

Catalytic dehydrogenation of propane on Pt catalysts: the positive effect of hydrogen co-feeding

Stephanie Saerens, M.K. Sabbe, V. Galvita, M.-F. Reyniers, G.B. Marin Laboratory for Chemical Technology

Technologiepark 914, 9052 Ghent, Belgium

http://www.lct.UGent.be

E-mail: Stephanie.Saerens@UGent.be

Justification

 \rightarrow Propylene tradionally a co-product of 120 | Million Metric Tons C₃H₆

European Research Institute of Catalysis

Pt catalysts

Hydrogen co-feeding

Siddiqi et al. (2010)

Base case simulation

 \rightarrow S and H: Statistical thermodynamics based on harmonic oscillator approach \rightarrow Rate coefficients k: Transition state theory \rightarrow CSTR reactor model: $F_{i_0} - F_i + V \cdot r_i = 0$ \rightarrow Surface species: $\frac{d\theta_i^*}{dt} = R_{i^*} = 0$ (PSSA)

Conversion-selectivity relation

Good agreement between simulation and experiment

	Experiment	Simulated
Conversion (%)	11.5	11.5
Selectivity C ₃ H ₆ (%)	79.0	60.7
TOF (s ⁻¹)	1.0	418.7
Coke formation (5' TOS) (mol _C /mol _{Pt,surface)}	32.0	31.4
		Siddiqi et

- \rightarrow Study the effect of promoting elements on activity/selectivity

Chemical Research in Flanders Symposium, Blankenberge, 24-26/10/2016