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Dried blood spots (DBS) are the common thread throughout this work. They have been used in both an 

analytical context and for the development of a genotyping method.  

 

DBS sampling is a microsampling technique in which a drop of capillary blood, derived from a finger or heel 

stick, is collected on special filter paper. This approach has been used successfully in newborn screening since it 

was introduced in the 1960s by Guthrie and Susi to determine phenylketonuria in neonates [1]. During the last 

decade, thanks to the development of more sensitive analytical techniques, DBS sampling -and microsampling 

in general- has gained its place in a lot of other fields, amongst which pharmaco- and toxicokinetics [2-5]. In 

toxicokinetics the relationship between the systemic exposure to a compound and the harmful effects of this 

compound is determined. In the preclinical context, DBS-based toxicokinetics offer both an improvement in 

animal welfare, as well as a financial benefit. Consequently, a lot of pharmaceutical companies and contract 

research organizations have undertaken efforts to utilize microsampling (liquid or DBS-based) as an alternative 

to plasma or serum in the (pre)clinical phases of the drug discovery process. DBS do not only have a potential 

for the analysis of therapeutic drugs, they are also suitable for the detection of drugs of abuse, as outlined in 

Chapter 1, which serves as an Introductory Chapter to DBS in general, with a particular focus on DBS 

applications in toxicology. More specifically, the analysis of abused substances is discussed, along with the 

associated benefits, limitations and challenges. While the focus of this Introductory Chapter primarily lies on 

forensic applications, it is clear that the determination of drugs of abuse may also have a potential for e.g 

newborn screening, more specifically to assess prenatal exposure to toxic compounds, or for therapeutic drug 

monitoring (TDM). 

 

The increased use of DBS sampling in the clinical arena is the logical consequence of the many advantages 

associated with this sampling technique [6]. Indeed, DBS sampling is a very easy and inexpensive way of taking 

a representative sample, which can even be performed by the patient himself in his home environment or in 

remote areas, eliminating the need for a trained phlebotomist [7-9]. Moreover, the dried matrix improves the 

stability of most compounds [10-13], enabling more cost-effective transport and storage; DBS samples are 

generally transported via regular mail [9,14] and can often be stored at ambient temperature for prolonged 

periods of time. Since only small volumes of blood -typically between 10 and 80 µL- are collected, the DBS 

sampling technique is highly suitable for the collection of samples during preclinical and toxicokinetic studies 

involving animals. DBS sampling certainly confines to the principles of the 3R’s (replacement, reduction and 

refinement), as fewer animals are needed and sampling procedures are refined using DBS [15,16]. In addition, 

the advantage of small blood volumes, combined with the possibility to collect samples by a minimally invasive 

finger- or heelprick, creates a high potential for the use of DBS in pediatric studies as well [17,18]. Another 

benefit of using DBS instead of liquid samples is that pathogens that may be present in blood are deactivated 

upon drying, strongly reducing the risk of infection [19]. Furthermore, from the analytical point of view, the 

process of generating DBS can also be considered as a simple sample preparation procedure [20,21]. Indeed, 

many analytes can selectively be extracted from the cards, often allowing straightforward and automatable 

processing and analysis [22-27]. Despite the numerous applications using DBS and the many advantages 
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associated with this sampling procedure, DBS sampling still faces some important challenges. Box 1 summarizes 

the advantages and challenges associated with DBS sampling [6].  

 

Box 1. Advantages and challenges associated with DBS sampling. 

Advantages Challenges 

 Ease of sampling, enabling sampling at home 

 Cost-effective sampling, transport and 

storage of samples 

 Improved compound stability 

 Small blood volumes 

 Minimally invasive sampling 

 Reduced risk of infection 

 Simplification of sample preparation 

procedures 

 Suitability for automation of sample 

processing and analysis 

 Correlation between venous and capillary 

blood concentrations 

 Adequate sampling 

 Contamination risk 

 Lack of sensitivity 

 Chromatographic effect and influence of the 

site of punching 

 Influence of spotted blood volume 

 Hematocrit effect 

 

A first concern is whether venous and capillary blood concentrations of an analyte are equivalent. Obviously, 

this is an aspect that needs to be evaluated on a case-by-case basis and may depend on the aim of the study 

(e.g. setting up a toxicokinetic profile versus measurement of trough levels). This concern, which is inherent to 

any non-venous sampling technique, has been addressed in several recent publications [7,28-37]. In these 

comparative studies, both capillary DBS (cDBS) (obtained by a fingerprick) and venous blood (obtained by 

classical venipuncture) are collected. The latter is analyzed as such and/or is used to generate venous DBS 

(vDBS). A cross-comparison between vDBS and venous blood allows to investigate the validity of the DBS 

approach. Although equal analyte concentrations are expected -there is only a difference in presentation- the 

entire process of spotting, drying and storing the samples may have an influence on the analytical result (a so 

called “DBS effect”). A cross-comparison between cDBS and vDBS concentrations allows to evaluate if there is a 

difference between capillary and venous blood. Capillary blood is a mixture of blood obtained from venules, 

arterioles and capillaries. Differences between capillary and venous blood may be due to the time of sampling 

as well as to the physicochemical characteristics of the analyte. E.g. small compounds which are highly lipid-

soluble and have a low protein binding capacity can easily cross through the capillary walls into the interstitial 

and intracellulair fluids, inducing an arteriovenous difference in the early distribution phase. While for many 

abused substances, a proof-of-principle of “detectability” in DBS has been demonstrated, there is a paucity of 

reports that have actually compared venous-capillary concentrations. In Chapter 2, we set out to do this for 

gamma-hydroxybutyric acid (GHB), a drug which is misused in the dance scene and which has also been 

associated with drug-facilitated sexual assaults [38].  
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Other concerns associated with DBS-based sampling are the acquisition of correctly obtained samples, 

contamination risk, the chromatographic or volcano effect, the site of punching and sensitivity issues in case of 

analytes at very low concentrations [6]. The latter implies the implementation of sensitive analytical techniques 

for DBS analysis. Although in many cases liquid chromatography coupled to (tandem) mass spectrometry (LC-

MS(/MS)) is the most appropriate technique, gas chromatographic coupled to mass spectrometry (GC-MS) 

methods are still being used [39,40]. They offer the advantage that a wide range of compounds with widely 

varying polarity can be analyzed using one single standard configuration. However, to achieve adequate 

sensitivity with GC-MS, DBS analysis may involve derivatization [40]. As this additional sample preparation step 

is considered as laborious and time-consuming, improvements to simplify and/or shorten this step are 

warranted. In this context, we wished to speed up a procedure that had previously been established in our 

laboratory, coined “on-spot derivatization” in which derivatization reagents are directly applied to DBS [41]. 

Given the known advantages of “microwave derivatization” in terms of shortening derivatization times, we 

aimed at combining “on-spot derivatization” with “microwave derivatization”, thereby ensuring a minimal, 

economic and fast sample workup and high sample throughput (Chapter 3). We particularly focused on 

analytes where GC-MS may be competitive with LC-MS/MS because of challenges with detection and/or the 

need to use special configurations for LC-MS/MS-based detection. Apart from applying the newly developed 

approach on DBS obtained from potential GHB positive cases, we also aimed at applying this approach on real 

samples for the assessment of other polar low molecular weight compounds, more particularly the anti-

epileptic drug gabapentin (Chapter 4) and for the ketone body beta-hydroxybutyric acid (BHB) (Chapter 5). 

While for gabapentin, the DBS-based approach is primarily relevant from a sampling-point-of-view, for BHB, 

the advantage primarily lays in the simplification of sample preparation. 

 

We aimed at evaluating the DBS-based approach for a therapeutically applied compound, gabapentin, for a 

variety of reasons (Chapter 4). First, gabapentin is, just like GHB, structurally related to the inhibitory 

neurotransmitter gamma-amino butyric acid. Second, this application may add new and relevant data to the 

ongoing discussion about the implementation of DBS sampling in TDM. The use of dried matrix spots for TDM 

purposes, with sampling either in the clinic or at the patient’s home, has many advantages. E.g. patients can 

easily collect their own samples at home. Since gabapentin is an anticonvulsant taken by many out-patients 

[42], DBS could be a useful tool for these patients: monitoring their gabapentin concentrations may be relevant 

to guarantee that therapeutic concentrations are reached and supratherapeutic concentrations are avoided. 

The determination of gabapentin may not only be useful for TDM (including clinical toxicology), but also for the 

determination in a forensic context. E.g. there is an increased illegal use of gabapentin in Britain’s opiate-using 

and prison populations [43]. A second aim of determining gabapentin in DBS was to evaluate the correlation 

between blood and serum concentrations (Chapter 4). This is relevant as therapeutic ranges for gabapentin 

are available in plasma or serum, but not in blood. In the context of a pharmacokinetic study for gabapentin we 

therefore conducted a so-called “bridging study”. Such studies, in which a comparison is made between 

concentrations obtained from DBS and those obtained from plasma or serum, are an essential step for the 

implementation in routine practice (Chapter 4). 
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Second, we aimed at applying the “microwave-assisted on-spot derivatization” approach for the assessment 

of BHB, a molecule of relevance in forensic toxicology (Chapter 5). BHB is an endogenous compound 

structurally related to GHB. Elevated levels of this ketone body are found in ketotic diabetics and alcoholics and 

may induce ketoacidosis (i.e. reduced blood pH caused by an increased level of the ketone bodies). Although 

ketoacidosis may contribute to the cause of death, it has not been unequivocally established what the 

relevance is of routinely determining BHB in all cases in the forensic laboratory, when already having at hand 

the results of acetone, another ketone body. To address this question, we aimed at setting up a retrospective 

analysis of a large number of biological forensic samples (Chapter 5). Importantly, as BHB can be assessed in a 

variety of matrices, we wished to extend in this context the above-described DBS approach to a “dried matrix” 

approach, wherein we also evaluated dried urine and dried vitreous samples, which were volumetrically 

applied (Chapter 5). 

 

In addition to the above-mentioned bio-analytical DBS-based applications, we also wished to set up a DBS-

based genotyping method. The haptoglobin (Hp) gene, encoding for an abundant hemoglobin-binding plasma 

protein, was chosen, as polymorphisms in this gene -with 2 common alleles, denoted 1 and 2- may have 

important biological and clinical consequences [44,45]. As there is a perfect correlation between the Hp pheno- 

and genotype, PCR-based methods have emerged as a good alternative for time-consuming protein-based 

phenotyping methods. E.g. large-scale studies have unequivocally shown that diabetics with the Hp 2-2 

phenotype have a 2-5-fold increased risk for developing micro- and macrovascular complications [46-49]. In 

Chapter 6, we wished to evaluate whether we could improve and simplify the current ‘gold standard’ of Hp 

genotyping by developing an extractionless procedure, directly starting from DBS micropunches, allowing Hp 

genotyping in a high-throughput setting. 

 

In Chapter 7 the broader international context, the relevance and the future perspectives are described. 

Chapter 8 gives a summary and a general conclusion. Box 2 outlines the aims of each Chapter in this thesis. 

 

Box 2. Overview of the aims of each Chapter. 

Chapter Aim 

1 Introductory Chapter to DBS 

2 Correlation between venous and capillary blood concentrations of GHB 

3 Set-up of a new derivatization strategy for DBS: microwave-assisted on-spot derivatization 

4 
Application of a new derivatization strategy:  

correlation between blood and serum concentrations of gabapentin (bridging study) 

5 
Application of a new derivatization strategy:  

relevance of BHB determination in routine forensic toxicology analysis 

6 DBS application: set-up of an improved Hp genotyping method 

7 Broader international context, relevance and future perspectives 

8 Conclusion and summary 
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Abstract 

During recent years dried blood spot (DBS) sampling and DBS analysis have increasingly received attention in 

various fields, amongst which in clinical, forensic and occupational toxicology. In this Chapter, we provide an 

overview of the different DBS-based methods that have been developed for detecting (markers of) abused 

substances. These include both legal and illegal drugs, belonging to different categories, amongst which 

cannabinoids, cocaine and metabolites, opioids, benzodiazepines and Z-drugs, amphetamines and analogues, 

gamma-hydroxybutyric acid, ketamine and new psychoactive substances such as cathinones. Also covered are 

markers of ethanol consumption and tobacco use. Since overall, the majority of published methods shows 

promising results, an interesting role for DBS analysis in diverse toxicological applications can be envisaged. For 

the distinct applications, we discuss the specific potential and benefits of DBS, the associated limitations and 

challenges, as well as recent developments and future perspectives. 
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1.1 Introduction  

The use of dried blood spots (DBS) and DBS sampling is not new. DBS analysis was introduced over a century 

ago by Ivar Bang [1], who used DBS for glucose monitoring in rabbits, while it was Guthrie and Susi who spread 

the applicability of DBS by demonstrating its usefulness in the newborn screening of phenylketonuria and in 

other screening programs [2,3]. In the last few years, DBS applications have grown exponentially, not only in 

newborn screening, but also for the analysis of DNA, proteins, small molecules and trace elements in animals, 

children, adults, and even post-mortem samples [4]. 

 

The use of DBS can be looked at from different perspectives. On the one hand, DBS can be considered as a 

simple and cost-effective sample preparation procedure, as the filter paper can retain several matrix 

compounds [5-8]. Consequently, the use of DBS may simplify the extraction procedure, possibly allowing 

automated online extraction (see section 1.4). Alternatively, DBS can be considered as a useful matrix in clinical 

and forensic toxicology as they can be collected in a fast, simple and economical way (in contrast to blood 

samples obtained by venipuncture) and give information on the acute state of the patient (in contrast to urine, 

oral fluid and hair) [8]. However, in emergency toxicology -in cases where diagnosis and treatment of the 

patient may depend upon toxicological information- DBS will likely have little added-value since medical 

personnel should have rapid access to toxicological information and there is no time to wait for DBS to dry for 

at least two hours. When speed is not essential, DBS -either as a sampling or sample preparation technique- 

can be useful for screening purposes as well as for quantitative analysis. In this context, it should be noted that 

DBS may readily dry during transit from the sampling site to the laboratory, so in many cases there will be no 

delay after arrival at the laboratory.  

 

The aim of this Chapter is to give an overview of applications of DBS in toxicology, more specifically for the 

analysis of abused substances (see Table 1.1 & Appendix 1). DBS sampling for therapeutic drug monitoring 

(TDM) and metabolic screening is beyond the scope of this Chapter, as is DBS sampling for the analysis of 

therapeutic drugs, environmental contaminants, toxins and (trace) elements. Abused substances include both 

legal and illegal drugs, belonging to different categories, amongst which cannabinoids, cocaine and 

metabolites, opioids, benzodiazepines and Z-drugs, amphetamines and analogues, gamma-hydroxybutyric acid 

(GHB), ketamine and new psychoactive substances such as cathinones. Also covered in this overview are 

markers of ethanol consumption and tobacco use. 
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Table 1.1 Overview of the different drug categories of abused substances determined in DBS, with referral to the utilized analytical techniques and their potential to 

measure cut-off concentrations proposed by DRUID.  

Drug category Technique References DRUID cut-off Comments 

Cannabinoids  LC-MS/MS 
GC-MS 
LC-HRMS 

[7,11,12,93]   
[26]  
[94]  

 
 
 

Only 1 method attained sufficient sensitivity, yet 
still requiring complete 20-µL DBS [94]; no 
methods for synthetic cannabinoids in DBS 

Cocaine and metabolites 
 

RIA 
LC-MS/MS 
LC-FLUO 
GC-MS 
LC-HRMS 

[19,97]  
[8,12,13,31,47,56,77,93,96,97]  
[6]  
[26]  
[63,94]  

(a) 
 
(a) 
 
(b) 

DBS need to be stored at freezing temperatures 

Opiates  
 

LC-MS/MS 
GC-MS 

[8,11-13,31,40,45,47,61,67,79,93,96,100,101,116]  
[26]  

 
 

Stabilizing effect of DBS for 6-
monoacetylmorphine 

Non-opiate opioids LC-MS/MS 
GC-MS 
LC-coulometry 
LC-MS 

[8,11-13,30,36,40,45,47,93,101,103,116]  
[26]  
[20]  
[10]  

(c) 
 
(d) 
(d) 

Analytes include methadone, buprenorphine, 
tramadol, fentanyl, pethidine and their 
metabolites 

Benzodiazepines LC-MS/MS 
GC-MS 
LC-HRMS 

[5,8,11-13,37,46,77,91,93,117-120,122]  
[26]  
[39]  

(e) 
 
(f) 

Stabilizing effect of DBS for benzodiazepines 

Z-drugs  LC-MS/MS 
GC-MS 

[5,8,9,12,13,78,91,122]  
[26]  

 
 

Stabilizing effect of DBS for zopiclone 

Amphetamine and 
analogues 

LC-MS/MS 
GC-MS 
LC-HRMS 

[8,12,13,31,41,47,79,80,91,93,121]  
[26]  
[94]  

 
 
 

 

GHB LC-MS/MS 
GC-MS 

[44]  
[23-25]  

n.a. No ex vivo formation of GHB in DBS; similar 
concentrations in cDBS and vDBS 

Ketamine and metabolite  LC-MS/MS 
LC-DAD 

[47,80,104]  
[21]  

 
 

 

New psychoactive 
substances 

LC-MS/MS [41,80]  n.a. Analytes include cathinones, piperazines and 
mephedrone; stabilizing effect of DBS on 
cathinone derivatives when stored cooled 
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Table 1.1 Continued. 

Drug category Technique References DRUID cut-off Comments 

Alcohol markers LC-MS/MS [43,51,110-114]  n.a. Analytes include ethylglucuronide, ethylsulphate 
and phosphatidylethanol; no ex vivo de novo 
formation of phosphatidylethanol 

Markers of tobacco use GC-MS 
LC-MS/MS 
Paper spray MS 
LC-HRMS/MS 

[22]  
[29,49,72]  
[35]  
[42] 

n.a. Analytes include nicotine and metabolites, 
anabasine and anatabine; primary application lies 
in newborn DBS analysis 

 
The ‘DRUID cut-off’ column indicates if the DBS methods attained sufficient sensitivity to allow detection at DRUID LLOQ levels, when starting from complete ≤ 10-µL DBS 
and/or ≤ 6.4-mm diameter DBS punches. 
 
(a) only benzoylecgonine; (b) only cocaine and benzoylecgonine; (c) only methadone and tramadol; (d) only methadone; (e) only 7-aminoclonazepam, 7-

aminoflunitrazepam, alprazolam, OH-alprazolam, clobazam, clonazepam, diazepam, desalkylflurazepam, desmethylflunitrazepam, flunitrazepam, flurazepam, 

lormetazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazepam, triazolam and nordiazepam; (f) only midazolam 

cDBS: capillary dried blood spots; DAD: diode array detection; DBS: dried blood spot; DRUID: driving under the influence of drugs, alcohol and medicines; FLUO: 

fluorescence detector; GC-MS: gas chromatography coupled to mass spectrometry; GHB: gamma-hydroxybutyric acid; HRMS: high resolution mass spectrometry; LC: liquid 

chromatography; n.a.: not applicable; RIA: radioimmunoassay; vDBS: venous dried blood spots 
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1.2 Paper used and volume spotted  

Whatman® 903 paper is the predominant filter paper used for DBS collection and is manufactured from 100% 

pure cotton fibers. Other cellulose-based papers used for determination of drugs of abuse are Ahlström 226, 

Sartorius TFN, Whatman® BFC 180 and Whatman® FTA® (see Appendix 1). The latter paper is chemically 

treated to prevent degradation of genomic DNA. Bond Elut DMS is a non-cellulose collection material which 

would reduce non-specific binding, improving mass spectrometer analyte response and increasing signal to 

noise ratios [9]. Our experience, however, learned that the reduced rigidity of this paper makes it less suitable 

for manual punching. Eibak et al. obtained higher recoveries for methadone using alginate and chitosan foams 

as sampling media, when compared with Whatman® FTA® DMPK and Bond Elut DMS filter paper [10]. Although 

these foams, which can be fully solubilized in 1 mM HCl, seem promising, further experiments are warranted to 

investigate their utility in routine applications. 

 

The volume of blood that has been used to generate DBS for detecting abused substances ranges from 5 to  

100 µL. While 5-µL spots have primarily been used in a sample preparation context [5,8,11-13], it should be 

noted that 100-µL DBS are not easily obtained by fingerprick; hence an important advantage of DBS sampling is 

lost in that case. In case of volumetric application, often the complete DBS is analyzed. However, such 

volumetric application is difficult to sustain when it is to be performed by non-trained persons -although also 

here progress is underway. E.g. Lenk et al. developed a prototype of a ‘metering chip’ [14], whereas Leuthold et 

al. evaluated a microfluidic approach which consists of a microfluidic plate with sized capillaries and a DBS card 

holding element [15]. Another recently developed approach which allows the collection of a fixed volume of 

blood from a non-volumetrically deposited sample is volumetric absorptive microsampling (VAMS) [16,17] This 

alternative collection device wicks up a fixed volume of blood, independent of hematocrit (Hct), onto a porous 

substrate. When DBS are obtained by direct application from the fingertip onto filter paper, typically a smaller 

disk (e.g. 3- or 6-mm diameter) is punched from the DBS. Analyzing a complete spot largely avoids the Hct 

effect and facilitates validation. In contrast, analysis of a partial punch further reduces the amount available for 

analysis, resulting in an even higher requirement of sensitivity, and imposing a more elaborate validation (see 

section 1.6) [18]. It also needs to be remarked that the vast majority of available publications describes the 

analysis of DBS that have been obtained by pipetting existing venous blood samples, already available in the 

lab, rather than setting up a true capillary DBS (cDBS) approach. Lastly, it has to be noted that archived 

newborn DBS, which are obtained by heel stick within the first 1-3 days of life in the context of screening for 

inborn errors of metabolism and are in general larger than DBS obtained by fingerprick (newborn DBS 

correspond to about 80 µL of blood), have also been used to assess abused substances. Since in most cases a 

substantial left-over remains after the newborn screening procedure (except in those cases where newborn 

screening was positive), the remaining material can be used for assessing exposure to abused substances at 

birth.  
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1.3 Analytical techniques 

An extra challenge associated with using small blood volumes is the requirement of highly sensitive techniques 

for identification and quantification of the compounds. The first report about the determination of abused 

substances in DBS was published by Henderson et al., who applied a modified urinary benzoylecgonine 

radioimmunoassay screening test on newborn DBS in order to assess prenatal use of cocaine by the mother 

[19]. The obtained results correlated well with gas chromatography-mass spectrometric (GC-MS) 

measurements in blood. Although immunoassays can be used for DBS analysis in some cases, they are subject 

to non-specific binding and to cross-reactivity with endogenous components and/or structurally related drugs 

and metabolites. Chromatographic techniques, either liquid or gas chromatography, have been used in later 

studies. Mostly, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the most 

appropriate technique, preceded by either online or offline sample preparation (see section 1.4). Although 

MS/MS detection is usually required and preferred, also other detectors have been used for identifying and 

quantifying abused substances in DBS. Examples include spectrofluorimetric detection of natively fluorescent 

cocaine, benzoylecgonine and cocaethylene [6], and coulometric and diode array detection of methadone and 

(nor)ketamine, respectively [20,21]. Also GC-MS has been applied, more particularly for cotinine [22], GHB [23-

25], amphetamine-like drugs, cocaine, benzodiazepines, zopiclone, buprenorphine, methadone, tramadol, Δ
9
-

tetrahydrocannabinol (THC) and THC-COOH [26]. However, GC-based analyses mostly require a derivatization 

step, which can be seen as a disadvantage. 

 

1.4 Extraction 

The desorption of analytes from DBS is most often performed using organic solvents, water or a mixture of 

both. Mixtures with a water content of over 25-30% will typically yield colored extracts, indicating release from 

hemoglobin -and also other proteins- from the filter paper. In contrast, mixtures containing less water will yield 

cleaner extracts, as is also the case when using pure organic solvents, as shown by Déglon et al. [27]. The 

desorption process can be performed by mere passive infusion of the filter paper, but is most often facilitated 

by sonication, agitation or heating. To this end, Saracino et al. even used microwave-assisted extraction [20]. 

 

Another possible simplification of the pre-analytical phase is the concept of “on-spot derivatization”, developed 

by Ingels et al. for the quantitation of GHB using GC-MS [23-25]. This approach consists of adding derivatization 

reagents directly onto the filter paper, without the use of an extraction solvent, followed by drying and re-

dissolution in a suitable solvent, ensuring a minimal, less time-consuming sample pretreatment. In Chapter 3, 

we used this derivatization technique in combination with microwave-assisted derivatization for the 

determination of some polar low molecular weight compounds with clinical and forensic toxicological 

relevance [28].  
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A straightforward procedure for sample work-up consists of immediately subjecting the obtained extract to 

further analysis, either directly or following dilution. Unfortunately, depending on the elution solvent used, 

extra pre-analytical steps may be necessary for sample clean-up, such as protein precipitation, solid phase 

extraction (SPE) and/or liquid-liquid extraction. Since elaborate sample pretreatment is labor intensive and 

requires a lot of consumables, more efficient alternatives have been developed. For example, Saracino et al. 

used microextraction packed sorbent for the determination of methadone, ketamine and norketamine, 

drastically reducing the volume of solvents [20,21]. The use of automated sample preparation procedures has 

also been described: Murphy et al. performed SPE with a robotic system prior to cotinine analysis and Clavijo et 

al. and Saussereau et al. implemented online extraction for the analysis of a wide range of drugs of abuse, 

significantly reducing the number of manual steps needed [29-31]. Fully automated analysis of DBS cards has 

become possible with the development of automated DBS samplers, as described further in this section. Other 

recent developments include digital microfluidics [32] and paper spray MS [33-35]. 

 

If mere injection or dilution of the extract is not an option because of required sensitivity or because the 

extraction solvent is not compatible with the analyzing system, evaporation may be a necessary step. After this 

additional tedious step, which is often relatively time-consuming, the extract is reconstituted in a limited 

volume of a suitable solvent (e.g. the mobile phase), most often offering the advantage of concentrating the 

sample. An alternative has been proposed by Eibak et al., who used electromembrane extraction for sample 

clean-up and for enrichment of the target analyte (methadone) in an aqueous acceptor solution compatible 

with LC [10]. Important to note is that, as mentioned before, in this case DBS are not eluted from filter paper, 

but rather are dissolved, together with the matrix that consists of chitosan or alginate foam substrates. 

Electromembrane extraction was also used by Seip et al. for the analysis of methadone and pethidine [36].  

 

Apart from the automated DBS samplers referred to in the next paragraph, several methods have been 

developed to achieve higher throughput without significant investment. One example is the simple offline 

procedure employed by Déglon et al. for the analysis of benzodiazepines and Z-drugs [5]. This procedure 

consists of infusing a whole DBS directly into the extraction solvent contained in a LC vial, immediately followed 

by injection of an aliquot of the supernatant onto the chromatographic system. A similar but more automated 

approach has been developed by Versace et al. for a rapid LC–MS/MS target screening on DBS [8]. To this end, 

a quick (2 min) and automated in-well extraction was performed in the LC autosampler itself, before injecting 

part of the supernatant. Another inventive approach was proposed by Johnson et al., who used an improved 

punching device to punch DBS directly into filter tips of a liquid-handling device that was subsequently used to 

elute the analytes from the DBS [37]. This semi-automated procedure was used for the analysis of alprazolam, 

OH-alprazolam and midazolam, yielding similar results as an offline approach, whilst reducing sample 

preparation time by more than 50%. 

 

Despite efforts to increase the efficiency of DBS sample pretreatment, its manual character remains an 

important hurdle to more widespread use of DBS analysis in routine practice. However, during the last few 
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years progress has been made in automating this process, increasing the throughput and making DBS analysis 

more appealing to modern laboratories. Déglon et al. were the first to describe the concept of online 

desorption of DBS [27], while Thomas et al., from the same lab, were the first to use this concept for the 

analysis of drugs of abuse [11]. To this end, whole DBS were punched out and placed in a home-made 

desorption cell, integrating the sample directly into the LC device. Using a column switching procedure, the 

analytes were desorbed from the filter paper in the cell prior to online analysis. An improved prototype, based 

on an automated rotating plate that can host more manually punched samples, was implemented by Lauer et 

al. and Déglon et al. for the screening of a wide range of drugs in DBS, including cocaine and metabolites, 

opiates, amphetamines and benzodiazepines [12,13]. Three commercial suppliers have developed fully 

automated DBS samplers: CAMAG (DBS-MS 500), Prolab Instruments, GmbH (SCAPTM) and Spark-Holland 

(DBS
TM

 Autosampler) [38]. In the context of (potential) abused substances, the SCAP
TM

 system was used by 

Oliveira et al. for the determination of midazolam, leading to a 5-fold improvement in sensitivity when 

compared with an offline procedure [39]. Verplaetse and Henion quantified opioids and stimulants by coupling 

the Spark-Holland Autosampler to online SPE-LC-MS/MS [40,41]. Such automated system was also utilized by 

Tretzel et al. for the determination of nicotine and its major metabolites in DBS [42].  

 

1.5 Lower limit of quantification (LLOQ) 

As mentioned in section 1.3, DBS sampling has the inherent disadvantage of providing only a small amount of 

target analyte, often requiring an analytical technique such as GC-MS, LC-MS or LC-MS/MS to reach sufficient 

sensitivity. When punches are used -which often is the most feasible approach in real practice as it does not 

necessitate volumetric application- the available amount of sample decreases even further. E.g. when 

envisaging low ng/mL detection of an analyte, starting from a 3-mm punch (corresponding to approximately  

3 µL of blood), this means that only low pg amounts of analyte are available. In an attempt to increase the 

amount of starting material and hence improve the LLOQ, larger punch sizes can be used or multiple punches 

can be analyzed simultaneously [29,43-47]. As discussed above in section 1.4, the dilution introduced during 

the extraction process may require the incorporation of a concentrating step during sample pretreatment. Also 

in this respect, online extraction of DBS may be advantageous, as it allows complete transfer of the analyte of 

interest to the (LC-)MS/MS. E.g. Abu-Rabie and Spooner demonstrated a 10-fold increase in sensitivity using a 

DBS direct elution technique compared to manual DBS extraction [48].  

 

In order for DBS analysis to be implemented in routine laboratories, the obtained LLOQs have to be relevant to 

clinical/toxicological practice. Obviously, the required sensitivity depends on the compound of interest. As 

newer abused substances are often more potent, their quantitation may require very low LLOQs, making the 

analysis of such compounds challenging, especially when using DBS. Moreover, the required LLOQ is also 

determined by the intended use of the method. For example, the LLOQ of cotinine in newborn whole blood for 

the detection of maternal smoking (6 ng/mL) is higher than the one to establish newborn exposure to 

secondhand smoke (0.02 ng/mL) [49]. Furthermore, expected concentration ranges depend on the intended 
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application, e.g. TDM, toxicological analysis, pharmacokinetics (PK) and analyses in the context of driving under 

the influence of drugs (DUID). In the latter case, the required LLOQs may vary between countries as well. 

 

As DBS sampling may be an interesting alternative option in the context of DUID, we evaluated whether the 

methods that are currently present in literature are fit for this purpose, by comparing the stated LLOQs with 

the cut-offs proposed by the DRUID project [50] and the legally accepted limits in Belgium (Table 1.1 & 

Appendix 2). Especially for abused substances that can be used for therapeutic purposes as well, it is quite 

challenging to establish legal limits, as phenomena such as tolerance can occur, and, consequently, relatively 

high blood levels may not necessarily impair a person’s ability to drive. Moreover, further studies are needed to 

establish a universal cut-off for phosphatidylethanol (PEth) as well. Kummer et al. already suggested a cut-off 

value at 221 ng/mL for PEth 16:0/18:1 to distinguish between inpatients in alcohol withdrawal and control 

volunteers [51]. However, more sensitive methods are required to determine optimal cut-off values for PEth 

18:1/18:1 and PEth 16:0/16:0. When interpreting the LLOQs of the methods mentioned in Appendix 2, it is also 

important to note the different DBS sizes or volumes, ranging from a 2-mm flow-through area to complete  

100-µL DBS. In the latter cases, the mentioned LLOQs might actually be underestimated, as DBS containing 

smaller blood volumes will be available in real practice. Considering the data in Table 1.1, Appendix 1 and 

Appendix 2, for the majority of analytes of the DRUID panel, there are methods available that achieve sufficient 

sensitivity to allow detection at the required level, when starting from complete ≤ 10-µL DBS and/or ≤ 6.4-mm 

diameter DBS punches. These methods can be found in the shaded columns of Appendix 2. 

 

1.6 Validation 

The choice between a partial- and whole-cut DBS method should ideally be made before setting up a DBS-

based method, as it has important repercussions on what parameters should be included in the validation 

protocol. Validation of a DBS-based procedure using partial punches ideally encompasses extra validation 

parameters, e.g. punch location, blood volume spotted and Hct, as these factors may have an impact on the 

quantitative result [3,18,52,53]. More specifically, Hct may affect the precision, accuracy, extraction efficiency 

and the recovery of an analyte [54,55]. For instance, punches from DBS prepared from blood with a high Hct 

will contain larger volumes of blood than punches from DBS of blood with lower Hct, resulting in respectively 

an over- and underestimation when the calibration line is established in blood with intermediate Hct. 

Therefore, it is recommended to establish a calibration curve with a Hct in the middle of the range of the target 

population, to minimize the Hct effect. Sosnoff et al., for instance, prepared QCs in blood with a Hct close to 

that of newborns [56]. In conclusion, the combined effect of Hct, blood volume spotted and punch location has 

to be evaluated when using partial-cut DBS. Analyzing complete, volumetrically applied DBS, however, may 

overcome the Hct effect. Ideally, before broad implementation of the method, its validity should be tested by 

applying it on a set of real samples, thereby evaluating incurred sample reproducibility and -if applicable- the 

equivalence between capillary and venous concentrations. Relevant to mention in this context is that, for 

practical reasons, virtually all validations are performed by applying anticoagulated venous blood onto filter 
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paper. Although this blood differs from the one obtained in a real-life application by direct application after 

fingerprick, we are not aware of reports describing problems related to this inherent methodological problem. 

Furthermore, Hct needs to be taken into account when a correlation or conversion is to be made between DBS 

and plasma concentrations (see section 1.7). Additionally, a distinction has to be made between DBS analysis 

for qualitative (i.e. screening) and for quantitative purposes. Obviously, strict validation parameters are needed 

when aiming at quantitative analysis of DBS. 

 

There are various ways of introducing an internal standard (IS) during the process of DBS sampling and analysis 

[55]. Ideally, the IS should be mixed homogenously with the blood sample prior to blood spotting, enabling 

correction for any analyte loss. However, this approach is only feasible when DBS are seen as an alternative 

sample preparation strategy. Alternative approaches are spraying [57-59] or application of IS to the DBS card 

prior to spotting [57,60,61]. An example of the latter is the procedure developed by Mommers et al., who 

described two IS DBS pre-impregnation procedures, in which the DBS card is pretreated with IS (morphine-D3) 

[61]. Abu-Rabie et al. demonstrated that, when combined with accurate volume DBS sampling and whole-spot 

extraction, the IS spray technique may nullify the Hct-based assay bias [59]. However, in the vast majority of 

reports, the IS is added to the extraction solvent. As this means that there can be no compensation for varying 

recoveries, sufficient time should be spent in developing a robust extraction procedure.  

 

1.7 Comparison with other biological matrices 

The use of a DBS method as an alternative for techniques using (larger amounts of) whole blood or plasma 

requires some additional experiments, demonstrating the equivalence or correlation with results measured in 

whole blood or plasma. When analyzing cDBS, also the equivalence with concentrations in venous blood has to 

be evaluated, as mentioned above in section 1.6. However, such cross-comparison between concentrations in 

venous DBS (vDBS) and cDBS has often not been performed. Examples where this cross-comparison has been 

made include the work by de Boer et al., who compared concentrations of midazolam and its main metabolite 

1’-hydroxymidazolam in cDBS and plasma and whole blood, obtained by venipuncture [46], as well as our own 

work, in which we confirmed that capillary and venous concentrations of GHB are comparable [62 + Chapter 2]. 

The group of Huestis observed a discrepancy between cDBS and venous blood concentrations for cocaine and 

benzoylecgonine, although further studies are warranted as they also found a significant DBS variability [63]. 

Kummer et al. found a good correlation between the PEth concentrations in venous blood, vDBS and cDBS [51]. 

