
Exploring F1-Geometry:
Deitmar schemes, loose graphs and motives.

Manuel Mérida Angulo

Proefschrift ingediend aan de Faculteit Wetenschappen
tot het behalen van de graad van

Doctor in de wetenschappen: wiskunde

Promotor:
Prof. Dr. Koen Thas

Academiejaar 2016-2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84042604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A mi hermana,

“Si hubiera elegido no meter la cabeza en este gran cuento, nunca hubiese
sabido lo que me iba a perder.”

– Jostein Gaarder, La joven de las naranjas.

Acknowledgments

I would like to thank my advisor Koen Thas for his great support during these
years and for showing me the “Fun” of this world called Mathematics. Thanks Koen
for trusting me, for your immense patience but also for having the right words when
desperate moments arrived. This thesis would have never been possible without your
guidance.

To my colleagues in De Sterre, for the good moments during these years. To
Samuel, for all your help in personal and professional matters since the moment I arrived
to Belgium. To John, for the never-ending nights with a beer in hand. Anneleen and
Magali, for your cakes and your smiles in the stressful periods. The final race is easier
when you share it with friends like you.

Thanks to many friends and family that I found in Gent, because you make me
feel that this is home. Madrinha, Ana, for being my main pillar all these years. Portugal
and Spain have never been so close. Thanks to Anurag, for being a great friend and
the best office mate I could have ever imagined. A Myriam, mi madrileña, por nuestras
eternas charlas, locuras y risas, por cuidar de mí (y de mi español) y por tener siempre
la palabra o el abrazo necesarios. Merci Malika, pour faire que ma vie soit pour toujours
attachée à Gand. A Torsten, por hacerme sentir que otro tipo de flamenco puede ser
también parte de tu familia. And thanks to you, Bart, for your ability to understand
me and make me laugh and for showing me that life is meant to be enjoyed.

I can’t forget about other friends who made my life in Belgium happier. Thanks
to Alice, Matteo, Inés, Cecilia, Ruy, Jens, . . . and many more for the good moments
during these years. A special thanks to Els, for her constant support. Merci aussi à
Juliette et Soobin, pour faire de mon séjour à Paris une année remarquable.

Sevilla, mi cuidad, a pesar de los años sigues dándome ese “color especial”. Gracias
a Luis Narváez, por darme la oportunidad de comenzar en la investigación y animarme
a seguir en este mundo. A mi matemática favorita, Vanesa, por acompañarme a cada
paso desde hace ya casi 10 años. Gracias por todos los momentos vividos y por tu
apoyo infinito. Seguiremos en la lucha, pero siempre juntos amiga mía.

A mis amigos de toda la vida, Juan, Vito, Cris, Guada, Elena, Fer, Mari y Sergio;
por demostrarme que los años y la distancia no cambian lo que nos une. A mis malteses,

Page vii

ACKNOWLEDGMENTS

Raquel, Jesús, Jose, Ro, Violeta, Ana, Paco, Lucía, Ramón y Juan; por tener siempre
la fórmula mágica que me da el empujón para seguir adelante.

Gracias a mi familia, por estar siempre cerca pese a la distancia. A mis Angulo,
por devolverme a mis raíces en cada visita. Tita Mari y tito Rafa, gracias por confiar
tanto en mí y darme tanto cariño. A mis abuelos, que me guían y a Carlos, por siempre
ser mi cuñado favorito.

Gracias a mi hermana, por enseñarme que la vida es bella y que todo es más
fácil si se hace con una sonrisa. Y por último, gracias a mis padres, por el apoyo
incondicional en todos los aspectos de mi vida y por inculcarme que es necesario seguir
luchando por lo que quieres porque, por mucho que cueste, al final siempre merece la
pena. Todo esto es gracias a vosotros. Os quiero.

Gracias a todos . . .
Bedankt iedereen . . .
Merci à tous . . .
Thank you all . . .

Page viii

Preface

It was back in July 2012 in Sevilla, while I was benefiting from a research Summer
fellowship, that Professor Luis Narváez sent me an email about a PhD position to work
on Absolute Geometry and “the field with one element.” I had never heard about such
a thing before but, as it happens with many other topics in research, you only need few
hours looking for relating information to see if it draws your attention. Almost 5 years
later, this PhD is the result of that informative email.

I started my PhD in September 2013 under the supervision of Professor Koen
Thas, who introduced me to the interesting theory of F1, the field with one element.
The notion of F1 was introduced in 1957 by Jacques Tits, but it was not until 2006 that
Anton Deitmar presented the very first definition of a scheme over F1. Other approaches
to define F1-schemes soon appeared but in one way or another they are all related to
Deitmar’s first definition. Some years later, Koen Thas established a relation between
the F1-schemes defined by Deitmar (also called Deitmar schemes) and a combinatorial
generalization of graphs, which he called “loose graphs.” In that paper, he defined a
functor S from the category LGraph of loose graphs to the category of Deitmar schemes
as follows:

Consider a loose graph Γ and embed it in a combinatorial projective space over
F1, denoted by Pc(Γ). Let P(Γ) be the associated F1-projective space on the level
of schemes. S(Γ) is then the subscheme of P(Γ) roughly defined by leaving out all
multiplicative groups on P(Γ) that are defined by edges of Pc(Γ) \ Γ.

This functor gave rise to a new way of understanding geometrical structure through
combinatorial tools. In fact, Koen proved in the same paper that the automorphism
group of a loose graph Γ is isomorphic to the automorphism group of the scheme S(Γ)
associated to it.

Soon after I started my PhD, Koen Thas pointed out the idea of defining a new
functor that extends the aforementioned relation into a bigger category of Deitmar
schemes while keeping some analogies with the functor S. For instance, a complete
graph on n+1 vertices should always correspond to an n-dimensional projective space in
order to satisfy the initial combinatorial motivation of F1 introduced by Tits. However,
there was an essential feature missing in the definition of S, which was related to the
definition of combinatorial F1-affine spaces. If we consider, for example, the complete

Page ix

Preface

graph K4 on 4 vertices, it will define a 3-dimensional projective space at the level of
schemes but if we take now the loose graph Γ resulting by leaving out from K4 the
edges of a complete subgraph K3, the functor S will associate a 3-dimensional projective
space without 3 multiplicative groups to it. However, the natural association should
be a 3-dimensional affine space (with some points at infinity) since it corresponds to
the decomposition of a projective space into the disjoint union of an affine space of the
same dimension and a projective space of one dimension lower.

After defining the new functor, which we call F, and thanks to Deitmar’s base
extension of F1-schemes to Z-schemes, we were able to define a functor Fk from the
category LGraph to the category CSk of k-constructible sets , for k a finite field, F1 or
Z. The definition of all the functors and the proof of them being indeed functors are
described in detail in chapter 2.

Once the definition of a good functor was achieved, natural questions arose
regarding what information about the constructible sets could be obtained by studying
the loose graphs that defined them. We started to analyze some basic examples and
we soon realized that in some cases (mainly in the case of loose trees), when fixing a
finite field k, it was possible to define a polynomial function on the loose trees that
counts the number of rational points of the constructible sets which arise by applying
the functor Fk. We further developed this idea and found a process, that we called
“surgery,” to inductively calculate the number of rational points on a constructible set
Fk(Γ) for Γ coming from a loose graph Γ.

Several results came after defining the surgery process. Indeed, one of the main
properties of this procedure is that for a given loose graph Γ, the function counting
the number of rational points of the constructible set Fk(Γ) is polynomial, called
the Grothendieck polynomial of Γ, and this polynomial is independent of the chosen
finite field k. This property immediately implies that the constructible sets Fk(Γ) are
polynomial-count; a result which pointed out a possible connection to motive theory.

According to a corollary of one of the Tate conjectures, a scheme being polynomial-
count for all but finitely many primes is equivalent to the scheme having a mixed Tate
motive. We were able to prove that for any finite field k and any loose graph Γ, the
constructible set Fk(Γ) has a virtual mixed Tate motive. The procedure of obtaining
the Grothendieck polynomial of a constructible set Fk(Γ) as well as the aforementioned
results are fully explained in chapter 3.

In chapter 4, we describe a connection with Kurokawa’s work about Z-schemes
being “defined over F1.” In fact we prove that the constructible sets FZ(Γ) are defined
over F1 in Kurokawa’s sense for any loose graph Γ. This result allows us to define a
new zeta function on the category of loose graphs that carries some information about
the associated constructible sets.

Leaving apart the algebraic geometrical side of the constructible sets Fk(Γ) and
following the spirit of Koen’s work for the functor S, we also studied the relation between
loose graphs and the constructible sets associated to them by Fk, where k is a finite field.

Page x

Preface

In chapter 5, given a loose tree Γ, we consider three different types of automorphism
groups (topological, projective and combinatorial) for Fk(Γ) and describe how they are
related to each other as well as related to the automorphism group of the loose tree
Γ. We finish the chapter by giving some ideas that might be useful in order to prove
similar results for the whole category of loose graphs.

At the end of the thesis we include two appendices concerning the surgery process.
In appendix A we present a full study of how the surgery process works for the particular
case of Fk(K5), where K5 is the complete graph on 5 vertices while appendix B contains
the explanation of a computational code done in Magma to compute the Grothendieck
polynomial described in chapter 3 for any loose graph.

Gent, May 2017.

Page xi

Publications

There are four publications related to the work presented in this thesis [37, 38, 39,
40]. At the time of writing this thesis, one of these [40] has been published in Journal
of Geometry and Physics and the other three are submitted.

• Chapter 2 is based on [40, 37].

• Chapter 3 is based on [40, 38].

• Chapter 4 is based on [40].

• Chapter 5 is based on [37].

These references will not be repeated in individual chapters.

Page xiii

Table of Contents

Acknowledgments vii

Preface ix

Publications xiii

List of Figures xix

1 Preliminaries 1
1.1 Looking for F1 . 1
1.2 Absolute Linear Algebra . 2
1.3 Absolute Algebraic Geometry . 4

1.3.1 Schemes over commutative rings 5
1.3.2 Constructible sets . 8
1.3.3 Different versions of schemes over F1 9

1.4 Monoidal schemes . 10
1.4.1 F1-Constructible sets . 16
1.4.2 Congruence schemes . 16
1.4.3 The multiplicative group Gm . 18
1.4.4 Blueprints . 19

2 The Functor Fk 21
2.1 Combinatorial realization of F1 . 21
2.2 Loose graphs and the functor S . 22

2.2.1 Loose graphs . 22
2.2.2 The functor S . 26

2.3 Modifying the functor S . 28
2.3.1 The new functor F . 29
2.3.2 F(Γ) seen as a congruence scheme 30
2.3.3 Gluing the affine schemes? . 31

2.4 From F to Fk . 33
2.4.1 Base extension of Deitmar schemes 33

Page xv

Table of contents

2.4.2 Equations of some liftings . 35
2.5 The functors Fk . 36

2.5.1 Local action . 36
2.5.2 Global action . 39
2.5.3 Different categories for projective spaces 41

2.6 In conclusion . 43

3 Counting Polynomial and Zeta Equivalence 45
3.1 Grothendieck ring of schemes . 45

3.1.1 Connection to motives . 46
3.1.2 Virtual Tate motives . 47

3.2 Grothendieck polynomials . 48
3.2.1 Zeta-equivalence and polynomial-count 49
3.2.2 Tate conjecture and counting polynomial 50

3.3 Grothendieck polynomial for trees . 51
3.4 Lifting the class of trees in K0(SchF1) 56
3.5 Surgery . 58

3.5.1 Resolution of edges . 58
3.5.2 The loose graphs Γ(u, v;m) . 58
3.5.3 The loose graphs Γ(u, v;m)uv 60
3.5.4 General cones . 61
3.5.5 Affection Principle . 64
3.5.6 Polynomial Affection Principle: calculation 66
3.5.7 Steps of surgery . 71

3.6 Lifting K0(SchF1), II . 73
3.7 Class of Fk(Γ) in K0(Schk) . 74

3.7.1 Main Theorem for cones . 77
3.7.2 Γ has no external edges . 77
3.7.3 Γ has external edges . 78
3.7.4 End of the proof of Theorem 3.7.1 78

3.8 Mixed Tate motives in the Grothendieck ring 79

4 A New Zeta Function for (Loose) Graphs 81
4.1 Ihara zeta function . 81
4.2 Schemes defined over F1 à la Kurokawa 83
4.3 The new zeta function . 85

4.3.1 Future steps . 86
4.4 Comparison with the Ihara zeta function: some examples 86
4.5 The chromatic polynomial . 89

4.5.1 Connection with the new zeta function 90

Page xvi

Table of contents

5 Automorphism Groups 91
5.1 Automorphism group of loose graphs 91
5.2 Automorphism groups of constructible sets 92

5.2.1 Projective automorphism group 92
5.2.2 Combinatorial automorphism group 92
5.2.3 Topological automorphism group 95

5.3 Trees and constructible sets . 96
5.3.1 Group action . 96
5.3.2 Toy example . 97
5.3.3 Loose trees . 101
5.3.4 Fundaments . 102
5.3.5 General loose trees . 105
5.3.6 More on the different automorphism group types 109

5.4 Convexity . 110
5.5 The edge-relation dichotomy . 111

5.5.1 Examples close to trees . 111
5.5.2 Missing piece . 112
5.5.3 Examples close to the ambient space 113

5.6 Future steps . 113
5.6.1 Constructible sets satisfying the Inner Graph Property 113
5.6.2 Heisenberg principle . 114

Appendices 115

A Computation of the Grothendieck Polynomial of K5 117

B Computations 123

C Nederlandse Samenvatting 145
C.1 Deitmar schema’s en constructieve verzamelingen 145
C.2 Losse grafen . 146
C.3 Telveelterm . 148
C.4 Een nieuwe zeta functie voor (losse) grafen 149
C.5 Automorfismegroepen van F(Γ) . 149
C.6 Automorfismen van algemene losse bomen 150

Bibliography 153

Page xvii

List of Figures

1.1 In this diagram M0-schemes stands for Deitmar schemes, CC-schemes
are the Connes-Consani schemes and S-varieties are Soulé varieties. . . 10

2.1 Different examples of loose graphs. 23
2.2 A loose graph Γ, its minimal graph Γ and its reduced graph Γ̃. 23
2.3 Inclusion morphism of loose graphs . 24
2.4 Morphism of graph . 25
2.5 Contraction of loose graphs . 25
2.6 The inclusion A ↪→ B. 28
2.7 Projection of P1

F1 on one point P . 38

3.1 Affine space An
F1 . 52

3.2 Projective line P1
F1 . 52

3.3 A star Sn. 53
3.4 Grahps Γ and Γ \ e. 54
3.5 The loose graph Γ(u, v;m). 58
3.6 The loose graphs Γ(u, v; 1) and Γ(u, v; 2). 59
3.7 Resolution of Γ(u, v;m) along the edge uv. 60
3.8 Cone constructed from a projective plane without a multiplicative group

and a projective line. 63
3.9 Cone constructed from two affine planes. 64
3.10 The ball B(x, 1) ∪B(y, 1). 67
3.11 After resolution of the edge xy. 69
3.12 The loose graphs Γ and GL. 70

4.1 The complete graph K4. 86
4.2 Loose graph K∗4 . 87
4.3 The complete graph K5. 87
4.4 The Johnson Graph J(4, 2). 88
4.5 Hexahedron. 89

5.1 Toy example. 97

Page xix

List of figures

5.2 Projective completion of Ax and Ay. 98
5.3 A fundament of type (3,4). 102
5.4 The graph Γ. 103
5.5 Part of Xk fixed pointwise by the subgroup S(w). 106
5.6 The loose graph Γ1 . 111
5.7 The loose graph Γ2 . 113

Page xx

1 Preliminaries

The main goal of this chapter is to present some motivation for “the theory of the
field with one element,” F1, and introduce basic notions that will help the reader to
understand the work presented in this PhD. We assume some familiarity with Linear
Algebra, Commutative Algebra and Projective Geometry.

Before entering in the world of F1, one should remark that, according to the
definition of a field, there is no field with one element. Nevertheless, Projective Geometry,
Linear Algebra or Algebraic Geometry can be interpreted to have an F1-version. We
shall see that in the course of this chapter.

1.1 Looking for F1

The birth of the field with one element was given by Jacques Tits [48] in 1957,
where he suggested the existence of a “field of characteristic one,” F1, over which
one could interpret symmetric groups Sym(n) as Chevalley groups, seen as limits of
projective general linear groups over finite fields. After this analogy was made, the
question on the existence of a theory of geometries which behave as if they were defined
over F1 arose.

Already in [48], Tits described the buildings over F1 as the apartments of a
spherical building of the same type and rank, and the corresponding Chevalley groups
then become the Weyl groups of the associated BN-pair.

One of the main examples of the aforementioned question is the notion of a
projective space over the field with one element. Let us recall the axiomatic definition
of a combinatorial projective space starting with its point-line geometry, that can be
found in [2]. It is a point-line geometry P = (P,L, I), in which P is the point set, L is
the line set, and I is a symmetric relation on P ∪ L, disjoint from P × P and L × L,
satisfying the following 3 axioms:

• Two different points are exactly incident with one line.

Page 1

Chapter 1. Preliminaries

• Thickness. Each line has at least three points.

• Veblen’s axiom. If a, b, c and d are different points and the lines ab and cd meet, then
so do the lines ac and bd.

A subspace of a projective space P is a subgeometryX such that any line containing
two different points of X is a subset of X (where we see lines as point sets) and this line
then is a line of X. All projective spaces defined over fields satisfy also these axioms.

What is more, a projective space over a finite field Fq, PG(n, q), has exactly q+ 1
points on each line and a total number of qn+qn−1 + · · ·+q+1 points. If we imagine the
limit of PG(n, q) when q → 1, then one obtains the following axioms for a projective
space over F1:

• Two different points are in exactly one line.

• Each line has exactly 2 points.

• Veblen’s axiom — F1-version. Empty.

The total number of points for an n-dimensional projective space over F1 then
becomes n+ 1, by considering the limit when q tends to 1 on the number of points of
PG(n, q). We denote this projective space by PG(n, 1). With this set of axioms, it is
not difficult to see which combinatorial object one can naturally associate to PG(n, 1);
a set of n+ 1 points of which each pair is joined by one line is indeed the description
of the complete graph on n + 1 vertices, Kn+1. Besides, it is clear that in that case
the automorphism group of the projective space is isomorphic to the symmetric group
Sym(n+ 1).

This interpretation of a projective space over F1 and its automorphism group gave
the motivation to develop a theory of Linear Algebra over F1 where addition was not
allowed. An overview of what is called Absolute Linear Algebra will be introduced in
the next section.

1.2 Absolute Linear Algebra
Even if the idea of a field with one element was introduced by Tits in 1957, it took

more than 35 years until the notion of F1 was mentioned again in the mathematical
literature. In some unpublished notes [23], Kapranov and Smirnov set the basis for a
theory of Linear Algebra over the field with one element (following the aforementioned
idea that excludes addition).

We will describe several aspects of Absolute Linear Algebra, considering mainly
finite dimensional vector spaces, which are the ones involved in the work of chapters
2—5. References for this section are mainly [23] and [47, 46].

Page 2

1.2. Absolute Linear Algebra

We depict the field with one element, F1, as the set {0, 1} in which we have the
following operation:

1 · 0 = 0 = 0 · 0 and 1 · 1 = 1, (1.1)

i.e., F1 is the trivial monoid together with a zero element, usually called absorbing
element. Notice that by considering this way of describing F1 one keeps the idea of no
addition.

Definition 1.2.1. A vector space V over F1 is a pair V = (0, X), where X is a set of
elements and 0 is a distinguished point with the property that 0 /∈ X. We define the
dimension of V to be the cardinality of the set X.

Definition 1.2.2 (F1-rings). A commutative ring A over F1 is a commutative multi-
plicative monoid — that is, a set with an associative binary operation that has a unit
element— together with an absorbing element 0.

Since F1 plays the role of a “field,” we also would like, as an analogy to finite
fields, that for every n ∈ N there exist a field extension of degree n. Denote it by F1n .
We define the extension field F1n of F1 to be the monoid {0} ∪ µn, where µn is the
(multiplicative) group of n-th roots of unity over C and 0 is the absorbing element.
Notice that F1n can also be seen as vector space over F1 of dimension n since the
cardinality of the set µn is n.

After defining field extensions of F1, one can extend the notion of a vector space
over F1 to a vector space over F1n .

Definition 1.2.3. A vector space V over the field F1n , n ≥ 1, is a triple V = (0, X, µn)
where 0 is a distinguished point, X is a set and µn is the group of n-th roots of unity
acting freely on the set X. Each µn-orbit corresponds to a direction.

A basis of a vector space over F1n is a subset B of X such that every µn-orbit
contains a unique element of B, i.e., B is a set of representatives of the µn-action. We
define the dimension of V to be the cardinality of any basis, that is, the number of
µn-orbits. Since the action of µn on X is free, the dimension of V is d := card(V)/n
and X is then a set of dn elements.

Remark 1.2.4. In the previous definition, when n = 1, one gets the notion of a vector
space over the field F1 where X would be a set of d elements and the basis B is the
whole set X.

Observe that once a choice of a basis B = {bi | i ∈ I} of a vector space X
over F1n is made, any element can be uniquely written as bαu

j , for unique j ∈ I and
αu ∈ µn = 〈α〉. Hence, we can define a linear automorphism f of a vector space V over
F1n with basis B to be a map sending each element of the basis to

f(bi) = bβi

σ(i), (1.2)

Page 3

Chapter 1. Preliminaries

where σ is an element of Sym(d) and βi is a power of a primitive n-th root of unity.
Notice that indeed, the element σ sends the element bi to an element of another orbit
of the action of µn and βi chooses the correct representant of the orbit of bσ(i). Then,
we have that

GLd(F1n) ∼= µn o Sym(d), (1.3)

where o denotes the wreath product. As a consequence, we obtain that the general
linear group of a vector space over F1 of dimension d is the symmetric group Sym(d).

1.3 Absolute Algebraic Geometry
Although Absolute Linear Algebra was introduced in a unique guise, this is not

the case for Algebraic Geometry. Indeed there are different versions of schemes theory
over the field with one element, some of which we will discuss in detail later in this
chapter.

Let us set up the motivation for a scheme theory over the field with one element
as it is explained in [29]. In the early 90’s, Christopher Deninger published his studies
[14, 15, 16] on motives and regularized determinants. In [15], he gave a description of
conditions on a category of motives that would admit a similar proof to Weil’s proof of
the Riemann hypothesis for function fields of projective curves over finite fields Fq to
the hypothetical curve Spec(Z). In particular, he showed that the following formula
would hold:

2−1/2π−s/2Γ(s2)ζ(s) =

det∞(1
2π (s−Θ)

∣∣∣H1(Spec(Z),OI))
det∞(1

2π (s−Θ)
∣∣∣H0(Spec(Z),OI))det∞(1

2π (s−Θ)
∣∣∣H2(Spec(Z),OI))

where det∞ denotes the regularized determinant, Θ is an endofunctor that comes with
the category of motives and H i(Spec(Z),OI) are certain proposed cohomology groups.
This description combines with the work of Kurokawa on multiple zeta functions [25]
from 1992 to the hope that there are motives h0, h1 and h2 with zeta functions:

ζhw(s) = det∞(1
2π (s−Θ)

∣∣∣Hw(Spec(Z),OI)),

for w = 0, 1, 2. It was Yuri Manin in [36] who suggested the interpretation of h0 as
Spec(F1) and h2 as the affine line over F1. The quest for a proof of the Riemann
hypothesis was from now on a main motivation to look for a geometry over F1.

Page 4

1.3. Absolute Algebraic Geometry

1.3.1 Schemes over commutative rings
Before starting to describe the state of the art of Absolute Algebraic Geometry

and give a detailed construction of certain schemes over F1, we will give a brief summary
about schemes over commutative rings, which were introduced by Grothendieck in the
60’s. For more details on this theory, we refer to [18, 28].

For the definition of a scheme, which is a generalization of the notion of algebraic
variety, we first need to introduce some concepts.
Definition 1.3.1. Let X be a topological space. A presheaf F of rings on X consists
of the data

i) for every open set U ⊆ X, a ring F (U).

ii) for every inclusion V ⊆ U of open sets of X, a morphism of rings ρ
UV

: F (U)→
F (V),

subject to the conditions

a) F (∅) = 0, where 0 is the zero ring,

b) ρ
UU

is the identity map F (U)→ F (U) and

c) if W ⊆ V ⊆ U are three open subsets of X, then ρ
UW

= ρ
V W
◦ ρ

UV
.

Remark 1.3.2. In the language of categories, the definition of a presheaf of rings
corresponds to a contravariant functor from the category Top(X) of open subsets of X
whose morphisms are the inclusion maps to the category of rings. Although a presheaf
of rings is the type of presheaf that we will consider when defining a scheme, presheaves
of other categories such us groups, sets or R-algebras are equally defined.

If F is a presheaf of rings on X, we call the elements of F (U) the sections of
the presheaf over the open set U . A section over X is called a global section and the
maps ρ

UV
are referred to as the restriction maps. We sometimes also use the notation

Γ(U,F) or Γ(U) for the sections over U and s|V for the image ρ
UV

(s) if s ∈ F (U).
Examples 1.3.3. 1) Let X be a topological space. The functor

U C0(U,R),

sending an open set U to the set of continuous functions from U to R is a presheaf of
R-algebras on X.
2) Let X be a topological space and let E be a set. The functor U 7→ E is a presheaf
of sets on X called the constant presheaf associated to E.
3) Let X be a topological space. The functor

U

Z if U = X

0 else
,

is a presheaf of rings on X.

Page 5

Chapter 1. Preliminaries

Definition 1.3.4. If F is a presheaf on X and if p is a point of X, we define the stalk
Fp of F at p to be the direct limit of the rings F (U) for all open sets U containing p
via the restriction maps ρ.

An element of Fp is represented by a pair 〈U, s〉 where U is an open neighborhood
of p and s an element of F (U), under the relation: 〈U, s〉 ∼ 〈V, t〉 if and only if there
exist an open neighborhood W ⊆ U ∩ V of p such that s|W = t|W .

Example 1.3.5. If F is the constant presheaf of previous example 2), Fp
∼= E ∀p ∈ X.

Definition 1.3.6. A presheaf F on a topological space X is a sheaf if it satisfies the
following conditions:

i) If U is an open set, if {Vi}i∈I is an open covering of U and if s ∈ F (U) is an
element such that s|Vi

= 0 for all i, then s = 0.

ii) If U is an open set, if {Vi}i∈I is an open covering of U and if we have elements
si ∈ F (Vi) ∀i such that si|Vi∩Vj

= sj|Vj∩Vi
∀i, j ∈ I, then there exists a unique

element s ∈ F (U) such that s|Vi
= si for each i. (Note that condition i) implies

uniqueness of s.)

Examples 1.3.7. 1) The sheaf of continuous real-valued functions on a topological
space.
2) Let X be the real line; then the presheaf

F : U F (U) = {bounded continuous functions on U},

is a presheaf but not a sheaf.

Definition 1.3.8. Let F and G be two presheaves of rings on X. A morphism
ϕ : F → G of presheaves consists of a morphism of rings ϕ(U) : F (U) → G (U) for
each open set U , such that whenever V ⊆ U is an inclusion of open sets, the diagram

F (U) G (U)

F (V) G (V)

ρUV ρ′
UV

ϕ(U)

ϕ(V)

is commutative, where ρ and ρ′ are the restriction maps in F and G , respectively. A
morphism of sheaves is a morphism of presheaves.

Consider now a commutative ring A. The spectrum Spec(A) of A is the set of
all prime ideals of A endowed with the Zariski topology. The closed sets defining the
Zariski topology for Spec(A) are all of the form

V (I) = {p ∈ Spec(A) | I ⊆ p},

Page 6

1.3. Absolute Algebraic Geometry

where I is an ideal of A. For any element f ∈ A, we call the set V (f) = {p ∈
Spec(A) | f ∈ p} a principal closed set and the set D(f) = Spec(A) \ V (f) = {p ∈
Spec(A) | f /∈ p} a principal open set.

We define a sheaf of rings OA on the topological space Spec(A) as follows: for any
open set U ⊆ Spec(A), OA(U) is the set of functions

s : U
∐
p∈U

Ap,

where s(p) ∈ Ap for each p, and such that there exist a neighborhood V of p contained
in U and elements a, f ∈ A for which f /∈ q for every q ∈ V and s(q) = a

f
∈ Aq. The

sheaf OA is called the structure sheaf of Spec(A).

Proposition 1.3.9. Let A be a commutative ring and consider the pair (Spec(A),OA).
Then:

a) For any p ∈ Spec(A), the stalk OA,p of the structure sheaf OA is isomorphic to
the local ring Ap.

b) For any f ∈ A, the ring OA(D(f)) is isomorphic to the localized ring Af .

c) OA(Spec(A)) = A.

We are about to be able to define schemes, by using the two concepts described
above: the spectrum of a ring and a sheaf of rings on a topological space.

Let R and S be two local rings, we define a local homomorphism of local rings to
be a ring homomorphism ϕ : R→ S such that ϕ(mR) ⊂ mS.

Definition 1.3.10. A ringed space is a pair (X,OX) consisting of a topological space and
a sheaf of rings OX on X. A morphism of ringed spaces from (X,OX) to (Y,OY) is a pair
(f, f#) consisting of a continuous map f : X → Y and a morphism f# : OY → f∗OX

of sheaves of rings on Y , where f∗OX is the direct image sheaf on Y defined by
f∗OX(U) = OX(f−1(U)) for any open set U ⊆ Y .

A locally ringed space is a ringed space (X,OX) in which for each point p ∈ X, the
stalk OX,p is a local ring. A morphism of locally ringed spaces is a morphism of ringed
spaces such that for every p ∈ X, the induced map on the stalks f#

p : OY,f(p) → OX,p is
a local homomorphism of local rings.

Proposition 1.3.11. a) If A is a ring, then (Spec(A),OA) is a locally ringed space.

b) If ϕ : A→ B is a homomorphism of rings, then ϕ induces a natural morphism of
locally ringed spaces

(f, f#) : (Spec(B),OB) (Spec(A),OA).

Page 7

Chapter 1. Preliminaries

c) If A, B are rings, then any morphism of locally ringed spaces from (Spec(B),OB)
to (Spec(A),OA) is induced by a homomorphism of rings ϕ : A→ B.

We can finally arrive at the main objective of this subsection.

Definition 1.3.12. An affine scheme is a locally ringed space (X,OX) which is isomor-
phic (as locally ringed space) to (Spec(A),OA) for some ring A. A scheme is a locally
ringed space (X,OX) in which every point has an open neighborhood U such that the
topological space U together with the restricted sheaf OX |U is an affine scheme.

We call X the underlying topological space of the scheme (X,OX) and OX its
structure sheaf.

We finish this subsection by giving two examples of schemes.

Examples 1.3.13. 1) If k is a field, Spec(k) is an affine scheme whose topological
space is only one point and whose structure sheaf consist of the field k.

2) If k is a field, we define the affine line over k to be Spec(k[X]), which as a set
of points consists of the zero ideal and all maximal ideals bijectively corresponding to
non-constant monic irreducible polynomials in k[X]. In particular, if k is algebraically
closed, there is a bijection between the closed points of Spec(k[X]) and the elements of
k.

1.3.2 Constructible sets
Constructible sets are sets inside schemes that have a particular interest of study.

We will describe here the main properties of such objects.

Definition 1.3.14. Let X be a scheme. A set E is a locally closed set of X if it is the
intersection of an open set and a closed set of the underlying topological space of X.
We say that a set E is a constructible set of X if it is a finite union of locally closed sets.

Example 1.3.15. Projective spaces and affine subspaces of an arbitrary projective
space are constructible sets.

Proposition 1.3.16. Constructible sets are closed under finite unions, finite intersec-
tions and complements.

Proof. This follows immediately by using the properties of union, intersection and
complements of sets. �

Proposition 1.3.17. Let X be a Noetherian scheme and E be a constructible set of
X. Then E can be expressed as a finite disjoint union of locally closed sets.

Proof. Suppose E = U ∩ V is a locally closed set, with U an open set and V a
closed set of X. We can then write

Ec = (U ∩ V)c = U c ∪ V c = U c
∐

(V c ∩ U),

Page 8

1.3. Absolute Algebraic Geometry

and hence, the complement of a locally closed set is a disjoint union of locally closed
sets. We proceed now by induction on the number of components in a union. Suppose
E = ∪ni=1Ai, with Ai locally closed sets. Denote now A = ∪n−1

i=1 Ai and B = An. By
induction, we asssume that A is a finite disjoint union of locally closed sets. Then we
have that

A ∪B = B
∐

(A \B) = B
∐

(A ∩Bc).

By the above reasoning, Bc is a disjoint union of locally closed sets and so is
A ∩Bc. Hence the theorem follows. �

1.3.3 Different versions of schemes over F1

In 2004, Soulé [43] proposed the first definition of what an algebraic variety over
F1 would be. Shortly after that, many different approaches to F1-geometry arose in
the attempt of finding the right definition of schemes “over F1.” In [8] Deitmar made
the first attempt on defining such schemes. In fact, based on the idea stated in [27] by
Kurokawa, Ochiai and Wakayama in which objects over Z have a notion of Z-linearity,
i.e., additivity, and on the idea that the forgetful functor to F1-objects must forget about
that addition, he defined the schemes following the ideas of Kato [24] of mimicking
classical scheme theory but considering the category of commutative monoids instead
of rings. In the next section you can find a full description of this type of schemes.

After Deitmar’s definition and due to the basic construction that considers ab-
solutely no addition on the structure, other scheme approaches appeared to extend
the notion of Deitmar schemes and allowed some more complex base extensions of the
objects to Z-schemes. However, it is believed that any “good” scheme theory over F1
should contain Deitmar’s schemes in one way or another.

In [5] Connes and Consani merged the ideas of Soulé’s varieties and Deitmar’s
schemes into a more subtle scheme theory. They define a scheme, called CC-scheme,
to be a triple (X̃,X, evX) where X̃ is a monoidal scheme (with a zero element), X
is a Z-scheme and evX : X̃Z → X is a certain well-behaved morphism of schemes.
In fact, the base extension of (X̃,X, evX) to Z is X. Other different approaches for
defining schemes over F1 were developed by Toën and Vaquié, by Borger (λ-schemes),
by Lorscheid (blueprints) or by Deitmar (congruence schemes). Despite all the different
attempts to define the same geometric structure over the field with one element, all
theories are not completely independent from each other. One can find in [29] a brief
introduction on some of the aformentioned schemes and in figure 1.1 (taking from [29]),
one can see a diagram that relates the different schemes theories.

We will define in the next section Deitmar’s first version of F1-schemes, which is
based on monoids, and two important generalizations of them: congruence schemes
and blueprints. The latter two categories of schemes are generalizations of schemes
that include both the category of monoidal schemes and the one of classical schemes

Page 9

Chapter 1. Preliminaries

Figure 1.1: In this diagram M0-schemes stands for Deitmar schemes, CC-schemes are the
Connes-Consani schemes and S-varieties are Soulé varieties.

(defined over commutative rings). Both schemes defined by Deitmar (monoidal and
congruence schemes) play an essential role for the purpose of this work.

1.4 Monoidal schemes
As we mentioned in the previous subsection, the schemes defined by Anton

Deitmar in [8] are based on the idea that commutative monoids are the F1-versions of
commutative rings over “real fields.” Recall that a monoid A is a set with an associative
multiplication that has a unit, and that we consider monoids also to have an absorbing
element 0.

We will give a full description of these monoidal schemes including some properties
and theorems regarding their construction. More details on the definition as well as the
proofs of all results can be found in [8]. For the rest of the thesis, a monoid will always
mean a commutative monoid with an absorbing element.

Localization on monoids

Let A be a monoid, let A× denote the group of invertible elements of A and let S
be a submonoid of A. Define the localization of A by S, denoted by S−1A, to be the
set A× S modulo the equivalence relation

(m, s) ∼ (m′, s′)⇔ ∃s′′ ∈ S such that s′′s′m = s′′sm′,

Page 10

1.4. Monoidal schemes

where the multiplication is given by (m, s)(m′, s′) = (mm′, ss′). We also write m
s
for

the class of the element (m, s).

Spectrum of a monoid and the structure sheaf

For the definition of a scheme over a commutative ring we endow the set of prime
ideals of a ring with the Zariski topology. We do a similar construction for monoids.

Definition 1.4.1. Let A be a monoid. An ideal is a subset I of A such that IA ⊆ I.
An ideal p 6= A is called prime if xy ∈ p implies that x ∈ p or y ∈ p. Equivalently, an
ideal p is prime if and only if A \ p is a submonoid.

Remark 1.4.2. As in the case of rings, if p is a prime ideal of A, then we denote by
Ap the localization of A by the submonoid Sp = A \ p and we call it the localization of
A at p.

Definition 1.4.3. Let A be a monoid. We say that A is integral if for any element
a 6= 0, ab = ac implies b = c.

Definition 1.4.4. Let M be a monoid and I and ideal of M. We define the monoidal
quotient M/I to be the set {[m] | m ∈M}/([m] = [0] if m ∈ I).

Definition 1.4.5. Let A be a monoid. We define the spectrum Spec(A) of A to be the
set of all prime ideals. We endow this set with the topology whose closed subsets are
the empty set and all sets of the form

V (I) = {p ∈ Spec(A) | I ⊆ p}.

We call this topology the Zariski topology for Spec(A).

To define a scheme there is only one thing left to define, namely the concept of a
structure sheaf for Spec(A) in the case of monoids. As a consequence of the analogy of
all the previous definitions with the ring case, one can define the structure sheaf OA of
Spec(A) in a similar way. For any open set U ⊆ Spec(A), OA(U) is the set of functions

s : U
∐
p∈U

Ap,

such that s(p) ∈ Ap for each p, and such that there exist a neighborhood V of p contained
in U and elements a, f ∈ A for which f /∈ q for every q ∈ V and s(q) = a

f
∈ Aq.

Proposition 1.4.6. a) For each p ∈ Spec(A) the stalk OA,p of the structure sheaf
is isomorphic to the localization Ap.

b) OA(Spec(A)) ∼= A.

Page 11

Chapter 1. Preliminaries

Monoidal spaces

A morphism ϕ : A→ B of monoids is a multiplicative map that preserves the unit
and the zero element. We say that a morphism of monoids is local if ϕ−1(B×) = A×.

A monoidal space is a pair (X,OX) consisting of a topological space X and a
sheaf OX of monoids. A morphism of monoidal spaces from (X,OX) to (Y,OY) is a
pair (f, f#) with f : X → Y a continuous function and f# : OY → f∗OX a morphism
of sheaves, where f∗OX is defined as in definition 1.3.10. The morphism is local if for
each x ∈ X, the induced morphism f#

x : OY,f(x) → f∗OX,x is local.

Proposition 1.4.7. a) For an F1-ring A the pair (Spec(A),OA) is a monoidal space.

b) If ϕ : A→ B is a morphism of monoids, then ϕ induces a morphism of monoidal
spaces

(f, f#) : (Spec(B),OB) (Spec(A),OA),

thus giving a functorial bijection

Hom(A,B) ∼= Hom(Spec(B), Spec(A)),

where on the right-hand side one only admits local morphisms.

Deitmar’s F1-schemes

An affine scheme over F1 is a monoidal space which is isomorphic to Spec(A),
for some monoid A. A monoidal space (X,OX) is a scheme over F1 if for every point
x ∈ X there is an open neighborhood U ⊂ X such that (U,OX |U) is an affine scheme
over F1. A morphism of schemes over F1 is a local morphism of monoidal spaces.

