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Abstract. Measuring directed interactions in the brain in terms of information flow
is a promising approach, mathematically treatable and amenable to encompass sev-
eral methods. In this chapter we propose some approaches rooted in this framework
for the analysis of neuroimaging data. First we will explore how the transfer of in-
formation depends on the network structure, showing how for hierarchical networks
the information flow pattern is characterized by exponential distribution of the in-
coming information and a fat-tailed distribution of the outgoing information, as a
signature of the law of diminishing marginal returns. This was reported to be true
also for effective connectivity networks from human EEG data. Then we address
the problem of partial conditioning to a limited subset of variables, chosen as the
most informative ones for the driver node. We will then propose a formal expansion
of the transfer entropy to put in evidence irreducible sets of variables which provide
information for the future state of each assigned target. Multiplets characterized by
a large contribution to the expansion are associated to informational circuits present
in the system, with an informational character (synergetic or redundant) which can
be associated to the sign of the contribution. Applications are reported for EEG and
fMRI data.
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1 Economics of Information Transfer in Networks

Most social, biological, and technological systems can be modeled as complex net-
works, and display substantial non-trivial topological features [4, 10]. Moreover,
time series of simultaneously recorded variables are available in many fields of sci-
ence; the inference of the underlying network structure, from these time series, is an
important problem that received great attention in the last years.

In many situations it can be expected that each node of the network may handle a
limited amount of information. This structural constraint suggests that information
transfer networks should exhibit some topological evidences of the law of dimin-
ishing marginal returns [36], a fundamental principle of economics which states
that when the amount of a variable resource is increased, while other resources are
kept fixed, the resulting change in the output will eventually diminish [26]. Here we
introduce a simple dynamical network model where the topology of connections,
assumed to be undirected, gives rise to a peculiar pattern of the information flow
between nodes: a fat tailed distribution of the outgoing information, while the aver-
age incoming information transfer does not depend on the connectivity of the node.
In the proposed model the units, at the nodes the network, are characterized by a
transfer function that allows them to process just a limited amount of the incom-
ing information. In this case a possible way to quantify the law of the diminishing
marginal returns can be the discrepancy of the distributions, expressed as the ratio
of their standard deviations.

1.1 Model

We use a simple dynamical model with a threshold in order to quantify and inves-
tigate this phenomenon. Given an undirected network of n nodes and symmetric
connectivity matrix Ai j ∈ {0,1}, to each node we associate a real variable xi whose
evolution, at discrete times, is given by:

xi(t + 1) = F

(
n

∑
j=1

Ai jx j(t)

)
+σξi(t), (1)

where ξ are unit variance Gaussian noise terms, whose strength is controlled by σ ;
F is a transfer function chosen as follows:

F(α) = aα |α|< θ
F(α) = aθ α > θ
F(α) =−aθ α <−θ

(2)

where θ is a threshold value. This transfer function is chosen to mimic the fact
that each unit is capable to handle a limited amount of information. For large θ
our model becomes a linear map. At intermediate values of θ , the nonlinearity con-
nected to the threshold will affect mainly the mostly connected nodes (hubs): the
input ∑Ai jx j to nodes with low connectivity will remain typically sub-threshold in
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Fig. 1 Examples of the three network architectures used in this study. Left: Preferential At-
tachment. Center: Homogeneous. Left: Scale-free.
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Fig. 2 Segments of 200 time points from typical time series simulated in the scale-free net-
work for three values of θ

this case. We consider hierarchical networks generated by preferential attachment
mechanism [2], which in the deterministic case leads to a scale-free network. Exam-
ples of a preferential attachment network, a scale free network and an homogeneous
network are reported in figure 1. A segment of 200 time points of a typical time
series for three values of θ is plotted in figure 2.