The agreement between DBS and other biological matrices can be evaluated by performing ordinary linear 

regression analysis. In this graphical method, the results of one method (for instance those obtained from the 

DBS method) are plotted against the results of another method (for instance those from whole blood analysis). 

However, ordinary linear regression analysis involves several assumptions which are seldomly met in practice 

and may lead to misleading results [64,65]. A better insight into the correlation between two methods can be 

obtained by Deming, Passing-Bablok and/or Bland-Altman analysis [64-66]. A Bland-Altman analysis plots the 

(percentage) differences between the results obtained by two measurement procedures (y-axis) against the 
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average of these results (x-axis). In this comparative graph the mean difference between both procedures is 

also plotted, together with its 95% confidence interval (corresponding to 2 standard deviations of the mean). 

Then, it should be evaluated whether the difference between both methods and the width of the 95% 

confidence interval are acceptable [66]. By using Bland-Altman analysis, Garcia Boy et al., for instance, found a 

mean difference between vDBS and whole blood of 0.43 ± 0.67 ng/100 µL for morphine, meaning that DBS 

values are somewhat higher than blood values, with a 95% confidence interval spanning 2.6 ng/mL in total [67]. 

In the absence of an effect of the spotting per se, equivalent concentrations should be observed in venous 

blood and in DBS derived by spotting this blood. Deviations can be present because of the Hct effect (primarily 

when analyzing partial spots) and because of capillary-venous differences. When a comparison with plasma is 

to be made, one has to take into account the blood:plasma ratio, which is determined by the Hct and by the 

red blood cell (RBC):plasma distribution of a drug. Also here, deviations may occur, e.g. in certain disease states 

where altered plasma protein levels may affect the normal RBC:plasma distribution. Additionally, there is an 

effect of the particulate fraction present in blood: even when a compound is evenly distributed throughout 

plasma and RBCs, it will be present in blood at concentrations about 85% of those found in plasma, when 

considering blood with Hct of about 0.40. Hence, also here Hct plays a role, as blood with lower Hct will have a 

reduced particulate fraction. To make a quantitative comparison between plasma and DBS concentrations 

and/or to derive plasma concentrations from DBS concentrations, the latter are mostly multiplied with a mean 

correction factor, assuming a ‘normal’ Hct. For instance, Saracino et al. multiplied the methadone levels in DBS 

with 1.79, assuming a mean Hct of 0.44 [20], whereas Mercolini et al. introduced 1.62 and 1.92 as correction 

factor for THC, THC-OH and THC-COOH in women and men, assuming a Hct of respectively 0.38 and 0.48 [7]. 

However, one has to be aware of populations with deviating Hct levels, such as newborns or patients suffering 

from anemia. Ideally, the Hct of any sample should be known to determine a correct conversion factor. In this 

context, potassium measurements of DBS could be a promising strategy, as the potassium content of DBS 

allows prediction of the approximate Hct from non-volumetrically applied DBS [68]. In fact, it has been shown 

that this approach allows to correct for the Hct effect in samples with deviating Hct [69]. Also reflectance 

spectroscopy [70] and near-infrared spectroscopy [71] have recently been shown to allow Hct prediction of 

DBS. Furthermore, an even partitioning between RBCs and plasma is assumed in many cases. However, this 

distribution has to be investigated, as demonstrated for benzoylecgonine by Henderson et al. [19] or for 

cotinine by Sosnoff and Bernert [72]. Lastly, although whole blood analyses are common in toxicology, dried 

plasma spots may also be used. These can be prepared by spotting plasma on filter paper after conventional 

plasma preparation or, alternatively, via the use of dedicated cards [73-76]. Such plasma separator devices are 

multilayered extraction cards onto which a drop of blood is applied. The multilayered polymeric filter 

membrane consists of a separation and collection membrane and a removable top layer. The upper membrane 

traps the RBCs and allows plasma to penetrate through onto the bottom collection membrane. After waiting 

for a few minutes, the top layer onto which the cellular fraction is trapped, can be peeled off and plasma spots 

are generated onto the lower membrane.  
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1.8 Stability  

In the forensic toxicology laboratory, it is not unusual that analytes need to be detected a considerable time 

after sampling. An important limitation to be considered is that only analytes which remain stable for an 

extended period of time, may be detected. The use of DBS could be an advantage here since DBS may improve 

analyte stability, as pointed out in multiple publications. Examples of unstable analytes include 

benzodiazepines, zopiclone and cocaine, which are subject to hydrolysis of the amide or ester function, 

respectively. They rapidly degrade in biological fluids, such as whole blood, whereas the degradation process is 

reduced or minimized in DBS, as demonstrated in a number of publications [19,77,78]. A stabilizing effect of 

DBS is also seen for 6-monoacetylmorphine (6-MAM), a heroin metabolite whose detection points at heroin 

use. Whereas filter paper stabilizes 6-MAM, in blood it is rapidly metabolized into morphine, which is also a 

metabolite of prescribed opiates such as codeine [67,79]. In untreated whole blood samples, cathinones are 

also prone to degradation, whereas in DBS all cathinone derivatives (with the exception of cathinone itself) are 

stable for 2 weeks when stored at 4°C [80-82]. Verplaetse and Henion observed stability problems for 

mephedrone which could be counteracted by storage of DBS under a N2 flow and/or at cooled temperature 

[41]. A second remark to be considered when analysis does not take place immediately after sampling, is the 

possibility of ex vivo formation of some compounds upon storage of biofluids. Also here, DBS may increase the 

reliability of the result: although ex vivo generation of PEth and GHB may take place in biological fluids [43,83-

86], this phenomenon is not seen in DBS [24,43].  

 

1.9 Applications 

1.9.1 Driving under the influence of drugs  

Currently, the use of on-site drug testing in oral fluid is described in the legislation of many countries, and in 

some of these, oral fluid is effectively used for DUID testing [87]. However, this matrix suffers from the 

drawback that contamination may not be excluded and is sometimes criticized as measured concentrations not 

necessarily reflect those present in blood (although this is of less relevance in per se legislation). Therefore, in 

selected cases, DBS sampling may be considered as a possible alternative. However, several factors need to be 

taken into account when considering DBS sampling in the context of DUID. First, it should be noted that cDBS 

sampling is also inherently associated with a contamination risk. For example, when a fingerprick is made from 

an individual who touched drug powder or fluid without actively ingesting the drug, traces of the substance 

may be found when analyzing DBS (if the finger is insufficiently decontaminated). As is the case for hair 

analysis, identification of metabolites could be a possible solution [88,89]. For instance, when a DBS only 

contains cocaine, and no benzoylecgonine is detected, external contamination may be likely. External 

contamination and false positive results can also arise upon incorrect handling of the filter paper. This can be 

checked for by evaluating blank paper material, adjacent to the DBS. Another point of attention is that blood 

spot on filter paper must be dried adequately. Bringing the DBS in a standardized container with desiccant may 
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be a convenient way to allow them to dry safely during street controls, as has been applied for remote 

sampling in animals [90]. While DBS prepared from authentic DUID venous blood samples have been analyzed 

[5,31,91], overall giving comparable results as those obtained by routine analytical methods (see further), we 

are not aware of reports describing the use of true cDBS for DUID roadside testing. If cDBS are to be used, 

again, it will be important to demonstrate equivalence between capillary and venous concentrations for the 

analyte of interest. Moreover, cut-offs in e.g. Belgian legislation (mentioned in Appendix 2) refer to plasma 

levels rather than to blood levels, so this is an additional aspect that needs to be taken into account. 

 

1.9.2 Cannabinoids 

Cannabinoid determination in DBS may offer a promising approach in the follow-up of drug addicts or in the 

context of DUID [7]. When considering the detection of different abused substances in DBS, cannabinoids are 

likely amongst the more challenging compounds. Analytes typically monitored are THC, as well as its 

metabolites THC-OH and THC-COOH (Figure 1.1). As THC-OH has a short half-life, it can be considered as a 

marker of recent cannabis use. In contrast, detection of THC-COOH, displaying a very long half-life, generally 

indicates past use of cannabis [92].  

 

 

Figure 1.1 Structures of THC, THC-OH and THC-COOH. 

 

Current methods describing the detection of cannabinoids in DBS require high blood volumes (100 µL of a  

5-ng/mL DBS) or have insufficient sensitivity [7,11,12,26,93]. Using a high-end MS combining a quadrupole 

mass filter, a higher energy collision dissociation cell and an Orbitrap detector, Thomas et al. succeeded in 

attaining a LOD respectively LLOQ of 0.25 respectively 1 ng/mL for THC, starting from a complete 20-µL DBS 

[94]. An enhanced sensitivity for cannabinoids (in the range of sub-ng/mL) is relevant in e.g. the context of 

DUID, where the legal cut-off in Belgium is currently set at 1 ng/mL THC in plasma.  

 

Using an online DBS extraction device coupled with a hydrophilic interaction/reversed-phase LC-MS/MS 

system, Thomas et al. were able to detect THC, the most important compound in cannabis, as well as its 

metabolites THC-OH and THC-COOH (and its glucuronide) in 5-µL DBS, albeit at very high concentrations [11]. 

The same group developed a screening method based on an automated DBS extraction for the detection of a 

wide range of abused substances, including THC (50 ng/mL in a 5-µL DBS) [12]. An UHPLC-MS/MS screening 

method developed by Kyriakou et al. [93] and a GC-MS method developed by Langel et al. [26] also had 



Chapter 1: Analysis of abused substances using dried blood spots 

 

  

25 

 

insufficient sensitivity for the detection of cannabinoids (15 ng/mL in 30-µL DBS and 5 ng/mL in 100-µL DBS, 

respectively). Mercolini et al. developed a method for the quantitative analysis of THC, THC-OH and THC-COOH 

in DBS [7]. The good correlation between plasma concentrations that were calculated from DBS concentrations 

and those that were actually measured in corresponding plasma samples of 5 cannabis users was based upon 

several assumptions. First, it was assumed that a 7-mm punch corresponds to 10 µL blood; second, an even 

partitioning of the different analytes of interest between plasma and RBCs was assumed, which is actually not 

really the case [95]. Hence, although these results are promising, studies including larger groups are warranted.  

 

1.9.3 Cocaine and metabolites 

Cocaine is an illicit drug whose effects (increased self-confidence, a sense of omnipotence and sometimes a 

sensory impairment) explain its relevance in DUID studies [6]. Given the short half-life of cocaine, cocaine use is 

generally demonstrated by detecting its main metabolite benzoylecgonine (Figure 1.2). Multiple methods  

-either GC- or LC-based- have been developed for detection and quantification of cocaine and/or 

benzoylecgonine in DBS [8,12,13,26,47,56,63,77,93,94,96]. Cocaethylene, a metabolite formed after 

concomitant use of cocaine and ethanol-containing drinks, was also included in the DBS-based methods of 

Mercolini et al. and Saussereau et al. [6,31]. Saussereau et al. and Odoardi et al. were able to quantify the 

metabolite ecgonine methyl ester as well [31,47]. The metabolite norcocaine was included in the method of 

Ellefsen et al. [63]. 

 

 

Figure 1.2 Structures of cocaine and its metabolites benzoylecgonine, ecgonine methyl ester, norcocaine and 

cocaethylene.  
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Cocaine abuse among pregnant women is associated with neonatal and obstetrical complications. Therefore, 

benzoylecgonine concentrations have been measured in newborn DBS to examine the prevalence and 

demographic aspects of cocaine use during pregnancy [19,56,97]. It has to be noted that detection in newborn 

DBS will only be possible if maternal use of cocaine took place at the end of the pregnancy.  

 

As cocaine is subject to hydrolysis in whole blood samples, potential degradation needs to be taken into 

account when interpreting blood concentrations. Henderson et al., for example, detected increasing amounts 

of benzoylecgonine upon incubation of cocaine-spiked blood [19]. These authors reported that in DBS, in 

contrast, degradation was minimal: no detectable benzoylecgonine concentrations were found when cocaine-

containing DBS were incubated for 108 h at 45°C [19]. Kyriakou et al. observed no significant alteration of 

cocaine and benzoylecgonine DBS concentrations when stored at room temperature for two weeks [93]. 

Saussereau et al. evaluated long-term stability of cocaine and its metabolites in DBS and found that after a  

6-month storage at -20°C concentrations had changed less than 20%. However, after a 6-month storage of DBS 

at 4°C, cocaine concentrations had decreased by 55% and ecgonine methylester concentrations by 88% [31]. 

Therefore, DBS for cocaine analysis need to be stored at freezing temperatures. 

 

Mercolini et al. determined cocaine, benzoylecgonine and cocaethylene in cDBS obtained from cocaine and 

ethanol abusers [6]. They used an arbitrary correction factor to convert DBS concentrations to plasma 

concentrations, taking into account expected Hct levels for males and females, and reported a good 

correlation, although only documented for one case. Rather than starting from DBS prepared from spiked 

blood, these authors used blank DBS to which standards were spiked during validation. Ellefsen et al. 

investigated the correlation between cocaine and metabolite concentrations in DBS and venous blood 

following controlled intravenous cocaine administration. They observed slightly lower concentrations in DBS 

and, importantly, large intra- and inter-subject variability for both cocaine and benzoylecgonine. According to 

the authors, this variability could be attributed to nonhomogeneity of the blood spots, different blood spot 

volumes and different extraction efficiencies of the methods used for blood and DBS analysis. Since sampling 

occurred rapidly after cocaine administration, the authors also believe that the observed discrepancies 

between cDBS and venous blood concentrations may be due to inherent concentration differences between 

these two matrices [63]. Saussereau et al., utilizing a limited set of authentic samples, reported a good 

correlation between benzoylecgonine concentrations in venous blood and DBS prepared thereof, assuming 

that a 3-mm DBS contains a volume of 3 µL blood [31]. Also Antelo-Dominguez et al. and Odoardi et al., 

analyzing limited sets of authentic venous samples by a DBS-based procedure and by a routine procedure for 

blood analysis, reported a good correlation between both methods [47,96]. However, in both approaches the 

use of DBS should be considered as an alternative sample preparation procedure: whereas Odoardi et al. used 

100-µL DBS, in the approach of Antelo-Dominguez et al. the blood samples need to be diluted first with water 

before spotting them on filter paper [47,96]. Starting from 5-µL DBS and utilizing a new-generation MS, Versace 

et al. detected cocainics equally well as when using routine screening procedures which require larger amounts 
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of sample (about 1 mL) [8]. Overall, to our opinion, more studies illustrating the suitability of DBS as a valid 

alternative for routine procedures using conventional matrices, are warranted.  

 

1.9.4 Opiates 

Morphine is a metabolite of several opiates, either illicit (heroin) or licit (codeine). Consequently, detection of 

morphine alone does not allow to find out the parent molecule, whereas detection of 6-MAM indicates heroin 

use. A high prevalence of viral infections is seen in heroin abusers as this illicit drug is mainly abused 

intravenously. Consequently, special safety precautions have to be taken when handling these samples. Here, 

DBS may offer an advantage as DBS minimize the risk of transmitting blood-borne viruses since these lose their 

infectivity upon drying [98,99]. Furthermore, whereas 6-MAM degrades rapidly in whole blood at any storage 

temperature different from -20°C, Skopp reported it to be stable in DBS for at least 6 days at any storage 

temperature [79]. Kyriakou et al. also observed a decrease of less than 10% when the DBS samples were stored 

at room temperature for two weeks [93]. Garcia Boy et al. confirmed this stabilizing effect of DBS for 6-MAM: 

although the 6-MAM concentration in DBS still decreased by 50% within 5 days at 40°C, storage in whole blood 

resulted in complete disappearance of 6-MAM [67]. Clavijo et al. demonstrated increased stability of the 3- 

and 6-glucuronide metabolites of morphine in DBS [100]. Whereas in plasma, the glucuronides were stable for 

only 24 h at 4°C and for less than 8 h at room temperature, in DBS, these metabolites were stable for at least 7 

days at 4°C and for 3 days at room temperature.  

 

DBS sampling for opiate analysis may have several applications: for compliance monitoring in chronic pain 

patients, reliable quantification of opiates in the context of DUID, doping control or for the follow-up of drug 

addicts. The structures of most important opiates are given in Figure 1.3. Garcia Boy et al., using authentic 

samples, found a good correlation between morphine concentrations in 100 µL blood and 100-µL DBS, albeit 

with a somewhat positive bias for the DBS [67]. Jantos et al., also starting from complete 100-µL DBS, reported 

similar concentrations of the opiates morphine, hydromorphone, oxycodone and noroxycodone in DBS and 

whole blood [101]. Similar results were obtained by Odoardi et al. [47]. Using spiked blood samples, Goggin et 

al. determined DBS:plasma ratios for various opiates, including codeine, dihydrocodeine, morphine, 

hydrocodone, hydromorphone, oxycodone and oxymorphone in 9 samples [45]. Although not holding true for 

all analytes, the overall DBS:plasma ratios were more or less in line with expected ratios. While in only one 

sample of the report by Antelo-Dominguez et al. morphine concentrations were high enough to allow 

comparison between a DBS-based method and a GC-MS-based screening method, the results of both methods 

were essentially the same [96]. The automated DBS extraction procedure set up by Versace et al. for screening 

DBS for drugs of abuse showed limited sensitivity for opiates, as exemplified by the fact that the procedure 

frequently missed morphine and codeine in authentic samples [8]. On the other hand, the fully automated DBS-

SPE-LC-MS/MS method developed by Verplaetse and Henion, seems promising for the quantification of 

morphine, codeine, oxycodone and hydrocodone in a real setting [40].  
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Figure 1.3 Structures of heroin, 6-MAM, morphine, hydromorphone, codeine, hydrocodone, dihydrocodeine, oxymorphone, oxycodone and noroxycodone. 
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1.9.5 Non-opiate opioids 

Methadone is a long-acting synthetic µ-opioid receptor agonist used in rehabilitation programs by opiate 

addicts, in particular heroin addicts. This heroin substitute reduces craving and withdrawal symptoms, resulting 

in less tendency to use heroin. Similar to morphine, DBS sampling may facilitate compliance monitoring. 

Saracino et al. determined methadone concentrations in cDBS and in the corresponding plasma samples in 

methadone maintenance patients [20]. Bland-Altman plots showed a good correlation between both matrices, 

however, requiring the following: i) calculation of the blood volume contained within the DBS (calculated from 

the DBS surface, assuming an average Hct), ii) application of a correction factor to calculate the plasma 

concentration from the DBS concentration (again assuming an average Hct), and iii) assuming an even 

distribution of methadone between RBCs and plasma. The latter assumption in fact may not hold true, as 

methadone partitions more in plasma than in RBCs [102]. A deviating correlation was indeed observed by 

Goggin et al., who compared methadone DBS concentrations with plasma levels [45]. Odoardi et al. observed 

similar DBS and blood concentrations in an authentic post-mortem sample [47]. The structures of methadone 

as well as its metabolites 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-

diphenylpyrroline (EMDP) are given in Figure 1.4.  

 

 

Figure 1.4 Structures of methadone, EDDP and EMDP. 

 

Other synthetic opioids analyzed in DBS are the analgesics tramadol and fentanyl (also agonists) and 

buprenorphine, a partial agonist used in opioid addiction treatment (Figure 1.5). Using an online LC-MS/MS 

method, Thomas et al. were able to monitor the in vivo metabolism of buprenorphine by repeated DBS-based 

sampling following intraperitoneal injection of this molecule in a rat [11]. Verplaetse and Henion developed a 

method for the quantification of fentanyl using flow-through elution of the DBS card, followed by online-SPE 

[40]. Clavijo et al. successfully quantified fentanyl and its major metabolites, norfentanyl and 

despropionylfentanyl, in DBS of neonates for the assessment of PK [103]. Odoardi et al. used DBS as a sample 

preparation step for the determination of alfentanyl, fentanyl, norfentanyl and sufentanyl in post-mortem 

samples [47]. Jantos et al. found similar concentrations of fentanyl and norfentanyl in DBS and whole blood 

[101]. From a bridging study performed by Goggin et al., where DBS and plasma concentrations of a variety of 

opioids were compared (e.g. tramadol, fentanyl and buprenorphine), it can be concluded that, although for 

some analytes a DBS:plasma ratio conform expectations was observed, more in-depth studies are needed [45].  
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Figure 1.5 Structures of buprenorphine, tramadol, fentanyl, norfentanyl, despropionylfentanyl, sufentanyl and 

alfentanyl.  

 

1.9.6 Benzodiazepines and Z-drugs 

Benzodiazepines and Z-drugs (Figure 1.6) are prescribed for the treatment of insomnia or anxiety disorders. 

However, as these are addictive drugs and given their sleep-inducing effect, they are of interest in clinical and 

forensic toxicology and in the context of DUID. The amide in zopiclone and in most benzodiazepines renders 

these compounds subject to degradation, more particularly hydrolysis. Again, the use of DBS may offer a 

stability advantage, as has been demonstrated for zopiclone. Whereas in whole blood only 25% of the initial 

zopiclone concentrations was left after 8 days at room temperature, in low-level DBS which were stored for 30 

days at room temperature still 77% of the initial concentration could be found [78]. These findings were 

corroborated by Déglon et al., who reported stability of a multi-analyte panel after 30 days storage at room 

temperature [5]. These authors developed a simplified offline LC-MS/MS method, allowing detection of the 

major benzodiazepines (except bromazepam) and Z-drugs, along with selected metabolites, in 5-µL DBS. 

 

To investigate the equivalence of DBS methods and whole blood methods, Jantos and Skopp analyzed blood 

and 100-µL DBS from volunteers participating in driving simulation experiments and who had ingested drugs, 

amongst which alprazolam [91]. They found a mean blood/DBS ratio of 0.99 for alprazolam, which means that 

the concentrations found in DBS do not differ from those in blood. Déglon et al. applied their method on DBS 

prepared from venous blood samples that had been collected in the context of DUID [5]. Again, a good 

correlation was seen between the quantitative results obtained from DBS and those obtained from blood that 

had been analyzed by routine LC-MS, resulting in the implementation of the simplified method in routine 



Chapter 1: Analysis of abused substances using dried blood spots 

 

  

31 

 

analysis. Versace et al. also found similar results between a newly developed screening method based on an 

automated extraction of 5-µL DBS and routine screening procedures starting from 1 mL [8]. With the aim of 

phenotyping the liver enzyme CYP 3A4, de Boer et al. determined the PK profile of midazolam in plasma, whole 

blood, cDBS and vDBS. Regression analyses indicated a strong correlation between the concentrations in the 

corresponding samples. However, these analyses also demonstrated that, apart from the expected difference 

in concentration between blood and plasma, there was also a difference between concentrations in venous 

blood and DBS derived thereof, as well as between concentrations in vDBS and cDBS [46]. Midazolam has also 

been measured in rat DBS, using a fully automated system, coupling online DBS extraction to 2D LC and high 

resolution MS [39]. 

 

 

 

 

Figure 1.6 Structures of benzodiazepines and Z-drugs.      
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Figure 1.6 Continued. 
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1.9.7 Amphetamine and analogues (methamphetamine, MDMA, MDA and  

  MDEA) 

Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxy-N-

ethylamphetamine (MDEA) are amphetamine-like drugs (Figure 1.7). Determination of these drugs is relevant 

in the forensic context and in cases of DUID as consumption of MDMA may affect risk assessment and may 

result in a disturbed balance and motor coordination.  

 

 

Figure 1.7 Structures of amphetamine and analogues. 

 

Déglon et al., Versace et al., Ambach et al. as well as Kyriakou et al. developed DBS-based screening methods  

-either for classic drugs of abuse or for new psychoactive substances- enabling the detection of amphetamine-

like drugs [8,12,80,93]. Thomas et al. focused on determination of prohibited drugs for doping controls [94]. 

For the quantitative analysis of amphetamine and analogues in DBS, Jantos and Skopp, Odoardi et al. as well as 

Saussereau et al., developed an LC-MS/MS method, whereas Langel et al. applied GC-MS [26,31,47,91]. Using 

an automated DBS system, Verplaetse and Henion were able to quantify amphetamine, methamphetamine and 

MDMA [41]. 

 

Jantos and Skopp and Saussereau et al. performed a cross-comparison between vDBS and whole blood and 

concluded that both methods gave similar results [31,91]. Ambach et al. and Versace et al. also did not observe 

major discrepancies between DBS-based and blood-based screening, taking into account different sensitivities 

of both methods -the DBS method starting from 50 or even 200x less material but utilizing a higher-end MS 

than the methods for routine analysis [8,80].  

 

1.9.8 Gamma-hydroxybutyric acid  

GHB is primarily notorious for its use as club and date-rape drug (Figure 1.8). Unfortunately, interpretation of 

GHB concentrations is not always straightforward. First of all, the presence of GHB in a blood sample can be 

attributed either to illicit use of this substance or to its endogenous presence. Furthermore, GHB may be 
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formed de novo post-mortem as well as ex vivo in stored samples [83,84]. This ex vivo formation, however, is 

not observed in DBS [24]. Additionally, GHB is quickly cleared from the circulation, making rapid sampling 

imperative. Here as well, DBS sampling may offer an interesting alternative since no medical staff is needed for 

the sampling procedure, hence allowing more prompt sampling. This way, GHB concentrations representative 

of the intoxication state at the moment of interest can be measured. Particularly in cases of drug-facilitated 

sexual assault (DFSA) a rapid sampling method may prove to be of crucial importance as there is most often a 

delay before the victim reports the assault. The good correlation between concentrations in venous blood, DBS 

prepared from venous blood and cDBS [24 and Chapter 2], suggests that the DBS sampling technique for GHB 

analysis in toxicological cases may be recommended in routine practice. In our laboratory, we routinely use 

dried matrix spots (DBS, but also dried plasma or dried urine spots) for GHB analysis in a forensic context. To 

this end, we prepare spots volumetrically and, after adding labeled IS, subject the complete spots to “on-spot 

derivatization” and analysis via GC-MS [23,24]. 

 

 

Figure 1.8 Structure of GHB. 

 

1.9.9 Ketamine and norketamine 

Ketamine is a popular drug for sedation and anesthesia in children which requires proper knowledge of PK and 

pharmacodynamics for choosing the right dose and dosing interval (Figure 1.9). DBS sampling is an attractive 

method for sampling blood for PK studies in neonates, as only a minimal amount of blood is needed [104]. 

Ketamine is also used as a recreational drug and in cases of DFSA. In these cases as well, DBS sampling may be a 

valuable option as sampling should be done as fast as possible (see GHB, subsection 1.9.8).  

 

 

Figure 1.9 Structures of ketamine and norketamine.  

 

With the aim to improve the understanding of PK in neonates, Moll et al. developed a method for the 

quantification of ketamine and its main metabolite norketamine in DBS [104]. Ketamine was also included in 

the multi-analyte DBS-based procedures developed by Ambach et al. and Odoardi et al. [47,80]. Furthermore, 

utilizing a microextraction packed sorbent procedure followed by HPLC-diode array detection analysis, Saracino 
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et al. could also successfully quantify ketamine and norketamine in DBS [21]. Studies are still in progress to 

investigate the equivalence with whole blood.  

 

1.9.10 New psychoactive substances  

During the last decade, the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) has observed 

a significant increase of new (psychoactive) substances, mainly cathinones and synthetic cannabinoids [105]. 

Mephedrone, a cathinone analogue (Figure 1.10), was successfully quantified by Verplaetse and Henion using 

an online SPE-LC-MS/MS method, following flow-through desorption [41]. Ambach et al. developed an LC-

MS/MS method for the screening of 64 established and new psychoactive substances (including e.g. 

amphetamines, cathinones, piperazines), using complete 10-µL DBS [80]. Samples that scored positive in this 

screening were quantified with a validated whole blood method used in routine analysis. As overall similar 

results were obtained with both methods and DBS may simplify sample preparation, the authors concluded 

that DBS are a useful matrix for rapid screening of new psychoactive substances. Furthermore, DBS have a 

stabilizing effect on cathinone derivatives when stored cooled [80]. Mercolini et al. demonstrated that other 

alternative matrices like hair, oral fluid, dried urine and dried plasma also have potential for the determination 

of new psychoactive substances [106,107].  

 

 

Figure 1.10 Structures of cathinone and mephedrone.  

 

1.9.11 Alcohol markers 

It has been well established that alcohol misuse has social and behavioral effects, as well as effects on mental 

and physical health. Consequently, tracing ethanol consumption or abstinence is relevant, either for clinical, 

forensic or traffic cases (e.g. in driver’s license regranting), or in the context of workplace monitoring. Assessing 

whether someone is under the influence of alcohol can be done by breath testing and by measuring blood 

alcohol concentrations. However, when the aim is to evaluate whether ethanol consumption took place in the 

recent past, the small detection window of ethanol itself may not suffice. There are several alternative markers 

available for this purpose. Examples include ethylglucuronide and ethylsulfate, which are highly sensitive and 

specific markers of either recent (blood, urine) or historic (hair, nails) intake of ethanol [108,109]. Redondo et 

al. successfully developed a method allowing detection of these biomarkers in complete 10-µl DBS [110]. As 

long-term alcohol biomarker, however, ethylglucuronide and ethylsulfate are not widespread yet. An 

alternative marker is PEth, the collective term for a group of ethanol-derived phospholipids formed from 
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phospathidylcholine after ethanol consumption. Formation of these products is catalyzed by phospholipase D 

in the membranes of RBCs. PEth has gained popularity as biomarker of alcohol misuse during the last few years 

and should offer a wider window of detection than ethylglucuronide and ethylsulfate [43,111-114]. However, 

PEth is susceptible to post-sampling synthesis during storage of ethanol-containing samples and could generate 

false positive results [43,112]. Consequently, blood samples have to be stored at -80°C and should be analyzed 

within 30 days [111]. DBS, however, lack ex vivo de novo formation of PEth, as demonstrated by Jones et al.: 

PEth 16:0/18:1 (a specific isomer) could not be detected in DBS stored in ethanol vapor or in DBS which were 

spiked to significant ethanol concentrations [43]. According to Kummer et al., PEth 16:0/18:1 and PEth 

18:1/18:1 are stable for 6 months in DBS when stored at room temperature. They developed an UHPLC-MS/MS 

method for the quantification of PEth species (PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0 (see Figure 

1.11)) in blood and DBS and found a good correlation between venous blood, vDBS and cDBS concentrations, 

suggesting that DBS are a valid alternative to venous blood for the detection of alcohol consumption [51].  

 

 

 

Figure 1.11 Structures of PEth 16:0/16:0, PEth 18:1/18:1 and PEth 16:0/18:1. 
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Given the risk of neurocognitive problems in children exposed to alcohol during pregnancy, attention is paid to 

screening newborns for prenatal alcohol exposure (PAE) [113]. Therefore, meconium fatty acid ethyl esters 

(FAEE) are, to date, measured to confirm PAE. However, this approach suffers from some limitations, amongst 

which low sensitivity and possibility of post-collection synthesis [43,114]. Detection of PEth in newborn DBS 

may be an interesting alternative for FAEE in meconium as post-collection synthesis does not occur on DBS 

cards [43] and no extra sampling is needed since DBS are already taken from newborns to screen for metabolic 

disorders. Although first reports confirm that accurate detection of PEth in conjunction with other biomarkers 

facilitates detection of PAE, other studies are warranted to further examine the utility of determining PEth in 

newborn DBS for identifying cases of PAE [113]. It has to be pointed out that, given the relatively short 

detection window (about 2-3 weeks), PEth in DBS is a biomarker of PAE during the last stage of pregnancy, 

whereas meconium FAEE allow detection of alcohol consumption during the 2
nd

 and 3
rd

 trimester [114]. 

However, in spite of the longer detection window of the latter biological matrix, it is still not able to identify 

maternal alcohol consumption in early pregnancy. Additionally, detection of PEth in DBS may allow more 

sensitive detection of PAE than meconium FAEE, despite the much shorter detection window [113].  

 

1.9.12. Cotinine 

The occurrence of low birth weight, childhood cancers and premature death has been associated with the 

active use of tobacco and exposure to second-hand smoke during pregnancy [22,29,49,72,115]. To assess 

exposure to tobacco or second-hand smoke, cotinine concentrations are measured as cotinine is the primary 

metabolite of nicotine. Given the good correlation between cotinine concentrations in DBS and in plasma, 

Murphy et al. proposed DBS cotinine as a reliable biomarker of tobacco metabolism [29]. Furthermore, several 

studies in newborns demonstrated that cotinine levels in newborn DBS may be used to identify maternal 

smoking at the very end of pregnancy [22,49,115]. However, several limitations have to be considered. Given 

the small sample volume, cotinine in newborn DBS could not be used as a biomarker of maternal second-hand 

smoke because of sensitivity issues [49,72]. Moreover, one has to be aware that cotinine concentrations will 

only be increased when DBS are collected within 72 h after birth and exposure was close to the time of delivery 

[22,29,49,72]. Yang et al. also found a good correlation between DBS cotinine levels and umbilical cord blood 

cotinine concentrations in a large set of samples (n = 100) from a newborn screening program, although 

concentrations in umbilical cord blood were somewhat higher [49]. Wang et al. also reported similar cotinine 

concentrations in blood and DBS from a rat that had been injected with nicotine [35]. These authors used the 

interesting approach of paper spray MS, a technique in which a spray, that is generated by applying a high 

voltage directly onto filter paper, directly enters the MS. Using a fully automated online SPE LC-HRMS/MS 

approach, Tretzel et al. were able to quantify nicotine, its major metabolites nornicotine, cotinine and trans-3’-

hydroxycotinine and the tobacco alkaloids anabasine and anatabine for sports drug testing purposes [42]. The 

structures of tobacco markers are given in Figure 1.12.  
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Figure 1.12 Structures of tobacco markers. 

 

1.10   Conclusion 

A substantial number of DBS methods is available to detect and quantify a vast array of abused substances. The 

majority of these methods shows sufficient sensitivity to be relevant in the context of DUID, despite the fact  

that some compounds (e.g. THC) are clearly more challenging than others. Moreover, DBS sampling provides 

several benefits over conventional sampling techniques that can be advantageous for the analysis of abused 

substances. First, this technique is minimally invasive and represents a fast, simple and economic way to collect 

a specimen that provides information on the acute intoxication state of a person. Second, as DBS sampling can 

be performed by non-medical personnel, the time until sample collection is minimized, which is especially of 

importance in the context of DUID and DFSA. Third, DBS offer a very stable matrix, reducing degradation and 

preventing de novo formation, often even at room temperature, thereby facilitating storage and 

transportation. As discussed above (section 1.8), benzodiazepines, cocaine, zopiclone, cathinones and 6-MAM 

are susceptible to degradation in whole blood, whereas the degradation process is reduced or minimized in 

DBS. It should be noted though, that for several analytes, storage will still require freezing at -20°C or flushing 

with N2 [41]. Furthermore, ex vivo formation of GHB or of the alcohol biomarker PEth is not seen in DBS, in 

contrast to other biological fluids. Last, but certainly not least, given the higher prevalence of viral infections in 

drug abusers, DBS sampling may provide an appealing alternative to venipuncture, as the dried matrix of DBS 

drastically reduces biohazard.  

 

Aside from quantitative applications, DBS can be used for rapid toxicological screening as well, since DBS may 

simplify sample preparation and reduce the necessary sample volume, which in (forensic) toxicological analysis 

can be limited. Additionally, DBS, which are already collected in the context of newborn screening programs for 

metabolic diseases, also provide a very interesting matrix for the assessment of newborn exposure to tobacco, 

ethanol and certain drugs during (the last part of) pregnancy. This facilitates extensive studies evaluating the 
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effect of these factors on the occurrence of e.g. premature death and childhood cancers. Moreover, these 

methods can also be used in a more clinical context, e.g. for the diagnosis of PAE.  

