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Abstract—HTTP Adaptive Streaming (HAS) is the de facto
standard for over-the-top video streaming. In HAS, video content
is encoded at multiple quality levels and temporally divided into
multiple segments. The client can select the quality level for every
video segment, allowing smoother playback and a better Quality
of Experience (QoE). Although results are promising, current
solutions often suffer from high round-trip time (RTT) cycles
in mobile networks. This is especially true for scalable video
coding (SVC), where multiple requests are required to retrieve a
single video segment. Meanwhile, the IETF has standardized the
HTTP/2 protocol since February 2015, providing new features
that allow a reduction of the page load time in web browsing.
In this paper, we propose a novel approach based on HTTP/2’s
server push feature to actively push the base layer of live, SVC-
encoded content from server to client. This allows to eliminate one
RTT cycle for every video segment, which has a significant impact
on the user’s QoE. Evaluating the proposed approach, we show
that compared with HTTP/1.1, an improvement of 65.42% can
be achieved for the average video quality in high-RTT networks.
Compared to an AVC-based solution, the freeze frequency and
duration are reduced by 54.55% and 53.06% respectively, while
the loss in video quality is limited to 4.51%. Since playout freezes
should be avoided at the cost of a lower video quality, we conclude
that the proposed approach beneficially impacts the user’s QoE.

I. INTRODUCTION

Over the last years, delivery of multimedia content has
become more prominent than ever. Recent studies show that
more than half of the Internet traffic is generated by video
streaming applications [1]. To meet increasing user require-
ments, the concept of HTTP Adaptive Streaming (HAS) has
recently been introduced. As shown in Figure 1, video content
is encoded at different quality levels and temporally divided
into multiple segments with a typical length of 1 to 10 seconds.
An HAS client can request these video segments in a dynamic
way, changing the quality level of the requested segments
whenever required. To this end, the client is equipped with a
rate adaptation heuristic that selects the best quality level based
on criteria such as the perceived bandwidth and the current
buffer filling. The goal of this heuristic is to optimize the user’s
Quality of Experience (QoE), which depends among others on
the average video quality, the frequency of quality changes
and the occurrence of video freezes [2]. The client stores
the incoming segments in a video buffer, before decoding the
sequence in linear order and playing them out on the user’s
device. This approach offers a number of advantages. For
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Figure 1: The concept of HTTP Adaptive Streaming.

the provider, video delivery is cheaper because no dedicated
network elements are required. Better scalability is guaranteed,
since quality selection is performed by clients in a distributed
way. For the user, a smoother playback experience is generally
perceived, because the client can adapt the requested bit rate
to network conditions: when the available bandwidth suddenly
drops, for instance, the client can select a lower quality level
in order to prevent buffer starvation and playout freezes.

The encoding process of HAS solutions is often based on the
H.264/AVC codec, which requires the server to store multiple
independent representations of the same video. This generally
results in storage overhead, increased bandwidth requirements
and reduced caching efficiency. As suggested by Sánchez et
al., the adoption of scalable video coding (SVC) in HAS offers
a solution to this problem [3]. In SVC, redundancy is reduced
by letting each quality level depend on the previous one. In
the encoding process, lower layers are retrieved from a high-
quality video bitstream by lowering the spatial or temporal
resolution, the video quality signal or a combination thereof.
Starting from the lowest quality level, called the base layer,
the client can decode higher quality levels in combination with
the lower layers. Not only does SVC provide an effective
means to reduce content redundancy, it also results in a lower
chance of buffer starvation. Indeed, since enhancement layers
are downloaded one by one, the client can react faster to
sudden changes of the available bandwidth. This is extremely
important in HAS, where playout freezes should be avoided
at the cost of a lower video quality [4]. A strong disadvantage
to SVC however is that it introduces an encoding overhead
of about 10% per layer, which increases the total bit rate of
the content stream [5]. Furthermore, since multiple requests
are required to retrieve a single video segment, SVC-based978-1-5090-0223-8/16/$31.00 c© 2016 IEEE
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solutions are more susceptible to high round-trip times (RTT).
This problem mainly arises in mobile networks, where the RTT
can vary from 33 to 857 ms, depending on the network carrier
and the type of connection [6]. In this paper, we therefore
propose an effective means to eliminate RTT cycles in SVC-
based HAS, using the push feature of the recently standardized
HTTP/2 protocol [7]. This approach allows to significantly
reduce the freeze time in high-RTT networks compared to
AVC-based solutions, while limiting the loss in quality by
actively pushing content from server to client. Furthermore, we
discuss the modifications required for two existing SVC-based
rate adaptation heuristics, and present detailed experimental
results to characterize the gain of the proposed approach
compared to state-of-the-art HAS over HTTP/1.1.