From numerical simulations of eqs. (1), we evaluate the linear causality pattern
for this system as the threshold is varied. We verify that, in spite of the threshold,
variables are nearly Gaussian so that we may identify the causality with the informa-
tion flow between variables [5]. We compute the incoming and outgoing information
flow from and to each node, cin and cout , summing respectively all the sources for
a given target and all the targets for a given source. It is worth to underline that no
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Fig. 3 The ratio between the standard deviation of cout and those of cin, R, is plotted versus θ
for the three architectures of network: preferential attachment (PRE), deterministic scale free
(SFN) and homogeneous (HOM). The parameters of the dynamical system are a = 0.1 and
σ = 0.1. Networks built by preferential attachment are made of 30 nodes and 30 undirected
links, while the deterministic scale free network of 27 nodes is considered. The homogeneous
networks have 27 nodes, each connected to two other randomly chosen nodes.

threshold is applied to the connectivity matrix, so that all the information flowing in
the network is accounted for. We then evaluate the standard deviation of the distri-
butions of cin and cout , from all the nodes, varying the realization of the preferential
attachment network and implementing eqs. (1) for 10000 time points.

In figure 3 we depict R, the ratio between the standard deviation of cout over those
of cin, as a function of the θ . As the threshold is varied, we encounter a range of val-
ues for which the distribution of cin is much narrower than that of cout . In the same
figure we also depict the corresponding curve for deterministic scale free networks
[3], which exhibits a similar peak, and for homogeneous random graphs (or Erdos-
Renyi networks [17]), with R always very close to one. The discrepancy between
the distributions of the incoming and outgoing causalities arises thus in hierarchical
networks. We remark that, in order to quantify the difference between the distribu-
tions of cin and cout , here we use the ratio of standard deviations but qualitatively
similar results would have been shown using other measures of discrepancy.

In figure 4 we report the scatter plot in the plane cin − cout for preferential at-
tachment networks and for some values of the threshold. The distributions of cin

and cout , with θ equal to 0.012 and corresponding to the peak of figure 3, are de-
picted in figure 5: cin appears to be exponentially distributed, whilst cout shows a fat
tail. In other words, the power law connectivity, of the underlying network, influ-
ences just the distribution of outgoing directed influences. In figure 6 we show the
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Fig. 4 Scatter plot in the plane cin − cout for undirected networks of 30 nodes and 30 links
built by means of the preferential attachment mechanism. The parameters of the dynamical
system are a = 0.1 and σ = 0.1. The points correspond to all the nodes pooled from 100
realizations of preferential attachment networks, each with 10 simulations of eqs. (1) for
10000 time points. (Top-left) Scatter plot of the distribution for all nodes at θ = 0.001. (Top-
right) Contour plot of the distribution for all nodes at θ = 0.012. (Bottom-left) Scatter plot of
the distribution for all nodes at θ = 0.1. (Bottom-right) The total Granger causality (directed
influence) (obtained summing over all pairs of nodes) is plotted versus θ ; circles point to the
values of θ in the previous subfigures.

average value of cin and cout versus the connectivity k of the network node: cout

grows uniformly with k, thus confirming that its fat tail is a consequence of the
power law of the connectivity. On the contrary cin appears to be almost constant: on
average the nodes receive the same amount of information, irrespective of k, whilst
the outgoing information from each node depends on the number of neighbors. It
is worth mentioning that since a precise estimation of the information flow is com-
putationally expensive, our simulations are restricted to rather small networks; in
particular the distribution of cout appears to have a fat tail but, due to our limited
data, we can not claim that it corresponds to a simple power-law. The same model
was then implemented on an anatomical connectivity matrix obtained via diffusion
spectrum imaging (DSI) and white matter tractography [22]. Also in this case we
observe a modulation of R and some scatter plots (figure 7) qualitatively similar to
the ones depicted in figures 3 and 4. In this case a multimodal distribution emerges
for high values of θ , as we can observe also in the histograms in figure 8. In figure 9
we can clearly identify some nodes in the structural connection matrix in which the



92 D. Marinazzo et al.

0 0.01 0.02 0.03 0.04 0.05 0.06

150

100

50

0

50

100

150
ρ

in

ρ
out

c

Fig. 5 For the preferential attachment network, at θ = 0.012, the distributions (by smooth-
ing spline estimation) of cin and cout for all the nodes, pooled from all the realizations, are
depicted. Units on the vertical axis are arbitrary.