 

Despite the numerous advantages associated with DBS sampling and the wide range of applications, this 

approach also faces some challenges. Given the small blood volume that is available, highly sensitive detection 

techniques are often required. For instance, cannabinoid quantitation proved to be a real challenge as, to the 

best of our knowledge, only one method, using high-end equipment, attained sufficient sensitivity, yet still 

requiring complete 20-µL DBS. Other challenges associated with DBS sampling are contamination risk, the 

acquisition of correctly obtained samples, the influence of the site of punching and of the blood volume 

spotted, the chromatographic effect and the Hct effect, the most widely discussed DBS-related problem. With 

respect to the latter, several solutions have been proposed [54]. Moreover, the number of applications 

performed in a real setting and the number of applications demonstrating the equivalence with results in other 

biological fluids are limited. Based on the available data, it can be concluded that in most cases no “DBS effect” 

per se is present, meaning that equivalent concentrations are present in DBS and in whole blood. Whether this 

also holds true for cDBS and venous blood, remains to be established in most cases. Conclusively, although 

current DBS approaches for the detection of abused substances seem promising, more experiments are 

warranted for the implementation of DBS sampling in routine analysis. 
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Abstract 

Gamma-hydroxybutyric acid (GHB) is a well-known illicit club and date-rape drug. Dried blood spot (DBS) 

sampling is a promising alternative for classical venous sampling in cases of (suspected) GHB intoxication since 

it allows rapid sampling, which is of interest for the rapidly metabolized GHB. However, there is limited data if  

-and how- capillary DBS concentrations correlate with venous concentrations. We conducted a comparative 

study in 50 patients with suspected GHB intoxication, to determine and to correlate GHB concentrations in 

venous DBS (vDBS) and capillary DBS (cDBS). This is the first study that evaluates in a large cohort the 

correlation between capillary and venous concentrations of an illicit drug in real-life samples. Of the 50 paired 

samples, 7 were excluded: the vDBS concentration was below the LLOQ of 2 µg/mL in 3 cases and 4 samples 

were excluded after visual inspection of the DBS. Bland-Altman analysis revealed a mean % difference of -2.8% 

between cDBS and vDBS concentrations, with the zero value included in the 95% confidence interval of the 

mean difference in GHB concentration. A paired sample T-test confirmed this observation (p = 0.17). Also the 

requirement for incurred sample reproducibility was fulfilled: for more than 2/3 of the samples the 

concentrations obtained in cDBS and those in vDBS were within 20% of their mean. Since equivalent 

concentrations were observed in cDBS and vDBS, blood obtained by fingerprick can be considered a valid 

alternative for venous blood for GHB determination. 
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2.1 Introduction 

Gamma-hydroxybutyric acid (GHB) and its precursor gamma-butyrolactone (GBL) are used as recreational drug 

and date-rape drug, particulary in a nightclub environment and in men having sex with men. There have been 

many cases of GHB intoxication, also in combination with other drugs of abuse [1-4]. Toxicological 

interpretation of GHB concentrations in clinical and forensic samples is impeded by its endogenous presence. 

Furthermore, given the short half-life of GHB, rapid sampling is needed [5]. Dried blood spot (DBS) sampling has 

been proposed as a possible alternative for classical venipuncture, offering several advantages, in particular 

rapid and easy collection of a representative sample and easy sample transfer and storage [6]. A number of 

studies have provided a proof-of-concept of the potential to determine abused substances, including GHB, in 

DBS samples [7]. However, these studies have generally not assessed the developed methodology in a large 

cohort of patients, comparing capillary samples with the gold standard of venous samples. In addition, in most 

reports a cross-comparison between venous DBS (vDBS) and capillary DBS (cDBS) concentrations is lacking [7]. 

Therefore, although DBS sampling is an interesting and promising alternative to classical venous sampling, it 

remains to be demonstrated if cDBS concentrations correlate with those in venous samples. While we 

previously demonstrated in our laboratory that GHB can be quantitatively determined in DBS of patients with a 

GHB/GBL intoxication and in narcoleptic patients taking the medication Xyrem® (sodium oxybate, the sodium 

salt of GHB) [8-10], the aim of this study was to compare GHB concentrations in vDBS and cDBS in a large 

cohort of patients with acute GHB intoxication. 

 

2.2 Materials and methods 

The derivatization reagents trifluoroacetic anhydride and heptafluorobutanol, as well as the sodium salt of GHB 

were purchased from Sigma-Aldrich (Diegem, Belgium). The internal standard GHB-D6 was obtained from 

Lipomed (Arlesheim, Switzerland). Suprasolve methanol and ethyl acetate were provided by Merck (Darmstadt, 

Germany). The sodium fluoride/potassium oxalate (NaF-KOx) blood collection tubes (9 mL tubes with 100 mg 

sodium fluoride and 22.50 mg potassium oxalate) were obtained from Terumo (Leuven, Belgium).   

 

2.2.1 Samples 

This study was approved by The UK National Research Ethics Service (Reference 11/LO/0976). All patients 

presenting to the emergency department at Guy’s and St Thomas’ Hospital, London between February and 

December 2013 with either a clinical diagnosis or other indications of GHB/GBL intoxication were considered 

for inclusion. cDBS were generated by non-volumetric direct application of a blood drop from the fingertip onto 

Whatman filter paper following a fingerprick. vDBS were obtained by pipetting 25 µL of venous blood from the 

NaF-KOx blood tubes in which the venous samples were collected and stored. DBS were dried for at least 2 

hours before storage at room temperature in zip-closure plastic bags with desiccant. Paired cDBS and venous 

whole blood samples were collected at the time of admission from 99 patients. As these patients were 
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generally drowsy or agitated at presentation, informed consent was not possible prior to the collection of 

samples and therefore delayed consent was employed. Of the patients sampled, 50 provided delayed consent. 

The paired samples obtained from these 50 patients were used in this study. 

 

2.2.2 Analytical procedures 

GHB concentrations in DBS were determined using a validated gas chromatography coupled to mass 

spectrometry (GC-MS)-based procedure [9]. Briefly, 6-mm partial-spot punches were taken from the DBS. After 

adding the internal standard (IS) GHB-D6, the DBS punches were subjected to “on-spot derivatization” by direct 

application of a mixture of 50 µL trifluoroacetic acid anhydride and heptafluorobutanol (2:1) and heating for 10 

min at 60°C. After evaporation under a gentle stream of nitrogen, the dried extract was re-dissolved in 100 µL 

ethyl acetate and 1 µL was injected into an Agilent 6890 GC system coupled to a 5973 MS. Of those DBS with a 

GHB concentration above 100 µg/mL, 10 µL of the final derivatized extract was diluted to 100 µL with ethyl 

acetate.  

 

Venous whole blood samples were analyzed according to the procedure of Van hee et al. [11]. Briefly, after 

adding the IS 1,3-propylene glycol and the catalyst dimethylformamide to 20 µL of whole blood, the samples 

were directly derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) at 70°C for 15 min. Following 

centrifugation, an aliquot was injected into a GC-MS sytem.  

 

2.2.3 Storage experiment 

To evaluate GHB stability in venous whole blood (collected in NaF-KOx tubes), we added two different 

concentrations (10 and 100 µg/mL) in whole blood and stored the samples at different temperatures (4°C and 

room temperature) for up to 2 weeks. At different time points, 25-µL DBS were generated from this spiked 

blood, which were analyzed using the above-mentioned DBS-based GC-MS method of Ingels et al. [9]. 

 

2.2.4 Data analysis 

To evaluate the correlation between venous and capillary concentrations, we performed a paired sample T-

test, using Microsoft Excel® 2010 (Microsoft, Redmond, WA, USA), and Bland-Altman and Passing-Bablok 

analysis, using MedCalc® (MedCalc software bvba, Ostend, Belgium). 

 

A p-value ≤ 0.05 was considered statistically significant. In the Bland-Altman plot, the differences between 

venous and capillary concentrations were plotted against the average of both measurements. Indicated in this 

plot are the mean difference between both concentrations and the limits of agreement (1.96 SD), along with 

the respective 95% confidence intervals. In the Passing-Bablok scatter plot diagram, capillary concentrations 
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were plotted against venous concentrations. If the confidence interval of the slope includes 1, there is no 

proportional difference between both measurements. When the confidence interval of the intercept value 

includes 0, it can be concluded that there is no systematic difference between both methods.  

 

2.3 Results and discussion 

Of the 50 paired samples, 7 were excluded: the venous blood concentration was below the LLOQ in 3 cases, 

while 4 samples were excluded after visual inspection of the DBS (in 3 cases cDBS samples were too small (< 6 

mm diameter) and in one case vDBS had an irregular shape). cDBS concentrations of GHB ranged from 41 to 

646 µg/mL, whereas vDBS concentrations ranged from 48 to 705 µg/mL. Clinically, all patients -apart from the 3 

patients with a venous concentration below LLOQ- had clinical symptoms consistent with acute GHB 

intoxication.  

 

In literature, a cut-off GHB concentration of 4-5 µg/mL in blood has been proposed to differentiate between 

endogenous and exogenous GHB [5,12-14]. In our study, 43 patients were screened positive for GHB: both 

venous and capillary concentrations were well above these cut-off levels. In the 3 cases of our study that did 

not have symptoms of acute GHB intoxication, venous concentrations were below the limit. However, GHB 

intake is likely as clearly higher signals were detected than those found in GHB-naïve persons (see Figure 2.1).  

 

 

Figure 2.1 Overlay of representative chromatograms obtained by analyzing (a) vDBS of a GHB-naïve person,  

(b) vDBS of a patient with assumed GHB intake (GHB concentration < 2 µg/mL), (c) vDBS with a GHB 

concentration of 2 µg/mL (LLOQ), (d) vDBS of a GHB-intoxicated person (GHB concentration of 48 µg/mL), using 

a DBS-based GC-MS method [9].  
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These cases presented to the hospital with clinical symptoms consistent with recent stimulant use or secondary 

to GHB withdrawal rather than acute intoxication. In all 3 cases, there was some evidence that GHB use may 

have taken place more than 5 hours before sampling (e.g. history of GHB abuse, declared GHB use,…). 

However, it was not possible to formally confirm GHB use in these patients, as urine samples were not 

routinely collected. As suggested by these 3 cases, rapid sampling is of utmost importance since GHB is 

metabolized rapidly, with a half-life of less than one hour, resulting in blood concentrations below proposed 

cut-off levels within a few hours after use [15,16]. Shima and colleagues proposed lowering the cut-off to  

1 µg/mL in blood in cases where in-life blood specimens can be collected aseptically and stored at 4°C or lower 

before timely analysis [17]. In legal cases, cDBS samples may provide the advantage that they may not only 

allow rapid sampling, but also stabilise the sample, allowing long-term storage at room temperature [9]. 

 

We performed Bland-Altman analysis to compare cDBS and vDBS concentrations. As can be seen in Figure 2.2a, 

we found a mean % difference of -2.8%, with the zero value included in the 95% confidence interval of the 

mean difference in GHB concentration. From this, it can be concluded that there is no significant difference 

between cDBS and vDBS concentrations. A paired sample T-test confirmed this conclusion (p = 0.17). We also 

applied the European Medicines Agency (EMA) guideline for incurred sample reanalysis in bioanalytical method 

validation [18]. These state that the concentration obtained for the initial analysis and the concentration 

obtained by reanalysis should be within 20% of their mean for at least 67% of the repeats. Although this 

requirement actually concerns reanalysis of the same samples, this condition was still fulfilled when analyzing 

different (cDBS versus vDBS) samples: in 72% of cases the concentrations obtained in cDBS and those in vDBS 

were within 20% of the mean GHB concentrations obtained with the 2 methods. As can be seen in Figure 2.2b, 

a Passing-Bablok scatter plot also demonstrated a good overall correlation between cDBS and vDBS GHB 

concentrations, although 1 was just not included in the 95% confidence interval of the slope. 

 

In addition to performing a pairwise comparison between cDBS and vDBS, we also performed reanalysis of both 

cDBS (n = 29) and vDBS (n = 28). Again, the EMA requirement for incurred sample reanalysis was fulfilled: we 

found that for more than two-thirds (i.e. 70%) of the samples the initial concentration and the concentration 

obtained by reanalysis, were within 20% of the mean of the first and repeat measurement.  

 

When comparing DBS values with those obtained from venous blood (using another procedure in another 

laboratory), the latter were significantly lower (p < 0.005) although the differences remained limited: Bland-

Altman analysis revealed a mean % difference of -9.2% and -13% between venous whole blood and respectively 

cDBS and vDBS (Figures 2.3 and 2.4). Also here, the EMA guidelines for incurred sample reanalysis were 

fulfilled: in 77% of the cases the concentrations obtained in cDBS and those in venous whole blood were within 

20% of the mean GHB concentrations; also for more than two-thirds of the samples, the vDBS concentrations 

and the concentrations obtained from venous whole blood were within 20% of their mean. It is unclear if the 

observed difference between concentrations in venous blood and in DBS prepared thereof can be ascribed to 
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the DBS approach per se or rather is the result of differences in calibration between the distinct analyzing 

laboratories.   

 

 

 

Figure 2.2 (a) Bland-Altman analysis of cDBS and vDBS, plotting the % differences between both GHB 

concentrations (y-axis) against the average of these results (x-axis). The mean difference and the limits of 

agreement (set to 1.96 SD) are also indicated with its 95% confidence interval. (b) Passing-Bablok regression 

analysis of cDBS and vDBS, plotting the concentrations in both matrices against each other. The solid line 

illustrates the regression line, the dashed lines indicate the confidence interval for the regression line and the 

dotted line corresponds to the identity line.  
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Figure 2.3 (a) Bland-Altman analysis of cDBS and venous whole blood, plotting the % differences between both 

GHB concentrations (y-axis) against the average of these results (x-axis). The mean difference and the limits of 

agreement (set to 1.96 SD) are also indicated with its 95% confidence interval. (b) Passing-Bablok regression 

analysis of cDBS and venous whole blood, plotting the concentrations in both matrices against each other. The 

solid line illustrates the regression line, the dashed lines indicate the confidence interval for the regression line 

and the dotted line corresponds to the identity line.  

 

It should be noted that, while cDBS and venous blood were sampled at almost the same time point, in some 

cases, there was a delay of several days before vDBS were prepared from the venous blood. To exclude that 

this may have an effect on our results, we evaluated GHB stability in spiked venous whole blood collected in 

NaF-KOx tubes that were stored for up to two weeks at 4°C and at room temperature before DBS preparation. 
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The bias from nominal concentrations (10 or 100 µg/mL) did not exceed 11%. This suggests that no substantial 

alteration takes place in GHB concentration if venous blood, collected in NaF-KOx tubes, is stored under these 

conditions. Although this finding is consistent with previously published data [19-21], it should be noted that in 

incurred (real-life) samples a contribution from e.g. hydrolysis of GHB glucuronide might not be excluded. 

However, such contribution is expected to be limited [22]. 

 

 

 

Figure 2.4 (a) Bland-Altman analysis of vDBS and venous whole blood, plotting the % differences between both 

GHB concentrations (y-axis) against the average of these results (x-axis). The mean difference and the limits of 

agreement (set to 1.96 SD) are also indicated with its 95% confidence interval. (b) Passing-Bablok regression 

analysis of vDBS and venous whole blood, plotting the concentrations in both matrices against each other. The 

solid line illustrates the regression line, the dashed lines indicate the confidence interval for the regression line 

and the dotted line corresponds to the identity line.  
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2.4 Conclusion 

DBS sampling is a promising alternative for classical venous sampling in cases of (suspected) GHB intoxication: 

the DBS sampling technique allows rapid sampling -which is of interest for the rapidly metabolized GHB- and 

DBS are also easier to store and transport than venous samples. The study reported here is the largest 

comparative study to date evaluating capillary and venous concentrations of an illicit drug. In a large cohort of 

patients with acute GHB intoxication we observed equivalent GHB concentrations and an excellent correlation 

between cDBS and vDBS. In conclusion, blood obtained by fingerprick is a valid alternative for venous blood for 

GHB determination. 
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Abstract 

Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of 

DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available 

material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas 

chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate 

sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a 

new derivatization procedure, i.e. “microwave-assisted on-spot derivatization”, to minimize sample 

preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and 

derivatization takes place in a microwave instead of via conventional heating. In this Chapter we evaluated the 

applicability of this new concept of derivatization for the determination of two polar low molecular weight 

molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. 

The method was successfully validated for both compounds, with imprecision and bias values within 

acceptance criteria (< 20% at LLOQ, < 15% at 3 other QC levels). Calibration lines were linear over the 10-100 

µg/mL and 1-30 µg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant 

decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, 

DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the 

analysis of GHB and gabapentin positive samples, “microwave-assisted on-spot derivatization” proved to be 

reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of 

interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, 

diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be detected using this method.  
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3.1 Introduction  

Dried blood spot (DBS) sampling has been associated with many advantages. It is a minimally invasive sampling 

technique enabling rapid (home-)sampling and convenient transport and storage of samples [1,2]. Moreover, it 

offers a reduced risk of infection and in many instances leads to improved compound stability. Furthermore, 

DBS are a convenient sample preparation strategy: they may simplify sample preparation procedures and they 

are suitable for automation of sample processing and analysis [3,4]. Consequently, DBS analysis is an increasing 

field of research, which can be deduced from the rapidly increasing number of published studies on DBS in the 

last decade [2,3].  

 

DBS have been applied in many disciplines such as preclinical and clinical studies, epidemiological research, 

phenotyping, therapeutic drug monitoring and toxicology [3,5-8]. In these applications, mostly liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been used [9-11]. Adequate sensitivity 

has also been achieved with other analytical methods, such as direct MS/MS, LC coupled to fluorescence 

detection, LC with ultraviolet detection or gas chromatography coupled to (tandem) mass spectrometry (GC-

MS(/MS)) [10].  

 

GC-MS based analysis of DBS has been described for metabolomic profiling as well as for the detection of a 

wide range of analytes, amongst which pesticides, drugs of abuse, anti-epileptic and antidepressant drugs [11-

16]. GC-MS also still has its place in many forensic toxicology laboratories, for a variety of reasons. First, GC-MS 

remains an important confirmation method in systematic toxicological analysis, complementing LC-MS/MS 

results [17-19]. Second, one single configuration can be used for a variety of compounds with widely varying 

polarity, not requiring a dedicated configuration for determination of a given compound. E.g. while LC-MS/MS 

procedures for the determination of gamma-hydroxybutyric acid (GHB) have been described, these typically 

require the use of hydrophilic interaction liquid chromatography, although reversed phase C18 columns with 

acidified mobile phases have been used as well. However, the latter poses limitations with respect to method 

sensitivity and selectivity [20]. Third, the use of a standard GC-MS configuration also offers the advantage that 

it is a robust and highly selective technique which is widely available at reasonable prices, requiring less 

specialized handling than LC-MS. Additionally, in emerging countries, some laboratories cannot afford buying 

or maintaining expensive LC-MS equipment but do often have a GC-MS system at their disposal. 

 

In many GC-MS based procedures (including those starting from DBS), a derivatization reaction is needed to 

improve the chromatographic properties of the analytes of interest and to achieve adequate method sensitivity 

[10,21]. Although the integration of derivatization techniques may offer several advantages -higher molecular 

weight compounds can more easily be discerned from interfering signals and the chromatographic and/or mass 

spectrometric properties of the target analyte may be improved- this additional sample preparation step is 

often experienced as laborious and tedious. In order to overcome this rate limiting step, we further simplified 

the concept of “on-spot derivatization” that we introduced in Chapter 2 [22]. In this concept, we add the 
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derivatization reagents directly to a DBS, without the use of a separate extraction step. Here, we extend this 

concept towards “microwave-assisted on-spot derivatization”. Microwave derivatization is increasingly being 

applied in a toxicological context [23-30]. To the best of our knowledge, we are the first to combine microwave 

derivatization with “on-spot derivatization”. By doing so, the derivatization step should no longer be 

experienced as a rate-limiting step of the sample workup protocol. An approach bearing some resemblance to 

the “microwave-assisted on-spot derivatization” used here is actually already being applied in proteomics, 

where DBS are subjected to a direct enzymatic digestion in a microwave, allowing quantification of therapeutic 

proteins [31] .  

 

We evaluated the validity of “microwave-assisted on-spot derivatization” in a real setting for the GC-MS based 

determination of two distinct polar low molecular weight compounds, GHB and gabapentin, in DBS (Figure 3.1). 

GHB and its precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) are well-known illicit club and 

date-rape drugs which are often abused in combination with other drugs of abuse [32-35]. Consequently, 

quantification of GHB is important in forensic and clinical toxicology. While determination of the anti-epileptic 

drug gabapentin may be done in the context of therapeutic drug monitoring, this drug is also increasingly 

encountered in the forensic lab, given the increased illegal use of gabapentin [36]. Additionally, to demonstrate 

that our methodology is not limited to these two compounds, we also assessed the applicability of our method 

for the determination of some other polar low molecular weight molecules with relevance in forensic and 

clinical toxicology, including the ketone body beta-hydroxybutyric acid (BHB), the GHB precursor 1,4-BD and its 

isomer 1,2-butanediol (1,2-BD), as well as the glycols propylene glycol (PG) and diethylene glycol (DEG) and the 

anti-epileptic vigabatrin, which is often prescribed together with gabapentin (Figure 3.1).  

 

 

Figure 3.1 Structures of 1,2-BD, 1,4-BD, BHB, DEG, gabapentin, GBL, GHB, PG and vigabatrin. 
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3.2 Materials and methods 

3.2.1 Chemicals and reagents 

1,4-BD, 1,2-BD, DEG, PG, vigababatrin, gabapentin, the sodium salt of BHB and GHB, as well as the 

derivatization reagents (trifluoroacetic anhydride (TFAA), acetic anhydride, pyridine and heptafluorobutanol 

(HFB)) were purchased from Sigma-Aldrich (Diegem, Belgium). Suprasolve methanol, ethyl acetate, toluene and 

hexane were provided by Merck (Darmstadt, Germany). The internal standards (IS) GHB-D6 and gabapentin-

D10 were obtained from Lipomed (Arlesheim, Switzerland) and Sigma-Aldrich (Diegem, Belgium), respectively.  

 

3.2.2 Preparation of calibrators and quality control samples 

Stock solutions were prepared by dissolving respectively 50 mg of BHB, 10 mg of GHB and 10 mg of gabapentin 

in one mL of methanol. For DEG, PG, 1,2-BD and 1,4-BD, we prepared 100 mg/mL stock solutions in methanol. 

Vigabatrin was available as a 1 mg/mL solution in methanol. Quality control samples (QCs) were prepared from 

independent stock solutions. All these stock solutions were stored at -20°C. At the day of analysis, working 

solutions were prepared by dilution of the stock solutions with methanol. These working solutions were used 

to prepare a multi-analyte mix, i.e. a mix containing all of the above-mentioned analytes, being PG, DEG, 1,2-

BD, 1,4-BD, GHB, BHB, vigabatrin and gabapentin. Using this mix, 6 calibration standards (5, 20, 50, 100, 150 

and 200 µg/mL for PG, 1,2-BD and 1,4-BD; 2.5, 10, 20, 40, 75 and 100 µg/mL for DEG; 5, 15, 20, 50, 100 and 300 

µg/mL for BHB; 10, 15, 25, 50, 75 and 100 µg/mL for GHB; 1, 5, 10, 17.5, 22.5 and 30 µg/mL for gabapentin; 5, 

10, 12.5, 17.5, 20 and 30 µg/mL for vigabatrin) and 4 QCs (5, 15, 85 and 175 µg/mL for PG, 1,2-BD and 1,4-BD; 

2.5, 7.5, 50 and 90 µg/mL for DEG; 5, 10, 125 and 250 µg/mL for BHB; 10, 12.5, 30 and 85 µg/mL for GHB; 1, 

2.5, 15 and 25 µg/mL for gabapentin; 5, 7.5, 15 and 25 µg/mL for vigabatrin) were prepared in blood. The 

percentage organic solvent used to prepare calibrators and QCs did not exceed 5%. Finally, DBS were prepared 

by spotting 25 µL of venous whole blood, which was spiked with the above-mentioned polar low molecular 

weight molecules, onto filter paper. For quantification of GHB and gabapentin, we used the IS GHB-D6 and 

gabapentin-D10, which were mixed to obtain final concentrations of 60 and 12 µg/mL, respectively. For the 

quantification of BHB, GHB-D6 was used as IS, whereas for PG, DEG, 1,2- and 1,4-BD and vigabatrin we used 

gabapentin-D10. 

 

3.2.3 Instrumentation 

Analytical standards and QCs were prepared using an AT261 DeltaRange balance of Mettler Toledo (Zaventem, 

Belgium). Three different filter papers, being Whatman 903, Munktell 2460 and Ahlstrom 237, were evaluated. 

Microwave-assisted derivatization was performed in a Samsung ME711K household microwave. Samples were 

centrifuged at room temperature and at 4°C in respectively a MSE Mistral 2000 (Anderlecht, Belgium) and a 

5804R Eppendorf centrifuge (Hamburg, Germany). A Branson 1510 ultrasonic bath (Danbury, Connecticut, USA) 
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was used for sonication of the samples. Evaporation under nitrogen took place at 25°C in a TurboVap LC 

evaporator of Zymark (Hopkinton, Massachusetts, USA). Chromatographic separation was achieved on a 30 m x 

0.25 mm i.d. x 0.25 µm Agilent HP-5MS column in an Agilent 6890-5973 GC-MS system. 

 

3.2.4 Sample preparation  

First, a 6-mm disc was punched out of a 25-µL DBS spot. To this punch, 5 µL IS-mix was added, followed by 

evaporation under nitrogen at 25°C for 10 min. Then, the punches were subjected to “microwave-assisted on-

spot derivatization” by direct application of the derivatization reagents onto the spot. We varied the amount of 

derivatization reagent and the time of heating to evaluate which parameters gave the best results (see 

subsection 3.3.1.1). After the derivatization step, samples were subjected to a short-spin centrifugation at 4°C. 

The excess derivatization reagent was removed by evaporation under nitrogen. Subsequently, 100 µL of 

injection solvent were added to the sample (hexane, toluene and ethyl acetate were tested as injection 

solvent, as described in subsection 3.3.2.1), followed by centrifugation at room temperature for 5 min. Finally, 

one µL of the supernatant of this derivatized extract was injected into the GC-MS system. 

 

3.2.5 Analytical parameters 

Optimization of the analytical parameters was performed as described in subsection 3.3.2. Helium was used as 

carrier gas for the chromatography. We utilized a non-pulsed splitless injection (see subsection 3.3.2.5). In the 

optimized procedure, the flow rate was set at 1.1 mL/min and the injection temperature at 250°C, as described 

in subsections 3.3.2.3 and 3.3.2.2, respectively. The initial oven temperature was 60°C, which was held for 2 

minutes. Then, the temperature ramped at 8°C/min to 110°C, raised 30°C/min until 230°C, followed by an 

increase of 50°C/min to 300°C, which was held for 2 minutes. The transfer line temperature, MS ion source 

temperature and MS quadrupole temperature were set at 300, 230 and 150°C, respectively. The MS was used 

in the electron impact mode. First, the MS was operated in full-SCAN mode to obtain the mass spectrum of the 

derivatized analytes (Figure 3.2). Then, quantifier and qualifier ions were selected for each analyte, allowing to 

use the MS in SIM mode. Quantification was performed in SIM mode using m/z 87, 100 and 116 for PG, 227, 

268 and 285 for BHB, 72, 86, 101 and 117 for 1,2-BD, 227, 240, 268 and 285 for GHB, 231, 245, 273 and 291 for 

GHB-D6, 86, 101 and 114 for 1,4-BD, 84, 111, 125 and 153 for vigabatrin, 87, 117 and 182 for DEG, 153, 167 

and 195 for gabapentin and 163, 177 and 205 for gabapentin-D10. Quantifier ions are underscored.  
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Figure 3.2 Full scan mass spectrum of (a) PG, (b) BHB, (c) 1,2-BD, (d) GHB, (e) 1,4-BD, (f) vigabatrin,  

(g) DEG and (h) gabapentin derivatized with acetic anhydride, pyridine and heptafluorobutanol.   
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Figure 3.2 Continued. 
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Figure 3.2 Continued. 
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Figure 3.2 Continued. 
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3.2.6 Validation 

3.2.6.1 Microwave calibration 

A calorimetric methodology was used to calibrate the microwave (see subsection 3.3.3.1) [37]. To this end, we 

measured the temperature rise of 1 L water after heating for 90 s at 800W (maximum power) for 14 days. 

Then, the power of the microwave required for heating the water was calculated using the following formula:  

∆𝑇 =
𝑃 × 𝑡

𝑉 × Cp ×  𝜌
 

with ∆𝑇 = temperature rise after heating (K); P = microwave power (W); V = volume of water which is heated 

(m3); Cp = heat capacity (J/(kg K)); 𝜌 = density (kg/m3); t = time of heating (s). 

 

In this Chapter, we refer to the effective absorbed power, i.e. 602 ± 15W, when the microwave was set at 

maximum power (see subsection 3.3.3.1).  

 

3.2.6.2 Analytical evaluation 

We validated our newly developed method based upon the Food and Drug Administration (FDA) and European 

Medicines Agency (EMA) guidelines for bioanalytical method validation [38,39]. For that purpose, we evaluated 

linearity, accuracy, precision, selectivity, carry-over, dilution integrity and stability, as well as two DBS-specific 

parameters, i.e. hematocrit (Hct) and volume effect [2,40]. For GHB and gabapentin, our method was 

performed in a real setting and labeled IS were used. Validation parameters were also evaluated for the other 

polar low molecular weight molecules, however, the use of labeled IS is recommended for quantification in a 

real-life application.  

 

To evaluate linearity, six-point calibration lines were constructed in duplicate on three non-consecutive days. 

These calibration lines were prepared by spotting 25 µL of venous whole blood (Hct 0.4) which was spiked with 

our multi-analyte mix. Of these DBS, 6-mm discs were analyzed. The best fitting calibration model was 

evaluated by statistical analysis. Therefore, the ratio of the peak area of the analyte to the peak area of the IS 

was plotted versus the concentration. Then, the slopes and intercepts of the calibration curves were calculated 

using weighted and unweighted linear regression. As described by Almeida et al. [41], a test of 

homoscedasticity should be performed in linear regression analysis. Therefore, we plotted the residuals versus 

the nominal concentrations and performed an F-test at the 99% confidence level. To select the most 

appropriate calibration model, we calculated the sum % residual errors (% RE) and plotted the % RE versus the 

concentration. The % RE was obtained by dividing the difference between found and nominal concentrations 

by the nominal concentration and multiplying by 100%. Linearity was assessed by performing the Fisher’s test. 

 

Samples were considered positive based on retention time and the ratio of the ion fragments. For the 

evaluation of sensitivity, we defined the lower limits of quantification (LLOQs) as the lowest concentrations 
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with an acceptable accuracy and precision. Accuracy, expressed as % bias, was calculated as % deviation from 

the nominal value. Within-day and between-day precision are expressed as % relative standard deviation and 

were calculated using one-way ANOVA, as described by Wille et al. and Peters et al. [42,43]. To this end, QCs 

were prepared at four levels (i.e. LLOQ, low, medium and high level) in duplicate on 3 separate days. Accuracy 

and precision should be within 15%, except for LLOQ where it should be within 20%. The limits of detection 

(LODs) have not been studied. For GHB, a LOD is not so relevant, given the endogenous nature of this 

compound. For gabapentin, the aim was to demonstrate the potential of using capillary DBS (cDBS) in a 

pharmacokinetic study, so also here, demonstrating its presence (far) below the therapeutic range was not 

considered relevant. 

 

To assess selectivity, we evaluated if interfering peaks were seen after analysis of DBS from six different 

sources. Carry-over was evaluated by injecting 3 blank (ethyl acetate) samples following injection of the highest 

concentration of the calibration curve. According to the EMA guidelines, carry-over in the blank sample 

following the high concentration standard should not exceed 20% of the LLOQ and 5% for the IS [39].  

 

We also evaluated dilution integrity by diluting the final derivatized extract instead of diluting the original 

sample as in case of DBS, especially cDBS, the sample cannot be diluted with blank matrix. To this end, we 

spiked blood with an analyte concentration 2x higher than the upper limit of quantification (ULOQ) and 

prepared 25-µL DBS. Of these DBS, a 1:4 dilution of the final derivatized ethyl acetate extract was made. 

Precision and accuracy of these diluted samples should be within 15%, taking the dilution factor into account.  

 

Stock solution stability was evaluated by analyzing low and high QCs (n = 3) after three freeze-thaw cycles and 

after storage for one week at -20°C. Long-term stability in DBS was assessed by analyzing these spots 

immediately after drying and after storage at room temperature for a longer period of time in a zip-closure 

plastic bag with desiccant. All stability studies were analyzed using a freshly prepared calibration curve.  

 

We also assessed the impact of DBS-specific parameters, like Hct and volume effect, on the analytical results. 

This was evaluated by analyzing DBS prepared from blood samples with different Hct values (0.30, 0.40 and 

0.49), of which different volumes of blood (i.e. 25, 35 and 50 µL) were spotted onto the filter paper.  

 

3.2.7 Application 

The applicability of our new approach was demonstrated using DBS obtained from patients and volunteers. For 

GHB, DBS were obtained from patients presenting at the emergency department of the Guy’s and St Thomas’ 

hospital in London with a suspected GHB/GBL intoxication (see subsection 2.2.1). From those patients who had 

a history of GHB abuse or declared GHB use, both venous DBS (vDBS) (prepared by spotting 25 µL of venous 

blood on filter paper) and cDBS (direct application on filter paper following fingerprick) were analyzed. This 

study was approved by the UK National Research Ethics Service (Reference 11/LO/0976). Additionally, our 
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method was applied on cDBS obtained from healthy volunteers participating in a cross-over study investigating 

the bioequivalence of two commercial gabapentin preparations (see subsection 4.2.2). This study was 

approved by the Ethics Committee of Ghent University Hospital (NCT01821235).  

 

3.3 Results and discussion 

3.3.1 Sample preparation 

3.3.1.1 Optimization of the sample preparation 

Microwave-assisted derivatization is increasingly being applied in bioanalysis, including forensic and clinical 

toxicology, to drastically reduce the derivatization time. E.g. Meyer et al. successfully quantified glycols and 

GHB in emergency toxicology using microwave-assisted trimethylsilylation [23]. Microwave-asssisted 

derivatization procedures have also been used for the determination of amphetamines, codeine, morphine, 

tetrahydrocannabinol and new psychoactive substances [24-28, 30]. 

 

For the derivatization of our DBS samples, we combined microwave-assisted derivatization, which results in an 

accelerated time of derivatization and an increased sample throughput, with the approach of “on-spot 

derivatization”, allowing minimization of the DBS sample preparation. The latter concept was previously 

developed in our lab for the GC-MS based determination of the party drug GHB in DBS and is currently applied 

in our routine forensic toxicology cases [44]. Generally, in DBS methods utilizing derivatization, analytes are 

first eluted from the DBS. After evaporation under nitrogen, the extract is then derivatized. Subsequently, the 

excess of derivatization reagent is removed by evaporation, followed by reconstitution of the sample. The “on-

spot derivatization” is a modification to this general procedure. It is a direct derivatization technique in which 

an excess of derivatization reagent is added directly to the matrix (i.e. the DBS), without the use of an 

additional extraction step: the reagent acts both as extracting and derivatizing reagent [10]. Mess et al. also 

utilized “on-spot derivatization” by the pre-treatment of DBS cards with the derivatization reagent prior to 

blood spotting [45]. 

 

When setting up a DBS based method involving “on-spot derivatization”, it needs to be taken into account that 

the filter paper is derivatized as well. We therefore evaluated different blank filter papers to check which filter 

paper showed the lowest number of interferences and found that Whatman 903 filter paper scored best. We 

also opted to use a domestic microwave as we wished to set up a method that would be applicable in a routine 

toxicological laboratory without the use of expensive, dedicated instruments.  

 

Based on Ingels et al. [22] and Damm et al. [24], combinations of TFAA, HFB, acetic anhydride and/or pyridine 

were evaluated to derivatize as many as possible of the above-mentioned polar low molecular weight 

molecules with toxicological relevance (Table 3.1).  
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Table 3.1 Evaluation of different derivatization reagents for the derivatization of various polar low molecular 

weight compounds.  