The remainder of this paper is structured as follows. Section
II gives an overview of related work, focusing both on HAS
and HTTP/2. The proposed approach and used heuristics are
presented in Section III. An evaluation is provided in Section
IV, showing the most relevant results. In Section V, finally,
conclusions are drawn and future work is discussed.

II. RELATED WORK

A. HTTP Adaptive Streaming

To improve the user’s QoE for HAS services, both client-
based, network-based and server-based solutions exist [4].
Well-known commercial rate adaptation heuristics are Mi-
crosoft’s IIS Smooth Streaming (MSS), Apple’s HTTP Live
Streaming (HLS) and Adobe’s HTTP Dynamic Streaming
(HDS). As most of these implementations tend to use the
same architecture, the Motion Picture Expert Group (MPEG)
proposed Dynamic Adaptive Streaming over HTTP (DASH),
a standard that defines the interfaces and protocol data for
adaptive video streaming over HTTP [8]. The heuristics are
however still implementation specific. In literature, Benno et
al. propose a more robust rate adaptation heuristic for wireless
live streaming [9]. By averaging the measured bandwidth over
a sliding window, fluctuations are smoothed, allowing the
client to select a quality level that is sustainable and avoids os-
cillations. Claeys et al. propose to use reinforcement learning,
introducing a Q-learning algorithm in the adaptation heuristic
that allows to outperform certain deterministic algorithms such
as MSS [10]. Focusing on high-RTT networks, Bouten et al.
propose to use pipelined and parallel download scheduling to
reduce the negative impact of the RTT on the user’s QoE [11].
In the suggested approach, the client issues multiple GET
requests using HTTP pipelining or parallel TCP connections,
eliminating the idle time between two successive downloads.
However, since multiple segments are being transferred at
the same time, the approach is more vulnerable to network
congestion and buffer starvation when sudden drops in the
available bandwidth occur. A large number of other client-
based solutions exist, but we refer to the survey by Seufert et
al. for a more elaborate view on the matter [4].

In network-based solutions, clients attempt to reach a glob-
ally optimal QoE, instead of optimizing their own QoE. Pe-
trangeli et al. suggest an approach in which each client learns

to select the most appropriate quality level, maximizing a re-
ward based both on its own QoE and on the QoE perceived by
other clients [12]. To this end, a coordination proxy estimates
all perceived rewards and generates a global signal that is
sent periodically to all clients. Without explicit communication
among agents, the algorithm is able to outperform both MSS
and the algorithm proposed by Claeys et al. in a multi-client
scenario. Bouten et al. propose to introduce intelligence in
the network that steers the client’s local quality decisions, by
modifying the announced adaptation set [13], [14]. Using HAS
aware network elements, video quality levels are assigned to
specific clients subject to their respective subscription terms,
improving fairness among users while still allowing them to
adapt to dynamic network changes [15].