For the rest of this work, we will call such schemes Deitmar schemes. One of
the most important types of schemes for the purpose of this work are the “schemes
of finite type.” Let X be a scheme over F1; we say that X is of finite type if it has a
finite covering by affine Deitmar schemes Ui = Spec(Ai) such that each Ai is finitely
generated. The same definition happens in the case of schemes over a commutative
ring, with the only difference that each Ai is finitely generated as algebra over the ring.

In fact, Deitmar proved in [9] the following result:
Proposition 1.4.8. X is of finite type over F1 if and only if X ⊗F1 Z is a scheme of
finite type over Z. (See subsection 2.4.1 for the definition of X ⊗F1 Z.)

We mentioned in the beginning of the previous section that schemes are a gene-
ralization of varieties. We will therefore finish the study of monoidal schemes by
constructing the affine spaces and projective spaces in the sense of scheme theory
over the field with one element. (A similar construction carries over to schemes over
commutative rings.)

Page 12

1.4. Monoidal schemes

Affine spaces

Define the polynomial ring on n variables X1, . . . , Xn over F1 to be

F1[X1, . . . , Xn] := {0} ∪ {Xu1
1 . . . Xun

n | uj ∈ N}, (1.4)

that is, the union of {0} and the (free abelian) monoid generated by the Xj.

Let A = F1[X1, . . . , Xn]. Denote Spec(F1[X1, . . . , Xn]) by An
F1 and call it the

n-dimensional affine space over F1. The non-zero prime ideals of A are of the form
pI = ⋃

i∈I(Xi), where I is a subset of {1, . . . , n} and (Xi) = XiA = {Xia | a ∈ A}.

In the case of n = 0, we call the Deitmar scheme Spec(F1) the absolute point. The
spectrum of F1 consists of precisely one point, namely, the unique prime ideal {0}. In
addition, the Spec(F1) is a terminal object in the category of Deitmar schemes.

Proj-schemes and the Proj-construction

The Proj-construction is a way of defining a more general object than projective
varieties, called “projective scheme.” In [7, section 7] and [30, section 2] the authors
introduced the Proj-construction for both graded monoids and blueprints, respectively.
For graded monoids, the Proj-construction was independently found by Thas in [44].
We will describe the procedure for Deitmar schemes here.

Consider the F1-polynomial ring F1[X0, X1, . . . , Xm], where m ∈ N. Since any
polynomial is homogeneous in this ring, we have a natural grading

F1[X0, . . . , Xm] =
⊕
i≥0

Ri =
∐
i≥0

Ri,

where Ri consists of the elements of F1[X0, X1, . . . , Xm] of total degree i, for i ∈ N. The
irrelevant ideal is the ideal defined as

Irr = {0} ∪
∐
i≥1

Ri.

(It is just the monoid minus the element 1.) Define Proj(F1[X]) := Proj(F1[X0, . . . ,
Xm]) to be the set consisting of the prime ideals of F1[X0, X1, . . . , Xm] which do not
contain the irrelevant ideal Irr (so only Irr is left out of the complete set of prime ideals).
We can endow this set with a Zariski topology whose closed sets are defined as usual:
for any ideal I of F1[X0, X1, . . . , Xm], we define

V (I) := {p | p ∈ Proj(F1[X]), I ⊆ p},

where V (I) = ∅ if I = Irr and V ({0}) = Proj(F1(X)). Its open sets are then of the
form

D(I) := {p | p ∈ Proj(F1[X)], I 6⊆ p}.

Page 13

Chapter 1. Preliminaries

It is obvious that Proj(F1[X]) is a Deitmar scheme in a natural way. Each ideal
(Xi) defines an open set D((Xi)) such that the restriction of the scheme Proj(F1[X])
to this set is isomorphic to Spec(F1[X(i)]), where X(i) is X0, X1, . . . , Xm with Xi left
out. Indeed, every prime ideal of Spec(F1[X(i)]) does not contain the irrelevant ideal
nor the ideal (Xi) and any ideal of the set D(Xi) is of the form ⋃

0≤j≤m(Xj) with j 6= i,
so it belongs to Spec(F1[X(i)]).

We define the scheme Proj(F1[X0, . . . , Xm]) to be the projective m-space over F1.

Remark 1.4.9. Notice that there is an immediate analogy with projective spaces as
we know them in Projective Geometry, since when one considers an m-dimensional
projective space defined over a field k and restrict it to the set of points where the
coordinate Xi 6= 0, then one gets a space isomorphic to an m-dimensional affine space.

More generally, suppose M is any commutative unital monoid (with 0) with a
grading

M =
∐
i≥0

Mi,

where the Mi are the sets with elements of total degree i (for i ∈ N), and let, as above,
the irrelevant ideal be Irr = {0} ∪ ∐i≥1Mi. Define the topology Proj(M) as before
(noting that homogeneous (prime) ideals are the same as ordinary monoidal (prime)
ideals here). For an open U , define OM(U) as consisting of all functions

f : U −→
∐
p∈U

M(p),

where M(p) is the subset of Mp of fractions of elements with the same degree, for which
f(p) ∈M(p) for each p ∈ U , and such that there exists a neighborhood V of p in U , and
elements u, v ∈M , for which v 6∈ q for every q ∈ V , and f(q) = u

v
in M(q).

In this way we obtain a sheaf of F1-rings on Proj(M) making it a Deitmar scheme.

Remark 1.4.10. The same construction can be done for any graded ring. For instance,
if we consider the polynomial ring k[X0, . . . , Xm] over a field k, one defines the projective
space of dimension m as the scheme Proj(k[X0, . . . , Xm]) and the affine space of
dimension m as the scheme Spec(k[X1, . . . , Xm]).

Remark 1.4.11. Notice that for the schemes defined with a Proj-construction, we
use homogeneous prime ideals and the points have, as a consequence, homogeneous
coordinates (in an analogy with the classical projective varieties). Recall that a point
having homogeneous coordinates with respect to a basis means that if we multiply the
coordinates by a non-zero scalar, the resulting coordinates then represent the same
point.

Page 14

1.4. Monoidal schemes

Toric varieties

One of the most important results in the theory of Deitmar schemes is the one
proved by Deitmar in [10] that relates certain schemes over F1 with toric varieties.

Definition 1.4.12. A (complex) torus is an affine variety isomorphic to (C∗)n for some
n.

In fact, (C∗)n ' Cn \ V (x1x2 · · ·xn). It is an affine variety whose coordinate ring
is C[X±1 , . . . , X±n].

Example 1.4.13. Let V = V (x2 − y) ⊂ C2, and consider Vxy = V ∩ (C∗)2. Since
Vxy is the graph of the map C∗ → C given by t → t2, the morphism C∗ → Vxy given
by t → (t, t2) is indeed bijective, and this isomorphism gives Vxy the action of C∗ by
(a, a2) · (b, b2) = (ab, (ab)2).

Definition 1.4.14. A toric variety X over C is an irreducible variety such that for
some n ∈ N \ {0}

(1) (C∗)n is a Zariski open subset of X, and

(2) the action of (C∗)n on itself extends to an action of (C∗)n on X.

Examples 1.4.15. 1) (C∗)n and Cn are clearly toric varieties.

2) PnC is a toric variety. The map

ϕ : (C∗)n PnC

(t1, . . . , tn) (1, t1, . . . , tn),

identifies (C∗)n as an open subset of PnC.

The theorem proved by Deitmar relating toric varieties with schemes over F1 is
the following:

Theorem 1.4.16 ([10]). Let X be a connected integral F1-scheme (defined as expected,
cf. [10]) of finite type. Then every irreducible component of XC is a toric variety. The
components of XC are mutually isomorphic as toric varieties.

On the other hand, since toric varieties can be constructed from lattices (see
[17, chapter 1]) it follows that every toric variety is a lift XC of an F1-scheme (see [24,
section 9] for a combinatorial description of the category of toric varieties in terms of
monoids). Hence, integral F1-schemes of finite type are essentially toric varieties.

Page 15

Chapter 1. Preliminaries

1.4.1 F1-Constructible sets
In an analogous way as in subsection 1.3.2, one can define constructible sets for

Deitmar schemes.

Definition 1.4.17. Let X be a Deitmar scheme. We say that a subset E of X is locally
closed if it is the intersection of an open set and a closed set of X. We say that E is a
Deitmar constructible set or F1-constructible set if it is the finite union of locally closed
sets.

Affine spaces and projective spaces over F1 are Deitmar constructible sets. Notice
as well that the propositions mentioned in subsection 1.3.2 are also satisfied by Deitmar
constructible sets.

1.4.2 Congruence schemes
A new category of schemes called congruence schemes was introduced by Deitmar

in [11]. This category contains both the category of monoidal schemes, or schemes over
F1, and the category of Grothendieck schemes (or schemes over commutative rings). The
definition of congruence schemes, as in the previous versions of F1-schemes, follows also
a similar guideline as the one of classical schemes, but using the category of sesquiads.
We refer to [11] for more details about congruence schemes.

Definition 1.4.18. An addition or a +-structure on a monoidA is a family (Dk,
∑
k)k∈Zn ,

whereDk ⊂ An, n ≥ 2 and∑k : Dk → A is a map such that there exists an injective mor-
phism ϕ : A ↪→ R to the multiplicative monoid of a ring R which satisfies ϕ(0) = 0 and
ϕ(∑k(a)) = ∑n

j=1 kjϕ(aj) for every a = (a1 . . . , an) ∈ Dk, with k = (k1, . . . , kn) ∈ Zn.
We further insist that Dk is maximal in the sense

Dk =
{
a ∈ An |

n∑
j=1

kjϕ(aj) ∈ Im(ϕ)
}
.

This implies that the addition is associative and distributive when defined and respects
zero, i.e., a + 0 = a holds for every a ∈ A. It further implies that the addition is
cancellative.

Definition 1.4.19. A sesquiad is a monoid A together with an addition (D,∑). By a
sesquiad morphism ϕ we mean a morphism of monoids A→ B such that ϕ(∑k(a)) =∑

k(ϕ(a)) for all k ∈ Zn, a ∈ Dk.

Remark 1.4.20. A ring is a sesquiad and a monoid endowed with a trivial addition,
where one can only add zero to any element, is also a sesquiad. Besides, every monoid
morphism becomes a sesquiad morphism with the trivial addition. Hence, the category
of sesquiads contains the category of rings and monoids as full subcategories.

In previous constructions, we use the set of prime ideals of a ring or a monoid to
construct a topological space so that we could define a scheme. In the sense of congruence

Page 16

1.4. Monoidal schemes

schemes, one does not use ideals but “congruences” on sesquiads. A congruence on a
sesquiad A is an equivalence relation C ⊆ A×A such that there is a sesquiad structure
on A/C making the projection A → A/C a morphism of sesquiads. This condition
implies that x ∼C y ⇒ xz ∼C yz for all x, y, z ∈ A and x+ z ∼C y+ z if x+ z is defined.
We use the notation x ∼C y to denote that x and y are equivalent with respect to the
congruence C.

We say that a sesquiad is integral if 1 6= 0 and

af = bf ⇒ (a = b or f = 0).

If A/C is integral, the congruence C is called prime. This is equivalent to saying that
1 6∼C 0 and

(af, bf) ∈ C⇔ (a, b) ∈ C or (f, 0) ∈ C.

Deitmar proved in [11] that every congruence C 6= A× A is contained in a prime
congruence. This allows to define the Specc(A) as the set of all prime congruences on
the sesquiad A with the topology generated by all sets of the form

D(a, b) = {C ∈ Specc(A) | (a, b) /∈ C}, a, b ∈ A.

In a similar way as for monoids, one can define a structure sheaf OA of sesquiads
for a given Specc(A), with A a sesquiad. A sesquiaded space is then a topological
space X together with a sheaf OX of sesquiads and a morphism of sesquiaded spaces
(X,Ox) → (Y,Oy) is a pair (f, f#), where f : X → Y is a continuous map and
f# : OY → f∗OX is a morphism of sheaves on Y . Such a morphism (f, f#) is called
local if for each x ∈ X, the induced morphism f#

x : OY,f(x) → f∗OX,x is local, i.e.,
satisfies

(f#)−1 : (O×X,x) = O×Y,f(x).

We saw in Propositions 1.3.11 and 1.4.7 that there is a functorial bijection between
the morphisms of locally ringed spaces (local morphisms of monoidal spaces, respectively)
and morphisms of rings (monoids, respectively). However, this relation is not bijective
in the case of sesquiaded spaces.

Theorem 1.4.21 ([11]). a) Let A be a sesquiad and let OA be its structure sheaf.
Then the pair (Specc(A),OA) is a sesquiaded space.

b) Let A,B be sesquiads. If ϕ : A→ B is a morphism of sesquiads, then ϕ induces
a local morphism of sesquiaded spaces

(f, f#) : (Specc(B),OB) (Specc(A),OA),

thus giving a functorial map

Page 17

Chapter 1. Preliminaries

L : Hom(A,B) Hom(Specc(B), Specc(A)),

where on the right-hand side one only admits local morphisms.

The main reason why the latter map L is not bijective lies in the fact that for a
given sesquiad A, the global sections OA(Specc(A)) contain A as a subsesquiad ([11])
while in the case of rings or monoids this containment is indeed an equality. We can
now proceed to define the concept of a “congruence scheme.”

Definition 1.4.22. An affine congruence scheme is a sesquiaded space that is of the
form (Specc(A),OA), for A a sesquiad and OA its corresponding structure sheaf. A
congruence scheme is a sesquiaded space X which locally looks like an affine congruence
scheme.

The Projc-construction

Consider the monoid F1[X0, X1, . . . , Xm], where m ∈ N and see it as a sesquiad
together with the trivial addition. Since any polynomial is homogeneous in this sesquiad,
we have a natural grading

F1[X0, . . . , Xm] =
⊕
i≥0

Ri =
∐
i≥0

Ri,

where Ri consists of the elements of F1[X0, . . . , Xm] of total degree i, for i ∈ N. We
define the irrelevant congruence as

Irrc = 〈X0 ∼ 0, . . . , Xm ∼ 0〉.

Now we can proceed with the usual Proj-construction of projective schemes.
We define Projc(F1[X0, . . . , Xm]) as the set of prime congruences of the sesquiad
F1[X0, . . . , Xm] which do not contain Irrc. The closed sets of the topology on this set
are defined as usual: for any (a, b) pair of elements of F1[X0, . . . , Xm], we define

V (a, b) := {C | C ∈ Projc(F1[X0, . . . , Xm]), a ∼C b},

and these sets form a basis for the closed set topology. Defining the structure sheaf as
in [11], one obtains that Projc(F1[X0, . . . , Xm]) is a projective congruence scheme. Its
closed points naturally correspond to the F2-rational points of the projective space PmF2

(but the latter has a finer subspace structure, and also a different algebraic structure).

1.4.3 The multiplicative group Gm

Let G be the abelian group defined on one generator X and put A = F1[G] :=
{0} ∪ G. Then A := F1[X,X−1]. Consider k a field (or Z); then we define the

Page 18

1.4. Monoidal schemes

multiplicative group Gm over the field k as Spec(k[X,X−1]) (or Spec(Z[X,X−1]) over
Z).

In the case of F1, and seeing A as a monoid, we define the multiplicative group
over F1 as the Deitmar affine scheme Spec(A) = Spec(F1[X,X−1]). Finally, if we
consider A as a sesquiad with an addition structure, then one defines the “congruence”
multiplicative group as the congruence affine scheme Specc(A).

1.4.4 Blueprints
Another remarkable scheme theory over the field with one element was introduced

by Lorscheid. He develops the theory of blueprints and blue schemes in [33], [32], [30]
(with López Peña) as well as in [34] and [31]. We will follow his review in [35] to define
blue schemes.

Definition 1.4.23. A blueprint B is a monoid with zero A together with a pre-addition
R, i.e., R is an equivalence relation on the semiring

N[A] = {
∑

ai | ai ∈ A}

of finite formal sums of elements of A that satisfies the following axioms (where we
write ∑ ai ≡

∑
bj) whenever (∑ ai,

∑
bj ∈ R):

1) The relation R is additive and multiplicative, namely if ∑ ai ≡
∑
bj and

∑
ck ≡∑

dl, then
∑
ai +∑

ck ≡
∑
bj +∑

dl and
∑
aick ≡

∑
bjdl.

2) The absorbing element 0 of A is in relation with the zero of N[A], i.e., 0 ≡
(empty sum).

3) If a ≡ b, then a = b (as elements in A).

A morphism of blueprints f : B1 → B2 is a multiplicative map f : A1 → A2
between the underlying monoids of B1 and B2 with f(0) = 0 and f(1) = 1 such that
for every relation ∑ ai ≡

∑
bj in the pre-addition R1 of B1, the pre-addition R2 of B2

contains the relation ∑
f(ai) ≡

∑
f(bj).

Let Blpr be the category of blueprints.

The concept of blueprints generalizes both rings and monoids. Indeed, there
are full embeddings from the category of monoids and the category of rings into the
category Blpr of blueprints. The definition of a blue scheme follows the same guideline
as schemes defined over commutative rings.

Page 19

Chapter 1. Preliminaries

Definition 1.4.24. A blueprinted space is a topological space X together with a sheaf
OX in Blpr. A morphism of blueprinted spaces is a continuous map together with a
sheaf morphism that induces morphisms between the stalks OX,x at points x ∈ X. A
locally blueprinted space is a blueprinted space whose stalks OX,x are local blueprints and
a local morphism between locally blueprinted spaces is a morphism of blueprinted spaces
that induces local morphisms of blueprints between all stalks, where local blueprints
and local morphisms are defined in the usual way.

The spectrum of a blueprint B is defined analogously as in the case of rings. We
denote it by Spec(B) and it is a locally blueprinted space. A blue scheme is a locally
blueprinted space that is locally isomorphic to the spectra of blueprints. For more
details and examples, see [33].

Since the definition of a blue scheme is formally the same as the definition of a
usual scheme, the full embedding of the category of rings (monoids) into the category
of blueprints defines as well a full embedding of the category of schemes over rings
(Deitmar schemes) into the category of blue schemes, which implies that blue schemes
are a generalization of both monoidal and usual schemes.

Page 20

2 The Functor Fk

In this chapter we will study the relation between Combinatorics and Algebraic
Geometry over the field with one element through the definition of a functor F. We
will take this relation a step further and extend it to scheme theory over any finite field
and over Z using base extensions of F1.

2.1 Combinatorial realization of F1

Let us recall the construction of a projective space over F1 done in chapter 1.
After considering the limit of PG(n, q) when q → 1, the axioms for a projective space
over F1 are as follows:

• Two different points are in exactly one line.

• Each line has exactly 2 points.

• Veblen’s axiom — F1-version. Empty.

We also saw in chapter 1 that the total number of points for an n-dimensional
projective space PG(n, 1) over F1 is n+ 1 and that its combinatorial representation is
the complete graph on n+ 1 vertices, Kn+1.

Let us consider now, for instance PG(4, 1); then its combinatorial representation
will be the graph K5:

Page 21

Chapter 2. The Functor Fk

But, if we consider the decomposition of PG(4, 1) as it would happen over finite
fields, one could write

PG(4, 1) = AG(4, 1)
∐

PG(3, 1) (2.1)

and, again, PG(3, 1) would be represented by the complete graph K4. Hence, in terms
of graphs, this decomposition could be depicted as

where the blue part corresponds to the combinatorial representation of an affine space
of dimension 4 over F1. Nevertheless, this combinatorial object is not a graph since no
edges have two vertices, so if we want to express affine spaces over F1 in a combinatorial
way, we need to introduce a new category of combinatorial objects that includes such
an object.

Besides, considering the Algebraic Geometry side of F1 and the language of
schemes, one easily sees that there is a relation between complete graphs and schemes
of the form Proj(F1[X0, . . . , Xm]), and between a new object and affine schemes of the
form Spec(F1[X1, , . . . , Xm]).

The motivation of exploring this relation and extending it to a larger category of
schemes or related objects leads us to the definition of a functor between the category
of generalized versions of graphs (that we will call loose graphs) and the category of
constructible sets over F1 “in the sense of Deitmar.”

2.2 Loose graphs and the functor S

We have seen in the previous section that there is a combinatorial correspondence
between the projective and affine spaces over F1 and some objects that we previously
called loose graphs. In [45], the author introduces a functor S that associates a Deitmar
scheme over F1 to any loose graph. Generalizing this correspondence is one of the main
motivations for the work in this PhD. We will start by introducing the category of loose
graphs before describing how the functor S works.

2.2.1 Loose graphs
A loose graph is a combinatorial object that generalizes the notion of a graph.

Page 22

2.2. Loose graphs and the functor S

Definition 2.2.1. A loose graph Γ is a point-line geometry Γ = (V,E, I), where V is a
set of vertices, E is a set of edges and I is a symmetric relation on V ∪E, disjoint from
V × V and E × E, which indicates when a vertex and an edge are incident, with the
property that each edge is incident with at most two distinct vertices. We call the edges
having less than two vertices loose edges and the edges with two vertices proper edges.

As a matter of convenience, we will assume that for any loose graph the empty
edge, denoted by e∅, is an element of the edge set that has no incidence relation with
any vertex and which is different from the loose graph consisting of one edge with no
incident vertices. For examples of loose graphs, see figure 2.1.

Figure 2.1: Different examples of loose graphs.

Definition 2.2.2. Let Γ be a loose graph. We call the minimal graph of Γ, and we
denote it by Γ, to be the minimal graph containing Γ as a loose subgraph, i.e., the
graph obtained by adding extra vertices to every loose edge different from the empty
edge so as to obtain proper edges (see an example in figure 2.2). The reduced graph of
Γ, denoted as Γ̃, is the subgraph of Γ obtained after deleting all loose edges.

n-times

Figure 2.2: A loose graph Γ, its minimal graph Γ and its reduced graph Γ̃.

Remark 2.2.3. Notice that the definition of loose graphs relaxes the definition of
graphs, in that an edge can now also have one, or even no, point(s). In fact, the category
of graphs can be embedded in the category of loose graphs by adding the empty edge
to the set of edges for each graph. We say that a loose graph is connected if its minimal
graph is connected. For the purpose of this work we do not allow loops, the geometry
is always undirected and we consider connected and simple loose graphs.

Page 23

Chapter 2. The Functor Fk

Definition 2.2.4. Let Γ = (V,E, I) be a loose graph. A loose subgraph of Γ is a loose
graph Γ′ = (V ′, E ′, I′), where V ′ ⊆ V and E ′ ⊆ E with the property that if a vertex
v ∈ V ′ and an edge e ∈ E ′ are incident in Γ, they are also incident in Γ′. We say that a
loose subgraph Γ′ of Γ is proper (or that the inclusion Γ′ ⊂ Γ is strict) if there exists at
least one edge or vertex of Γ that is not in Γ′.

Definition 2.2.5. Let Γ1 = (V1, E1, I1) and Γ2 = (V2, E2, I2) be two loose graphs. We
say that a map f : Γ1 → Γ2 is a morphism of loose graphs from Γ1 to Γ2 if:

i) f sends vertices to vertices and edges to edges, i.e., f |V1 : V1 → V2 and f |E1 :
E1 → E2.

ii) f(e1,∅) = e2,∅.

iii) If e ∈ E is a proper edge, f(e) = e2,∅ if and only if the two vertices incident with
e in Γ1 have the same image by f .

iv) If a vertex v ∈ V1 is incident with an edge e ∈ E1, then f(v) and f(e) are also
incident if f(e) 6= e2,∅.

A morphism f : Γ1 → Γ2 of loose graphs is an isomorphism of loose graphs if

a) f is bijective in both the set of vertices and the set of edges.

b) A vertex v is incident with an edge e in Γ1 if and only if f(v) is incident with f(e)
in Γ2.

This definition implies that f is also bijective in the set of loose edges and in the set of
proper edges. An automorphism of a loose graph Γ is then an isomorphism from Γ to
itself.

Example 2.2.6. Morphisms of loose graphs

1. If we consider the two loose graphs of figure 2.3, the morphism ι sending the
vertex v to w and each loose edge to a proper edge is a morphism of loose graphs.
We will call ι an inclusion morphism of loose graphs, since the graph on the left
is a loose subgraph of the one on the right.

v
ι

w

Figure 2.3: Inclusion morphism of loose graphs

Page 24

2.2. Loose graphs and the functor S

x g y z

Figure 2.4: Morphism of graph

2. A morphism of graphs is also a morphism of loose graphs. Suppose we have the
graph on 3 vertices: 1 of degree 2, called x, and the other two of degree 1; and
the complete graph K2 on two vertices called y and z (see figure 2.4). Then the
morphism g sending x to y and the other two vertices to z is also a morphism of
loose graphs.

3. Contractions are allowed. For instance, the morphism h (figure 2.5) sending the
two vertices of the complete graph K2 to the vertex of K1 is a morphism of loose
graphs. In this case, h sends the edge of K2 to the empty edge of K1.

h

Figure 2.5: Contraction of loose graphs

Proposition 2.2.7. Morphisms of loose graphs are stable under compositions.

Proof. Let Γ1, Γ2 and Γ3 be three loose graphs and consider two morphisms
f : Γ1 → Γ2 and g : Γ2 → Γ3 of loose graphs. It is easy to check that the loose graph
morphism g ◦ f satisfies the conditions i), ii) and iv) from definition 2.2.5. We will
prove that it also satisfies iii).

Suppose that there is a proper edge e of Γ1 incident with vertices v1 and v2 such
that g(f(e)) = e3,∅. Then, there are two possibilities:

• f(e) = e2,∅ and then, since f is a morphism of loose graphs, f(v1) = f(v2). So,
g(f(v1)) = g(f(v2)).

• f(e) 6= e2,∅. In this case, using condition iii) in g, the two vertices incident with
f(e) in Γ2 have the same image by g. It is easy to check that the vertices incident
with f(e) are indeed f(v1) and f(v2), so g(f(v1)) = g(f(v2)).

Let us now prove the other direction. Suppose g(f(v1)) = g(f(v2)); then we have
again two possibilities:

• f(v1) = f(v2), in which case f(e) = e2,∅ and then g(f(e)) = e3,∅.

• f(v1) 6= f(v2). But then, we have that f(e) is a proper edge of Γ2 and the incident
vertices have the same image by g, so g(f(e)) = e3,∅. �

Page 25

Chapter 2. The Functor Fk

We define the category of loose graphs, denoted as LGraph, to be the category
whose objects are loose graphs and whose morphisms are morphisms of loose graphs. A
very important object in this category is the loose star.

Definition 2.2.8 (Loose star). A loose star Sn is a loose graph consisting of a single
vertex together with n edges incident with it. If Γ is a loose graph and v a vertex of Γ,
we will denote by Sv the loose star formed by v and all the edges of Γ incident with it.
See figure 2.2 for an example of a loose star.

One of the main theorems that allows the definition of both the functor S and its
new version F is the embedding theorem (see [45] for more details).

Theorem 2.2.9 (Embedding theorem). Let Γ be a loose graph and Γ its minimal graph.
Then Γ can be seen as a loose subgraph of the combinatorial projective-space Pc(Γ), i.e,
the projective F1-space defined by the complete graph on the set of vertices of Γ.

In the next sections we will use the notation P(Γ) for the projective space, as
scheme, associated to Pc(Γ). As a quick remark, remember that P(Γ) is the projective
scheme Proj(F1[Xi]i∈V), where V = {0, . . . ,m} and m+ 1 is the number of vertices of
Γ.

2.2.2 The functor S

Let us describe how the functor S works. The reader can find more details about
it in [45]. Let Γ be a not necessarily finite graph, consider P = Pc(Γ) and note that,
since Γ is a graph, P \ Γ is just a set S of edges. Let µ be arbitrary in S, and let z be
one of the two (closed) points on µ in P(Γ) = Proj(F1[Xi]i∈V)). Suppose that in the
projective space P(Γ), z is defined by the ideal generated by the polynomials

Xi, i ∈ V, i 6= j = j(z). (2.2)

Let P(z) be the complement in P of z; it is a hyperplane defined by Xj = 0
(and it forms a complete graph on all the points but z). Denote the corresponding
closed subset of Proj(F1[Xi]i∈V) by C(z). Let z′ 6= z be the other point of the edge µ
corresponding to the index j′ = j(z′) ∈ V . Define the subset P(z′) = P \ {z′} of V ,
and denote the corresponding closed subset by C(z′). Finally, define

C(µ) = C(z) ∪ C(z′). (2.3)

It is also closed in Proj(F1[Xi]i∈V), and the corresponding closed subscheme
is the projective space P(Γ) “without the edge µ;” the projective coordinate ring is
F1[Xi]i∈V /Iµ (where (XjXl) =: Iµ) and its scheme is the Proj-scheme defined by this
ring. Now introduce the closed subset

C(Γ) =
⋂
µ∈S

C(µ). (2.4)

Page 26

2.2. Loose graphs and the functor S

Then C(Γ) defines a closed subscheme S(Γ) which corresponds to the graph Γ.
We have

S(Γ) = Proj(F1[Xi]i∈V /
⋃
µ∈S

Iµ). (2.5)

Remark 2.2.10 (Edges and relations). In this presentation, an edge corresponds to a
relation, and we construct a coordinate ring for S(Γ) by deleting all relations of the
ambient space P(Γ) which are defined by edges in the complement of Γ.

A similar construction can be done for loose graphs, [44].

Some properties of the functor S

In [45], it is shown that certain properties of Deitmar schemes arising from loose
graphs can be easily verified on the loose graphs. We mention some results without the
proofs, which can be found in [45].

The next theorem shows that the automorphism group of projective spaces from
the incidence geometrical point of view, which we denote by Autsynth(.), coincides with
the automorphism group from the point of view of F1-schemes, denoted Autsch(.).

Remark 2.2.11. Remember that at the level of F1-rings, the possible automorphisms
of schemes are the ones given by permutations on the indices i, there are no translations
or any other kind of automorphisms.

Theorem 2.2.12 ([45]). Let Pc be a combinatorial projective space over F1, i.e., a
complete graph Km for some m ∈ N; and let Proj(F1[Xi]i∈V) be the corresponding
projective scheme. Then we have

Autsynth(Pc) ∼= Autsch(Proj(F1[Xi]i∈V)). (2.6)

A similar proof (considering the action on the ideals that correspond to the
“directions” instead of the closed points) leads to the same theorem for affine spaces.

Corollary 2.2.13 ([45]). Each group H is the full automorphism group of some Deitmar
scheme.

Theorem 2.2.14 ([45]). For any element Γ ∈ LGraph, we have that

Autsynth(Γ) ∼= Autsch(S(Γ)). (2.7)

Theorem 2.2.15 ([45]). A loose scheme S(Γ) is connected if and only if the loose
graph Γ is connected.

Page 27

Chapter 2. The Functor Fk

2.3 Modifying the functor S

In this section, we introduce a new map F which, similarly as S, associates Deitmar
schemes and Deitmar constructible sets to loose graphs. As a main feature we want
that the degree of a vertex reflects the local dimension of the constructible set “at a
close point,” i.e., each point will locally look like an affine space of dimension the degree
of the associated vertex. As we can easily notice, this map F differs already from S. It
will have some common properties as well; it will for instance associate a projective
space to a complete graph. A loose edge without vertices will also be associated to
a multiplicative group Gm for both S and F, but S is constructed by deleting several
multiplicative groups from the ambient projective space, so the property described
above is not satisfied by S.

We will first describe some examples to make the idea of F clear enough.

Example 2.3.1. A projective plane without a multiplicative group

x x

y z

Figure 2.6: The inclusion A ↪→ B.

Let B be the complete graph on three vertices minus one edge (see figure 2.6): by
the embedding theorem, it embeds in a combinatorial projective 2-space Pc(B). Call
the vertex of degree two x, and call the others y and z. The graph B contains the loose
graph A, which should correspond to the affine plane Spec(F1[X1, X2]) (x has degree
two). On the level of Deitmar constructible sets what we would like to have is F(B)
to be the projective plane over F1 minus the multiplicative group (since we delete a
projective line minus two points). Besides, we also want that since A ⊂ B is a strict
inclusion of loose graphs, F(A) also is a proper constructible subset of F(B). In fact,
we will introduce this property as one of our axioms to define the modified map:

CV If Γ ⊂ Γ̃ is a strict inclusion of loose graphs, F(Γ) also is a proper constructible
subset of F(Γ̃).

L-D If x is a vertex of degree m ∈ N× in Γ, then there is an affine space of dimension
m containing x and contained in F(Γ).

Let us remark that by “proper constructible subset” in the (COV) property we
mean proper in the set theorical point of view. Now consider an open cover B1, B2, B3
of F(B), where B1 contains y and is defined as the affine line defined by xz without
the point x, B2 contains x and is defined by taking out the closed points y and z, and
B3 contains z and is similarly defined as B1. With the same indices, we obtain affine

Page 28

2.3. Modifying the functor S

schemes Spec(Ai) which in case of i ∈ {1, 3} it corresponds to the absolute line and in
case i = 2 to the affine plane over F1.

As in [45], we also want the following two properties to hold:

C any vertex of a loose graph Γ defines a closed point of F(Γ), and vice versa;

PL any edge of Γ which contains two distinct vertices corresponds to a closed subpro-
jective line of F(Γ).

Both are in fact instances of the following more general property:

CO If Km is a complete subgraph on m vertices in Γ, then F(Km) is a closed subpro-
jective space of dimension m− 1 in F(Γ).

Example 2.3.2. Open and closed sets — Caution!
Let Γ be any finite loose graph, and let L and L′ be two different complete

subgraphs on two vertices. After passing to F(Γ), we obtain different closed projective
lines F(L) and F(L′). Nevertheless the subgraph of Γ defined by the union L ∪ L′ does
not necessarily define a closed subset of F(Γ) (even if it looks rather closed in the loose
graph). In the graph B of the previous example the union defines a proper constructible
set. (We will see the proof of this fact in section 2.4.2.) The reason of this possible
confusion is that although, for instance in the aforementioned example, L ∪ L′ looks
like the union of two projective lines meeting in a point, it is in fact a projective plane
minus a multiplicative group. Unfortunately, we only see this after the scheme has
acquired enough flesh — that is, after a base change to “real” fields, cf. Remark 2.4.5.
It is essentially a corollary of Axiom (COV): the union L ∪ L′ (with L,L′ still meeting
in a point) contains the loose graph of the F1-affine plane, so it must define something
2-dimensional.

On the other hand, if L and L′ would not meet in some loose graph Γ, then the
union does define a closed set (by simply multiplying equations). In general, the same
holds for a finite number of subprojective lines in general position.

Similarly, one has to be careful with finite unions of complete subgraphs. But
finite unions of vertices always define closed sets — we will call this property “FUCP”
for further reference.

2.3.1 The new functor F

In conclusion, the map F must obey the following set of rules:

CV If Γ ⊂ Γ̃ is a strict inclusion of loose graphs, F(Γ) also is a proper constructible
subset of F(Γ̃).

L-D If x is a vertex of degree m ∈ N× in Γ, then there is an affine space of dimension
m containing x and contained in F(Γ).

Page 29

Chapter 2. The Functor Fk

FIN The constructible set F(Γ) equals the union of the affine spaces described in the
previous rule.

CO If Km is a complete subgraph on m vertices in Γ, then F(Km) is a closed subpro-
jective space of dimension m− 1 in F(Γ).

MG An edge without vertices should correspond to a multiplicative group.

There is now a transparent way to define F, as follows:

(F1) For any loose star Sn, F(Sn) is the affine F1-space of dimension n.

(F2) Let Γ be any connected loose graph, and let Γ be its minimal graph. Say that Γ
has m+ 1 vertices. Let P(Γ) be the projective F1-space of dimension m defined
by these vertices; then F(Γ) is the union in P(Γ) of the affine F1-spaces defined
by the stars which are defined by each vertex, without the closed points which
correspond to the vertices which were added to obtain Γ.

Remark 2.3.3. If we choose homogeneous coordinates (in P(Γ)) such that each such
vertex has as coordinates a vector in {0, 1}m+1 with precisely one nonzero entry, F(Γ)
can be described explicitly analytically. The disconnected case is easily derived from
the connected case.

2.3.2 F(Γ) seen as a congruence scheme

Although we defined F as a functor between the categories of loose graphs and
Deitmar constructible sets, some schemes might not be defined correctly in the latter
category. To solve this problem, one can consider the schemes among these constructible
sets inside the category of congruence schemes, since monoids are a full subcategory of
sesquiads (cf. section 1.4.2).

For instance, in the classical scheme theory over a field k, the multiplicative
group Gm is isomorphic to the affine scheme Spec(k[X, Y]/(XY − 1)) which has
k[X, Y]/(XY − 1) as its coordinate ring. As a scheme over F1, seeing that F1-rings
only have one operation, the equation XY − 1 = 0 “only” acquires some meaning if the
schemes are considered in the category of congruence schemes. Hence, we define the
multiplicative group Gm over F1 to be isomorphic to the scheme Spec(F1[X, Y]/(XY ∼
1)).

For the next chapters, all the constructions and proofs regarding the functor F will
be made in the category of Deitmar constructible sets. If needed, the use of congruence
schemes will be explicitly mentioned.

Page 30

2.3. Modifying the functor S

2.3.3 Gluing the affine schemes?
Let Γ be a loose graph and F(Γ) be the Deitmar constructible set associated to

it. By definition of the functor F and the embedding theorem (see Theorem 2.2.9),
for every vertex of Γ we have an affine scheme over F1 defined from the loose star
corresponding to the said vertex. Let us call v1, . . . , vk the vertices of Γ and Spec(Ai)
the affine schemes associated to vi, 1 ≤ i ≤ k. We will now study the intersection of
these affine schemes.

Lemma 2.3.4. For all 1 ≤ r, s,≤ k, Spec(Ar) ∩ Spec(As) 6= ∅ if and only if vr and vs
are adjacent vertices.

Proof. Suppose that vr and vs are adjacent and let e be the edge having these
vertices as end points. Then, e belongs to the loose stars associated to vr and vs and
is used to define their corresponding schemes Spec(Ar) and Spec(As). Thus, due to
the property CV of the functor F, the subscheme defined by e is contained in the
intersection.

The converse is similar. Suppose vr and vs are not adjacent. Then their respective
loose stars do not have any edge in common. But the edges of the loose stars correspond
bijectively to the elements of some bases of the affine schemes Spec(Ar) and Spec(As),
which implies that there are no relations between the bases of both schemes. Thus their
intersection must be empty. �

This lemma implies that the intersections in the constructible set F(Γ) of the
subschemes corresponding to loose stars coming from vertices of Γ are completely
determined by the graph Γ, happening locally on the affine schemes corresponding
to adjacent vertices. Let us now describe how these affine schemes are (not) “glued”
together.

Consider first the case where Γ is a tree and take two adjacent vertices vr and vs in
Γ, with degrees r and s respectively. Let Spec(Ar) and Spec(As) be their corresponding
affine schemes and e the edge joining both vertices. Each of these two schemes is
isomorphic to an affine space (see definition of F in the previous subsection); therefore
we can write Spec(Ar) ' Spec(F1[X1, . . . , Xr]) and Spec(As) ' Spec(F1[Y1, . . . , Ys]).
Since the “gluing” happens only at the level of the two vertices and the common
edge, we can restrict ourselves to the schemes F({vr}, {e}) embedded in Spec(Ar) and
F({vs}, {e}) embedded in Spec(As), both schemes being isomorphic to the affine line
over F1.