   GHB Gabapentin BHB 1,4-BD 1,2-BD DEG PG Vigabatrin 
d

er
iv

at
iz

a
ti

o
n

 r
ea

ge
n

ts
 

[TFAA + HFB] + + + - - + - + 

[(AcO)
2
O + pyridine] - - - + + + + - 

[TFAA + HFB + 

(AcO)
2
O + pyridine] 

NA NA NA NA NA NA NA NA 

[(AcO)
2
O + pyridine] & 

[HFB] 
+ + + + + + + + 

[(AcO)
2
O + HFB] - - - - - - - - 

-: not detected  +: detected  NA: not analyzed (not injected)  

 

Whereas a mix of TFAA and HFB could be used for the derivatization of DEG and analogues of gamma-

aminobutyric acid (including GHB, BHB, gabapentin and vigabatrin), acetic anhydride and pyridine could be 

used for the derivatization of the glycols. The simultaneous addition of TFAA, HFB, acetic anhydride and 

pyridine generated a product which could not be injected because of the generation of a dark clot (TFAA being 

the cause). Theoretically, a first derivatization with TFAA and HFB, followed by evaporation and then a second 

derivatization with acetic anhydride and pyridine, seems to be the best choice. However, since this would 

render the method more time-consuming and would be at the expense of the advantages of fast microwave-

assisted derivatization, we did not consider this as an option. Consequently, best results were obtained when 

first an acetylation reaction was performed using acetic anhydride and pyridine, followed by an alkylation step 

with HFB. Two separate reactions were needed as no adequate sensitivity was achieved when acetic anhydride, 

pyridine and HFB were simultaneously added. Although a silylation derivatization could be used as well, this 

derivatization reaction was not chosen as the injection of the excess of derivatization product contaminates the 

whole system and leads to in-situ derivatization of all injected compounds [46,47].  

 

We optimized the main parameters for derivatization, i.e. the time of derivatization and the amount of 

derivatization reagent. To this end, we derivatized our analytes with a derivatization mixture consisting of 

different amounts of acetic anhydride and pyridine. All these combinations were evaluated at different lenghts 

of derivatization time (60, 90, 120 and 180 s), as can be seen in Figure 3.3. Since no significant differences were 

observed between 50 and 60 µL of a mix of acetic anhydride and pyridine (1:1 ratio, i.e. 25 or 30 µL of each 

reagent), we selected the lowest amount (i.e. 50 µL). When comparing a 3:2 with a 1:1 ratio of acetic anhydride 

and pyridine, also here, no significant differences were observed. Finally, we chose an equal amount of both 

reagents. Although longer derivatization times led to higher signals, results became less reproducible as  

-because of pressure build-up- the plugs closing the test tubes tended to come off. 
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Figure 3.3 Influence of different derivatization times and different amounts of acetic anhydride and pyridine on 

the peak area of each analyte (n = 3). Data are presented as percentage of peak area of samples which were 

derivatized for 90 s with 25 µL of acetic anhydride and pyridine, followed by a second derivatization with 25 µL 

of heptafluorobutanol for 90 s. The condition finally chosen is highlighted in red. (A, E, I = 2 x 60 s; B, F, J = 2 x 

90 s; C, G, K = 2 x 120 s; D, H, L = 1 x 180 s, 1x 120 s; A, B, C, D = 30 µL acetic anhydride + 30 µL pyridine + 25 µL 

HFB; E, F, G, H = 25 µL acetic anhydride + 25 µL pyridine + 25 µL HFB; I, J, K, L = 30 µL acetic anhydride + 20 µL 

pyridine + 25 µL HFB) 

 

We also evaluated the influence of the amount of HFB, a derivatization reagent which is added to derivatize 

GHB, BHB, vigabatrin and gabapentin (Figure 3.4).  

 

 

Figure 3.4 Influence of four different amounts of heptafluorobutanol (A = 10 µL, B = 15 µL, C = 20 µL and D =  

25 µL) on the peak area of each analyte. Data are presented as percentage of normalized samples which are 

derivatized with 25 µL of heptafluorobutanol (n = 3). The condition finally chosen is highlighted in red. 
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For the anti-epileptics, no significant differences were observed between the largest amount of HFB, i.e. 25 µL, 

and the smallest amount of derivatization reagent, i.e. 10 µL. However, for BHB and especially for GHB, best 

results were obtained with 25 µL of HFB. Consequently, in our optimized procedure, the same amount of acetic 

anhydride, pyridine and HFB, i.e. 25 µL of each reagent, is added. It is worth noting that diols only had to be 

acetylated to improve their volatility. Consequently, the second derivatization step in our protocol is no added-

value for the glycols. Therefore, if one is not interested in GHB, BHB, vigabatrin or gabapentin, the second 

derivatization could be omitted. In that case, the sample preparation is even faster and also allows the 

detection of other glycols, like ethylene glycol. 

 

3.3.1.2 Final sample preparation 

The final optimized protocol is as follows: first a 6-mm disc is punched out of a 25-µL DBS. To this punch, 5 µL IS 

mix, containing 60 µg/mL GHB-D6 and 12 µg/mL gabapentin-D10, is added, followed by evaporation under 

nitrogen at 25°C for 10 min. Then, the punches are subjected to “microwave-assisted on-spot derivatization” by 

direct application of 25 µL acetic anhydride and 25 µL pyridine to the punches and microwave heating for 90 s, 

followed by a short-spin centrifugation at 4°C. Subsequently, a second microwave derivatization is performed 

for 90 s by adding 25 µL HFB, after which the samples are subjected to a short-spin centrifugation at 4°C. After 

evaporation under nitrogen, the spots are reconstituted in 100 µL ethyl acetate and centrifuged at room 

temperature for 5 min. Finally, one µL of the supernatant of this derivatized extract is injected into the GC-MS 

system.  

 

Noteworthy is that our derivatization step only takes 3 min (2 x 90 s), twice followed by a short-spin 

centrifugation step, whereas, without microwave assistance, derivatization times of 30 min are not unusual. 

Following the removal of the excess of derivatization reagent by evaporation, ethyl acetate was added to the 

samples. The latter sample preparation step takes about 10 min (5 min sonication + 5 min centrifugation). 

Conclusively, we have developed a fast sample preparation method for DBS (estimated time of sample 

preparation is about 15 min (time of evaporation not included)). 

 

3.3.2 Analytical parameters 

3.3.2.1 Optimization of injection solvent 

Ethyl acetate, hexane and toluene were tested as injection solvent. However, it has to be noted that the choice 

of injection solvent may have an influence on the GC temperature program as the start temperature should be 

20°C lower than the boiling point of the injection solvent. Consequently, the higher the boiling point, the higher 

the start temperature, the shorter the total run time. More specifically, the temperature program should start 

at 45, 60 and 90°C with respectively hexane, ethyl acetate and toluene. We observed that only ethyl acetate 



Chapter 3: Microwave-assisted on-spot derivatization of polar low molecular weight compounds 

 

  

77 

 

could be used as injection solvent as GHB and vigabatrin could not be detected when using hexane as injection 

solvent, whereas PG was not detectable if toluene was used. 

 

3.3.2.2 Optimization of injection temperature 

The injection temperature should allow vaporization of the analytes and avoid degradation of the compounds 

and/or tailing peaks. Therefore, injection temperatures of 200, 250 and 300°C were evaluated. As can be seen 

in Figure 3.5, similar results were obtained with an injection temperature of 200, 250 and 300°C. Eventually, we 

opted for an injection temperature of 250°C.  

 

 

Figure 3.5 Influence of three different injection temperatures (A = 200°C, B = 250°C and C = 300°C) on the peak 

area of each analyte. Data are presented as percentage of normalized samples which are injected with an 

injection temperature of 250°C (n = 3). The condition finally chosen is highlighted in red. 

 

3.3.2.3 Optimization of flow rate 

The flow rate corresponds to the speed of the carrier gas (i.e. helium) through the column and this may 

influence the resolution. Since different flow rates had no influence on the baseline separation, peak areas 

were compared to each other (Figure 3.6). Data are presented as percentage of peak areas obtained for 

samples analyzed at a flow rate of 1.1 mL/min. Flow rates of 1, 1.3 and 1.5 mL/min resulted in lower peak areas 

for GHB, whereas a flow rate of 1.3 mL/min resulted in lower peak areas for 1,4-BD. For PG and DEG, the higher 

the flow rate, the higher the peak areas. Finally, we chose a flow rate of 1.1 mL/min, although the differences 

with other flow rates were minimal.  
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Figure 3.6 Influence of different flow rates (A = 0.7 mL/min, B = 0.9 mL/min, C = 1 mL/min, D = 1.1 mL/min,  

E = 1.3 mL/min and F = 1.5 mL/min) on the peak area of each analyte. Data are presented as percentage of 

normalized samples with a flow rate of 1.1 mL/min (n = 3). The condition finally chosen is highlighted in red. 

 

3.3.2.4 Optimization of purge activation time 

The purge activation time is the time that the split line opens when using a splitless injection. Best results were 

obtained with a purge activation time of 120 s (Figure 3.7).  

 

 

Figure 3.7 Influence of different purge activation times (A = 45 s, B = 60 s, C = 75 s, D = 90 s and E = 120 s) on 

the peak area of each analyte. Data are presented as percentage of normalized samples with a purge activation 

time of 120 s (n = 3). The condition finally chosen is highlighted in red. 
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3.3.2.5 Optimization of pulsed splitless injection and pulse time 

We also evaluated the influence of an elevated pressure on the top of the column and the resulting sample 

transfer. We concluded that a higher increase of the pressure results in a shorter run. However, this gain in 

time is outweighted by the higher abundances obtained with a non-pulsed splitless injection, as can be seen in 

Figure 3.8.  

 

 

Figure 3.8 Influence of pulsed splitless injection and pulse time. (inset exemplifies the observed elution order, 

with respectively pulsed splitless injection (30 psi) (black color); pulsed splitless injection (25 psi) (red color); 

pulsed splitless injection (20 psi) (green color); non-pulsed splitless injection (blue color)) 

 

3.3.3 Validation 

3.3.3.1 Microwave calibration  

When monitoring the power of the microwave through time, a mean power of 602 ± 15 W was observed. The 

obtained values were plotted in a Shewhart graph (Figure 3.9) and the Westgard rules were applied. These 

rules were not broken. Consequently, the performance of the microwave was considered to be in-control.  
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Figure 3.9 Shewhart graph obtained when plotting the obtained values of the microwave power through time. 

The mean power ± SD (     ), the mean power ± 2 SD (     ) and the mean power ± 3 SD (     ) are displayed.  

 

3.3.3.2 Linearity, precision and accuracy  

Linearity was determined by constructing six-point calibration curves in duplicate on three non-consecutive 

days. In addition, blank and zero samples (blank samples spiked with IS) were injected. A representative 

chromatogram of a spiked blood sample at LLOQ level is given in Figure 3.10.  

 

Table 3.2 summarizes calibration and sensitivity data. Although the R2 values were in some cases below the 

preferred value of 0.99, a lack-of-fit test to evaluate the goodness of fit demonstrated that the calibration 

curves were linear. Additionally, we also applied the EMA guidelines for the evaluation of the calibration curve. 

These state that the target back-calculated concentrations of the calibration standards should be within 15% of 

the nominal value (20% at LLOQ and ULOQ) for at least 75% of calibration standards. This criterion was fulfilled 

for all compounds. The LLOQ of 10 µg/mL for GHB can be considered as a limitation of our procedure as the 

cut-off levels in ante-mortem blood are set at 10, 5 or 4 µg/mL, the lower values being applied most for 

samples taken from living subjects [48-51]. In case of doubt, i.e. GHB concentrations around the LLOQ, the 

original “on-spot derivatization” with TFAA and HFB using conventional heating, which offers a somewhat 

higher sensitivity with an LLOQ at 2 µg/mL, could be performed on a replicate DBS. For the anti-epileptics, our 

calibration ranges cover the therapeutic intervals of 2-20 and 5-25 µg/mL for gabapentin and vigabatrin, 

respectively. BHB concentrations lower than 50 µg/mL are considered as normal, whereas BHB concentrations 

higher than 250 µg/mL are considered as high and pathologically significant [52]. Our concentration range 

covers these cut-off levels. Also concerning 1,4-BD, our concentration range is in line with other quantification 

methods [53,54]. Our method is also appropriate in case of intoxications with DEG and PG since intoxications 

with these glycols are in the high-µg/mL range.  
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Figure 3.10 Representative chromatogram of (a) a DBS spiked with IS and (b) a DBS spiked with all studied 

compounds at LLOQ level.  

 

An overview of accuracy, within-day and between-day precision data is given in Table 3.3. For the analytes for 

which deuterated analogues were used, being GHB and gabapentin, accuracy and precision criteria were met 

for all QC levels. For the other analytes, accuracy and precision were also evaluated although the use of stable 

labeled analogues as IS is recommended for quantification in real practice. While within-day precision criteria 

were met in all instances, slight exceedances of between-day precision criteria (> 15% but still below 20%) were 

seen for 1,4- and 1,2-BD, DEG, PG and vigabatrin. For both BHB and DEG, the bias was slightly above the 

acceptance criteria for two QC levels. For 1,4- and 1,2-BD, as well as for PG, the bias exceeded 20%. Hence, we 

consider the procedure semi-quantitative for these analytes.  
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Table 3.2 Calibration and sensitivity data for the determination of GHB, gabapentin, BHB, 1,4-BD, 1,2-BD, DEG, 

PG and vigabatrin in DBS using GC-MS (n = 3x2). 

 Slope 
mean ± SD 

[95% CI] 

Intercept 
mean ± SD 

[95% CI] 

R2 
Range 

(µg/mL) 
LLOQ 

(µg/mL) 
Weighting  

factor 

GHB 0.033 ± 0.002 
[0.032-0.035] 

0.067 ± 0.058 
[0.020-0.113] 

0.993 10-100 10 1/x 

Gabapentin 0.226 ± 0.008 
[0.220-0.232] 

0.009 ± 0.024 
[-0.010-0.028] 

0.981 1-30 1 1/x 

BHB 0.074 ± 0.004 
[0.071-0.078] 

-0.018 ± 0.075 
[-0.078-0.042] 

0.993 5-300 5 1/x 

1,4-BD 0.065 ± 0.005 
[0.060-0.069] 

-0.011 ± 0.096 
[-0.088-0.066] 

0.986 5-200 5 1/x 

1,2-BD 0.112 ± 0.010 
[0.104-0.120] 

-0.074 ± 0.103 
[-0.156-0.008] 

0.986 5-200 5 1/x 
 

DEG 2.212 ± 0.148 
[2.093-2.330] 

-1.921 ± 1.584 
[-3.188- -0.654] 

0.988 2.5-100 2.5 1/x 

PG 
 

0.068 ± 0.006 
[0.063-0.073] 

-0.100 ± 0.055 
[-0.144- -0.056] 

0.979 5-200 5 1/x 

Vigabatrin 0.062 ± 0.006 
[0.058-0.067] 

-0.029 ± 0.036 
[-0.058- -0.000] 

0.984 5-30 5 1/x 

 

Table 3.3 Accuracy, intra- and interbatch precision for QCs at four concentration levels (n = 3x2). Exceedances 

of the criteria are set in italic. 

 
 GHB Gabapentin BHB 1,4-BD 1,2-BD DEG PG Vigabatrin 

 
 1/x 1/x 1/x 1/x 1/x 1/x 1/x 1/x 

W
it

h
in

-d
ay

 
p

re
ci

si
o

n
 (

%
R

SD
) LLOQ 4.45 10.20 19.30 5.47 0.16 11.52 6.63 13.47 

L QC 7.22 4.88 6.79 11.06 5.22 8.04 5.25 5.50 

M QC 4.59 4.99 8.10 8.03 11.16 5.97 12.19 9.31 

H QC 8.93 9.95 11.58 3.46 5.88 4.11 5.97 12.33 

B
et

w
ee

n
- 

d
ay

 
p

re
ci

si
o

n
 (

%
R

SD
) LLOQ 15.71 11.88 19.30 15.69 0.74 15.97 6.63 13.47 

L QC 12.53 6.88 9.00 14.40 16.53 16.83 18.46 16.11 

M QC 4.93 6.93 9.92 16.77 11.16 14.67 12.19 9.31 

H QC 8.93 8.86 11.58 10.01 7.95 9.05 8.09 12.33 

A
cc

u
ra

cy
 

(%
 b

ia
s)

 

LLOQ 19.44 -6.94 2.25 15.96 15.37 20.58 19.89 -8.19 

L QC 2.04 -6.02 18.41 22.49 32.14 0.33 25.95 -5.05 

M QC 5.88 7.99 6.54 9.50 16.40 18.40 10.13 -5.32 

H QC 6.41 3.73 16.36 14.71 17.86 9.18 13.21 -9.81 
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3.3.3.3 Selectivity, carry-over and dilution integrity 

No interfering peaks or carry-over were observed. For the evaluation of the dilution integrity, we analyzed 6 

DBS which were prepared from 25 µL venous blood which was spiked with analyte concentrations at twice the 

ULOQ level. For all analytes, accuracy and precision were within the acceptance criteria of 15%, as can be seen 

in Table 3.4.  

Table 3.4 Accuracy and precision of samples which were diluted 4-fold. 

 Dilution integrity (n = 6) 

 Accuracy  
(% bias) 

Precision  
(% CV) 

GHB *  12.29 3.64 

Gabapentin -4.93 4.88 

BHB 8.18 9.00 
1,4-BD -6.79 6.63 

1,2-BD -3.35 9.96 

DEG 10.26 13.74 

PG 9.69 7.51 

Vigabatrin 9.02 14.59 

* n = 5 

 

3.3.3.4 Stability 

Stock solutions were stable for at least one week at -20°C. Three freeze-thaw cycles did also not affect the 

stock solution. GHB and gabapentin were found to be stable in DBS stored at room temperature for at least 84 

days, with measured concentrations not deviating more than 7.4 and 4.9% of the concentrations measured at 

time point zero for GHB and gabapentin, respectively. The other analytes were also found to be stable for an 

extended period of time in DBS stored at room temperature.  

 

3.3.3.5 DBS-specific parameters 

For the evaluation of the Hct effect, we prepared blood samples with a low (0.30), medium (0.40) and high Hct 

(0.49). To evaluate the volume effect, different volumes of blood (25, 35 and 50 µL) were spotted onto the 

Whatman filter paper. For the effect of both Hct and volume, the results obtained from 25-µL DBS with a Hct of 

0.40 were taken as a reference. For gabapentin, both a Hct and volume effect were observed, i.e. we observed 

lower concentrations at the low Hct level and higher concentrations at the higher Hct and a trend of increasing 

concentrations with increased blood volumes (Figure 3.11). For GHB, a volume effect was seen for the low QC 

levels at the high Hct level, whereas the Hct effect was less pronounced (Figure 3.11). These results are in line 

with the experiments performed during the validation of our original GHB method utilizing “on-spot 

derivatization”, i.e. in that method, we observed little or no influence in the Hct range of 0.39 to 0.51 and we 
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concluded that the best blood volume spotted was between 20 and 35 µL since higher blood volumes result in 

an overload of the filter paper when using a calibration line based upon 25-µL DBS [44]. The influence of 

volume and Hct did not show a pronounced trend for the other analytes (see Figure 3.11). The impact of the 

punch location, also a DBS-specific parameter, was not evaluated since there is no true peripheral localization 

when taking a 6-mm disc from a 25-µL DBS.  

 

3.3.4 Application  

In a first application, retrospective analysis of DBS from patients with a suspected GHB/GBL intoxication was 

performed. These DBS samples (both vDBS and cDBS) were collected to evaluate the correlation between 

venous and capillary GHB concentrations [55 and Chapter 2], using a validated GC-MS method for the 

quantification of GHB in DBS [44]. When analyzing a subset of these samples (n = 10) with our new method, we 

obtained similar GHB concentrations, with a mean difference of 1.21%. Table 3.5 gives an overview of the GHB 

concentrations measured in the DBS following the method of Ingels et al. [44] (“on-spot derivatization”) and 

those obtained using “microwave-assisted on-spot derivatization”. This observation confirms the applicability 

of our method in cases of (suspected) GHB intoxication. Our method is even faster than the original “on-spot 

derivatization” method by utilizing a microwave instead of a ‘classic’ heating block. In addition, our method 

also allows the simultaneous detection of other polar low molecular weight molecules.  

 

In a second application, gabapentin concentrations were measured in treated volunteers. Of these volunteers, 

paired cDBS and serum samples were obtained at different time points. We quantified these cDBS 

concentrations, whereas the obtained serum concentrations were measured using an independent method 

[56]. The pharmacokinetic profile obtained from both fingerprick blood and serum of one volunteer is given in 

Figure 3.12. These measurements served as the basis for a larger study evaluating the correlation between 

serum and blood concentrations and to investigate the correlation between our method and an independent 

method (see Chapter 4). Our observation that DBS concentrations are somewhat lower than those in serum is 

in line with the expectation: although gabapentin is assumed to be evenly distributed between plasma/serum 

and blood, the blood-to-plasma(serum) ratio is slightly lower than 1 due to the presence of solid constituents in 

blood. Additionally, this study demonstrated the ease of DBS sampling: whereas a phlebotomist was needed to 

obtain serum samples, DBS sampling does not require trained staff and can be performed by the patient 

himself, even at home.  
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Figure 3.11 Influence of both the Hct and the blood volume spotted on GHB, gabapentin, BHB, 1,4-BD, 1,2-BD, 

DEG, PG and vigabatrin concentrations. Data are presented as percentage of normalized samples with a Hct of 

0.40 and a spotted blood volume of 25 µL. The ± 15% deviation limits are indicated by dotted lines.  
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Table 3.5 GHB concentrations measured in cDBS and vDBS of patients with a suspected GHB intoxication using 

our method versus the concentrations obtained following the method of Ingels et al. [44]. 

  GHB concentration (µg/mL) 

  “microwave-assisted on-spot derivatization” “on-spot derivatization” 

1 vDBS 186.0 167.5 

2 vDBS 67.1 75.2 

3 vDBS 272.6 271.4 

4 vDBS 43.6 48.1 

5 vDBS 229.2 191.6 

6 cDBS 242.2 233.7 

7 cDBS 162.8 151.4 

8 cDBS 41.1 41.4 

9 cDBS 172.0 187.1 

10 cDBS 206.1 200.3 

 

 

 

Figure 3.12 Pharmacokinetic profile of a volunteer who was administered gabapentin. This profile was obtained 

by analyzing cDBS and serum samples which were collected at different time points. 

 

3.4 Conclusion 

We have developed and validated a GC-MS method for the determination of GHB and gabapentin in DBS, 

utilizing “microwave-assisted on-spot derivatization”. This approach combines microwave derivatization with 

direct application of the derivatization reagents onto the DBS (“on-spot derivatization”). Consequently, the 

derivatization step should no longer be experienced as a laborious and time-consuming sample preparation 

step. To the best of our knowledge, we are the first using this direct derivatization technique.  
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In our method, the use of DBS could be considered as a sample preparation strategy. However, many other 

advantages have been associated with DBS, amongst which convenient storage and transport, reduced risk of 

infection, easy sampling, and so on. Another non-negligible advantage of our method is that no dedicated 

equipment is needed as the standard GC-MS configuration utilized in routine forensic toxicology, could be 

used. 

 

Our method proved to be reliable, fast and applicable in routine toxicology, as exemplified by the analysis of 

gabapentin- and GHB-positive samples. Additionally, our method also allows the detection of other polar low 

molecular weight compounds with relevance in the forensic and clinical toxicological context, including 

vigabatrin, 1,4-BD, BHB, DEG, PG and 1,2-BD. 
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Abstract 

We evaluated the applicability of a validated GC-MS method for the determination of gabapentin in dried 

blood spots (DBS). Important for the acceptance of DBS sampling as an alternative sampling strategy is the 

possibility to base solid conclusions on the quantification. Therefore, bridging studies -studies in which the 

correlation between both DBS and a reference matrix (e.g. serum) is evaluated statistically- need to be 

conducted. To this end, a comparative study was set up to quantify gabapentin in both blood (DBS) and serum 

samples. Statistically significant differences between DBS and serum concentrations were found (p < 0.001). A 

mean blood-to-serum ratio of 0.85 was observed, which is in line with expectations. Calculated serum 

concentrations (obtained by dividing the DBS concentrations by 0.85) demonstrated a good correlation with 

measured serum concentrations, with 87% of samples fulfilling the criterion for incurred sample reanalysis. 

Furthermore, our data indicate a good correlation between capillary and venous concentrations. Conclusively, 

this study demonstrated that DBS are a valid alternative to serum for the determination of gabapentin.  
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4.1 Introduction 

Gabapentin, an anticonvulsant structurally related to the inhibitory neurotransmitter gamma-amino butyric 

acid, is used for the treatment of epilepsy and neuropathic pain. Monitoring gabapentin blood concentrations 

may be relevant in assessing compliance and in avoiding potential toxicity. Furthermore, the illicit use of 

gabapentin as street drug also increases. E.g. in the UK, there is a significant rise in prescribing of gabapentin, 

especially among opiate users and prisoners [1]. These populations often mix gabapentin with other 

depressants, resulting in life-threatening effects.  

 

Since its introduction in neonatal screening in the 1960s by Guthrie and Susi [2], dried blood spot (DBS) 

sampling has increasingly received interest as an alternative sampling strategy and has been applied in various 

disciplines, including toxicology, phenotyping and therapeutic drug monitoring [3-7]. Many advantages have 

been associated with this minimally invasive sampling technique, amongst which easy transport and storage of 

the samples, simplification of sample preparation procedures and automation of sample processing. Moreover, 

the dried matrix may improve compound stability and reduce the risk of infection [3,8-11]. Other biological 

matrices have also been collected as a spot on (cellulose) filter paper, e.g. urine and plasma. The latter has 

already been used for the quantification of gabapentin [12,13]. However, these dried plasma spots were 

generated by pipetting plasma which was prepared by centrifugation of whole blood, obtained via 

venipuncture. Consequently, these methods are less feasible for sampling at home. Fingerprick sampling is a 

more convenient technique in a real-life setting and can be performed by non-experienced individuals. To the 

best of our knowledge, we are the first to describe the application of a procedure to quantify gabapentin in 

DBS obtained by fingerprick sampling. In this method, we applied gas chromatography coupled to mass 

spectrometry (GC-MS), following “microwave-assisted on-spot derivatization”. This new derivatization strategy 

simplifies and minimizes sample preparation by combining fast microwave-assisted derivatization with direct 

“on-spot derivatization”. Additionally, no dedicated equipment is needed since a standard GC-MS 

configuration, present in most routine toxicological and clinical laboratories, is used. We also opted for a GC-

MS system since some laboratories in emerging countries cannot afford buying or maintaining expensive LC-MS 

equipment whereas they may have a GC-MS system at their disposal.  

 

When setting up a DBS-based method, several parameters may complicate the interpretation of DBS results. 

Besides analytical issues like the impact of hematocrit (Hct) on DBS-based quantitation, an important factor 

that needs to be taken into consideration is the fact that therapeutic ranges for drugs are mostly based on 

plasma and serum concentrations. Consequently, a conversion factor is needed for the adequate interpretation 

of these blood concentrations, and thus also of gabapentin. Furthermore, for the acceptance and 

implementation of capillary DBS (cDBS) as an alternative (minimally invasive) sampling strategy in a routine 

laboratory, the execution of bridging studies is essential [10,14-16]. Bridging studies are studies in which 

concentrations determined in DBS are compared to those obtained in a reference matrix, e.g. serum. To this 

end, we set up a comparative study to investigate how serum and blood (DBS) concentrations are correlated.  
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4.2 Experimental 

4.2.1 Chemical reagents and stock solutions 

Gabapentin and its deuterated analogue gabapentin-D10 (available as a 100 µg/mL solution in methanol) were 

purchased from Sigma-Aldrich (Diegem, Belgium), as well as the derivatization reagents acetic anhydride, 

pyridine and heptafluorobutanol. Suprasolve ethyl acetate was delivered by Merck (Darmstadt, Germany).  

 

A 10 mg/mL gabapentin stock solution in methanol was used to prepare calibration standards of 1, 5, 10, 17.5, 

22.5 and 30 µg/mL in venous whole blood. DBS were prepared by spotting 25 µL of this spiked blood onto 

Whatman 903 filter paper (GE Healthcare, Dassel, Germany). Quality control samples (QCs) were prepared in a 

similar way from an independent stock solution.  

 

4.2.2 Study set-up and sample collection 

A comparative study was set up to determine gabapentin concentrations in both cDBS and serum samples. This 

study was approved by the Ethics Committee of Ghent University Hospital (NCT01821235). Samples from 15 

healthy volunteers aged between 18 and 55 years and with a Hct between 0.37 and 0.48 were included. These 

subjects received either a single oral dose of 800 mg Neurontin® (Pfizer, Freiburg, Germany) or 800 mg 

Gabasandoz® (Salutas Pharma GmbH, Barleben, Germany). Patients were hospitalized up to 12 hours after 

administration, followed by a visit to the clinical research unit 24 hours after dosing. Prior to sampling, all 

volunteers provided informed consent. At 7 time points (predose, 2, 4, 6, 8, 12 and 24 hours postdose), paired 

serum samples and cDBS were collected. cDBS were generated by (non-volumetric) application of a drop of 

blood onto Whatman 903 filter paper following a fingerprick with an automated lancet. These spots were then 

dried for at least 2 hours before storage at room temperature in a plastic bag with desiccant until analysis. 

Assistance was provided during DBS sampling to ensure correct sampling (e.g. the first drop of blood was wiped 

off (because of the presence of tissue fluid), only one drop of blood was used for every spot and direct contact 

between the fingertip and the DBS card was avoided). Furthermore, some volunteers were drowsy after 

gabapentin administration and were not in a condition to prepare DBS themselves. At the same time, blood 

was taken via a cannula and serum was prepared within 1 hour after blood sampling. Serum samples were 

stored at -80°C and quantified in the Department of Clinical Pharmacology and Pharmacy of the VU University 

Medical Center (Amsterdam, The Netherlands) according to a validated UPLC-MS/MS method [17]. 

 

4.2.3 DBS analysis 

The DBS were analyzed utilizing the validated GC-MS procedure described in Chapter 3 [18]. This method can 

be summarized as follows: first, a central 6-mm disc was taken from the dried spot. Then, after adding the 

internal standard (5 µL of 12 µg/mL gabapentin-D10), the punches were subjected to “microwave-assisted on-
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spot derivatization” by direct application of 25 µL acetic anhydride and 25 µL pyridine and microwave heating 

at maximum power for 90 s, followed by a second microwave-assisted derivatization for 90 s with 25 µL 

heptafluorobutanol. After every derivatization step, the samples were subjected to a short-spin centrifugation 

step at 4°C. Following evaporation under nitrogen at 25°C, 100 µL ethyl acetate was added to the samples. 

Finally, one µL of this derivatized extract was injected into an Agilent 6890 GC system coupled to a 5973 MS 

(Agilent Technologies, Avondale, PA, USA). Chromatographic separation was achieved on a 30 m x 0.25 mm i.d. 

x 0.25 µm Agilent HP-5MS column. The injection temperature was set at 250°C, and a splitless injection was 

performed with a purge activation time of 120 s. The initial oven temperature was set at 60°C, which was held 

for 2 minutes. Then, the temperature was ramped at 8°C/min to 110°C, raised 30°C/min until 230°C, followed 

by an increase of 50°C/min to 300°C, which was held for 2 minutes. High-purity helium was used as the carrier 

gas with a constant flow rate of 1.1 mL/min. The transfer line temperature, ion source temperature and MS 

quadrupole temperature were set at 300, 230 and 150°C, respectively. Quantification of gabapentin and 

gabapentin-D10 was performed in SIM mode using m/z 153, 167 and 195 for derivatized gabapentin and 163, 

177 and 205 for derivatized gabapentin-D10. Quantifier ions are underscored.  

 

This method was validated based upon the Food and Drug Administration (FDA) and European Medicines 

Agency (EMA) guidelines for bioanalytical method validation as described in subsection 3.2.6.2 [19,20]. 

Calibration lines were linear between 1 and 30 µg/mL, applying 1/x weighted linear regression. Within-day and 

between-day precision (% RSD) and accuracy (% bias), evaluated at 4 different QC levels (LLOQ, low, medium 

and high level), were below 11, 12 and 8%, respectively, thereby meeting pre-set acceptance criteria. No 

interferences or carry-over were observed. Gabapentin was found to be stable in the DBS stored for at least 84 

days at room temperature. Matrix effects and recovery could not be assessed, given the nature of the utilized 

approach (“on-spot derivatization”). The use of a stable labeled internal standard prior to derivatization allows 

to compensate for variations that may occur throughout the procedure. DBS-specific parameters may also have 

an impact on the analytical DBS result when starting from partial-spot punches [9]. Therefore, the impact of the 

Hct in a range which covers the Hct values of our study population was evaluated. Although a Hct effect was 

observed in the 0.30-0.49 Hct range, % bias remained within ± 15% of the concentrations of the normalized 

sample for the low QC level, a concentration close to the concentrations measured in the participants of this 

study. When evaluating the impact of different spotted blood volumes (i.e. 25, 35 vs. 50 µL), increased 

concentrations with increasing blood volumes were observed. The influence of even smaller blood volumes 

was not evaluated as these spots are too small to obtain a 6-mm punch [18]. For the evaluation of incurred 

sample reanalysis, 66 cDBS were re-analyzed after a storage of 141 days at room temperature. The EMA 

criterion for incurred sample reanalysis, which states that the percent difference between the initial 

concentration and the concentration measured during the repeat analysis should not be greater than 20% of 

their mean for at least 67% of the repeats, was fulfilled as for 80% of the re-analyzed cDBS, the initial analysis 

and the concentration obtained by reanalysis were within 20% of their mean. 
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4.2.4 Data analysis 

To evaluate the correlation between gabapentin concentrations in different biological matrices, a paired 

sample T-test was performed using Microsoft Excel® 2010 (Microsoft, Redmond, WA, USA). MedCalc® 

(MedCalc software bvba, Ostend, Belgium) was used to calculate the Pearson’s correlation coefficient (with p-

value), and to perform Passing-Bablok and Bland-Altman analyses. 

 

The correlation coefficient measures the strength and direction of a relationship between two variables. A p-

value ≤ 0.05 is considered statistically significant. Passing-Bablok and Bland-Altman analyses were performed to 

evaluate the correlation between the gabapentin concentrations in both matrices (i.e. blood vs. serum 

concentrations).  

 

4.3 Results and discussion 

Of the 105 paired samples, 38 cDBS were excluded: 3 cDBS were too small (< 6-mm diameter), while the other 

spots were excluded because their gabapentin concentration was below the LLOQ (i.e. < 1 µg/mL). A detailed 

overview of the obtained DBS concentrations is given in Table 4.1. 

 

Table 4.1 Overview of the DBS concentrations at different time points. 

 

When plotting the DBS vs. the serum concentrations (Figure 4.1), the blood (DBS) concentrations were found to 

be significantly lower than the serum concentrations (p < 0.001). This was in line with our expectation: 

gabapentin has been reported to freely enter red blood cells without binding to cellular or plasma proteins. 

Consequently, an equal blood-to-plasma ratio is expected [21]. However, when taking into account the fraction 

of the solid constituents in blood, the blood concentration is expected to lie approximately 15% lower than the 

plasma/serum concentrations [7,22,23]. We indeed found a mean blood-to-serum ratio of 0.85 ± 0.12, meaning 

that concentrations in DBS are about 85% of those found in serum. Consequently, serum concentrations can be 

calculated from DBS concentrations as follows: [serum] = [DBS]/0.85.  

 

 Pre-
dose 

2 h post-
dose 

4 h post-
dose 

6 h post-
dose 

8 h post-
dose 

12 h post-
dose 

24 h post-
dose 

Number of samples 
included 

 
0 

 
14 

 
15 

 
13 

 
15 

 
10 

 
0 

Number of samples 
excluded: 
< LLOQ 
< 6-mm 

 
 
14 
1 

 
 
0 
1 

 
 
0 
0 

 
 
1 
1 

 
 
0 
0 

 
 
5 
0 

 
 
15 
0 

Concentration range 
(µg/mL) 

 
/ 

 
2.30-6.10 

 
1.84-5.52 

 
1.92-4.19 

 
1.52-4.38 

 
1.49-2.97 

 
/ 

Median concentration 
(µg/mL) 

 
/ 

 
3.50 

 
3.49 

 
3.02 

 
2.38 

 
1.88 

 
/ 
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Figure 4.1 Passing-Bablok regression analysis plotting the DBS concentrations against the serum 

concentrations. The slope and intercept of the regression line (solid line) are calculated with their 95% 

confidence interval (dashed line). The dotted line corresponds to the identity line. 

 

Figure 4.2 shows a Passing-Bablok scatter plot in which the serum concentrations calculated from DBS analysis 

are plotted vs. measured serum concentrations. A good overall correlation was observed, although 1 was just 

not included in the 95% confidence interval of the slope. Bland-Altman analysis revealed a mean difference of 

only 0.12 µg/mL, with the 0 value included in the 95% confidence interval (Figure 4.3). This observation was 

confirmed by the Pearson’s correlation coefficient (r = 0.9353; p < 0.0001), demonstrating a strong correlation 

between the measured serum concentrations and the serum concentrations based on DBS results.  