Server-side solutions typically focus on new encoding
schemes for HAS [4]. The H.264/AVC codec is most widely
used for video streaming, although it requires the server and
intermediate caches to store multiple representations of the
same video. Huysegems et al. discuss the theoretic advantages
of SVC in HAS, being a smoother play-out in networks with
high variability and a significant reduction in storage and
bandwidth requirements [16]. The authors also identify two
important challenges for SVC, such as a penalty in the total
bitrate for encoding SVC and an increased vulnerability to
high RTTs. Sánchez et al. discuss the benefits of SVC in HAS,
in terms of web caching and saved uplink bandwidth [3], [17].
Furthermore, a scheduling algorithm for live HAS delivery is
proposed. An initial comparison of SVC and AVC is carried
out, focusing on the observed camera-to-display delay in live
video streaming. In more recent work, Bouten et al. propose
to use Differentiated Services (DiffServ) in the IP network to
give priority to the base-layer segments in SVC-based HAS
[18]. As a result, the clients are more robust to video freezes,
even when the total buffer size is decreased to two seconds in
order to reduce the end-to-end delay for live video streaming.
In contrast to these works, which all focus on content delivery
over HTTP/1.1, we propose a new approach in which HTTP/2
is used to push the base layer of new video segments in SVC-
based live streaming. As will be shown in Section IV, this
approach provides an effective means to eliminate RTT cycles,
significantly improving the user’s QoE in high-RTT networks.

B. HTTP/2 for Multimedia Delivery

Early 2012, the IETF httpbis working group started the stan-
dardization of HTTP/2 to address a number of deficiencies in
HTTP/1.1 [19], [20]. The new HTTP/2 standard was published
as an IETF RFC in February 2015, and is now supported by
major browsers such as Google Chrome, Firefox and Internet
Explorer [7]. The main focus of this standard is to reduce
the latency in web delivery, using three new features that
provide the possibility to terminate the transmission of certain
content, prioritize content and push content from server to
client. The first draft for this protocol was based on SPDY, an
open networking protocol developed primarily by Google [21].
Using this protocol, an average reduction of up to 64% was
observed for the page load time.
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(a) Adaptive streaming using traditional HTTP/1.1.
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Figure 2: An example scenario for live SVC video streaming over HTTP/1.1 and HTTP/2, showing both the startup phase
and steady state. Bk and Ek, j denote the base layer and jth enhancement layer of segment k respectively, while sk denotes the
release of segment k at server-side. Light gray filling indicates a pulled resource, dark gray filling a pushed resource.

Mueller et al. were the first to evaluate the performance of
adaptive streaming over SPDY [22]. The existing HTTP/1.1
layer is replaced by SPDY, without any further modifications
to the client or server. The authors show that the gains obtained
by using header compression, a persistent connection and pipe-
lining are almost completely canceled out by the losses due
to the required SSL and framing overhead. Wei et al. explore
how new HTTP/2 features can be used to improve HAS [23].
By reducing the segment duration from five seconds to one
second, they manage to reduce the camera-to-display delay
from about 16 to 4 seconds. An increased number of GET
requests is avoided by using HTTP/2’s server push to push
k segments after each request. The main disadvantage of this
approach is that when a client wants to switch to a new video
quality, the push stream for the old quality is in competition
with the stream for the new quality. This results in bandwidth
overhead and causes an increased switching delay for the
client. In later work, the authors show that this switching delay
is about two segment durations and independent of the value of
k, while the introduced bandwidth overhead heavily depends
on this value [24]. Moreover, HTTP/2 is used to push audio
upon receiving a request for the associated video segments.

In previous work, we proposed a large number of HTTP/2-
based techniques that can improve the QoE in HAS, using
stream prioritization, stream termination and server push [25].
Each technique has its own advantages, such as a higher band-
width utilization and a gain of multiple RTT cycles in the client
startup phase. We thus proposed a full-push approach, in which
several techniques are combined. A preliminary evaluation
showed promising results, such as a lower camera-to-display
delay and startup time in high-RTT networks. A disadvantage
of this approach is that, if sudden drops in the available
bandwidth occur, network congestion is more likely to occur
when segments are being pushed at a high quality. This is why,
in this paper, we focus on a new approach for SVC video, in
which only the base layer is pushed from server to client.