Represent by X the scheme F({vr}, {e}) and by Y the scheme F({vs}, {e}). Then,
w.l.o.g. we can assume that X = Spec(F1[X1]) and Y = Spec(F1[Y1]). We denote by U
the open set D(X1) of X and by V the open set D(Y1) of Y . One can easily check that
the intersection X ∩ Y is equal to U as an open set of X and equal to V as an open set
of Y . Hence, to determine the “gluing” of X and Y along their intersection, we only
need to define an appropriate isomorphism between the open sets U and V (such that
the gluing of X and Y gives a projective line).

Page 31

Chapter 2. The Functor Fk

We know that U ' Spec(F1[X1, X
−1
1]) and V ' Spec(F1[Y1, Y

−1
1]) and then, the

isomorphism of F1-rings

F1[X1, X
−1
1] F1[Y1, Y

−1
1]

X1 Y −1
1

X−1
1 Y1

induces an isomorphism ψ of Deitmar schemes between X and Y .
Consider now the loose tree Γ, its minimal tree Γ and P(Γ) the projective space

in which F(Γ) is embedded. Coordinatize P(Γ) such that vertices of Γ correspond
to canonical vectors of P(Γ). This choice of coordinates induces bases on the affine
schemes Spec(Ai) corresponding to the vertices of Γ. Denoting by ι the embedding
of X in Spec(Ar), by ι1 the embedding of U in X and by j, j1 the embeddings of Y
into Spec(As) and V in Y , respectively, we could try to“glue” Spec(Ar) to Spec(As)
according to the following diagram

P(Γ) P(Γ)

Spec(Ar) Spec(As)

Spec(F1[X1]) Spec(F1[Y1])

U V ,
'

ι j

ι1

ι′ j′

j1

where ι′ and j′ are the embeddings given by the coordinatization of P(Γ). The problem
here is that U and V are not necessarily open anymore in Spec(Ar) and Spec(As), so
that at the end one would not end up with a Deitmar scheme. So on the level of trees
(but clearly also in general), gluing the affine spaces to a scheme cannot work. (In fact,
even the example 2.3.1 is not a scheme!) We thank Lieven Le Bruyn for kindly noting
these facts to us.

What we do know is that each F(Γ) is a constructible set in the ambient projective
space. We will show this after having introduced the maps Fk.

Finally, as a direct consequence of Lemma 2.3.4, we deduce a similar result as [45,
Theorem 4.7] for the functor F.

Corollary 2.3.5. Let Γ be a loose graph and F(Γ) its constructible set. Then, F(Γ) is
connected if and only if Γ is connected.

Page 32

2.4. From F to Fk

From this moment on, we will keep calling F (and its liftings Fk to fields k) a
functor, although this will be proved in detail in section 2.5. First, we need to define
Fk, with k a finite field (or Z).

2.4 From F to Fk

As we mentioned in example 2.3.2, studying only the structure of a constructible
set defined over F1 might lead to mistakes that are only seen when one pulls the
structures to “real” fields. Remember that the F1-structure of schemes defined over a
field k is usually interpreted as the skeleton of the field. To have a consistent idea of
the Deitmar constructible sets defined by the functor F, one should also keep track of
the corresponding constructible sets obtained after base extension.

2.4.1 Base extension of Deitmar schemes
Let us consider A to be a ring over F1, i.e., a commutative monoid with an

absorbing element 0, and R to be a ring. We define the base extension of A to R as the
monoidal ring

R[A] = A⊗F1 R =
⊕
a∈A

Ra
/
R0A,

where 0A is the absorbing element of the monoid A. The multiplication structure is
essentially given by the multiplication in A, considering that, by definition, elements of
R commute with elements of A.

Although this construction is possible for any ring R, throughout this thesis, we
will only consider the cases where R is either a finite field k or Z. In the rest of the
section we will assume R = Z and we will point out when extra conditions are needed.

With the definition of base extension, we obtain a functor from the category of
F1-rings to the category of rings over Z

{F1-rings} {Z-rings}

A Z[A]

· ⊗F1 Z

called the base change functor. It is left adjoint to the forgetful functor F , i.e., the
functor sending a commutative ring to its multiplicative monoid (while keeping 0)

{Z-rings} {F1-rings}

R (R,×)

F

Page 33

Chapter 2. The Functor Fk

Theorem 2.4.1 ([8]). The functor of base extension · ⊗F1 Z is left adjoint to F , i.e.,
for every ring R and every F1-ring A, we have

HomZ(A⊗F1 Z, R) ∼= HomF1(A,F (R)).

Proof. Consider a Z-ring homomorphism φ from Z[A] to R and define F (φ) to be
its restriction to the monoid A. This map is injective, since such a ring homomorphism
is uniquely determined by its action on A. Besides, it is also surjective because a
morphism of monoids from A to (R,×) extends uniquely to a ring homomorphism from
Z[A] to R. �

Using the two aforementioned functors, Deitmar explained in [8] how one can
extend schemes over F1 to schemes over Z as well as how one can go in the other
direction and descend schemes to their F1-version. Let us consider first the forgetful
functor F . Using the fact that every scheme over Z can be written as the union of
affine schemes, F “extends” to a functor FSch

{Schemes/Z} {Schemes/F1}

X = ⋃
i∈I Spec(Ai)

⋃
i∈I Spec(Ai,×),

FSch

where F (X) is glued via the gluing maps of X. In the same way, the base change
functor “extends” to the functor

{Schemes/F1} {Schemes/Z}

Y = ⋃
j∈J Spec(Aj)

⋃
j∈J Spec(Aj ⊗F1 Z),

· ⊗F1 Z

where we also use the gluing maps coming from Y . The fact that these constructions
do not depend on the choices of affine coverings follows from Proposition 1.4.7 and the
fact that every scheme is a union of affine schemes.

Definition 2.4.2 (The functor Fk). Let F be the functor defined in subsection 2.3.1
and let k be a finite field (or Z). We define the functor Fk to be the composition of
F with the base change functor, i.e., it is a functor from the category LGraph to the
category of constructible sets over k, CSk, that associates to any loose graph Γ the
constructible set

Fk(Γ) = F(Γ)⊗F1 k =
⋃
v∈Γ

Spec(Av ⊗F1 k),

where Spec(Av) denotes the local F1-affine space associated by F to the vertex v of Γ.
Thus, for every finite field k (or Z), Fk(Γ) is also a union of a finite number of affine
spaces over k.

Corollary 2.4.3. Let Γ be a loose graph. The intersections between the local affine
spaces in F(Γ)⊗F1 k are determined by Γ.

Page 34

2.4. From F to Fk

Proof. This lemma is a direct consequence of Lemma 2.3.4. �

Theorem 2.4.4. For each loose graph Γ and each field k (including F1), Fk(Γ) is a
constructible set in the ambient projective space P(Γ).

Proof. This follows from the fact that each affine space is a constructible set and
finite unions of constructible sets are constructible. �

2.4.2 Equations of some liftings
Describing schemes over k with concrete equations (as in the case of varieties) is

not always easy or even possible. Nevertheless, there are some examples of schemes
coming from loose graphs for which it is feasible to find the right equations. We will
discuss here how one can describe the base extension of Deitmar schemes coming from
loose stars.

Lifting a projective plane without a multiplicative group

Let B be the graph of example 2.3.1. For any finite field k = Fq, we obtain a
constructible set Fk(B) ↪→ P2(Fq) which is covered by three affine spaces, in which
two affine lines and one affine plane are induced, and the intersections are defined
by the graph (cf. subsection 2.3.3), that is, Fk(B) is P2(Fq) without a projective line
minus two points. Choosing homogeneous coordinates X, Y, Z in P2(Fq) such that the
aforementioned projective line is defined by Z = 0, we obtain the space V (k) of which
the complement is defined by the property

Z = 0 =⇒ XY 6= 0. (2.8)

Whence V (k) is given by the constructible set

(Z 6= 0) ∨ (XY = 0), (2.9)

that is, the union of the X– and Y –coordinate axes and the affine plane with Z = 0 as
line at infinity.

Remark 2.4.5. Although, going from A to B, we add the points on the edges through
x, this does not imply, as we have seen, that once we have lifted F(A) and F(B) to Z
or Fq, all the points of the lines in the affine plane corresponding to A get an extra
point. In fact, an affine plane over F1 is just an absolute point with two directions, so
these (two) lines correspond to canonical coordinate axes. Once lifted to Z or Fq, only
the (two) lines corresponding to these axes get an extra point.

Lifting of general loose stars

After the analysis on the previous example, and taken the main axioms of F
into account, it is now easy to write down the k-constructible set corresponding to a

Page 35

Chapter 2. The Functor Fk

general “loose star graph.” Let Γ have a vertex v which is incident with m ≥ 2 edges,
of which ` ≤ m, ` ≥ 0, have a second vertex (and let Γ contain no other vertices and
edges). Then after choosing homogeneous coordinates in Pm(k), the corresponding
constructible set in k[X,X1, . . . , Xm] is

(X 6= 0) ∨
(
∪1≤i≤l {Xj = 0 | j 6= i; 1 ≤ j ≤ m}

)
(2.10)

that is, the union of the (projective) X1–,. . ., X`–coordinate axes and the affine space
with as hyperplane at infinity X = 0.

Remark 2.4.6. Although these examples are constructed considering k as a finite
field, it is also possible to do them in case k = Z since the functor Fk considers both
possibilities in its definition.

2.5 The functors Fk

In this section we will prove in detail that the functors Fk, with k a finite field, F1
or Z, are indeed functors.

2.5.1 Local action
Let Γ be a finite loose graph and f a loose graph automorphism of Γ. Remember

that F(Γ) is the union of finite dimensional affine schemes defined from the vertices of
Γ, i.e.,

X = F(Γ) =
⋃

v∈V (Γ)
Spec(Av)

where Av is a finite F1-ring isomorphic to F1[X1, . . . , Xdeg(v)].
Let us consider vi ∈ V (Γ), a vertex of degree ni. We denote by Adj(vi) the set

of adjacent vertices of vi, with cardinality si, by E(vi) the set of edges incident with
vi and by LE(vi) the set of loose edges incident with vi. Note that si ≤ ni and that
LE(vi) ⊆ E(vi). As f is a loose graph automorphism, f(vi) is also a vertex vj of Γ
with degree ni and f(Svi

) = Svj
. Using the same terminology for vj, we consider the

sets E(vj), LE(vj) and Adj(vj) (also with cardinality si). Then, f induces a bijection
between E(vi) and E(vj) and a bijection between LE(vi) and LE(vj). Note that both
Spec(Avi

) and Spec(Avj
) are isomorphic to an ni-dimensional affine space. Since each

edge incident with a vertex corresponds bijectively to an element of a basis of the
associated affine space, f induces a bijection between the corresponding bases. We will
call fi the induced map

fi : Spec(Avi
) Spec(Avj

)

between the affine schemes associated to the vertices vi and f(vi) = vj. Hence, for any
vertex vk ∈ V (Γ) we define a homeomorphism fk between affine spaces and we can then

Page 36

2.5. The functors Fk

define the map F(f) to be the map f̃ resulting from pasting together all morphisms fk.
This pasting of morphisms of schemes is well defined thanks to the fact that F(Γ) is
the union of such affine spaces, Spec(Ak), that all morphisms fk are induced by one
and the same automorphism of Γ and that Γ completely determines the intersections of
the subspaces Spec(Ak) in F(Γ).

Once we have shown how to construct the homeomorphism F(f) of constructible
sets from an automorphism f of a loose graph, we have to generalize the construction
of f̃ starting from a general morphism between two loose graphs. Let Γ1 and Γ2 be two
loose graphs and let Hom(Γ1,Γ2) be the set of loose graph homomorphims from Γ1 to
Γ2. Let us take f ∈ Hom(Γ1,Γ2) and use the same notation as above.

Notice that we can assume f to be surjective. Otherwise we restrict to the image
f(Γ1) ⊂ Γ2 and, using the (CV) property, we obtain the required map (composition
with an embedding):

F(Γ1) F(f(Γ1))

F(Γ2)

F(f)

i

For general morphisms of loose graphs, the degree of vertices does not have to be
preserved. When the degrees of vi and f(vi) = vj are equal, we define the morphism fi
as before. For the remaining case we consider f restricted to the loose star Svi

, which
corresponds to a morphism between two affine spaces on the scheme level.

f |Svi

Svi
f(Svi

)

We have that f(Svi
) is a proper loose subgraph of Svj

, hence the following diagram
gives us the desired morphism:

Spec(Avi
) F(f(Svi

))

Spec(Avj
)

F(f |Svi
)

i
f̃i

Page 37

Chapter 2. The Functor Fk

In this way, we reduce the study to the local restriction of f to loose stars. Let
us describe this situation in detail. Suppose vi is a vertex of Γ1 of degree m, and
suppose the vertex of the loose star f(Svi

) has degree n ≤ m (this is always the case by
assumption); then the morphism f |Svi

is a loose graph morphism between the two loose
stars Svi

and f(Svi
).

We will call fi the morphism induced between the corresponding affine spaces

fi : F(Svi
) F(f(Svi

)).

The morphism fi is by definition a linear morphism between affine spaces with
dimension the number of edges incident with the vertex of the corresponding loose
star. Hence, we choose a basis {e1, . . . , em} for F(Svi

) ∼= Am
F1 , where by definition ei

is represented by the n-tuple with 1 on the i-th coordinate and 0 elsewhere such that
each element of the basis corresponds bijectively to an edge of the loose star Svi

, and vi
corresponds to the point (0, . . . , 0). We do the same for the affine space F(f(Svi

)) ∼= An
F1

and so we choose a basis {e′1, . . . , e′n} corresponding to the edges of f(Svi
).

Now that since we have chosen a basis, we can easily describe the morphism
fi in terms of matrices. For each element et of the basis of F(Svi

), we consider the
corresponding edge gt in Svi

and we set fi(et) = e′k, where e′k is the element of the basis
of F(f(Svi

)) associated to the edge f(gt). In the definition of loose graph morphism we
allow contractions of edges having two end points, i.e., one edge with two end points
might be contracted into the graph with one vertex. So it may happen that f(gt) is a
vertex. But the only vertex existing in the loose star f(Svi

) is f(vi) so, in this case, we
choose fi(et) to be the zero vector. In fact, what we do in the congruence setting is
adding an extra point on each affine line corresponding to an edge on a given vertex vi,
f(vi).

Notice that the zero vector is possible as an image because the monoids we are
working with contain the element 0 as an absorbing element. Allowing contractions to be
morphisms of loose graphs allows us to have projections on the level of F1-constructible
sets since, for instance, a projection of a projective line onto a point (figure 2.7) will be
induced by the graph morphism sending the complete graph K2 onto one vertex.

v1 v2 P

f

Figure 2.7: Projection of P1
F1

on one point P .

So locally fi can be expressed by a matrix of size n × m whose columns are
either the zero vector or a canonical vector, i.e., vector with only one non-zero entry.
Reordering the basis {e1, . . . , em}, we obtain a block matrix of the form

Page 38

2.5. The functors Fk

Afi
:=

0 · · · 0 A1 0 · · · · · · 0 0
0 · · · 0 0 A2 0 · · · 0 0
... ... 0 ...
...
0 · · · 0 0 0 0 · · · 0 An

where the blocks Ar are of size 1× sr, with sr the number of vectors from {e1, . . . , em}
whose image is the vector e′r, and have all 1-entries. Let us remark that∑n

r=1 sr+s0 = m,
where s0 is the number of columns where all entries are 0. Note as well that if all edges
are sent to edges by the morphism f |Svi

, then Afi
has no zero part and if n = m, then

Afi
is a nonsingular matrix.

Example 2.5.1. If f is the projection of P1
F1 on one point (figure 2.7), then the matrices

defining f1 and f2 will correspond to the (1× 1)-zero matrix.

These matrices Afi
are well defined over F1 since every column is a vector with at

most one coordinate different from 0, and is the image of some point by the morphism
fi. Hence, the image of a point is well defined over F1. What is more, the composition
of such morphisms corresponds to a product of matrices. It is easy to verify that the
product of two matrices of this form also gives a matrix with maximum one non-zero
entry in each column, this entry being 1, so the composition of two morphisms is well
defined. Finally, after constructing the morphisms fi for each vertex of Γ1, you can
glue all of them using the relations given by the graphs Γ1 and Γ2 to finally obtain the
morphism F(f) : F(Γ1)→ F(Γ2).

Although the process before has been made for Deitmar constructible sets, and
in particular monoidal schemes, the above construction equally works if we consider
F(Γ1) and F(Γ2) to be in the category of congruence constructible sets instead (by
this we mean that the local affine spaces are considered to be congruence schemes).
While working in the latter category, one should consider the matrices Afi

defined over
F2. The reason why this consideration is also possible relies on the fact that points of
a vector space over F1 (in the congruence setting) are exactly the same as points of
the same vector space over F2. The difference between, e.g., projective spaces over F1
and over F2 can be seen geometrically on subvarieties of dim ≥ 1 (and on the level of
polynomial rings).

2.5.2 Global action
In the previous subsection we have locally constructed a morphism of constructible

sets F(f) considering the loose graph morphisms that f : Γ1 → Γ2 induces between the
loose stars. There is, nevertheless, another way of obtaining F(f) starting from the
global action induced by f on the projective spaces in which the graphs Γ1 and Γ2 are

Page 39

Chapter 2. The Functor Fk

embedded. We will start this process by defining a morphism between their respective
ambient spaces, P(Γ1) and P(Γ2), such that the restriction to the constructible sets
F(Γ1) and F(Γ2) naturally induces a morphism between F1-constructible sets. This
morphism will also induce the local mappings described in the previous subsection (just
by considering their local action on the loose stars of vertices).

Consider the completion Γ1, with m1 + 1 vertices, and Γ2, with m2 + 1 ver-
tices, together with the embedding in their minimal projective space PG(m1,F1) and
PG(m2,F1), respectively. Coordinatize PG(m1,F1) and PG(m2,F1) such that the
vertices of Γ1 correspond to the canonical vectors e0, . . . , em1 of PG(m1,F1), and the
vertices of Γ2 to the canonical vectors e′0, . . . , e′m2 , and define h and h′ as having
coordinates [1 : · · · : 1] w.r.t. the corresponding basis. Now put R1 = {e0, . . . , em1 , h},
R2 = {e′0, . . . , e′m2 , h

′}, B1 := R1 \ {h} and B2 := R2 \ {h′}. Notice that when consider-
ing the extension of F1-constructible sets to k-constructible sets, the sets R1 and R2
would be skeletons of the projective spaces PG(m1, k) and PG(m2, k), respectively.

Let’s describe the global construction. In this case we can also consider f to be a
surjective morphism without loss of generality. The morphism f obviously induces a
morphism f from Γ1 to Γ2. This morphism f sends every vertex of Γ1 to a vertex of
Γ2. Besides, every element of B1 corresponds bijectively to a vertex of Γ1 and the same
holds for elements of B2 and the vertices of Γ2, so reasoning as in the affine case and
reordering the basis B1, we get an (m2 + 1)× (m1 + 1)-matrix of the form

Pf :=

P0 0 · · · · · · 0 0
0 P1 0 · · · 0 0
... 0 ...

... ...
0 0 0 · · · 0 Pm2

Note that in this case, the matrix Pf has no zero columns since all vertices are
sent to vertices, i.e., every canonical vector of B1 is sent to a canonical vector of B2. It
may also happen that an edge e ∈ Γ1 is contracted but this will imply that the two
elements of B1 corresponding to the vertices of e are sent to the same element of the
basis B2. As it happens for the affine case, the blocks Pi are all of size 1 × ni, with
all entries equal to 1 and ni being the number of elements of B1 whose image is the
element e′i. The identity ∑m2

j=0 nj = m1 + 1 is also satisfied.

As in the affine case, those matrices are well defined over F1 and the composition
of morphisms, which is translated into a product of matrices, is also well defined. Notice
that when you compose two morphisms, it is not possible to reorder the frames so that
both matrices are of the above form. Nevertheless, the product of two matrices having
columns with only one non-zero element is also a matrix satisfying the same condition.
Hence, we obtain that for two loose graph morphisms f : Γ1 → Γ2 and g : Γ2 → Γ3, the

Page 40

2.5. The functors Fk

following property is satisfied:

F(g ◦ f) = F(g) ◦ F(f).

Remark that when we consider the constructible sets Xk,1 = Fk(Γ1) and Xk,2 =
Fk(Γ2) over a finite field k (or Z), the morphism defined by the matrix Pf also induces
an action on the level of constructible sets over k (or Z). Hence the maps Fk, with
k a finite field, F1 or Z, are functors from the category LGraph of loose graphs to the
category of constructible sets over k.

Remark 2.5.2. If we first consider the extension of F1-constructible sets to constructible
sets over a field k (or Z) and then define a matrix Pf,k in the same way as we did with
Pf , one realizes that there exist many choices for Pf,k inducing the same action on the
basis vectors. So, in general, the following diagram

F(Γ1) F(Γ2)

Fk(Γ1) Fk(Γ2)

Pf

⊗k

Pf,k

⊗k

is not commutative. One way of dealing with this problem is to define a morphism
on the level of k/Z-constructible sets as the class [Pf,k] of morphisms having the same
action on the basis vectors. As such, we obtain a well-defined functor from the category
of loose graphs to the category of k/Z-constructible sets making the previous diagram
commutative.

2.5.3 Different categories for projective spaces
After the previous construction one could realize that morphisms might not be

injective on the level of projective spaces, so we need to choose the concrete category of
projective spaces that we want to work with. We will see in this subsection how one
can interpret the morphisms F(f) when a category of projective spaces with different
homomorphisms is chosen. We only work over F1; similar considerations over “real
fields” follow easily (and are in fact easier).

Category with injective linear maps

Consider the category of projective spaces whose morphisms are injective linear
maps. In this case Pf defines an injective linear map if and only if m2 ≥ m1 and
the rank of Pf equals m1 + 1 over F2. These conditions are equivalent to saying that
every element of the basis B1 is sent to a different element of the basis B2 and, by the
bijection described above between bases and vertices of the graphs, we have that Pf is
induced from an injective morphism of graphs (so injective on the level of each of the
loose stars).

Page 41

Chapter 2. The Functor Fk

So in this case, our functor F will be a functor between the category of graphs with
injective morphisms and the category of (congruence) constructible sets in projective
spaces with injective linear morphisms.

Category with rational maps

In the second case we consider the category of projective spaces whose morphisms
are rational maps. A rational map f : V → W between two varieties is an equivalence
class of pairs (fU , U) in which fU is a morphism of varieties defined from an open set U
of V to W , and two pairs (fU , U) and (fU ′ , U ′) are equivalent if fU and fU ′ coincide
on U ∩ U ′. We adapt the same nomenclature for constructible sets, such as Deitmar
constructible sets (with possible congruences).

Now consider the linear map Pf defined in the previous subsection and suppose it
has a nontrivial kernel. One should remember that the map Pf is defined on the minimal
projective spaces in which F(Γ1) and F(Γ2) are embedded (denoted PG(m1,F1) and
PG(m2,F1), respectively). That implies we only have to consider the case where the
kernel of Pf intersects with the constructible set F(Γ1), since otherwise the induced
map on the constructible sets will be injective.

We will then prove that the kernel of Pf is a closed subset of PG(m1,F1). By
relative topology its intersection with F(Γ1) will be closed in F(Γ1). We define the
kernel of Pf over F1, which we denote by ker(Pf)F1 , as

ker(Pf)F1 := {x ∈ F(Γ1)⊗ F2 | x ∈ ker(Pf)}.
Notice that in order to define the kernel of map Pf one has to consider the

constructible sets F(Γ1) and F(Γ2) in the category of congruence constructible sets and
so, the matrix Pf defined over F2. This consideration does not pose any problems in
terms of points, since there is a bijective correspondence between the points of the
constructible set F(Γi)⊗F1 F2 and the points of the congruence constructible set F(Γi),
i = 1, 2. So in this way ker(Pf)F1 is well defined.

To prove that ker(Pf)F1 is a closed subset of F(Γ1) we will verify that every point
of the set ker(Pf)F1 is indeed closed in the congruence constructible set F(Γ1). For,
take a point x ∈ ker(Pf)F1 . Considering x as a point in the projective space gives us its
coordinates; let us write x = [a0 : · · · : am1] (not all entries 0) and let ai0 be the first
coordinate equal to 1. Then x defines a congruence Cx in the projective congruence
scheme corresponding to PG(m1,F1), given by 〈xi ∼ 0 if ai = 0, xi ∼ xi0 if ai = 1〉.
It is a homogeneous maximal congruence in the Zariski topology (remember that
a maximal congruence in projective schemes is maximal w.r.t. “not containing the
irreducible congruence”). 1 We have proved that a point x ∈ ker(Pf)F1 is a closed point
in the projective scheme PG(m1,F1), so the set ker(Pf)F1 is closed as well since it is a
finite union of closed sets. Hence, if f is a morphism of loose graphs, F(f) = Pf is a
rational map defined on U = F(Γ1) \ ker(Pf)F1 . We proved then that, in this case, the

1To see the construction of congruence projective schemes, we refer to subsection 1.4.2.

Page 42

2.6. In conclusion

functor F is a functor between the category of loose graphs with morphisms of loose
graphs and the category of congruence constructible sets with rational maps.

2.6 In conclusion
We summarize in this last section how we construct morphisms on the level of

k-constructible sets using the functor F. Suppose we have a morphism f : Γ→ Γ′ of
loose graphs. We follow the following procedure:

i) The morphism f induces a morphism f ′ between the corresponding ambient
projective spaces of Γ and Γ′, respectively. This morphism is indeed continuous.

ii) The morphism f ′ induces morphisms of affine schemes

f ′i : Av
∼= Spec(A) Spec(A′) ∼= Af(v),

between the affine spaces associated to the vertices of the loose graphs.

iii) Since the previous morphisms are induced by the same morphisms of loose graphs,
f ′ also induces a map Fk(f) : Fk(Γ1)→ Fk(Γ2) on the level of constructible sets.

Notice that in the case where Fk(Γ) and Fk(Γ′) happen to be schemes, the
morphism F(f) would be a scheme-theoretical morphism.

Observation 2.6.1. At the moment we do not bother to try to define morphisms
for general constructible sets of projective spaces. Later in chapter 5 we will study
different kinds of automorphism groups of the constructible sets Fk(Γ) to get a deeper
understanding on this matter.

Page 43

3 Counting Polynomial
and Zeta Equivalence

As we mentioned in subsection 1.4, Deitmar schemes are based on considering
commutative multiplicative monoids (with an absorbing element) as commutative rings
over F1. Besides, the Spec-construction allows us to have a whole scheme theory over
F1 defined in an analogous way to the classical scheme theory over Z. In this chapter
we will define the Grothendieck ring of schemes over F1 and develop some techniques
to count rational points (see its definition in section 3.2.1) of constructible sets that
come from loose graphs. We will finally prove that the class of those constructible sets
in the Grothendieck ring is polynomial; meaning that their class can be expressed as a
linear combination of powers of the class of the affine line.

3.1 Grothendieck ring of schemes
We start this section by defining the Grothendieck ring of varieties over a field k.

Definition 3.1.1. Let k be a field and let V̂ar(k) be the category of varieties over
k. We define the Grothendieck ring of varieties over k, K0(V̂ar(k)), to be the ring
generated by the isomorphism classes of the variety X, [X]

k
, with the relations

[X]
k

= [X \ Y]
k

+ [Y]
k

for any closed subvariety Y of X and with the product structure given by

[X]
k
· [Y]

k
= [X ×Spec(k) Y]

k
.

As we can see the classical definition of the Grothendieck ring only takes into
account varieties over a field k, i.e., separated integral k-schemes of finite type, but it is
indeed possible to define the Grothendieck ring in the category of schemes of finite type
over k in a similar way (see [4, section 2]). For our study of constructible sets over F1,
we will directly define the Grothendieck ring for Deitmar schemes of finite type.

Page 45

Chapter 3. Counting Polynomial and Zeta Equivalence

In the course of this chapter, we change the notation for affine and projective
spaces. We denote by An

k and Pnk the n-dimensional affine and projective spaces over k,
respectively, where k can be a finite field, Z or F1. In the cases when the field is clear,
we will use the notation An and Pn.

Definition 3.1.2. The Grothendieck ring of schemes of finite type over F1, denoted as
K0(SchF1), is the ring (not F1-ring) generated by the isomorphism classes of schemes
X of finite type over F1, [X]F1

, with the relation

[X]F1
= [X \ Y]F1

+ [Y]F1
(3.1)

for any closed subscheme Y of X and with the product structure given by

[X]F1
· [Y]F1

= [X ×Spec(F1) Y]F1
. (3.2)

Taking into account the definition of our functors Fk, for k a finite field or F1, it
is natural to ask whether constructible sets (who do not carry a sheaf structure) have a
class inside the Grothendieck ring of schemes. The answer to this questions is yes and
it is proved in the following theorem.

Theorem 3.1.3 ([42]). Let X be a scheme over a finite field k.

i) Let U and V be two locally closed sets in X (note that these define subschemes);
then

[U ∪ V]
k

+ [U ∩ V]
k

= [U]
k

+ [V]
k
. (3.3)

ii) Let E be a constructible set of X; then E has a well-defined class in K0(Schk).

Remark 3.1.4. For obtaining ii), one uses the decomposition of a constructible set in
a finite disjoint union of locally closed sets (see Proposition 1.3.17). Note also that this
theorem remains correct for the case of Deitmar constructible sets.

3.1.1 Connection to motives
“Contrairement à ce qui se passait en topologie ordinaire, on se trouve donc placé là devant une abon-
dance déconcertante de théories cohomologiques différentes. On avait l’impression très nette qu’en un
sens qui restait d’abord assez flou, toutes ces théories devaient "revenir au même", qu’elles "donnaient
les mêmes résultats". C’est pour parvenir à exprimer cette intuition de "parenté" entre théories coho-
mologiques différentes, que j’ai dégagé la notion de "motif" associé à une variété algébrique. Par ce
terme, j’entends suggérer qu’il s’agit du "motif commun" (ou de la "raison commune") sous-jacent à
cette multitude d’invariants cohomologiques différents associés à la variété, à l’aide de la multitude des
toutes les théories cohomologiques possibles à priori.”

A.Grothendieck. Récoltes et Semailles, 1986

The notion of “motif” was originally introduced by Alexander Grothendieck in
1964 in a letter to Serre as an attempt to find a universal cohomology theory that carries
the invariants and properties of varieties obtained by the different cohomology theories.
For instance, if we consider X a manifold of dimension 2n, one can define cohomology
groups, which are finite-dimensional Q-vector spaces, in many different ways (singular

Page 46

3.1. Grothendieck ring of schemes

cohomology, Čech cohomology, De Rham cohomology, etc.). However, under some
conditions, they all define the same or isomorphic groups. In Algebraic Geometry one
also has the same similarities with cohomology theories defined on varieties over a field
k.

We will briefly explain how one can construct motives, following the notes [41].
In the attempt to find such a theory, Grothendieck took into account the definition
of a cohomology as a contravariant functor from the category of varieties to a graded
abelian category where groups of morphisms have the structure of a Q-vector space.
Grothendieck’s idea was to start with the category of projective varieties and replace
the morphisms of that category by equivalence classes of correspondences (see [41] for
details on correspondences).

Then, the category of motives, denoted by M(k), should satisfy the following two
conditions:

i) M(k) should be an abelian category.

ii) The homomorphism groups should behave as Q-vetor spaces.

With these two conditions, the universal cohomology theory should be a con-
travariant functor h from the category V̂ar(k) of projective varieties over a field k to
the category M(k) of motives such that the following properties are satisfied:

? Disjoint unions of varieties are translated into direct sums, i.e.,

h(X
∐
Y) = h(X)⊕ h(Y).

? The Hom-sets are finite-dimensional Q-vector spaces.

? The Künneth formula holds, i.e.,

h(X × Y) = h(X)⊗ h(Y).

3.1.2 Virtual Tate motives
Consider the projective line P1

k over a field k. By its well-known decomposition
P1
k = A1

k

∐A0
k and one of the properties of the category of motives, we have that

h(P1
k) = h(A1

k)⊕ h(A0
k), (3.4)

where the second term of the right-hand side corresponds to the motive of a point,
which we denote by 1. Define now h(A1

k) := L; it is the so-called Lefschetz motive.
Similarly for an n-dimensional projective space Pnk over k (using the identity

Pnk = An
k

∐Pn−1
k) one obtains the following decomposition in the category of motives:

h(Pnk) = 1⊕ h(A1
k)⊕ h(A2

k)⊕ · · · ⊕ h(An
k), (3.5)

Page 47

Chapter 3. Counting Polynomial and Zeta Equivalence

which transforms into

h(Pnk) = 1⊕ L⊕ L2 ⊕ · · · ⊕ Ln (3.6)

by using the Künneth formula for each affine space.

We define the Grothendieck ring K0(M(k)) of k-motives in a similar way as the
Grothendieck ring K0(V̂ar(k)) of varieties over k (see section 3.1). In both rings we
have indeed a similar decomposition for the classes [P1]

k
and [h(P1)]

k
, that is:

[P1]
k

= 1 + [A1]
k
,

[h(P1)]
k

= 1 + [h(A1)]
k

= 1 + L. (3.7)

Following this analogy, we denote the class [A1]k of the affine line in the Grothendieck
ring K0(V̂ar(k)) also by L and we call it virtual Lefschetz motive. The generators of
this ring are usually called virtual motives and the subring Z[L] ⊂ K0(V̂ar(k)) is called
the subring of virtual mixed Tate motives.

Definition 3.1.5. Let X be a variety over k. We say that X has a mixed Tate motive
if its class [X]

k
∈ Z[L].

Let us remark that the multiplicative group Gm (cf. subsection 1.4.3) will satisfy,
as a consequence, the equality [Gm]

k
= L−1 since it can be identified with the affine line

minus one point. To make a distinction, in the case of F1, we will denote by L = [A1]F1
the class of the affine line over F1 in K0(SchF1) and, consequently, [Gm]F1

= L− 1.

From now on, we will work in the category Schk of schemes of finite type over k
instead of in the category of varieties. As mentioned in section 3.1, one can without a
problem adapt the definition 3.1.5 for schemes of finite type.

3.2 Grothendieck polynomials

Let Γ be a loose graph, and let k be any finite field different from F1. Consider
Fk(Γ) := F(Γ)⊗F1 k. In the next sections we will compute a polynomial PΓ(X) ∈ Z[X]
for Fk(Γ) (which we sometimes also denote as P(Γ)) such that

∣∣∣FFq(Γ)
∣∣∣
qn

= PΓ(qn)
for all Fq and all n ≥ 1, where

∣∣∣FFq(Γ)
∣∣∣
qn

denotes the number of Fqn-points of the
constructible set FFq(Γ). As a consequence of finding such a polynomial, we obtain that
every constructible set Fk(Γ) is polynomial-count and that the polynomial counting the
rational points is independent of q.

Page 48

3.2. Grothendieck polynomials

3.2.1 Zeta-equivalence and polynomial-count
Before introducing the notion of zeta-equivalence and polynomial-count for schemes

and constructible sets over k, we will introduce the concept of rational points of a
scheme defined over a field k.

Definition 3.2.1 (Rational points). Let X be a scheme over k. A k-rational point of
X is a morphism of schemes Spec(k)→ X.

Let us suppose now that X is a k-scheme of finite type and let x be a point of X.
By definition, there exist a neighborhood U of x such that U = Spec(A), where A is a
commutative ring. Then, x corresponds to a point of Spec(A), i.e., to a prime ideal
p ⊂ A. For p, we know that the stalk Op of the sheaf OX is isomorphic to the local ring
Ap with maximal ideal pAp (see Proposition 1.3.9). We define the residue field of the
point x to be:

k(x) := Ap/pAp.

One can easily prove that this definition is independent of the choice of the affine
neighborhood U of x.

A morphism Spec(k)→ X is determined by the choice of a point x and its residue
field k(x). In the case where X is of finite type over k, one can prove that x is a rational
point if and only if its residue field k(x) is isomorphic to k. Besides, one can also prove
that a point x of X is a closed point of X if and only if k(x) is a finite extension of k.

For the rest of the section we will consider X to be a scheme of finite type over a
finite field Fq. Following [20], for any n ≥ 1, one can define the following map

SchFq Z

X
∣∣∣X∣∣∣

qn

sending a scheme X of finite type over Fq to its number of Fqn-points. We can also put
all these functions together and define a function, that we will call zeta series of X, as
follows

QX(T) =
∑
n≥1

∣∣∣X∣∣∣
qn
T n. (3.8)

The definition of zeta serie can be extended to the elements of K0(SchFq) since
isomorphic schemes have the same number of Fqn-points.

Definition 3.2.2. Let X and Y be elements of K0(SchFq). We say that X is zeta-trivial
if
∣∣∣X∣∣∣

qn
= 0 for all n ≥ 1, i.e, if the zeta series of X is equal to zero. We say that X

and Y are zeta-equivalent if they have the same zeta series, i.e., if their difference is
zeta-trivial.

Page 49

Chapter 3. Counting Polynomial and Zeta Equivalence

Definition 3.2.3. Let Fq be a finite field and X be a scheme of finite type over Fq.
We say that X is polynomial-count if there exists a (necessarily unique) polynomial
PX(T) = ∑m

i=0 aiT
i ∈ C[T] such that for every finite extension Fqn/Fq, we have∣∣∣X∣∣∣

qn
= PX(qn). (3.9)

In an analogous way, the definition of polynomial-count can also be extended to
the elements of K0(Schk).

Lemma 3.2.4 ([20]). An element γ ∈ K0(SchFq) is polynomial-count if and only if it
is zeta-equivalent to a Z-linear combination of classes of affine spaces [Ai]Fq .

3.2.2 Tate conjecture and counting polynomial
Definition 3.2.5. Let R be a commutative ring. An additive invariant is a map
χ : V̂ar(k)→ R satisfying the following properties:

? Isomorphism Invariance

χ(X) = χ(Y) if X ∼= Y.

? Multiplicativity
χ(X × Y) = χ(X)χ(Y).

? Inclusion-Exclusion

χ(X) = χ(Y) + χ(X \ Y) for Y closed in X.

Example 3.2.6. Topological Euler characteristic. For a variety Y over C, one
defines the topological Euler characteristic of Y as

χ(Y) :=
2 dimY∑
i=0

(−1)ibi (3.10)

where bi are the Betti numbers of Y , i.e., bi is the dimension of the i-th singular
cohomology group Hi(YC,C).

If we consider a Z-variety X, we know that the number
∣∣∣X∣∣∣

qn
of Fqn-rational

points of X ×Spec(Z) Spec(Fqn) is an additive invariant. Indeed, if we consider that X
has a mixed Tate motive (over Fqn), then it follows that up to a finite number of primes∣∣∣X∣∣∣

qn
is a polynomial in qn because

∣∣∣A1
∣∣∣
qn

= qn.

In this sense, we can state a corollary of one of the Tate conjectures: Let X be a
variety; then X being polynomial-count for all but finitely many primes is equivalent to
X having a mixed Tate motive.

Page 50

3.3. Grothendieck polynomial for trees

Consider now a constructible set FFq(Γ) for a given loose graph Γ. We define a
rational point of FFq(Γ) to be an Fq-rational point of a local affine space contained in
FFq(Γ). Note that one can also define a rational point of FFq(Γ) as a rational point of
the ambient projective space that is also contained in FFq(Γ). We define closed points
of FFq(Γ) in a similar way.