Fig. 6 In the ensemble
of preferential attachment
networks of figure (2), at
θ = 0.012, cin and cout

are averaged over nodes
with the same connectiv-
ity and plotted versus the
connectivity.
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law of diminishing marginal returns is highly expressed. The value of the threshold
has also an influence on the ratio S between interhemispheric and intrahemispheric
information transfer (figure 10). Interestingly, the maximum of this ratio occurs at a
finite value of θ , different from those at which R is maximal.
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Fig. 7 Top right: the ratio between the standard deviation of cout and those of cin, R, is plotted
versus θ when the threshold model is implemented on the connectome structure. Plots in the
plane cin−cout for three values of θ : 0.01 (top right), 0.0345 (bottom left), 0.5 (bottom right).
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Fig. 8 The distributions of cin and cout for three values of θ when the threshold model is
implemented on the connectome structure. Units on the vertical axis are arbitrary.

1.2 Electroencephalographic Recordings

As a real example we consider electroencephalogram (EEG) data. We used record-
ing obtained at rest from 10 healthy subjects. During the experiment, which lasted
for 15 min, the subjects were instructed to relax and keep their eyes closed. To avoid
drowsiness, every minute the subjects were asked to open their eyes for 5 s. EEG
was measured with a standard 10-20 system consisting of 19 channels [31]. Data
were analyzed using the linked mastoids reference, and are available from [46].

For each subject we considered several epochs of 4 seconds in which the subjects
kept their eyes closed. For each epoch we computed multivariate Kernel Granger
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Fig. 9 The ratio between the standard deviation of cout and those of cin, R, is mapped on the
66 regions of the structural connectivity matrix. In the figure 998 nodes are displayed, with
those belonging to the same region in the coarser template have the same color and size.

Fig. 10 The ratio S between
intrahemispheric and in-
terhemispheric information
transfer in the threshold
model implemented on the
connectome structure as a
function of θ . The circles
indicate the same values of
figures 7 and 8.
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Causality [27] using a linear kernel and a model order of 5, determined by leave-
one-out cross-validation. We then pooled all the values for information flow towards
and from any electrode and analyzed their distribution.

In figure 11 we plot the incoming versus the outgoing values of the information
transfer, as well as the distributions of the two quantities: the incoming information
seems exponentially distributed whilst the outgoing information shows a fat tail.
These results suggest that overall brain effective connectivity networks may also be
considered in the light of the law of diminishing marginal returns.

More interestingly, this pattern is reproduced locally but with a clear modulation:
a topographic analysis has also been made considering the distribution of incoming
and outgoing causalities at each electrode. In figure 12 we show the distributions
of incoming and outgoing connections corresponding to the electrodes locations on
the scalp, and the corresponding map of the parameter R; the law of diminishing
marginal returns seems to affect mostly the temporal regions. This well defined pat-
tern suggests a functional role for the distributions. It is worth to note that this pattern
has been reproduced in other EEG data at rest from 9 healthy subjects collected for
another study with a different equipment.
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Fig. 11 For the EEG data
the distributions of cin and
cout are depicted in a scatter
plot (left) and in terms of
their distributions, obtained
by smoothing spline estima-
tion (right).
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Fig. 12 Left: the distributions for incoming (above, light grey) and outgoing (below, dark
grey) information at each EEG electrode displayed on the scalp map (original binning and
smoothing spline estimation). Right: the distribution on the scalp of R, the ratio between the
standard deviations of the distributions of outgoing and incoming information, for EEG data.