III. PROPOSED APPROACH

In Section III-A, we explain how the push-based approach
reduces the negative impact of high RTTs on the QoE for
HAS. To this end, two existing rate adaptation heuristics for
SVC-based HAS are briefly discussed. These heuristics were
designed with the possibilities of HTTP/1.1 in mind, and are
thus unable to take advantage of the new features offered by
HTTP/2. In Section III-B, we therefore propose two novel
heuristics that combine the benefits of these existing adaptation
heuristics and HTTP/2’s server push.

A. Base Layer Push

In HAS, a video streaming session starts with a startup
phase, in which the client sends a request for the video’s
media presentation description (MPD) or manifest file. This
file contains information regarding the video segments, such as
the duration, resolution and available quality representations.
In live video, it also contains information regarding the timing
of the video streaming and the segments already available
on the server. Based on the contents of the MPD, the client
requests video segments one by one, typically ramping up the
buffer by downloading segments at the lowest quality. Once
the buffer filling is sufficiently high - usually when a certain
threshold is exceeded - further decisions regarding the video
quality are made by the rate adaptation heuristic. The main
drawback of using SVC in HAS is that multiple RTT cycles
are lost to enhance the video quality, which has a significant
impact on the bandwidth utilization and the startup time in
high RTT networks. This behavior is illustrated in Figure 2a,
where a live streaming session is shown. Once segment sn is
released at server side, the client can request the base layer Bn
and consecutive enhancement layers En,1, ...,En,m. Although
the use of SVC in HAS provides a smoother playout and
strongly reduces the storage overhead, the approach does not
perform well when the RTT is relatively high compared to the
segment duration.
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Figure 3: Illustration of the SVC-Cursor heuristic.

In the push-based approach, the server first enters a startup
phase in which the last k base layer segments Bn−k, ...,Bn−1 are
pushed to the client as soon as an MPD request is received, in
order to ramp up the buffer at client-side. This requires that the
server is aware of the relationship between the different HAS
objects, and that the client can indicate its temporal buffer size
in the MPD request. In this way, the client’s startup time is
reduced by one RTT and, depending on which rate adaptation
heuristic is used, the total buffer ramp up time is reduced
by at most k times the RTT. Once the MPD is returned and
the first k segments are pushed, the server enters a steady
state, periodically pushing a newly released base layer to the
client. As illustrated in Figure 2b, this entails a gain of one
RTT cycle in the reception of every video segment. In high
RTT networks, this approach has the potential to achieve a
higher bandwidth utilization, and thus to provide the user with
a higher average video quality. The main advantage of this
approach, compared to our full-push approach for AVC video
in [25], is that network congestion is less likely to occur:
only base layers are being pushed, representing the minimum
amount of information every client needs to stream the video.

Note that there are two ways for the client to request the
enhancement layers: either the same HTTP/2 connection can
be reused, or a new, parallel connection can be established.
A disadvantage of the former approach is that, when an
enhancement layer is requested just before a base layer is
pushed, this enhancement layer is first transferred completely.
In this way, the base layer will arrive significantly later, making
the client potentially more susceptible to buffer starvation.
Using the latter approach, the two layers will be transferred in
parallel, allowing the base layer to be pushed immediately to
the client. When the request for an enhancement layer however
arrives immediately after a base layer has been released, the
base layer will arrive slightly later, since the two connections
compete for the available bandwidth. In Section IV, we will
show that these two approaches lead to very similar results.

B. Rate Adaptation Heuristics

In this paper, we focus on two rate adaptation heuristics:
SVC-Cursor and SVC-Backfilling [11], [26]. These heuristics
are briefly discussed below, along with the changes required
to realize the push-based approach presented in Section III-A.