 

Importantly, these differences may also be dependent on the sampling time, as exemplified for acetaminophen 

by Mohammed et al. [24]. We therefore plotted the % difference between the calculated and measured serum 

concentrations vs. the sampling time (Figure 4.4). This revealed that the differences between both 

concentrations were randomly distributed around 0, with no indication of a time-dependent effect.  

 

Another important factor that needs to be kept in mind is that the serum samples were obtained following 

traditional blood sampling by venipuncture, whereas the blood samples were collected by a capillary sampling 

technique using an automated lancet. cDBS-blood differences have been described for e.g. caffeine, 

acetaminophen, artemesinin, ethanol, lignocaine,… [7,24-26]. Although the set-up of this study did not really 

intend to compare venous and capillary blood concentrations, the data do suggest that -given the good 

correlation between the measured serum concentrations (obtained by venous sampling) and the calculated 

serum concentrations (from DBS obtained by capillary sampling)- there are no considerable capillary-venous 

differences.  
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Figure 4.2 Passing-Bablok regression analysis plotting the serum concentrations calculated from the blood 

concentrations against the measured serum concentrations. The slope and intercept of the regression line 

(solid line) are calculated with their 95% confidence interval (dashed line). The dotted line corresponds to the 

identity line. 

 

 

Figure 4.3 Bland-Altman analysis plotting the differences between the serum concentrations calculated from 

the blood concentrations and the measured concentrations (y-axis) against the average of both measurements 

(x-axis). The mean difference and the limits of agreements (set to 1.96 SD) are also indicated with its 95% 

confidence interval. 
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Figure 4.4 % difference between the calculated and measured serum concentrations vs. the time of sampling. 

 

As described in subsection 4.2.3, the EMA guidelines for incurred sample reanalysis were fulfilled [20]. 

Although these criteria are actually intended for reanalysis of the same samples, this guideline was also applied 

for the evaluation of the measured and the calculated serum concentrations. Again, this criterion was fulfilled 

as for more than two-thirds (i.e. 87%) of the samples the two results lay within 20% of their mean. This 

requirement was also fulfilled when comparing serum concentrations obtained with both the LC- and the GC-

method, excluding that the observed differences between blood and serum concentrations are caused by a 

bias between both methods. 

 

4.4 Conclusion 

We successfully applied a validated GC-MS method for the determination of gabapentin in DBS in a real-life 

setting. Based upon the observation that a mean blood-to-serum ratio of 0.85 was obtained, we established a 

conversion factor to allow interpretation of gabapentin blood concentrations since reference intervals 

concerning therapeutic and toxic gabapentin concentrations are only available in plasma/serum. Taking this 

conversion factor into consideration, serum concentrations could be calculated from DBS concentrations. By 

doing so, a good correlation was found between measured serum concentrations and serum concentrations 

calculated from DBS concentrations. Additionally, our data suggest that there is a good correlation between 

capillary and venous gabapentin concentrations. 
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Abstract  

Beta-hydroxybutyric acid (BHB) is a ketone body which is generated from fatty acids as an alternative energy 

source when glucose is not available. Determination of this compound may be relevant in the forensic 

laboratory as ketoacidosis -an elevated level of ketone bodies- may contribute to the cause of death. In this 

study, we aimed at determining the relevance of routinely implementing BHB analysis in the forensic 

toxicological laboratory, as BHB analysis typically requires an additional workload. We therefore performed an 

unbiased retrospective analysis of BHB in 599 cases, comprising 553 blood, 232 urine and 62 vitreous humour 

samples. Cases with BHB concentrations above 100 µg/mL (in blood, urine and/or vitreous humour) were 

invariably associated with elevated levels of acetone, another ketone body, the detection of which is already 

implemented in most forensic laboratories using the gas chromatographic procedure for ethanol 

quantification. Our retrospective analysis did not reveal any positive case that had been missed initially and 

confirms that BHB analysis can be limited to acetone positive cases.  
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5.1 Introduction  

Ketoacidosis is a metabolic disturbance caused by an elevated blood level of the ketone bodies acetoacetate, 

acetone and beta-hydroxybutyric acid (BHB). These compounds are generated by the liver when there is 

insufficient glucose available. Under these circumstances, lipids -stored as triglycerides in fatty tissue- are an 

alternative energy source. During lipolysis, triglycerides are degraded into fatty acids, resulting in the 

generation of acetyl-CoA. This co-enzyme is converted into acetoacetate, a precursor molecule of BHB and 

acetone. The latter compound is generated by decarboxylation of acetoacetate and is eliminated by urine and 

breath, resulting in a typical sweet odor of breath and urine. Since acetone may be reduced to isopropanol, the 

latter may also be found in case of ketoacidosis. On the other hand, acetoacetate may also be converted 

enzymatically into BHB. This small low molecular weight compound is readily water-soluble and can easily cross 

the blood brain barrier. There, BHB is converted into acetyl-CoA, which is via the Krebs cycle converted to ATP, 

an energy-carrying molecule. Consequently, high levels of ketone bodies indicate deficient sugar metabolism 

which may be caused by uncontrolled diabetes. The use of atypical antipsychotics may also induce 

ketoacidosis. Other sources of ketoacidosis are chronic alcoholism, starvation, hypothermia or infection [1]. In 

conclusion, determination of ketone bodies is relevant in a forensic context as they may elucidate pathological 

findings or the cause of death. Yet, there remains a lot of uncertainty about the interpretation of 

(concentrations of) ketone bodies. E.g. it is unclear if ketone bodies (i.e. acetone, acetoacetate and/or BHB) 

should routinely be measured in all cases or if measurement can be limited to some specific cases. It is also 

unclear if all ketone bodies should be measured or if the determination of one ketone body suffices. Up till 

now, acetone is already co-detected routinely in blood and/or urine using a standard ethanol quantification 

procedure via headspace sampling-gas chromatography-flame ionization detection (HS-GC-FID). Even a simple 

dipstick test readily sheds some light on the extent of positivity of acetone and acetoacetate in urine. On the 

other hand, BHB analysis is not performed routinely. Mostly, BHB is determined when there is a suspicion of 

ketoacidosis, based on background information. However, sometimes there is no access to background 

information. Additionally, the presence of alcoholism and/or diabetes -two important factors causing 

ketoacidosis- is not always known. There is also some controversy about the preferred biological matrix. E.g. 

can vitreous humour be considered as an alternative for blood? 

 

In this Chapter, we evaluate the relevance of routine implementation of BHB analysis in a forensic toxicological 

laboratory, taking into account that a dedicated analysis is required for the quantification of this ketone body, 

as this analyte is typically not covered by other routinely applied liquid chromatography (LC) or GC-based 

general screening procedures. To this end, we applied a recently developed dried spot-based method to 

perform retrospective BHB analysis of a large number of samples which were received for forensic toxicological 

analysis. Noteworthy is that in this retrospective analysis we did not select samples based upon background 

information (e.g. known diabetic or alcoholic) and earlier obtained toxicological results.  
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5.2 Materials and methods 

5.2.1 Chemicals and stock solutions 

Heptafluorobutanol, acetic anhydride, pyridine and the sodium salt of BHB were provided by Sigma-Aldrich 

(Diegem, Belgium). Suprasolve ethyl acetate and methanol were obtained from Merck (Darmstadt, Germany). 

Deuterated GHB (GHB-D6) was used as internal standard (IS) and provided by Lipomed (Arlesheim, 

Switzerland). 

 

A BHB stock solution was prepared by dissolving 50 mg BHB in one mL of methanol. This stock solution was 

diluted and used to prepare calibration standards of 5, 15, 25, 50, 100 and 300 µg/mL. Quality control samples 

(QCs) of 65, 125 and 250 µg/mL were prepared from an independent stock solution. For the IS, we made a  

50 µg/mL GHB-D6 solution in methanol. All solutions were stored at -20°C.  

 

5.2.2 Samples 

We performed retrospective BHB analysis of routine samples -mostly post-mortem samples- which were 

received for forensic toxicological analysis in the Laboratory of Toxicology of Ghent University and stored at  

-20°C. Since BHB has been found to be stable in post-mortem samples [2], the age of the samples was not an 

issue. All available samples were analyzed, irrespective of background information and earlier obtained 

(toxicological) results. Finally, we had access to 599 cases, comprising 553 blood samples, 232 urine samples 

and 62 vitreous humour samples. Of these samples, dried matrix spots were prepared by pipetting 15 µL of 

biofluid onto a 7-mm pre-punched disc of Whatman 903 filter paper. These spots were dried for at least 2 

hours and stored at room temperature in a zip-closure plastic bag with desiccant before analysis. Acetone and 

isopropanol were qualitatively assessed in the procedure for routine ethanol quantification (ISO/IEC 17025 

accredited), applied at the day of arrival using HS-GC-FID. 

 

5.2.3 BHB analysis 

For the quantification of BHB, the GC coupled to mass spectrometry (GC-MS) method described in Chapter 3 

was slightly adapted [3]. This adaptation consisted of using 7-mm pre-punched discs, onto which a fixed 

volume of 15 µL biofluid was applied, rather than using 6-mm partial punches from a dried blood spot (DBS). 

The protocol used can be summarized as follows: first, a fixed volume of 15 µL of blood, urine or vitreous 

humour is spotted onto a 7-mm pre-punched disc of Whatman 903 filter paper. After adding 5 µL IS (50 µg/mL 

GHB-D6 in methanol) to the dried spots, the punches are subjected to “microwave-assisted on-spot 

derivatization”, as described in subsection 3.3.1.2 [3]. Briefly, derivatization is achieved by direct application of 

25 µL acetic anhydride and 25 µL pyridine onto the spots and microwave heating for 90 s at maximum power, 

followed by a second derivatization for 90 s at maximum power with 25 µL heptafluorobutanol. Following 
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evaporation under nitrogen, 100 µL of ethyl acetate was added to the samples. Finally, one µL of the 

derivatized extract is injected into an Agilent 6890 GC coupled to a 5973 MS system. Chromatographic 

separation is achieved on a 30 m x 0.25 mm i.d. x 0.25 µm Agilent HP-5MS column. Helium is used as carrier gas 

with a flow rate of 1.1 mL/min. A splitless injection is chosen. The injection temperature is set at 250°C. The 

initial oven temperature is 60°C, which is held for 2 minutes. Then, the temperature ramped at 8°C/min to 

110°C, raised 30°C/min until 230°C, followed by an increase of 50°C/min to 300°C, which is held for 2 minutes. 

The transfer line temperature, MS ion source temperature and MS quadrupole temperature are set at 300, 230 

and 150°C, respectively. Quantification of BHB and GHB-D6 is performed in SIM mode using m/z 227, 268 and 

285 for BHB and 231, 245, 273 and 291 for GHB-D6. Quantifier ions are underscored.  

 

Validation of the procedure starting from a 6-mm disc of a 25-µL DBS prepared from fresh whole blood [3] 

encompassed the following (see subsections 3.3.3.2, 3.3.3.3 and 3.3.3.4): calibration lines were linear over the 

5-300 µg/mL concentration range, applying a 1/x weighted linear regression. Within-day and between-day 

precision criteria (< 20% at LLOQ, < 15% at 3 other QC levels) were fulfilled for all QC levels, whereas accuracy 

was slightly above the acceptance criterion for two QC levels, i.e. > 15% but still below 20%. No carry-over was 

observed following injection of the highest concentration of the calibration curve. Samples could be diluted  

4-fold without influencing precision and accuracy. Stability studies revealed no significant alteration of BHB 

concentration in DBS which were stored in a zip-closure plastic bag with desiccant for 84 days at room 

temperature [3]. 

 

5.3 Results and discussion 

BHB analysis was based on the GC-MS method for the detection of several polar low molecular weight 

compounds with relevance in forensic and clinical toxicology described in Chapter 3 [3]. This validated 

procedure (with punching a 6-mm disc from a 25-µL DBS) was slightly modified in our application as we wished 

to apply the method on a divergent set of matrices (urine, vitreous humour, post-mortem blood,…) which have 

a different spreading on the filter paper. To this end, a whole-cut approach with application of a fixed volume 

of 15 µL of biofluid onto a 7-mm pre-punched disc was utilized instead of using partial punches. To ensure the 

validity of the slightly adapted method we applied, a calibration line and QC samples were run every day of 

analysis. % CV was below 20% and % bias below 13% for 3 QC levels (65, 125 and 250 µg/mL). These QC 

concentrations were based on proposed cut-off levels (see next paragraph).  

 

The BHB concentrations obtained in blood, vitreous humour and urine were arbitrarily grouped in different 

classes (Figure 5.1): BHB concentrations below 50 µg/mL were considered as ‘low’, concentrations between 50 

and 100 µg/mL as ‘slightly elevated’, concentrations between 100 and 250 µg/mL as ‘moderately elevated’, and 

concentrations above 250 µg/L as ‘high and pathologically significant’. Although this classification is rather 

based on decision levels for BHB in blood and vitreous humour, we also applied these ranges for urine, as 

suggested by Elliott et al. [4]. 
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As can be seen in Figure 5.1a, a ‘slightly or moderately elevated’ BHB blood level was found in 28 cases (5%) 

and a ‘high’ BHB level in 5 (0.9%) blood samples. Most vitreous humour samples (89%) also had a ‘low’ BHB 

concentration (Figure 5.1b). There were no vitreous humour samples with a BHB concentration higher than  

250 µg/mL, while 7 (11%) had a ‘slightly or moderately elevated’ BHB concentration. Of the 232 analyzed urine 

samples, 8 (3.5%) had a ‘slightly or moderately elevated’ urinary BHB concentration and 6 (2.5%) had a urinary 

concentration above 250 µg/mL (Figure 5.1c). The slightly higher percentage of vitreous humour samples with 

an elevated BHB concentration may be owing to the fact that, while vitreous humour is not always routinely 

collected by the forensic pathologist, it is likely to be sampled if there is a suspicion of an electrolyte imbalance 

or ketoacidosis. Despite this inherent bias during sample collection, only three cases in which we could perform 

the retrospective BHB analysis in vitreous humour yielded a concentration near or above 100 µg/mL. For these 

samples, the sum of glucose and lactate, as a measure of antemortem glycemia [5], was within the normal 

range.  

 

Figure 5.1 BHB concentrations obtained in (a) blood, (b) vitreous humour and (c) urine, respectively. 
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Table 5.1 gives an overview of the cases with a BHB concentration above 100 µg/mL (25 cases, numbered from 

1 to 25, encompassing samples considered as ‘moderately elevated’ and ‘high and pathologically significant’) in 

blood, vitreous and/or urine. Cases with the highest BHB blood levels are first reported, followed by the cases 

with the highest BHB urine concentrations. Semi-quantitative acetone results as well as some additional 

information which may be relevant for the interpretation are also given for each case.  

 

Table 5.1 Overview of the cases with a BHB concentration above 100 µg/mL. 

Case n° 
BHB concentration (µg/mL) Acetone 

Remarks 
Blood Vitreous Urine Blood Urine 

1 1466 NA NA +++ NA Post-mortem 
Diabetic; known alcohol abuse 
[Lactate + glucose] = 990 mg/dL in 
vitreous humour 

2 848 NA NA ++ NA Post-mortem 
Diabetic; known alcohol abuse  

3 600 NA NA ++ NA Post-mortem 
Alcoholic  

4 306 NA NA ++ NA Non-fatal  

5 282 NA NA ++ NA Non-fatal   

6 247 NA NA ++ NA Post-mortem 
Alcoholic  

7 206 NA NA + NA Post-mortem 
Neurotrauma; lactic acidosis  

8 185 NA NA + NA Non-fatal  
Olanzapine  

9 177 NA NA ++ NA Post-mortem 
Anorexia  

10 171 NA 1194 + +++ Non-fatal   

11 168 NA NA NA NA Non-fatal 
Quetiapine  

12 153 157 1074 + +++ Post-mortem 
Alcohol intoxication  
[Lactate + glucose] = 292 mg/dL in 
vitreous humour 

13 131 NA NA + NA Non-fatal 
Morphine intoxication  

14 129 NA NA + NA Non-fatal   

15 117 NA 1053 + +++ Post-mortem 
Meningitis 

16 110 NA <LLOQ NA + Post-mortem 
Quetiapine  

17 109 NA NA + NA Non-fatal   

18 103 94 NA + NA Post-mortem 
Alcoholic 
[Lactate + glucose] = 220 mg/dL in 
vitreous humour 

19 102 NA 29 + + Post-mortem 
Suicide: zopiclone + alprazolam + 
alcohol  

NA: not analyzed/not available; +++: acetone concentration > 20 mg/dL; 

++: acetone concentration > 3 mg/dL; +: acetone concentration < 3 mg/dL 
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Table 5.1 Continued. 

Case n° 
BHB concentration (µg/mL) Acetone 

Remarks 
Blood Vitreous  Urine Blood Urine 

20 13 NA 347 + +++ Non-fatal   

21 80 191 333 ++ ++ Post-mortem  
[Lactate + glucose] = 194 mg/dL in 
vitreous humour 

22 14 NA 285 + ++ Post-mortem  

23 55 NA 136 + + Non-fatal 
Methadon intoxication (coma); 
Hyperglycemia (prolonged stress)  

24 93 NA 119 + + Post-mortem  

25 22 NA 110 + ++ Post-mortem (suicide)  

NA: not analyzed/not available; +++: acetone concentration > 20 mg/dL; 

++: acetone concentration > 3 mg/dL; +: acetone concentration < 3 mg/dL 

 

Of the 553 analyzed blood samples, five had a ‘high and pathologically significant’ BHB blood concentration (i.e. 

> 250 µg/mL). Two of these were non-fatal cases (cases n° 4 and 5) and three were fatalities, the latter 

encompassing one known alcoholic (case n° 3) and two diabetics with a known alcohol abuse (cases n° 1 and 2) 

(see below).  

 

The highest BHB concentration (i.e. 1466 µg/mL) was found in blood from a diabetic with known alcohol abuse 

(case n° 1). Also in the headspace chromatogram, a very pronounced peak was observed for acetone in blood. 

Semi-quantitative analysis revealed an acetone concentration higher than 20 mg/dL. Vitreous humour analysis 

had revealed a pronounced hyperglycemia ([glucose + lactate] = 990 mg/dL) and confirmed the diagnosis of 

diabetic ketoacidosis. Unfortunately, there was no vitreous humour left for this retrospective BHB study. 

 

At least three fatalities could be associated with alcoholic ketoacidosis (case n° 2 with a BHB blood 

concentration of 848 µg/mL, case n° 3 with a BHB blood concentration of 600 µg/mL and case n° 6 with a BHB 

blood concentration of 247 µg/mL, i.e. only marginally below the 250 µg/mL cut-off). Not only a ‘high and 

pathologically significant’ BHB blood concentration, but also a clear acetone peak, corresponding with an 

acetone concentration between 3 and 20 mg/dL, was observed in blood of these three alcoholics who had 

suddenly died. In case n° 2, ethanol and isopropanol were detected as well. Unfortunately, also here, no 

vitreous humour was available for BHB, glucose and lactate determination. Cases n° 4 and 5 clearly illustrate 

that the interpretation of BHB concentrations may not always be straightforward in forensic cases. In these 

cases ‘high and pathologically significant’ BHB concentrations were found, although these were not associated 

with fatalities but were linked to a theft and a drug control, respectively. Whether in these cases the 

ketoacidosis was stress-related or whether these individuals were diabetics is not known (no availability of 

background information or urine for e.g. glucose testing).   
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In the 14 cases with a BHB blood concentration between 100 and 250 µg/mL, there were eight post-mortem 

samples. In four out of these post-mortem cases an alternative cause of death (i.e. suicide (case n° 19), 

neurotrauma (case n° 7), meningitis (case n° 15) or acute alcohol intoxication (case n° 12)) was found, whereas 

two samples were from known alcoholics who had suddenly died (cases n° 6 (described in the previous 

paragraph) and 18). In case n° 18, BHB concentrations were moderately elevated in blood and vitreous humour 

and, also here, acetone was detected, albeit at a lower concentration than in the cases with the highest BHB 

concentrations. In this case, the available results do not allow to firmly conclude that this is a fatal alcoholic 

ketoacidosis. Ketoacidosis may be a contributing factor to the cause of death, but since no autopsy has been 

performed, we could not conclusively determine the cause of death. Also in cases n° 9 and 16 the cause of 

death remained unexplained although malnutrition and the use of quetiapine (an atypical antipsychotic drug) 

may have contributed to the increased BHB levels in these cases. Two out of the six non-fatal cases could be 

associated with the use of atypical antipsychotics (cases n° 8 and 11). The other non-fatal cases were related to 

a morphine intoxication (case n° 13), a theft (case n° 17), a fight (case n° 10) and an assassination attempt (case 

n° 14). Traces of isopropanol were found in cases n° 7, 9, 12 and 15, whereas acetone was detected in blood of 

all of the 14 cases with a BHB blood concentration between 100 and 250 µg/mL. Noteworthy is that, whereas in 

the cases with a BHB concentration between 100 and 250 µg/mL, acetone was invariably present, it was mostly 

only present to a limited extent in the blood. In contrast, a clear acetone peak (> 3 mg/dL) was observed in the 

blood from all cases with a BHB concentration above 250 µg/mL. Therefore, we consider acetone as a good 

initial marker to decide if BHB analysis should be performed. This finding is in line with the observation of 

Hockenhull et al. [6]. These authors reported the presence of acetone (> 2 mg/dL) in all cases with a 

‘significant’ BHB concentration (> 250 µg/mL) and readily suggested that acetone analysis is a good screening 

procedure to identify alcoholic and diabetic ketoacidosis. Acetone analysis is preferred as screening procedure 

as this analyte is easily detected using a procedure (HS-GC-FID) which is already performed routinely in every 

case. However, as readily pointed out by Hockenhull et al. [6], acetone analysis is not enough to justify the 

contribution of ketoacidosis to the cause of death. In the acetone positive samples, the measurement of BHB is 

advised to obtain a complete metabolic overview and to exclude acetone and/or isopropanol intoxications. 

Furthermore, these results should ideally be combined with autopsy findings, other toxicological results, the 

person’s background, as well as with the circumstances in which the deceased was found -if these data are 

available to the toxicologist. Since we analyzed all available forensic samples without taking into consideration 

any background information, our retrospective BHB study also included some non-fatal cases, in which there 

was no reason at all to expect elevated BHB levels. These cases demonstrate that in a forensic context ‘high 

and pathologically significant’ BHB concentrations and strongly elevated acetone concentrations are not always 

associated with fatalities and that other situations may also involve ketoacidosis. 

 

We also agree with Hockenhull et al. [6] that acetone analysis should be performed in all cases and not only in 

those cases with a (suspected) history of alcoholism or diabetes. One should also pay attention to the presence 

of isopropanol, as this compound can be generated from acetone via alcohol dehydrogenase. However, the 

absence of isopropanol does not preclude ketoacidosis. If diabetic ketoacidosis is suspected, it is also 
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recommended to estimate antemortem hyperglycemia by biochemical analysis of vitreous for glucose and/or 

lactate. While vitreous glucose may be the most reliable marker to diagnose hyperglycemia in fresh corpses, 

the use of the sum of glucose and lactate (also known as the Traub formula) has also been used in cases where 

there is a prolonged interval between death and sampling (as in several of our cases) [7-9]. Indeed, in our 

experience, in many of these cases even no or only very low glucose remains detectable.  

 

Teresinski et al. observed that elevated BHB levels are not always associated with elevated acetone 

concentrations [10]. In hypothermia cases, for instance, ketoacidosis appears to be characterized by less 

important levels of blood ketones. Both Palmiere et al. and Teresinski et al. observed an inverse relationship 

between blood acetone and ethanol levels in hypothermia cases [10-13]. Therefore, these authors questioned 

whether acetone may be a suitable marker for ketoacidosis in hypothermia cases with a high blood alcohol 

concentration. However, it is unclear to what extent ketoacidosis did play a contributing role to the cause of 

death in these hypothermia cases. Additionally, as we did not find any cases in our large-scale study with 

elevated BHB levels without elevated acetone concentrations, we believe that an additional BHB analysis 

should only be performed if acetone is detected. 

 

Of the 54 cases in which corresponding blood and vitreous humour samples were available, vitreous humour 

BHB concentrations exceeded or approached 100 µg/mL in only 3 cases. As suggested by Elliott et al. [4], the 

same ranges can be used for vitreous humour as for blood. Although the number of vitreous humour samples 

was limited, our data do support an overall good accordance between BHB concentrations in blood and the 

corresponding vitreous humour. This is in line with the conclusions of Elliott et al. [4], Kadis et al. [14], Felby et 

al. [15], Osuna et al. [16] and Pounder et al. [17]. On the other hand, Teresinski et al. and Palmiere et al. argued 

that the vitreous humour concentration may not be a true reflection of the blood concentration since the 

equilibrium between both matrices may not have been attained in case of rapidly occurring ketonemia [10,18]. 

 

When comparing urinary and blood concentrations, we observed that the blood concentration was below  

100 µg/mL for the three samples with a urinary concentration between 100 and 250 µg/mL (cases n° 23, 24 and 

25). Also in the three cases with a urinary BHB concentration between 250 and 1000 µg/mL, the corresponding 

BHB blood concentration did not exceed 100 µg/mL (cases n° 20, 21 and 22). Only in the three cases with a very 

high urinary BHB concentration, i.e. above 1000 µg/mL (cases n° 10, 12 and 15), a blood concentration 

between 100 and 250 µg/mL was observed. Conclusively, unless in more extreme cases (urinary BHB above 

1000 µg/mL), elevated or high urinary concentrations are not necessarily reflected by elevated or high blood 

concentrations. Conversely, elevated blood concentrations are neither always reflected by elevated urinary 

concentrations: in two out of the five cases with a BHB blood concentration higher than 100 µg/mL, the 

corresponding urinary BHB concentration was not elevated (cases n° 16 and 19). As already mentioned, the 

other three cases had a very high urinary concentration (> 1000 µg/mL) (cases n° 10, 12 and 15). These findings 

confirm the conclusion of Elliott et al. that a urinary BHB concentration cannot be solely used to diagnose 

pathologically significant ketoacidosis [4]. We also agree with Teresinski et al. and Palmiere et al. that the 
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interpretation of ketone body concentrations in urine is not straightforward and that blood is the most 

appropriate matrix for the determination of ketone bodies [10,18]. Not only in a forensic setting, but also in a 

clinical context (i.e. for the evaluation of the metabolic status of the patient in the treatment of diabetic 

ketoacidosis), blood levels are more reliable than urinary concentrations [19].  

 

5.4 Conclusion 

An elevated level of the ketone bodies is called ketoacidosis and may be a contributing factor to the cause of 

death. Therefore, determination of the ketone bodies may be helpful to explain pathological and/or 

toxicological findings. Qualitative acetone analysis is already implemented in most routine laboratories using a 

HS-GC-FID method, as routinely applied for ethanol quantification. Quantification of acetoacetate is less useful 

as this molecule is rapidly converted into BHB or acetone. One of the aims of this study was to evaluate 

whether BHB analysis should be implemented in routine analysis in all cases or could be limited to those cases 

where, based upon acetone analysis or background information (e.g. diabetic or alcoholic), there was a reason 

to specifically test for BHB. This is relevant when considering a limitation of the workload, without risking to 

miss positive cases (i.e. avoid false negatives).  

 

Retrospective BHB analysis of blood, urine and vitreous humour samples which were received for forensic 

toxicological analysis demonstrated that the BHB concentrations measured in vitreous humour are overall 

comparable to the concentrations obtained in blood, suggesting that vitreous humour is a good alternative for 

blood. Urinary concentrations, on the other hand, show a lower correlation with blood levels. We also 

observed that acetone was found in all cases with a BHB concentration higher than 100 µg/mL. Consequently, 

our findings confirm that acetone is a good initial marker for ketoacidosis and our findings support the 

recommendation by Elliott et al. that first a HS-GC-FID analysis should be performed to detect acetone (and 

isopropanol) [4,6]. This analysis does not impose an additional workload and is already performed for every 

forensic case. If acetone is detected, we advise to perform BHB analysis, even if no ketoacidosis is suspected 

based on background information received at case submission. Conclusively, our data suggest that if one limits 

BHB analysis to acetone positive samples, no cases with ketoacidosis will be missed.  
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Abstract  

Haptoglobin (Hp) is a glycoprotein which prevents iron loss and renal damage by binding free hemoglobin 

which is released during hemolysis. It is synthesized by the liver and is encoded by two alleles, resulting in two 

homozygous genotypes (Hp 1-1 and Hp 2-2), and one heterozygous genotype (Hp 2-1). Hp genotyping may help 

in preventing fatal anaphylactic reactions and in establishing the relationships between the Hp genotypes and 

diseases. Current ‘gold standard’ methods for Hp genotyping suffer from the drawback that mostly two PCR 

reactions are needed to score the Hp genotype. Mostly a second PCR reaction is also required in cases of 

extensively degraded DNA or small amounts of DNA. Therefore, we aimed to set up an improved PCR-based 

assay for Hp genotyping, directly starting from a dried blood spot (DBS). To this end, we carefully selected our 

primers, allowing selective amplification of each Hp allele, resulting in a 2100 and 1800 bp fragment for Hp 1 

and 2, respectively. Using a Phusion Blood Direct PCR kit, our method is directly applicable to (dried) whole 

blood without the need for a separate DNA extraction step. Hp genotyping of 221 DBS samples demonstrated 

that the genotypes obtained with our method were fully consistent with the genotypes obtained using a 

reference method for Hp genotyping. Moreover, we are also able to detect simultaneously the single 

nucleotide Hp A-61C polymorphism in the promoter region by amplification of a 1200 bp fragment, followed by 

restriction enzyme analysis with BpmI. We found 3 heterozygotes for the Hp A-61C polymorphism, which was 

confirmed by DNA sequencing.  
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6.1   Introduction 

Haptoglobin (Hp) is a glycoprotein with an anti-oxidative capacity by binding free hemoglobin and by reducing 

iron loss following hemolysis. The Hp gene locus is located on chromosome 16, the two alleles giving rise to the 

Hp 1-1, Hp 2-2 and Hp 2-1 genotypes. This polymorphism has been associated with (increased risk of 

developing) distinct diseases, as demonstrated in Table 6.1 [1-3]. E.g. the Hp phenotype is an independent risk 

factor for complications in diabetes, via a mechanism involving oxidative stress.  

 

Table 6.1 Examples of diseases associated with the Hp polymorphism [2,3]. 

Hp 1-1 Overrepresented in breast cancer and cervix carcinoma 

Hp 2-2 Diabetics have an increased risk for developing micro- and macrovascular complications 

Hp 2-1 Excess in patients with family history of ovarian carcinoma 

 

Although historically, phenotyping by gel electrophoresis was the gold standard, this method requires fresh 

serum samples and trained staff for the interpretation. Given the perfect correlation between geno- and 

phenotype, PCR-based methods have emerged as a good alternative. To date, the method of Koch et al. [4] is 

considered the gold standard for Hp genotyping. However, different intensities of different bands, provoked by 

the large difference in band size, may lead to the false homozygous scoring of a heterozygote, which is the 

major drawback of this method. Accordingly, two PCR reactions are often needed to conclusively determine 

the Hp genotype. Furthermore, the method starts from DNA extracts, rather than directly from raw biological 

material. Therefore, we have set up an improved (conventional) PCR-based method, directly starting from a 

micropunch from a dried blood spot (DBS), allowing to discriminate between both Hp alleles. In addition, our 

method is also suitable for the simultaneous detection of the Hp A-61C polymorphism, a single nucleotide 

polymorphism in the promoter region of the Hp gene that has been associated with ahaptoglobinaemia [5]. 

 

6.2   Materials and methods 

6.2.1 Samples 

A study was set up to evaluate the applicability of our newly developed Hp genotyping method. This study was 

approved by the Ethics Committee of Ghent University Hospital (B670201317381). Written informed consent 

was obtained from all participants. Capillary DBS were generated on Whatman 903 filter paper following a 

fingerprick using an automatic lancet (Becton Dickinson ref no VAC366594, Franklin Lakes, NJ, USA). Venous DBS 

were prepared by spotting 25 µL of venous blood (obtained from left-over samples) onto the filter paper.  
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6.2.2 Hp genotyping 

6.2.2.1 Primers 

The sequences of the newly designed primers for Hp genotyping are listed in Table 6.2. We combined the 

forward primer of the method of Koch et al. [4] with two carefully selected reverse primers. Combination with 

the first reverse primer results in the amplification of a Hp 1-specific sequence of ± 2100 bp and a Hp 2-specific 

fragment of ± 3500 bp. However, the latter is too large to be easily amplified. The second reverse primer in the 

reaction generates a Hp 2-specific sequence of 1800 bp. All primers were provided by Eurofins Genomics 

(Ebersberg, Germany). 

 

Table 6.2 Overview of the primers used for Hp genotyping. 

Forward primer (F) 5’-GAGGGGAGCTTGCCTTTCCATTG-3’ 

Reverse primer 1 (R1) 5’-GAGATTATGGTGGGAAACCATCTTAGC-3’ 

Reverse primer 2 (R2) 5’-CCGAATAGAAGCTCGCGAACTG-3’ 

 

6.2.2.2 PCR reaction 

We utilized a Phusion Blood Direct PCR Kit obtained from Thermo Fisher Scientific (Erembodegem, Belgium). 

This kit contains a Phusion Blood II DNA Polymerase which exhibits high resistance to inhibitors present in 

blood and eliminates the need for a separate DNA extraction step prior to the PCR reaction. 

 

Our 20-µL PCR reaction contained a 0.5 mm DBS punch, 0.4 µL Phusion Blood DNA II Polymerase, 10 µL Phusion 

Blood PCR Buffer, and our three primers for Hp genotyping (see Table 6.2), which had a final concentration of 

0.5 µM. After an initial denaturation -allowing lysis of leukocytes and thus release of DNA- of 5 min at 98°C, 

denaturation and annealing/elongation were performed for 1 s at 98°C and 30 s at 72°C, respectively. These 

steps were repeated for 35 cycles. The final elongation step took 1 min at 72°C. This PCR reaction was 

performed in a Mastercycler® Nexus Thermal Cycler (Eppendorf, Hamburg, Germany). 

 

6.2.2.3 Gel electrophoresis and visualization 

The PCR products were separated using agarose gel electrophoresis. Therefore, we prepared a 1.5% agarose 

(Sigma Aldrich, Diegem, Belgium) gel in 50x Tris-acetate-ethylenediaminetetra-acetic acid (TAE) buffer (Thermo 

Fisher Scientific, Erembodegem, Belgium). Following the addition of 6x DNA loading dye (Thermo Fisher 

Scientific, Erembodegem, Belgium), a GeneRuler DNA ladder mix (Thermo Fisher Scientific, Erembodegem, 

Belgium) and 10 µL of each sample were loaded. Finally, the DNA fragments were visualized under UV light 

using a GelRedTM staining solution (Biotium, Hayward, CA, USA).  
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6.2.3 Determination of the Hp A-61C polymorphism 

Using restriction enzyme analysis, we are also able to detect the Hp A-61C polymorphism. To this end, a PCR-

product of ± 1200 bp which encloses position -61 in the Hp gene was amplified using the forward primer  

5’-CTCCTGTTGATGGGCATTTGTCTTG-3’ and the reverse primer 5’-GGAGCTGATGACATACCCTATAAAGTC-3’ (with 

a final concentration of 1.125 µM), followed by a restriction digest with 0.5 µL BpmI (Thermo Fisher Scientific, 

Erembodegem, Belgium) for 15 min at 30°C.  

 

6.3   Results and discussion 

As discussed by Ko et al. [6] current Hp genotyping methods utilizing conventional PCR methods suffer from the 

drawback that more than one PCR reaction is needed. Therefore, we have selected our primers so that one PCR 

reaction suffices in all cases. Our first reverse primer allows amplification of a Hp 1-specific fragment, whereas 

our second reverse primer binds to the unique part between exon 4 and exon 5 of Hp allele 2, resulting in a  

Hp 2-specific sequence of 1800 bp (see Figure 6.1).  

 

 

Figure 6.1 Scheme of the primers in the new Hp genotyping method. 

 

The similar lengths of the Hp allele-specific sequences, combined with similar efficiencies of both PCR 

reactions, results in heterozygotes in bands with similar intensities, irrespective of the amount of DNA. 

