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1 Introduction28

In recent years, quite some attention has been devoted to the study of hypercomplex Fourier transforms.29

For the historical development of quaternion and Clifford-Fourier transforms we refer to [4]. In the present30

paper, we consider the Clifford-Fourier transform first established in [2, 3]. This is a genuinely non-scalar31
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generalization of the Fourier transform, developed within the framework of Clifford analysis [9]. Indeed,32

it can be written as33

F−(f)(y) = (2π)−m/2
∫
Rm

Km(x, y)f(x)dx

with34

Km(x, y) = ei
π
2 Γye−i(x,y)

with Γy the spherical Dirac operator (see equation (7)).35

It turned out to be a difficult problem to determine the kernel Km(x, y) explicitly. This was first36

achieved in [8] using plane wave decompositions. Later, in [6] a different method using wave equations37

was established. In [5], a short proof was obtained by considering the Clifford-Fourier kernel in the38

Laplace domain, where it takes on a much simpler form.39

Our aim in the present paper is to develop the Laplace transform method for a much wider class of40

generalized Fourier transforms. According to investigations in [7] using the representation theory for the41

Lie superalgebra osp(1|2), the following expression42

ei
π
2G(Γy)e−i(x,y) (1)

where G is an integer-valued polynomial can be used as the kernel for a generalized Fourier transform43

that still satisfies properties very close to that of the classical transform. The extension of the Laplace44

transform technique to kernels of type (1) will allow us to find explicit expressions for the kernel. We45

will moreover determine which polynomials G give rise to polynomially bounded kernels and we will46

determine the generating function corresponding to a fixed polynomial G.47

The paper is organized as follows. In order to make the exposition self-contained, in Section 2, we48

recall basic facts of the Laplace transform, Clifford analysis and the generalized Clifford-Fourier transform.49

Section 3 is devoted to establishing the connection between the kernel of the fractional Clifford-Fourier50

transform [5] and the generalized Clifford-Fourier transform. We first compute a special case in Section51

3.1. Then the method is generalized to the case in which the polynomial has integer coefficients in Section52

3.2. The kernel and the generating function in the even dimensional case are given. We also discuss which53

kernels are polynomially bounded.54

2 Preliminaries55

2.1 The Laplace transform56

The Laplace transform of a real or complex valued function f which has exponential order α, i.e. |f(t)| ≤57

Ceαt, t ≥ t0 is defined as58

F (s) = L(f(t)) =

∫ ∞
0

e−stf(t)dt.

By Lerch’s theorem [16], the inverse transform59

L−1(F (s)) = f(t)

is uniquely defined when we restrict to functions which are continuous on [0,∞). Usually, we can use60

integral transform tables (see e.g. [11]) and the partial fraction expansion to compute the Laplace61

transform and its inverse. We list some which will be used in this paper:62

L(e−αt) =
1

s+ α
; (2)

L(tk−1e−αt) =
Γ(k)

(s+ α)k
, k > 0. (3)
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We also need the convolution formula and the inverse Laplace transform. Denote by r = (s2 + a2)1/2,63

R = s+ r, G(s) = L(g(t)) and F (s) = L(f(t)). We have64

G(s)F (s) = L(

∫ t

0

g(t− τ)f(τ)dτ); (4)

L−1(aνr−2ν−1) = 2νπ−1/2Γ(ν +
1

2
)tνJν(at), Re(ν) > −1/2,Re(s) > |Im(a)|. (5)

2.2 Clifford analysis and generalized Fourier transforms65

In this section, we give a quick review of the basic concepts in Clifford analysis and generalized Fourier66

transforms. Denoting by {e1, e2, . . . , em} the orthonormal basis of Rm, the Clifford algebra C`0,m over67

Rm is spanned by the reduced products68

m
∪
j=1
{eα = ei1ei2 . . . eij : α = {i1, i2, . . . , ij}, 1 ≤ i1 < i2 < · · · < ij ≤ m}

with the relations eiej + ejei = −2δij . We identify the point x = (x1, . . . , xm) in Rm with the vector69

variable x =
∑m
j=1 ejxj . The inner product and the wedge product of two vectors x, y ∈ Rm can be70

defined by the Clifford product:71

(x, y) :=

m∑
j=1

xjyj = −1

2
(xy + yx);

72

x ∧ y :=
∑
j<k

ejek(xjyk − xkyj) =
1

2
(xy − yx).