2 Partial Conditioning of Granger Causality

Granger causality has become the method of choice to determine whether and how
two time series exert causal influences on each other [23],[13]. This approach is
based on prediction: if the prediction error of the first time series is reduced by
including measurements from the second one in the linear regression model, then
the second time series is said to have a causal influence on the first one. This frame
has been used in many fields of science, including neural systems [24],[9],[34], and
cardiovascular variability [18].

From the beginning [21],[41], it has been known that if two signals are influ-
enced by third one that is not included in the regressions, this leads to spurious
causalities, so an extension to the multivariate case is in order. The conditional
Granger causality analysis (CGCA) [19] is based on a straightforward expansion
of the autoregressive model to a general multivariate case including all measured
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variables. CGCA has been proposed to correctly estimate coupling in multivariate
data sets [6],[14],[15],[45]. Sometimes though, a fully multivariate approach can
lead to problems which can be purely computational but even conceptual: in pres-
ence of redundant variables the application of the standard analysis leads to under-
estimation of causalities [1].

Several approaches have been proposed in order to reduce dimensionality in mul-
tivariate sets, relying on generalized variance [6], principal components analysis
[45] or Granger causality itself [29].

Here we will address the problem of partial conditioning to a limited subset of
variables, in the framework of information theory. Intuitively, one may expect that
conditioning on a small number of variables should remove most of the indirect
interactions if the connectivity pattern is sparse. We will show that this subgroup
of variables might be chosen as the most informative for the driver variable, and
describe the application to simulated examples and a real data set.

2.1 Finding the Most Informative Variables

We start by describing the connection between Granger causality and information-
theoretic approaches like the transfer entropy in [38]. Let {ξn}n=1,.,N+m be a time
series that may be approximated by a stationary Markov process of order m, i.e.
p(ξn|ξn−1, . . . ,ξn−m) = p(ξn|ξn−1, . . . ,ξn−m−1). We will use the shorthand notation
Xi = (ξi, . . . ,ξi+m−1)

� and xi = ξi+m, for i = 1, . . . ,N, and treat these quantities as N
realizations of the stochastic variables X and x. The minimizer of the risk functional

R [ f ] =
∫

dXdx(x− f (X))2 p(X ,x) (3)

represents the best estimate of x, given X, and corresponds [32] to the regression
function f ∗(X) =

∫
dxp(x|X)x. Now, let {ηn}n=1,.,N+m be another time series of

simultaneously acquired quantities, and denote Yi = (ηi, . . . ,ηi+m−1)
�. The best es-

timate of x, given X and Y , is now: g∗(X ,Y ) =
∫

dxp(x|X ,Y )x. If the generalized
Markov property holds, i.e.

p(x|X ,Y ) = p(x|X), (4)

then f ∗(X) = g∗(X ,Y ) and the knowledge of Y does not improve the prediction of
x. Transfer entropy [38] is a measure of the violation of 4: it follows that Granger
causality implies non-zero transfer entropy [27]. Under Gaussian assumption it can
be shown that Granger causality and transfer entropy are entirely equivalent, and just
differ for a factor two [5]. The generalization of Granger causality to a multivariate
fashion, described in the following, allows the analysis of dynamical networks [28]
and to discern between direct and indirect interactions.

Let us consider n time series {xα(t)}α=1,...,n; the state vectors are denoted

Yα(t) = (xα(t −m), . . . ,xα (t − 1)) ,
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m being the window length (the choice of m can be done using the standard cross-
validation scheme). Let ε (xα |X) be the mean squared error prediction of xα on the
basis of all the vectors X (corresponding to linear regression or non linear regression
by the kernel approach described in [27]). The multivariate Granger causality index
c(β → α) is defined as follows: consider the prediction of xα on the basis of all the
variables but Xβ and the prediction of xα using all the variables, then the causality
measures the variation of the error in the two conditions, i.e.

c(β → α) = log
ε
(
xα |X\Xβ

)

ε (xα |X)
. (5)

Note that in [27] a different definition of causality has been used,

δ (β → α) =
ε
(
xα |X\Xβ

)− ε (xα |X)

ε
(
xα |X\Xβ

) ; (6)

The two definitions are clearly related by a monotonic transformation:

c(β → α) =− log [1− δ (β → α)]. (7)

Here we first evaluate the causality δ (β → α) using the selection of significant
eigenvalues described in [27] to address the problem of over-fitting in (6); then
we use (7) and express our results in terms of c(β → α), because it is with this
definition that causality is twice the transfer entropy, equal to I{xα ;Xβ |X \Xβ}, in
the Gaussian case [5].