In the next sections, we will describe an inductive procedure to compute, for each
prime p, a polynomial that counts the number of rational points of FFp(Γ) (with the
additional property that the obtained polynomials for all p are one and the same). We
call this polynomial the Grothendieck polynomial of Γ, or of Fk(Γ), or of F(Γ), or of
F(Γ)⊗F1 Z.

Suggestively, because of the corollary of one of the Tate conjectures, we will
write PΓ(L) instead of PΓ(X). We will prove in section 3.7 that the class of each
Fk(Γ) is indeed an element of Z[L]. In terms of [20], Fk(Γ) being polynomial-count
translates into the constructible sets Fk(Γ) being zeta-equivalent to objects γ of CSk for
which [γ] ∈ Z[L] ⊂ K0(Schk) (since for each such k, they have the same Grothendieck
polynomial).

3.3 Grothendieck polynomial for trees
Let Γ be a loose tree, that is, a connected loose graph in which any two vertices are

connected by a unique simple path. So, a loose tree is a connected loose graph without
cycles. Note that a tree is also a loose tree. Let F(Γ) be the Deitmar constructible set
associated to it. We will define in this section a new function associating a polynomial
to Γ that gives us information about the class of F(Γ) in the Grothendieck ring of
Deitmar schemes of finite type. For the sake of convenience we will denote this new
function by

[
Γ
]
F1
, which represents the class of F(Γ) in K0(SchF1).

To find this new function, we start thinking about the most basic examples, the
affine spaces An

F1 , whose corresponding loose graphs are the loose stars Sn, i.e., the
loose graphs formed by one vertex and n edges incident to it, see figure 3.1. We know
that the class of An

F1 in the Grothendieck ring of F1-schemes of finite type is the n-th
power of the Lefschetz motive L and the number of F1-closed points of An

F1 is one (the
only closed point of Spec(F1[X1, . . . , Xn])). So, our function must verify the following
condition:

? If we denote by ΓAn the loose graph corresponding to An
F1 , then

[
ΓAn

]
F1

= Ln.

Besides, if ΓP1 is the graph associated to the projective line P1
F1 (figure 3.2), our

function should satisfy
[
ΓP1

]
F1

= L + 1, which corresponds to the class of the projective
line in K0(SchF1).

After making some analogies with other basic examples, such as loose stars with
some of the edges being proper edges, and taking into account how the affine spaces

Page 51

Chapter 3. Counting Polynomial and Zeta Equivalence

n-times

Figure 3.1: Affine space AnF1
.

Figure 3.2: Projective line P1
F1
.

associated to vertices through the functor F intersect (cf. section 2.3.3), we can define
our polynomial function for loose trees as follows:

Definition 3.3.1. Let Γ be a finite loose tree. Consider the following notation:

• Let D be the set of degrees {d1, . . . , dk} of V (Γ) such that 1 < d1 < d2 < . . . < dk.

• Let us call ni the number of vertices of Γ with degree di, 1 ≤ i ≤ k.

• We call I =
k∑
i=1

ni − 1.

• We call E the number of vertices of Γ with degree 1, that is the end points.

We define the function “class of a loose tree,” and we denote it as
[
.
]
F1
, as follows:

{Loose trees}
[
·
]
F1

: K0(SchF1)

Γ
k∑
i=1

niLdi − I · L + I + E.

We will prove by induction on the number of vertices of the loose tree that the
function counts the number of rational points of F(Γ) for every finite loose tree, i.e.,[
Γ
]
F1

=
[
F(Γ)

]
F1
. We start by proving that for some basic cases, which will be used for

proving the formula for a general loose tree.

The projective line P1
F1. As we mentioned before, for the projective line, the corre-

sponding tree is one edge with two end points. That gives us E = 2, I = −1 and D is
the empty set, so the formula will be:[

ΓP1

]
F1

= L + 1,

Page 52

3.3. Grothendieck polynomial for trees

which corresponds with the desired class of the projective line in the Grothendieck ring
K0(SchF1).

The affine space An
F1. In this case we have one vertex of degree n, E = 0 and I = 0.

Then, [
ΓAn

]
F1

= Ln.

A (loose) star Skn. Suppose we have a (graph) star Sn (figure 3.3), that means, a
complete bipartite graph K1,n. We know that a vertex in the tree corresponds to a
closed point of the constructible set. By property “FUCP” (see section 2.3), the disjoint
union of all the vertices of degree 1 in the tree is also a closed subset of the constructible
set. Then, according to the relations in the Grothendieck ring, we can express the class
of the star Sn as follows.

n-times

Figure 3.3: A star Sn.

Let us call v1, . . . , vn the vertices with degree one. Then

[
Sn
]
F1

=
[n∐
i=1

vi
]
F1

+
[
ΓAn

]
F1

=
n∑
i=1

[
vi
]
F1

+ Ln = n
[
v1
]
F1

+ Ln = n+ Ln. (3.11)

We now define a loose star with parameters (n, k), k ≤ n, and denote it by Skn, as
a loose star Sn with k vertices of degree 1 and n− k loose edges. The same reasoning
of above gives a similar formula for a loose star:[

Skn
]
F1

= k + Ln. (3.12)

A general loose tree. For the case of a general loose tree we want to be able to
“break” the tree into pieces in a certain way. We will w.l.o.g. assume that a loose tree Γ
has an edge e such that Γ \ {e} is a disjoint union of two loose trees, both with at least
one edge. We will call this condition (D) (in case Γ does not satisfy this condition, we
will be in one of the previous cases).

Lemma 3.3.2. Let Γ be a loose tree, F(Γ) the corresponding Deitmar constructible set
and e an edge making Γ satisfy the condition (D). Let Γ1 and Γ2 be the two disjoint
loose trees obtained as above; then F(Γ1) and F(Γ2) are disjoint.

Page 53

Chapter 3. Counting Polynomial and Zeta Equivalence

Proof. Since Γ1 and Γ2 are both connected loose trees, from Corollary 2.3.5, we
have that F(Γ1) and F(Γ2) are connected Deitmar constructible sets. Also, by definition
of the F functor, F(Γ1

∐Γ2) = F(Γ1) ∪ F(Γ2) and has two connected components
(Corollary 2.3.5). So, it is clear that F(Γ1) and F(Γ2) are disjoint. �

After this lemma, we are ready to prove the consistency of the formula for all trees.
We will prove it using induction on the number N which is the sum of the number of
edges and the number of vertices of a loose tree.

Start with Γ and let e be one of the vertices of condition (D). We will denote by
ē the subgraph having e as the only edge and having two end points v1, v2. Then, ē
defines a projective line P1

F1 which is a closed subscheme of the Deitmar constructible
set associated to Γ. By the relations in the Grothendieck ring of schemes of finite type
over F1, we have: [

Γ
]
F1

=
[
ē
]
F1

+
[
F(Γ) \ F(ē)

]
F1
. (3.13)

Remark 3.3.3. Remark that by [F(Γ) \ F(ē)]F1
we mean the class of the Deitmar

constructible set defined by the loose graph Γ minus the projective line define by e
embedded in the constructible set defined by Γ. Otherwise, if we just take the graph Γ\ ē,
we will obtain a different constructible set in a projective space of higher dimension
than the one in which F(Γ) is embedded!

Let’s clarify this remark with the following example. Let Γ and Γ\e be the graphs
of figure 3.4. We can see that in this case Γ \ ē is the disjoint union of two stars S2
without their respective vertices of degree 2.

v2v1
e

Figure 3.4: Grahps Γ and Γ \ e.

By considering the constructible set F(Γ \ ē) instead of F(Γ) \ F(e) embedded
in F(Γ) we obtain 2 · (L2 + 1) as the Grothendieck polynomial of [Γ \ ē]F1

, since it
corresponds to two disjoint copies of the affine plane without a point and with two extra
points at infinity. Nevertheless, since we eventually also want that the same polynomial
counts the number of rational points of Fk(Γ) (using formula 3.13), this Grothendieck
polynomial does not give the correct information about the number of Fq-rational points
of Fq(Γ) \ Fq(ē) in Fq(Γ). For instance, locally in F(Γ) the vertices v1 and v2 define
3-dimensional affine spaces, which have L3 as Grothendieck polynomial; while in the
graph Γ \ e the 3-dimensional affine spaces would become affine planes instead. The
correct polynomial is, in fact, 2 · (L3 − L + 2).

We can now proceed to prove the equality
[
Γ
]
F1

=
[
F(Γ)

]
F1

for the loose tree Γ.
We know that Γ \ {e} has two disjoint connected components (Γ1 and Γ2), and each

Page 54

3.3. Grothendieck polynomial for trees

of the end points of the edge e belongs to one of these two components. Suppose that
v1 ∈ Γ1 and v2 ∈ Γ2. For computing the class

[
F(Γ) \ F(ē)

]
F1

we need to calculate the
classes of the constructible sets defined by Γ1 \ {v1} and Γ2 \ {v2}, but one needs once
more to take into account, as in the above example, that they define constructible sets
embedded in F(Γ) in order to keep the right degree of the vertices v1 and v2.

Using the relations in the Grothendieck ring we deduce that the following equations
are satisfied

[
F(Γ) \F(ē)

]
F1

=
[
F(Γ1 ∪ {e} ∪ {v2}) \F(ē)

]
F1

+
[
F(Γ2 ∪ {e} ∪ {v1}) \F(ē)

]
F1
, (3.14)

[
Γi ∪ {e} ∪ {vj}

]
F1

=
[
F(Γi ∪ {e} ∪ {vj}) \ F(ē)

]
F1

+
[
ē
]
F1
, (3.15)

with i, j = 1, 2 and i 6= j, since ē defines a closed subscheme of the Deitmar constructible
set correponding to Γi ∪{e}∪ {vj}. Writing all three equations (3.13), (3.14) and (3.15)
together, one obtains that

[
Γ
]
F1

=
[
ē
]
F1

+ (
[
Γ1 ∪ {e} ∪ {v2}

]
F1
−
[
ē
]
F1

) + (
[
Γ2 ∪ {e} ∪ {v1}

]
F1
−
[
ē
]
F1

). (3.16)

By induction on the number of vertices and edges, we know that the function [·]F1

is well defined for both
[
Γ1 ∪ {e} ∪ {v2}

]
F1

and
[
Γ2 ∪ {e} ∪ {v1}

]
F1
, i.e., we can write

[
Γ1 ∪ {e} ∪ {v2}

]
F1

=
k1∑
r=1

n1rLd1r − I1 · L + I1 + E1,

[
Γ2 ∪ {e} ∪ {v1}

]
F1

=
k2∑
j=1

n2j
Ld2j − I2 · L + I2 + E2.

(3.17)

Finally we observe that

i) I = I1 + I2 + 1.

ii) E = E1 + E2 − 2.

iii) [ē
]
F1

= L + 1. (Base case.)

iv) The degree of the inner vertices and the number of vertices for each degree remain
the same as in Γ.

Finally, introducing these formulas in (3.16), we obtain

[
Γ
]
F1

= −(L+ 1) + (
k1∑
r=1

n1rLd1r +
k2∑
j=1

n2j
Ld2j)− (I1 + I2)L+ (I1 +E1 + I2 +E2), (3.18)

Page 55

Chapter 3. Counting Polynomial and Zeta Equivalence

and reordering the degrees of the vertices, we have the desired equality for Γ:
[
Γ
]
F1

=
k∑
i=1

niLdi − (I1 + I2 + 1)L + (I1 + I1 + 1 + E1 + E2 − 2)

=
k∑
i=1

niLdi − I · L + I + E. (3.19)

It is proved that our polynomial counts the number of points of F(Γ), where Γ is
a finite loose tree. �

3.4 Lifting the class of trees in K0(SchF1)
In section 2.4, we explained (following Deitmar’s construction) how one can extend

a scheme over F1 to a scheme over Z by lifting affine schemes Spec(A) to Spec(A)⊗F1 Z,
the gluing being defined by the scheme on the F1-level, and that the same can be done
for the constructible sets F(Γ). The same base extension is also defined for any field k.
Thanks to the naturality of the base change functor, we will prove that this lifting is
compatible as well on the level of the Grothendieck ring of schemes of finite type “up
to zeta-equivalence.”

We define Ω as a map from the subring Z[L] of the Grothendieck ring K0(SchF1)
of Deitmar schemes of finite type to the Grothendieck ring K0(Schk) of schemes of finite
type over any field k generated by the map sending the class L to the class L, i.e.

Z[L]Ω : K0(Schk)
m∑
j=1

ajLj
m∑
j=1

ajLj.

As we did for the class of F(Γ) in the Grothendieck ring of schemes of finite type
over F1, we will denote, from now on, by [Γ]

k
the class of its lifting F(Γ)⊗F1 k in the

Grothendieck ring of schemes of finite type over k.

Theorem 3.4.1. Let Γ be a finite loose tree, and let F(Γ) be zeta-equivalent to an
object γ of CSF1 whose class is contained in Z[L]. Then Ω([γ]F1

) = [γ̃]
k
, where γ̃ is an

object of CSk which is zeta-equivalent to F(Γ)⊗F1 k.

We will succintly write Ω(
[
Γ
]
F1

) ≡
[
Γ
]

k

mod ZE for the property expressed in
the statement of Theorem 3.4.1.

Proof. We will prove this theorem by induction, in the same way as in section 3.3.
We will start with the basic cases.
Projective line. Let ΓP1 be the graph associated to the projective line P1

F1 . Then,

Ω(
[
ΓP1

]
F1

) = Ω(L + 1) = L + 1 = [P1
k] =

[
ΓP1

]
k

. (3.20)

Page 56

3.4. Lifting the class of trees in K0(SchF1)

Affine spaces. Let ΓAn be the graph corresponding to the affine scheme An
F1 . Then,

Ω(
[
ΓAn

]
F1

) = Ω(Ln) = Ln = [An
k] =

[
ΓAn

]
k

. (3.21)

Loose stars Skn. The Deitmar constructible sets associated to Skn can be written as:

F(Skn) = An
F1 ∪

k∐
i=1
{vi}. (3.22)

Since such a constructible set is a disjoint union of an n-dimensional affine space
over F1 and a disjoint union of closed points (which is closed by the property “FUCP”),
it follows that its base extension to k is also a disjoint union of an n-dimensional k-affine
space and a union of closed points. Hence,

Ω(
[
Skn
]
F1

) = Ω(Ln + k) = Ln + k = [An
k]

k
+ k =

[
Skn
]

k

. (3.23)

General loose trees. Let Γ be a loose tree. The way we proved the formula above
for loose trees, gives us a decomposition of

[
Γ
]
F1
, according to the relations in the

Grothendieck ring over F1, as the sum
[
ē
]
F1

+
[
F(Γ) \ F(ē)

]
F1
, where ē satisfies the

condition (D) (cf. 3.3).
We know that ē defines a projective line over F1, so its extension to k corresponds

with the projective line P1
k, which is also a closed subscheme of the k-constructible set

F(Γ)⊗F1 k. This gives us the following relation in the Grothendieck ring of schemes
over k: [

Γ
]

k

=
[
F(Γ) \ F(ē)

]
k

+
[
ē
]

k

. (3.24)

Hence, using induction on the number of vertices and edges of the loose tree and the
decomposition of (3.16), we obtain that:

Ω(
[
Γ1 ∪ {e} ∪ {v2}

]
F1

) =
[
Γ1 ∪ {e} ∪ {v2}

]
k

,

Ω(
[
Γ2 ∪ {e} ∪ {v1}

]
F1

) =
[
Γ2 ∪ {e} ∪ {v1}

]
k

,
(3.25)

so, we can conclude that Ω(
[
Γ
]
F1

) =
[
Γ
]

k

.

For general loose graphs, lifting will be further commented upon in section 3.6.
Note that for each of the cases we handled up till now, we have

Ω(
[
Γ
]
F1

) =
[
Γ
]

k

= [F(Γ)⊗F1 k]
k
. (3.26)

In the next section we introduce a process to calculate Grothendieck polynomials
over fields k 6= F1, and we look at some consequences.

Page 57

Chapter 3. Counting Polynomial and Zeta Equivalence

3.5 Surgery
In this section we derive a procedure that we call surgery in order to inductively

calculate the Grothendieck polynomial of a k-constructible set coming from a general
loose graph. In each step of the procedure, we will “resolve” an edge, so as to eventually
end up with a tree in much higher dimension. So one will have to keep track of how the
Grothendieck polynomials change in each step. In the entire section, k will be a field
different from F1. Since we will determine Grothendieck polynomials, k usually will be
finite (although one notes that in the context of the Grothendieck ring, the polynomials
also are meaningful for infinite k).

For the sake of convenience in writing, we will say the Grothendieck polynomial of
Γ to refer to the Grothendieck polynomial of the k-constructible set Fk(Γ).

3.5.1 Resolution of edges
Let Γ = (V,E, I) be a loose graph, and let e ∈ E be incident with two distinct

vertices v1, v2. The resolution of Γ along e, denoted Γe, is the loose graph which is
obtained from Γ by deleting e and adding two new loose edges (each with one vertex)
e1 and e2, where vi is incident with ei, i = 1, 2.

One observes that

dim(P(Γe)) = dim(P(Γ)) + 2, (3.27)

because Γe has 2 more vertices than Γ.

3.5.2 The loose graphs Γ(u, v;m)
We define Γ(u, v;m) (figure 3.5), with m ∈ N and u, v symbols, to be the loose

graph with adjacent vertices u, v; precisely m common neighbors of u and v and no
further incidences.

u v

Figure 3.5: The loose graph Γ(u, v; m).

The corresponding k-constructible set consists of two affine (m + 1)-spaces Au

and Av and m additional closed points in their spaces at infinity, of which the union

Page 58

3.5. Surgery

covers all the points of the projective (m+ 1)-space P(Γ(u, v;m)) up to all points of the
intersection γ of their spaces at infinity (which is a projective (m− 1)-space), except m
points in γ in general position. So the Grothendieck polynomial is

m+1∑
i=0

Li − ((
m−1∑
i=0

Li)−m) = Lm+1 + Lm +m. (3.28)

Example 3.5.1. Ifm = 1, Γ(u, v; 1) is the complete graphK3 (figure 3.6) and, according
to the above formula, its Grothendieck polynomial is L2 + L + 1, which coincides with
the number of points of a projective plane over a finite field k if L is substituted by |k|.
In the case where m = 2, one gets for Γ(u, v; 2) a complete graph K4 without an edge
(figure 3.6). Its Grothendieck polynomial will then be L3 + L2 + 2, which is exactly
the number of points of a projective 3-space without a multiplicative group when L is
substituted by |k|.

u v u v

Figure 3.6: The loose graphs Γ(u, v; 1) and Γ(u, v; 2).

Adding some loose edges to u and v

Now consider a graph Γ which consists of a Γ(u, v;m), r further edges incident
with u, and s further edges on v (r, s ∈ N). We suppose that these edges are loose, but
as we have seen before, if they would contain some more vertices (say c ≤ r+s vertices),
then we just add c to the Grothendieck polynomial below. For further reference, denote
such a loose graph by Γ((u, r), (v, s);m).

Obviously, on the level of constructible sets, the only intersections occur in the
projective space P(Γ(u, v;m)) ⊆ P(Γ((u, r), (v, s);m)), so the Grothendieck polynomial
is

(Lr+m+1 − Lm+1) + (Ls+m+1 − Lm+1) + Lm+1 + Lm +m =

Lr+m+1 + Ls+m+1 − Lm+1 + Lm +m. (3.29)

Remark 3.5.2. Put r = 0 = s and m = 1; then we obtain again the projective F1-plane
(with Grothendieck polynomial L2 + L + 1). In general, put r = s = 0; then we obtain
(3.28).

Page 59

Chapter 3. Counting Polynomial and Zeta Equivalence

Adding further graph structure on the common neighbors

Define Γ(u, v;G(m)), with u, v symbols, to be the loose graph with adjacent
vertices u, v; m common neighbors of u and v, and with the graph G defined on the
common neighbors. (If the graph G has no edges, we are back in formula (3.28)). For
generality’s sake, let r further edges be incident with u, and s further edges with v
(r, s ∈ N). As before, we suppose that these edges are loose.

Then in the same way as above one calculates the Grothendieck polynomial to be

Lr+m+1 + Ls+m+1 − Lm+1 + Lm + P(G), (3.30)

where P(G) is the Grothendieck polynomial of G. Notice that P(G) can be simply
added to the polynomial because the constructible subset associated to G is inside the
projective (m − 1)-subspace defined by the common neighbors of u and v, and this
projective space is a closed constructible subset of the projective space P(Γ(u, v;G(m))).
The relations in the Grothendieck ring of schemes prove the claim.

3.5.3 The loose graphs Γ(u, v;m)uv

We define Γ(u, v;m)uv to be the loose graph resulting from resolving Γ(u, v;m)
along the edge uv (figure 3.7). The corresponding k-constructible sets consist of two
disjoint affine (m+ 1)-spaces Au and Av (of which the hyperplanes at infinity intersect
in the projective (m − 1)-space generated by v1, . . . , vm) and m additional mutually
disjoint affine planes αi, i = 1, . . . ,m, in the projective (m + 3)-space P(Γ(u, v;m))
such that for each j, αj ∩ Au

∼= αj ∩ Av is a projective line minus two points.

The Grothendieck polynomial is

2Lm+1 +mL2 − 2m(L− 1). (3.31)

u v

Figure 3.7: Resolution of Γ(u, v; m) along the edge uv.

Page 60

3.5. Surgery

Adding some loose edges to u and v

As before, consider a more general loose graph Γuv, but which has r loose edges on
u, and s loose edges on v, the case r = 1 = s giving Γ(u, v;m)uv. For further reference,
denote such a loose graph by Γ((u, r), (v, s);m)uv. Then the Grothendieck polynomial
is

Lr+m + Ls+m +mL2 − 2m(L− 1). (3.32)

Remark 3.5.3. Put r = 0 = s and m = 1; then we obtain the example 2.3.1 studied
in section 2.3 with Grothendieck polynomial L2 + 2.

Adding further graph structure on the common neighbors

Now consider a graph Γuv defined as in the previous subsection, but where some
graph G is defined on the m common neighbors of u and v. Denote this loose graph by
Γ((u, r), (v, s);G)uv, and remark that when G has no edges, we are back in the previous
subsection.

We claim that the Grothendieck polynomial is

Lr+m +Ls+m +P(G)L2−2P(G)(L−1) = Lr+m +Ls+m +P(G)(L−1)2 +P(G). (3.33)

We will prove that this is indeed the right polynomial by using a construction of
a “graph cone.”

3.5.4 General cones
Let Km be the complete graph on m vertices, and let G1 and G2 be subgraphs

such that P(G1) ∩P(G2) = ∅ (noting that P(G1) ∪P(G2) ⊂ P(Km)). Define the cone
with base G2 and vertex G1, denoted C(G2, G1), as the subgraph which contains G1 and
G2, and all the edges of Km which connect a vertex of G2 with a vertex of G1. Note
that C(G2, G1) = C(G1, G2) and that, when G1 is only a vertex, the cone C(G2, G1) is
indeed a cone as we know it from classical geometry.

Theorem 3.5.4. Let the number of vertices of G1 be m1 and the number of vertices of
G2 be m2. We have that the Grothendieck polynomial (in Z[L]), where k is any finite
field, is given by

P(C(G2, G1)) = P(G1)Lm2 + P(G2)Lm1 − P(G1)P(G2)(L− 1). (3.34)

Proof. Let k = Fq be a finite field with q elements, and consider F(C(G2, G1))⊗F1k.
Then for each point ν of F(G1), respectively F(G2), the cone F(C(G2, G1))⊗F1k contains
an affine m2-space defined by ν and the vertices of G2, respectively an affine m1-space
defined by ν and the vertices of G1. Two by two, these affine m2-spaces, respectively
affine m1-spaces, are disjoint and the union of F(G1), F(G2) and the affine m1- and
m2-spaces thus obtained is the set of k-points of F(C(G2, G1)) ⊗F1 k. Now take two

Page 61

Chapter 3. Counting Polynomial and Zeta Equivalence

points ν1 of F(G1) and ν2 of F(G2), then the intersection of the m2-space associated to
ν1 and the m1-space associated to ν2 is a projective line minus the two points ν1 and ν2.

Besides, due to the fact that the m2-affine spaces added by the cone construction
on the points of F(G1) are disjoint two by two, all intersections of the affine spaces
associated to vertices of G1 inside F(C(G2, G1)) happen on the level of F(G1). The
same facts occur with the m1-affine spaces and F(G2). Hence, one can count the rational
points of the set F(C(G2, G1))⊗F1 k by multiplying the polynomial P(G1) (respectively
P(G2)), which carries the information of the dimensions and intersections of the affine
spaces on the level of F(G1) (respectively F(G2)), by a factor Lm2 (respectively Lm1).
The order of F(C(G2, G1))⊗F1 k is then

P(G1)(q)qm2 + P(G2)(q)qm1 − P(G1)(q)P(G2)(q)(q − 1), (3.35)

where the last term stands for the points which are double counted due to the intersec-
tions of the m1- and m2-affine spaces. �

Putting G1 equal to a graph consisting of two vertices, one obtains the formula of
subsection 3.5.3 after having added r and s loose edges to these vertices. In fact, one
easily calculates the Grothendieck polynomial of a general cone with base and vertex
loose graphs.

Theorem 3.5.5. Let G1 and G2 be loose graphs (disjoint, as above). Let the number
of vertices of G1 be m1 and the number of vertices of G2 be m2. Let G̃1 and G̃2 be their
respective reduced graphs (the ones without loose edges). Denote the degree of a vertex v
in Gi by degGi

(v), i = 1, 2. Then we have that the Grothendieck polynomial of the cone
C(G2, G1) (in Z[L]), where k is any finite field, is given by

P(C(G2, G1)) = P(G̃1)Lm2 + P(G̃2)Lm1 − P(G̃1)P(G̃2)(L− 1)

+Lm2
∑
v∈G1

(LdegG1 (v) − Ldeg
G̃1

(v)) + Lm1
∑
v∈G2

(LdegG2 (v) − Ldeg
G̃2

(v)). (3.36)

Proof. By Theorem 3.5.4, we know the Grothendieck polynomial of C(G̃2, G̃1) for
any finite field k. Now for each vertex u ∈ Gi, add a term LdegGi

(u)+mj − Ldeg
G̃i

(u)+mj ,
where {i, j} = {1, 2}. �

As a direct consequence, we obtain a simple formula when the vertex of the cone
is a graph consisting of one single vertex.

Corollary 3.5.6. Let G1 be the graph consisting of one vertex v and let G2 be a loose
graph with m2 vertices. Then

P(C(G2, G1)) = Lm2 + P(G2).

Page 62

3.5. Surgery

Loose graph cones versus “classical cones” — Caution!

Let G1 and G2 be loose graphs, and let k be a field. As above, we see G1 and G2
as being embedded in some F1-projective space, and they generate subspaces which are
disjoint. For A and B two disjoint point sets in a projective space Pk over k, by A×B
we denote the set of points which are on lines containing a point of A and a point of B.

One might be tempted to think that the following identity holds:

F(C(G1, G2))⊗F1 k
∼= (F(G1)⊗F1 k)× (F(G2)⊗F1 k), (3.37)

that is, that the following diagram commutes:

G1, G2 C(G1, G2)

F(G1)⊗F1 k, F(G2)⊗F1 k (F(G1)⊗F1 k)× (F(G2)⊗F1 k)

C

(⊗F1 k)◦(F)

×

(⊗F1 k)◦(F)

In general, this is not the case. We will give two simple examples in which (taken
that k is finite), respectively, |F(C(G1, G2))⊗F1 k| > |(F(G1)⊗F1 k)× (F(G2)⊗F1 k)|
and |F(C(G1, G2))⊗F1 k| < |(F(G1)⊗F1 k)× (F(G2)⊗F1 k)|. So there isn’t even a fixed
direction in which inclusion would work for general examples.

Example 3.5.7. Let G2 the graph of a projective line over F1, and let G1 be the
loose graph of a projective F1-plane without a multiplicative group (i.e., an affine
F1-plane with two extra points at infinity). Then the Grothendieck polynomial of
C(G2, G1) (see figure 3.8) is L4 + L3 + L2 + 2, while the Grothendieck polynomial of
(F(G1)⊗F1 k)× (F(G2)⊗F1 k) is

(L + 1)(L2 + 2)(L− 1) + (L + 1) + (L2 + 2) = L4 + 2L2 + L + 1. (3.38)

G2G1

Figure 3.8: Cone constructed from a projective plane without a multiplicative group and a
projective line.

Note that when the two points at infinity of G1 wouldn’t be there, both construc-
tions would yield the same number of points. (When those two points are then added
in G1, the two closed points in G2 suddenly see 4-dimensional spaces instead of planes.)

Page 63

Chapter 3. Counting Polynomial and Zeta Equivalence

Example 3.5.8. Let both G1 and G2 be the loose graph of an affine plane over F1.
Then the Grothendieck polynomial of C(G2, G1) (figure 3.9) is 2L3 − L + 1, while the
Grothendieck polynomial of (F(G1)⊗F1 k)× (F(G2)⊗F1 k) is

L2 · L2 · (L− 1) + 2L2 = L5 − L4 + 2L2. (3.39)

G2G1

Figure 3.9: Cone constructed from two affine planes.

3.5.5 Affection Principle
Having studied a number of local situations, we now determine what happens

when one resolves an edge in a general finite loose graph. For that purpose, we consider
a finite loose graph Γ, and let P(Γ) be its Grothendieck polynomial. We choose an edge
uv which is not loose, and we compare P(Γ) and P(Γuv).

We have seen in the previous subsections that for each finite field Fq, the number of
Fq-rational points of F(Γ)⊗F1Fq is given by substituting the value q for the indeterminate
in P(Γ). As locally each closed point of F(Γ)⊗F1 Fq =: Xq corresponding to a vertex
yields an affine space (of which the dimension is the degree of the vertex), its number of
points can be expressed through the Inclusion-Exclusion principle. Call the vertices of
Γ v1, . . . , vr, and let for each vi, Ai be the local affine space at vi of dimension deg(vi).
Then one can calculate the number of points (over any Fq) through the expression

r∑
i=1

(−1)i+1
(∑

1≤j1<···<ji≤r
|Aj1 ∩ · · · ∩ Aji |

)
. (3.40)

So to start with, we have to control the intersections of type Ax ∩ Ay — in other
words, the intersections Ax ∩ Ay (since the former intersections are controlled by the
behavior at infinity). Here, A denotes the projective completion of A.

Calling d(·, ·) the distance function in Γ defined on V × V , V being the vertex set
(so that, for example, d(s, t), with s and t distinct vertices, is the number of edges in
a shortest path from s to t), and taking into account the intersection of affine spaces
explained in subsection 2.3.3, we will show we only need to consider what happens in
the vertex set

B(u, 1) ∪B(v, 1) (3.41)
when resolving uv, where B(c, k) := {v ∈ V | d(c, v) ≤ k}. Below, we will also use
the notation v⊥ = {v}⊥ for {w ∈ V | d(v, w) = 1}, and then {v, v′}⊥ := v⊥ ∩ v′⊥. In
particular, we have that B(c, 1) = {c} ∪ c⊥.

Page 64

3.5. Surgery

The two next lemmas are immediate.
Lemma 3.5.9. Let Γ be a finite connected loose graph, and let u and v be distinct
vertices. Let k be any field, and consider the k-constructible set F(Γ)⊗F1 k. Then if
d(u, v) ≥ 2, we have that

Au ∩ Av = ∅. (3.42)
(If d(u, v) ≥ 3, Au ∩ Av = ∅.)
Lemma 3.5.10. Let Γ be a finite connected loose graph, and let A be a set of distinct
vertices. Let k be any field, and consider the k-constructible set F(Γ)⊗F1 k. If ∩a∈AAa =
∅, then this intersection remains empty after resolving an arbitrary edge.
Theorem 3.5.11 (Affection Principle). Let Γ be a finite connected loose graph, let xy
be an edge on the vertices x and y, and let S be a subset of the vertex set. Let k be any
finite field, and consider F(Γ)⊗F1 k. Then ∩s∈SAs changes when one resolves the edge
xy only if |S ∩

(
B(x, 1) ∪B(y, 1)

)
| ≥ 2.

Proof. We first handle the case when |S| = 2, so we put S = {u, v}. As the loose
edges on u and v clearly play no role in any change which could occur on Au ∩Av when
resolving xy, we will work w.l.o.g. in the reduced graph Γ̃, which is Γ without loose
edges; we will keep using the same notation for x, y, u, v.

Clearly if xy 6∈ P(B(u, 1)∪B(v, 1)) =: Pu,v, then Au∩Av will not change through
resolving xy, as Au ∪ Av ⊆ Pu,v.

Now suppose that (e.g.) u 6∈ B(x, 1)∪B(y, 1); then obviously v ∈ {x, y}∪{x, y}⊥
(as in each of those cases xy ∈ Av, and otherwise not). For, if xy ∈ Pu,v, then
{x, y} ⊆ (u⊥ ∪ {u}) ∪ (v⊥ ∪ {v}); if u 6∈ B(x, 1) ∪B(y, 1) (y 6∼ u 6∼ x and y 6= u 6= x),
then x, y ∈ v⊥ ∪ {v}, so v ∈ {x, y} ∪ {x, y}⊥.

Suppose first that v = x. If d(x, u) ≥ 3, then Au ∩ Av = ∅ by Lemma 3.5.9, and
after resolution of xy this stays the empty set. If d(x, u) = 2, then Au ∩ Av remains
unchanged when resolving xy. For, first note that u 6∼ y as u 6∈ B(x, 1) ∪ B(y, 1).
Consider Pu,v = Pu,x = P(B(u, 1) ∪B(x, 1)) in Γ; since 〈Au,Ax〉 = Pu,x and dim(Pu,x)
does not change after resolving xy (in Γxy we also have 〈Au,Ax〉 = Pu,x and the
dimensions of Au, Ax remain the same), we have that Au ∩ Ax does not change either
(dim(Au ∩ Ax) is in both cases determined by |u⊥ ∩ x⊥|).

The case v = y is of course similar.
Now let v ∈ x⊥ ∩ y⊥. By considering the cases d(u, v) = 1, d(u, v) = 2 and

d(u, v) ≥ 3, one again easily concludes that Au ∩Av remains unchanged when resolving
xy.

We conclude that if Au ∩ Av changes after resolving xy, then {u, v} ⊆ B(x, 1) ∪
B(y, 1). The general statement now immediately follows. �

In the next corollary, Γ|Pu,v (e.g.) is the loose graph induced by Γ on the vertex
set B(u, 1) ∪B(v, 1).

Page 65

Chapter 3. Counting Polynomial and Zeta Equivalence

Corollary 3.5.12 (Geometrical Affection Principle). Let Γ be a finite connected loose
graph, let xy be an edge on the vertices x and y, and let k be any finite field. The
difference in the number of k-points of F(Γ)⊗F1 k and F(Γxy)⊗F1 k is

∣∣∣∣F(Γ|Px,y)⊗F1 k

∣∣∣∣
k
−
∣∣∣∣F(Γxy |Px,y

)⊗F1 k

∣∣∣∣
k
. (3.43)

In this expression, Γ may be chosen to be reduced (but after resolving xy, one is of
course not allowed to reduce Γxy).

Proof. Suppose that u and v are distinct vertices of Γ, and suppose that Au ∪ Av

changes through resolution of xy. By Theorem 3.5.11, we have that

{u, v} ⊆ B(x, 1) ∪B(y, 1). (3.44)

By inspection of the possibilities, one reasons that {u, v} ∩ {x, y} 6= ∅ (see section
3.7 for more details). This implies that

(
Au ∪Av

)
\
(
F(Γ|Px,y)⊗F1 k

)
does not change

through resolution of xy. Letting u, v vary over V × V , where V is the vertex set of Γ,
and considering

∣∣∣∣ ∪v∈V Av

∣∣∣∣
k

=
∣∣∣∣F(Γ)⊗F1 k

∣∣∣∣
k
before and after resolution, the statement

follows. �

In terms of Grothendieck polynomials, we have the following corollary.

Corollary 3.5.13 (Polynomial Affection Principle). Let Γ be a finite connected loose
graph, let xy be an edge on the vertices x and y, and let k be any finite field. Then we
have

P(Γ)− P(Γxy) = P(Γ|Px,y)− P(Γxy |Px,y
). (3.45)

3.5.6 Polynomial Affection Principle: calculation

Let Γ be a finite connected loose graph, and let e be an edge with vertices x and
y. Applying the Polynomial Affection Principle, we want to calculate

P(Γ)− P(Γxy) = P(Γ|Px,y)− P(Γxy |Px,y
), (3.46)

in terms of certain data inside B(x, 1) ∪B(y, 1).

As before, we are allowed to assume that Γ is reduced (but not after resolution
of e). Also, by the Affection Principle, we only need to calculate the difference
P(Γ|Px,y)− P(Γxy |Px,y

), so that we may replace Γ by Γ|Px,y . We keep using the notation
“Γ” for the sake of convenience.

Page 66

3.5. Surgery

Before resolution
Define ∆ to be the graph (not the loose graph!) which is induced by Γ on the

vertices of (B(x, 1) ∪B(y, 1)) \ {x, y}, and let G be the graph (not the loose graph!)
which is induced by Γ on the vertices of (B(x, 1)∩B(y, 1))\{x, y}. (For a representation
of the ball B(x, 1) ∪B(y, 1), see figure 3.10.) It is important to note that x and y are
not contained in G. Let GL be the loose graph which contains as vertex set the vertices
of G, and as edge set the edges of ∆ which contain a vertex of G and a vertex of ∆.
(Note that G is a subgraph of GL.) Let GL

x be the loose graph which has as vertex set
the vertices of G, and as edge set the edges of ∆ which contain a vertex of G and a
vertex of B(x, 1) (\{y}). Define GL

y similarly, and note that G is a subgraph of both
GL
x and GL

y .

x⊥ \ {y} y⊥ \ {x}

x y

Figure 3.10: The ball B(x, 1) ∪B(y, 1).

By the Inclusion-Exclusion principle, we know that P(Γ) is given by the expression

P(Γ) = P(Ax) + P(Ay) + P(C(GL, xy))− P(Ax ∩ C(GL, xy))

−P(Ay ∩ C(GL, xy))− P(Ax ∩ Ay) + P(Ax ∩ Ay ∩ C(GL, xy)). (3.47)

Here xy is seen as the graph on the vertices x and y (i.e., a projective line).

As Ax ∩ Ay ⊆ C(GL, xy), we have that

Ax ∩ Ay ∩ C(GL, xy) = Ax ∩ Ay, (3.48)

so that the last two terms in Equation (3.47) cancel each other. As we will see, it will
be easier to calculate the following equivalent expression:

P(Γ) = P(Ax) + P(Ay) + P(∆) + (P(C(GL, xy))− P(GL))

−P((Ax ∩ C(GL, xy)) \GL)− P((Ay ∩ C(GL, xy)) \GL). (3.49)

Page 67

Chapter 3. Counting Polynomial and Zeta Equivalence

Note that in this last equation, since GL is a loose subgraph of ∆, after adding
P(∆) to the polynomials we need to subtract some terms depending on P(GL) to avoid
double counting of points. Also, we have thatP(Ax ∩ C(GL, xy)) \GL) = P(C(GL

x , xy))− P(C(GL
x , y))

P(Ay ∩ C(GL, xy)) \GL) = P(C(GL
y , xy))− P(C(GL

y , x)).
(3.50)

Remark 3.5.14. Notice that for all computations we replaced Γ by Γ|Px,y but we
did not consider edges of the form ux or vy, where u /∈ y⊥ and v /∈ x⊥. The reason
why these edges are not necessary to be considered relies on the fact that the spaces
Au, Av, Au and Av do not change through the resolution of the edge xy. However, we
can not omit vertices that are also adjacent to some vertex of G because the spaces
Aw and Aw, for w ∈ G, are indeed affected by the surgery process. For a more detailed
proof of this property, we refer to Lemma 3.7.6.

