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Abstract—The concept of cognitive symbiotic network planning
is introduced as a way to improve the use of available resources
and infrastructure and the overall performance of co-located
wireless networks. A real-time network planner is designed that
jointly optimizes different networks that cooperate based on
shared incentives. Feedback about the signal quality parameters
allows monitoring of the network, optimizing path loss models,
and coping with a changing propagation environment. The
concept is applied to and validated with a real-life wireless test
environment for the specific incentive of an energy consumption
reduction. A global reduction of more than 75% is obtained.

I. INTRODUCTION

In recent years, an increasing number of networks us-

ing different wireless technologies started to co-exist: GSM

(Global System for Mobile Communications), UMTS (Univer-

sal Mobile Telecommunications System), Zigbee, Wi-Fi, LTE

(Long Term Evolution),. . . Fig. 1 shows a ground plan of an

office building, containing a Zigbee sensor network (sensors

indicated with circles) and a WiFi access point network.

In the future, also (LTE) femtocells might start to appear

in large buildings. Moreover, most current smartphones and

laptops are Bluetooth-compatible as well. This leads to a

huge amount of different co-existing wireless technologies in

indoor environments. The increase in the density of wireless

devices, each using their own technology and having their own

limitations (battery lifetime, memory capacity,. . . ) leads to an

increasing amount of interference and a sub-optimal use of

available network resources (such as capacity).

In this paper, the concept of cognitive symbiotic network

planning is developed. The network planner automatically

designs a symbiotic network out of a set of co-located

independent wireless networks. Symbiotic networks [1] are

coexisting homogeneous (using the same technology, e.g.,

two independent Wi-Fi networks from different companies,

sharing their access points) or heterogeneous (e.g., Wi-Fi and

UMTS networks allowing a smartphone user to collect data)

networks that cooperate based on common incentives through

infrastructure and resource sharing. Symbiotic networks form

a promising concept in a world where a lot of wireless

technologies coexist independently from each other. Incentives

are network goals that should be improved in order for the

network to consider cooperating with other networks. The aim

of the cooperation is to provide benefits for all participating

Fig. 1. Ground plan of building with different co-existing wireless technolo-
gies.



Fig. 2. Flow graph of interaction between cognitive symbiotic network planner and network.

networks. Possible incentives to support cooperation between

the different networks are lower exposure, lower interference, a

higher throughput, a better QoS (Quality of Service),. . . These

incentives can vary in the course of time.

In this paper, a wireless sensor network will be symbiotically

optimized, based on the shared incentive between the networks

of a lower energy consumption (for an increased device and

network life time).

However, while striving to meet each one of these incentives,

it is crucial that the network remains operational. Therefore,

we choose to implement the symbiotic networking concept

into a cognitive indoor network planning tool. The proposed

solution introduces a feedback loop between the planning tool

and the actual deployed network. Feeding back signal quality

information allows to better tune the device transmit powers

for a further energy consumption reduction, but also has other

advantages.

As an application, the concept of a cognitive symbiotic net-

work planner is applied to a real-life wireless test environment,

where we aim to reduce the global energy consumption,

without affecting coverage.

II. COGNITIVE SYMBIOTIC NETWORK PLANNING

The cognitive symbiotic network planner is illustrated in

Fig. 2. Based on the agreed common incentives, the symbiotic

network planning algorithm [2] first calculates the optimal

node settings (e.g., transmit power) (step 1 in Fig. 2) and

applies them to the network nodes (step 2 in Fig. 2). Based on

the calculated node settings, the network is reconfigured, pack-

ets are sent accordingly (step 3 in Fig. 2), and transmission

information from the receiver nodes (Received Signal Strength

Indicator (RSSI), noise floor,. . . ) is logged in a database (step 4

in Fig. 2).

In view of better meeting the agreed incentives and still keep-

ing the network operational, a cognitive loop is implemented

into the network planner: signal quality data are returned from

the database to the network planner (step 5 in Fig. 2) and

used to recalculate the optimal network settings for a further

energy consumption reduction (step 6 in Fig. 2). Also, by

monitoring the network, real-time network and signal quality

information can be used in the planning tool to increase the

accuracy of the used propagation models [2], or to adapt to

varying network conditions (e.g., node failures) or a varying

propagation environment.

Firstly, based on the observed RSSI values, the used path

loss models can be tuned to cope with prediction inaccu-

racies [2] (feedback loop in Fig. 2). This allows a more

reliable estimation of the connection quality and possibly, an

optimization of the transmit power of the nodes (increased

node lifetime). Secondly, the self-regulating process is able

to automatically deal with changes in the physical network

layout. This for example means that depending on the specific

case and on the network topology, it allows detecting node

failures and recovering from it. Also, our symbiotic planning

tool allows coping with a varying propagation environment.

This could e.g., be the case in office buildings with movable

walls, where temperature sensors monitor the environment. A

rearrangement of the walls in the office building would then

not require a manual adjustment of the network parameters, but

it could be dealt with by the self-regulating network planner.

In a more general approach, the network planner can also auto-

matically be reconfigured when the shared incentives change.

When the temparature sensors record values higher than a

certain treshold (indication of possible fire), the incentive can

change from minimal energy consumption to highly-reliable

communication in emergency cases, in order to detect and

localize the fire as quickly as possible.

III. ENERGY CONSUMPTION REDUCTION BY COGNITIVE

SYMBIOTIC NETWORK PLANNING IN A REAL-LIFE

WIRELESS TEST NETWORK

As a proof-of-concept, the cognitive symbiotic network

planner is applied to a real-life wireless test network. In total,

45 nodes, equipped with 2 Wi-Fi IEEE 802.11 interfaces

(a/b/g) and 1 or 2 TMoteSky sensor nodes [3] with IEEE

802.15.4 interface embedded with temperature, light, and hu-

midity sensors, have been installed at a height of 2.5 m on the

third floor of an office building in Ghent, Belgium (see Fig. 3).