Consequently, one PCR reaction suffices in all cases in our method, in contrast to other genotyping methods, 

which are characterized by large-sized products which may be difficult to amplify and to detect. E.g. using the 

method of Koch et al. [4], it is easier to amplify the Hp 1-specific band of 1700 bp than the Hp 2-specific band of 

3400 bp in heterozygotes. Consequently, the smallest band is considerably more intense than the larger band, 

which may hamper Hp genotyping of heterozygotes (i.e. heterozygotes could be falsely scored as Hp 1-1), as 

demonstrated in Figure 6.2. Therefore, a second PCR reaction which generates a Hp 2-specific PCR product of 

about 350 bp, is warranted when using the method of Koch et al. [4].  

 

Another advantage of our assay is that it is directly applicable to a 0.5 mm punch from a DBS, without prior 

DNA extraction. We only need a limited amount of starting material (one drop of blood suffices) and sampling 
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can be performed at home without dedicated staff. Furthermore, we demonstrated that our method is also 

applicable to dried oral fluid or lyzed blood (direct PCR on 1 µL) and that hemoglobin and anticoagulants do not 

hamper the PCR reaction (see Figure 6.3).  

 

To ensure the validity of our new Hp genotyping method, we performed Hp genotyping of 221 DBS using both 

the method of Koch et al. [4] and our new method. We found a 100% correlation between the genotypes 

obtained with both methods.  

 

 

Figure 6.2 Genotyping of DBS samples using the reference method of Koch et al. [4] and our new method. 

 

 

 

Figure 6.3 Influence of hematocrit (Hct) and anticoagulants on our newly developed Hp genotyping method. 
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Using restriction enzyme analysis, we are also able to detect Hp A-61C polymorphism. To this end, we 

generated a 1200 bp-fragment, enclosing position -61, followed by a restriction enzyme digestion with BpmI. In 

absence of this Hp promoter polymorphism, BpmI will recognize one cleavage site, whereas in the presence of 

this polymorphism, two cleavage sites will be recognized (see Figure 6.4). Finally, we found 3 heterozygotes. 

This observation was confirmed by DNA sequencing.  

 

 

Figure 6.4 Hp A-61C polymorphism. 

 

What can be considered a disadvantage of our method (and other conventional PCR methods for Hp 

genotyping) is the need for a laborious and time-consuming post-amplification step (i.e. running a gel). 

Although the use of labeled probes and real-time PCR may overcome this issue, this may be at the expense of 

the simplicity of our assay, which is important for high-throughput analyses. 

  

We believe that it would be useful to determine the Hp genotype for every person. Since the Hp genotype has 

been associated with various infections and diseases, Hp genotyping may increase life expectancy and reduce 

health care costs by preventing complications. As the genotype always remains the same, this determination 

only needs to be done once per patient.  

 

6.4  Conclusion 

In conclusion, a new, simple and rapid (45 min) PCR method, allowing Hp genotyping in a high-throughput 

setting was developed. There is no need for a time-consuming and expensive DNA extraction and only a limited 

amount of biological material is required, resulting in a minimal contamination risk. Furthermore, sampling can 

be done by the patient himself. Additionally, in contrast to other genotyping methods, only one PCR reaction is 

needed to come to a conclusive result in all instances, the length of the fragments allowing simple amplification 

and detection. Using the restriction fragment length polymorphism technique, we are also able to detect 

simultaneously the Hp A-61C polymorphism in the same reaction.   
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The use of dried blood spots (DBS) as an alternative sampling strategy has gained popularity during the last 

several years. This can be deduced from the increasing number of papers dealing with DBS (see Figure 7.1) and 

from the many fields in which DBS have been implemented, covering the analysis of DNA, proteins, small 

molecules (endogenous compounds, therapeutic drugs and drugs of abuse) as well as trace elements.  

 

 

Figure 7.1 Overview of the number of publications dealing with DBS in Pubmed during the last 40 years. 

 

Several committees have focused on the potential and limitations of DBS and have provided recommendations 

for the validation of bioanalytical methods for DBS with the aim to contribute to the harmonization and 

standardization of alternative matrix analysis. E.g. the European Bioanalysis Forum (EBF), which brings together 

different pharmaceutical companies and contract research organizations, with the aim to share, discuss and 

optimize different bioanalytical topics, has a topic team formed for blood microsampling and DBS approaches: 

different subteams have evaluated DBS-related issues like hematocrit (Hct), stability, dilution and the use of 

internal standard (IS). Also in the USA, there is a microsampling working group within The International 

Consortium for Innovation and Quality in Pharmaceutical Development (IQ Consortium). Such cross-company 

consortia increase the understanding and improve the processes concerning DBS sampling.  

 

In this thesis, we also gave some recommendations and/or points of attention when setting up a DBS-based 

method. Although promising results have been obtained with DBS, its widespread use, application and 

acceptance in practice is limited. This is due to some practical hurdles, technical challenges and inherent 

disadvantages which have been associated with DBS sampling (see Chapter 1). From Chapter 2 till Chapter 5, 

we tackled some of these DBS-related issues. The choice of the analytes which were used for this purpose, has 

been discussed in Chapter 3. In addition to tackling DBS-related issues, each Chapter in this thesis also 

demonstrated the advantages of DBS sampling. E.g. in Chapter 5 we demonstrated the potential of DBS in post-

mortem forensic toxicology as a convenient sample preparation strategy. 
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The Hct problem is a generally acknowledged theme in DBS analysis. The effect of the Hct on quantification of 

an analyte in DBS samples is a compound-dependent matter and is influenced by many factors. It is primarily 

an issue when dealing with non-volumetrically applied spots, where discs are punched from the DBS. In 

Chapter 3, we also evaluated the influence of the Hct on the analytical results obtained with our GC-MS 

method, following “microwave-assisted on-spot derivatization”. This DBS-specific parameter should be part of 

the validation procedure for any DBS-based procedure using partial-spot approaches. However, this requires 

some additional validation work and novel and/or improved strategies to cope with the Hct effect will be 

required to support the growing and widespread use of DBS in bioanalysis. Therefore, continuous efforts to 

further understand and tackle this issue will likely be made in the future. Recently, new approaches have been 

developed to overcome the Hct problem by allowing the collection of a fixed volume of blood from a non-

volumetrically applied sample. E.g. Lenk et al. and Leuthold et al. investigated the usefulness of microfluidic-

based sampling procedures [1,2]. The first developed a ‘disposable metering device’ prototype [1], whereas the 

latter utilize a microfluidic device which consists of a foldable support system. After applying a blood of drop 

onto the inlet of a microfluidic channel, the channel is filled by capillary force. Then the support system is 

closed, allowing contact between the outlet of the channel and a DBS card. Using this microfluidic-based 

sampling procedure, no Hct effect was observed within the Hct range 0.26-0.62 for the test compound 

Mavoglurant [2]. Verplaetse and Henion confirmed that this device is an easy-to-operate instrument for 

acquiring volumetrically applied spots and considered it as a promising tool for point-of-care patient self 

sampling, doping control, workplace drug testing and in the context of driving under the influence of drugs 

(DUID) [3]. HemaSpotTM-HF (Spot-On Sciences) is another recently developed volumetric blood sampling device 

in which one drop of blood suffices. Other interesting new approaches that overcome area bias and 

homogeneity issues associated with analyzing subpunches from DBS samples are volumetric absorptive 

microsampling (VAMS) devices. These allow the collection of a fixed volume of blood from a non-volumetrically 

deposited sample onto a porous substrate, independent of the Hct. These devices are on the march and can be 

used for other biological matrices as well. Mercolini et al., for instance, quantified cathinone analogues in dried 

urine, plasma and oral fluid using VAMS [4]. Many research groups are also developing different kinds of 

devices to generate dried plasma spots following non-volumetric application of whole blood since the use of 

dried plasma spots are another way to avoid the Hct problem. Additionally, the pharmaceutical industry prefers 

microsampling of plasma rather than DBS samples for pharmacokinetic and pharmacodynamic studies. Spot-

On-Sciences, for instance, designed the HemaSpotTM-SE device that allows the separation of serum/plasma 

from blood cells. Lenk et al. also developed a microfluidic device to collect a specific volume of plasma from an 

unknown blood volume [5]. Another focus to cope with the Hct problem may lie in the exploration of the 

potential of various endogenous compounds to function as surrogate Hct markers. These compounds allow to 

estimate or predict the Hct of a DBS and allows one to determine which analytical results are reliable and 

which analyte concentrations might need a correction. E.g. in our laboratory potassium was demonstrated to 

be a good reliable marker for Hct prediction: application of a potassium-based algorithm for the quantification 

of caffeine and paraxanthine allows correction for the Hct bias [6]. Other laboratories are using this strategy as 

well, e.g. den Burger et al. performed Hct corrected analysis of creatinine in DBS through potassium 
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measurement [7]. Recently, another new interesting approach has been developed in our laboratory to predict 

the Hct from a DBS. It concerns a nondestructive method in which the total hemoglobin content is measured 

via noncontact diffuse reflectance spectroscopy [8]. The use of near-infrared spectroscopy also allows a fast, 

robust and nondestructive quantification of the Hct [9]. Development of innovative materials/substrates that 

are less affected by Hct-dependent spreading of blood and allow more homogenous distribution across spots 

will also contribute to the widespread use and acceptance of DBS. E.g. Mengerink et al. demonstrated that new 

DBS cards which consist of hydrophilically coated woven polyester fibers give spot sizes independent of the Hct 

[10]. Conclusively, this is a highly dynamic field in which various groups are busy with the development of new 

approaches to solve or to minimize the Hct issue. Pricing may be an important determinant factor when 

considering which of the proposed approaches will eventually turn out to be competitive.   

 

The addition of IS in DBS analysis is also challenging. Also here, new IS addition techniques have been 

developed. As recently studied by Abu-Rabie et al. [11], an interesting approach is spraying the IS onto the DBS 

card. They investigated different approaches to incorporate the IS in the DBS quantitative bioanalytical 

workflow and evaluated their influence on the Hct-based assay bias. They observed that when the IS spray 

addition technique is coupled with accurate volume sampling and whole spot extraction, the Hct-based assay 

bias is nullified.  

 

In order for DBS methods to become integrated in routine toxicological practice, efforts have also been made 

to automate DBS procedures, allowing high throughput analysis. E.g. Spark-Holland developed the DBSTM 

Autosampler which enables automation of the entire workflow for DBS analysis without any manual 

intervention. First a digital picture is taken from the DBS card to detect the spot and to clamp the card. Then, 

the compounds are desorbed using automated flow-through elution, followed by online solid phase extraction. 

Verplaetse and Henion nicely demonstrated that the direct coupling of automated online DBS samplers with 

new generation LC-MS/MS equipment may prove valuable to obtain sufficient sensitivity with limited amount 

of starting material [3]. Furthermore, they opted for whole spot analysis of blood samples which were obtained 

using a microfluidic-based volumetric sampling approach, resulting in a Hct-independent fully automated 

analysis.  

 

Automation in DBS bioanalysis, however, mostly requires an investment in dedicated equipment, which may 

not be considered feasible by an average laboratory. E.g. only large, well-funded laboratories will have access 

to such automated DBS systems or robotic systems. Digital microfluidic systems, on the other hand, are more 

accessible while they also reduce extraction time and the amount of solvents. Other devices/approaches which 

minimize sample preparation have been developed as well. E.g. different suppliers developed instruments to 

automate the punching of DBS samples. Perkin Elmer, for instance, developed the DBS Puncher® device which 

automatically punches dried blood samples into microtitration plates. Manicke et al. demonstrated that paper 

spray MS may also be useful to detect drugs directly from DBS without sample preparation [12]. As time 
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management is of utmost importance in any laboratory, automation and DBS direct elution techniques will 

continue to be an important part of future DBS research. 

 

Another challenge associated with DBS sampling is to obtain sufficient sensitivity since only a limited sample 

volume is available. This is relevant in e.g. the context of DUID where the lower limit of quantification (LLOQ) of 

the method should be below proposed cut-off levels or legal limits. DBS-based methods for quantification of 

cannabinoids, for instance, may be promising in the context of DUID. However, up till now, there is only one 

method attaining sufficient sensitivity to measure cut-off levels proposed by DRUID. As newer drugs (e.g. 

synthetic cannabinoids) tend to be more potent, even higher sensitivity will be required. Up till now, no DBS 

methods for synthetic cannabinoids are available. Here as well, the direct coupling of automated online DBS 

samplers with new generation LC-MS/MS equipment may prove valuable. Also other innovative approaches, 

such as the use of alginate or chitosan foam substrates, which may allow higher recoveries, may aid to achieve 

the necessary sensitivity [13]. There will be continuous improvements in analytical equipment and efforts to 

render DBS analysis high-throughput-capable.  

 

Other difficulties may lie in establishing legal limits, e.g. in driver’s licence regranting processes. Currently, 

indirect alcohol biomarkers are used to monitor the abstinence period in case of fitness to drive decisions. 

These analyses, however, have a low sensitivity and specificity. Therefore, Kummer et al. demonstrated that 

the use of direct ethanol markers obtained by non- or minimally invasive sampling techniques has potential to 

assess the alcohol consumption in cases of fitness to drive assessment [14]. They suggest to quantify 

ethylglucuronide and ethylsulfate in urine, ethylglucuronide in hair and phosphatidylethanol in capillary DBS 

(cDBS) to give an insight into the evolution of the alcohol consumption prior to sampling.  

 

An important limitation of most DBS studies is the fact that, while they demonstrated the proof-of-principle, 

the developed methods have often not yet been applied on (true patient) capillary samples or only a limited 

number of samples was included in these studies, with often no cross-comparison between venous DBS and 

cDBS. In Chapter 2, we coped with this DBS-associated issue by setting up a comparative study in which 

capillary gamma-hydroxybutyric acid concentrations were correlated to venous concentrations. To the best of 

our knowledge, this was the first study evaluating at a large scale the correlation between venous and capillary 

concentrations for a drug of abuse. This study served as the basis for similar studies which have been set up for 

other drugs of abuse. Ellefsen et al., for instance, compared capillary and venous concentrations for cocaine 

and metabolites [15], whereas Kummer et al. evaluated venous-capillary concentrations for alcohol markers 

[16].  

 

In addition, before the use of DBS as a sampling technique can move to a next stage, more bridging studies, 

comparing concentrations in cDBS with those in venous blood or plasma, need to be conducted. In Chapter 4 

such a bridging study was set up for gabapentin. Our study was the first to evaluate the use of DBS sampling for 

gabapentin monitoring and has the potential to contribute to the acceptance of DBS as a valid alternative for 
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current quantification methods. Furthermore, it adds new and relevant data to the ongoing discussion about 

the implementation of DBS sampling in therapeutic drug monitoring (TDM). Currently, serum/plasma is the 

most common matrix in routine TDM and reference intervals are based on serum/plasma levels. However, the 

use of DBS for TDM may have many advantages: 1) sampling can be performed at home without the need for 

skilled personnel, 2) sampling can be performed at any desired time, 3) monitoring results are available when 

the patient goes to the clinician for routine control, 4) samples can be easily sent by post without any biohazard 

risk, and 5) there in an increased stability of analytes in dried spots. Therefore, bridging studies are gaining 

more and more interest as they allow to convert DBS concentrations into interpretative serum/plasma values.  

 

Given the many advantages which have been associated with DBS, there will also be an increased use of other 

dried biological matrices such as urine, vitreous humour, synovial and oral fluid. We already use dried blood 

and urine spots in a routine forensic toxicological context to quantify gamma-hydroxybuytric acid and beta-

hydroxybutyric acid using GC-MS and we aim to use dried matrix spots for the detection of other compounds as 

well, e.g. for the quantification of anti-epileptics, cocaine (and metabolites),… In the future, the use of 

“microwave-assisted on-spot derivatization” could be extended to more compounds and other derivatization 

reagents could be tested as well. Multi-analyte procedures such as our newly developed GC-MS method are 

also suitable in a routine laboratory since they increase throughput by the simultaneous detection of multiple 

compounds in a single run. The use of VAMS as well as fully automated DBS analyses will also be encouraged. 

 

Not only DBS sampling, but also other microsampling techniques, in which small amounts of blood are 

collected, are gaining interest as alternative for classical venous blood sampling. E.g. in an acute setting where 

feedback on sample concentration is urgent, whole wet blood liquid microsampling is more feasible than DBS 

sampling. Liquid microsampling techniques may also play an important role in the pharmaceutical industry. 

Therefore, there will be continuous improvements and new ways to collect small amounts of blood. E.g. 

Theranos designed a Sample Collection Device (SCD) to collect blood from a fingerprick into NanotainerTM 

tubes, which are about 1.29 cm. Liquid microsamples have the advantage that they do not differ from 

traditional liquid samples, although also here this needs to be evaluated on a case-by-case basis, as differences 

have been reported for various analytes [17]. Other alternative sampling strategies, such as the sampling of 

oral fluid, hair, meconium, interstitial fluid, sweat, exhaled breath condensate and sputum, offer interesting 

opportunities as well. It has to be noted that in the latter sampling approaches, “alternative” samples are 

collected, whereas in DBS sampling, a traditional matrix (i.e. blood) is collected in an alternative way. Analysis 

of alternative biological matrices may be a good complement to blood and urine analysis, but cannot be 

considered as an alternative for blood and urine analysis. Although alternative sampling strategies (including 

DBS sampling) will never replace traditional sampling approaches, we do believe that there is a widely 

underexplored potential for these alternative sampling strategies, either in medicine, health management or in 

(forensic) toxicology.  
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In this work we focus on dried blood spots (DBS). During the last few years, there is an increased interest in the 

use of DBS, with different kinds of applications in various fields. E.g. DBS have been applied for the analysis of 

DNA, proteins, small molecules and trace elements, with applications situated in the field of epidemiology, 

therapeutic drug monitoring (TDM), toxicology, phenotyping, and so on [1]. This variety in DBS applications is 

also reflected in this work. On the one hand, we used DBS in an analytical context, on the other hand, we 

developed a DBS-based genotyping method.  

 

DBS sampling is a microsampling strategy in which the sample (i.e. ≤ 100 µL of whole blood obtained via a heel- 

or fingerprick) is collected as a spot on a (cellulose) filter paper. Many advantages have been associated with 

this alternative sampling technique [2]. First, DBS sampling is a minimally invasive sampling technique, enabling 

collection of a representative sample from animals, newborns, children and adults with minimal discomfort. 

Furthermore, it facilitates sampling at home and in remote areas as there is no need for dedicated medical staff 

[3-5]. Secondly, the dried matrix reduces the risk of infection and improves compound stability [6-10]. Third, 

DBS samples can easily be transported and stored [5,11]. In addition, DBS may simplify sample preparation 

procedures (e.g. via “on-spot derivatization”) and they are suitable for automation of sample processing and 

analysis, which renders DBS analysis high-throughput-capable [12-19]. Consequently, there has been a growing 

interest in the use of DBS applications for a variety of purposes (e.g. in a pharmaceutical, clinical or 

toxicological context), which, on its turn, has been a driving force for moving the field forward.  

 

In Chapter 1 an overview of the DBS applications in toxicology, more specifically for the analysis of abused 

substances, is given. These include therapeutic drugs which are often abused, illegal drugs and markers for 

alcohol and tobacco use. Benefits as well as limitations and challenges which have been associated with these 

diverse toxicological applications are discussed in that Chapter. In the following Chapters, we tackled several of 

the limitations which have been associated with DBS sampling.  

 

An important limitation for the implementation of DBS sampling in the industry and in routine analysis is the 

fact that a cross-comparison between capillary and venous samples is often lacking. Such studies are essential 

for the acceptance of DBS as a valid alternative for classical venous sampling. In addition, although a large 

number of studies have demonstrated the theoretical potential of DBS applications (not using true capillary 

DBS (cDBS) samples), the developed methodologies often have not been applied on a large cohort of real-life 

samples [20]. To this end, we have set up a large-scale comparative study for gamma-hydroxybutyric acid 

(GHB) (Chapter 2). We evaluated in 50 patients with a suspected GHB intoxication how capillary GHB 

concentrations (obtained by fingerprick) were correlated with venous concentrations (obtained by 

venipuncture). DBS sampling is a promising alternative for classical venous sampling in cases of (suspected) 

GHB intoxication since it allows rapid sampling, which is of interest for the rapidly metabolized GHB. However, 

as a cross-comparison between venous DBS (vDBS) and cDBS concentrations is lacking, paired cDBS and venous 

whole blood samples -of which vDBS were prepared- were collected from patients presenting at the emergency 

department of the Guy’s and St Thomas’ Hospital in London with a suspected GHB intoxication. cDBS were 
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generated by non-volumetric direct application of a drop of blood onto Whatman 903 filter paper following a 

fingerprick, whereas vDBS were prepared by pipetting 25 µL of venous blood onto the filter paper. Following a 

drying period of at least 2 hours, the DBS samples were transported to our lab in zip-closure plastic bags with 

desiccant. GHB concentrations were determined using a validated gas chromatography coupled to mass 

spectrometry (GC-MS)-based procedure previously developed in our lab [21]. The results of this study indicated 

that GHB concentrations in cDBS and vDBS are equivalent. From this, we concluded that fingerprick blood can 

be considered as a valid alternative for venous blood for GHB determination.  

 

Given the small blood volume, there are also some sensitivity issues associated with DBS analysis. Continuous 

improvements and advancements in analytical equipment and sample preparation technology, however, allow 

quantitative determination of most analytes at low ng/mL level, starting from ± 3 µL blood. To this end, liquid 

chromatography coupled to (tandem) mass spectrometry (LC-MS(/MS)) is mostly preferred, although GC 

methods also have their place [20,22-23]. To achieve sufficient sensitivity, the latter technique, however, often 

involves the introduction of a derivatization step, an additional sample preparation step which is considered as 

laborious and time-consuming. Therefore, we introduced a new derivatization strategy by combining “on-spot 

derivatization” (in which derivatization reagents are directly applied to DBS) with “microwave derivatization”, 

thereby ensuring a minimal, economic and fast sample workup and high sample throughput.   

 

In Chapter 3, we successfully validated and evaluated the applicability of this newly developed method for GHB 

and the anti-epileptic drug gabapentin. During validation, we evaluated classical parameters like linearity, 

precision, accuracy, selectivity, carry-over, dilution integrity and stability as well as DBS-specific parameters like 

the influence of the hematocrit and spotted blood volume, which may have an impact on the analytical results. 

In many cases, the benefits of DBS sampling outweigh this additional validation work. The calibration lines were 

linear between 10 and 100 µg/mL for GHB and from 1 to 30 µg/mL for gabapentin, applying a 1/x weighing 

factor. Accuracy and precision criteria were fulfilled for both compounds. Stability studies revealed that GHB 

and gabapentin were stable in DBS when stored at room temperature for 84 days. Analysis of patient samples 

demonstrated the applicability of “microwave-assisted on-spot derivatization”, followed by GC-MS analysis, in 

a routine setting. Furthermore, this newly developed GC-MS method also allows the detection of other polar 

low molecular weight molecules with clinical and/or forensic toxicological relevance, amongst which vigabatrin, 

beta-hydroxybutyric acid (BHB), 1,4- and 1,2-butanediol, propylene glycol and diethylene glycol.  

 

In many cases, there is also a need for studies evaluating the correlation between blood concentrations and 

plasma/serum concentrations, as reference intervals are typically only available for plasma (or serum). Such 

studies are coined “bridging studies”. We have set up a study like this for the anti-epileptic drug gabapentin by 

collecting paired cDBS and serum samples from gabapentin-positive patients, in the framework of a 

pharmacokinetic study (Chapter 4). For the quantification of gabapentin in DBS, our newly developed GC-MS 

procedure following “microwave-assisted on-spot derivatization” was used, whereas serum concentrations 

were determined using an independent validated LC-MS/MS method developed by Chahbouni et al. [24]. We 
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observed a mean blood-to-serum ratio of 0.85. Taking this conversion factor into account, a good correlation 

was found between measured serum concentrations and serum concentrations calculated from DBS results. 

Consequently, our data lend support to the potential of DBS for deriving plasma concentrations of this 

compound, rendering DBS-based TDM for gabapentin a feasible option, using plasma reference values as a 

guide. 

 

Our “microwave-assisted on-spot derivatization” approach is also suitable for BHB analysis. Elevated levels of 

this ketone body are found in ketotic diabetics and alcoholics and may be a contributing factor to the cause of 

death [25]. However, the sense of routinely analyzing BHB in a forensic toxicological context is unclear. 

Therefore, we performed retrospective BHB analysis of 553 blood samples, 232 urine samples and 62 vitreous 

humour samples (Chapter 5). In this unbiased study, we observed that cases with BHB concentrations above 

100 µg/mL are invariably associated with elevated levels of acetone. Analysis of the latter ketone body is 

already implemented in most routine laboratories using a headspace GC configuration for ethanol 

quantification and does not require an additional workload. Therefore, we concluded that acetone is a good 

initial marker for ketoacidosis and that BHB analysis can be limited to acetone-positive cases. We also observed 

that vitreous humour is a good alternative for blood for BHB analysis and that the interpretation of urinary BHB 

concentrations is not straightforward. The suitability of dried matrix samples for BHB analysis was also 

demonstrated with this study.   

 

The above-mentioned DBS applications concern the analysis of small polar molecules, including illegal drugs 

(such as GHB), therapeutic drugs (like gabapentin) and endogenous molecules (BHB). However, not only small 

molecules, but also trace elements, proteins, mRNA and DNA can be analyzed using DBS. The latter was 

demonstrated in Chapter 6, by setting up a DBS-based genotyping method for haptoglobin (Hp).    

 

Hp is an abundant hemoglobin-binding plasma protein, encoded by 2 common alleles, denoted 1 and 2. This Hp 

polymorphism has been reported to have important biological and clinical consequences [26]. In this respect, 

Chapter 6 can somewhat be linked to Chapter 5, as both are related to diabetes. E.g. large-scale studies have 

unequivocally shown that diabetics with the Hp 2-2 phenotype have a 2-5-fold increased risk for developing 

micro- and macrovascular complications. Since there is a perfect correlation between the Hp pheno- and 

genotype, PCR-based methods have emerged as a good alternative for time-consuming phenotyping methods. 

We therefore set up an improved PCR-based strategy, directly starting from DBS micropunches, allowing Hp 

genotyping in a high-throughput setting. Current Hp genotyping methods utilizing conventional PCR reactions 

suffer from the drawback that in most cases more than one PCR reaction is needed to conclusively determine 

the Hp genotype [27]. To this end, we have developed a genotyping method in which one PCR reaction suffices 

in all cases. Furthermore, our method is directly applicable to DBS and does not require a separate time-

consuming and expensive DNA extraction step. In addition, our method also allows the simultaneous detection 

of the Hp A-61C polymorphism, a polymorphism in the promoter region of the Hp gene which has been 

associated with ahaptoglobinemia [28].  
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Conclusively, there are numerous new developments which are rejuvenating the “old technique” of DBS 

sampling and which support the increased use of DBS. However, one should always bear in mind that, despite 

great progress which has been made in the context of DBS sampling, there will always be some limitations and 

disadvantages associated with DBS (sampling). E.g. in some circumstances rapid access to analytical results is 

required and there is no time to wait until the sample is dry. In these cases, the use of wet (micro)sampling 

techniques is still recommended. The use of DBS sampling could be encouraged for home monitoring, in 

remote areas,… The encouraging results that have been obtained with DBS, combined with the particular 

advantages of DBS (sampling), such as the possibility of prompt and convenient sampling and the increased 

stability of DBS -both of which can be of key importance in driving under the influence of drugs cases- suggest 

that DBS analysis could also play a role in e.g. future road-side drug testing. Furthermore, a wide range of other 

toxicological applications can be envisaged for DBS analysis as well, such as analyses in the context of drug-

facilitated sexual assault, the follow-up of drug or alcohol addicts, workplace monitoring, TDM and toxicological 

analysis of post-mortem samples.  
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Gedroogde bloedspots vormen de rode draad doorheen dit werk. Ze kennen de laatste jaren een enorme 

opmars en bieden tal van mogelijkheden. Zo kunnen ze gebruikt worden voor het opsporen van heel wat 

verschillende stoffen, gaande van kleine exogene (lichaamsvreemde) tot grote endogene (lichaamseigen) 

substanties. Ook is er een toegenomen interesse vanuit diverse disciplines. De verscheidenheid aan 

toepassingen waarvoor gedroogde bloedspots gebruikt kunnen worden, wordt eveneens gereflecteerd in dit 

werk. Enerzijds zullen wij gedroogde bloedspots gebruiken voor het ontwikkelen van analytische methodes in 

een toxicologische context. Anderzijds tonen wij aan dat gedroogde bloedspots eveneens gebruikt kunnen 

worden voor genotypering. Genotypering is een proces waarbij de genetische samenstelling van een individu 

bepaald wordt door een bepaalde DNA sequentie te onderzoeken.  

 

Gedroogde bloedspots worden gevormd door capillair bloed, verkregen via een vinger- of hielprik, op te 

vangen op een filterpapier. Deze manier van staalafname werd in de jaren ’60 geïntroduceerd voor neonatale 

screeningsdoeleinden, meer bepaald voor het opsporen van zeldzame metabole stoornissen in pasgeborenen 

via een hielprik. Nadien won deze alternatieve staalafname aan populariteit en werd deze techniek ook 

gebruikt in o.a. (pre-)klinische studies, farmacokinetiek, toxicologie,… De toegenomen interesse in deze 

alternatieve staalafname is te danken aan de vele voordelen van gedroogde bloedspots. De staalafname is 

namelijk weinig invasief en kan gemakkelijk worden uitgevoerd in afwezigheid van medisch personeel. 

Bovendien zorgt de gedroogde matrix voor een verhoogde stabiliteit en een verminderd risico op infectie. Het 

vergemakkelijkt eveneens de staalvoorbereiding, de bewaring en het transport. Vermits slechts een kleine 

hoeveelheid bloed wordt afgenomen, zijn gedroogde bloedspots ook erg geschikt voor het uitvoeren van 

studies op proefdieren en/of kinderen.  

 

In hoofdstuk 1 wordt een gedetailleerd overzicht gegeven van het gebruik van gedroogde bloedspots voor het 

opsporen van drugs, cotinine (afbraakproduct van nicotine), alcoholmerkers en geneesmiddelen die vaak 

misbruikt worden. Naast de vele voordelen worden ook de beperkingen, tekortkomingen en uitdagingen die 

gepaard gaan met deze diverse toxicologische toepassingen besproken. In de daaropvolgende hoofdstukken 

zullen we deze limitaties ook aanpakken.  

 

Een eerste beperking is dat heel wat methodes niet worden toegepast op reële patiëntenstalen en dat er ook 

vaak niet wordt nagegaan of er een verschil is tussen de concentraties bekomen in capillair bloed (i.e. bloed 

bekomen via een vinger- of hielprik) en deze in veneus bloed (i.e. bloed afkomstig van een klassieke 

bloedafname via de ader). Hoofdstuk 2 beschrijft een studie die werd opgezet om na te gaan of dergelijke 

capillaire-veneuze verschillen konden worden waargenomen voor de drug gamma-hydroxyboterzuur (GHB). 

Hiervoor werkten we samen met het St Thomas ziekenhuis in Londen aangezien ze daar op de spoedafdeling 

vaak geconfronteerd worden met GHB-geïntoxiceerde personen. Er werden van 50 patiënten met een 

vermoedelijke GHB-intoxicatie zowel veneuze als capillaire bloedspots aangemaakt. De capillaire spots werden 

bekomen door een druppel bloed bekomen via een vingerprik op te vangen op filterpapier. De veneuze spots 

werden bereid door 25 µL bloed, bekomen via een klassieke bloedafname, aan te brengen op filterpapier. 
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Zowel de capillaire als de veneuze bloedspots werden nadien minstens 2 uur gedroogd vooraleer ze in een 

plastiek zakje met droogstof bewaard werden en opgestuurd werden naar het laboratorium. Wij analyseerden 

deze bloedspots dan m.b.v. een accurate en gevoelige methode voor de bepaling van GHB. Hierbij maakten wij 

gebruik van “on-spot derivatisatie”, een techniek die resulteert in een snelle en efficiënte staalvoorbereiding, 

gevolgd door analyse m.b.v. gaschromatografie gekoppeld aan massaspectrometrie (GC-MS). Deze studie 

toonde aan dat er voor GHB een goede correlatie kan worden gevonden tussen de veneuze en de capillaire 

concentraties. Bijgevolg kan worden geconcludeerd dat, in het geval van GHB, capillair bloed een volwaardig 

alternatief is voor veneus bloed.  

 

Één van de voordelen van gedroogde bloedspots is dat er slechts een kleine hoeveelheid bloed wordt 

afgenomen. Dit leidt echter ook tot een bijkomende uitdaging bij het ontwikkelen van analytische methodes, 

nl. het bereiken van voldoende gevoeligheid (i.e. de mogelijkheid om lage concentraties op te sporen). 

Bijgevolg is erg gevoelige apparatuur nodig. Alhoewel de voorkeur meestal gegeven wordt aan 

vloeistofchromatografie gekoppeld aan (tandem) massaspectrometrie, kan in bepaalde gevallen de gewenste 

gevoeligheid ook bereikt worden m.b.v. GC. Hiervoor dient echter wel een derivatisatiestap geïntroduceerd te 

worden tijdens de staalvoorbereiding. Aangezien deze extra staalvoorbereidingsstap als tijdrovend beschouwd 

wordt, introduceerden we in hoofdstuk 3 een nieuwe derivatisatiestrategie. Hierbij combineerden we “on-spot 

derivatisatie” met “microgolf-geassisteerde derivatisatie”. In dit concept worden de derivatisatiereagentia 

rechtstreeks toegevoegd aan de gedroogde bloedspots en wordt de derivatisatietijd, i.e. de tijd die nodig is om 

de derivatisatiereactie te laten doorgaan, ingekort door de chemische reactie te laten doorgaan in een  

conventionele microgolfoven. De toepasbaarheid van deze nieuw ontwikkelde techniek werd nagegaan voor de 

kwantitatieve bepaling van GHB en het anti-epilepticum gabapentine m.b.v. GC-MS. Voor het valideren van de 

methode werden lineariteit, precisie, accuraatheid, selectiviteit, overdracht, mogelijkheid tot verdunnen, 

stabiliteit alsook de invloed van het bloedvolume en hematocriet geëvalueerd. De calibratielijnen waren lineair 

van 10 tot 100 µg/mL voor GHB en van 1 tot 30 µg/mL voor gabapentine. De methode was voldoende accuraat 

en precies. Stabiliteitsstudies toonden aan dat zowel gabapentine als GHB stabiel waren in gedroogde 

bloedspots die gedurende 84 dagen bij kamertemperatuur bewaard werden. Analyse van patiëntenstalen 

toonde aan dat “microgolf-geassisteerde on-spot derivatisatie”, gevolgd door GC-MS, een snelle en 

betrouwbare aanpak is die ook toepasbaar is in routine toxicologie. Bovendien is de door ons ontwikkelde GC-

MS methode ook geschikt voor het detecteren van andere polaire laagmoleculaire verbinden met klinische 

en/of forensische toxicologische relevantie, zoals vigabatrine, beta-hydroxyboterzuur (BHB), 1,4- en 1,2-

butaandiol, propyleenglycol en diethyleenglycol.  

 

Behalve een gebrek aan patiëntenstalen en de afwezigheid van onderzoek naar de correlatie tussen veneuze en 

capillaire concentraties, wordt er ook vaak geen vergelijking gemaakt met andere biologische vloeistoffen zoals 

serum of plasma. Opdat gedroogde bloedspots echter als een alternatieve staalafname zouden kunnen worden 

beschouwd, dient de correlatie tussen concentraties bekomen in bloedspots en deze in een referentiematrix te 

worden nagegaan. In hoofdstuk 4 deden we dit voor het anti-epilepticum gabapentine. Vermits de 
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referentiewaarden voor deze component enkel beschikbaar zijn in plasma/serum, worden gabapentine 

bepalingen steeds uitgevoerd in plasma/serum. Bereiden van plasma/serum vereist echter de aanwezigheid 

van medisch personeel en labo-apparatuur. Aangezien het gebruik van gedroogde bloedspots hier dus zeker 

een voordeel zou bieden, hebben wij een vergelijkende studie opgezet waarbij de concentratie aan 

gabapentine zowel in capillaire bloedspots als in serum werd bepaald. Tijdens deze studie merkten we op dat 

de concentraties in bloed, zoals verwacht, ongeveer 15% lager lagen dan de concentraties in serum. Er bleek 

echter wel een goede correlatie te bestaan tussen de gemeten serum concentraties en de serum concentraties 

berekend uit de bloedconcentraties. Hiermee toonden we aan dat capillaire bloedspots een goed alternatief 

kunnen vormen voor de bepaling van gabapentine. 

