ γ = β. So, γ ∈ X0 and the set X0 is nonempty. Since DQ+(2n−
1, q2) is connected and N+

d′ = 0, we see that X0 ∪X1 ∪ · · · ∪Xd′ coincides with the whole
point set.

Note that Ni 6= 0 for every i ∈ {1, 2, . . . , d′} and that N+
i 6= 0 for every i ∈

{0, 1, . . . , d′ − 1}. So, for every j ∈ {0, 1, . . . , d′}, there exists a path of even length
in DQ+(2n− 1, q2) connecting a point of X0 with a point of Xj, implying that Xj 6= ∅. �

As every two points of DQ+(2n−1, q2) at distance 2 from each other have precisely q2 +1
common neighbours, we see from Lemma 5.9 that {X0, X1, . . . , Xd′} is a regular partition
whose coefficient matrix A = (aij) is as follows:

• aij = 0 if i, j ∈ {0, 1, . . . , d′} with |i− j| > 2;

• (q2 + 1) · ai,i−2 = N−i ·N−i−1 for every i ∈ {2, 3, . . . , d′};

• (q2 + 1) · ai,i−1 = Ni ·N−i +N−i ·Ni−1 for every i ∈ {1, 2, . . . , d′};

• (q2+1)·ai,i = Ni ·(Ni−1)+N+
i ·(N−i+1−1)+N−i ·(N+

i−1−1) for every i ∈ {0, 1, . . . , d′};

• (q2 + 1) · ai,i+1 = Ni ·N+
i +N+

i ·Ni+1 for every i ∈ {0, 1, . . . , d′ − 1};

• (q2 + 1) · ai,i+2 = N+
i ·N+

i+1 for every i ∈ {0, 1, . . . , d′ − 2}.
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We compute that

(q2 + 1) · aii =
(q2i − 1)(q2i+1 + 1)

q2 − 1
·
( q4i−1
q2 − 1

· (qn−2i+1 − 1)(qn−2i − 1)− 1
)

+
(
q4i+2 · q

n−1−2i − 1

q − 1
+
q4i+2 − 1

q2 − 1
− (q2i − 1)(q2i+1 + 1)

q2 − 1

)
·

(
q4i+2 · q

n−1−2i − 1

q − 1
+
q4i+2 − 1

q2 − 1
− (q2i − 1)(q2i+1 + 1)

q2 − 1
− 1
)

+
q4i+3

q2 − 1
(qn−2i−1 − 1)(qn−2i−2 − 1)

((q2i+2 − 1)(q2i+3 + 1)

q2 − 1
− 1
)
.

Theorem 5.11 The eigenvalues of the regular partition {X0, X1, . . . , Xd′} are as follows.

(1) If n is even, then there are n/2 eigenvalues with multiplicity 1. They are the first
n/2 eigenvalues θ0, θ1, . . . , θn/2−1 of Γ.

(2) If n is odd, then there are (n + 1)/2 eigenvalues with multiplicity 1. They are the
first (n+ 1)/2 eigenvalues θ0, θ1, . . . , θ(n−1)/2 of Γ.

Proof. It is possible to rewrite aii in the following way

aii =
1

(q2 − 1)2(q2 + 1)
(Aq8i +Bq6i + Cq4i +Dq2i + E), (10)

where

A = (q2 − q + 1)(q2 + q + 1)(q4 + 1),

B = −((q2 + 1)(q2 − q + 1)(q2 + q + 1)(qn+2 + qn+1 + q − 1))/q,

C = ((q2 + 1)(q2n+4 + q2n+3 + q2n+2 + qn+4 − qn − q2 + q − 1))/q,

D = −qn−1(q2 + 1)(qn+2 − qn+1 − q − 1),

E = −q2n+2 − q2n + q2 − 1.

Suppose n is even. By Proposition 4.3, we need to prove that

(n−2)/2∑
i=0

aii =

(n−2)/2∑
i=0

θi. (11)

By equations1 (2) and (10), equation (11) can be rewritten as

A · q
4n − 1

q8 − 1
+B · q

3n − 1

q6 − 1
+ (C − q2n+4 − 1) · q

2n − 1

q4 − 1
+D · q

n − 1

q2 − 1
= 0.

1We have to substitute q with q2.
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Plugging in the previous equation the above values of A, B, C and D, we obtain an
identity. Part (1) of the theorem is thus proved.

Suppose n is odd. By Proposition 4.3, we need to prove that

(n−1)/2∑
i=0

aii =

(n−1)/2∑
i=0

θi. (12)

By equations (2) and (10), equation (12) can be rewritten as

A · q
4(n+1) − 1

q8 − 1
+B · q

3(n+1) − 1

q6 − 1
+ (C − q2(n+1) − 1) · q

2(n+1) − 1

q4 − 1
+D · q

n+1 − 1

q2 − 1
= 0.

Plugging in the previous equation the above values of A, B, C and D, we obtain an
identity. Part (2) of the theorem is thus also proved. �
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