We can find the Clifford product xy = −(x, y) + x ∧ y, and (x ∧ y)2 = −|x|2|y|2 + (x, y)2 (see [8]). The73

complexified Clifford algebra C`c0,m is defined as C⊗ C`0,m.74

The conjugation is defined by (ej1 . . . ejl) = (−1)lejl . . . ej1 as a linear mapping. For x, y ∈ C`c0,m, we75

have (xy) = yx, x = x, and i = i which is not the usual complex conjugation. We define the Clifford76

norm of x by |x|2 = xx̄, x ∈ C`c0,m.77

The Dirac operator is given by D =
∑m
j=1 ej∂xj . Together with the vector variable x, they satisfy the78

relations79

D2 = −∆, x2 = −|x|2, {x,D} = −2E−m,
where {a, b} = ab+ ba and E =

∑m
j=1 xj∂xj is the Euler operator and hence they generate a realization80

of the Lie superalgebra osp(1|2), which contains the Lie algebra sl2 = span{∆, |x|2, [∆, |x|2]} as its even81

part. A function u(x) is called monogenic if Du = 0. An important example of monogenic functions is82

the generalized Cauchy kernel83

G(x) =
1

ωm

x̄

|x|m

where ωm is the surface area of the unit ball in Rm. It is the fundamental solution of the Dirac operator84

[9]. Note that the norm here is |x| = (
∑m
i=1 x

2
i )

1/2 and coincides with Clifford norm.85

Denote by P the space of polynomials taking values in C`0,m, i.e. P := R[x1, . . . , xm] ⊗ C`0,m. The86

space of homogeneous polynomials of degree k is then denoted by Pk. The space Mk := (kerD) ∩ Pk, is87

called the space of homogeneous monogenic polynomials of degree k. An arbitrary element of it is called88

a spherical monogenic of degree k [9].89

The local behaviour of a monogenic function near a point can be investigated by the polynomials90

introduced above. The following theorem is the analogue of the Taylor series in complex analysis.91

Theorem 1. [9] Suppose f is monogenic in an open set Ω containing the origin. Then there exists an92

open neighbourhood Λ of the origin in which f can be developed into a normally convergent series of93

spherical monogenics Mkf(x), i.e.94

f(x) =

∞∑
k=0

Mkf(x),
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with Mkf(x) ∈Mk.95

The classical Fourier transform96

F(f)(y) = (2π)−m/2
∫
Rm

e−i(x,y)f(x)dx,

with (x, y) the usual inner product can be represented by the operator exponential [14], [15]97

F = e−i
π
4 (∆−|x|2−m).

The Clifford-Hermite functions98

ψ2p,k,l(x) := 2pp!L
m
2 +k−1
p (|x|2)M l

ke
−|x|2/2,

99

ψ2p+1,k,l(x) := 2pp!L
m
2 +k
p (|x|2)xM l

ke
−|x|2/2,

where p, k ∈ Z≥0 and {M l
k|l = 1, . . . ,dim(Mk)} form a basis forMk, the space of spherical monogenics of100

degree k. They moreover realize the complete decomposition of the rapidly decreasing functions S(Rm)⊗101

C`m ⊂ L2(Rm)⊗C`m in irreducible subspaces under the action of the dual pair (Spin(m), osp(1|2)). The102

action of the regular Fourier transform on this basis is given by103

Fψj,k,l = e−i
π
2 (j+k)ψj,k,l = (−i)j+kψj,k,l. (6)

We further introduce the Gamma operator or the angular Dirac operator (see [9])104

Γx := −
∑
j<k

ejek(xj∂xk − xk∂xj ) = −xDx − Ex = −x ∧Dx, (7)

here Ex =
∑m
i=1 xi∂xi is the Euler operator. Note that Γx commutes with scalar radial functions. The105

operator Γx has two important eigenspaces:106

ΓxMk = −kMk, (8)
107

Γx(xMk−1) = (k +m− 2)xMk−1 (9)

which follows from the definition of Γx. The Scasimir S in our operator realization of osp(1|2) is related108

to the angular Dirac operator by S = −Γx + m−1
2 , see [12]. The Casimir element C = S2 acts on the109

Clifford-Hermite function by110

Cψj,k,l = (k +
m− 1

2
)2ψj,k,l.