Quality
level

QualCur

Playout
HistoryHistory BufferingBuffering

1 2 3 4

8 7 6 5

10 9

Figure 4: Illustration of the SVC-BackFilling heuristic.

1) SVC-Cursor: In HAS, the average video quality should
be as high as possible, while buffer starvation and quality
switches should be avoided. The SVC-Cursor heuristic, pro-
posed by Bouten et al., attempts to achieve just that [11]. Two
different cursors are used: a segment cursor, which defines
the next segment under consideration, and a quality cursor,
which defines the target quality level. The segment cursor
moves to the next segment when either all quality levels up
to the quality cursor are downloaded for the current segment,
or the considered enhancement layer cannot be downloaded
in time. In the latter case, the quality cursor is immediately
decreased and the improvement timeout is reset. This cursor
is incremented only when all lower layers of every segment
in the buffer are downloaded and the improvement timer has
expired. In this case, the segment cursor is moved based on
the estimations of the arrival times of the enhancement layers
and their playout times, evaluated from right to left. As such,
the cursor is set to the segment index i for which the estimated
bandwidth allows to download all enhancement layers for the
segments i, i+1, i+2... in time for their respective playout, and
the improvement timer is reset. The enhancement layers are
then downloaded from left to right, as illustrated in Figure 3.
In this example scenario, the quality cursor was increased after
the arrival of the enhancement layer with index 8.

To use this heuristic with the proposed push-based approach,
a number of changes are required. First, the minimum quality
level for the quality cursor is changed to the first enhancement
layer, so that base layer segments are never pulled by the
client. Furthermore, the client only requests enhancement
layer segments when at least a configurable number of base
layer segments are available. In this way, pulled enhancement
layer segments are not preventing base layer segments from
arriving, possibly leading to a higher number of playout
freezes. Second, enhancement layers are not requested for
the first segment in the buffer, since chances are high that
this segment will be played out before the enhancement layer
arrives. Third, the bandwidth estimation process is modified
to take into account the perceived throughput of both the base
layers and the enhancement layers. Since no information on
the RTT is available for the pushed base layer segments on
the application layer, this leads to slightly different values than
would be the case for a fully pull-based approach.



AVC SVC
Avg. [kb/s] Max. [kb/s] Avg. [kb/s] Max. [kb/s]

Quality 0 336 866 309 849
Quality 1 1086 3082 1240 3473
Quality 2 1984 5702 2529 7224

Table I: Cumulative bit rates of the quality levels.

2) SVC-Backfilling: In bandwidth-based heuristics, the next
quality level is based on an estimation of the available band-
width. In mobile, highly variable networks however, a reliable
estimation cannot be performed. As such, the client is more
likely to expose itself to buffer starvation and thus to playout
freezes. Using SVC mitigates this problem, since the client can
play out the next segment as long as the base layer is available.
In some cases, however, even an SVC client can experience
video freezes if the bandwidth suddenly drops. One possible
solution is to use purely buffer-based rate adaptation heuristics,
in which only the buffer filling is used to decide upon the
next segment and quality to download. One such example
is the SVC Backfilling heuristic, proposed by Petrangeli et
al. [26]. In this heuristic, the client always checks whether
or not all base layers have been downloaded. If this is not
the case, the base layer of the segment with the earliest
playout time is first downloaded. Once all base layers are
available, the heuristic starts to upgrade the segments with
the latest playout time, as shown in Figure 4. In this way, the
client makes sure that all base layers are downloaded before
starting to upgrade the quality. Furthermore, since upgrading
the enhancement layers is done from right to left, more
gradual quality switches are expected. To use this heuristic
with the proposed push-based approach, the base layer logic is
eliminated, simply downloading the enhancement layers from
right to left. Again, a configurable minimum required number
of base layer segments is used to avoid competing base layer
and enhancement layer segments.

