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Justification Hydrogen co-feeding 

Experimental results 

            Co-feeding of hydrogen 

enhances dehydrogenation activity 

 
Siddiqi et al. J. Catal 200-206 (2010), 

Sun et al. J. Catal 192-199 (2010) 

Pt catalysts 

✓ Sufficient C3H6 selectivity (~80%) 

✗ Low activity for dehydrogenation 

✗ Fast catalyst deactivation 

Computational methodology 

Reaction path analysis on Pt(111) 

a 

b 

Top view 42 Pt(111) unit cell † 

 

Side view 42 platinum unit cell 

Vacuum layer (12 Å) 

+ artificial dipole layer 

Top layers: surface 

atoms (unconstrained) 

Bottom layers: bulk 

atoms (fixed) 

Calculation techniques 
→ Density functional theory (DFT)   

calculations using VASP (periodic slab) 

→ optPBE vdw-DF functional: account for    

long range interactions 

→ Determination of transition states: 

Nudged Elastic Band  

(NEB) method  

combined with dimer  

method 
† Two top layers are shown 

(Hafner and Kresse)  

Base case simulation 

Physisorbed propane 

1-propyl 

Di-σ bonded propylene 

Desired component 

Propylene (g) 

Conclusions 

Catalyst model 

Stephanie Saerens, M.K. Sabbe, V. Galvita, M.-F. Reyniers, G.B. Marin 

Propane (g) = dominant reaction path 

→ Reaction path towards propylene occurs via 

both 1-propyl and 2-propyl species ↔ In 

literature only focus on 1-propyl species (Yang 

et al. 2012 and Valcárcel et al. 2006) 

→ Reaction barriers for C-C scission and 

isomerization reactions are larger than for 

dehydrogenation reactions (Ea ~180 kJ/mol) 

→ C-C scission of propyne does occur  

(Ea ~110 kJ/mol) leading to formation of 

methylidyne (CH) and ethylidyne (CH3C)  

→ Precursors responsible for side product 

formation (CH4 and coke) 

Results on Pt(111) 

Pt 

Variation of H2/C3H8 feed ratio 

Future work 

→ Propylene tradionally a co-product of 

naptha steam cracking or FCC 

 

→ Due the US shale gas 

boom, more ethane  

cracking which has  

a very low selectivity  

towards propylene 

Positive effect of H2 

co-feeding on the 

catalyst activity 

Closer to 

equilibrium at 

high H2/C3H8 ratios 

            Selectivity is 

only weakly influenced  

by hydrogen co-feeding 

Further dehydrogenation  

reaction steps 

propyne 

→ S and H: Statistical thermodynamics based on harmonic oscillator approach 

→ Rate coefficients k: Transition state theory 

→ CSTR reactor model: Fi0
− Fi + V ∙ ri = 0 

→ Surface species: 
dθi

∗

dt
= Ri∗ = 0 (PSSA) 

✓ Conversion-selectivity relation 

✓ Good agreement between simulation and experiment 

Siddiqi et al. (2010) 

2-propyl 

methylidyne + ethylidyne 

- H-Pt 

- H-Pt - H-Pt 

- H-Pt 

- 2 H-Pt 

C-C scission 

+ 

methane atomic carbon 

(De)hydrogenation  

and/or C-C scission 
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(*) graphitic  

coke formation 

Coke formation (*)  

→ Too complex to include in ab initio network 

→ Experimental evidence of graphitic coke 

formation on support 

→ Rate coefficient k = 2.67∙103 s-1
 (873 K), based 

on 32 molC/molPt,surface after 5’ TOS 

✓ Simulations predict positive hydrogen effect 

Insights into positive hydrogen effect 

→ TOF C3H6 same behavior as coverage of free sites 

 

→ H2/C3H8 = 0: high coverage of deeply dehydrogenated 

species (ethylidyne CH3C and methylidyne CH) 

 

→ H2/C3H8 > 0: fast decrease of these species (due to 

hydrogenation reactions)  

→ More free sites → Higher activity 

 

→ Effect flattens out at high ratios due to equilibrium 

considerations 

✓ Reduced blocking of active sites enhances 

 catalytic activity when co-feeding H2 

→ Co-feeding hydrogen has a positive effect on catalytic activity 

→ DFT calculations help to identify possible explanations   

→ Higher H2/C3H8 feed ratios decrease deeply dehydrogenated 

coke precursors on the surface → More free sites 

→ Study the effect of promoting elements on activity/selectivity 

(e.g. Ga-alloying) 

→ Study the effect of catalyst nanoparticles (on support) on 

reaction characteristics 

GOAL: Explain the ‘positive hydrogen effect’ using 

DFT kinetics for an extended reaction network  

Siddiqi et al. (2010) 

Million Metric Tons C3H6 → Predicted propylene capacity increase 

leads to on-purpose production 

technologies e.g. catalytic propane 

dehydrogenation (PDH) 

 

→ Pt-based catalysts are intensively 

researched for PDH 

Grant et al. Top Catal 1545-1553 (2016) 
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Experiment Simulated 

Conversion (%) 11.5 11.5 
Selectivity C3H6 (%) 79.0 60.7 
TOF (s

-1
) 1.0 418.7 

Coke formation (5’ TOS) 
(molC/molPt,surface) 

32.0 31.4 
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