 

Een andere polaire laagmoleculaire verbinding die kan worden opgespoord met onze nieuw ontwikkelde 

methode is BHB. Dit ketonlichaam is een structuuranaloog van GHB en wordt in verhoogde concentraties 

teruggevonden bij o.a. alcoholici en diabetici. Alhoewel sterk verhoogde BHB concentraties ook lethaal kunnen 

zijn, wordt de bepaling van BHB niet routinematig uitgevoerd in een forensisch toxicologisch laboratorium. 

Enkel wanneer er o.b.v. de verkregen achtergrondinformatie een vermoeden is van ketoacidose (i.e. een sterk 

verhoogde BHB concentratie in bloed) wordt een BHB analyse uitgevoerd. In hoofdstuk 5 onderzochten we of 

het relevant is om BHB routinematig te bepalen. Hierbij voerden we een retrospectieve BHB analyse uit op 553 

bloedstalen, 232 urinestalen en 62 oogvochtstalen en merkten we op dat in het overgrote deel van de gevallen 

een lage BHB concentratie teruggevonden werd. We merkten echter ook op dat in de stalen waarbij de BHB 

concentratie hoger was dan 100 µg/mL steeds aceton, een ander ketonlichaam, teruggevonden werd. De 

bepaling van aceton gebeurt al routinematig en vereist geen bijkomende analyse. Hieruit concludeerden we 

dat aceton een goede initiële merker is voor ketoacidose en dat de bepaling van BHB beperkt kan worden tot 

aceton-positieve stalen.  

 

In bovenstaande toepassingen worden gedroogde bloedspots steeds gebruikt voor het opsporen van kleine 

polaire moleculen m.b.v. analytische methoden, meer bepaald voor het opsporen van drugs (GHB), 

therapeutische geneesmiddelen (gabapentine) of lichaamseigen moleculen (BHB). Gedroogde bloedspots 

kunnen echter ook gebruikt worden voor het opsporen van heel wat andere componenten, zoals 

(sporen)elementen, proteïnen, mRNA en DNA. Laatstgenoemde toonden we aan in hoofdstuk 6 door, 

vertrekkend van gedroogde bloedspots, een nieuwe methode voor haptoglobine (Hp) genotypering te 

ontwikkelen.  

 

Hp is een glycoproteïne dat bindt aan vrij hemoglobine en op die manier bescherming biedt tegen 

weefselschade. Net zoals hoofdstuk 5 kan ook hoofdstuk 6 gelinkt worden aan diabetes. Grootschalige studies 

hebben immers aangetoond dat diabetici met het fenotype Hp 2-2 een verhoogd risico hebben op het 

ontwikkelen van complicaties. Dit toont het belang aan van Hp fenotypering. Aangezien er een perfecte 

correlatie is tussen het Hp geno- en fenotype, vormen Hp genotyperingsmethoden een volwaardig alternatief 

voor tijdrovende fenotyperingsmethoden. Bestaande methodes voor Hp genotypering hebben echter als 
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nadeel dat meer dan 1 PCR amplificatie-reactie nodig is. Bijgevolg hebben we een verbeterde PCR-reactie 

ontwikkeld waarmee het Hp genotype eenvoudig kan worden bepaald a.d.h.v. 1 PCR-reactie. Bovendien is onze 

methode direct toepasbaar op gedroogde bloedspots en is geen voorafgaande tijdrovende en dure DNA 

extractie vereist. Ook laat onze methode toe om tegelijkertijd het Hp A-61C polymorfisme, i.e. een 

polymorfisme dat kan worden gelinkt aan ahaptoglobinemie (= afwezigheid van Hp in het bloed), op te sporen.  
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Appendix 1 Overview of abused substances determined in DBS, as discussed in Chapter 1. 

Drug category Analyte Reference Analytical 
Technique 

LLOQ 
Assay Range 

C = complete DBS / P = DBS punch 
Sample Preparation 
Recovery 

Application Stability of DBS 

Cannabinoids THC, THC-COOH and its 
glucuronide, THC-OH 

[11] LC-MS/MS NS 
 

C: 5 µL (10 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP: online extraction with 
ACN:15mM CH3COONH4 (97:3) 

No NS 

 THC and THC-COOH [26] GC-MS 5-100 ng/mL (THC) 
5-500 ng/mL (THC-COOH) 

C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
        - 500 μL saturated borate buffer 
          (pH 10) + 2 mL butyl acetate 
        - separation in fraction A & B 
        - evaporated, reconstituted and  
          derivatized with MTBSTFA/  
          MSTFA (fraction A/B) 
RECOV: 41.2% (THC) 
              32.2% (THC-COOH) 

No NS 

 THC [12] 
 

LC-MS/MS ± 50 ng/mL  C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH  
(online extraction) 

No NS 

 THC and THC-COOH [94] LC-HRMS 1 ng/mL  C: 20 µL 
PAPER: Sartorius TFN 
SAMPLE PREP:  
        - 100 µL MeOH + 400 µL TBME 
        - 300 µL acetone (2nd extraction) 
        - solvents evaporated and  
          re-dissolved in ACN:H2O (60:40) 
RECOV: 19% (THC) 
               36% (THC-COOH) 

No 7 d at 4°C 

 THC, THC-OH and THC-
COOH 

[7] LC-MS/MS 2.5-2000 ng/mL (THC) 
5-2000 ng/mL (THC-OH & 
THC-COOH) 
!! [ ]’s are those in a 
MeOH solution spiked to 
the DBS  

P: 7 mm   
PAPER: Whatman® 903 
SAMPLE PREP:  
        - 1 mL MeOH 
        - evaporated and re-dissolved 
          in mobile phase 
RECOV: 81-85% 

Yes (capillary DBS of 
subjects undergoing drug 
addiction treatment)  
Comparison with plasma 

3 months at RT 

 THC, THC-OH and THC-
COOH 

[93] LC-MS/MS 15 ng/mL C: ± 30 µL  
PAPER: Whatman® 903 Protein Saver 
cards 
 

Yes (capillary DBS of drug 
abusers) 
Comparison with urine 
immunoassay  

3 months at RT 
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SAMPLE PREP: 
        - 10 µL IS + 990 µL MeOH 
        - evaporated and re-dissolved in 
          mobile phase 
RECOV: 81.1% (THC) 
              79.0% (THC-OH) 
              78.3% (THC-COOH) 

Cocaine and 
metabolites 
(benzoylecgonine 
(BE), cocaethylene 
(CE), ecgonine 
methylester (ECME), 
norcocaine) 

BE [19] RIA 10-600 ng/mL  P: 6.4 mm  
PAPER: Whatman® 903 
SAMPLE PREP: 200 µL PBS:Tween 20  
RECOV: >95%  

Yes (autopsy samples & 
newborn DBS) 

>1024 h at 25, 45, 55°C (BE) 
108 h at 45°C (cocaine) 

 BE [56] LC-MS/MS ± 2-166 ng/mL  P: 6.4 mm  (reconstituted blood) 
SAMPLE PREP:  
        - 200 µL 2mM aqueous 
          CH3COONH4       
        - PP: 1 mL MeOH 
        - supernatant filtered,  
          evaporated and re-dissolved in 
          mobile phase 

Yes (capillary DBS from 
drug abusers and DBS 
from newborns & 
mothers)  
Comparison with RIA 
screening 

NS  
 

 BE [97] RIA, LC-MS /  P: 6.4 mm  
Procedures of Henderson et al., 1993 
[19] & Sosnoff et al., 1996 [56] 

Yes (newborn DBS) / 

 Cocaine [77] LC-MS/MS 24.6 ng/mL 
50-2000 ng/mL 
 

C: 100 µL (reconstituted blood) 
PAPER: Whatman® 903 
SAMPLE PREP:  
        -  phosphate buffer (3.5 mL,  
           pH6) 
        -  SPE  
        -  evaporated and re-dissolved in 
           mobile phase 
RECOV: 90-97% 

No 1 month at -20°C & 4°C 
1 month at RT: 19.9% ↓ 
(DBS from spiked blood) 

 Cocaine, BE and CE [6] LC-FLUO 20-1000 ng/mL (cocaine 
& BE) 
12-1000 ng/mL (CE) 

C: 10 µL (10 mm  punch) 
PAPER: Whatman® 903 
SAMPLE PREP:  
        - 500 µL MeOH 
        - evaporated and re-dissolved  
          in mobile phase 
RECOV: 92-93%  

Yes (capillary DBS of drug 
abusers) 
Comparison with plasma 

NS 

 Cocaine [26] GC-MS 50-1000 ng/mL  C: 100 µL 
PAPER: NS 
SAMPLE PREP: 
        - 500 μL saturated borate buffer 

No NS 
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          (pH 10) + 2 mL butyl acetate 
        - separation in fraction A & B 
        - evaporated, reconstituted and  
          derivatized with MTBSTFA/  
          MSTFA (fraction A/B) 
RECOV: 83.2% 

 Cocaine and BE [12,13] 
 

LC-MS/MS ± 1 ng/mL 
 

C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

No NS 

 Cocaine, CE, BE and 
ECME 

[8] LC-MS/MS NS (screening technique) 
LOD < 1 ng/mL (cocaine 
and CE) 
LOD 1 ng/mL (BE) 
LOD 10 ng/mL (ECME) 

C: 5 µL (6 mm  punch) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH 
(automated) 
RECOV: 49-60% (cocaine) 
              47-58% (CE) 
              10-34% (BE) 
              77% (ECME)        

Yes (post-mortem 
samples) 
Comparison with routine 
STA screening on whole 
blood, as well as with GC-
MS(MS) and LC-MS/MS 
quantitative analyses 

NS 

 Cocaine, BE, CE and 
ECME 

[31] LC-MS/MS 5-200 ng/mL 
 

P: 3 mm  of 30 µL DBS 
PAPER: Whatman® 903 
SAMPLE PREP: 150 µL H2O        
RECOV: 100% (cocaine)  
              99.4% (BE) 
              85.9% (ECME) 

Yes (venous) (BE) 
(DUID) 
Comparison with whole 
blood 

6 months at: 
   -20°C (cocaine, BE, ECME) 
    4°C (BE) 
    4°C: ±55% ↓ (cocaine) 
    4°C: ±90% ↓ (ECME) 

 Cocaine [94] LC-HRMS 0.25 ng/mL 
 

C: 20 µL 
PAPER: Sartorius TFN 
SAMPLE PREP:  
        - 100 µL MeOH + 400 µL TBME 
        - 300 µL acetone (2nd extraction) 
        - solvents evaporated and  
          re-dissolved in ACN:H2O (60:40) 
RECOV: 67% 

No 7 d at 4°C (cocaine) 

 Cocaine, BE [96] LC-MS/MS 3.5 ng/mL (cocaine) 
2.3 ng/mL (BE) 
20-400 ng/ml (cocaine & 
BE) 

C: 20 µL 
PAPER: Whatman® 2012-10 filter 
cards 
SAMPLE PREP:  
        - 5 mL MeOH 
        - evaporated and re-dissolved   
          in mobile phase 
 RECOV:103%  (cocaine) 
              100% (BE) 

Yes (venous DBS of 
polydrug abusers) 
Comparison with whole 
blood 

NS 

 Cocaine, BE, CE and 
ECME 

[47] LC-MS/MS 2 ng/mL 3 x 3 mm   punches 
PAPER: Bond Elut Dried Matrix 
Spotting cards 
 

Yes (post-mortem 
samples) 
Comparison with routine 
analysis 

NS 
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SAMPLE PREP:  
        - 900 µL MeOH/0.1% formic 
          acid 
        - evaporated and re-dissolved 
           in 100 µL of water with 0.1% 
           of formic acid 
RECOV: 12-54% (cocaine) 
              20-44% (BE) 
              11-45% (CE) 
              25-34% (ECME) 

 

 Cocaine, BE and 
norcocaine 

[63] LC-HRMS 1-200 ng/mL P: 3 mm  
PAPER: Whatman® 903  
SAMPLE PREP: 
        - 1 mL 1% formic acid in water  
        - SPE 
        - evaporated and re-dissolved 
          in mobile phase  
RECOV: 43.3-52.1% (cocaine) 
              48.6-64.5% (BE) 
              35.2-48.6% (norcocaine) 

Yes (capillary DBS 
following controlled 
intravenous cocaine 
administration) 
Comparison with venous 
blood 

24 h at RT, 72 h at 4°C, 72 h 
at -20°C, 3 freeze-thaw 
cycles 

 Cocaine and BE [93] LC-MS/MS 5 ng/mL C: ± 30 µL 
PAPER: Whatman® 903 Protein Saver 
cards 
SAMPLE PREP: 
        - 10 µL IS + 990 µL MeOH 
        - evaporated and re-dissolved in 
          mobile phase 
RECOV: 90.8% (cocaine) 
              89.9% (BE) 

Yes (capillary DBS of drug 
abusers) 
Comparison with urine 
immunoassay  

3 months at RT 

Opiates 6-monoacetylmorphine 
(6-MAM) 

[79] LC-MS/MS NS  C: 100 µL 
PAPER: Whatman® 903 

SAMPLE PREP: 0.5% NH4OH  LLE 
(chloroform/isopropanol) 

No 6 d at 4°C, RT & 40°C 

 Morphine and 6-MAM [67] LC-MS/MS 14 ng/mL (morphine) 
27 ng/mL (6-MAM) 
50-500 ng/mL (morphine 
& 6-MAM) 

 

C: 100 µL 
PAPER: Whatman® BFC 180 
SAMPLE PREP:  
        - 1mL 0.1M borate buffer (pH 
           8.5) 
        - 1.5 mL ethyl acetate (LLE) 
        - evaporated and reconstituted  
          in  suitable solvent 
RECOV: 23-37% (morphine) 
              76-86% (6-MAM) 

Yes (venous DBS) 
(drug abusers)  
Comparison with whole 
blood 

10% ↓ in both morphine & 
6-MAM upon drying 
 
Morphine:  
     7 d at 4°C, -20°C;  
     5 d at 40°C 
6-MAM:  
     5 d at 40°C: ±50% ↓ 

 Morphine, codeine and 
their glucuronides 

[11] LC-MS/MS NS 
 

C: 5 µL (10 mm  punch covers 
complete spot) 

No NS 
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PAPER: Whatman® 903 
SAMPLE PREP: online extraction with 
ACN:15 mM CH3COONH4 (97:3) 

 Oxycodone [116] LC-MS/MS 100 pg/mL RECOV: ±85% No NS 

 Morphine, morphine-3-
glucuronide (M3G) and 
morphine-6-glucuronide 
(M6G) 

[100] 
 

LC-MS/MS 
 

1-1000 ng/mL (morphine 
& M3G) 
2.5-1000 ng/mL 
(M6G) 

P: 6.4 mm  from 50 µL spot 
PAPER: Whatman® 903 
SAMPLE PREP:  
        - 100 µL H2O 
        - PP 
RECOV: 99.6-108.3% (morphine) 
              95.6-102% (M3G) 
              99.7-103.3% (M6G) 

Yes (method used in PK 
studies) 

≥ 3 freeze-thaw cycles; 
≥ 3 d at RT 
7 d at 4°C, -20°C, -80°C 

 Morphine, hydro-
morphone, oxycodone 
and noroxycodone 

[101] LC-MS/MS NS  C: 100 µL 
PAPER: Whatman® 903 

Yes (venous DBS) 
Comparison with whole 
blood 

NS 

 Morphine and codeine [26] GC-MS 10-1000 ng/mL  C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
        - 500 μL saturated borate buffer 
          (pH 10) + 2 mL butyl acetate 
        - separation in fraction A & B 
        - evaporated, reconstituted and  
          derivatized with MTBSTFA/  
          MSTFA (fraction A/B) 
RECOV: 50% (morphine) 
              >75% (codeine) 

No NS 

 Morphine, codeine, 6-
MAM and hydrocodone 

[12,13] 
 

LC-MS/MS ± 20 ng/mL (morphine) 
± 5 ng/mL (codeine) 
± 1 ng/mL (6-MAM, 
hydrocodone) 

C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

No NS 

 Morphine, 6-MAM, M3G 
and codeine 

[8] LC-MS/MS NS (Screening technique) 
LOD 100 ng/mL 
(morphine) 
LOD 5 ng/mL (6-MAM) 
LOD 10 ng/mL (M3G) 
LOD 50 ng/mL (codeine) 

C: 5 µL (6 mm  punch) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH 
(automated) 
RECOV: 20% (morphine) 
              38% (6-MAM) 
              17% (M3G) 
              40% (codeine) 

Yes (post-mortem 
samples) 
Comparison with routine 
STA screening on whole 
blood, as well as with GC-
MS(MS) and LC-MS/MS 
quantitative analyses 

NS 

 Morphine, 
hydromorphone, 
codeine, hydrocodone, 
oxymorphone, 
dihydrocodeine and 
oxycodone 

[45] LC-MS/MS 5-1000 ng/mL  
 
Except oxycodone 10-
1000 ng/mL 

2 x 5 mm  punches 
PAPER: Ahlstrom 226 
SAMPLE PREP:  5% formic acid 
RECOV: ±65% 
 

Yes  
Comparison with plasma 

32 d 
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Morphine, codeine, M3G 
and M6G 

[31] LC-MS/MS 5-200 ng/mL 
(morphine, codeine) 
10-200 ng/mL 
(M3G & M6G) 

P: 3 mm  of 30 µL DBS 
PAPER: Whatman® 903 
SAMPLE PREP: 150 µL H2O 
RECOV: 90% (morphine) 
              93.2% (codeine) 

Yes (venous DBS) 
Comparison with whole 
blood (morphine) 

6 months at -20°C 

 Morphine [61] LC-MS/MS 4-1000 ng/mL  P: 3 mm   
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH:H2O 
(1:9)               

No NS 

 Codeine, morphine and 
6-MAM 

[96] LC-MS/MS 9.4 ng/mL (codeine) 
10 ng/mL (morphine) 
11 ng/mL (6-MAM) 
100-2000 ng/mL 

C: 20 µL 
PAPER: Whatman® 2012-10 filter 
cards 
SAMPLE PREP:  
        - 5 mL MeOH 
        - evaporated and re-dissolved   
          in mobile phase  
RECOV: 101% (codeine) 
              98% (morphine) 
              100% (6-MAM) 

Yes (venous DBS of 
polydrug abusers) 
Comparison with whole 
blood and plasma 

NS 

 Morphine and 6-MAM [47] LC-MS/MS 2 ng/mL 3 x 3 mm  punches 
PAPER: Bond Elut Dried Matrix 
Spotting cards 
SAMPLE PREP:  
        - 900 µL MeOH/0.1% formic 
          acid 
        - evaporated and re-dissolved 
          in 100 µL of water with 0.1% 
          of formic acid 
RECOV: 16-33% (morphine) 
              17-46% (6-MAM) 

Yes (post-mortem 
samples) 
Comparison with routine 
analysis 
 

NS 

 Morphine, codeine, 
oxycodone and 
hydrocodone 

[40] LC-MS/MS 1-500 ng/mL P: 2 mm   ≈ clamp size 
PAPER: Ahlstrom 226 
SAMPLE PREP: DBSA: 
        - automated flow-through 
          elution of DBS cards  
        - online SPE 
        - elution from the SPE cartridge 
          onto the LC column using the 
          LC mobile phase 
RECOV: 77.3-78.1% (morphine) 
              68.8-70.1% (codeine) 
              72.9-78.0% (oxycodone) 
              71.7-74.0% (hydrocodone) 

Yes (capillary DBS of 
volunteer who was 
administered 10 mg 
hydrocodone) 

Morphine: 30 d at RT, 55 d 
at 4°C, 95 d at -20°C 
Codeine, oxycodone, 
hydrocodone: 15 d at RT,  
95 d at 4°C & -20°C 

 Morphine, codeine and 
6-MAM 

[93] LC-MS/MS 5 ng/mL C: ± 30 µL 
PAPER: Whatman® 903 Protein Saver 

Yes (capillary DBS of drug 
abusers) 

3 months at RT 
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cards 
SAMPLE PREP: 
        - 10 µL IS + 990 µL MeOH 
        - evaporated and re-dissolved in 
          mobile phase 
RECOV: 83.6% (morphine) 
              88.0% (codeine) 
              89.2% (6-MAM) 

Comparison with urine 
immunoassay  

Non-opiate opioids Methadone and 
metabolites (EDDP, 
EMDP) 

[30] LC-MS/MS 0.1-100 ng/mL  P: 6.4 mm   
PAPER: Whatman® 903 
SAMPLE PREP:  
        - 100 µL H2O 
        - PP 
        - online extraction 
RECOV: NS 

No NS 

 Methadone [26] GC-MS 10-1000 ng/mL 
 

C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
        - 500 μL saturated borate buffer 
          (pH 10) + 2 mL butyl acetate 
        - separation in fraction A & B 
        - evaporated, reconstituted and  
          derivatized with MTBSTFA/  
          MSTFA (fraction A/B) 
RECOV: 78.5% 

No NS 

 Methadone and EDDP [12,13] 
 

LC-MS/MS ± 1 ng/mL (methadone) 
± 5 ng/mL (EDDP) 

C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

NS NS 

 Methadone [8] LC-MS/MS NS  
Screening technique 
LOD < 1 ng/mL  

C: 5 µL (6 mm  punch) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH 
(automated) 
RECOV: 36-56% (methadone) 
 

Yes (post-mortem 
samples) 
Comparison with routine 
STA screening on whole 
blood, as well as with GC-
MS(MS) and LC-MS/MS 
quantitative analyses 

NS 

 Methadone [45] LC-MS/MS 5-1000 ng/mL  2 x 5 mm  punches 
PAPER: Ahlstrom 226 
SAMPLE PREP:  5% formic acid 
RECOV: ±65% 

Yes  
Comparison with plasma 

32 d 

 Methadone [20] LC-
Coulometry 

4 ng/mL 
4-500 ng/mL (on-column 
concentration) 

C: Theoretical volume calculated  

from  
PAPER: Whatman® FTA® classic 
SAMPLE PREP:  
        - 250 μL phosphate buffer/ACN   

Yes (capillary DBS from 
methadone maintenance 
patients) 
Comparison with plasma 

1 month at RT  
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          (20:80): microwave-assisted      
           elution 

 - evaporated and re-dissolved in   
           250μL phosphate buffer     
         - SPE: MEPS  
         - evaporated and re-dissolved in  
           mobile phase  
RECOV: 90.1-94.8% 

 Methadone [10] LC-MS 2 ng/mL 
17.5-560 ng/mL 

C: 10 µL (8 mm Ø) 
PAPER: alginate and chitosan foam 
SAMPLE PREP: 
         - foam dissolved in 300 μL  
           1 mM HCl  
         - EME: 10 min, 21µL 10 mM 
           HCOOH 
         - diluted 1:1 with mobile phase 
RECOV: 105% (alginate) 
              115% (chitosan) 

No 50 d at -18°C, 4°C, RT & 
37°C 

 Methadone 
Pethidine 

[36] LC-MS/MS 0.3 ng/mL P: 3 mm  
PAPER: Agilent Bond Elut DMS 
SAMPLE PREP:  
         - 500 µL MeOH:0.1% HCOOH  
           (80:20) 
         - diluted with 10 mM HCl (1:1) 
         - EME (25 min; 25 µL 10 mM 
           HCl) 
RECOV: 48% (methadone) 
              17% (pethidine) 

No NS 

 Methadone [47] LC-MS/MS 0.2-50 ng/mL 3 x 3 mm  punches 
PAPER: Bond Elut Dried Matrix 
Spotting cards 
SAMPLE PREP:  
         - 900 µL MeOH/0.1% formic 
           acid 
         - evaporated and re-dissolved 
           in 100 µL of water with 0.1% 
           of formic acid 
RECOV: 15-31%  

Yes (post-mortem 
samples) 
Comparison with routine 
analysis 
 

NS 

 Methadone and EDDP [93] LC-MS/MS 5 ng/mL C: ± 30 µL 
PAPER: Whatman® 903 Protein Saver 
cards 
SAMPLE PREP: 
         - 10 µL IS + 990 µL MeOH 
         - evaporated and re-dissolved in 
           mobile phase 

Yes (capillary DBS of drug 
abusers) 
Comparison with urine 
immunoassay  

3 months at RT 
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RECOV: 81.7% (methadone) 
              79.5% (EDDP) 

 Buprenorphine and 
metabolites 
(norbuprenorphine and 
their glucuronides) 

[11] 
 

LC-MS/MS NS 
 

C: 5 µL (10 mm  punch covers 
complete spot) 
PAPER: Whatman

®
 903 

SAMPLE PREP: online extraction with 
ACN:15 mM CH3COONH4 (97:3) 

Yes (animal study) 
 

NS 

 Buprenorphine [116] LC-MS/MS NS (>25 pg/mL) RECOV: ±45% No NS 

 Buprenorphine [26] 
 
 
 

GC-MS 5-100 ng/mL 
 

C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
         - 500 μL saturated borate buffer 
           (pH 10) + 2 mL butyl acetate 
         - separation in fraction A & B 
         - evaporated, reconstituted and  
           derivatized with MTBSTFA/  
           MSTFA (fraction A/B) 
RECOV: 49.8% 

No NS 

 Buprenorphine [13] LC-MS/MS NS C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

No NS 

 Buprenorphine [45] LC-MS/MS 1-100 ng/mL   2 x 5 mm  punches 
PAPER: Ahlstrom 226 
SAMPLE PREP: 5% formic acid 
RECOV: ±65% 

Yes  
Comparison with plasma 

21 d 

 Fentanyl and 
metabolites (norfentanyl 
and 
despropionylfentanyl) 

[103] LC-MS/MS 0.1-100 ng/mL (fentanyl) 
0.25-100 ng/mL 
(norfentanyl & 
despropionylfentanyl) 

P: 6.4 mm  from 50 µL spot 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - 100 µL H2O 
         - PP 
RECOV: 75-78% 

Yes 
(PK study in neonates & 
children) 

DBS from spiked blood 
6 d at -20°C & -80°C 
3 d at RT (all 3 analytes) 
5 d at RT (fentanyl) 
 

 Fentanyl and norfentanyl [101] LC-MS/MS NS  C: 100 µL 
PAPER: Whatman® 903 

Yes (venous DBS) 
Comparison with whole 
blood 

NS 

 Fentanyl [12,13] 
 

LC-MS/MS ± 0.2 ng/mL  C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

NS NS 

 Fentanyl [45] LC-MS/MS 0.5-100 ng/mL  2 x 5 mm  punches 
PAPER: Ahlstrom 226 
SAMPLE PREP: 5% formic acid 
RECOV: ±65% 

Yes  
Comparison with plasma 

32 d 

 Fentanyl, alfentanyl, 
norfentanyl, sufentanyl 

[47] LC-MS/MS 0.2 ng/mL 3 x 3 mm  punches Yes (post-mortem 
samples) 

NS 



 

 

  

162 

 

PAPER: Bond Elut Dried Matrix 
Spotting cards 
SAMPLE PREP:  
         - 900 µL MeOH/0.1% formic 
           acid 
         - evaporated and re-dissolved 
           in 100 µL of water with 0.1% 
           of formic acid 
RECOV: 14-54% (fentanyl) 
              14-52% (alfentanyl) 
              22-48% (sufentanyl) 
              21-44% (norfentanyl) 

Comparison with routine 
analysis 
 

 Fentanyl [40] LC-MS/MS 0.1-50 ng/mL P: 2 mm   ≈ clamp size 
PAPER: Ahlstrom 226 
SAMPLE PREP: DBSA: 
         - automated flow-through 
           elution of DBS cards  
         - online SPE 
         - elution from the SPE cartridge 
           onto the LC column using the 
           LC mobile phase 
RECOV: 73.5-74.6%  

No Fentanyl: 30 d at RT, 55 d at 
4°C, 95 d at -20°C 

 Tramadol 
 
 
 
 

[26] 
 
 
 
 

GC-MS 50-5000 ng/mL C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
         - 500 μL saturated borate buffer 
           (pH 10) + 2 mL butyl acetate 
         - separation in fraction A & B 
         - evaporated, reconstituted and  
           derivatized with MTBSTFA/  
           MSTFA (fraction A/B) 
RECOV: 78% 

No NS 

 Tramadol [12] 
 

LC-MS/MS ± 0.5 ng/mL  C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

NS NS 

 Tramadol and ODM-
tramadol 

[45] LC-MS/MS 5-1000 ng/mL  2 x 5 mm  punches 
PAPER: Ahlstrom 226 
SAMPLE PREP: 5% formic acid 
RECOV: ±65% 

Yes  
Comparison with plasma 

32 d 

Benzodiazepines Diazepam, 
flunitrazepam, 
lorazepam, nitrazepam, 
oxazepam and 
temazepam 

[77] 
 
 
 
 

LC-MS/MS 9.9 ng/mL (diazepam) 
15.8 ng/mL 
(flunitrazepam) 
11 ng/mL (lorazepam) 
18 ng/mL (nitrazepam) 

C: 100 µL (reconstituted blood) 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - phosphate buffer (3.5 mL, 
           pH6) 

No (DBS from spiked blood) 
1 month at -20°C 
1 month at 4°C 
1 month at RT: 

Diazepam: 12.3% ↓        
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20.6 ng/mL (oxazepam) 
10.8 ng/mL (temazepam) 
50-2000 ng/mL 

         - SPE 
         - evaporated and re-dissolved 
           in mobile phase 
RECOV: 81-106% (diazepam) 

Flunitrazepam: 15% ↓ 
Lorazepam: 11% ↓; 
Nitrazepam:  15.5% ↓ 
Oxazepam: 12% ↓ 
Temazepam: 15% ↓ 

 Midazolam [117,118] LC-MS/MS 100 pg/mL 
 

P: 4 mm  of 20 µL DBS 
SAMPLE PREP: MeOH 

Yes At -80°C, -20°C and at RT 

 Diazepam, nordiazepam, 
oxazepam and oxazepam 
glucuronide 

[11] LC-MS/MS NS 
 

C: 5 µL (10 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP: online extraction with 
ACN:15 mM CH3COONH4 (97:3) 

No NS 

 Midazolam [119] LC-MS/MS 0.35 ng/mL 
0.35-72 ng/mL  

P: 3 mm  
PAPER: Whatman® FTA® EluteTM 
SAMPLE PREP: 100 µL MeOH      

Yes (clinical samples) 5 d at RT 

 Alprazolam [120] LC-MS/MS 0.1-500 ng/mL  P:  4 mm  
PAPER: DMPK A, B and C cards 
SAMPLE PREP:  
         - 100 μl MeOH 
         - supernatant diluted with H2O  
           (1:1) 

No NS 

 Midazolam [46] LC-MS/MS 0.1-100 ng/mL  
Except when using a  

3-mm  punch:  
0.3-100 ng/mL 

P: 6 mm  (fully validated) 

    3 mm  (partially validated) 

    2 x 3 mm  (partially validated) 
PAPER: Ahlstrom 226 
SAMPLE PREP:   
         - 50 µL H2O to pre-wet 
         - 1000 µL MeOH 
         - evaporated and re-dissolved in  
           a suitable solvent  
RECOV: ±40% 

Yes (phenotyping study) 
Comparison with plasma 
and whole blood 

4 w at RT 

 Alprazolam [91] LC-MS/MS 0.7 ng/mL 
2.5-50 ng/mL 
 

C: 100µL (18 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - 1 mL borate buffer pH 8.5   
           + 1mL toluene/isoamylalc. 
           (95:5) => LLE 
         - evaporated and re-dissolved 
           in mobile phase 

Yes (venous DBS) 
(DUID study) 
Comparison with whole 
blood 

NS 

 Lorazepam, alprazolam, 
clonazepam, midazolam, 
nitrazepam, 
phenazepam, 
nordiazepam, oxazepam, 

[26] GC-MS 5-250 ng/mL (lorazepam) 
5-500 ng/mL (alprazolam 
& clonazepam) 
10-1000 ng/mL 
(midazolam & 

C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
         - 500 μL saturated borate buffer 
           (pH 10) + 2 mL butyl acetate 

No NS 
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diazepam and 
temazepam) 

nitrazepam) 
20-1000 ng/mL 
(phenazepam) 
20-2000 ng/mL 
(nordiazepam) 
50-1250 ng/mL 
(oxazepam) 
50-2500 ng/mL 
(diazepam) 
50-5000 ng/mL 
(temazepam) 

         - separation in fraction A & B 
         - evaporated, reconstituted and  
           derivatized with MTBSTFA/  
           MSTFA (fraction A/B) 
RECOV: 87.4-96.6% 

 

 Midazolam, alprazolam 
and OH-alprazolam 

[37] LC-MS/MS 1-500 ng/mL  P: 3 mm  
PAPER: Ahlstrom 226 
SAMPLE PREP:  
         - 250 µL MeOH  
           (semi-automated extraction) 
         - evaporated and re-dissolved 
           in a suitable solvent 

No NS 

 Prazepam, clobazam, 
flurazepam, midazolam, 
triazolam, alprazolam, 7-
aminoflunitrazepam, 
nitrazepam, 
nordiazepam, 
temazepam, OH-
midazolam, 
flunitrazepam, 
lorazepam, clonazepam, 
diazepam and oxazepam 

[12,13] 
 

LC-MS/MS ± 0.1 ng/mL (prazepam) 
± 0.5 ng/mL (clobazam, 
flurazepam, midazolam, 
triazolam); ± 1 ng/mL 
(alprazolam, 7-
aminoflunitrazepam, 
nitrazepam, 
nordiazepam, 
temazepam), ± 2 ng/mL 
(OH-midazolam) 
± 5 ng/mL 
(flunitrazepam, 
lorazepam) 
± 10 ng/mL (clonazepam, 
diazepam, oxazepam) 

C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

No NS 

 Diazepam, 7-
aminoclonazepam, 
midazolam and OH-
midazolam 

[8] LC-MS/MS NS 
Screening technique 
LOD 50 ng/mL 
(diazepam) 
LOD 100 ng/mL (7-
aminoclonazepam) 
LOD <1 ng/mL 
(midazolam) 
LOD 5 ng/mL (OH-
midazolam) 

C: 5 µL (6 mm  punch) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH 
(automated) 
RECOV: 42% (diazepam) 
              25% (7-aminoclonazepam) 
              48% (midazolam) 
              40% (OH-midazolam) 

Yes (post-mortem 
samples) 
Comparison with routine 
STA screening on whole 
blood, as well as with GC-
MS(MS) and LC-MS/MS 
quantitative analyses 

NS 

 Desmethylflunitrazepam, 
flurazepam, 

[5] 
 

LC-MS/MS 1ng/mL 
0.5-100 ng/mL 

C: 5 µL (6 mm  punch covers 
complete spot) 

Yes (venous DBS) 
(DUID)  

30 d at -20°C & RT 
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lormetazepam, 
triazolam, alprazolam, 
OH-alprazolam, 
clonazepam, 7-
aminoclonazepam, 
desalkylflurazepam, 
flunitrazepam, 7-
aminoflunitrazepam, 
lorazepam, midazolam, 
OH-midazolam, 
clobazam, diazepam, 
nitrazepam, 
nordiazepam, oxazepam, 
prazepam and 
temazepam 

(desmethylflunitrazepam, 
flurazepam, 
lormetazepam, 
triazolam) 
4 ng/mL 
2-500 ng/mL 
(alprazolam, OH-
alprazolam, clonazepam, 
7-aminoclonazepam, 
desalkylflurazepam, 
flunitrazepam, 7-
aminoflunitrazepam, 
lorazepam, midazolam, 
OH-midazolam) 
40 ng/mL 
20-5000 ng/mL 
(clobazam, diazepam, 
nitrazepam, 
nordiazepam, oxazepam, 
prazepam, temazepam) 

PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH (in-vial 
extraction) 
RECOV: 51.9-98% 

 

Comparison with routine 
LC-MS method 

 Midazolam [39] LC-HRMS 5-1000 ng/mL (online) 
 

P: 2 mm   ≈ clamp size 
SAMPLE PREP:  
         - SCAP: DBS cards were  
           automatically positioned into 
           the mobile phase flow path, 
           followed by online extraction,        
           using the mobile phase as 
           extraction solvent. 
RECOV: 80.6% DMPK-C 
              66.2% Auto DBS cards 