All other edge types inside B(x, 1) ∪ B(y, 1) are considered either in ∆ or in
C(GL, xy).

After resolution
After having resolved the edge e, we make a similar calculation (which is in fact

a bit easier because the intersection of Ax and Ay is also easier). We keep using the
same notation. In figure 3.11, we can see how the ball B(x, 1) ∪B(y, 1) looks like after
resolving the edge xy.

Instead of considering the loose graph cone C(GL, xy) in the Inclusion-Exclusion
principle, we only have to consider the loose graph GL

(2), which is GL with two loose
edges added per vertex (one for x and one for y), in order to reach all the points of
F(Γ)⊗F1 (k). So our starting point is

P(Γ) = P(Ax) + P(Ay) + P(∆) + (P(GL
(2))− P(GL))

−P((Ax ∩GL
(2)) \GL)− P((Ay ∩GL

(2)) \GL), (3.51)
remarking that we immediately started with the more simple equation, and that as in
the previous subsection the terms involving Ax ∩ Ay cancel out.

We immediately obtain a simple expression in the following theorem.

Theorem 3.5.15 (Reduction to components). Let {Cj|j ∈ J} be the set of connected
components of GL. Furthermore, for each j ∈ J , let Cj ∩GL

x be denoted by Cjx (and use
a similar notation for y). Then

P(Γ) = P(Ax) + P(Ay) + P(∆) +
∑
j∈J

(L2 − 1)P(Cj)

−
∑
j∈J

(L− 1)P(Cjx)−
∑
j∈J

(L− 1)P(Cjy). (3.52)

Page 68

3.5. Surgery

x⊥ y⊥

x y

Figure 3.11: After resolution of the edge xy.

It is important to note that for each expression P(C`), P(C`x) and P(C`y), one has
to take the embedding in respectively GL, GL

x and GL
y into account.

Before starting the proof, it is useful to notice that the connected components of
GL correspond to the connected components of G. Also, note that any Cjx and any Cjy
is connected.

Proof. First note that if GL is connected, then it follows that

P(Γ) = P(Ax) + P(Ay) + P(∆) + (L2 − 1)P(GL)

−(L− 1)P(GL
x)− (L− 1)P(GL

y). (3.53)

Now let there be more than one connected component, and consider an arbitrary
component Ck (k ∈ J). Then C({x, y},Ck) ⊆ Γ, and the Grothendieck polynomial of
C({x, y},Ck) \ (Ax ∪Ay ∪∆) is (L2− 1)P(Ck)− (L− 1)P(Ckx)− (L− 1)P(Cky). It is easy
to see that Γ is covered by

Ax, Ay, ∆, C({x, y},Cj)|j ∈ J , (3.54)

so if we prove that for any field k and i 6= j ∈ J the following holds:

(F(C({x, y},Ci))⊗F1 k) ∩ (F(C({x, y},Cj))⊗F1 k)
⊆ Ak,x ∪ Ak,y ∪ (F(∆)⊗F1 k),

(3.55)

then we are done (since each of Ax, Ay, ∆, C({x, y},Cj)|j∈J is contained in F(Γ)⊗F1 k).
Here, and below, as usual we work in the projective space 〈F(Γ)⊗F1 k〉. Let us remark
that by Ak,x we mean the affine space over the field k associated to the vertex x of Γ.

So suppose C and C̃ are different connected components of GL, such that there is a
point z in (F(C({x, y},C))⊗F1 k) ∩ (F(C({x, y}, C̃))⊗F1 k) and which is not contained
in Ak,x ∪ Ak,y ∪ (F(∆) ⊗F1 k). By the structure of ξ := F(C({x, y},C)) ⊗F1 k and

Page 69

Chapter 3. Counting Polynomial and Zeta Equivalence

ξ̃ := F(C({x, y}, C̃)⊗F1 k, it follows that there are affine spaces A ⊆ ξ ∩ (F(∆)⊗F1 k)
and Ã ⊆ ξ̃ ∩ (F(∆) ⊗F1 k), corresponding to, respectively, a vertex of C and C̃, such
that z ∈ 〈x, y,A〉 ∩ 〈x, y, Ã〉. For, F(C) ⊗F1 k, respectively F(C̃) ⊗F1 k, is covered by
affine spaces {Aµ}|µ, respectively {Aν}|ν , corresponding to vertices of C, respectively C̃,
so F(C({x, y},C))⊗F1 k, respectively F(C({x, y}, C̃))⊗F1 k, is covered by affine spaces
{Aµ,x,y}|µ, respectively {Aν,x,y}|ν , together with Ax and Ay. Here A`,x,y, corresponding
to the vertex l, denotes the affine space which contains A` and the two extra directions
defined by the edges lx and ly.

It follows that z ∈ Ax,y ∩ Ãx,y (where we use the same notation as above), and
this is the desired contradiction, as these spaces are obviously disjoint. �

Remark 3.5.16 (On components). The subdivision in connected components as in
Theorem 3.5.15 is necessary. Consider for example the graph Γ = (V,E, I) with
V = {x, y, u, v, w} and E = {xu, xv, yu, yv, yw,wu,wv}. Then GL consists of the
vertices u, v with loose edges uw, vw (embedded in a projective plane), and hence
has two connected components (see figure 3.12). If GL would be considered as being
an affine plane with two additional points u, v but without the vertex w (that is, if
P(GL) = L2 + 1), the formula

P(Γ) = P(Ax) + P(Ay) + P(∆) + (L2 − 1)P(GL)

−(L− 1)P(GL
x)− (L− 1)P(GL

y) (3.56)

would yield too many points. In other words: GL can not be considered (on the
polynomial level) as being “∆ without w.”

u

v

w

x y

u

v

Figure 3.12: The loose graphs Γ and GL.

The difference
The difference between the polynomials before and after resolution is now given

by

Page 70

3.5. Surgery

P(Γ)− P(Γxy) = (P(C(GL, xy))− P(GL))− P((Ax ∩ C(GL, xy)) \GL)
−P((Ay ∩ C(GL, xy)) \GL)−

∑
j∈J

(L2 − 1)P(Cj)

+
∑
j∈J

(L− 1)P(Cjx) +
∑
j∈J

(L− 1)P(Cjy). (3.57)

3.5.7 Steps of surgery
In section 3.3 we defined a function to compute the Grothendieck polynomial of

any loose tree and in the previous subsections we showed that for any loose graphs Γ
and Γxy, their difference of Grothendieck polynomials can be locally computed in a
neighborhood of x and y. In fact, this difference also depends on certain loose graphs
with a lower number of vertices or edges. All these features motivated the idea to
develop an inductive process, called surgery, that allows us to compute the Grothendieck
polynomial of any loose graph Γ.

Before describing the process we need to prove the next result. Recall that a
spanning tree of a graph Γ is a tree which is a subgraph of Γ and has the same set of
vertices as Γ. It is well known that each connected graph has at least one connected
spanning tree.
Theorem 3.5.17. Each connected loose graph Γ has a connected loose spanning tree
which contains all the loose edges.

Proof. Let S be the set of loose edges of Γ. As Γ is connected, the reduced graph
Γ̃ (obtained from Γ by deleting all elements of S) is a connected graph. So it has a
connected spanning tree T ′. Now add S to T ′ to obtain a connected loose spanning
tree T of Γ which contains all the loose edges. �

Let Γ be any finite connected loose graph, let S be its set of loose edges and Γ̃ be
its reduced graph. Let T ′ be a spanning tree of Γ̃, and note that if C is a cycle in Γ, it
remains a cycle in Γ̃. Define S̃ to be the set of edges in Γ̃ \ T ′; it is by definition the set
of fundamental edges of Γ̃ with respect to the spanning tree T ′. (If one takes any edge
e ∈ S̃, then adding e to T ′ defines a unique cycle called “fundamental cycle.”)

Now resolve each edge in S̃ in the loose graph Γ (in precisely |S̃| steps) as explained
above, to obtain a loose tree T , which contains T ′ up to a number of additional loose
edges. Below, we can see an example of Γ, T ′ and T (example 3.5.19). We apply the
map from definition 3.3.1 so as to obtain a counting polynomial for T . Take an edge e
with vertices x and y that was resolved and consider the loose graph T e in which all
other edges of S̃ except e are resolved, i.e., T e is the next-to-last step in the procedure of
obtaining T . Thanks to Corollary 3.5.13, we can compute the counting polynomial for
T e by restricting to Px,y and, by repeating this process exactly |S̃| times, we inductively
obtain the counting polynomial for Fk(Γ).

Page 71

Chapter 3. Counting Polynomial and Zeta Equivalence

Observation 3.5.18. The procedure of surgery is one of the main targets of this PhD
and more important than only finding the formulae for counting the number of rational
points of constructible sets coming from loose graphs. Indeed, it is fundamental to see
that for computing the number of rational points of a constructible set coming from a
loose graph, one can “loosen” the intersections of its affine spaces, while lowering the
number of cycles of the corresponding loose graph, go to a higher dimensional projective
space to make computations easier and understand locally those intersections needed
to eventually get the right number of points.

Example 3.5.19. A graph Γ, one of its loose spanning trees T ′ and the loose
tree T

To see a full computation of the surgery process for this example, see Appendix A.

Theorem 3.5.20. Let Γ be a loose graph and let Γ̃, T ′ and T be defined as above. Then
the Grothendieck polynomial of Fk(T) is independent of the choice of the spanning tree
T ′ of Γ̃.

Proof. To prove this theorem it is enough to remark that resolving a fundamental
edge e of Γ̃ is equivalent to replacing the edge e in Γ by two different loose edges, one in
each end point of e. Hence, the degrees of the vertices of Γ are invariant after resolving
all fundamental edges of Γ̃. This implies that for any spanning tree T ′ of Γ̃, the set of
vertices of T (and their respective degrees) is the same as in Γ. The result follows from
the fact that the Grothendieck polynomial of a loose tree only depends on the vertices
and its spectrum of degrees. �

We will prove now that the surgery process to compute the Grothendieck polyno-
mial is “well defined” for any loose graph. Essentially, the reason why this holds is that
we have not used any particular field property throughout.

Theorem 3.5.21. Let Γ be a loose graph and Fk(Γ) be its associated k-constructible
set, with k a finite field. The Grothendieck polynomial PΓ(L) (also denoted by P(Γ))
obtained by surgery is independent of the choice of loose spanning tree, and the chosen
order of edge resolution.

Proof. Suppose that we carry out two different surgery processes in order to obtain
a Grothendieck polynomial of Γ. A difference between two processes could occur either
by choosing different loose spanning trees of Γ or by computing the edge resolution in a
different order, starting from the same loose spanning tree.

Page 72

3.6. Lifting K0(SchF1), II

Let PΓ(L) and P ′Γ(L) be the two polynomials in Z[L] obtained for Γ. Since both
polynomials, for each finite field k = Fq, count the number of k-rational points of Fk(Γ),
it turns out that

PΓ(q) = P ′Γ(q), (3.58)
for any prime power q. This proves the equality of the two polynomials. �

We finish this section by stating the theorem proved by developing the surgery
process.

Theorem 3.5.22. Let Γ be a loose graph and let FFq(Γ) be its Fq-constructible set, for
Fq any finite field. Then FFq(Γ) is polynomial-count. Besides, FFq(Γ) is zeta-equivalent
to an object of CSFq of which the Grothendieck class is a Z-linear combination of classes
of affine spaces [Ai]Fq .

Proof. To prove this statement we only need to prove that for each constructible
set FFq(Γ) there exists a polynomial PΓ(T) = ∑

i≥1 aiT
i ∈ Z[T] such that for every

finite extension Fqn/Fq, we have ∣∣∣FFq(Γ)
∣∣∣
qn

= PΓ(qn).

This is exactly the polynomial P(Γ) obtained in the surgery process, which can
be expressed as a polynomial in Z[T]. Hence, the theorem is proved. �

Remark 3.5.23. If q is big enough, one can construct a scheme γ ∈ SchFq such that
[γ]Fq coincides with the class of the constructible set FFq(Γ).

In Appendix B, we describe a full algorithm implemented in Magma to compute
the Grothendieck polynomial PΓ(T) for any loose graph Γ.

3.6 Lifting K0(SchF1), II
In surgery, for all finite fields k 6= F1 we have counted k-rational points, and

showed that for each loose graph Γ there is a unique polynomial in Z[L] which yields
this number for each finite field k, independent of the choices made in surgery. For
k = F1, counting points works differently at first sight, as the number of vertices of the
loose graph simply equals the number of closed points of the associated F1-constructible
set (so that several polynomials could be worthy candidates). Still, on the other hand,
the Grothendieck polynomial obtained from a given loose graph is independent of the
field k, so this fact strongly suggests that the same polynomial should correspond to the
situation evaluated over F1. And indeed, since any statement we made, and property
we use, relies only on the intersection properties of affine spaces — which carry over
without change to k = F1 — the polynomial P(Γ) = Pk(Γ) with k any finite field also
yields a natural definition for “the” Grothendieck polynomial of Γ over F1, and it also
counts the number of closed points over F1.

Page 73

Chapter 3. Counting Polynomial and Zeta Equivalence

3.7 Class of Fk(Γ) in K0(Schk)
We have proved that every constructible set arising from a loose graph is polynomial-

count and zeta-equivalent to a Z-linear combination of classes of affine spaces. It seems
natural now to ask whether the class of such type of constructible sets in the Grothendieck
ring K0(Schk) belongs to the polynomial ring Z[L]. In other words, whether for a loose
graph Γ, [Fk(Γ)] is a virtual mixed Tate motive.

The answer to this question is affirmative and the proof of this fact is the main
purpose of this section.

Theorem 3.7.1. Let Γ be any loose graph, and let k 6= F1 be any finite field. Then the
class [Fk(Γ)] ∈ K0(Schk) is a virtual mixed Tate motive.

We proceed with the proof by induction on the number N which is the sum of the
number of edges and the number of vertices of a loose graph. For the case of loose trees,
the function defined in section 3.3 already gives the class of a tree as a polynomial in
Z[L]. So, we will assume that Γ is not a loose tree.

Note that we may also suppose w.l.o.g. that Γ is connected (and note that
resolving an edge on a connected loose graph not necessarily yields again a connected
loose graph). Note also that resolution of edges on trees is not defined.

We state some lemmas that will allow us to prove the main Theorem 3.7.1. The
following is easy. It rests on the following observation: if for each vertex v ∈ Γ, Av is
the affine subspace of Av determined by the directions which are not loose edges, then

Fk(Γ) = Fk(Γ̃)
∐(⋃

v∈Γ
(Av \ Av)

)
, (3.59)

where each Av \Av = Av ∩ (P \Av) is constructible and P is the ambient space of Fk(Γ).

Lemma 3.7.2. In K0(Schk), we have that [Fk(Γ)] ∈ Z[L] if and only if [Fk(Γ̃)] ∈ Z[L],
with Γ̃ the reduced graph of Γ.

By Lemma 3.7.2, we may thus suppose that Γ is a graph. Now suppose e = xy is
an edge, with x and y its incident vertices. Resolve the edge xy to obtain Γxy (this is a
loose graph).

Remark 3.7.3. Notice that intersecting with a projective space commutes with the
functor Fk(·). We will prove this remark in the following lemma.

Lemma 3.7.4. Let us denote by P = KV the complete graph defined on a subset V of
vertices of Γ and let us call Pk the k-projective space defined by P. Then Fk(Γ) ∩ Pk =
Fk(Γ ∩P).

Page 74

3.7. Class of Fk(Γ) in K0(Schk)

Proof. Let Sw be the loose star of a vertex w of Γ, that is, the loose subgraph of
Γ formed by the vertex w and all its incident edges.

It is easy to check that Fk(Γ ∩P) is a constructible set of Fk(Γ) ∩ Pk since Γ ∩P
is a subgraph of both Γ and P. Consider now a point x ∈ Fk(Γ) ∩ Pk. Then, from the
definition of Fk (see definition 2.4.2), x belongs to Spec(Av) ∩ Pk, for a vertex v ∈ Γ.
The latter constructible set is defined by the part of the loose star Sv ⊆ Γ inside P,
i.e., by Sv ∩P. This concludes the proof since Sv ∩P is a subgraph of Γ ∩P and so
x ∈ Fk(Sv ∩P) ⊆ Fk(Γ ∩P). �

The following lemma, in the spirit of Corollary 3.5.13, shows that we can restrict
ourselves to local considerations.

Lemma 3.7.5. In K0(Schk), we have that [Fk(Γ)] − [Fk(Γxy)] ∈ Z[L] if and only if
[Fk(Γ ∩Px,y)]− [Fk(Γxy ∩Px,y)] ∈ Z[L].

Proof. In order to prove the statement, we will compute the difference of classes
[Fk(Γ)]− [Fk(Γxy)]. Thanks to Remark 3.7.3 and the relative topology on Fk(Γ) and
Fk(Γxy), we can deduce that both Fk(Γ ∩Px,y) and Fk(Γxy ∩Px,y) are closed in Fk(Γ)
and Fk(Γxy), respectively. Then, by the relations in the appropriate Grothendieck ring
of schemes, we have that:[Fk(Γ)] = [Fk(Γ ∩Px,y)] + [Fk(Γ) \ Fk(Γ ∩Px,y)],

[Fk(Γxy)] = [Fk(Γxy ∩Px,y)] + [Fk(Γxy) \ F(Γxy ∩Px,y)].
(3.60)

We will prove that the last terms on the right-hand side of the equations are
the same. Let Γ′ = Γ ∩Px,y and Γ′xy = Γxy ∩Px,y. Note that thanks to the Affection
Principle (see Theorem 3.5.11, and Lemma 3.5.9), in order to compare the classes of
Fk(Γ) \ Fk(Γ′) and Fk(Γxy) \ Fk(Γ′xy) in K0(Schk), we (only) need to take into account
the local affine spaces in Fk(Γ) (Fk(Γxy)) associated to vertices of Γ (Γxy) which are
at distance at most one from the loose graph Γ \ Γ′ (Γxy \ Γ′xy) (since vertices at
distance strictly more than one give rise to affine spaces that remain unchanged through
resolution of xy).

From the definition of Γ′, one deduces that both vertices x and y are at least at
distance two from any vertex of Γ \ Γ′, which implies that(Fk(Γ) \ Fk(Γ′)) ∩ Ax = ∅,

(Fk(Γ) \ Fk(Γ′)) ∩ Ay = ∅.
(3.61)

As resolving the edge xy only changes locally the affine spaces Ax and Ay in F(Γ)
(more precisely in F(Γ′)), and as the distance between x (or y) and Γ \ Γ′ is preserved
through resolution, this process does not affect the local affine spaces in Fk(Γ) \ Fk(Γ′),
nor the intersection of any two of them. Notice that in the case of vertices v ∈ Γ′ at
distance one from Γ \ Γ′, possible changes of the affine space Av in F(Γ) by resolution
of xy do not affect Fk(Γ) \ Fk(Γ′); changes only occur in the completion Av ∩ F(Γ′).

Page 75

Chapter 3. Counting Polynomial and Zeta Equivalence

It is now easy to observe that there is a natural isomorphism between Fk(Γ)\Fk(Γ′)
and Fk(Γxy) \ Fk(Γ′xy) induced by the graph morphism

γ : Γ′′ → Γ′′xy,

where Γ′′ (respectively Γ′′xy) is the subgraph of Γ (respectively Γxy) defined on the
vertex set V (Γ \ Γ′) ∪ {v ∈ Γ′ | d(v,Γ \ Γ′) = 1} (respectively V (Γxy \ Γ′xy) ∪ {v ∈
Γ′xy | d(v,Γxy \Γ′xy) = 1}), and where γ acts as the identity on vertices. This implies that
both classes in K0(Schk) are equal. For, note that Fk(Γ) \Fk(Γ′) and Fk(Γxy) \Fk(Γ′xy)
are constructible sets and write Fk(Γ) \ Fk(Γ′) = ∐

i∈F Wi, where F is a finite set and
each Wi is a locally closed subscheme of the projective space P(Γ). Now γ induces a
decomposition of Fk(Γxy) \ Fk(Γ′xy) in disjoint pieces W̃i, i ∈ F , where W̃i

∼= Wi.
We can then conclude that

[Fk(Γ)]− [Fk(Γxy)] = [Fk(Γ ∩Px,y)]− [Fk(Γxy ∩Px,y)].

�

By Lemma 3.7.5, we may suppose that Γ = Γ ∩Px,y.
The next lemma refines the Affection Principle (Theorem 3.5.11).

Lemma 3.7.6. Let Γ be a graph, xy an edge with vertices x and y and Γxy the graph
after resolving the edge xy. Let u, v be two vertices of Γ and consider Au and Av, the
local affine spaces at u and v in Fk(Γ). The intersection Au ∩Av and the union Au ∪Av

change after resolution only if u, v ∈ {x, y} ∪ (x⊥ ∩ y⊥).

Proof. First let us note that if Au∩Av = ∅, then Au∪Av is stable under resolution.
Consider now a vertex u ∈ x⊥ \ ((x⊥ ∩ y⊥) ∪ {y}). Then, it is clear that neither Au

nor Au ∩ Fk(Γ) changes after resolving the edge xy. The latter is not affected by the
resolution since the edge xy is not in the graph Γ∩B(u, 1). The same holds for vertices
u ∈ y⊥ \ ((x⊥ ∩ y⊥) ∪ {x}). To simplify notation we will write from now on only Au

instead of Au ∩ Fk(Γ) and we consider it embedded in the ambient space of Fk(Γ).
Now suppose that u ∈ x⊥ ∩ y⊥; then the graph defined by xy is a subgraph of the

“part at infinity” of the graph completion of Su, the star associated to u. This implies
that locally at u the changes that occur by resolving xy are contained in Au \ Au, so
the local affine space at u also remains invariant under resolution of xy.

Observe that Au ∩Av and Au ∪Av are controlled by Au, Av, Au, Av and Au ∩Av.
So, if u, v 6= x, y and u, v /∈ x⊥ ∩ y⊥, then indeed Au ∩Av and Au ∪Av are stable under
resolution. In the case where one of u, v ∈ x⊥ ∩ y⊥ and u, v 6= x, y, changes under
resolution will be controlled by Au \Au, Av \Av. This implies that changes in Au ∩Av

are contained in (Au \Au)∩ (Av \Av) = (Au ∩Av) \ (Au ∪Av) so, Au ∩Av and Au ∪Av

are also stable after resolving xy.
Suppose now that v = x and u ∈ x⊥ \ ((x⊥ ∩ y⊥) ∪ {y}). Then Au and Au are

stable after resolution. From the graph theoretical point of view, it is easy to see that

Page 76

3.7. Class of Fk(Γ) in K0(Schk)

Su ∩ Sx (as a subgraph of Γ) remains invariant after resolving the edge xy (considering
the same intersection inside Γxy). Since Au ∩ Ax ⊂ Au ∩ Ax, we deduce that indeed
Au ∩ Ax and Au ∪ Ax are also stable under resolution. The same reasoning holds when
v = y and u ∈ y⊥ \ ((x⊥ ∩ y⊥) ∪ {x}). This concludes the proof. �

Remark 3.7.7. Notice that the reason why the previous spaces are not affected by
the resolution of the edge xy comes as a direct consequence of the fact that the (loose)
subgraphs of Γ defining those spaces do not contain the edge xy.

Remark 3.7.8. Note that the equality of the last terms in the right-hand sides of
(3.60) in Lemma 3.7.5 can also be obtained by applying Lemma 3.7.6.

3.7.1 Main Theorem for cones
We first handle a useful specific case of graphs: the cone C(G2, G1) in the sense

of subsection 3.5.4, where the vertex G1 is the graph which consists of a single vertex.

Lemma 3.7.9. Suppose that either y⊥ = (x⊥ ∩ y⊥) ∪ {x}, or x⊥ = (x⊥ ∩ y⊥) ∪ {y}.
Then [Fk(Γ)] ∈ Z[L].

Proof. Suppose w.l.o.g. that y⊥ = (x⊥ ∩ y⊥) ∪ {x}; then for all vertices v in Γ,
we have that either v = x or v ∼ x. It follows immediately that

[Fk(Γ)] = [Ax] + [Fk(x⊥ ∩ Γ)]. (3.62)

By induction applied on the second term in the right-hand side, the lemma follows.
�

To finish the proof of Theorem 3.7.1, we consider from now on that Γ is a general
loose graph. We will divide the proof in two cases

3.7.2 Γ has no external edges
We assume that there are no edges uv with u ∈ x⊥ \ ((x⊥ ∩ y⊥) ∪ {y}) and

v ∈ y⊥ \ ((x⊥ ∩ y⊥) ∪ {x}) (call such edges “external”) — the case where such edges
exist will be handled separately below.

We also suppose that y⊥ 6= (x⊥ ∩ y⊥) ∪ {x} and x⊥ 6= (x⊥ ∩ y⊥) ∪ {y}, since
otherwise the statement is already true by the previous subsection.

Let u 6= y be any vertex in x⊥ \ (x⊥ ∩ y⊥); let e := ux. Let Γe be the graph
Γ without the edge e (while not deleting u and x); similarly, we define Γexy. As Γe
is a proper subgraph of Γ, induction implies that [Fk(Γe)] ∈ Z[L]. Also, by Lemma
3.7.2, [Fk(Γxy)] ∈ Z[L] if and only if [Fk(Γ̃xy)] ∈ Z[L], and by induction, the latter
expression is true since Γ̃xy is a subgraph of Γ. In the same way, [Fk(Γexy)] ∈ Z[L]. Now
consider [Fk(Γ)] − [Fk(Γe)]. Then obviously [Fk(Γ)] − [Fk(Γe)] ∈ Z[L] if and only if

Page 77

Chapter 3. Counting Polynomial and Zeta Equivalence

[Fk(Γ)]− [Fk(Γxu)] ∈ Z[L]; by Lemma 3.7.5, this holds if and only if [Fk(Γ ∩Px,u)]−
[Fk(Γxu ∩Px,u)] ∈ Z[L]. Now by our assumption, we haveΓ ∩Px,u 6= Γ;

Γxu ∩Px,u 6= Γxu,
(3.63)

so that induction yields that [Fk(Γ)]− [Fk(Γe)] ∈ Z[L]. Since [Fk(Γe)] ∈ Z[L], it follows
that [Fk(Γ)] ∈ Z[L]. �

3.7.3 Γ has external edges
Now suppose Γ has external edges. Suppose Γ′ is the subgraph of Γ which one

obtains by deleting one chosen external edge e = uv. By induction we know that
[Fk(Γ′)] is in Z[L]. Then

Fk(Γ) = Fk(Γ′)
∐(

(Au ∪ Av) \ (∪s∈Γ′A′s)
)
, (3.64)

where Aw is the local affine space at w in Fk(Γ), and A′t is the local affine space at t in
Fk(Γ′) (note that ∪s∈Γ′A′s = Fk(Γ′)). Note that (Au ∪ Av) \ (∪s∈Γ′A′s) is constructible,
as (Au ∪ Av) \ (∪s∈Γ′A′s) = (Au ∪ Av)

⋂(P \ (∪s∈Γ′A′s)), where Au ∪ Av and ∪s∈Γ′A′s are
constructible. Then

[Fk(Γ)] = [Fk(Γ′)] +
[
(Au ∪ Av) \ (∪s∈Γ′A′s)

]
︸ ︷︷ ︸

(A)

. (3.65)

Doing the same for Γxy, we obtain that

[Fk(Γxy)] = [Fk(Γ′xy)] +
[
(Au ∪ Av) \ (∪s∈Γ′xy

A′s)
]

︸ ︷︷ ︸
(B)

, (3.66)

where all the local affine spaces are now considered in Γxy or Γ′xy.
By Lemma 3.7.6, we have that (A) = (B). For, (Au ∪ Av) ∩ A′x = Au ∩ A′x and

(Au ∪ Av) ∩ A′y = Av ∩ A′y do not change when resolving xy, and if w ∈ x⊥ ∩ y⊥, then
(Au ∪Av)∩A′w also does not change through resolution. All the other cases are covered
by Lemma 3.7.6.

After applying induction, we now get that [Fk(Γ)]− [Fk(Γ′)] ∈ Z[L]. �

3.7.4 End of the proof of Theorem 3.7.1
We are able to finally prove the main theorem of the section. Starting from a

connected loose graph Γ, choose any edge xy that is not contained in a loose spanning
tree T ′, and resolve xy. We have shown that

[Fk(Γ)]− [Fk(Γxy)] ∈ Z[L]. (3.67)

Page 78

3.8. Mixed Tate motives in the Grothendieck ring

Now there are two ways to proceed.

(A) Carry out surgery on the constructible set Fk(Γ). Take the loose spanning tree
T ′ of Γ and construct a loose tree T containing T ′, obtained after resolving in Γ
all edges of Γ \ T ′ so as to eventually wind up with a constructible set Fk(T), cf.
section 3.5.7. We have seen that [Fk(T)] ∈ Z[L] in section 3.3. Since by (3.67)
each difference between Grothendieck classes of consecutive steps is an element of
Z[L], we conclude that the same is true for the initial class [Fk(Γ)] as well.

(B) Use the induction hypothesis to conclude that [Fk(Γxy)] ∈ Z[L], so that Fk(Γ) ∈
Z[L].

This concludes the proof of Theorem 3.7.1. �

3.8 Mixed Tate motives in the Grothendieck ring
One very fundamental aspect of the philosophy of F1-geometry is that the number

of F1-rational points of an F1-scheme Y of finite type should equal the Euler characteristic

χ(YC) :=
2 dimY∑
i=0

(−1)ibi (3.68)

where bi := dim(Hi(YC,C)) are the Betti numbers of the complex scheme YC := Y ⊗F1 C.
This idea is deduced from the following thought.

Let X be a smooth projective scheme such that there is a polynomial N(Z) ∈ Z[Z]
that counts Fq-rational points, i.e.

∣∣∣X∣∣∣
qn

= N(q) for every prime power q. As a
consequence of the comparison theorem for singular and `-adic cohomology and Deligne’s
proof of the Weil conjectures ([12, 13]), we know that the counting polynomial is of the
form

N(Z) =
n∑
i=0

b2i Z
i (3.69)

and that bj = 0 if j is odd (cf. [26]). Thus χ = ∑n
i=0 b2i is the Euler characteristic of XC

in this case; it equals N(1), which has the interpretation as the number of F1-rational
points of an F1-model XF1 of X.

Conjecturally, after the Tate conjectures, smooth projective schemes that are
equipped with a counting polynomial as above, are precisely those that come with a
mixed Tate motive. As our construction defines a functor

FZ : LGraph −→ CSZ (3.70)
from the category of loose graphs to the category of constructible sets over Z which
all come with a counting polynomial, a natural question is whether one can derive the

Page 79

Chapter 3. Counting Polynomial and Zeta Equivalence

Betti numbers from loose graphs Γ for which FZ is smooth and projective. As we will
see below (in Theorem 3.8.1), the answer is “yes,” but it is also trivial, since such Γs
always give rise to projective spaces.

In the next theorem, we will use the following property:

INJ If Γ and Γ̃ are nonisomorphic loose graphs, then F(Γ) 6∼= F(Γ̃), and for any field
k, F(Γ)⊗F1 k 6∼= F(Γ̃)⊗F1 k.

Theorem 3.8.1. Let Γ be a connected loose graph, such that χ = F(Γ)⊗F1 Z defines
a (connected) projective Z-variety. Then Γ is a complete graph, and χ is a projective
space.

Proof. Let k be any field, and define χk := F(Γ) ⊗F1 k; then χk is a projective
variety which is embedded in a projective space P over k. For any subvariety V of P,
define V to be its projective closure. Then from an inclusion of varieties U ⊆ V ⊆ P,
we have U ⊆ V ⊆ P. By our construction, we know that χk can be covered by a set
of affine spaces {Av|v ∈ V (Γ)} over k, all embedded in P, where v runs through the
vertices of Γ. As χk is a projective variety (and so equal to its projective closure), all
points at infinity of these spaces are also contained in χk, that is, the projective spaces
they generate are also subvarieties of χk. So Γ is a graph.

We proceed with an induction argument on the number ` of vertices of Γ. (Obvi-
ously, the case v = 1 is trivial.) Let the number of vertices of Γ be ` > 1. Then there
exists a vertex, say x, such that the graph Γ \ {x} (which is the graph — not the loose
graph — induced on the vertex set V (Γ) \ {x}) is connected. Then for any field k,
Px := 〈F(Γ \ {x})⊗F1 k〉 is a proper sub-projective space of P (by CV), and as

F(Γ \ {x})⊗F1 k = Px ∩ (F(Γ)⊗F1 k), (3.71)
F(Γ \ {x}) ⊗F1 k is a projective variety. By induction, it is a projective space. So
F(Γ) ⊗F1 k is a union of two projective spaces, P1 = F(Γ \ {x}) ⊗F1 k and P2 = Ax.
This means that Γ is a (non-disjoint) union of two complete graphs, say K1 and K2
(here, we implicitly use INJ). Now let y be a vertex in K1 ∩K2. Then y is adjacent to
all other vertices of Γ, so by L-D, F(Γ) contains an affine F1-space of dimension `− 1.
As F(Γ)⊗F1 Z defines a projective Z-variety, it must be a projective space of dimension
`− 1 (as the projective closure of Ay is a projective space Ay). �

Note that in the previous theorem, we did not need to ask smoothness.

Page 80

4 A New Zeta Function
for (Loose) Graphs

Zeta functions at their origin are designed to be counting functions. The zeta
function of a number field, for instance, counts integral ideals of a given domain and
Selberg zeta functions count the number of geodesics on a surface. Throughout this
chapter we will introduce and compare two zeta functions on graphs; the well-known
Ihara zeta function and a new zeta function that we will define in the category of loose
graphs. The final section includes a possible connection between the new zeta function
and the chromatic polynomial associated to a given graph.

4.1 Ihara zeta function

In 1966 Ihara [22] first introduced a zeta function for discrete subgroups of the “two
by two” projective linear group over p-adic fields, analogously to Selberg’s zeta function.
Years later, Serre suggested that this zeta function could have a graph-theoretical
interpretation. We will describe in this section how Ihara’s zeta function for graphs is
defined.

Let Γ = (V,E, I) be a finite connected undirected graph with no vertices of degree
1 (“end points”). We define the rank rΓ of Γ to be |E| − |V |+ 1; it is the number of
edges one has to delete from Γ to obtain a spanning tree. Alternatively, one can also
define rΓ as the rank of the fundamental group of Γ. Suppose that rΓ ≥ 1 — that
implies that Γ is not a tree.

Let the edge set E be E = {e1, . . . , en}, and define a new oriented edge set of size
2|E| as follows (where below the edges of E are arbitrarily oriented):

e1, . . . , en; en+1 = e−1
1 , . . . , e2n = e−1

n . (4.1)

Let D = a1a2 · · · ar be a directed closed path in Γ (all the ai are edges and they
are directed in the same direction). We consider the equivalence class [D] of a path D

Page 81

Chapter 4. A New Zeta Function for (Loose) Graphs

to be the set

[D] = {a1a2 · · · ar, a2a3 · · · ara1, . . . , ara1 · · · ar−1}. (4.2)

We define the length ν(D) of D to be the number r. We say a path D is
backtrackless if ai+1 6= a−1

i for all i ∈ {1, . . . , r − 1}, and it is tailless if ar 6= a−1
1 . The

path D is primitive if D 6= Fm for any positive integer m ≥ 2 and any directed path
F . Remember that the mth-power Fm of a path F is the graph with the same set of
vertices of F obtained by adding edges between each pair of vertices of F at distance at
most m.

A prime path for Γ is an equivalence class [P] of closed backtrackless tailless
primitive (directed) paths in Γ.

Definition 4.1.1. The Ihara zeta function of Γ is now defined as follows:

ζ(u,Γ) :=
∏

[P] prime
(1− uν(P))−1. (4.3)

where u ∈ C with |u| sufficiently small.

Theorem 4.1.2 (Bass [1]). The Ihara zeta function ζ(u,Γ) is a rational function
satisfying:

ζ(u,Γ)−1 = (1− u2)rΓ−1det(id− AΓu+QΓu
2), (4.4)

where id is an identity matrix, AΓ the adjacency matrix of Γ, and QΓ the diagonal
matrix whose j-th diagonal entry is (−1+ degree of j-th vertex). (One has to number
the vertices in order to obtain id, AΓ and QΓ; all are (|V | × |V |)-matrices.)

Remark 4.1.3. Remember that the adjacency matrix AΓ of a graph Γ is a (|V | × |V |)-
matrix where aij is 1 if there is an edge from the vertex vi to vj and 0 otherwise.

Remark 4.1.4. ζ(u,Γ)−1 is a polynomial of degree 2|E|.

Example 4.1.5. If Γ is a tree, there are no closed paths so we have an empty product
in the definition of the Ihara zeta function. Hence, ζ(u,Γ) = 1 for any tree.

Now let |E| = m, and define a (2m× 2m)-matrix E (the “edge adjacency matrix”)
by letting the ij-th entry be 1 if the terminal vertex of ei is the initial vertex of ej,
provided that ej 6= e−1

i . Otherwise, the entry is 0. Then Hashimoto [19] proved that
the Ihara zeta function of Γ can also be calculated as

ζ(u,Γ)−1 = det(id− uE). (4.5)

In other words, the roots of ζ(u,Γ)−1 (with multiplicities) are the eigenvalues
(with multiplicities) of E. So two graphs have the same Ihara zeta function if and only

Page 82

4.2. Schemes defined over F1 à la Kurokawa

if they are isospectral with respect to the edge adjacency matrix.

The following properties/values can be read from the Ihara zeta function of a
(finite connected undirected) graph (with no vertices of degree 1, and rank ≥ 1):

• whether it is bipartite or not;

• its number of vertices and edges;

• whether it is regular, and if so, its regularity degree and spectrum.

For more details on how to read these properties from the zeta function, one can
go to [6].

4.2 Schemes defined over F1 à la Kurokawa
Consider a scheme X of finite type over Z. Recall from subsection 3.2.1 that

a point x ∈ X is closed if and only if its residue field k(x) is finite. We define the
arithmetic zeta function ζX(s) of the scheme X as

ζX(s) =
∏
x

1
1−N(x)−s .

where the product is taken over all closed points x of the scheme X and N(x) denotes
the cardinality of the finite field k(x).

In [26], Kurokawa says that a Z-scheme X is of F1-type if its arithmetic zeta
function ζX(s) can be expressed via the Riemann zeta function ζ(s) in the form

ζX(s) =
n∏
k=0

ζ(s− k)ak (4.6)

with the aks in Z. A very interesting result in [26] reads as follows:

Theorem 4.2.1. Let X be a Z-scheme. The following are equivalent.

(i)

ζX(s) =
n∏
k=0

ζ(s− k)ak (4.7)

with the aks in Z.

(ii) For all primes p we have

ζX|Fp(s) =
n∏
k=0

(1− pk−s)−ak (4.8)

with the aks in Z.

Page 83

Chapter 4. A New Zeta Function for (Loose) Graphs

(iii) There exists a polynomial PX(Y) = ∑n
i=0 akY

k such that

#X(Fpm) = PX(pm) (4.9)

for all finite fields Fpm.