The sensor chip is an RF (Radio Frequency) transceiver

designed for low-power and low-voltage wireless applications



Fig. 3. Original test network nodes from three networks (A, B, C).

and has a programmable output power [3]. In receiving mode,

the Received Signal Strength Indication (RSSI) indicates the

received power and is a good indicator for the packet reception

rate (PRR) when the noise is limited [4].

The 45 nodes of the wireless test network belong to

three different sensor networks: A, B, and C (see Fig. 3).

Four network configuration phases are defined, corresponding

with three subsequent optimizations. The specific common

incentive of a lower global energy consumption in the three

networks is investigated. It will be shown that the use of a

network planner, the use of symbiotic negotiation between

the networks, and the use of the cognitive loop all allow a

reduction of the global energy consumption in the wireless

sensor network.

· phase 1: initially, all 45 nodes are ’on’, each of which

consumes 65.01 mW, yielding a resulting total power con-

sumption of 45 · 65.01 mW or 2925.5 mW. Fig. 3 shows

this original network. In this first phase, no intelligence

is used.

· phase 2: in the second phase, the network planner

optimizes each of the three wireless sensor networks

of Fig. 3 separately. In Fig. 4, the resulting sinks are

indicated with a circle: 3 for network A, 4 for network

B, and 4 for network C. Together, these eleven sinks

consume 11 · 65.01 mW or 715.1 mW. The other nodes

are assumed to be ’on’ only during a certain percentage

of the time, allowing them to send packets and/or receive

incoming packets. Under the assumption of a duty cycle

of 25%, the other 34 sensor nodes consume a power of

34 · 65.01 mW · 25% or 552.6 mW. For all 45 nodes,

this results in a total power consumption of 715.1 mW +

552.6 mW = 1267.7 mW.

· phase 3: in the third phase, the three networks cooperate

in order to consume less energy (i.e. the shared incentive).

After a negotiation phase based on higher-layer protocols,

the three networks form one symbiotic network, in

which the different networks share their infrastructure.

The incentive-based network planner is now able to

calculate the number of sinks which are required to

establish a reliable communication. In Fig. 4, these four

sinks are indicated with a square, consuming a power of 4

· 65.01 mW or 260.4 mW. With a duty cycle of 25%, the

other 41 sensor nodes consume a power of 41 · 65.01 mW

· 25% or 666.4 mW. The total power consumption is then

260.4 mW + 666.4 mW = 926.8 mW.

· phase 4: in the fourth phase, another advantage of the

cognitive loop comes into play: the loop not only allows

the network planner to improve its path loss models [2],

it also allows optimizing the individual sensor transmit

powers, using the path loss values fed back to the tool

by the cognitive loop. Based on these path loss values,

the transmit powers of the sensor nodes are configured at

different values, ranging from -15 dBm to 0 dBm.

Table I shows the power consumption corresponding

to the different sensor transmit powers, the number of

sensors in the network with that transmit power (as

decided by the network planner), and the total power

consumption of the receiving nodes, with an assumed

duty cycle of 25%. The table shows that relevant energy

savings can be obtained by not always transmitting at the

maximal power of 0 dBm when this is not necessary: an

energy reduction of 43% is obtained when transmitting

at -15 dBm instead of at 0 dBm (power consumption of

57.4 mW at 0 dBm vs. 32.7 mW at −15 dBm). The

total power consumption of all nodes in the network then

becomes 260.4 mW (4 sinks) + 425.8 mW (41 receiving

nodes, see Table I) = 686.2 mW.

sensor power number of total power

transmit consumption sensors in consumption [mW]

power [dBm] [mW] network (duty cycle 25%)

0 57.4 8 114.8

-5 46.2 9 104.0

-10 36.3 12 108.9

-15 32.7 12 98.1

Total power consumption of receiving nodes 425.8

TABLE I
OVERVIEW OF POWER CONSUMPTION FOR DIFFERENT SENSOR TRANSMIT

POWERS AND TOTAL POWER CONSUMPTION OF ALL RECEIVING NODES IN

OPTIMIZATION PHASE 4.

Table II shows the power consumption (reduction) in the

different network configuration phases. It shows that a total

energy consumption reduction of 76.5% can be obtained for

the network under test. Other duty cycle values will increase

or decrease the obtained energy consumption reduction.



Fig. 4. Indication of sinks for each of the three networks (circle) and for the symbiotic network (squares).

total power energy consumption

consumption [mW] reduction [%]

phase 1 2925.5 -

phase 2 1267.7 56.7%

phase 3 926.8 68.3%

phase 4 686.2 76.5%

TABLE II
OVERVIEW OF THE POWER CONSUMPTION (REDUCTION) IN THE

DIFFERENT NETWORK CONFIGURATION PHASES.

IV. CONCLUSIONS

The concept of a cognitive symbiotic network planning tool

is presented. It creates an optimized incentive-based symbiotic

network starting from different independent wireless networks.

This allows to e.g., lower the global energy consumption of

the co-located wireless networks. A cognitive loop is imple-

mented into the network planning tool, enabling the automatic

optimization of node transmission settings for a further energy

consumption reduction. Also, the loop guarantees a better

overall performance and allows dealing with changes in the

propagation environment or in the physical network layout. In

this way, a a total energy consumption reduction of more than

75% can be obtained. Future research includes incentive-based

network optimization in heterogeneous symbiotic networks,

e.g., the joint optimization of LTE and WiFi networks for

a lower exposure, lower energy consumption or a better

coverage.
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