In [7], the authors studied the full class of integral transforms which satisfy the conditions stated in the111

following theorem.112

Theorem 2. The properties113

(1) the Clifford-Helmholtz relations114

T ◦Dx = −iy ◦ T,
115

T ◦ x = −iDy ◦ T,
(2) Tψj,k,l = µj,kψj,k,l with µj,k ∈ C,116

(3) T 4 = id117

are satisfied by the operators T of the form118

T = ei
π
2 F (C)ei

π
4 (∆−|x|2−m) ∈ eiπ2 Ū(osp(1|2)))

where F (C) is a power series in C that takes integer values when evaluated in the eigenvalues of C and119

Ū(osp(1|2) is the extension of the universal enveloping algebra that allows infinite power series in the120

elements of sl2.121
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The integral kernel of the generalized Fourier transform T can be expressed as ei
π
2 F (C)e−i(x,y). We are122

in particular interested in the case where F (C) reduces to a polynomial G(Γy) with integer coefficients.123

Remark 1. In general, when G(x) 6= 0, the generalized Fourier transform T and the Clifford fractional124

Fourier transform in [1] are two different classes of transforms because their eigenvalues on the Clifford-125

Hermite functions are different.126

Remark 2. The Clifford Fourier transform in C`(3,0) can also been expressed by operator exponential,127

see e.g. [10].128

3 Generalized kernel in the Laplace domain129

3.1 Closed expression for ei
π
2

Γ2
ye−i(x,y)

130

In this subsection, we use the Laplace transform method to compute ei
π
2 Γ2

ye−i(x,y). The trick here will be131

used to compute the more general case in next subsection. We use the notation
√

+ :=
√
s2 + |x|2|y|2.132

The following lemma was obtained in [5].133

Lemma 1. The Laplace transform of tm/2−1e−it(x,y) can be expressed as134

L(tm/2−1e−it(x,y)) =
2m/2−1Γ(m/2)√
+(s+

√
+)m/2−1

1− iyx

s+
√

+
+
iy(1− iyx

s+
√

+
)x

s+
√

+∣∣∣∣1− iyx

s+
√

+

∣∣∣∣m . (10)

In the following, we will act with ei
π
2 Γ2

y on both sides of (10) to obtain the integral kernel in the135

Laplace domain. Denote by136

f(y) =
2
m
2

√
+(s+

√
+)m/2−1

1− iyx

s+
√

+∣∣∣∣1− iyx

s+
√

+

∣∣∣∣m =
s+
√

+− iyx√
+(s+ i(x, y))m/2

,

and137

g(y) =
2
m
2

√
+(s+

√
+)m/2−1

iy(1− iyx

s+
√

+
)x

s+
√

+∣∣∣∣1− iyx

s+
√

+

∣∣∣∣m =
iy

s+
√

+
f(y)x =

√
+− s+ iyx√

+(s+ i(x, y))m/2
.

In [5], it has been proved that f(y) has a series expansion as138

f(y) =
2
m
2

√
+(s+

√
+)m/2−1

∞∑
k=0

Mk(y)

(s+
√

+)k
.

Here we rewrite139

f(y) = f0(y) + f1(y) + f2(y) + f3(y),

with140

fk(y) =
2
m
2

√
+(s+

√
+)m/2−1

∞∑
n=0

M4n+k(y)

(s+
√

+)4n+k
, k = 0, 1, 2, 3. (11)
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Each fk is an eigenfunction of the operator ei
π
2 Γ2

. In fact, by (8), we have141

ei
π
2 Γ2

yMk(y) = ei
π
2 (−k)2Mk(y),

so142

ei
π
2 Γ2

yM4n(y) = M4n(y);

ei
π
2 Γ2

yM4n+1(y) = iM4n+1(y);

ei
π
2 Γ2

yM4n+2(y) = M4n+2(y);

ei
π
2 Γ2

yM4n+3(y) = iM4n+3(y), (12)

here n = 0, 1, 2, · · · . Since the operator Γ commutes with radial functions, we know that each fk is an143

eigenfunction of ei
π
2 Γ2

and the eigenvalues are given in (12). In the following, we denote144

fα(y) =
2
m
2

√
+(s+

√
+)m/2−1

∞∑
k=0

Mk(iy)

