

Computational Fluid Dynamic design of steam cracking reactors: extrusion method for simulation of dynamic coke layer growth

<u>Laurien Vandewalle</u>, Jens Dedeyne, David Van Cauwenberge, Kevin Van Geem, Guy B. Marin

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

CHEMREACTOR-22, London (United Kingdom), 22/09/2016

Coke reduction methods

- Feed additives
- Metal surface technologies
- 3D reactor technologies

3D reactor technology | The Good, the Bad & the Ugly

Enhanced heat transfer & mixing → Less cokes

Increased pressure drop Lower olefin selectivity?

Where are we?

Short term reactor performance (1D vs. 3D)

- Does the improved coking rate outweigh the loss of selectivity?
- In a 1D world...

3D CFD simulations are computationally very expensive

Spatial vs. streamwise periodic

Full-scale reactor simulation

Trick: streamwise periodicity

Computational domain can be limited by using **streamwise periodic** boundary conditions

Periodic reactive simulations

- Assume **velocity fully-developed** over the short computational volume
- Use transient velocity field to evaluate **species and enthalpy radial mixing**
- Translate transient results back to the true steady-state by reconstructing the position from the bulk velocity:

Transformation: Time \rightarrow Position

$$\Delta z = U_{bulk} \, \Delta t = \frac{\int_{\partial V} \rho u_z dA}{\int_{\partial V} \rho dA} \, \Delta t$$

Speedup factors of 200+

(Van Cauwenberge, 2015)

Periodic reactive | 3D Product yields

	Bare tube	Finned tube	Ribbed tube
COT [K]	1152.6	1151.6	1155.2
TMT [K]	1230.6	1222.7	1177.2
ΔP [Pa]	27682	29061	110001
Conversion	74.96%	74.99%	76.18%
CH4	13.96%	14.04%	14.54%
C2H2	1.64%	1.69%	1.55%
C2H4	27.60%	27.87%	27.74%
С2Н6	1.23%	1.27%	1.32%
C3H6	22.91%	22.50%	23.52%
1,3-C4H6	2.91%	2.97%	2.88%

(Van Cauwenberge, 2015)

Coke formation | The Ugly

Evaluation of 3D reactor technologies requires tracking coke layer growth

NO streamwise periodicity NO limitation of computational domain NO fast periodic simulation approach

Tracking coke formation requires simulation of the entire geometry and is **computationally very expensive**

Dynamic modeling of coke formation

*P.M. Plehiers, Laboratorium voor Petrochemische Techniek, Rijksuniversiteit Gent, 1989

Extrusion of 3D reactor geometries

Test case | Millisecond propane cracker

- Feedstock
- Propane conversion
- Steam dilution
- CIT
- COP

118.5 kg/h propane 80.15 % (± 0.05%) 0.326 kg/kg 903.7 °C 170 kPa

Different geometries simulated

- Same reactor volume
- Same axial length
- Same minimal wall thickness

Run length simulation

- Several mesh updates, each corresponding to 24 hours (c-rib, bare) or 48 hours (fin) of coke layer growth
- Heat flux updated to keep propane conversion constant

CFD model | Setup

Open∇FOAM

Turbulence modeling

- RANS:
 - $k-\omega$ SST model (Menter, 2001)

Numerical setup

- Steady-state
- SIMPLE algorithm
- 2nd order central differencing spatial discretization scheme

Chemistry model

- Full single-event microkinetic CRACKSIM model reduced to core for propane cracking:
 - 151 reactions
 - 29 species (13 radicals)

Meshing

- Structured grids for improved grid spacing control and cell orthogonality
- Symmetry:
 - Wedge for bare, c-Rib
 - 1/8th for finned geometry
- Near wall grid resolution satisfying y⁺ < 1

SOR Performance

Max. TMT 3D geometries: >30 K lower

Max. coking rate: >32.5% lower

Increased run length?

Product selectivities

Minor effect on *total* olefin selectivity

Radial mixing effects cannot be predicted based on 1D simulations only Reactor pressure drop 30% higher (fin) 300% higher (c-Rib)

1D: "Lower of a selectivity"

Non-uniform coke layer growth

Coke layer growth

Thinner coke layer for finned tube compared to bare tube

BUT: larger internal surface area

Total coke volume in reactor [dm³]

	Bare	Finned
48 hrs	0.844	0.887
96 hrs	1.652	1.739

Total volume of cokes more or less the same

Or, even more cokes for finned tube

Increased heat input

Heat input to the reactor is updated after each mesh update, to keep the propane conversion constant: **more cokes = more heating.**

Pressure drop

Less fast increase for c-rib compared to bare and finned geometry 20

Tube metal temperature

Conclusions & future work

- 3D computational fluid dynamic simulations allow optimization of industrial steam cracking reactors
- New method to perform yield & run length simulations of industrial steam crackers was developed
 - Combination with streamwise periodic simulations not possible
- Proof-of-concept reactive simulation of industrial propane cracker: bare vs. finned vs. ribbed tubes
 - Strongly non-uniform formation of cokes in fins and on ribs
 - Pressure drop increases faster in bare and finned tube compared to ribbed tube
 - Max. allowable TMT is reached earlier for bare tube
- Advantages of other 3D geometries (e.g. intermittently ribbed tube) over finned tubes to be evaluated

Acknowledgements

FWO Flanders, PI-FLOW Project ٠

The Long Term Structural Methusalem Funding by the Flemish Government ۲

Term Structural Methusalem Funding of the Flemish Government

STEVIN Supercomputer Infrastructure & Vlaams Supercomputer Centrum ۲

IMPROOF: Integrated Model guided PROcess Optimization of steam • cracking Furnaces. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723706

Acknowledgements | IMPROOF

 Integrated Model guided process optimization of steam cracking furnaces

 This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723706

Computational Fluid Dynamic design of steam cracking reactors: extrusion method for simulation of dynamic coke layer growth

<u>Laurien Vandewalle</u>, Jens Dedeyne, David Van Cauwenberge, Kevin Van Geem, Guy B. Marin

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

CHEMREACTOR-22, London (United Kingdom), 22/09/2016