We now address the problem of coping with a large number of variables, when
the application of multivariate Granger causality may be questionable or even unfea-
sible, whilst bivariate analysis would detect also indirect influences. Here we show
that conditioning on a small number of variables, chosen as the most informative
for the candidate driver variable, is sufficient to remove the biggest portion of in-
direct interactions for sparse connectivity patterns. Conditioning on a large number
of variables requires a high number of samples in order to get reliable results. Re-
ducing the number of variables, that one has to condition over, would thus provide
better results for small data-sets. In the general formulation of Granger causality,
one has no way to choose this reduced set of variables; on the other hand, in the
framework of information theory, it is possible to individuate the most informative
variables one by one. Once that it has been demonstrated [5] that Granger causality
is equivalent to the information flow between Gaussian variables, partial condition-
ing becomes possible for Granger causality estimation; to our knowledge this is the
first time that such approach is proposed.

Concretely, let us consider the causality β → α; we fix the number of variables,

to be used for conditioning, equal to nd . We denote Z =
(

Xi1 , . . . ,Xind

)
the set of

the nd variables, in X \Xβ , most informative for Xβ . In other words, Z maximizes
the mutual information I{Xβ ;Z} among all the subsets Z of nd variables. Then, we
evaluate the causality
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c(β → α) = log
ε (xα |Z)

ε
(
xα |Z∪Xβ

) . (8)

Under the Gaussian assumption, the mutual information I{Xβ ;Z} can be easily eval-
uated, see [5]. Moreover, instead of searching among all the subsets of nd variables,
we adopt the following approximate strategy. Firstly the mutual information of the
driver variable, and each of the other variables, is estimated, in order to choose the
first variable of the subset. The second variable of the subsets is selected among
the remaining ones, as those that, jointly with the previously chosen variable, max-
imizes the mutual information with the driver variable. Then, one keeps adding the
rest of the variables by iterating this procedure. Calling Zk−1 the selected set of k−1
variables, the set Zk is obtained adding , to Zk−1, the variable, among the remaining
ones, providing greatest information gain. This is repeated until nd variables are se-
lected. This greedy algorithm, for the selection of relevant variables, is expected to
give good results under the assumption of sparseness of the connectivity.

2.2 Partial Conditioning in a Dynamical Model

Let us consider linear dynamical systems on a lattice of n nodes, with equations, for
i = 1, . . . ,n:

xi,t =
n

∑
j=1

ai jx j,t−1 + sτi,t , (9)

where a’s are the couplings, s is the strength of the noise and τ’s are unit variance
i.i.d. Gaussian noise terms. The level of noise determines the minimal amount of
samples needed to assess that the structures recovered by the proposed approach
are genuine and are not due to randomness, as it happens for the standard Granger
causality (see discussions in [27] and [28]); in particular noise should not be too
high to obscure deterministic effects.

As an example, we fix n= 34 and construct couplings in terms of the well known
Zachary data set [44], an undirected network of 34 nodes. We assign a direction
to each link, with equal probability, and set ai j equal to 0.015, for each link of the
directed graph thus obtained, and zero otherwise. The noise level is set s = 0.5. The
goal is again to estimate this directed network from the measurements of time series
on nodes.