(s+
√

+)k
=

s+
√

+ + yx√
+(
√

+− (x, y))m/2
,

145

fβ(y) =
2
m
2

√
+(s+

√
+)m/2−1

∞∑
k=0

Mk(−y)

(s+
√

+)k
=

s+
√

+ + iyx√
+(s− i(x, y))m/2

,

146

fγ(y) =
2
m
2

√
+(s+

√
+)m/2−1

∞∑
k=0

Mk(−iy)

(s+
√

+)k
=

s+
√

+− yx√
+(
√

+ + (x, y))m/2

as well as147

gα(y) =
iy

s+
√

+
fα(y)x =

i(
√

+− s) + iyx√
+(
√

+− (x, y))m/2
,

gβ(y) =
iy

s+
√

+
fβ(y)x =

s−
√

+ + iyx√
+(s− i(x, y))m/2

,

gγ(y) =
iy

s+
√

+
fγ(y)x =

i(s−
√

+) + iyx√
+(
√

+ + (x, y))m/2
.

Remark 3. Comparing with Theorem 3 in [5], Γ(m/2)
2 (fγ+gα) is the Clifford-Fourier kernel of dimension148

m = 4n+ 1, n ∈ N in the Laplace domain. Denote the first part of the fractional Clifford-Fourier kernel149

as150

Fp(x, y) =
s+
√

+− ie−ipyx√
+(e−ip(s cos p+ i

√
+ sin p+ i(x, y)))m/2

and the second part of the kernel as151

Gp(x, y) = −eip s−
√

+− ie−ipyx√
+(eip(s cos p− i

√
+ sin p+ i(x, y)))m/2

.

We find that f(y) = F0(x, y), fα(y) = F−π2 (x, y), fβ(y) = Fπ(x, y), fγ(y) = Fπ
2

(x, y), g(y) = G0(x, y),152

gα(y) = Gπ
2

(x, y), gβ(y) = Gπ(x, y) and gγ(y) = G−π2 (x, y). We could get the plane wave expansion and153

integral expression of f, fα, fβ , fγ and g, gα, gβ , gγ from [5].154

As Mk is a polynomial of degree k, we have the following relations,155 
f(y) = f0(y) + f1(y) + f2(y) + f3(y);
fα(y) = f0(y) + if1(y)− f2(y)− if3(y);
fβ(y) = f0(y)− f1(y) + f2(y)− f3(y);
fγ(y) = f0(y)− if1(y)− f2(y) + if3(y).
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Each fk(y) can be obtained as follows:156 
4f0(y) = f(y) + fα(y) + fβ(y) + fγ(y);
4f1(y) = f(y)− ifα(y)− fβ(y) + ifγ(y);
4f2(y) = f(y)− fα(y) + fβ(y)− fγ(y);
4f3(y) = f(y) + ifα(y)− fβ(y)− ifγ(y).

(13)

Now the action of ei
π
2 Γ2

y on f(y) is known through its eigenfunctions,157

ei
π
2 Γ2

yf(y) = ei
π
2 Γ2

y

(
f0(y) + f1(y) + f2(y) + f3(y)

)
= f0(y) + if1(y) + f2(y) + if3(y)

=
1

2

(
f(y) + fβ(y) + if(y)− ifβ(y)

)
.

The case ei
π
2 Γ2

yg(y) can be treated similarly, using (12) and158

ei
π
2 Γ2

y (yMk(y)) = ei
π
2 (m−1+k)2(yMk(y))

= ei
π
2 (m−1)2ei

π
2 k

2

(yMk(eiπ(m−1)y))

= ei
π
2 (m−1)2yei

π
2 k

2

(Mk(eiπ(m−1)y)).

Collecting everything, we have159

Theorem 3. The kernel tm/2−1ei
π
2 Γ2

ye−i(x,y) in the Laplace domain is160

L(tm/2−1ei
π
2 Γ2

ye−it(x,y))

=
Γ(m/2)

4
√

+

(
(1 + i)U1

m + (1− i)U2
m + ei

π
2 (m−1)2((1 + i)U3

m + (1− i)U4
m)

)
,

with161

U1
m =

s+
√

+− iyx
(s+ i(x, y))m/2

; U2
m =

s+
√

+ + iyx

(s− i(x, y))m/2
;162

U3
m =

(−1)m−1(
√

+− s) + iyx

(s+ (−1)m−1i(x, y))m/2
; U4

m =
(−1)m−1(s−

√
+) + iyx

(s− (−1)m−1i(x, y))m/2
,163

where
√

+ =
√
s2 + |x|2|y|2.164

When m = 2,165

L(ei
π
2 Γ2

ye−it(x,y)) =
1

2
√

+

( √
+

s− i(x, y)
+

s− iyx
s+ i(x, y)

)
.