IV. EVALUATION AND DISCUSSION

To illustrate the gains of the suggested approach, we eval-
uated the proposed heuristics for different network conditions
and RTT values. The experimental setup is presented below,
followed by an overview of considered evaluation metrics and
a detailed overview of the obtained results.

A. Experimental Setup

The considered video sequence in our experiments has a
total length of 300 seconds, with a frame rate of 24 FPS. The
video is encoded at a variable bit rate, both for H.264/AVC
and H.264/SVC. It consists of 300 segments, each one second
of length and available in three quality representations. Table I
shows the average and maximum cumulative bit rates of each
quality level. The differences in bit rates between AVC and
SVC of the base layer are due to optimizations of the encoder,
while the differences of higher layers are a consequence of
the encoding overhead of SVC. For this video, the average
overhead is 14.2% and 27.5% for layers 1 and 2 respectively.

HAS Server

LS LCS LC

HAS Client

Figure 5: Experimental Mininet setup.

To evaluate the proposed approaches, the network topology
in Figure 5 is emulated using the MiniNet framework1. It con-
sists of a single client, streaming live video from a dedicated
HAS server. 30 episodes of the video are streamed for every
evaluated configuration, using a different bandwidth pattern
for every episode on link LCS. These patterns are extracted
from an open-source dataset, collected by Riiser et al. on a
real 3G/HSDPA network [27]. However, a lower threshold of
50 kb/s is used to guarantee correct traffic shaping with tc. The
average available bandwidth in the traces is 2354 kb/s, with a
standard deviation of 1393 kb/s. The available bandwidth on
links LS and LC is fixed at 3.2 Mb/s. This setup corresponds
to a realistic scenario, and allows a fair comparison of the
proposed push-based approach with solutions over HTTP/1.1.

As for the HAS server, its implementation is based on the
Jetty web server2. Jetty’s HTTP/2 component allows to define
a push-based strategy, which describes all resources that need
to be pushed along with the requested resource. Such a strategy
is ideal for web-based content, where the required JavaScript
and CSS files, images and other content can immediately be
pushed. However, since we target a livestream scenario, not
all segments are available when a request is issued. Therefore,
we defined a new request handler that processes GET requests
issued by the client. This handler allows a client to issue a
livestream request, passing along the maximum buffer size.
When this request corresponds to a new session, the server
starts a push thread that pushes the k last released video
segments at the lowest quality immediately. In this way, the
client can quickly ramp up its buffer without overloading the
network. Note that no real-time footage is captured at server-
side; segments are simply being released periodically.

The HAS client is implemented on top of the libdash
library3, the official reference software of the ISO/IEC MPEG-
DASH standard. To make use of HTTP/2’s server push,
a number of changes were made. First, an HTTP/2-based
connection was added to enable the reception of pushed
segments. To this end, the nghttp2 library4 was used to set
up an HTTP/2 connection over SSL. Second, support for
SVC and the transparent base layer push was provided by
extending the DASH Receiver, allowing heuristics to select
both a new segment index and video quality. Third, the
bandwidth estimation process was adapted to take into account
the presence of pushed base layer segments in the network.
The client is equipped with three rate adaptation heuristics:
SVC-Cursor, SVC-Backfilling and the AVC-based FINEAS

1http://mininet.org/
2https://webtide.com/
3https://github.com/bitmovin/libdash/
4https://nghttp2.org/
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Figure 6: Impact of the required number of base layer segments on (a) the average video quality, (b) the number of freezes
and (c) the total freeze time, for SVC-Backfilling with a shared HTTP/2 connection and a negligible RTT.

algorithm by Petrangeli et al. [28]. In recent work, the authors
showed that the latter outperforms well-known heuristics such
as MSS. Note that, since a single-client scenario is considered,
the proposed in-network computation has not been explicitly
used. To limit the camera-to-display delay for the livestream,
the client initially starts with a temporal buffer size of five
seconds, or five video segments. When a freeze occurs, the
buffer size is increased in order to hold all released segments.
Once the temporal buffer size exceeds the maximum buffer
size, set to twenty seconds in our setup, segments are skipped
in order to keep up with the live signal. In our experiments
it turned out, however, that the client is capable of following
the live signal very closely, never exceeding this threshold.