In figure (13) we show the application of the proposed methodology to data sets
generated by eqs. (9), in terms of sensitivity and specificity, for different numbers
of samples. The bivariate analysis detects several false interactions, however condi-
tioning on a few variables is sufficient to put in evidence just the direct causalities.
Due to the sparseness of the underlying graph, we get a result which is very close
to the one by the full multivariate analysis; the multivariate analysis here recovers
the true network, indeed the number of samples is sufficiently high. In figure (14),
concerning the stage of selection of variables upon which conditioning, we plot the
mutual information gain Δy as a function of the number of variables included nd : it
decreases as nd increases.
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Fig. 13 Sensitivity and specificity for the recovery of the Zachary network structure from the
dynamics at his nodes are plotted versus nd , the number of variables selected for condition-
ing, for two values of two values of the number of samples N, 500 (left) and 1000 (right).
The order is m = 2, similar results are obtained varying m. The results are averaged over
100 realizations of the linear dynamical system described in the text. The empty square, in
correspondence to nd = 0, is the result from the bivariate analysis. The horizontal line is the
outcome from multivariate analysis, where all variables are used for conditioning.

Fig. 14 The mutual in-
formation gain Δy for the
Zachary network, when the
(nd + 1)-th variable is in-
cluded, is plotted versus nd
for two values of the of the
number of samples N, 500
(top) and 1000 (bottom).
The order is m = 2. The
information gain is averaged
over all the variables.
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2.3 Partial Conditioning in Resting State fMRI

We used a resting state datasets from a public repository1. Data were acquired by
using of single-shot gradient echo planar imaging (EPI) sequence (repetition time
[TR]: 645ms; echo time: 30ms; slices: 33; thickness: 3mm; gap: 0.6mm; field of
view: 200× 200mm2 ; in-plane resolution: 64× 64; flip angle: 90◦). Preprocess-
ing of resting-state images was performed using the Statistical Parametric Mapping
software (SPM8, http://www.fil.ion.ucl.ac.uk/spm), including slice-timing corrected
relative to middle axial slice for the temporal difference in acquisition among dif-
ferent slices, realigned with the corresponding 3-D structure image, head motion
correction(for all subjects, the translational or rotational parameters of a data set did
not exceed ±1mm or ±1◦), spatial normalization into a standard stereotaxic space,
parameters from normalizing 3-D structure images to the Montreal Neurological In-
stitute T1 template in SPM8 were written to fMRI images then resampled to 3-mm
isotropic voxels. The functional images were segmented into 90 regions of interest
(ROIs) using automated anatomical labeling (AAL) template [40]. For each subject,
the representative time series of each ROI was obtained by averaging the fMRI time
series across all voxels in the ROI. Several procedures were used to remove possi-
ble spurious variances from the data through linear regression. These were 1) six
head motion parameters obtained in the realigning step, 2) signal from a region in
cerebrospinal fluid, 3) signal from a region centered in the white matter. 4) global
signal averaged over the whole brain. The hemodynamic response function was de-
convolved from the BOLD time series.

In order to select the variables over which conditioning, in figure 15 we plot the
mutual information gain for a given target (left posterior cingulate gyrus) as a func-
tion of the number of variables included nd : as expected it decreases as nd increases.
The same behavior is reproduced for all the targets. We can observe that the curve
starts to become less steep after nd = 6. This phenomenon could be explained con-
sidering that multivariate analysis by hierarchical clustering and multidimensional
scaling consistently defined six major systems in the resting brain [35]. This is con-
firmed by looking at figure 16 in which for the same given target the most frequently
chosen target variables are reported. It is evident how these are generally sampled
at larger scale across the brain in order to pick up information from even distant
regions.

3 Informative Clustering

In this last section we propose a formal expansion of the transfer entropy to put in
evidence irreducible sets of variables which provide information for the future state
of each assigned target. Multiplets characterized by an high value will be associ-
ated to informational circuits present in the system, with an informational character
(synergetic or redundant) which can be associated to the sign of the contribution.
We also present results on fMRI and EEG data sets.