By formula (2), (5), and the convolution formula (4), the kernel equals, putting t = 1,166

K2,Γ2(x, y) = ei(x,y) + J0(|x||y|) + ix ∧ y
∫ 1

0

e−i(x,y)(1−τ)J0(|x||y|τ)dτ.

In the following, we analyze each term in Theorem 3 in detail. By formula (3), (4) and (5), letting167
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t = 1, we get U1
m, U

2
m, U

3
m, U

4
m in the time domain as168

KU1
m

=
e−i(x,y)

Γ(m/2)
+

1

Γ(m/2− 1)

∫ 1

0

τm/2−2e−i(x,y)τJ0(|x||y|(1− τ))dτ

+
ix ∧ y

Γ(m/2)

∫ 1

0

e−i(x,y)J0(|x||y|(1− τ))dτ,

KU2
m

=
ei(x,y)

Γ(m/2)
+

1

Γ(m/2− 1)

∫ 1

0

τm/2−2ei(x,y)τJ0(|x||y|(1− τ))dτ

− ix ∧ y
Γ(m/2)

∫ 1

0

ei(x,y)J0(|x||y|(1− τ))dτ,

KU3
m

= (−1)m−1(
1

Γ(m/2)
ei(−1)m(x,y)

− 1

Γ(m/2− 1)

∫ 1

0

τm/2−2ei(−1)m(x,y)τJ0(|x||y|(1− τ))dτ)

− ix ∧ y
Γ(m/2)

∫ 1

0

ei(−1)m(x,y)J0(|x||y|(1− τ))dτ,

169

KU4
m

= (−1)m−1(− 1

Γ(m/2)
ei(−1)m−1(x,y)

+
1

Γ(m/2− 1)

∫ 1

0

τm/2−2ei(−1)m−1(x,y)τJ0(|x||y|(1− τ))dτ)

− ix ∧ y
Γ(m/2)

∫ 1

0

ei(−1)m−1(x,y)J0(|x||y|(1− τ))dτ.

Theorem 4. Let m ≥ 2. For x, y ∈ Rm, the generalized Fourier kernel is given by170

Km,Γ2(x, y) =
Γ(m/2)

4

(
(1 + i)KU1

m
+ (1− i)KU2

m

+ei
π
2 (m−1)2((1 + i)KU3

m
+ (1− i)KU4

m
)

)
.

There exists a constant c such that171

|Km,Γ2(x, y)| ≤ c(1 + |x||y|).

Proof. This follows from the fact that J0(y) and ei(x,y) are bounded functions and |x ∧ y| ≤ |x||y|.172

3.2 Closed expression for ei
π
2
G(Γy)e−i(x,y)

173

In this subsection, we consider the more general case. We act with G(Γy) on the Fourier kernel. Here174

G(x) is a polynomial with integer coefficients,175

G(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ak ∈ Z.

Using the fact that ei
π
2 j is 4-periodic in j,176

ei
π
2G(Γy)Mk(y) = ei

π
2G(−k)Mk(y)

and177

G(4n+ k) ≡ G(k)(mod4),
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we have178

ei
π
2G(Γy)f(y) = ei

π
2G(0)f0 + ei

π
2G(−1)f1 + ei

π
2G(−2)f2 + ei

π
2G(−3)f3

= iG(0)f0 + iG(−1)f1 + iG(−2)f2 + iG(−3)f3,

with each fk defined in (11). By179

ei
π
2G(Γy)(yMk(y)) = ei

π
2G(m−1+k)(yMk)

and180

G(4n+ k +m− 1) ≡ G(k +m− 1)(mod4),

we have181

ei
π
2G(Γy)g(y)

=
iy

s+
√

+

(
ei
π
2G(m−1)f0 + ei

π
2G(m)f1 + ei

π
2G(m+1)f2 + ei

π
2G(m+2)f3

)
x

=
iy

s+
√

+

(
iG(m−1)f0 + iG(m)f1 + iG(m+1)f2 + iG(m+2)f3

)
x.