Kurokawa defines the F1-zeta function of a Z-scheme X of F1-type as

ζX|F1(s) :=
n∏
k=0

(s− k)−ak (4.10)

with the aks as above, and the Euler characteristic is by definition

#X(F1) :=
n∑
k=0

ak. (4.11)

The connection between F1-zeta functions and arithmetic zeta functions is ex-
plained in the following theorem, taken from [26].

Theorem 4.2.2. Let X be a Z-scheme which is defined over F1. Then

ζX|F1(s) = lim
p−→1

ζX|Fp(s)(p− 1)#X(F1). (4.12)

Here, p is seen as a complex variable (so that the left-hand term is the leading
coefficient of the Laurent expansion of ζX|F1(s) around p = 1).

For affine and projective spaces, we obtain the following zeta functions (over Z,
Fp and F1, with n ∈ N×):

ζAn|Z(s) = ζ(s− n);

ζAn|Fp(s) = 1
1− pn−s ;

ζAn|F1(s) = 1
s− n

, (4.13)

and

ζPn|Z(s) = ζ(s)ζ(s− 1) · · · ζ(s− n);

ζPn|Fp(s) = 1
(1− p−s)(1− p1−s) · · · (1− pn−s) ;

ζPn|F1(s) = 1
s(s− 1) · · · (s− n) . (4.14)

Page 84

4.3. The new zeta function

4.3 The new zeta function
In this section, we are ready to introduce a new zeta function for each loose graph.

Definition 4.3.1. We say that a constructible set X over Z is defined over F1 in
Kurokawa’s sense if it satisfies the property (iii) of Theorem 4.2.1.
Theorem 4.3.2. For any loose graph Γ, the Z-constructible set χ := F(Γ) ⊗F1 Z is
defined over F1 in Kurokawa’s sense.

Proof. Let Γ be an arbitrary finite connected loose graph. As we have seen, there
exists a polynomial PΓ(X) = ∑m

i=0 amX
m ∈ Z[X] such that for each finite field k = Fq,

the number of Fq-rational points is given by

Nχ(Fq) :=
∣∣∣∣F(Γ)⊗F1 Fq

∣∣∣∣
q

= PΓ(q). (4.15)

This is precisely what we needed to prove. �

Definition 4.3.3 (Zeta function for (loose) graphs). Let Γ be a loose graph, and let
χ := F(Γ)⊗F1 Z. Let PΓ(X) = ∑m

i=0 aiX
i ∈ Z[X] be as above. We define the F1-zeta

function of Γ as:

ζF1
Γ (t) :=

m∏
k=0

(t− k)−ak . (4.16)

In the next section, we will compare ζF1(·) with the Ihara zeta function for some
fundamental examples of graphs. Note that for trees, the Ihara zeta function is trivial
while ζF1(·) contains much information.

The new zeta function for loose trees

Let Γ be a loose tree. We use the notation as before:
• D is the set of degrees {d1, . . . , dm} of V (Γ) such that 1 < d1 < d2 < . . . < dm;

• ni is the number of vertices of Γ with degree di, 1 ≤ i ≤ m;

• I =
m∑
i=1

ni − 1;

• E is the number of vertices of Γ with degree 1.
Then, we proved that

[
Γ
]
F1

=
m∑
i=1

niLdi − I · L + I + E. (4.17)

The zeta function is thus given by

ζF1
Γ (t) = (t− 1)I

tE+I ·
m∏
k=1

(t− dk)−nk . (4.18)

Page 85

Chapter 4. A New Zeta Function for (Loose) Graphs

4.3.1 Future steps
In future research we will try to see how much information about a loose graph

Γ (or its corresponding constructible set F(Γ)⊗F1 k) can be obtained through ζF1
{·}(t),

following [6] for example. We believe that the information obtained from both the new
and the Ihara zeta functions could be very different.

4.4 Comparison with the Ihara zeta function: some
examples

In this section we will consider some examples of different graphs and compare
the expressions of the corresponding Ihara zeta function and the zeta function we have
previously defined.

For the Ihara zeta function we will use the Bass-Hashimoto formula (cf. section
4.1) to compute its inverse with the help of Magma and for the new zeta function, the
definition can be found in section 4.3. In both cases we will compute the inverse so that
it is easy to compare expressions. All our computations were made in Magma.

Complete graph K4

Figure 4.1: The complete graph K4.

A computation for the graph K4 (figure 4.1) using the Bass-Hashimoto formula
gives the following inverse of the Ihara zeta function:

ζ(u,K4)−1 = 16u12 − 24u10 − 16u9 − 3u8 + 24u7 + 16u6 − 6u4 − 8u3 + 1, (4.19)

with u ∈ C. For our zeta function we first need to compute the Grothendieck polynomial,
which in this case is

P(K4) = L3 + L2 + L + 1,

and hence the F1-zeta function is given by

ζF1
K4

−1(t) = t(t− 1)(t− 2)(t− 3) = t4 − 6t3 + 11t2 − 6t.

The two functions appear to be very different and this is also the case for other
examples.

Page 86

4.4. Comparison with the Ihara zeta function: some examples

Complete graph K4 without an edge
Let us call K∗4 the graph K4 \ e (figure 4.2), where e is any edge of K4. In this

case, we obtain the following comparison

Figure 4.2: Loose graph K∗4 .

ζ(u,K∗4)−1 = −4u10 + u8 + 4u7 + 4u6 − 2u4 − 4u3 + 1,
P(K∗4) = L3 + L2 + 2,

ζF1
K∗4

−1(t) = t2(t− 2)(t− 3) = t4 − 5t3 + 6t2.

Complete graph K5

A detailed computation of the Grothendieck polynomial for K5 (figure 4.3) is
done in Appendix A.

Figure 4.3: The complete graph K5.

In this case, the two different zeta functions are the following:

ζ(u,K5)−1 = −243u20 + 1080u18 + 180u17 − 1710u16 − 776u15

+870u14 + 1200u13 + 505u12 − 660u11 − 708u10

−140u9 + 165u8 + 240u7 + 70u6 − 24u5 − 30u4

−20u3 + 1,
P(K5) = L4 + L3 + L2 + L + 1,

ζF1
K5

−1(t) = t(t− 1)(t− 2)(t− 3)(t− 4).

Page 87

Chapter 4. A New Zeta Function for (Loose) Graphs

Johnson graph J(4, 2)
For the case of the Johnson graph with parameters (4, 2) (figure 4.4) the zeta

functions are given by:

Figure 4.4: The Johnson Graph J(4, 2).

ζ(u, J(4, 2))−1 = 729u24 − 3888u22 − 432u21 + 7938u20 + 2160u19

−6912u18 − 4032u17 + 639u16 + 3008u15 + 2976u14

+96u13 − 1412u12 − 1248u11 − 384u10 + 320u9

+327u8 + 192u7 + 16u6 − 48u5 − 30u4 − 16u3 + 1,
P(J(4, 2)) = 6L4 − 12L3 + 20L2 − 16L + 8,

ζF1
J(4,2)

−1(t) = t8(t− 2)20(t− 4)6

(t− 1)16(t− 3)12 .

Remark 4.4.1. Note that the Johnson graph J(4, 2) can be seen as a combinatorial
representation of the F1-analogon of the Grassmannian Gr(4, 2).

Let V be a n-dimensional vector space over a field k. The Grassmannian Gr(n, r)
is defined to be the set of all r-dimensional linear subspaces of V . If we consider the
analogous version for F1, where n-dimensional vector spaces are sets of n elements, we
can define the Grassmannian over F1, denoted by GrF1(n, r), to be the set of all subsets
of r elements of a set of n elements.

With this definition, it is easy to see that the order of GrF1(n, r) is just the binomial
number

(
n
r

)
. If we consider the example GrF1(4, 2), we obtain six 2-dimensional subspaces

of a 4-dimensional vector space. Now construct a graph where each 2-dimensional
subspace corresponds to a vertex and two vertices are adjacent if the corresponding
2-spaces share a 1-dimensional subspace. We then obtain the Johnson graph (4, 2).

Hexahedron
Our last example is the hexahedron (figure 4.5), which we call D. Then,

Page 88

4.5. The chromatic polynomial

Figure 4.5: Hexahedron.

ζ(u,D)−1 = 256u24 − 768u22 + 480u20 + 400u18 − 183u16 − 384u14

+68u12 + 144u10 + 30u8 − 32u6 − 12u4 + 1,
P(D) = 8L3 − 12L + 12,

ζF1
D

−1(t) = t12(t− 3)8

(t− 1)12 .

4.5 The chromatic polynomial
G. D. Birkhoff introduced the chromatic polynomial in 1912 as an attempt to

prove the four color theorem [3]. He noticed that the number of ways a certain map
can be painted with at most k colors exhibits polynomial dependence on k. Nowadays,
the extended definition of the chromatic polynomial for arbitrary graphs given by H.
Whitney in 1932 is the most used expression [49, 50].

We will give a brief introduction to this subject. All the results and definitions
are taken from [21].

Definition 4.5.1. Let G be a graph and let V (G) be its set of vertices. A k-coloring of
G is a function σ : V (G)→ {1, 2, . . . , k} which satisfies σ(i) 6= σ(j) for any edge e = ij.
Note that it is not compulsory to use all the colors. The graph is said to be k-colorable
if such a function exists. The chromatic number χ(G) is the minimal k for which the
graph is k-colorable and we say that G is k-chromatic if χ(G) = k.

Remark 4.5.2. Notice that a k-coloring means the assignment of colors to the vertices
of a graph in such a way that no two adjacent vertices share the same color.

Consider now the number of different k-colorings of a given graph G as a function
of k, and denote it by chr(G, k). One can prove [21] that chr(G, k) is a polynomial of
k and has degree n = |V (G)|, the number of vertices of G.

Definition 4.5.3. For a given G, we call chr(G, k) the chromatic polynomial of G.

Examples 4.5.4. i) The chromatic polynomial of the graph Kn on n vertices with-
out edges is chr(Kn, k) = kn.

Page 89

Chapter 4. A New Zeta Function for (Loose) Graphs

ii) The chromatic polynomial of the complete graph Kn is chr(Kn, k) = k(k −
1) · · · (k − n+ 1).

iii) Any tree Tn on n vertices has chr(Tn, k) = k(k− 1)n−1 as a chromatic polynomial.

For computing the chromatic polynomial associated to a given graph G, one uses
a recursive process called deletion-contraction. The idea of this process is to choose a
pair of non-adjacent vertices (i, j) and classify colorings of the graph G depending on
whether i and j share a color or not. In the first case, if i and j have the same color,
one can consider the graph G/ij obtained by merging the two vertices into one and,
in the second case, one substitutes the graph G by the graph G+ ij in which an edge
incident with both i and j is added. The chromatic polynomial should then satisfy the
following recursive formula:

chr(G, k) = chr(G+ ij, k) + chr(G/ij, k).

Nevertheless, although some coefficients of the chromatic polynomial are easy to
compute (for instance, for every graph G, the leading coefficient of chr(G, k) is always
1 and the constant term is always 0), the problem of computing the coefficients of the
chromatic polynomial is #P -hard.

4.5.1 Connection with the new zeta function
Let Kn be the complete graph on n vertices and let Fk(Kn) be its associated

(n− 1)-dimensional projective space. The counting polynomial of Kn is

PKn(X) =
n−1∑
i=0

X i

and hence, its F1-zeta function is given by the formula

ζF1
Kn

−1(t) = t(t− 1) · · · (t− n+ 1),
which equals the chromatic polynomial chr(Kn, t) (cf. example 4.5.4). At the moment
we do not know whether there is an immediate connection between these two concepts
associated to a graph. In future research, we will study this very interesting fact that
could lead to another bridge between F1-theory and combinatorics. We thank Dimitri
Leemans for bringing these ideas to us during the private defense of this thesis.

Page 90

5 Automorphism
Groups

In the previous two chapters we studied the functor F in the context of Algebraic
Geometry and the theory of motives. In this last chapter of the PhD we focus more
on a connection with Projective Geometry. We will study some relations between
the automorphism group of a loose graph Γ and several automorphism groups of
the constructible set Fk(Γ) associated to it, with k a finite field. Regarding the
constructible set Fk(Γ), we will consider three different automorphism groups (projective,
combinatorial and topological) that will be defined in section 5.2. In the end we will
consider some future steps that are needed to extend the results showed in the course
of the chapter.

For this chapter we assume some basic level of familiarity in Projective Geometry
and Group Theory, although some notions will be recalled when necessary.

5.1 Automorphism group of loose graphs

We recall the definition of the automorphism group of a loose graph Γ in a nutshell.
For more information and examples on morphisms of loose graph, see subsection 2.2.1.

Definition 5.1.1. Let Γ = (V,E, I) be a loose graph. We say that a map f : Γ→ Γ is
an automorphism of Γ if:

i) f is bijective in the set of vertices and in the set of edges.

ii) f(e∅) = e∅.

iii) A vertex v is incident with an edge e in Γ if and only if f(v) is incident with f(e)
in Γ.

Page 91

Chapter 5. Automorphism Groups

5.2 Automorphism groups of constructible sets
Let Γ be a loose graph, F(Γ) its associated Deitmar constructible set and Xk :=

Fk(Γ) its k-constructible set. Below we define the three different automorphism groups
of Xk that we will use for the purpose of this chapter.

5.2.1 Projective automorphism group
Definition 5.2.1. We define the projective automorphism group of Xk, denoted by
Autproj(Xk), as the group of automorphisms of the ambient projective space of Xk

stabilizing Xk setwise, modulo the group of such automorphisms acting trivially on Xk.

Remark 5.2.2. Recall that the projective general linear automorphism group of a
projective space Pnk is the projective linear group PGLn+1(k), i.e., the group of invertible
(n + 1) × (n + 1)-matrices modulo the group of scalar multiples of the identity. An
element of the general automorphism group PΓLn+1(k) is an element of PGLn+1(k)
“twisted” by an automorphism of the field k. In fact, the so-called “projective semilinear
group” PΓLn+1(k) can be described as

PΓLn+1(k) = PGLn+1(k) o Aut(k).

When the automorphism group of the field k is trivial, then PΓLn+1(k) =
PGLn+1(k).

5.2.2 Combinatorial automorphism group
Before defining the combinatorial automorphism group of Xk = F(Γ)⊗F1 k, with

k a field, we need to give a combinatorial structure to the constructible set Xk. We
define Xk as an incidence geometry of rank 2, i.e., Xk := (P,L, I) where P is a set of
points, L is a set of lines and I is a relation of incidence on the disjoint union P ∪ L.
We consider the set of points to be the set of k-rational points of Xk and the set of lines
to be consisting of both projective lines (over k) and complete affine lines. A complete
affine line l of Xk is a line whose projective completion l̄ intersects Xk in the whole
projective line l̄ minus one point.

Definition 5.2.3. Let Γ be a loose graph and let Xk the k-constructible set associated to
Γ by Fk considered as an incidence geometry as before. A combinatorial automorphism
g of Xk is a bijective map on the set of points and on the set of lines preserving incidence,
i.e., a point p is on the line L of Xk if and only if the image of p is on the image of L in
Xk. We will denote by Autcomb(Xk) the group of combinatorial automorphisms of Xk.

The next two results show that combinatorial automorphisms automatically
preserve the linear subspace structure of the constructible sets. The results are direct,
but we provide proofs anyhow.

Page 92

5.2. Automorphism groups of constructible sets

Lemma 5.2.4. Let Xk be a constructible set coming from a loose tree and let g be a
combinatorial automorphism of Xk. If A is a d-dimensional affine space contained in
Xk, then Ag is also an affine space of dimension d, contained in Xk and isomorphic to
A.

Proof. To prove that Ag is an affine space isomorphic to A, it is sufficient to recall
the axiomatic definition of an affine space in terms of an incidence geometry of rank 2
in which one has a set of points P, a set of lines L and an equivalence relation “‖” of
parallelism defined on the set of lines. By using the axioms one observes that Ag is an
axiomatic affine space with the same dimension of A. It is then obvious that g is an
isomorphism between (axiomatic) affine spaces (and so Ag is also defined over k). The
axioms are the following:

• Each pair P, Q of distinct points is contained in a unique line l.

• For each point P and each line l, there is a unique line l′ such that P ∈ l′ and l‖l′.

• Trapezoid axiom. Let PQ and RS be distinct parallel lines and let T be a point of
PR \ {P, R}. Then, there must be a point incident with PQ and TS.

• Parallelogram axiom. If no line has more than two points, and if P , Q and R are three
distinct points, then the line through R parallel to PQ must have a point in common
with the line through P parallel to QR.

• Thickness. Each line contains at least two points.

• Space axiom. There exists two disjoint lines l and l′ such that l ∦ l′. Notice that this
axiom is only required if the dimension of the affine space (see below) is greater than 2.

Every axiom is satisfied in Ag since the automorphism g preserves the incidence
relations and g is injective on points and lines of A. Hence, Ag is an affine space. It
remains to prove that it is indeed of dimension d.

Recall that the geometric dimension of the affine space A is given recursively by
the largest number (d in this case) for which there exists a strictly ascending chain of
subspaces of the form:

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xd = A. (5.1)
A subspace X of A is a subset such that any line containing two points of X is

a subset of X (where lines are seen as point sets) and this line then is a line of X.
A subspace Xi in such a chain is said to have geometric dimension i. Since g is an
automorphism, applying g to this chain we will obtain a new chain of the form

∅ ⊂ Xg
0 ⊂ Xg

1 ⊂ · · · ⊂ Xg
d = Ag,

where all subspaces Xg
i are of dimension greater or equal to i, since g is injective. Let

us now suppose that dim(Ag) = j > d; then there will exist a chain of the form

Page 93

Chapter 5. Automorphism Groups

∅ ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Yj = Ag.

Applying g−1 to this new chain, we will obtain a chain for A longer than (5.1)
since g−1 is injective as well. But this is not possible since (5.1) is a chain of maximal
length. �

Lemma 5.2.5. With the same conditions of the previous observation, if P is a d-
dimensional projective space contained in Xk, then Pg is also a projective space of
dimension d, contained in Xk and isomorphic to P.

Proof. As before we just have to recall the axiomatic definition of a projective
space in terms of an incidence geometry of rank 2. The axioms, described already in
chapter 1, are the following:

• Two different points are exactly incident with one line.

• Thickness. Each line has at least three points.

• Veblen’s axiom. If a, b, c and d are different points and the lines ab and cd meet, then
so do the lines ac and bd.

For the same reason as in the affine case, every axiom is satisfied in Pg, so Pg is a
projective space. The fact that dim(Pg) = d is proven in the same way as for the affine
case. �

After these two lemmas, one realizes that there is another “natural” way of giving a
structure of incidence geometry to Xk, in which we not only consider points and lines but
also all affine and projective subspaces. Let r := max{deg(v) | v ∈ V (Γ) and v defines
an affine space Av such that Av is not contained in Xk} and s := max{n− 1 | Kn ⊆ Γ}.
We will consider Xk as an incidence geometry of “double rank (r, s).” We define Xk to be
the (r + s+ 2)-tuple (K,A1, . . . , Ar, P1, . . . , Ps, I), where Ai is the set of i-dimensional
affine subspaces of Xk whose completion is not contained in Xk; Pk is the set of k-
dimensional projective subspaces of Xk, K = A0 = P0, and I is the natural incidence
relation between these spaces. Note that the sets Ai and Pj are non empty for all i, j.

Remark 5.2.6. If Xk is, e.g., a projective space of dimension d, then the double rank
is (0, d). If Γ is a tree, then the double rank is (r, 1) or (0, 0) (if Γ is a vertex).

With this definition of Xk, the two aforementioned lemmas lead to the following
result.

Corollary 5.2.7. Let Γ be a loose graph, Xk its corresponding constructible set over k
and g a combinatorial automorphism of Xk. If we define the numbers r and s as above,
then g is also an automorphism of Xk as an incidence geometry of double rank (r, s).

Proof. The proof of this corollary follows immediately after Lemma 5.2.4 and
Lemma 5.2.5 and the fact that g (and g−1) preserves incidence relations when Xk is
considered as an incidence geometry of rank 2. �

Page 94

5.2. Automorphism groups of constructible sets

5.2.3 Topological automorphism group
Definition 5.2.8. We define a topological automorphism g of the constructible set Xk

as a homeomorphism of its underlying topological space, i.e, a bijective continuous map
with a continuous inverse map. In a natural way, we obtain the topological automorphism
group of Xk, denoted by Auttop(Xk).

Relation with the combinatorial automorphism group

Let k be a finite field and Xk be the affine scheme Spec(k[X]). The closed set
topology of Spec(k[X]) consists of (0), all closed points (all prime ideals are maximal
since they correspond to monic irreducible polynomials in k[X]) and all finite sets of
such points that contain (0). So Auttop(Spec(k[X])) is isomorphic to the symmetric
group on the set of closed points. On the other hand, Autcomb(Spec(k[X])) is isomorphic
to the symmetric group on the k-rational points, so as soon as k is not algebraically
closed, the groups are not the same. Now let Xk be Spec(k[X1, . . . , Xm]) with m ≥ 2,
and let U be an affine subline. Then Auttop(Xk) induces Auttop(U) on the topology of
U , which, as we have seen, is isomorphic to the symmetric group on the closed points of
U . The combinatorial automorphism group of Xk induces the affine group AΓL1(k) on
U (acting on the k-rational points). So in general these two groups are not isomorphic.

The next proposition deals with the other direction.

Proposition 5.2.9. The combinatorial group of Xk is a subgroup of the topological
automorphism group of Xk.

Proof. Let us first take a combinatorial automorphism f of Xk. It is possible to
reduce our proof w.l.o.g. to the case of an affine space defined by one of the loose stars
corresponding to a vertex of Γ, since an automorphism of the constructible set Xk can
be constructed as “pasting” local morphisms of affine spaces.

Let Spec(Av) be the affine space of Xk corresponding to the vertex v ∈ Γ. If f
is a combinatorial automorphism of Xk, by Lemma 5.2.4 we know that f induces also
a combinatorial isomorphism fv from Spec(Av)⊗F1 k to Spec(Af(v))⊗F1 k. The affine
spaces Spec(Av) ⊗F1 k and Spec(Af(v)) ⊗F1 k are isomorphic to Spec(k[X1, . . . , Xn])
and Spec(k[Y1, . . . , Yn]), with n = deg(v) = deg(f(v)), respectively.

Let Xi = 0, i = {1, . . . , n} be the coordinate hyperplanes inside the affine space
Spec(Av)⊗F1 k and consider the action of fv induced on them. As a consequence, we
obtain an isomorphism on the coordinate rings k[X1, . . . , Xn] and k[Y1, . . . , Yn] that
gives, by functoriality, an isomorphism of affine schemes between Spec(Av)⊗F1 k and
Spec(Af(v)) ⊗F1 k. For each vertex v of the graph Γ we hence obtain an induced
topological isomorphism between the local affine k-schemes corresponding to v and
f(v). By considering the union of these isomorphisms we finally obtain the topological
automorphism of Xk. �

Page 95

Chapter 5. Automorphism Groups

5.3 Trees and constructible sets
We are now ready to study how automorphisms of loose graphs are related to

those automorphisms of constructible sets described in the previous section. We will
start analyzing a basic example, which we call “toy example,” but we first recall some
notions on actions of groups that are needed for the complete understanding of the
section.

5.3.1 Group action
Definition 5.3.1. Let G be a group and X be a set. We say that the group G acts on
X if there exists a function

φ : G×X X

(g, x) g.x

that satisfies the following two axioms:

? e.x = x for all x ∈ X, where e is the identity element of the group G.

? (gh).x = g.(h.x) for all g, h ∈ G and all x ∈ X.

Sometimes we will write g(x) or xg for g.x. So, h(g(x)) = (gx)h = h.(g.x).

Definition 5.3.2 (Types of actions). Let G be a group acting on a non-empty set
X. We say that the action of G is

• Transitive if for all x, y ∈ X there exists g ∈ G such that g.x = y;

• Free if g.x = x for some x ∈ X implies that g is the identity element of G;

• Faithful if for each element g 6= e ∈ G there exists an element x ∈ X such that
g.x 6= x;

• Sharply transitive if it is transitive and free, i.e., if for each pair x, y ∈ X there
exists a unique g ∈ G such that g.x = y;

• n-transitive if X has at least n elements and for all pairwise distinct x1, . . . , xn
and pairwise distinct y1, . . . , yn there is an element g ∈ G such that g.xk = yk for
all 1 ≤ k ≤ n.

Definition 5.3.3. Let G be a group acting on a set X. The stabilizer of a point x ∈ X
is the subgroup of G given by

Gx = {g ∈ G | g.x = x} ≤ G.

Page 96

5.3. Trees and constructible sets

Let X ′ be a subset of X. The pointwise stabilizer of X ′ in G, denoted by G[X′],
is the set of elements g ∈ G such that g.x = x for all x ∈ X ′. Similarly, the setwise
stabilizer of X ′, denoted by GX′ , is the set of elements g ∈ G such that g.x ∈ X ′ for all
x ∈ X ′.

We define the orbit of an element x ∈ X to be the subset of X given by

xG = {g.x | g ∈ G} ⊆ X

and the kernel of the action to be the subgroup of G defined by the set

K = {g ∈ G | g.a = a ∀a ∈ A}.

Definition 5.3.4. Let G be a group and let A and B be two subgroups of G. We say
that G is an internal central product of A and B if the following conditions are satisfied:

? G = 〈A,B〉, i.e., G is generated by A and B.

? [A,B] = {id}, i.e., every element of A commutes with every element of B.

In this case, we say that both A and B are central factors of G. We will denote
by A ∗B the internal central product of A and B

5.3.2 Toy example
Let Γ be the connected loose graph on two vertices (x and y) of regular degree 2

(figure 5.1) and denote the loose edge on x by Lx and the loose edge on y by Ly. In
this section we show that

Aut(F(Γ)⊗F1 k) ∼= Autproj(F(Γ)⊗F1 k) (5.2)

for any field k. Here (and throughout the rest of the chapter), Aut(·) denotes the
combinatorial automorphism group.

xy

Lx Ly

x y

Figure 5.1: Toy example.

For the rest of this section, fix a field k. Also, let Ax and Ay be the affine planes
corresponding (respectively) to the vertices x and y through Fk. We keep the notation
Xk of the previous section for F(Γ)⊗F1 k (and in particular XF1 = X).

Page 97

Chapter 5. Automorphism Groups

For now, we want to see Xk coming together with its embedding

Xk PG(3, k). (5.3)

It makes sense to projectively complete Ax and Ay — that is, to add the respective
lines at infinity X and Y (see figure 5.2) since any element of Autproj(Xk) also fixes the
“projective completion” Xk. By projective completion of Xk we mean the union of all
projective completions of the affine spaces associated to vertices.

Consider now a configuration of the form

ρ := (P = {x, y},L = {X, xy, Y }, I) =
{(x, Y), (Y, x), (y,X), (X, y), (x, xy), (xy, x), (y, xy), (xy, y)} (5.4)

defined as an incidence geometry. We will call such configuration a root of PG(3, k)
and denote it by (Y, x, xy, y,X). As X is incident with y (as a point of Xk) and Y with
x (as a point of Xk), we can deduce that an element α ∈ PΓL4(k) is an element of
Autproj(Xk) if and only if α stabilizes the root ρ. Hence, we can translate the problem
of describing the group Autproj(Xk) in describing the elements of PΓL4(k) stabilizing
the root ρ setwise.

For what is to follow it is very important to notice that X and Y are projective
lines and not affine lines. Now let PG(n, k) be an n-dimensional projective space and Ω
be a hyperplane of PG(n, k); we denote by T (Ω) the group of translations of PG(n, k)
with axis Ω. A translation of PG(n, k) is an automorphism of PG(n, k) with axis Ω and
center p ∈ Ω, meaning that it fixes Ω pointwise and all hyperplanes through p setwise.
It is known that T (Ω) is a subgroup of PGLn+1(k) which acts sharply transitively on
the points of PG(n, k) \ Ω.

xy

Lx Ly

x y

YX

Figure 5.2: Projective completion of Ax and Ay.

Proposition 5.3.5. PΓL4(k) acts transitively on the roots of PG(3, k).

Proof. Obviously PΓL4(k) acts transitively on the ordered triples (u, uv, v), with
u 6= v points of PG(3, k) (as it acts transitively on the lines, and a line stabilizer induces
the natural action of PΓL2(k), which is 3-transitive). Fix such a triple (x, xy, y). Let
Y, Y ′ be different lines on x, both different from xy. Consider a plane ν containing xy
but not Y nor Y ′. Then there is an element in T (ν) that maps Y ′ to Y , so from now

Page 98

5.3. Trees and constructible sets

on, we also fix Y . Now let X,X ′ be lines on y different from xy, and not meeting Y .
Define the plane ρ := 〈Y, xy〉, and note that it does not contain X nor X ′. Then T (ρ)
contains an element which maps X ′ to X. The claim follows. �

Note that roots are ordered. By the proof of the previous proposition, we immedi-
ately have the following.

Corollary 5.3.6. PGL4(k) acts transitively on the roots of PG(3, k).

Proof. One can replace PΓL4(k) by PGL4(k) in the proof of Proposition 5.3.5.
Furthermore, all translations are elements in PGL4(k). �

The following is immediate.

Proposition 5.3.7. The kernel of the action of PΓL4(k)Xk
on Xk is trivial.

Proposition 5.3.8. Let Px be the projective k-plane generated by x, xy and Y . Let
A := Aut(Px)(Y,x,xy,y) be the elementwise stabilizer of {Y, x, y, xy} in Aut(Px), where
the latter is the combinatorial automorphism group of Px (so isomorphic to PΓL3(k)).
(For later purposes, we similarly define Py.) Then each element of A extends to an
element of PΓL4(k)Xk

(in a not necessarily unique fashion).

Proof. Let α ∈ A be arbitrary; then α extends to elements of PΓL4(k), for
instance to α̃. Note that α̃ fixes y. Suppose that X α̃ =: X ′. Now let β be an element in
T (Px) which maps X ′ back to X; then β ◦ α̃ fixes the root (Y, x, xy, y,X) and induces
α on Px. �

Remark 5.3.9. It is important to note that Aut(Px) coincides with the automorphism
group of Px induced by the automorphisms of PΓL4(k).

The “number” of ways to extend an element α is easy to determine. For, if γ
and γ′ are two such elements, then γ−1 ◦ γ′ fixes Px pointwise, while fixing X. This
group faithfully induces PGL2(k)y on the projective line X (we are in the projective
group, since Px is pointwise fixed). Its order is |k|(|k| − 1) (the group acts sharply
2-transitively on X \ {y} and is isomorphic to k o k×).

We now have all the ingredients for writing down Autproj(Xk). First of all, it is
clear that Aut(Γ) ∼= 〈ϕ〉, with ϕ 6= id an involution. By Proposition 5.3.5, there is
an element in PΓL4(k) which stabilizes the root ρ, and which has the same action as
ϕ. And obviously, the subgroup of Autproj(Xk) which fixes both x and y is a normal
subgroup of Autproj(Xk). We will denote by Autproj(Xk)(x,y) such a subgroup.

Theorem 5.3.10. Let PΓL2(k) be the automorphism group of the projective line
PG(1, k), and let u, v be distinct points of the latter. Let C := PΓL2(k)(u,v) ∼= k× o
Aut(k), and D := PGL2(k)u ∼= k o k×. Then

Autproj(F(Γ)×F1 k) ∼= (D o (D o C)) o 〈ϕ〉. (5.5)
In the latter expression,

Page 99

Chapter 5. Automorphism Groups

• (D o (D o C)) is the elementwise stabilizer of {x, y} in Autproj(Xk);

• the “first D” is T (Px) ∩ Autproj(Xk);

• E := D o C is the pointwise stabilizer of X in Autproj(Xk);

• D (“in E”) is the pointwise stabilizer of xy in E, and C (“in E”) is the action
induced by E on xy.

For later purposes, we need an approach which allows a possibility to extend to
more general cases. Let α ∈ Autproj(Xk)(x,y); then α induces an element αx of Aut(Px)
which fixes (Y, x, xy, y), and also an element αy of Aut(Py) which fixes (x, xy, y,X),
and both elements have the same action on the projective line xy. And vice versa, we
have that Autproj(Xk)(x,y) is completely determined by the data

{
(αx, αy) | αx ∈ Aut(Px)(Y,x,xy,y), αy ∈ Aut(Py)(x,xy,y,X), αx

∣∣∣∣xy ≡ αy∣∣∣∣xy
}
. (5.6)

Before using this observation, we prove the next theorem.

Theorem 5.3.11. Let Γ be the connected loose graph on two vertices (x and y) of
regular degree 2. Then

Aut(F(Γ)⊗F1 k) ∼= Autproj(F(Γ)⊗F1 k) (5.7)

for any field k.

Proof. Recall that it is obvious by definition that Autproj(Xk) ≤ Aut(Xk). Let γ be
an element of Aut(Xk) \ Autproj(Xk); then there also exists an element γ′ in Aut(Xk) \
Autproj(Xk) which fixes both x and y (that is, which fixes the root (Y, x, xy, y,X)
elementwise). For, it is obvious that there is an ε ∈ Autproj(Xk) which switches x and y
(and Y and X) (by using Proposition 5.3.5). If γ already fixes x and y, there is nothing
to prove. If not, ε ◦ γ fixes x, y, and is not in Autproj(Xk). Now γ′ induces an element γ′x
in Aut(Px)(Y,x,xy,y) and an element γ′y in Aut(Py)(x,xy,y,X) which agree on xy. We have
seen that there exists an element γ∗ in Autproj(Xk) which also yields the data (γ′x, γ′y);
composing γ′ with γ∗−1, we obtain the identity of Aut(Xk). The isomorphism follows.

�

If L is a line of PG(3, k), recall that PΓL4(k)[L] denotes the pointwise stabilizer
of L in PΓL4(k). (Note that it is a subgroup of PGL4(k).) More generally, if S is a
set of points in PG(3, k), PΓL4(k)[S] denotes its pointwise stabilizer (and this is not
necessarily a subgroup of PGL4(k)).

Lemma 5.3.12. Define A := Autproj(Xk) ∩ PΓL4(k)[Y], and B := Autproj(Xk) ∩
PΓL4(k)[X]. Then A ∼= Aut(Py)(x,xy,y,X) ∩ PGL3(k) (where the latter expression
means the projective general elements in Aut(Py)(x,xy,y,X)), and B ∼= Aut(Px)(Y,x,xy,y) ∩
PGL3(k).

Page 100

5.3. Trees and constructible sets

Proof. We prove the assertion for A. Let α be any element in Aut(Py)(x,xy,y,X) ∩
PGL3(k); we have seen that α extends to some element α̃ of Aut(Xk), and that any
such element induces a projective general linear element on Y . So there is a unique
element in PΓL4(k)[Py] with the same action on Y . Composing with the inverse of α̃,
we obtain an element of A which induces α on Py. The required isomorphism easily
follows. �

Theorem 5.3.13. Let PGL(Xk)(x,y) be defined as

Autproj(Xk)(x,y) ∩PGL4(k). (5.8)

Then PGL(Xk)(x,y) is isomorphic to the internal central product of A and B.

Proof. It is obvious that 〈A,B〉 = PGL(Xk)(x,y), so we only have to show that
[A,B] = {id}. Now if a ∈ A and b ∈ B, we have that [a, b] = a−1b−1ab fixes Y and X
pointwise. On the other hand, both a and b induce elements in Aut(xy)(x,y)∩PGL2(k) ∼=
k×, and this is an abelian group. So [a, b] acts as the identity on xy. It now easily
follows that [a, b] acts trivially on Xk so, by proposition 5.3.7, [a, b] = {id}. �

In general, we have the next conclusion.

Theorem 5.3.14. We have that

Autproj(Xk) ∼= Aut(Xk) ∼= ((A ∗B) o Aut(k)) o 〈ϕ〉. (5.9)

Proof. Follows from Theorem 5.3.10, and the identities

PGL(Xk)(x,y) � Autproj(Xk)(x,y) � Autproj(Xk). (5.10)

�

5.3.3 Loose trees
If Γ is a connected loose tree, and k a field, one of the first things to hope is that:

• Aut(Xk) acts on the set of affine spaces defined by the vertices Γ;

• this action is induced by Aut(Γ).

These properties are not true in general — look for instance at a projective plane
(coming from a triangle): for no field k 6= F1 one has that Aut(Xk) induces an action
on the three subplanes corresponding to the vertices.

If the toy example would generalize naturally, one candidate for Autproj(Xk) would
be

(U o Aut(k)) o Aut(Γ)∗, (5.11)

Page 101

Chapter 5. Automorphism Groups

where U o Aut(k) is the part that fixes all vertices of Γ (once pulled to k), and U
is the projective general linear part of the latter. After the toy example, U should
be isomorphic to a central product of the appropriate groups. Also, Aut(Γ)∗ is the
automorphism group of the reduced graph Γ̃ of Γ.

The first thing in order to obtain a similar result to the case of general loose
graphs is to generalize the little theory of roots in order. We will do that using what
we call fundaments.

5.3.4 Fundaments
Consider a PG(a + b − 1, k) = π over the field k, with a, b ≥ 2. A fundament

of type (a, b) of π is a triple (α, xy, β), where α is an (a − 1)-dimensional projective
subspace of π, β a (b− 1)-dimensional projective subspace, and xy a projective line for
which α ∩ xy = {x} and β ∩ xy = {y}, and such that

〈α, xy〉 ∩ 〈β, xy〉 = xy. (5.12)

xy

α β

x y

Figure 5.3: A fundament of type (3,4).

You can see an example of a fundament on figure 5.3. Note that 〈α, β〉 = π,
and that a fundament of PG(3, k) is a root. We define now a fundament with ends
to be a 5-tuple (α,A, xy, β,B) where (α, xy, β) is a fundament (of type (a, b)), A a
projective subspace of α which does not contain x, and B is a projective subspace of β
not containing y. Such a fundament has type (a, b; c, d) if A and B respectively have
dimension c and d. A root of PG(3, k) is then a fundament with ends of type (2, 2; 0, 0).

The proof of the next proposition is different from that of Proposition 5.3.5 (but
it also works for the latter).

Proposition 5.3.15. PΓLa+b(k) acts transitively on the fundaments with ends of
PG(a+ b− 1, k) = π of type (a, b; c, d). In particular, PΓLa+b(k) acts transitively on
the fundaments of PG(a+ b− 1, k) of type (a, b).

Proof. Let (α,A, xy, β,B) and (α′, A′, x′y′, β′, B′) be two fundaments with ends,
both of type (a, b; c, d), both in π. Let (x, x1, . . . , xa−1, y, y1, . . . , yb−1) be an ordered
base of π such that

Page 102

5.3. Trees and constructible sets

• (x, x1, . . . , xa−1) is an ordered base of α and (y, y1, . . . , yb−1) an ordered base of β;

• (xa−c−1, . . . , xa−1) is an ordered base of A and (yb−d−1, . . . , yb−1) is an ordered
base of B.

Define in a similar way an ordered base (x′, x′1, . . . , x′a−1, y
′, y′1, . . . , y

′
b−1) with respect

to (α′, A′, x′y′, β′, B′). Then PGLa+b(k) contains an element sending the first ordered
base to the second, as it acts transitively on the ordered bases of PG(a+ b− 1, k). �

Corollary 5.3.16. PGLa+b(k) acts transitively on the fundaments of PG(a+ b− 1, k)
of type (a, b).