1 http://www.nitrc.org/projects/fcon_1000/

http://www.nitrc.org/projects/fcon_1000/


Information Transfer in the Brain: Insights from a Unified Approach 101

Fig. 15 The mutual infor-
mation gain when the target
is the left posterior cingulate
gyrus, when the (nd +1)-th
variable is included, is plot-
ted versus nd .

Fig. 16 Variables chosen among the 10 most informative when the target is the left posterior
cingulate gyrus (in blue). The diameter of the red spheres is proportional to the times that a
region is selected for different subjects.

3.1 Identification of Irreducible Subgraphs

Information theoretic treatment of groups of correlated degrees of freedom can re-
veal their functional roles as memory structures or those capable of processing infor-
mation [12]. Information quantities reveal if a group of variables may be mutually
redundant or synergetic [37, 7]. The application of these insights to identify func-
tional connectivity structure is a promising line of research. Most approaches for the
identification of functional relations among nodes of a complex networks rely on the
statistics of motifs, subgraphs of k nodes that appear more abundantly than expected
in randomized networks with the same number of nodes and degree of connectivity
[30, 42]. An approach to identify functional subgraphs in complex networks, relying
on an exact expansion of the mutual information with a group of variables, has been
presented in [8].

On the other hand, understanding couplings between dynamical subsystems is
a topic of general interest. Transfer entropy [38], which is related to the concept
of Granger causality [21], has been proposed to distinguish effectively driving and
responding elements and to detect asymmetry in the interaction of subsystems. By
appropriate conditioning of transition probabilities this quantity has been shown to
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be superior to the standard time delayed mutual information, which fails to distin-
guish information that is actually exchanged from shared information due to com-
mon history and input signals. On the other hand, Granger causality formalized the
notion that, if the prediction of one time series could be improved by incorporating
the knowledge of past values of a second one, then the latter is said to have a causal
influence on the former. Initially developed for econometric applications, Granger
causality has gained popularity also in neuroscience (see, e.g., [9, 39, 16, 27]). A
discussion about the practical estimation of information theoretic indexes for sig-
nals of limited length can be found in [33].

Here we present a formal expansion of the transfer entropy to put in evidence irre-
ducible sets of variables which provide information for the future state of the target.
Multiplets characterized by an high value, unjustifiable by chance, will be associ-
ated to informational circuits present in the system, with an informational character
(synergetic or redundant) which can be associated to the sign of the contribution.

Fig. 17 Concerning fMRI
data, the distribution of
the first order term in the
expansions, eqs. (18) and
(13) are depicted.
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4 Expansion of the Transfer Entropy

We start describing the work in [8]. Given a stochastic variable X and a family of
stochastic variables {Yk}n

k=1, the following expansion for the mutual information
has been derived there:

S (X |{Y})− S(X) =−I (X ;{Y}) =
∑i

ΔS(X)
ΔYi

+∑i> j
Δ 2S(X)
ΔYiΔYj

+ · · ·+ Δ nS(X)
ΔYi···ΔYn

,
(10)

where the variational operators are defined as

ΔS(X)

ΔYi
= S (X |Yi)− S(X) =−I (X ;Yi) , (11)

Δ 2S(X)

ΔYiΔYj
=−Δ I (X ;Yi)

ΔYj
= I (X ;Yi)− I (X ;Yi|Yj), (12)

and so on.
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Fig. 18 Concerning fMRI
data, the distribution of the
first order term in the expan-
sion of the transfer entropy,
eq. (18), is compared with
the results corresponding to
a reshuffling of the target
time series.