B. Evaluation Metrics

The following evaluation metrics are considered to compare
the performance of the proposed HTTP/2-based approach
with HTTP/1.1 and traditional AVC-based HAS. First, the
average video quality, expressed as a number between 0
(corresponding to the base layer) and 2 (corresponding to the
second enhancement layer). Second, the frequency and total
duration of playout freezes. Third, the initial startup delay,
defined as the time between requesting the livestream at client-
side and the playout of the first video segment. To evaluate
the impact of the proposed approaches on these evaluation
metrics, the considered video trace is streamed thirty times
for every configuration. Results are therefore shown using the
observed averages and the 95% confidence intervals.

C. Base Layer Segments

In this section, the optimal value for the minimum required
number of base layer segments is determined. This parameter
indicates the number of base layer segments that should be
available in the buffer, before enhancement layer segments
can be requested. For a temporal buffer size of five seconds,
containing five video segments, possible values are thus 0 up to
5. Figure 6 shows the impact of this parameter value on (a) the
number of freezes, (b) the total freeze time and (c) the average
video quality, for the SVC-Backfilling heuristic over a shared
HTTP/2 connection with a negligible RTT. For larger values
of the parameter, a significant reduction is observed for the
frequency and length of freezes (Wilcoxon signed-rank test,
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Figure 7: Impact of the RTT on the average video quality,
for HTTP/1.1, for a shared HTTP/2 connection (HTTP/2-S)
and two parallel connections (HTTP/2-P). The top row shows
results for SVC-Cursor, the bottom row for SVC-Backfilling.

p < 0.05). This behavior is explained by the fact that, when
more base layer segments are available before enhancement
layers are downloaded, there is a reduced chance of buffer
starvation. The average video quality is more or less similar
for values of 0 to 4, but a reduction is observed for a value
of 5 (Wilcoxon signed-rank test, p < 0.05). This behavior is
explained as follows. When the server initially starts pushing
base layer segments, the first segment is immediately played
out by the client. The buffer will eventually contain between
4 and 5 video segments, and as such, the client will often find
itself waiting for a new segment to be pushed. This leads to a
lower bandwidth utilization, and thus to a lower average video
quality. Similar trends were observed for the SVC Cursor
heuristic, for two parallel connections and for larger RTTs.
As such, a value of 4 was selected for the evaluations below.
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Figure 8: Impact of an increasing RTT for AVC-FINEAS
over HTTP/1.1, SVC-Backfilling over HTTP/1.1 and SVC-
Backfilling over HTTP/2. The top row shows the average video
quality, the bottom row the average number of freezes.

D. Evaluation Results

Figure 7 shows the average video quality achieved for the
two SVC heuristics, using the benchmark HTTP/1.1, HTTP/2
with a single shared connection and HTTP/2 with two parallel
connections. For the SVC-Backfilling heuristic over HTTP/1.1,
the average video quality level is reduced from 1.483 for a neg-
ligible RTT to 0.746 for an RTT of 300 ms (−49.70%). This is
the consequence of lost RTT cycles in SVC, strongly reducing
the bandwidth utilization. Using HTTP/2-S and HTTP/2-P,
however, the average video quality is 1.234 for an RTT of
300 ms (+65.42%). Bandwidth utilization is significantly more
efficient in this case: one RTT cycle is gained for every video
segment, and, while a request for an enhancement layer is
still on-the-fly, a base layer segment can be pushed in the
meantime. Even for an RTT of 100 ms, this results in an
average gain of 9.58%. As for HTTP/2-S and HTTP/2-P, no
significant difference between the video quality is observed.
This is because overall, the average bandwidth throughput for
the two approaches is in fact the same. Similar results for the
proposed approach are obtained for SVC-Cursor, showing the
general applicability of the proposed solution.
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Figure 9: Impact of an increasing RTT on the client’s startup
time, for HTTP/1.1, for a shared HTTP/2 connection (HTTP/2-
S) and two parallel connections (HTTP/2-P).