Collecting everything and applying (13), we get182

Theorem 5. For G(x) ∈ Z[x], the Laplace transform of tm/2−1ei
π
2G(Γy)e−it(x,y) is given by183

L(tm/2−1ei
π
2G(Γy)e−it(x,y)) =

Γ(m/2)

8

(
A1
mBC

T
m +

iy

s+
√

+
A2
mBC

T
mx

)
with A1

m, A
2
m, B,Cm the matrices given by184

A1
m =

(
iG(0) iG(−1) iG(−2) iG(−3)

)
,

A2
m =

(
iG(m−1) iG(m) iG(m+1) iG(m+2)

)
,

B =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 ,

Cm =
(
f(y) fα(y) fβ(y) fγ(y)

)
.

Remark 4. We could get the regular Fourier kernel e−i(x,y) by setting G(x) = 0 or 4x for dimension185

m ≥ 2. When G = 2x2, we get the inverse Fourier kernel ei(x,y) for even dimension. When G(x) = ±x,186

it is the Clifford-Fourier transform [8].187

As the constant term of the polynomial will only contribute a constant factor to the integral kernel,188

in the following we only consider polynomials without constant term189

G(x) = anx
n + an−1x

n−1 + · · ·+ a1x, ak ∈ Z.

By190

G(4n+ k) ≡ G(k)(mod4),

it reduces to four cases G(k)(mod4), k = 0, 1, 2, 3. The set {xm} ∪ {1},m ∈ N is a basis for polynomials191

over the ring of integers. We consider the four cases on this basis192

xj = 0, when x = 0;

xj = 1, when x = 1;

xj ≡
{

2(mod4), when j = 1 and x = 2;
0(mod4), when j ≥ 2 and x = 2;

xj ≡
{

1(mod4), when j is even and x = 3;
3(mod4), when j is odd and x = 3.

9



For each G(x), we denote G(1)+G(−1)
2 = s0 =

∑bn/2c
j=0 a2j and G(1)−G(−1)

2 = s1 =
∑bn/2c
j=0 a2j+1 with n the193

degree of G(x). We have194

G(0) = 0,

G(1) = s0 + s1,

G(2) ≡ 2a1(mod4),

G(3) ≡ G(−1) ≡ s0 − s1(mod4).

Therefore195

iG(0) = 1, iG(−1) = iG(3) = is0+3s1 ,

iG(−2) = iG(2) = (−1)a1 , iG(−3) = iG(1) = is0+s1 .

The class of integral transforms with polynomially bounded kernel is of great interest. For example,196

new uncertainty principles have been given for this kind of integral transforms in [13]. As we can see in197

Theorem 5, the generalized Fourier kernel is a linear combination of fα, fβ , fγ , f, gα, gβ , gγ , g. At present,198

very few of fα, fγ , gα, gγ are known explicitly. The integral representations of fα, fγ , gα, gγ are obtained199

in [5] but without the bound. Only in even dimensions, special linear combinations of fα, fγ , gα, gγ are200

known to be polynomially bounded which is exactly the Clifford-Fourier kernel [8].201

We have showed in Theorem 4 that f, fβ , g, gβ with polynomial bounds behaves better than fα, fγ , gα, gγ .202

So it is interesting to consider the generalized Fourier transform whose kernel only consists of f, fβ , g, gβ .203

It also provides ways to define hypercomplex Fourier transforms with polynomially bounded kernel in odd204

dimensions. We will hence characterize polynomials such that ei
π
2G(Γy)e−i(x,y) are only linear combination205

of f, fβ , g, gβ .206

For fixed m, the kernel is a linear sum of f, fβ , g, gβ when the polynomial G(x) ∈ Z[x] satisfies the207

following conditions208 
iG(0) − iiG(−1) − iG(−2) + iiG(−3) = 0,
iG(0) + iiG(−1) − iG(−2) − iiG(−3) = 0,
iG(m−1) − iiG(m) − iG(m+1) + iiG(m+2) = 0,
iG(m−1) + iiG(m) − iiG(m+1) − iiG(m+2) = 0.