Proof. The proof is the same as for Proposition 5.3.15. �

Let Γ be the connected loose graph on two inner vertices x and y, respectively of
degree a and b. Suppose c ≤ a− 1 edges on x different from xy have an end point, and
that d ≤ b− 1 edges on y different than xy have end points (see figure 5.4). We will
show that

Aut(F(Γ)⊗F1 k) ∼= Autproj(F(Γ)⊗F1 k) (5.13)
for any field k, where again Aut(·) denotes the combinatorial group.

xy

c d

x y

Figure 5.4: The graph Γ.

Let Ax and Ay be the affine spaces corresponding respectively to the vertices x
and y through the functor F. Write X for F(Γ), and Xk for F(Γ)⊗F1 k. As before, we
want to see Xk coming together with its embedding

Xk PG(a+ b− 1, k). (5.14)
We projectively complete Ax and Ay; the space at infinity of Ax is 〈αx, y〉, with

αx the projective space defined by the points at infinity of the edges on x different from
xy, and the space at infinity of Ay is 〈βy, x〉, with βy the projective space defined by
the points at infinity of the edges on y different from xy. Also, let A be the projective
subspace of αx defined by the c end points different from y and adjacent to x, and let
B be the projective subspace of βx defined by the d end points different from x and
adjacent to y.

Any element of Autproj(Xk) also fixes the projective completion Xk.

Page 103

Chapter 5. Automorphism Groups

Proposition 5.3.17. We have that α is in Autproj(Xk) (with α ∈ PΓLa+b(k)) if and
only if α stabilizes the incidence geometry of the fundament (αx, A, xy, βy, B).

The following is immediate.

Proposition 5.3.18. The kernel of the action of PΓLa+b(k)Xk
on Xk is trivial.

Proof. Let γ ∈ PΓLa+b(k)Xk
fix all the (k-rational) points of Xk. Then γ fixes

Πx := Ax and Πy := Ay pointwise. Consider any point z in PG(a+ b− 1, k) outside
Xk. Then 〈Πx, z〉 is an (a+ 1)-dimensional projective space which meets the b-space Πy

in a plane ρ containing xy, and not contained in Πx. So 〈Πx, z〉 = 〈Πx, ρ〉. Hence

〈Πx, z〉γ = 〈Πx, ρ〉γ = 〈Πγ
x, ρ

γ〉 = 〈Πx, ρ〉, (5.15)

and the latter is pointwise fixed by γ, since Πx and ρ are. (If γ fixes Xk pointwise, it
also fixes each local affine space pointwise, so also their completions.) So zγ = z, and γ
is the identity. �

For further purposes, let πx = 〈αx, y〉 be the space at infinity of Ax, and πy =
〈βy, x〉 be the space at infinity of Ay.

The next couple of results carry over from roots to fundaments in a straightforward
way.

Proposition 5.3.19. Let E := Aut(Πx)(πy ,x,xy,y) be the elementwise stabilizer of
{πy, x, xy, y} in Aut(Πx). (Here, Aut(Πx) is the combinatorial automorphism group of
Πx, isomorphic to PΓLa+1(k), and it is induced by PΓLa+b(k).) Then each element of
E extends to an element of PΓLa+b(k)Xk

(in a not necessarily unique fashion).

Theorem 5.3.20. Let Γ be the loose graph defined in the beginning of this section
(figure 5.4). Then

Aut(F(Γ)×F1 k) ∼= Autproj(F(Γ)×F1 k) (5.16)

for any field k.

If S is a set of points in PG(a + b − 1, k), PΓLa+b(k)[S] denotes its pointwise
stabilizer.

Lemma 5.3.21. Define F := Autproj(Xk) ∩ PΓLa+b(k)[πy], and G := Autproj(Xk) ∩
PΓLa+b(k)[πx]. Then F ∼= Aut(Πy)(πx,x,xy,y) ∩PGLa+b(k), and G ∼= Aut(Πx)(x,xy,y,πy) ∩
PGLa+b(k).

The following theorem is proved in exactly the same way as in the case of roots.

Theorem 5.3.22. Let PGL(Xk)(x,y) be defined as

Autproj(Xk)(x,y) ∩PGLa+b(k). (5.17)

Then PGL(Xk)(x,y) is isomorphic to the internal central product of F and G.

Page 104

5.3. Trees and constructible sets

The general version is the following.

Theorem 5.3.23 (Trees on two inner vertices). We have that

Autproj(Xk) ∼= Aut(Xk) ∼= ((F ∗G) o Aut(k)) o 〈ϕ〉. (5.18)
In the latter expression, ϕ is trivial, unless the type of the fundament has the form
(a, a; c, c), in which case ϕ is an involution in the automorphism group of Γ which
switches x and y.

Proof. If the type is (a, a; c, c), then obviously there is an involution as in the
statement of the theorem. And any element in Aut(Γ) fixes both x and y if a 6= b or
c 6= d. �

5.3.5 General loose trees
Let T = (V,E, I) be a finite loose tree, and assume its number of vertices is at

least 3. Let T be the minimal graph of T and define the boundary of T , denoted ∂(T),
as the set of vertices of degree 1 in T . Let x be a vertex of T which is at distance 1
from ∂(T) (i.e., is adjacent with at least one vertex of ∂(T)). As |V | ≥ 3, x is an inner
vertex of degree at least 2.

Define k and Xk as before. Let PG(m− 1, k) be the ambient projective space of
Xk.

Proposition 5.3.24. The kernel of the action of PΓLm(k)Xk
on Xk is trivial.

Proof. Let γ ∈ PΓLm(k)Xk
fix all the k-rational points of Xk. If T is an affine

F1-space (with some end points), then there is nothing to prove. So suppose T is not.
Define Πx := Ax as before, and let y ∼ x 6= y be not in ∂(T) (such a point exists).

Let Πy be the projective completion of the image under Fk of the loose graph Ty induced
on the vertex set Vy := {v ∈ V | d(v, x) ≥ 2} ∪ {v ∈ V | d(v, x) = 1, deg(v) > 1} (by
“induced,” we mean, besides inheriting the induced loose graph structure, that if e is a
loose edge in T which is incident with a vertex of Vy, then e is in Ty).

Now repeat the argument of Proposition 5.3.18, using induction on the loose tree
Ty. �

In the next couple of results, we keep using the notation introduced in the
beginning of this subsection. Also, with I the set of inner vertices of T , and w ∈ I,
let S(w) be the subgroup of Autproj(Xk) which fixes the k-rational points of Xk inside
all affine subspaces Ãv (over k) which are generated (over F1) by a vertex v different
from w and all directions on v which are not incident with w. In figure 5.5, we can see
in a more clear way which points are fixed by S(w). In fact, if the distance of v to w
is at least 2, the local space at v is fixed pointwise, and if the distance is 1, Ãv is an
affine space of dimension one less than the dimension of Av. (In particular, the points
in I ∩B(w, 1) are fixed.)

Page 105

Chapter 5. Automorphism Groups

Fixed pointwise
by S(w)

Fixed pointwise
by S(w)

v
w

u

Figure 5.5: Part of Xk fixed pointwise by the subgroup S(w).

In the next theorem, one recalls that Xk comes with an embedding

T Xk PG(m− 1, k),ι

(5.19)
so that it makes sense to consider stabilizers of substructures of T in, e.g., PGL(Xk).
By the first embedding of the above formula we mean that ι(T) is isomorphic to T as a
point-line incidence structure inside Xk.

Theorem 5.3.25. Let PGL(Xk)[I] be defined as

Autproj(Xk)[I] ∩ PGLm(k). (5.20)
Then PGL(Xk)[I] is isomorphic to

centr∏
w∈I

S(w). (5.21)

Proof. Let x ∈ I be at distance 1 from ∂(T). Also, let y ∼ x 6= y, y 6∈ ∂(T) and
y ∈ I. Let Ty be the loose graph induced on the vertex set Vy := {v ∈ V | d(v, x) ≥
2}∪ {v ∈ V | d(v, x) = 1, deg(v) > 1}. Let H(y) be the subgroup of Autproj(Xk) which
fixes pointwise the affine subspace of PG(m− 1, k) that is generated by all edges on
x in T except xy, and which fixes each element of I. It is important to observe that
S(y) ≤ H(y) for the induction argument later on. Then in the same way as in the proof
of Theorem 5.3.13, one shows that

PGL(Xk)[V] = S(x) ∗H(y). (5.22)
Now perform induction on Ty to conclude that

PGL(Xk)[I] = S(x) ∗
(
S(y) ∗

(
· · ·

))
. (5.23)

Page 106

5.3. Trees and constructible sets

Note that PGL(Fk(Ty))[Vy] = H(y), and that loose trees need not be connected anymore.
Also, for each u, v ∈ I, it follows that

[S(u), S(v)] = {id}. (5.24)
�

Determination of S(w)
We start by remarking that although in general S(w) fixes a lot of points, it is

not necessarily a subgroup of PGLm(k) (see for instance Lemma 5.3.27 below). What
we do know — by its mere definition — is that it is a subgroup of PΓLm(k).

We will distinguish two cases in order to determine S(w).

† w is the only inner point

Then all the edges are incident with w. Call E ′ the set of such edges with an end
point, and L the set of loose edges. Put |E ′| = e′ and |L| = `. Then obviously

S(w) ∼=
(
PΓLe′+`+1(k)L,E′

)
[{w}]

. (5.25)

By the first remark of this subsection, it is not contained in the projective linear
subgroup.

‡ w is not the only inner point

Then there is some inner vertex v ∼ w different from w which is itself incident
to some edge W 6= wv. Now over k, the projective line which is the completion of the
affine line determined by the incident vertex-edge pair (v,W), is fixed pointwise by
S(w), so S(w) must be a subgroup of PGLm(k).

Let E ′ be the set of edges incident with w which have an end point, let L be the
set of loose edges incident with w, and let I be the set of edges incident with w which are
incident with another inner point. Put |E ′| = e′, |L| = ` and |I| = i. Let δ be an element
of S(w); then it induces an element of PGL(Aw) (the latter meaning the projective
linear group of the local projective space at w). If δ′ is another such element which
induces the same action, it is obvious that δδ′−1 is the identity on the entire ambient
space PG(m− 1, k). So S(w) faithfully is a subgroup of

(
PGLe′+`+i+1(k)L,E′

)
[I∪{w}]

.

Note that the projective space generated (over k) by the points at distance at
least 2 from w in Γ, is fixed pointwise by S(w). So in particular πI , the projective space
generated by the inner vertices adjacent to w, is also fixed pointwise. It now follows
easily that

S(w) ∼=
(
PGLe′+`+i+1(k)L,E′

)
[πI∪{w}]

. (5.26)

Page 107

Chapter 5. Automorphism Groups

Caution: central and direct products

On the graph theoretical level (that is, on the combinatorial F1-level), the groups
which occur in Theorem 5.3.25 are much easier to describe, replacing the central product
by a direct product. The central product is needed as soon as k× is not trivial.

Inner Tree Theorem
The following theorem is a crucial ingredient in the proof of our main theorem for

trees.
Theorem 5.3.26 (Inner Tree Theorem). Let T be a loose tree, and let k be any field.
As usual, put Xk = F(T)⊗F1 k, and consider the embedding

ι : T Xk. (5.27)
as in formula 5.19. Let Aut(Xk) be any of the automorphism groups which are considered
in this chapter (i.e., combinatorial, induced by projective space or topological). Let I be
the set of inner vertices of T , and let T (I) be the subtree of T induced on I. Then if
|I| ≥ 2, we have that Aut(Xk) stabilizes ι(T (I)). Moreover, Aut(ι(T (I))) is induced by
Aut(Xk).

Proof. Each edge of ι(T (I)) defines a projective line over k which is a full line of
the ambient space of Xk. Let ι(T (I))k be this set of projective lines. Now define Xk as
the projective part of Xk — by definition, it is the union of all projective k-lines which
are completely contained in Xk. As each local affine space at a vertex of T is an affine
space with some possible end points at infinity, one observes that Xk consists precisely
of the projective k-lines which are defined by the edges with two different vertices of
T . That is, Xk consists of ι(T (I))k together with additional projective lines defined by
edges which contain both an inner vertex and an end point of T . As |I| ≥ 2, the first
part of the theorem easily follows.

That Aut(ι(T (I))) is induced follows by functoriality (and the discussion in
subsection 5.3.6). �

Note that if |I| = 1, T defines an affine space with some end points, so the theorem
is not true, unless its dimension is 0. If |I| = 0, then either T is the empty tree, or T is
an edge with one or two vertices.

The general group

Before proceeding, we need another lemma. We use the notation of the previous
subsection.
Lemma 5.3.27 (Field automorphisms). Let PG(m− 1, k) be the ambient space of Xk.
We have that

PΓLm(k)Xk

/
PGLm(k)Xk

∼= Aut(k). (5.28)

Page 108

5.3. Trees and constructible sets

Proof. Let ∆ be the base of PG(m − 1, k) corresponding to the vertices of T .
Then it is well known that

PΓLm(k)[∆]

/
PGLm(k)[∆]

∼= Aut(k). (5.29)

(In fact, working with homogeneous coordinates with respect to ∆, PΓLm(k)[∆] contains
all elements of the form x 7→ idmxτ , with x a column vector representing points in
homogeneous coordinates, idm the identity (m × m)-matrix and τ ∈ Aut(k).) As
PΓLm(k)[∆] ≤ PΓLm(k)Xk

and PGLm(k)[∆] ≤ PGLm(k)Xk
, the lemma easily follows.

�

Theorem 5.3.28 (Projective automorphism group). Let T be a loose tree, and let k be
any field. Put Xk = F(T)⊗F1 k, and consider the embedding

ι : T Xk. (5.30)

Let I be the set of inner vertices of T , and let T (I) be the subtree of T induced on
I. We have PΓL(Xk) = Autproj(Xk) is isomorphic to

((centr∏
w∈I

S(w)
)
o Aut(T (I))

)
o Aut(k). (5.31)

Proof. First note that by Proposition 5.3.24, the kernel of the action of PΓLm(k)Xk

on Xk is trivial. Then by Lemma 5.3.27, we only have to show that

PGLm(k)Xk

∼=
(centr∏
w∈I

S(w)
)
o Aut(T (I)). (5.32)

By Theorem 5.3.25, we have that PGL(Xk)[I] is isomorphic to

centr∏
w∈I

S(w), (5.33)

and obviously PGL(Xk)[I] � PGLm(k)Xk
.

The theorem now follows from the Inner Tree Theorem. �

5.3.6 More on the different automorphism group types
By Theorem 5.3.28, we can now determine the combinatorial group as well.

Theorem 5.3.29 (Combinatorial automorphism group). Let T be a loose tree, and let
k be any field. Put Xk = F(T)⊗F1 k, let I be the set of inner vertices, and suppose that
|I| ≥ 2. Let ι be as in Theorem 5.3.28. Then

Autcomb(Xk) ∼= Autproj(Xk). (5.34)

Page 109

Chapter 5. Automorphism Groups

Proof. As in the proof of Theorem 5.3.11, we assume by way of contradiction
that there is some α ∈ Autcomb(Xk) \ Autproj(Xk). As in that theorem, by the fact that
Autproj(Xk) induces Aut(ι(T (I))) by the Inner Tree Theorem, we may assume that α
fixes all vertices of ι(T (I)). Now α induces projective automorphisms in each Ax with
x an inner vertex, which are compatible on edges of ι(T (I)). By Theorem 5.3.28, we
can end in the same way as in the proof of Theorem 5.3.11. �

We have shown in Proposition 5.2.9 that for each Xk, the combinatorial automor-
phism group is a subgroup of the topological automorphism group. Also it is clear that
any projectively induced automorphism is combinatorial, but the other direction is in
general not true. Let Γ be, e.g., an edge with two different vertices, so that for all k,
Xk is a projective k-line. Then each permutation of the k-points yields a combinatorial
automorphism, but not all of these come from projective automorphisms for all k. SoAuttop(Xk) ≥ Autcomb(Xk)

Autcomb(Xk),Auttop(Xk) ≥ Autproj(Xk).
(5.35)

5.4 Convexity
Let T be a loose tree, and for any field k, consider Xk := F(T) ⊗F1 k. In this

section we will prove a useful convexity property for the spaces Xk.
The following lemma is trivial, but also useful.

Lemma 5.4.1. Let G be any subgraph of T , not necessarily connected. Then the
dimension of the projective space generated over F1 by G equals the number of vertices
of G minus 1.

Theorem 5.4.2 (Convexity). Let k and Xk be as in the beginning of this section. Let
Au and Av be local affine spaces over k with u, v 6= u vertices of T . If x ∈ Au, but not
contained in any of the lines determined by the local loose star of u, and y ∈ Av is not
contained in any of the lines determined by the local loose star of v, then the projective
k-line xy only meets Xk in x and y.

Proof. Suppose by way of contradiction that z ∈ (Xk ∩ xy) \ {x, y}. Obviously
z 6∈ Au ∪Av, so z is in some other local affine k-space Aw, with w a vertex of T . There
are (essentially) five possible configurations to be considered:

(1) u ∼ v and u 6∼ w 6∼ v;

(2) u ∼ v and u 6∼ w ∼ v;

(3) u 6∼ v and u 6∼ w 6∼ v;

(4) u 6∼ v and u 6∼ w ∼ v;

(5) u 6∼ v and u ∼ w ∼ v.

Page 110

5.5. The edge-relation dichotomy

Note that u, v, w cannot form a triangle. In each of the cases, consider the
projective space generated by Au,Av and Aw, calculate its dimension, and apply Lemma
5.4.1 to find a contradiction. �

5.5 The edge-relation dichotomy
The fact that the calculations for loose trees T are so successful rests largely on

the fact that there are no cycles; that property leads to the fact that we can apply the
Inner Tree Theorem, and this makes it possible to determine the various automorphism
groups of F(T)⊗ k, k any field.

The examples which are the farthest from satisfying the Inner Tree Theorem
are affine and projective spaces. In case of affine spaces An

k , the automorphism group
(assumed combinatorial) acts transitively on the k-points, so obviously the Inner Tree
Theorem, formulated for loose graphs (see subsection 5.6.1), cannot hold. In fact, we
have the following observation the trivial proof of which we leave to the reader.

Theorem 5.5.1. Let Γ be the loose graph of an affine or projective F1-space. Then
for any field k and any of the considered automorphism groups Aut(·), we have that
Aut(F(Γ)⊗ k) acts transitively on the set of subgeometries isomorphic to Γ. (Here, as
before a subgeometry consists of k-points and affine or projective k-lines.)

5.5.1 Examples close to trees
Consider the following loose graph Γ1 (see figure 5.6), which, for each field k,

defines in the ambient projective 3-space PG(3, k), four affine planes each with two
extra points at infinity and cyclically denoted by αi (i = 1, 2, 3, 4), in which “adjacent
planes” meet in a projective line, and “opposite planes" meet precisely in the end points.
Denote the constructible set by Xk.

Figure 5.6: The loose graph Γ1

Obviously we have

Autproj(Xk) ∼= PΓL4(k)Γ1
, (5.36)

Page 111

Chapter 5. Automorphism Groups

where Γ1 comes with the embedding

ι : Γ1 Xk. (5.37)

The complement Γc1 of Γ1 in its ambient projective F1-space is also fixed by
Autproj(Xk), as that complement just defines two disjoint multiplicative groups. Notice
however that

(
F(Γ1)⊗F1 k

) ∐ (
F(Γc1)⊗F1 k

)
6= PG(3, k)! (5.38)

The example Γ1 easily generalizes to the class of polygonal graphs Γ(m) with m+1
vertices, m ≥ 0, m 6= 1, 2; for m = 0, 1 we get spaces Proj(k[X]) and Proj(k[X, Y])
which satisfy the Inner Tree Property; for m = 2 we get a projective k-plane, and for
m ≥ 3, we obtain a constructible set consisting of m+ 1 affine k-planes each with two
extra points at infinity, which intersect two by two according to their graph intersection
(in a projective k-line, a point or no intersection). All of them except Γ(1) and Γ(2)
have the property that

Autproj(Xk) ∼= PΓLn+1(k)Γ(m). (5.39)

The graph complements are also fixed by Autproj(Xk).

5.5.2 Missing piece
Let Γ be a loose graph, k any field, Pk := PG(m− 1, k) the ambient space over k,

and Γc the complement in PF1 of Γ. We have a decomposition

(
F(Γ)⊗F1 k

) ∐ (
F(Γc)⊗F1 k

) ∐
Yk(Γ) = PG(m− 1, k), (5.40)

for some constructible set Yk(Γ). The constructible set Yk measures a difference in
behavior of F(Γ) ⊗F1 k with respect to fields k and k = F1, since, for instance, for
k = F1 we have that F(Γ) ∐ F(Γc) partitions the Deitmar line set of PG(m− 1,F1).
(Note however that one has to be careful with decompositions in terms of loose graphs:
e.g., an affine F1-plane minus a multiplicative group Gm is not an affine line! — one
might want to think in terms of the Grothendieck ring of F1-schemes K0(SchF1) to see
this more clearly.)

It might be interesting to study the maps

Yk : Γ Yk(Γ). (5.41)

Page 112

5.6. Future steps

5.5.3 Examples close to the ambient space
Now consider the following example Γ2 (see figure 5.7), which, for each field k, de-

fines a projective 3-space PG(3, k) without one multiplicative group Gm (corresponding
to the missing diagonal edge). (Denote the constructible set by Xk.)

Figure 5.7: The loose graph Γ2

Let x and y be the two k-points of PG(3, k) in the projective line defined by Gm

which are not contained in Gm. Then obviously

Autproj(Xk) ∼= PΓL4(k)(x,y), (5.42)

so AutprojXk does not fix the graph defined by

ι : Γ2 Xk. (5.43)
What it does fix, is the complement of Γ2 in the projective F1-space defined by Γ1

(considered in the same embedding).

5.6 Future steps

5.6.1 Constructible sets satisfying the Inner Graph Property
One essential ingredient in the proof of our main theorem for trees, is the inner

tree property, which we define as follows for general loose graphs.

Let Γ be a loose graph, and let k be any field. Put Xk = F(Γ)⊗F1 k, and
consider the embedding

ι : Γ Xk. (5.44)

Let Aut(Xk) be one of the automorphism groups considered in this chapter
— combinatorial, induced by projective space or topological. Let I be the
set of inner vertices of T , and let Γ(I) be the subgraph of Γ induced on I.
Suppose |I| ≥ 2. Then we say that Γ satisfies the inner graph property if
Aut(Xk) stabilizes ι(Γ(I)).

Page 113

Chapter 5. Automorphism Groups

Question 5.6.1. Characterize (the) loose graphs that do/do not have the inner graph
property.

Let InnGraph be the category of loose graphs which have the inner graph property.
Following the same lines of the proof of Theorem 5.3.28, one can determine the map

Aut : InnGraph Group : Γ Aut(Γ). (5.45)

5.6.2 Heisenberg principle
Let LGraph be the category of loose graphs, LTree the category of loose trees,

and CGraph the category of complete graphs. We end the chapter with the following
questions.

Question 5.6.2. Does there exist a distance function

δ : LGraph× LGraph (S,≤), (5.46)
with (S,≤) a (totally) ordered set, such that the following properties hold?

• The distance between a loose tree and its completion in CGraph is maximal.

• If min{δ(Γ, T) | T ∈ LTree, T ≤ Γ} �, then Γ satisfies the inner graph property.

• If δ(Γ,Γ) �, with Γ the completion of Γ in CGraph, then Γ does not satisfy the
inner graph property.

We strongly suspect that δ should be expressed in terms of cycles.

Question 5.6.3. Let δ be as in the previous question. Let Γ be in LGraph, and suppose
that

min{δ(Γ, T) | T ∈ LTree, T ≤ Γ} · δ(Γ,Γ) (5.47)
is “quadratic,” when can one decide that Γ satisfies the inner graph property?

Page 114

Appendices

Page 115

A
Computation of the

Grothendieck
Polynomial of K5

In this appendix we will give a detailed computation of the Grothendieck poly-
nomial for the complete graph on 5 vertices, K5. As we already know, the associated
F1-constructible set for K5 is the projective space P4

F1 , and so its Grothendieck polyno-
mial must be

[K5] = L4 + L3 + L2 + L + 1. (A.1)
First of all, we will choose one loose spanning tree for the graph K5, i.e, a loose tree

obtained after resolving all fundamental edges of a spanning tree of K5. Let us remark
that we can choose any loose spanning tree since its Grothendieck polynomial is an in-
variant for a given graph. In our case, let us call Γ the following loose spanning tree ofK5:

After definition 3.3.1, the Grothendieck polynomial of Γ can be easily computed:

[Γ] = 5L4 − 4L + 4. (A.2)

The process to compute the Grothendieck polynomial of the original graph K5 consists
of “unresolving” in each step one of the fundamental edges of the graph and, using the
Affection Principle, keeping track of the list of resulting alternations to the Grothendieck
polynomial. By the term “unresolving an edge of a graph Γ,” one means choosing one
graph Γ1 in a way that Γ is obtained from Γ1 after resolving a fundamental edge. In
our case, we take Γ1 to be

Page 117

Let us compare both loose graphs to see more clearly which are the vertices that
must be taken into account according to the Affection Principle.

The edge that has been resolved to go from Γ1 to Γ is the red one. Using the
Affection Principle to compute the polynomial of Γ1, we only need to know the difference
between the polynomials of the following two loose graphs:

The polynomials of these graphs are easy to compute since the graph on the
left-hand side is the one corresponding with P2

F1 and the graph on the right is a tree. So
the Grothendieck polynomials are L2 +L+ 1 and 3L2− 2L+ 2, respectively. Calling ∆1
the difference between these two polynomials, we obtain the Grothendieck polynomial
for the graph Γ1 as follows

∆1 = 2L2 − 3L + 1,
[Γ1] = [Γ]−∆1 = 5L4 − 4L + 4− (2L2 − 3L + 1) = 5L4 − 2L2 − L + 3.

(A.3)

It is important to remark that, even though in this first case it was easy to
compute ∆1 due to the well-known Grothendieck polynomials of the two loose graphs
from above, the general formulas for Grothendieck polynomials given in subsection 3.5.6
would (of course) give the same expressions. In the following table, the reader can find
all the necessary differences and steps which must be computed in order to get the
Grothendieck polynomial for the scheme associated to K5.

Page 118

G
R
A
PH

BE
FO

R
E

R
ES

O
LV

IN
G

A
FT

ER
R
ES

O
LV

IN
G

∆
i

G
RO

T
H
.P

O
LY

N
O
M
IA

L

Γ
[Γ

]=
5L

4
−

4L
+

4

Γ 1
∆

1
=

2L
2
−

3L
+

1
[Γ

1]
=

5L
4
−

2L
2
−
L

+
3

Γ 2
∆

2
=

L3
−

L2
[Γ

2]
=

5L
4
−
L3
−
L2
−
L

+
3

Γ 3
∆

3
=

2L
3
−

2L
2
−

L
+

1
[Γ

3]
=

5L
4
−

3L
3

+
L2

+
2

Γ 4
∆

4
=

L4
−

2L
3

+
2L

2
−
L

[Γ
4]

=
4L

4
−
L3
−
L2

+
L

+
2

Γ 5
∆

5
=

L4
−

2L
2

+
L

[Γ
5]

=
3L

4
−
L3

+
L2

+
2

K
5

∆
6

=
2L

4
−

2L
3
−

L
+

1
[K

5]
=

L4
+
L3

+
L2

+
L

+
1

Page 119

As already mentioned before, when we apply the formulas for the loose graphs
before and after resolving, we have to take into account that the loose graphs we use
are embedded in the original graph for which we are trying to obtain the Grothendieck
polynomial. We will make a detailed study of step 5 (difference between Γ4 and Γ5) to
clarify this remark.

Computation of [Γ5] starting from the Grothendieck
polynomial of Γ4

The polynomial associated to Γ4 is 4L4 − L3 − L2 + L + 2. Then according to
the Affection Principle, in order to obtain [Γ5], we only have to compute the difference
between the polynomials for the following two graphs:

x y x y

Before resolution
To compute the Grothendieck polynomial of the loose graph before resolution

we could use the formula given in subsection 3.5.6 for this, but, we will use the cone
construction instead because it allows us to obtain the polynomial without much
computation. Thanks to the decomposition in the Grothendieck ring of varieties and
using Corollary 3.5.6 for a cone C(G1, G2), where G1 is a vertex v of the loose graph
having maximal degree — the degree of v is equal to the number of vertices minus
one — and G2 is the loose subgraph induced by all the vertices except v, we obtain the
following decomposition:

[Γ] = P(Av) + [Γ \ v], (A.4)

where Γ \ v means the “subgraph of Γ resulting after deleting v and its incident edges.”
In our case, applying two times the cone construction, we can decompose the

loose graph in three parts

Page 120

and translated in terms of Grothendieck polynomials, one obtains

[Γ] = L4 + L3 + L2 + 2. (A.5)

After resolution
According to subsection 3.5.6, the formula for the Grothendieck polynomial in

this case is

P(Γ) = P(Ax) + P(Ay) + P(∆) + (L2 − 1)P(GL)
−(L− 1)P(GL

x)− (L− 1)P(GL
y).

(A.6)

Therefore, we only have to find what the different parts of the formula mean in
terms of loose graphs and number of rational points. Let us start with Ax and Ay,
which are isomorphic to A3

F1 and A4
F1 , respectively. Also, observe that ∆ is the subgraph

generated by all the vertices except x and y, i.e., a complete subgraph on 3 vertices.
That is, ∆ defines a projective plane over F1.

Now the CV condition in the definition of the functor F (see definition 2.3.1)
comes into play and, as GL is embedded in ∆, we deduce that it defines a projective
plane minus one point; the same holds for GL

y . Besides, GL
x has a projective line as

associated Deitmar scheme since the only neighbors of x are the common ones. Once we
know all different and necessary parts of the formula (A.6), we obtain the Grothendieck
polynomial of Γ as follows:

P(Ax) = L3, P(Ay) = L4,

P(∆) = L2 + L + 1, P(GL) = L2 + L,
P(GL

x) = L + 1, P(GL
y) = L2 + L;

P(Γ) = L3 + L4 + (L2 + L + 1) + (L2 − 1)(L2 + L) (A.7)
−(L− 1)(L2 + L)− (L− 1)(L + 1)

= 2L4 + L3 − L2 + L + 2.

Hence, using the difference between the formulas obtained before and after resolu-
tion, we get that

∆5 = (2L4 + L3 − L2 + L + 2)− (L4 + L3 + L2 + 2)
= L4 − 2L2 + L,

P(Γ5) = P(Γ4)−∆5
= (4L4 − L3 − L2 + L + 2)− (L4 − 2L2 + L)
= 3L4 − L3 + L2 + 2.

Page 121

B Computations

In this last appendix we will briefly explain the code in Magma that we use to
obtain the Grothendieck polynomial for any loose graph. We first have to remark that
the main difficulty we found in writing this code is that computations are only allowed
in the category of graphs. Therefore, all computations of the Grothendieck polynomial
of a loose graph Γ will be done in what we called the minimal graph of Γ (and denoted
by Γ), i.e. the minimal graph in which Γ is embedded. However, computations do not
get much more complicated since Γ and Γ differ just by a finite number of vertices and,
thanks to the FUCP property (cf. example 2.3.2), this only implies a difference by a
constant in the level of Grothendieck polynomials. That is why, for some programs, we
also need to keep track of the differences between the number of vertices.

Let us recall that to calculate the Grothendieck polynomial of a loose graph, we
use the procedure called “surgery” consisting of unresolving one fundamental edge in
each step and, keeping track of the differences in the graphs, ending up in a loose
tree where the Grothendieck polynomial is well defined and known. Taking all this
into account, we first create a program called PolTree that given a tree computes its
Grothendieck polynomial using Definition 3.3.1. However, since we need to calculate
the zeta function for any loose graph and PolTree is only defined for trees, we use a
program called LooseSPTree to construct a list with all different loose graphs of the
surgery procedure having as its last term a loose spanning tree of the original graph.

The program LooseSPTree receives a graph Γ as data and chooses a spanning
tree of Γ with the command SpanningTree (already implemented in Magma). Then,
we compare both Γ and its spanning tree and we add a new graph to the output list
constructed from Γ by replacing one of the fundamental edges by two different new
edges, one on each vertex incident with the fundamental edge. The process continues
comparing this new graph with the chosen spanning tree of Γ and the program will
finish when all the fundamental edges are resolved, i.e., when the graph constructed is
a tree.

To wrap up we use the program called PolSPTree that takes a graph Γ as input

Page 123

and computes the Grothendieck polynomial of the tree constructed from Γ by the
program LooseSPTree. You can see here the code:

function PolLSPTree(G)
B:=LooseSPTree(G);
n:=#(B);
A:=PolTree(B[n]);
return A;

end function;

Thanks to Theorem 3.5.20, the polynomial obtained in PolSPTree is independent
of the list given by LooseSPTree.

Now that we have programmed everything we need for the computation of a
polynomial of a tree, we start describing how to calculate the difference in each step of
the surgery. For this, let us recall the general formula for a difference after resolving
the edge xy:

∆xy = (L2)[GL]− (L− 1)[GL
x]− (L− 1)[GL

y]− [C(GL, xy)] (B.1)

+[C(GL
x , xy)]− [C(GL

x , y)] + [C(GL
y , xy)]− [C(GL

y , x)].

Thanks to the list obtained in LooseSPTree we will be able to get the new loose
graphs needed to calculate the differences. For, we have created several programs called
GL, GLx, GLy, GL2, GL2x, GL3x, GL2y and GL3y that compute, respectively, the
loose graphs GL, GL

x , GL
y , C(GL, xy), C(GL

x , xy), C(GL
x , y), C(GL

y , xy) and C(GL
y , x).

The algorithm of all 8 programs is the same. Each of them receives two different graphs
as data (the first one is the graph which arises after having resolved one edge of the
second one) and, checking the neighbors of each vertex in both graphs, it identifies the
resolved edge and constructs a list with the one of the aforementioned loose subgraphs.
There is an important fact to be remarked here regarding connectedness of the graphs.
In the previous formula, the loose graphs GL, GL

x and GL
y might not be connected

and, in fact, the formula from above considers them as being decomposed in connected
components. That is why their corresponding programs give a list where different
connected components are considered as different graphs. For the other six programs
this is not necessary since adding any vertex x or y makes the loose graphs become
connected. Besides, the impossibility of working with loose graphs in Magma forces us
to create new programs, mL, mLx and mLy, which will keep track, respectively, of the
number of vertices of the minimal graphs GL, GL

x and GL
x that are not vertices of their

corresponding loose graphs.
Before being able to write the final program that will compute the polynomial for

any graph, we need to keep track of all different polynomials of type GL, GL
x , etc. in all

the different steps of the surgery process. For this, we will combine both the program
LooseSPTree and one program of the previous ones (GL, GLx, GLy, GL2, GL2x, GL3x,
GL2y or GL3y). We only describe the program keeping track of all the GL’s but there

Page 124

is one (exactly with the same algorithm) for each of the 8 programs listed before. We
denote by ListGL a program that takes a list of graphs, applies the program GL to any
two consecutive graphs from the list and creates a new list where the elements are all
the graphs obtained by the program GL.