Figure 8 shows results for AVC-FINEAS over HTTP/1.1
with SVC-Backfilling over HTTP/1.1 and HTTP/2-S. While
the decreasing trend for the average video quality for AVC-
FINEAS and SVC-Backfilling over HTTP/2 is similar, the
former is on average 4.82% higher. This is a consequence of
the additional overhead introduced in SVC-encoded solutions.
Comparing AVC with SVC, however, a higher frequency of
playout freezes is observed (Wilcoxon signed-rank test, p <
0.05). This is because, on average, the download time for the
complete AVC segments is higher than for the SVC-encoded
layered segments. When a low buffer filling is observed, the
SVC-based client can thus ramp up the buffer more quickly,
resulting in a lower chance of buffer starvation.

Figure 9, finally, shows the average startup delay of the
client, which is independent of the applied heuristic. This delay
is similar for the different approaches, when the network’s
RTT is negligible; in this case, there is no observable differ-
ence between the pulling or pushing of video segments. For
higher RTTs however, an increasing difference of the startup
time is observed. This difference corresponds to one RTT
cycle, which is gained by immediately pushing the first base
layer along with the MPD. This means that the HTTP/2-based
client is able to start the playout of new video streams faster
in high-RTT networks, which again improves the user’s QoE.

To concretize the gain of the proposed approach, results are
summarized in Table II, for an RTT of 300 ms. Comparing
results with the AVC-based approach, the freeze frequency
and duration are reduced by 54.55% and 53.06% respectively,
while the loss in video quality is limited to 4.51%. Since
playout freezes should be avoided at the cost of a lower video
quality, we conclude that our approach beneficially impacts
the user’s QoE [4].

HTTP Heuristic Video quality Freeze frequency Freeze time [s] Startup delay [s]
HTTP/1.1 AVC-FINEAS 1.303±0.117 1.467±0.690 1.144±0.736 2.332±0.040
HTTP/1.1 SVC-Backfilling 0.746±0.059 0.667±0.417 0.337±0.233 2.304±0.035
HTTP/2-S SVC-Backfilling 1.244±0.079 0.667±0.324 0.537±0.302 2.043±0.062

Table II: Performance summary for the different heuristics, comparing results for an RTT of 300 ms. The average values are
reported, together with the 95% confidence intervals.



V. CONCLUSIONS

In this paper, we proposed a new approach for SVC-based
adaptive streaming that uses the server push feature provided
by the recently standardized HTTP/2 protocol. We introduced
two novel heuristics, combining the benefits of HTTP/2’s
server push with those of two state-of-the-art rate adapta-
tion heuristics for HTTP/1.1. Evaluating the obtained results
through emulation, we showed that compared to HTTP/1.1-
based SVC, the average video quality can be improved with
9.58% for an RTT of 100 ms. For an RTT of 300 ms, common
in mobile, high-RTT networks, the average gain is even up
to 65.42%. Compared to the AVC-based FINEAS heuristic,
the freeze frequency and duration are reduced by 54.55%
and 53.06% respectively, while the loss in video quality is
limited to 4.51%. Furthermore, pushing the first base layer
segments alongside the requested MPD, the client’s startup
time is reduced by one RTT cycle.

Future work will focus on more possibilities to improve the
user’s QoE using the new HTTP/2 features, both in AVC- and
SVC-based adaptive streaming. One interesting research path
includes a multi-client scenario, where the focus will be both
on maximizing the average QoE and providing fairness among
clients.
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