(14)

We find that (14) is equivalent with209 
G(0) ≡ G(−2)(mod4),
G(−1) ≡ G(−3)(mod4),
G(m− 1) ≡ G(m+ 1)(mod4),
G(m) ≡ G(m+ 2)(mod4).

(15)

As G(k)(mod4) is uniquely determined by G(0), G(−1), G(−2) and G(−3), the first two formulas in (15)210

imply the last two formulas for all m ≥ 2 automatically. Now (15) becomes211 {
iG(0) = 1 = iG(−2) = (−1)a1 ,
iG(−1) = is0+3s1 = iG(−3) = is0+s1 .

It follows that the kernel only consists of f, fβ , g, gβ if and only if a1 and s1 are even. We have the212

following213

Theorem 6. Let m ≥ 2. For x, y ∈ Rm and a polynomial G(x) with integer coefficients, the ker-214

nel ei
π
2G(Γy)e−i(x,y) is a linear combination of f, fβ , g, gβ in the Laplace domain if and only if a1 and215

G(1)−G(−1)
2 are even. Furthermore, the generalized Fourier kernel is bounded and equals216

1 + iG(1)

2
e−i(x,y) +

1− iG(1)

2
Kπ(x, y),

with Kπ(x, y) the fractional Clifford-Fourier kernel in [5]. When m ≥ 2 is even, the kernel is217

1 + iG(1)

2
e−i(x,y) +

1− iG(1)

2
ei(x,y).
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When m ≥ 2 is odd, there exists a constant c which is independent of m such that218

|eiπ2G(Γy)e−i(x,y)| ≤ c(1 + |x||y|). (16)

Proof. We only need to prove the generalized Fourier kernel is219

1 + is0+s1

2
e−i(x,y) +

1− is0+s1

2
Kπ(x, y).

In fact, by verification, we have,220

(ei0)m−1A1
m


1
1
1
1

 = A2
m


1
1
1
1

 ; (eiπ)m−1A1
m


1
−1
1
−1

 = A2
m


1
−1
1
−1

 ,

and221

A1
m


1
1
1
1

 = 2 + 2is0+s1 ; A1
m


1
−1
1
−1

 = 2− 2is0+s1 .

By Remark 3, f +(ei0)m−1g is the kernel K0 and fβ +(eiπ)m−1gβ is the fractional Clifford-Fourier kernel222

Kπ. The bound (16) follows from the integral expression of f, fβ , g, gβ in the time domain.223

Remark 5. The case G(x) = x2 is a special case of this theorem.224

In the following, we consider the generalized Fourier kernel which has polynomial bound and con-225

sists of fα, fβ , fγ , f, gα, gβ , gγ , g. For even dimension, we already know the Clifford-Fourier kernel has a226

polynomial bound. If the polynomial G(x) satisfies227

(−i)m−1A1
m


1
−i
−1
i

 = A2
m


1
i
−1
−i

 ; im−1A1
m


1
i
−1
−i

 = A2
m


1
−i
−1
i

 , (17)

by Remark 3, ei
π
2G(Γy)e−i(x,y) is a linear combination of the Clifford-Fourier kernel and some function228

bounded by c(1 + |x||y|). Hence it has a polynomial bound as well. When m = 4j, (17) becomes229

i(1− is0+3s1+1 − (−1)a1 + is0+s1+1) = is0+3s1 + i− is0+s1 − i(−1)a1

and230

−i(1 + is0+3s1+1 − (−1)a1 − is0+s1+1) = is0+3s1 − i− is0+s1 + i(−1)a1 .

It shows that (17) is true for any G(x) ∈ Z[x] when m = 4j. When m = 4j + 2, (17) becomes231

−i(1− is0+3s1+1 − (−1)a1 + is0+s1+1) = is0+s1 + i(−1)a1 − is0+3s1 − i

and232

i(1 + is0+3s1+1 − (−1)a1 − is0+s1+1) = is0+s1 − i(−1)a1 − is0+3s1 + i.

It also shows that (17) is true for any G(x) ∈ Z[x] when m = 4j + 2. Now we have233

Theorem 7. Let m ≥ 2 be even. For x, y ∈ Rm and any polynomial G(x) with integer coefficients, the234

kernel ei
π
2G(Γy)e−i(x,y) has a polynomial bound, i.e. there exists a constant c which is independent of235

G(x) such that236

|eiπ2G(Γy)e−i(x,y)| ≤ c(1 + |x||y|)
m−2

2 .
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At the end of this section, we give the formal generating function of the even dimensional generalized237

Fourier kernels for a class of polynomials. We define238

H(x, y, a,G) =
∑

m=2,4,6,···

Km,G(x, y)am/2−1

Γ(m/2)
.