Now we can describe the last two programs calculating the Grothendieck polyno-
mial for an arbitrary loose graph. The first one, PolynGraph1, receives a graph (or the
minimal graph of a loose graph) and follows the following recursive algorithm. Initially
we set the polynomial to be zero and we settle the two different situations in which the
current program should stop: the case in which the graph is empty, giving 0 as answer;
and the case where the graph is a tree, giving PolTree(G) as the answer. This is set in
the following way

Q:=0;
if IsNull(G) then

return Q;
else

if IsTree(G) then
return Q + PolTree(G);
else

end if;

end if;

The next step is finding out whether the graph has a vertex of maximal degree,
in which case we will use the cone construction with one vertex of maximal degree as
the vertex of the cone (cf. Corollary 3.5.6). This is necessary to avoid the program to
go in an infinite computation. For instance, if in a graph Γ, after having resolved an
edge, all the other vertices are common neighbors of the two vertices from the resolved
edge, then the programs GL2, GL2x and GL2y will give as result the same graph Γ and
recursion will be impossible to use. So, with the code

V:=Vertices(G);
{D:=SetToIndexedSet(Alldeg(G, #(V) -1));
if IsEmpty(D) then

else

G1:= G - D[1];
G2:= Components(G1);
Q:=Q + x^(Degree(D[1]));
for i in [1..#(G2)] do

Q:= Q + PolynGraph1(sub< G1 | G2[i]>);
end for;

end if;

Page 125

we add, in case there is a vertex v of maximal degree, the corresponding term Ldeg(v)

to the polynomial Q and use recursion on the connected components of the remaining
graph. Once all these cases are checked we only have to take the graph, construct
the list of all intermediate steps of the surgery, compute the polynomial for the loose
spanning tree (last graph of the list) and use recursion on all different graphs obtained
by the programs of the type ListGL with their corresponding coefficients from the
formula (B.1). Let us remark that resolving edges in Magma not only means adding
two edges, but also adding two more vertices, as we compute everything in the category
of graphs. So when we calculate the polynomial of a spanning tree of a graph, we keep
track of the number of extra vertices added in the resolving procedure. This number of
extra vertices must be subtracted from the polynomial of the chosen spanning tree and,
in that way, it is expressed in the algorithm with the following code:

L:=LooseSPTree(G);
tL:=#(L);
Q:=Q + PolLSPTree(L[tL]) - 2*(tL - 1);

Finally, there is only one step left to end the computation. For that purpose, we
make the last program called PolynGraph that receives two arguments, a graph Γ and
a number m (the number of loose edges). The program gives as output the polynomial
PolynGraph1(Γ) − m.

function PolynGraph(G,m)
Q:= PolynGraph1(G) - m;
return Q;

end function;

Complete code in Magma

// Zeta Polynomial for loose trees

function PolTree(G)
V:=Vertices(G);
Q:=0;
if #(V) eq 0 then return Q;
else

for i in [1..#(V)] do
if Degree(V[i]) eq 1 then

Q:=Q + 1;
else

Q:=Q + x^(Degree(V[i])) - x + 1;
end if;

end for;

Page 126

Q:=Q + x - 1;
return Q;
end if;

end function;

//Given a loose graph G, create a spanning tree breaking a cycle in each
step

function LooseSPTree(G)
L:=[* G *];
if IsTree(G) then

return L;
else

G1:=SpanningTree(G);
V1:=Vertices(G1);
V:=Vertices(G);
G2:=G;
t:=#(V);
t1:=#(V1);
for i in [1 .. t] do
A:=Neighbors(V[i]);
A1:=Neighbors(V1[i]);

for c in [i+1 .. t1] do
if V[c] in A then

if V1[c] notin A1 then
R:=G2 + 2;
t2:=#(Vertices(R));
R:=AddEdge(R, Vertices(R)[i], Vertices(R)[t2-1]);
R:= R - { {Vertices(R)[i], Vertices(R)[c]} };
G2:=AddEdge(R, Vertices(R)[c], Vertices(R)[t2]);
L:=Append(L, G2);

end if;
end if;
end for;

end for;
return L;

end if;
end function;

//Given a graph, compute its Loose Spanning Tree

function PolLSPTree(G)
B:=LooseSPTree(G);
n:=#(B);
A:=PolTree(B[n]);

Page 127

return A;
end function;

//Computing the graph G^L

function GL(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
L:=[* *];
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H3:= H1 sdiff H2;
if IsEmpty(H) then

L:=Append(L, NullGraph());
else

G3:=sub<B | H>;
T:=Components(G3);
lT:=#(T);
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

G5:=G4;
VG5:=Vertices(G5);
for j in [1..#(H3)] do

V5:={@ v : v in VG5 | (Vertices(B) ! v) adj
SetToIndexedSet(H3)[j] @};

if IsEmpty(V5) then
else

G5:= G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph(G5,G4) then

V6:={@ (VertexSet(G5) ! V5[s]) : s in
[1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} : s
in [1..#(V6)]};

end if;

Page 128

end if;
end for;
L:=Append(L,G5);

else
L:=[* sub<G3 | T[i]> : i in [1..lT] *];

end if;
end for;

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Computing the graph C(G^L, xy)

function GL2(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H5:=Include(Include(H, V2[c]), V2[i]);
H3:= H1 sdiff H2;
G2:=sub<B | H5>;
G3:=sub<B | H>;
if IsEmpty(H) then

L:=[* G2 *];
else

T:=Components(G3);
lT:=#(T);
G5:=G2;
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

Page 129

for j in [1..#(H3)] do
if IsSubgraph (G2,G4) then
V5:={@ (VertexSet(B) ! (VertexSet(G3) ! v)) : v

in V4 | (VertexSet(B) ! (VertexSet(G3) ! v))
adj SetToIndexedSet(H3)[j] @};

if not IsEmpty(V5) then
G5:=G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph (G5,G2) then

V6:={@ (VertexSet(G5) ! (VertexSet(G2) !
V5[s])) : s in [1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} :
s in [1..#(V6)]};

end if;
end if;

end if;
end for;

end if;
end for;
L:=[* G5 *];

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Computing the graph G^L_x

function GLx(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
L:=[* *];
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H3:= H1 diff H2;
if IsEmpty(H) then

Page 130

L:=Append(L, NullGraph());
else

G3:=sub<B | H>;
T:=Components(G3);
lT:=#(T);
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

G5:=G4;
VG5:=Vertices(G5);
for j in [1..#(H3)] do

V5:={@ v : v in VG5 | (Vertices(B) ! v) adj
SetToIndexedSet(H3)[j] @};

if IsEmpty(V5) then
else

G5:= G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph(G5,G4) then

V6:={@ (VertexSet(G5) ! V5[s]) : s in
[1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} : s
in [1..#(V6)]};

end if;
end if;

end for;
L:=Append(L,G5);

else
L:=[* sub<G3 | T[i]> : i in [1..lT] *];

end if;
end for;

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Computing the graph C(G^L_x, xy)

function GL2x(A,B)
V1:=Vertices(A);
V2:=Vertices(B);

Page 131

t1:=#(V1);
t2:=#(V2);
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H5:=Include(Include(H, V2[c]), V2[i]);
H3:= H1 diff H2;
G2:=sub<B | H5>;
G3:=sub<B | H>;
if IsEmpty(H) then

L:=[* G2 *];
else

T:=Components(G3);
lT:=#(T);
G5:=G2;
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

for j in [1..#(H3)] do
if IsSubgraph (G2,G4) then
V5:={@ (VertexSet(B) ! (VertexSet(G3) ! v)) : v

in V4 | (VertexSet(B) ! (VertexSet(G3) ! v))
adj SetToIndexedSet(H3)[j] @};

if not IsEmpty(V5) then
G5:=G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph (G5,G2) then

V6:={@ (VertexSet(G5) ! (VertexSet(G2) !
V5[s])) : s in [1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} :
s in [1..#(V6)]};

end if;
end if;

end if;
end for;

end if;
end for;
L:=[* G5 *];

end if;

Page 132

return L;
end if;

end if;
end for;

end for;
end function;

//Computing the graph C(G^L_x, y)

function GL3x(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H5:=Include(H, V2[i]);
H3:= H1 diff H2;
G2:=sub<B | H5>;
G3:=sub<B | H>;
if IsEmpty(H) then

L:=[* G2 *];
else

T:=Components(G3);
lT:=#(T);
G5:=G2;
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

for j in [1..#(H3)] do
if IsSubgraph (G2,G4) then
V5:={@ (VertexSet(B) ! (VertexSet(G3) ! v)) : v

in V4 | (VertexSet(B) ! (VertexSet(G3) ! v))
adj SetToIndexedSet(H3)[j] @};

if not IsEmpty(V5) then
G5:=G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph (G5,G2) then

Page 133

V6:={@ (VertexSet(G5) ! (VertexSet(G2) !
V5[s])) : s in [1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} :
s in [1..#(V6)]};

end if;
end if;

end if;
end for;

end if;
end for;
L:=[* G5 *];

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Computing the graph G^L_y

function GLy(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
L:=[* *];
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H4:= H2 diff H1;
if IsEmpty(H) then

L:=Append(L, NullGraph());
else

G3:=sub<B | H>;
T:=Components(G3);
lT:=#(T);
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);

Page 134

if #(H4) ge 1 then
G5:=G4;
VG5:=Vertices(G5);
for j in [1..#(H4)] do

V5:={@ v : v in VG5 | (Vertices(B) ! v) adj
SetToIndexedSet(H4)[j] @};

if IsEmpty(V5) then
else

G5:= G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph(G5,G4) then

V6:={@ (VertexSet(G5) ! V5[s]) : s in
[1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} : s
in [1..#(V6)]};

end if;
end if;

end for;
L:=Append(L,G5);

else
L:=[* sub<G3 | T[i]> : i in [1..lT] *];

end if;
end for;

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Computing the graph C(G^L_y, xy)

function GL2y(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);

Page 135

H:= H1 meet H2;
H5:=Include(Include(H, V2[c]), V2[i]);
H3:= H2 diff H1;
G2:=sub<B | H5>;
G3:=sub<B | H>;
if IsEmpty(H) then

L:=[* G2 *];
else

T:=Components(G3);
lT:=#(T);
G5:=G2;
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

for j in [1..#(H3)] do
if IsSubgraph (G2,G4) then
V5:={@ (VertexSet(B) ! (VertexSet(G3) ! v)) : v

in V4 | (VertexSet(B) ! (VertexSet(G3) ! v))
adj SetToIndexedSet(H3)[j] @};

if not IsEmpty(V5) then
G5:=G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph (G5,G2) then

V6:={@ (VertexSet(G5) ! (VertexSet(G2) !
V5[s])) : s in [1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} :
s in [1..#(V6)]};

end if;
end if;

end if;
end for;

end if;
end for;
L:=[* G5 *];

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Computing the graph C(G^L_y, x)

Page 136

function GL3y(A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
H5:=Include(H, V2[c]);
H3:= H2 diff H1;
G2:=sub<B | H5>;
G3:=sub<B | H>;
if IsEmpty(H) then

L:=[* G2 *];
else

T:=Components(G3);
lT:=#(T);
G5:=G2;
for i in [1..lT] do

G4:=sub<G3 | T[i]>;
V4:=Vertices(G4);
lV4:=#(V4);
if #(H3) ge 1 then

for j in [1..#(H3)] do
if IsSubgraph (G2,G4) then
V5:={@ (VertexSet(B) ! (VertexSet(G3) ! v)) : v

in V4 | (VertexSet(B) ! (VertexSet(G3) ! v))
adj SetToIndexedSet(H3)[j] @};

if not IsEmpty(V5) then
G5:=G5 + 1;
lG5:=#(Vertices(G5));
if IsSubgraph (G5,G2) then

V6:={@ (VertexSet(G5) ! (VertexSet(G2) !
V5[s])) : s in [1..#(V5)] @};

G5:= G5 + {{V6[s], Vertices(G5)[lG5]} :
s in [1..#(V6)]};

end if;
end if;

end if;
end for;

end if;

Page 137

end for;
L:=[* G5 *];

end if;
return L;

end if;
end if;

end for;
end for;

end function;

//Create all list with all different graph from the whole surgery process

function ListGL (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GL(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

function ListGLx (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GLx(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

function ListGLy (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GLy(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

function ListGL2 (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GL2(L[tL - i +1], L[tL - i]);
end for;
return L1;

Page 138

end function;

function ListGL2x (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GL2x(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

function ListGL2y (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GL2y(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

function ListGL3x (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GL3x(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

function ListGL3y (L)
tL:=#(L);
L1:=[* *];
for i in [1..(tL-1)] do

L1:=L1 cat GL3y(L[tL - i +1], L[tL - i]);
end for;
return L1;

end function;

//Keeping track of all vertices added in the surgery process

function mL (A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
t:=0;

Page 139

for i in [1 .. t2] do
N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
L:=GL(A,B);
for i in [1..#(L)] do

t:= t + #(Vertices(L[i]));
end for;
t:= t - #(H);

end if;
end if;

end for;
end for;
return t;

end function;

function ListmL(L)
tL:=#(L);
L2:=[mL(L[tL - i +1], L[tL - i]) : i in [1..(tL-1)]];
return L2;

end function;

function mLx (A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
t:=0;
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
L:=GLx(A,B);
for i in [1..#(L)] do

t:= t + #(Vertices(L[i]));
end for;
t:= t - #(H);

end if;

Page 140

end if;
end for;

end for;
return t;

end function;

function ListmLx(L)
tL:=#(L);
L2:=[mLx(L[tL - i +1], L[tL - i]) : i in [1..(tL-1)]];
return L2;

end function;

function mLy (A,B)
V1:=Vertices(A);
V2:=Vertices(B);
t1:=#(V1);
t2:=#(V2);
t:=0;
for i in [1 .. t2] do

N2:=Neighbors(V2[i]);
for c in [i+1 .. t2] do

if V2[c] adj V2[i] then
if V1[c] notadj V1[i] then

H1:= Exclude(Neighbors(V2[c]), V2[i]);
H2:= Exclude(Neighbors(V2[i]), V2[c]);
H:= H1 meet H2;
L:=GLy(A,B);

for i in [1..#(L)] do
t:= t + #(Vertices(L[i]));
end for;
t:= t - #(H);

end if;
end if;

end for;
end for;
return t;

end function;

function ListmLy(L)
tL:=#(L);
L2:=[mLy(L[tL - i +1], L[tL - i]) : i in [1..(tL-1)]];
return L2;

end function;

//Compute the Grothendieck polynomial for a graph

Page 141

function PolynGraph1(G)
Q:=0;
if IsNull(G) then

return Q;
else

if IsTree(G) then
return Q + PolTree(G);

else
V:=Vertices(G);
D:=SetToIndexedSet(Alldeg(G, #(V) -1));
if IsEmpty(D) then

L:=LooseSPTree(G);
tL:=#(L);
Q:=Q + PolLSPTree(L[tL]) - 2*(tL - 1);
L1:=ListGL(L);
L2:=ListGLx(L);
L3:=ListGLy(L);
L4:=ListGL2(L);
L5:=ListGL2x(L);
L6:=ListGL2y(L);
L7:=ListGL3x(L);
L8:=ListGL3y(L);
L9:=ListmL(L);
L10:=ListmLx(L);
L11:=ListmLy(L);
for i in [1..#(L1)] do

Q:= Q - x^2*PolynGraph1(L1[i]);
end for;
for i in [1..#(L2)] do

Q:= Q + (x-1)*PolynGraph1(L2[i]);
end for;
for i in [1..#(L3)] do

Q:= Q + (x-1)*PolynGraph1(L3[i]);
end for;
for i in [1..#(L9)] do

Q:= Q + (x^2-1)*L9[i];
end for;
for i in [1..#(L10)] do

Q:= Q - (x-1)*L10[i];
end for;
for i in [1..#(L11)] do

Q:= Q - (x-1)*L11[i];
end for;
for i in [1..#(L4)] do

Q:= Q + PolynGraph1(L4[i]);

Page 142

end for;
for i in [1..#(L5)] do

Q:= Q - PolynGraph1(L5[i]);
end for;
for i in [1..#(L6)] do

Q:= Q - PolynGraph1(L6[i]);
end for;
for i in [1..#(L7)] do

Q:= Q + PolynGraph1(L7[i]);
end for;
for i in [1..#(L8)] do

Q:= Q + PolynGraph1(L8[i]);
end for;

else
G1:= G - D[1];
G2:= Components(G1);
Q:=Q + x^(Degree(D[1]));
for i in [1..#(G2)] do

Q:= Q + PolynGraph1(sub<G1 | G2[i]>);
end for;

end if;
return Q;

end if;
end if;

end function;

//Compute the Grothendieck polynomial for a loose graph

function PolynGraph(G,m)
Q:= PolynGraph1(G) - m;
return Q;

end function;

Page 143

C Nederlandse
Samenvatting

Deze thesis presenteert nieuwe resultaten die gevonden zijn in de theorie van
schema’s en constructieve verzamelingen over het veld met één element, F1. Essentieel
gaat het om een studie van bepaalde functoren Fk, met k een eindig veld of F1, die van
de categorie van “losse grafen” — die grafen veralgemenen — gaan naar de categorie
van Deitmar constructieve verzamelingen met extra structuur. Die functoren worden
gebruikt om Grothendieck polynomen van losse grafen Γ te vinden, en die polynomen
tellen het aantal rationale punten van de geassocieerde constructieve verzamelingen
Fk(Γ). Eigenlijk is het zelfs zo dat de virtuele motieven van de constructieve verzamelin-
gen Fk(Γ) in de Grothendieck ring van k-schema’s van eindig type mixed Tate zijn. We
gebruiken de functoren ook om een nieuwe zeta functie in te voeren voor de categorie
van (losse) grafen. We bepalen tevens automorfismegroepen van deze objecten.

C.1 Deitmar schema’s en constructieve verzamelin-
gen

In Hoofdstuk 1 geven we een motivatie voor F1-theorie, en geven we tevens een
kleine introductie tot Lineaire Algebra en Algebraïsche Meetkunde over het veld met
één element. Een van de hoofdrolspelers in dit proefwerk is de notie van “Deitmar
schema’s”, en die gaan we nu even definiëren.

Beschouw een “F1-ring” A; dit is een multiplicatieve commutatieve monoïde met
een extra opslorpend element 0. Onderstel dat Spec(A) de verzameling is van alle
priemidealen van A, met daarop een Zariski topologie. De topologische ruimte Spec(A)
met een structuurschoof van F1-ringen noemen we een affien Deitmar schema. We
definiëren een monoïdale ruimte als zijnde een paar (X,OX) waarbij X een topologische
ruimte is, en OX een schoof van F1-ringen gedefinieerd over X. Een Deitmar schema is
nu een monoïdale ruimte waarvoor elk punt x ∈ X een open omgeving U ⊆ X heeft
zodat (U,OX |U) isomorf is met een affien Deitmar schema.

Page 145

Voor meer details over priemidealen van een monoïde, Deitmar schema’s en
structuurschoven over F1-ringen, refereren we aan [8].

C.2 Losse grafen
In Hoofdstuk 2 introduceren we een nieuwe categorie van combinatorische objecten

die we losse grafen noemen.

Definitie C.2.1. Een losse graaf is een punt-rechte meetkunde Γ = (V,E, I), met V
een verzameling toppen, E een verzameling bogen en I een symmetrische relatie op V ∪E,
disjunct van V × V en E × E, die uitdrukt wanneer bogen en toppen incident zijn, en
waar elke boog incident is met ten hoogste twee verschillende toppen. We noemen bogen
met minder dan twee toppen losse bogen en de bogen met twee verschillende toppen
echte bogen.

Merk op dat losse grafen de notie van grafen veralgemenen, want een boog kan
nu één of zelfs geen top(pen) hebben. Elke graaf is dus een losse graaf. We onderstellen
dat elke losse graaf komt met een ledige boog, genoteerd e∅, die per definitie helemaal
nooit incident is met een top.

In deze thesis beschouwen we meestal samenhangende enkelvoudige losse grafen
zonder richting.

Definitie C.2.2. Onderstel dat Γ1 = (V1, E1, I1) en Γ2 = (V2, E2, I2) losse grafen zijn.
Dan is een afbeelding f : Γ1 → Γ2 een morfisme van losse grafen van Γ1 naar Γ2 indien:

i) f toppen naar toppen stuurt en bogen naar bogen, i.e., f |V1 : V1 → V2 en
f |E1 : E1 → E2.

ii) f(e1,∅) = e2,∅.

iii) Indien e ∈ E een echte boog is, dan is f(e) = e2,∅ als en slechts als de twee toppen
incident met e in Γ1 hetzelfde beeld hebben onder f .

iv) Indien een top v ∈ V1 incident is met een boog e ∈ E1, dan zijn f(v) en f(e) ook
incident indien f(e) 6= e2,∅.

Een morfisme f : Γ1 → Γ1 van losse grafen is een automorfisme indien

a) f bijectief is op de verzamelingen van toppen en bogen.

b) Een top v incident is met een boog e als en slechts als f(v) incident is met f(e).

We definiëren de categorie van losse grafen, genoteerd LGraph, als de categorie
met objecten de losse grafen en morfismen morfismen van losse grafen. Een van de
hoofdstellingen die ons toelaat om de functor F te definiëren, die zelf essentieel is voor
het huidige werk, is de inbeddingsstelling (cf. [45] voor meer details).

Page 146

Stelling C.2.3 (Inbeddingsstelling). Onderstel dat Γ een losse graaf is en dat Γ de
minimale graaf is, i.e., de graaf die we bekomen door aan elke losse boog toppen toe
te voegen om zo echte bogen te bekomen. Dan kan Γ gezien worden als een losse
deelgraaf van de combinatorische projectieve ruimte Pc(Γ), i.e, de projectieve F1-ruimte
gedefinieerd door de complete graaf op de toppenverzameling van Γ.

We definiëren de functor F die gaat van de categorie LGraph van losse grafen naar
de categorie CSF1 van Deitmar constructieve verzamelingen als een functor die aan de
volgende eigenschappen voldoet:

CV Indien Γ ⊂ Γ̃ een strikte inclusie is van losse grafen, dan is F(Γ) een strikt
constructieve deelverzameling van F(Γ̃).

L-D Indien x een top is van graad m ∈ N× in Γ, dan is er een affiene ruimte van
dimensie m die x bevat, en volledig bevat is in F(Γ).

FIN De constructieve verzameling F(Γ) is de unie van de affiene ruimten uit het vorige
punt.

CO Indien Km een complete deelgraaf is op m toppen in Γ, dan is F(Km) een gesloten
projectieve deelruimte van dimensie m− 1 in F(Γ).

MG Een boog zonder toppen moet corresponderen met de multiplicatieve groep.

Er is nu een eenvoudige manier om F te definiëren:

(F1) Voor elke losse ster Sn (dit is de losse graaf die bestaat uit een enkele top samen
met n bogen incident met deze top), is F(Sn) een affiene F1-ruimte van dimensie
n.

(F2) Onderstel dat Γ een samenhangende losse graaf is, en laat Γ de minimale graaf zijn.
Onderstel dat Γ precies m+ 1 toppen heeft. Onderstel dat P(Γ) de projectieve
F1-ruimte is van dimensie m gedefinieerd door deze toppen; dan is F(Γ) de
unie in P(Γ) van de affiene F1-ruimten gedefinieerd door de sterren gehecht aan
de toppen, zonder de gesloten punten die corresponderen met de toppen die
toegevoegd werden om Γ te bekomen.

(F3) Indien we homogene coördinaten kiezen (in P(Γ)) zodat elke top als coördinaten
een vector in {0, 1}m+1 met precies één niet-nul term heeft, kan F(Γ) expliciet
analytisch beschreven worden. Het niet-samenvallende geval volgt makkelijk uit
het samenvallende geval.

Voor een eindig veld k (of Z) definiëren we de functor Fk als de functor Fk(·) =
F(·)⊗ k die gaat van de categorie van losse grafen naar de categorie van k-constructieve
verzamelingen. Merk op dat dit gedefinieerd is via de basis-extensie functor van de
categorie van F1-ringen naar de categorie van k-ringen.

Het hoofdresultaat van Hoofdstuk 2 is het bewijs dat Fk weldegelijk een functor
is voor k een willekeurig eindig veld, F1 of Z.

Page 147

C.3 Telveelterm
In Hoofdstuk 3 beginnen we door de Grothendieck ring van schema’s van eindig

type over F1 te definiëren, genoteerd K0(SchF1), op een gelijkaardige manier als de
Grothendieck ring K0(Schk) gedefinieerd is voor schema’s van eindig type over een veld
k, en we benadrukken de connectie met de theorie van motieven. Inderdaad kan men
ook de Grothendieck ring K0(M(k)) van motieven over een veld k (verschillend van F1)
beschouwen, waarbij de klasse van het motief van de affiene rechte A1

k het Lefschetz
motief genoemd wordt, genoteerd L, en een gelijkaardige rol speelt als de klasse van
de affiene rechte A1

k in K0(Schk). Om deze connectie tussen schema’s en motieven te
benadrukken, noteren we de klasse van de affiene rechte A1

k in K0(Schk) door L, en L
is de notatie voor de klasse van A1

F1 in K0(SchF1).

Definitie C.3.1. Onderstel dat X een constructieve verzameling is over een veld
k. We zeggen dat X veelterm-telbaar is indien er een (noodzakelijk unieke) veelterm
PX(T) = ∑m

i=0 aiT
i ∈ Z[T] bestaat zodat voor elke eindige extensie Fqn/Fq, we hebben

dat
∣∣∣X∣∣∣

qn
= PX(qn). (C.1)

We noemen deze veelterm de Grothendieck veelterm van X.

Definitie C.3.2. We zeggen dat X een gemengd Tate motief heeft indien zijn klasse in
de Grothendieck ring van schema’s van eindig type over k behoort tot de deelring Z[L].

Refererend aan een van de Tate vermoedens, dat als gevolg het volgende zegt:

“Onderstel dat X een variëteit is; dan is X veelterm-telbaar voor alle behalve een
endig aantal priemgetallen als en slechts als X een gemengd Tate motief heeft,”

bewijzen we in Hoofdstuk 3 de volgende resultaten over de constructieve verzamelingen
Fk(Γ).

Stelling C.3.3. Onderstel dat Γ een losse graaf is, en stel dat FFq(Γ) zijn Fq-constructieve
verzameling is, met Fq een willekeurig eindig veld. Dan is FFq(Γ) veelterm-telbaar. Daar-
naast is FFq(Γ) zeta-equivalent met een Fq-constructieve verzameling met Grothendieck
klasse een Z-lineaire combinatie van klassen van affiene ruimten [Ai]Fq , i.e., de Grothendieck
klasse is een element van de ring Z[L].

En in verband met het eerder vermelde gevolg van een van de Tate vermoedens,
bewijzen we ook het volgende resultaat in Hoofdstuk 3.

Stelling C.3.4. Onderstel dat Γ een losse graaf is, en laat k 6= F1 een veld zijn. Dan
is de klasse [Fk(Γ)] ∈ K0(Schk) een virtueel gemengd Tate motief.

Page 148

C.4 Een nieuwe zeta functie voor (losse) grafen
In Hoofdstuk 4 definiëren we, geïnspireerd door Kurokawa [26], een nieuwe zeta

functie voor losse grafen. In [26] stelt Kurokawa dat een Z-schema X van F1-type is
indien haar aritmetische zeta functie ζX(s) uitgedrukt kan worden via de Riemann zeta
functie ζ(s) op de volgende manier

ζX(s) :=
n∏
k=0

ζ(s− k)ak , (C.2)

waarbij de ais elementen zijn van Z, en hij toont aan dat deze definitie equivalent is aan
de voorwaarde dat er een veelterm PX(Y) = ∑n

i=0 akY is zodat #X(Fpm) = PX(pm)
voor alle eindige velden Fpm . We verkrijgen dan het volgende resultaat.

Definitie C.4.1. We zeggen dat een constructieve verzameling X gedefinieerd is over
F1 in Kurokawa’s aanpak indien X een veelterm Px(Y) heeft zodat #X(Fpm) = PX(pm).

Stelling C.4.2. Voor elke losse graaf Γ is het Z-constructieve verzameling XZ :=
F(Γ)⊗F1 Z gedefinieerd over F1 in Kurokawa’s aanpak.

Definitie C.4.3 (Zeta functie voor (losse) grafen). Laat Γ een losse graaf zijn, en laat
XZ := F(Γ) ⊗F1 Z. Onderstel dat Pχ(X) = ∑m

i=0 aiX
i ∈ Z[X] de zeta veelterm is uit

Hoofdstuk 3. We definiëren de F1-zeta functie van Γ als:

ζF1
Γ (t) :=

m∏
k=0

(t− k)−ak . (C.3)

Voorbeeld C.4.4. Onderstel dat Γ een boom is, en laat D de verzameling van graden
{d1, . . . , dm} zijn van de toppen van Γ zodat 1 < d1 < d2 < . . . < dm; de zeta functie
wordt gegeven door

ζF1
Γ (t) = (t− 1)I

tE+I ·
m∏
k=1

(t− dk)−nk , (C.4)

waar ni het aantal toppen is van Γ met graad di, 1 ≤ i ≤ m, E het aantal toppen van
Γ met graad 1 en I = ∑m

i=1 ni − 1.

C.5 Automorfismegroepen van F(Γ)
Onderstel dat Γ een losse graaf is, dat F(Γ) zoals eerder is, en stel Xk = F(Γ)⊗F1

k de extensie tot het eindig veld k. In Hoofdstuk 5 introduceren we de volgende
automorfismegroepen van Xk.

Definitie C.5.1. We definiëren de projectieve automorfismegroep van Xk, genoteerd
Autproj(Xk), als de groep van automorfismen van de omhullende projectieve ruimte van
Xk die Xk stabiliseert, modulo de groep van zulke automorfismen die triviaal werken op
Xk.

Page 149

Definitie C.5.2. We beschouwen Xk nu als een incidentiemeetkunde van rang 2,
waar de puntenverzameling P de verzameling van k-rationale punten is van Xk en de
rechtenverzameling L bestaat uit projectieve rechten (over k) en volledige affiene rechten.
Een volledige affiene rechte l van Xk is een rechte waarvan de projectieve completering
l̄ de constructieve verzameling Xk snijdt in de projectieve rechte l̄ min een punt. We
definiëren de combinatorische automorfismegroep van Xk, genoteerd Autcomb(Xk), als de
groep van bijectieve afbeeldingen P∪L→ P∪L die P en L behouden, en die incidentie
behouden in beide richtingen.

Definitie C.5.3. We definiëren de topologische automorfismegroep van Xk, genoteerd
als Auttop(Xk), als de groep van homeomorfismen van de onderliggende topologische
ruimte.

Een van de eerste eigenschappen die we bekomen is de volgende.

Propositie C.5.4. De combinatorische groep van Xk is een deelgroep van de topologis-
che automorfismegroep van Xk.

C.6 Automorfismen van algemene losse bomen
Onderstel dat T = (V,E, I) een eindige losse boom is, en onderstel dat het aantal

toppen tenminste 3 is. Definieer Xk als eerder, waarbij k een eindig veld is. Een van de
hoofddoelen van Hoofdstuk 5 is de bepaling van de projectieve automorfismegroep van
Xk. Vooraleer we overgaan op het beschrijven van de hoofdresultaten, hebben we extra
notatie nodig.

Onderstel dat T de minimale graaf is van T , i.e., de boom die ontstaat door
alle mogelijke eindpunten toe te voegen aan T , en laat PG(m− 1, k) de omhullende
projectieve ruimte zijn van Xk. Door de inbedding stelling, kan T gezien worden als
een deelmeetkunde van een projectieve F1-ruimte.

Onderstel dat I de verzameling is van inwendige toppen van T ; voor elke w ∈ I
definiëren we S(w) als de deelgroep van Autproj(Xk) die de k-rationale punten van Xk

fixeert binnen elke affiene deelruimte Ãv (over k) die voortgebracht is (over F1) door
een top v verschillend van w en alle richtingen door v die niet incident zijn met w. Laat
nu S een verzameling punten zijn in PG(m− 1, k); dan is PΓLm(k)[S] de puntsgewijze
stabilisator. De hoofdresultaten van Hoofdstuk 5 zijn de volgende.

Stelling C.6.1. Laat PGL(Xk)[I] gedefinieerd zijn als

Autproj(Xk)[I] ∩ PGLm(k). (C.5)

Dan is PGL(Xk)[I] isomorf met het centrale product

centr∏
w∈I

S(w). (C.6)

Page 150

Stelling C.6.2 (Inwendige Boom Stelling). Onderstel dat T een losse boom is, en k
een veld. Stel Xk = F(T)⊗F1 k, en beschouw de inbedding

ι : T ↪→ Xk, (C.7)

waar ι(T) isomorf met T is als punt-rechte deelmeetkunde van de punt-rechte meetkunde
van Xk.

Onderstel dat Aut(Xk) gelijk welke van de automorfismegroepen is die we in dit
hoofdstuk beschouwen (i.e., combinatorisch, geïnduceerd via de projectieve ruimte of
topologisch). Onderstel dat I de verzameling van inwendige toppen is van T , and laat
T (I) de deelboom zijn van T die geïnduceerd wordt op I. Indien |I| ≥ 2 hebben we dat
Aut(Xk), ι(T (I)) vast houdt. Meer nog, Aut(ι(T (I))) is geïnduceerd door Aut(Xk).

Stelling C.6.3 (Projectieve automorfismegroep). Onderstel dat T een losse boom is,
en k een veld. Stel Xk = F(T)⊗F1 k, en beschouw de inbedding

ι : T ↪→ Xk. (C.8)

Onderstel dat I de verzameling van inwendige toppen is van T , and laat T (I) de deelboom
zijn van T die geïnduceerd wordt op I. We hebben dat PΓL(Xk) = Autproj(Xk) isomorf
is met ((centr∏

w∈I
S(w)

)
o Aut(T (I))

)
o k×. (C.9)

Stelling C.6.4 (Combinatorische automorfismegroep). Onderstel dat T een losse boom
is, en k een veld. Stel Xk = F(T) ⊗F1 k. Onderstel dat I de verzameling is van de
inwendige toppen van T , en onderstel dat |I| ≥ 2. Laat ι zijn zoals in Stelling C.6.2.
Dan is

Autcomb(Xk) ∼= Autproj(Xk). (C.10)

Page 151

Bibliography

[1] H. Bass. The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math.,
3:717–797, 1992.

[2] A. Beutelspacher and U. Rosenbaum. Projective geometry: from foundations to
applications. Cambridge University Press, Cambridge, 1998.

[3] G. D. Birkhoff. A determinant formula for the number of ways of coloring a map.
The Annals of Mathematics, 14(1/4):42–46, 1912.

[4] T. Bridgeland. An introduction to motivic Hall algebras. Adv. Math., 229:102–138,
2012.

[5] A. Connes and C. Consani. Schemes over F1 and zeta functions. Compos. Math.,
146:1383–1415, 2010.

[6] Y. Cooper. Properties determined by the Ihara zeta function of a graph. Electron.
J. Combin., 16:Research Paper 84, 14, 2009.

[7] G. Cortiñas, C. Haesemeyer, M. E. Walker, and C. Weibel. Toric varieties, monoid
schemes and cdh descent. J. Reine Angew. Math., 698:1–54, 2015.

[8] A. Deitmar. Schemes over F1. In Number fields and function fields—two parallel
worlds, volume 239 of Progr. Math., pages 87–100. Birkhäuser Boston, Boston, MA,
2005.

[9] A. Deitmar. Remarks on zeta functions and K-theory over F1. Proc. Japan Acad.
Ser. A Math. Sci., 82:141–146, 2006.

[10] A. Deitmar. F1-schemes and toric varieties. Beiträge Algebra Geom., 49:517–525,
2008.

[11] A. Deitmar. Congruence schemes. Internat. J. Math., 24:46pp, 2013.

[12] P. Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math.,
(43):273–307, 1974.

Page 153

BIBLIOGRAPHY

[13] P. Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math.,
(52):137–252, 1980.

[14] C. Deninger. On the Γ-factors attached to motives. Invent. Math., 104:245–261,
1991.

[15] C. Deninger. Local L-factors of motives and regularized determinants. Invent.
Math., 107:135–150, 1992.

[16] C. Deninger. Motivic L-functions and regularized determinants. In Motives (Seattle,
WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 707–743. Amer. Math.
Soc., Providence, RI, 1994.

[17] W. Fulton. Introduction to toric varieties. Princeton University Press, Princeton,
NJ, 1993. The William H. Roever Lectures in Geometry.

[18] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.
Graduate Texts in Mathematics, No. 52.

[19] K. Hashimoto. Zeta functions of finite graphs and representations of p-adic groups.
In Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math.,
pages 211–280. Academic Press, Boston, MA, 1989.

[20] T. Hausel and F. Rodriguez-Villegas. Mixed Hodge polynomials of character
varieties. Invent. Math., 174:555–624, 2008. With an appendix by Nicholas M.
Katz.

[21] T. Hubai. The chromatic polynomial. Master’s thesis, Eötvös Loránd University,
2009.

[22] Y. Ihara. On discrete subgroups of the two by two projective linear group over
p-adic fields. J. Math. Soc. Japan, 18:219–235, 1966.

[23] M. Kapranov and A. Smirnov. Cohomology determinants and reciprocity laws:
number field case. Unpublished notes.

[24] K. Kato. Toric singularities. Amer. J. Math., 116:1073–1099, 1994.

[25] N. Kurokawa. Multiple zeta functions: an example. In Zeta functions in geometry
(Tokyo, 1990), volume 21 of Adv. Stud. Pure Math., pages 219–226. Kinokuniya,
Tokyo, 1992.

[26] N. Kurokawa. Zeta functions over F1. Proc. Japan Acad. Ser. A Math. Sci.,
81:180–184, 2005.

[27] N. Kurokawa, H. Ochiai, and M. Wakayama. Absolute derivations and zeta
functions. Doc. Math., pages 565–584, 2003.

Page 154

BIBLIOGRAPHY

[28] Q. Liu. Algebraic geometry and arithmetic curves. Oxford Graduate Texts in
Mathematics. Oxford University Press, Oxford, 2002.

[29] J. López Peña and O. Lorscheid. Mapping F1-land: an overview of geometries over
the field with one element. In Noncommutative geometry, arithmetic, and related
topics, pages 241–265. Johns Hopkins Univ. Press, Baltimore, MD, 2011.

[30] J. López Peña and O. Lorscheid. Projective geometry for blueprints. C. R. Math.
Acad. Sci. Paris, 350:455–458, 2012.

[31] O. Lorscheid. Blue schemes as relative schemes after Töen and Vaquié. Preprint.

[32] O. Lorscheid. The geometry of blueprints. Part II: Tits-Weyl models of algebraic
groups. Preprint.

[33] O. Lorscheid. The geometry of blueprints: Part I: Algebraic background and
scheme theory. Adv. Math., 229:1804–1846, 2012.

[34] O. Lorscheid. Blueprints—towards absolute arithmetic? J. Number Theory,
144:408–421, 2014.

[35] O. Lorscheid. A blueprinted view on F1-geometry. In Absolute Arithmetic and
F1-geometry, pages 161–219. EMS Publishing House, Zürich, 2016.

[36] Y. Manin. Lectures on zeta functions and motives (according to Deninger and
Kurokawa). Astérisque, (228):121–163, 1995. Columbia University Number Theory
Seminar (New York, 1992).

[37] M. Mérida-Angulo and K. Thas. Automorphisms of Deitmar schemes, I. Functori-
ality and trees. Submitted, 28pp., 2016.

[38] M. Mérida-Angulo and K. Thas. Graphs, F1-schemes and virtual mixed Tate
motives. Submitted, 8pp., 2016.

[39] M. Mérida-Angulo and K. Thas. The structure of Deitmar schemes, II. Zeta
functions and automorphism groups. Submitted, 8pp., 2016.

[40] M. Mérida-Angulo and K. Thas. Deitmar schemes, graphs and zeta functions. J.
Geom. Phys., 117:234–266, 2017.

[41] J.S. Milne. Motives - Grothendieck’s Dream. April 2012.

[42] N. Sahasrabudhe. Grothendieck ring of varieties. Master’s thesis, Université
Bordeaux 1.

[43] C. Soulé. Les variétés sur le corps à un élément. Mosc. Math. J., 4:217–244, 312,
2004.

[44] K. Thas. Notes on F1, I. Unpublished notes, 2012.

Page 155

BIBLIOGRAPHY

[45] K. Thas. The structure of Deitmar schemes, I. Proc. Japan Acad. Ser. A Math.
Sci., 90:21–26, 2014.

[46] K. Thas, editor. Absolute Arithmetic and F1-geometry. EMS Publishing House,
Zürich, 2016.

[47] K. Thas. The Weyl functor — Introduction to Absolute Arithmetic. In Absolute
Arithmetic and F1-geometry, pages 3–36. EMS Publishing House, Zürich, 2016.

[48] J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. In
Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre
Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick,
Louvain; Librairie Gauthier-Villars, Paris, 1957.

[49] H. Whitney. The coloring of graphs. The Annals of Mathematics, 33(4):688–718,
1932.

[50] H. Whitney. A logical expansion in mathematics. Bulletin of the American
Mathematical Society, 38(8):572–580, 1932.

Page 156

	Acknowledgments
	Preface
	Publications
	List of Figures
	Preliminaries
	Looking for F1
	Absolute Linear Algebra
	Absolute Algebraic Geometry
	Schemes over commutative rings
	Constructible sets
	Different versions of schemes over F1

	Monoidal schemes
	F1-Constructible sets
	Congruence schemes
	The multiplicative group Gm
	Blueprints

	The Functor Fk
	Combinatorial realization of F1
	Loose graphs and the functor S
	Loose graphs
	The functor S

	Modifying the functor S
	The new functor F
	F() seen as a congruence scheme
	Gluing the affine schemes?

	From F to Fk
	Base extension of Deitmar schemes
	Equations of some liftings

	The functors Fk
	Local action
	Global action
	Different categories for projective spaces

	In conclusion

	Counting Polynomial and Zeta Equivalence
	Grothendieck ring of schemes
	Connection to motives
	Virtual Tate motives

	Grothendieck polynomials
	Zeta-equivalence and polynomial-count
	Tate conjecture and counting polynomial

	Grothendieck polynomial for trees
	Lifting the class of trees in K0(SchF1)
	Surgery
	Resolution of edges
	The loose graphs (u,v;m)
	The loose graphs (u,v;m)uv
	General cones
	Affection Principle
	Polynomial Affection Principle: calculation
	Steps of surgery

	Lifting K0(SchF1), II
	Class of Fk() in K0(Schk)
	Main Theorem for cones
	 has no external edges
	 has external edges
	End of the proof of Theorem 3.7.1

	Mixed Tate motives in the Grothendieck ring

	A New Zeta Function for (Loose) Graphs
	Ihara zeta function
	Schemes defined over F1 à la Kurokawa
	The new zeta function
	Future steps

	Comparison with the Ihara zeta function: some examples
	The chromatic polynomial
	Connection with the new zeta function

	Automorphism Groups
	Automorphism group of loose graphs
	Automorphism groups of constructible sets
	Projective automorphism group
	Combinatorial automorphism group
	Topological automorphism group

	Trees and constructible sets
	Group action
	Toy example
	Loose trees
	Fundaments
	General loose trees
	More on the different automorphism group types

	Convexity
	The edge-relation dichotomy
	Examples close to trees
	Missing piece
	Examples close to the ambient space

	Future steps
	Constructible sets satisfying the Inner Graph Property
	Heisenberg principle

	Appendices
	Computation of the Grothendieck Polynomial of K5
	Computations
	Nederlandse Samenvatting
	Deitmar schema's en constructieve verzamelingen
	Losse grafen
	Telveelterm
	Een nieuwe zeta functie voor (losse) grafen
	Automorfismegroepen van F()
	Automorfismen van algemene losse bomen

	Bibliography