Yes (animal study) 50 d at RT 

 Alprazolam, 
bromazepam, 
clordiazepoxide, 
clobazam, clonazepam, 
clotiazepam, diazepam, 
estazolam, 
flunitrazepam, 
flurazepam, lorazepam, 
midazolam, nitrazepam, 
nordiazepam, oxazepam, 
prazepam, temazepam, 
triazolam, 7-
aminoclonazepam, 7-
aminoflunitrazepam, 7-
aminonitrazepam, OH-

[122] LC-MS/MS 4 ng/mL (alprazolam, 
clonazepam) 
2 ng/mL (bromazepam, 
chlordiazepoxide, 
clobazam, diazepam, 
estazolam, 
flunitrazepam, 
flurazepam, lorazepam, 
midazolam, nitrazepam, 
prazepam, triazolam, OH-
alprazolam, OH-
midazolam, OH-
triazolam, 
desalkylflurazepam)  
3.5 ng/mL (nordiazepam) 

P: 6 mm  
PAPER: FTA DMPK-C  
SAMPLE PREP:  
         - 300 µL MeOH:ACN (1/1) 
         - evaporated and re-dissolved in 
           100 µL mobile phase 
RECOV: 62.1-82.9% (alprazolam) 
              63.5-84.2% (bromazepam) 
              59.3-97.5% (chlordiazepo- 
              xide) 
              75.6-78.6% (clobazam) 
              59.1-79.3%  (clonazepam) 
              69.9-86.4% (diazepam) 
              71.4-86.4% (estazolam) 
              74.4-85.3% (flunitrazepam) 

No NS 
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alprazolam, OH-
midazolam,OH-triazolam 
and desalkylflurazepam 

3 ng/mL (oxazepam, 
temazepam) 
2.5 ng/mL (7-
aminoclonazepam, 7-
aminoflunitrazepam, 7-
aminonitrazepam) 

              62.7-78.1% (flurazepam) 
              53.6-74.9% (lorazepam) 
              65.0-89.9% (midazolam) 
              85.5-92.2% (nitrazepam) 
              66.7-85.1% (nordiazepam) 
              67.8-94.1% (oxazepam) 
              71.3-92.6% (prazepam) 
              72.5-87.1% (temazepam) 
              75.6 -82.7% (triazolam)  
              65.1-78.3% (7-aminoclonaze- 
              pam) 
              64.3-70.1% (7-aminoflunitra- 
              zepam) 
              60.7-79.8% (7-aminonitraze- 
              pam) 
              67.6-89.2% (OH-alprazolam)  
              67.4-79.0% (OH-midazolam) 
              58.7-79.0% (OH-triazolam) 
              73.2-93.7% (desalkylfluraze- 
              pam) 

 Medazepam, oxazepam, 
lorazepam, alprazolam, 
clonazepam, midazolam, 
nordiazepam, 
lormetazepam and 
diazepam 

[93] LC-MS/MS 1 ng/mL (medazepam,  
lorazepam, alprazolam, 
clonazepam, midazolam, 
nordiazepam, 
lormetazepam and 
diazepam) 
5 ng/mL (oxazepam) 

C: ± 30 µL 
PAPER: Whatman® 903 Protein Saver 
cards 
SAMPLE PREP: 
         - 10 µL IS + 990 µL MeOH 
         - evaporated and re-dissolved in 
           mobile phase 
RECOV: 84.8% (medazepam) 
              81.5% (oxazepam) 
              88.0% (lorazepam) 
              89.6% (alprazolam) 
              83.7% (clonazepam) 
              81.2% (midazolam) 
              88.4% (nordiazepam) 
              88.6% (lormetazepam) 
              89.3% (diazepam) 

Yes (capillary DBS of drug 
abusers) 
Comparison with urine 
immunoassay  

3 months at RT 

Z-drugs Zolpidem [9] LC-MS/MS (0.1-500 ng/mL) P: 3 mm  of 15 µL DBS 
PAPER: Bond Elut DMS 
SAMPLE PREP:  
         - 300 µL 0.1% HCOOH in 80% 
           MeOH 
         - evaporated and reconstituted 
           in mobile phase 
RECOV: 102-110% 

No NS 

 Zolpidem [12,13] LC-MS/MS ± 1 ng/mL  C: 5 µL No NS 
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 PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

 Zolpidem [8] LC-MS/MS NS 
Screening technique 
LOD < 1 ng/mL  

C: 5µL (6 mm  punch) 
PAPER: Whatman

®
 903 

SAMPLE PREP: 100 µL MeOH 
(automated) 
RECOV: 35%  
 

Yes (post-mortem 
samples) 
Comparison with routine 
STA screening on whole 
blood, as well as with GC-
MS(MS) and LC-MS/MS 
quantitative analyses 

NS 

 Zolpidem [5] 
 

LC-MS/MS 4 ng/mL 
2-500 ng/mL  

C: 5 µL (6 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH (in-vial 
extraction) 
RECOV: 66.4-81.6% 

Yes (venous DBS) 
(DUID) 
Comparison with routine 
LC-MS method 

30 d at -20°C & RT 

 Zolpidem [122] LC-MS/MS 2.5 ng/mL P: 6 mm  
PAPER: FTA DMPK-C  
SAMPLE PREP:  
         - 300 µL MeOH:ACN (1/1) 
         - evaporated and re-dissolved in 
           100 µL mobile phase 
RECOV: 63.4-83.3%  

No NS 

 Zopiclone  [26] GC-MS 10-1000 ng/mL 
 

C: 100 µL 
PAPER: NS 
SAMPLE PREP:  
        - 500 μL saturated borate buffer 
          (pH 10) + 2 mL butyl acetate 
        - separation in fraction A & B 
        - evaporated, reconstituted and  
          derivatized with MTBSTFA/  
          MSTFA (fraction A/B) 
RECOV: 79.3% 

No NS 

 Zopiclone [12,13] 
 

LC-MS/MS ± 2 ng/mL  C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

No NS 

 Zopiclone [91] 
 

LC-MS/MS 1.2 ng/mL  
2.5-50 ng/mL  

 

C: 100 µL 
PAPER: Whatman® 903 
SAMPLE PREP:  
         -  1 mL borate buffer pH 8.5  
            + 1mL toluene/isoamylalc. 
            (95:5) => LLE 
         -  evaporated and re-dissolved in  
            mobile phase 

Yes (venous DBS) 
(DRUID study) 
Comparison with whole 
blood 

NS 
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 Zopiclone and ACP (2-
amino-5-chloropyridine) 

[78] LC-MS/MS 6.4 ng/mL 
(zopiclone) 
0.14 ng/mL 
(ACP) 
 

C: 100 µL 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - 1 mL borate buffer pH 8.5  
           + 1mL toluene/isoamylalc. 
           (95:5) => LLE 
         - evaporated and re-dissolved in  
           mobile phase 
RECOV: 67.1-79.7% (zopiclone) 
              80.4-83.8% (ACP) 

Yes Authentic & spiked DBS 
30 d at -20°C 
22 d at 4°C 
8-30 d at 20°C 
3 d at 40°C 

 Zopiclone [5] 
 

LC-MS/MS 4 ng/mL C: 5 µL (6 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH (in-vial 
extraction) 
RECOV: 61.6-67.2% 

No 30 d at -20°C & RT 

 Zaleplon [5] 
 

LC-MS/MS 4 ng/mL C: 5 µL (6 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH (in-vial 
extraction) 
RECOV: 77.4-89.8% 

No 30 d at -20°C & RT 

Amphetamine and 
analogues 

Amphetamine and 
MDMA 

[79] LC-MS/MS NS  C: 100 µL 
PAPER: Whatman® 903 

SAMPLE PREP: 0.1M NaOH  LLE 
(ethyl acetate) 

Yes (venous) 
Comparison with whole 
blood 

NS 

 Amphetamine, MDMA 
and MDA 

[91] 
 

LC-MS/MS 3.0 ng/mL  
5-50 ng/mL 
(amphetamine) 
5.7 ng/mL  
50-400 ng/mL (MDMA) 
0.4 ng/mL  
2.5-30 ng/mL (MDA) 

C: 100 µL (18 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - 1 mL 0.01 M NaOH  
         - LLE: 1.5 mL ethyl acetate 
         - acidified, evaporated and re- 
           dissolved in  mobile phase  

Yes (venous DBS) 
(DRUID study) 
Comparison with whole 
blood 

NS 

 MDMA and MDA [121] LC-MS/MS 5.7 ng/mL  
5-40 & 50-400 ng/mL 
(MDMA) 
0.40 ng/mL  
0.25-3 & 2.5-30 ng/mL 
(MDA) 
 

C: 100 µL (18 mm  punch covers 
complete spot) 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - 1 mL 0.01 M NaOH  
         - LLE: 1.5 mL ethyl acetate 
         - acidified, evaporated and re- 
           dissolved in  mobile phase 
RECOV: >85% (MDMA)     
              >95% (MDA) 

Yes (venous DBS) 
(DRUID study) 
Comparison with whole 
blood 

NS 

 Amphetamine, [26] GC-MS 20-2000 ng/mL C: 100 µL No NS 
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methamphetamine, 
MDA and MDMA 

PAPER: NS 
SAMPLE PREP:  
         - 500 μL saturated borate buffer 
           (pH 10) + 2 mL butyl acetate 
         - separation in fraction A & B 
         - evaporated, reconstituted and  
           derivatized with MTBSTFA/  
           MSTFA (fraction A/B) 
RECOV: 87.3-98.6% 

 Amphetamine, MDMA, 
MDA, MDEA and 
methamphetamine 

[12,13] 
 

LC-MS/MS ± 40 ng/mL 
(amphetamine) 
± 2 ng/mL (MDMA) 
± 20 ng/mL (MDA) 
± 2 ng/mL (MDEA) 
± 50 ng/mL 
(methamphetamine) 

C: 5 µL 
PAPER: NS 
SAMPLE PREP: 100% MeOH (online 
extraction) 

No NS 

 Amphetamine, MDMA 
and methamphetamine 

[8] LC-MS/MS NS 
Screening technique 
LOD 1 ng/mL 
(amphetamine & MDMA) 
LOD 10 ng/mL 
(methamphetamine) 

C: 5 µL (6 mm  punch) 
PAPER: Whatman® 903 
SAMPLE PREP: 100 µL MeOH 
(automated) 
RECOV: 63% (amphetamine) 
              74% (MDMA) 
              105% (methamphetamine) 

Yes (post-mortem 
samples) 
Comparison with routine 
STA screening on whole 
blood, as well as with GC-
MS(MS) and LC-MS/MS 
quantitative analyses 

NS 

 MDMA and MDA [94] LC-HRMS (0.5-20 ng/mL) 
(qualitative) 

C: 20 µL 
PAPER: Sartorius TFN 
SAMPLE PREP:  
         - 100 µL MeOH + 400 µL TBME 
         - 300 µL acetone (2nd extraction) 
         - solvents evaporated and  
           re-dissolved in ACN:H2O (60:40) 
RECOV: 62% (MDMA)      
              78% (MDA) 

No 7 d at 4°C 

 Amphetamine, MDMA, 
MDA, MDEA and 
methamphetamine 

[31] LC-MS/MS 5-200 ng/mL 
 
 

P: 3 mm  of 30 µL DBS 
PAPER: Whatman® 903 
SAMPLE PREP: 150 µL H2O        
RECOV: 97.4% (amphetamine) 
              101.6% (MDMA) 
              121.6% (MDA) 
              88.6% (methamphetamine) 
              NS (MDEA) 

Yes (venous DBS) 
(DUID) 
Comparison with whole 
blood 

6 months at -20°C 
6 months at 4°C:  
± 40% ↓ (amphetamine)  
±25-30% ↓ (MDMA, MDA) 
±40-50% ↓ 
(methamphetamine) 

 Amphetamine, MDMA, 
MDA, MDEA and 
methamphetamine 

[80] LC-MS/MS NS  
Screening technique  
LOD 5.0 ng/mL 
(amphetamine) 
LOD 2.5 ng/mL (MDMA & 

C: 10 µL (10 mm ) 
PAPER: Bioanalysis cards 226 
SAMPLE PREP:  
         - 500 µL MeOH 
         - add to 10 µL 0.25% HCl in 

Yes (venous DBS) 
Comparison with blood 

2 w at RT & 4°C  
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MDA)  
LOD 1.0 ng/mL (MDEA)  
LOD 1.0 ng/mL 
(methamphetamine) 

           MeOH 
         - evaporated and re-dissolved in    
           mobile phase  
RECOV: 87.6-98.3% 

 Amphetamine, MDA, 
MDEA, MDMA and 
methamphetamine 

[47] LC-MS/MS 2 ng/mL 3 x 3 mm  punches 
PAPER: Bond Elut Dried Matrix 
Spotting cards 
SAMPLE PREP:  
         - 900 µL MeOH/0.1% formic 
           acid 
         - evaporated and re-dissolved 
           in 100 µL of water with 0.1% 
           of formic acid 
RECOV: 18-46% (amphetamine) 
              20-47% (MDA) 
              19-50% (MDEA) 
              19-54% (MDMA) 
              22-48% (methamphetamine) 

Yes (post-mortem 
samples) 
Comparison with routine 
analysis 
 

NS 

 Amphetamine, 
methamphetamine, 
MDMA and phentermine 

[41] LC-MS/MS 5-1000 ng/mL C: 5 µL (6 mm clamp covers complete 
spot) 
PAPER: Ahlstrom 226  
SAMPLE PREP: DBSA: 
         - automated flow-through 
           elution of DBS cards  
         - online SPE 
         - elution from the SPE cartridge 
           onto the LC column using the 
           LC mobile phase 
RECOV: 90.3-100% 

Yes (capillary DBS of 

volunteer who was 

administered 25 mg of 

phentermine) 

15 d at RT (amphetamine, 
methamphetamine, 
phentermine) 
30 d at RT (MDMA) 
15 d at RT under N2 flow 
(amphetamine, 
methamphetamine, 
phentermine) 
50 d at RT under N2 flow 
(MDMA) 
30 d at 4°C (amphetamine, 
methamphetamine) 
50 d at 4°C (MDMA, 
phentermine) 
50 d at -20°C 
(amphetamine, 
methamphetamine, MDMA, 
phentermine) 

 Amphetamine, 
methamphetamine, 
MDMA and MDA 

[93] LC-MS/MS 5 ng/mL C: ± 30 µL 
PAPER: Whatman® 903 Protein Saver 
cards 
SAMPLE PREP: 
         - 10 µL IS + 990 µL MeOH 
         - evaporated and re-dissolved in 
           mobile phase 
RECOV: 97.1% (amphetamine) 
              89.5% (methamphetamine) 

Yes (capillary DBS of drug 
abusers) 
Comparison with urine 
immunoassay  

3 months at RT 
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              99.8% (MDMA) 
              95.5% (MDA) 

GHB GHB [44] LC-MS/MS 1-128 µg/mL  3 x 3.2 mm  punches 
PAPER: Whatman® 903 
SAMPLE PREP:  
         - 200 µL MeOH 
         - evaporated and re-dissolved 
           in H2O 
RECOV: > 70% 

Yes 
(newborn DBS) 

NS 

 GHB [23] GC-MS 2-100 µg/mL C: 50 µL 
PAPER: Whatman® 903 
SAMPLE PREP:  
          - on-spot derivatization with 
            100 µL TFAA & HFB (2:1) 
          - evaporated and re-dissolved in 
            200 µL ethyl acetate 

Yes (venous DBS) 
(drug abuser) 

> 7 d at RT 
> 14 d at -20°C 

 GHB [24,25] GC-MS 2-100 µg/mL P: 6 mm  
PAPER: Whatman® 903 
SAMPLE PREP:  
          - on-spot derivatization with  
            50 µL TFAA & HFB (2:1) 
          - evaporated and re-dissolved 
            in 100 µL ethyl acetate 

Yes (fingerprick) 
Comparison with venous 
blood & DBS from venous 
blood 

> 148 d at RT 

Ketamine and 
norketamine 

Ketamine and 
norketamine 

[104] LC-MS/MS 5 ng/mL 
5-2500 ng/mL 
 

P: 3.2 mm  from 19 µL spot 
PAPER: NS 
SAMPLE PREP: MeOH/0.2M ZnSO4 
(7:3)  diluted with H2O (1:1) 

No NS 

 Ketamine [80] 
 

LC-MS/MS NS  
Screening technique  
LOD 1.0 ng/mL  

C: 10 µL (10 mm  ) 
PAPER: Bioanalysis cards 226 
SAMPLE PREP:  
          - 500 µL MeOH 
          - add to 10 µL 0.25 % HCl in  
            MeOH 
          - evaporated and re-dissolved 
            in mobile phase  
RECOV: 96.3%                

Yes (venous DBS) 
Comparison with blood 

2 w at RT & 4°C  

 Ketamine and 
norketamine 

[21] LC-DAD NS SAMPE PREP: ultrasound-assisted 
extraction followed by MEPS 

No NS 

 Ketamine and 
norketamine 

[47] LC-MS/MS 2 ng/mL 3 x 3 mm  punches  
PAPER: Bond Elut Dried Matrix 
Spotting cards 
SAMPLE PREP:  
          - 900 µL MeOH/0.1% formic 
            acid 
          - evaporated and re-dissolved 

Yes (post-mortem 
samples) 
Comparison with routine 
analysis 
 

NS 
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            in 100 µL of water with 0.1% 
            of formic acid 
RECOV: 18-45% (ketamine) 
              18-41% (norketamine) 

New psychoactive 
substances  
 
 
 

64, e.g. cathinones and 
piperazine derivatives 

[80] LC-MS/MS NS  
Screening technique  
LODs included for each 
compound  

C: 10 µL (10 mm ) 
PAPER: Bioanalysis cards 226 
SAMPLE PREP:  
          - 500 µL MeOH 
          - add to 10 µL 0.25 % HCl in 
            MeOH 
          - evaporated and re-dissolved in    
            mobile phase  

Yes (venous DBS) 
Comparison with blood 

2 w at RT & 4°C  

 Mephedrone  [41] LC-MS/MS 5-1000 ng/mL C: 5 µL (6 mm clamp covers complete 
spot) 
PAPER: Ahlstrom 226  
SAMPLE PREP: DBSA: 
          - automated flow-through 
            elution of DBS cards  
          - online SPE 
          - elution from the SPE cartridge 
            onto the LC column using the 
            LC mobile phase 
RECOV: 90.3-100% 

No 5 d at RT: 50%↓  
15 d at RT under N2 flow  
15 d at 4°C  

 
 
 

Alcohol markers Ethylglucuronide & 
ethylsulfate 
 

[110] LC-MS/MS 0.1-10 µg/mL C: 10 µL ( 1 cm  punch covers the 
whole spot) 
PAPER: 226-1004 Bioanalysis cards 
SAMPLE PREP:  
          - 500 µL MeOH 
          - evaporated and re-dissolved in  
            mobile phase 
RECOV: 43% (ethylglucuronide) 
              48% (ethylsulfate) 

Yes 
Comparison with whole 
blood 

3 w at 4°C & RT 

 PEth [111,112] 
 

LC-MS/MS 22.7 ng/mL (PEth 
18:1/18:1) 
87.3 ng/mL (PEth 
16:0/18:1) 
50-5000 ng/mL 

C: 100 µL 
PAPER: Whatman® 903 
SAMPLE PREP:  
          - 400 µL 0.5 M CH3COONa (pH 
            5) + 600 µL isopropanol  
          - 2 x 700 µL n-hexane  
          - evaporated and re-dissolved 
            in mobile phase   
RECOV: 26.6-42.5% (PEth 18:1/18:1) 
              68.9-90.7% (PEth 16:0/18:1) 

Yes 
(subjects in alcohol 
detoxification program) 
Comparison with whole 
blood 

> 30 d at -20°C & 20°C 

 PEth [43,113,114] 
 

LC-MS/MS 8 ng/mL (PEth 16:0/18:1) P: 3 X 3.2 mm  punches of 30 µL 
spot 
PAPER: Whatman® 903 

Yes (venous DBS) 
Comparison with whole 
blood 

No ex vivo de novo 
formation 
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SAMPLE PREP:  
          - 0.5 mL MeOH 
          - evaporated and re-dissolved in  
            mobile phase 
RECOV: 56.0-82.9% 

 PEth  [51] LC-MS/MS 10-2000 ng/mL (PEth 
16:0/18:1) 
10-1940 ng/mL (PEth 
18:1/18:1) 
19-3872 ng/mL (PEth 
16:0/16:0) 

C: 30 µL (venous DBS) 
P: 3 x 3 mm  (capillary DBS) 
PAPER: Whatman® 903 
SAMPLE PREP:  
          - 250 µL solution A (isopropanol, 
            10 mM ammonium acetate 
            buffer and formic acid 
            (6:4:0.2)) + 50 µL IS 
          - 1 mL n-hexane 
          - evaporated and re-dissolved in 
            250 µL (venous DBS) or 100 µL 
            (capillary DBS) solution B (50% 
            mobile phase A and 50 % 
            mobile phase B) 
RECOV: 58-74% (PEth 16:0/18:1) 
              59-77% (PEth 18:1/18:1) 
              55-78% (PEth 16:0/16:0)            

Yes  
Comparison between 
whole blood, venous DBS 
and capillary DBS 

6 months at RT 

Cotinine Cotinine [22] GC-MS NS ¼ of filled (± 200 µL) circle  ± 50 µL 
PAPER: NS 
SAMPLE PREP:  
          - 0.5 mL 0.2N NaOH  
          - heated for 1h at 80°C  
          - LLE: K2CO3 (0.5 mL, 25% 
            aqueous) + 1 mL CH2Cl2 
          - CH2Cl2.-layer transferred and 
            25 µL MeOH added  
          - evaporated to ±25 µL 

Yes (newborn DBS) NS 

 Cotinine [72] LC-MS/MS NS P: 6.35 mm  
PAPER: standard neonatal screening 
cards 
SAMPLE PREP:  
          - eluted with 200 µL H2O 
          - 1 mL MeOH added 
          - supernatant filtered, 
            evaporated and re-dissolved in 
             ± 200 µL MeOH  
          - evaporated and re-dissolved 
            in 100 µL H2O 

No 4 years at 4°C 

 Cotinine and trans 3’-
OH-cotinine 

[29] 
 

LC-MS/MS 0.2-0.3 ng cotinine/g  
(3 x 4.6 mm punches) 

P: 3.2 or 4.8 mm  (multiple 
punches) 

Yes  
Comparison with plasma 

11-26 months at -20°C 
9-11 months at RT 
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0.3-102 ng cotinine/g  PAPER: Ahlstrom 226 
SAMPLE PREP:  
          - 400 µL H2O 
          - SPE: Oasis MCX 96-well plate 
          - evaporated and re-dissolved in  
            a suitable solvent 

 

 Cotinine [49] LC-MS/MS 3.13 ng/mL  P: 6.35 mm (multiple punches) 
PAPER: Whatman® 903 
SAMPLE PREP:  
          - 450 µL H2O  
          - sonicated 75 min at 55°C 
          - PP: 50 µL 30% HClO4 
          - LLE: 1 mL 3.6M K3PO4 + CH2Cl2 

           -      acidified, evaporated and  
            re-dissolved in suitable solvent 

Yes (newborn DBS) 
Comparison with umbilical 
cord blood 

7 months at RT 

 Cotinine [115]  NS P:  2 x 6.35 mm  
PAPER: NS 
SAMPLE PREP: NS 

Yes NS 

 Nicotine 
Cotinine 
Trans-3’-OH-cotinine 
Anabasine 

[35] Paper 
spray MS 

1 ng/mL 
3 ng/mL 
2 ng/mL 
1 ng/mL 

Print paper (Xerox) 
NO SAMPLE PREP 

Yes (rat DBS) 
Comparison with blood 

NS 

 Nicotine, nornicotine, 
cotinine, trans-3’-OH-
cotinine, anabasine and 
anatabine 

[42] LC-
HRMS/MS 

15-2000 ng/mL P: 6 mm   ≈ clamp size 
PAPER: FTA® DMPK-C cards 
SAMPLE PREP: DBSA: 
          - automated flow-through 
            elution of DBS cards  
          - online SPE 
          - elution from the SPE 
            cartridge onto the LC column 
            using the LC mobile phase 
RECOV: 43.4% (nicotine) 
              38.1% (cotinine) 
              39.0% (trans-3’-OH-cotinine) 
              44.4% (nornicotine) 
              42.2% (anabasine) 
              25.4% (anatabine) 

Yes (authentic samples) 30 d at RT 

 

6-MAM: 6-monoacetylmorphine; ACN: acetonitrile; ACP: 2-amino-5-chloropyridine; BE: benzoylecgonine; C: complete DBS; CE: cocaethylene; d: days; DAD: diode array 

detection; DBS: dried blood spot(s); DRUID: driving under the influence of drugs, alcohol and medicines; DUID: driving under the influence of drugs; ECME: ecgonine 

methylester; EDDP: 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine; EMDP: 2-ethyl-5-methyl-3,3-diphenylpyrroline; EME: electromembrane extraction; FID: flame 
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ionization detection; GC-MS: gas chromatography coupled to mass spectrometry; GHB: gamma-hydroxybutyric acid; h: hours; HFB: heptafluorobutanol; HRMS: high 

resolution mass spectrometry; IS: internal standard(s); LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; LLE: liquid-liquid extraction; LLOQ: lower 

limit of quantification; LOD: limit of detection; MDA: 3,4-methylenedioxyamphetamine; MDEA: 3,4-methylenedioxy-N-ethylamphetamine; MDMA: 3,4-

methylenedioxymethamphetamine; MeOH: methanol; MEPS: microextraction packed sorbent; MS: mass spectrometry; MSTFA: N-methyl-N-

(trimethylsilyl)trifluoroacetamide; MTBSTFA: N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide; M3G: morphine-3-glucuronide; M6G: morphine-6-glucuronide; NS: not 

studied; P: punch; PEth: phosphatidylethanol; PK: pharmacokinetics; PP: protein precipitation; RECOV: recovery; RIA: radioimmunoassay; RT: room temperature; SAMPLE 

PREP: sample preparation; SPE: solid phase extraction; STA: systematic toxicological analysis; TBME: tert-butyl methyl ether; TFAA: trifluoroacetic anhydride; THC: Δ9-

tetrahydrocannabinol; THC-COOH: tetrahydrocannabinol carboxylic acid; THC-OH: 11-hydroxy- Δ9-tetrahydrocannabinol; w: weeks 
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Appendix 2 Cut-off concentrations for abused substances proposed by DRUID [50]. A distinction is made between analyses of complete DBS and analyses of DBS punches. 
The shaded columns contain these DBS methods achieving sufficient sensitivity to allow detection at DRUID LLOQ levels, when starting from complete ≤ 10-µL DBS and/or  
≤ 6.4-mm diameter DBS punches. 
 

COMPOUND DRUID CUT-OFF in ng/mL IN BLOOD 
(BELGIAN LEGAL LIMIT in ng/mL IN PLASMA)  

COMPLETE DBS 
LLOQ in ng/mL (blood volume) [reference] 

DBS PUNCH 

LLOQ in ng/mL ( punch) [reference] 
THC 1 (1)  1 (20 µL) [94] 

5 (100 µL) [26] 
50 (5 µL) [12] 
15 (30 µL) [93] 

 2.5 (7 mm ) [7]  
 

THC-COOH 5   1 (20 µL) [94]  
5 (100 µL) [26] 
15 (30 µL) [93] 

 5 (7 mm ) [7] 

THC-OH 1   15 (30 µL) [93]  5 (7 mm ) [7] 

      

Benzoylecgonine 50 (25) 1 (5 µL) [12,13]  
1 (5 µL) [8] 
20 (10 µL) [6] 

2.3 (20 µL) [96] 
5 (30 µL) [93] 

2 (6.4 mm ) [56]  

5 (3 mm ) [31]  

10 (6.4 mm ) [19] 

1 (3 mm ) [63] 

2 (3 x 3 mm ) [47] 

 

Cocaine 10 (25) < 1 (5 µL) [8] 
1 (5 µL) [12,13]  
 

0.25 (20 µL) [94] 
3.5 (20 µL) [96]  
20 (10 µL) [6]  
24.6 (100 µL) [77] 
50 (100 µL) [26] 
5 (30 µL) [93] 

5 (3 mm ) [31] 

1 (3 mm ) [63] 

2 (3 x 3 mm ) [47] 

 

Ecgonine methylester 5   10 (5 µL) [8] 5 (3 mm ) [31] 
 

2 (3 x 3 mm ) [47] 

      

6-MAM 10 (10) 1 (5 µL) [12,13]  
5 (5 µL) [8] 

11 (20 µL) [96]  
27 (100 µL) [67] 
5 (30 µL) [93] 

2 (3 x 3 mm ) [47]  

Codeine 10  5 (5 µL) [12,13]  
 

9.4 (20 µL) [96]  
10 (100 µL) [26] 
50 (5 µL) [8] 
5 (30 µL) [93] 

5 (2 x 5 mm ) [45]  

5 (3 mm ) [31] 

1 (2mm ) [40] 

 

Morphine 10 (10)  10 (100 µL) [26] 
10 (20 µL) [96]  
14 (100 µL) [67] 

1 (6.4 mm ) [100] 

4 (3 mm ) [61] 

5 (2 x 5 mm ) [45]  
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20 (5 µL) [12,13] 
100 (5 µL) [8] 
5 (30 µL) [93] 

5 (3 mm ) [31] 

1 (2mm ) [40] 

2 (3 x 3 mm ) [47] 
      

Buprenorphine 1   5 (100 µL) [26]  1 (2 x 5 mm ) [45] 

Methadone 10  < 1 (5 µL) [8]  
1 (5 µL) [12,13] 
2 (10 µL) [10] 
4 (theoretical volume 

calculated from ) [20] 

10 (100 µL) [26] 
5 (30 µL) [93] 

0.1 (6.4 mm ) [30] 

0.3 (3 mm ) [36] 

5 (2 x 5 mm ) [45] 

0.2 (3 x 3 mm ) [47] 
 

 

Tramadol 50  0.5 (5 µL) [12] 50 (100 µL) [26] 5 ( 2 x 5 mm ) [45]  

      

7-aminoclonazepam 10  4 (5 µL) [5] 100 (5 µL) [8] 2.5 (6 mm ) [122]  

7-aminoflunitrazepam 2  1 (5 µL) [12,13] 4 (5 µL) [5]  2.5 (6 mm ) [122] 
Alprazolam 10  1 (5 µL) [12,13] 

4 (5 µL) [5] 
0.7 (100 µL) [91]  
5 (100 µL) [26] 
1 (30 µL) [93] 

0.1 (4 mm ) [120]  

1 ( 3 mm ) [37] 

4 (6 mm ) [122] 

 

Clobazam 5  0.5 (5 µL) [12,13] 40 (5 µL) [5] 2 (6 mm ) [122]  

Clonazepam 10  4 (5 µL) [5] 
10 (5 µL) [12,13] 

5 (100 µL) [26] 
1 (30 µL) [93]  
 

4 (6 mm ) [122]  

Desalkylflurazepam 2   4 (5 µL) [5] 2 (6 mm ) [122]  

Desmethylflunitrazepam 1  1 (5 µL) [5]    

Diazepam 20  10 (5 µL) [12,13] 9.9 (100 µL) [77] 
40 (5 µL) [5]  
50 (100 µL) [26] 
50 (5 µL) [8]  
1 (30 µL) [93] 

2 (6 mm ) [122]  

Flunitrazepam 2   4 (5µL) [5]  
5 (5 µL) [12,13] 
15.8 (100 µL) [77] 

2 (6 mm ) [122]  

Flurazepam 2  0.5 (5 µL) [12,13]  
1 (5 µL) [5] 

 2 (6 mm ) [122]  

Lorazepam 10  4 (5 µL) [5]  
5 (5 µL) [12,13] 
 

5 (100 µL) [26]  
11 (100 µL) [77] 
1 (30 µL) [93] 

2 (6 mm ) [122]  

Lormetazepam 1  1 (5 µL) [5] 1 (30 µL) [93]   

Midazolam 10  0.5 (5 µL) [12,13]  
<1 (5 µL) [8] 

10 (100 µL) [26] 
1 (30 µL) [93] 

0.1 (4 mm ) [117,118] 

0.1 (6 mm  or  
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4 (5 µL) [5]  
 

 2 x 3 mm ) [46]  

0.3 (3 mm ) [46] 

0.35 (3 mm ) [119] 

1 ( 3 mm ) [37] 

5 (2 mm ) [39] 

2 (6 mm ) [122] 
Nitrazepam 1  1 (5 µL) [12,13] 

 
10 (100 µL) [26] 
18 (100 µL) [77] 
40 (5 µL) [5]  

 2 (6 mm ) [122] 

Nordiazepam 20  1 (5 µL) [12,13] 20 (100 µL) [26] 
40 (5 µL) [5]  
1 (30 µL) [93] 

3.5 (6 mm ) [122]  

OH-alprazolam 1   4 (5 µL) [5] 1 (3 mm ) [37] 2 (6 mm ) [122] 

OH-midazolam 1   2 (5 µL) [12,13] 
4 (5 µL) [5] 
5 (5 µL) [8] 

 2 (6 mm ) [122] 

Oxazepam 50  10 (5 µL) [12,13] 
40 (5 µL) [5]  

20.6 (100 µL) [77] 
50 (100 µL) [26] 
5 (30 µL) [93] 

3 (6 mm ) [122]  

Temazepam 20  1 (5 µL) [12,13] 
 

10.8 (100 µL) [77] 
40 (5 µL) [5]  
50 (100 µL) [26] 

3 (6 mm ) [122]  

Triazolam 1  0.5 (5 µL) [12,13]  
1 (5 µL) [5] 

  2 (6 mm ) [122] 

      

Zolpidem 20  < 1 (5 µL) [8]  
1 (5 µL) [12,13] 
4 (5 µL) [5] 

 0.1 (3 mm ) [9] 

2.5 (6 mm ) [122] 

 

Zopiclone 10  2 (5 µL) [12,13] 
4 (5 µL) [5] 

1.2 (100 µL) [91]  
6.4 (100 µL) [78] 
10 (100 µL) [26] 

  

      

Amphetamine 20 (25) 1 (5 µL) [8] 
5 (10 µL) [80]  
5 (5 µL) [41] 
 

3 (100 µL) [91] 
20 (100 µL) [26] 
40 (5 µL) [12,13] 
5 (30 µL) [93] 

5 (3 mm ) [31] 

2 (3 x 3 mm ) [47] 

 

MDA 20  2.5 (10 µL) [80] 
20 (5 µL) [12,13] 

0.4 (100 µL) [91] 
0.4 (100 µL) [121] 
20 (100 µL) [26]  
5 (30 µL) [93] 

5 (3 mm ) [31] 

2 (3 x 3 mm ) [47] 

 



 

 

  

180 

 

MDEA 20  1 (10 µL) [80] 
2 (5 µL) [12,13]  

 5 (3 mm ) [31] 

2 (3 x 3 mm ) [47] 

 

MDMA 20 (25) 1 (5 µL) [8] 
2 (5 µL) [12,13] 
2.5 (10 µL) [80]  
5 (5 µL) [41] 

5.7 (100 µL) [91] 
5.7 (100 µL) [121] 
20 (100 µL) [26] 
5 (30 µL) [93] 

5 (3 mm ) [31] 

2 (3 x 3 mm ) [47] 

 

Methamphetamine 20  1 (10 µL) [80] 
10 (5 µL) [8] 
5 (5 µL) [41] 
 

20 (100 µL) [26]  
50 (5 µL) [12,13] 
5 (30 µL) [93] 

5 (3 mm ) [31] 

2 (3 x 3 mm ) [47] 

 

      

Ketamine 20  1 (10 µL) [80]  5 (3.2 mm ) [104] 

2 (3 x 3 mm ) [47] 

 

 

6-MAM: 6-monoacetylmorphine; DBS: dried blood spot(s); DRUID: driving under the influence of drugs, alcohol and medicines; LLOQ: lower limit of quantification; MDA: 

3,4-methylenedioxyamphetamine; MDEA: 3,4-methylenedioxy-N-ethylamphetamine; MDMA: 3,4-methylenedioxymethamphetamine; THC: Δ9-tetrahydrocannabinol; THC-

COOH: tetrahydrocannabinol carboxylic acid; THC-OH: 11-hydroxy- Δ
9
-tetrahydrocannabinol; 
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