Theorem 8. Let m ≥ 2 be even. For x, y ∈ Rm and any polynomial G(x) with integer coefficients, the239

formal generating function of the even dimensional generalized Fourier kernel is given by240

H(x, y, a,G)

=
1− iG(−1)+1 − (−1)G

′(0) + iG(1)+1

2

(
cos(

√
|x|2|y|2 − ((x, y) + a)2)− (x ∧ y − a)

sin
√
|x|2|y|2 − ((x, y) + a)2√
|x|2|y|2 − ((x, y) + a)2

)
+

1 + iG(−1)+1 − (−1)G
′(0) − iG(1)+1

2

(
cos(

√
|x|2|y|2 − ((x, y)− a)2) + (x ∧ y + a)

sin
√
|x|2|y|2 − ((x, y)− a)2√
|x|2|y|2 − ((x, y)− a)2

)
+

1 + iG(−1) + (−1)G
′(0) + iG(1)

2
e−(i(x,y)−a) +

1− iG(−1) + (−1)G
′(0) − iG(1)

2
ei(x,y)+a.

Proof. When m is even, the generalized Fourier kernel is241

ei
π
2G(Γy)e−i(x,y) =

1

2

(
(1− is0+3s1+1 − (−1)a1 + is0+s1+1)(fα + ei

−π
2 (m−1)gγ)

+(1 + is0+3s1+1 − (−1)a1 − is0+s1+1)(fγ + ei
π
2 (m−1)gα)

+(1 + is0+3s1 + (−1)a1 + is0+s1)e−i(x,y) + (1− is0+3s1 + (−1)a1 − is0+s1)ei(x,y)

)
,

with s0 =
∑bn/2c
j=0 a2j and s1 =

∑bn/2c
j=0 a2j+1.242

By s0 + 3s1 ≡ s0 − s1 ≡ G(−1)(mod4), s0 + s1 = G(1), a1 = G′(0) and because Γ(m/2)
2 (fα +243

ei
−π
2 (m−1)gγ) and Γ(m/2)

2 (fγ + ei
π
2 (m−1)gα) are the Clifford-Fourier kernel K

−π
2 and K

π
2 in the Laplace244

domain, the result follows from the generating function of Clifford-Fourier kernel, see [5] Theorem 8.245

Remark 6. When G(x) = x, we get the generating function of the Clifford-Fourier kernel.246

For the case that the coefficients of G(x) are not integers but fractions, we write G1(x) = cG(x) in247

which c is the least common multiple of each denominator of G(x). So G1(x) is a polynomial with integer248

coefficients. We only need to compute ei
π
2cG1(Γy)f(y) and ei

π
2cG1(Γy)g(y). The same method will also249

work but f and g split into 4c parts.250

4 Conclusion251

By working on the Laplace domain, we found explicit expressions for the generalized kernel. For even252

dimension, we obtained the closed expression. As the bound of the kernel is important to see in which253

function space the transform is well defined, we moreover determined which polynomials G give rise254

to polynomially bounded kernels for all dimensions and only even dimensions. When the kernel has255

polynomial bound, the transform can be proved to be well defined on the Schwartz function space and256

the transform is a continuous operator. Following a similar discussion in Section 6 of [7], we can get the257

existence of the inversion formula for this kind transform. Also we determined the generating function258

corresponding to a fixed polynomial G. We point out that the closed kernel of odd dimension is still259

an open problem since 2005 and deserves more study. We think it is interesting to develop the Laplace260

method on the hyperbolic space or sphere to compute the closed kernel of the hypercomplex Fourier261

transform.262

First application of a quaternion Fourier transform to color images was reported in 1996 by Sangwine263

et al. The advantage of Fourier-type transforms of quaternionic signals over the classical Fourier transform264
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is that the kernel through which they act are quaternion-valued and the transforms therefore ”mix the265

channels” rather than acting on each channel separately. The generalized transform we studied here will266

also ”mix the channels” and yet still has a simple inversion and Plancherel theorem.267
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