10 −5 0 5 10
−0.1

−0.05

0

% of values

 

 

A0
i

A0
i
 random

Fig. 19 Concerning fMRI
data, the distribution of the
second order term in the
expansions, eqs. (19) and
(14) are depicted.
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Now, let us consider n+ 1 time series {xα(t)}α=0,...,n. The lagged state vectors
are denoted

Yα(t) = (xα(t −m), . . . ,xα (t − 1)) ,

m being the window length.
Firstly we may use the expansion (10) to model the statistical dependencies

among the x variables at equal times. We take x0 as the target time series, and the
first terms of the expansion are

W 0
i =−I (x0;xi) (13)

for the first order;
Z0

i j = I (x0;xi)− I (x0;xi|x j) (14)

for the second order; and so on. Here we propose to consider also

S (x0|{Yk}n
k=1)− S(x0) =−I (x0;{Yk}n

k=1) , (15)

which measures to what extent the remaining variables contribute to specifying the
future state of x0. This quantity can be expanded according to (10):

S
(
x0|{Yk}n

k=1

)− S(x0) =

∑i
ΔS(x0)

ΔYi
+∑i> j

Δ 2S(x0)
ΔYiΔYj

+ · · ·+ Δ nS(x0)
ΔYi···ΔYn

.
(16)
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Fig. 20 Concerning fMRI
data, the distribution of the
second order term in the
expansion of the transfer en-
tropy, eq. (18), is compared
with the results correspond-
ing to a reshuffling of the
target time series.
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A drawback of the expansion above is that it does not remove shared information
due to common history and input signals; therefore we propose to condition on the
past of x0, i.e. Y0. To this aim we introduce the conditioning operator CY0 :

CY0 S(X) = S(X |Y0),

and observe that CY0 and the variational operators (11) commute. It follows that we
can condition the expansion (16) term by term, thus obtaining

S
(
x0|{Yk}n

k=1,Y0
)− S(x0|Y0) =

−I
(
x0;{Y}n

k=1|Y0
)
=

∑i
ΔS(x0|Y0)

ΔYi
+∑i> j

Δ 2S(x0|Y0)
ΔYiΔYj

+ · · ·+ Δ nS(x0|Y0)
ΔYi···ΔYn

.
(17)

Fig. 21 Concerning fMRI
data, the distribution of
the third order term in the
expansion of the transfer en-
tropy, eq. (18), is compared
with the results correspond-
ing to a reshuffling of the
target time series.
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We note that variations at every order in (17) are symmetrical under permutations
of the Yi. Moreover statistical independence among any of the Yi results in vanishing
contribution to that order: each nonvanishing term in this expansion accounts for an
irreducible set of variables providing information for the specification of the target.
The first order terms in the expansion are given by:
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A0
i =

ΔS(x0|Y0)

ΔYi
=−I (x0;Yi|Y0) , (18)

and coincide with the bivariate transfer entropies i → 0 (times -1). The second order
terms are

B0
i j = I (x0;Yi|Y0)− I (x0;Yi|Yj,Y0) , (19)

whilst the third order terms are

C0
i jk = I (x0;Yi|Yj,Y0)+ I (x0;Yi|Yk,Y0)

−I (x0;Yi|Y0)− I (x0;Yi|Yj,Yk,Y0) .
(20)

An important property of (17) is that the sign of nonvanishing terms reveals the
informational character of the corresponding set of variables: a negative sign indi-
cates that the group of variables contribute with more information, than the sum
of its subgroups, to the state of the target (synergy), while positive contributions
correspond to redundancy.

Another important point that we address here is how get a reliable estimate of
conditional mutual information from data. In this work we adopt the assumption of
Gaussianity and we use the exact expression that holds in this case [5] and reads as
follows. Given multivariate Gaussian random variables X , W and Z, the conditioned
mutual information is

I (X ;W |Z) = 1
2

ln
|Σ(X |Z)|

|Σ(X |W ⊕Z)| , (21)

where | · | denotes the determinant, and the partial covariance matrix is defined

Σ(X |Z) = Σ(X)−Σ(X ,Z)Σ(Z)−1Σ(X ,Z)�, (22)

in terms of the covariance matrix Σ(X) and the cross covariance matrix Σ(X ,Z); the
definition of Σ(X |W ⊕Z) is analogous.

4.1 Applications: Magnetic Resonance and EEG Data

In order to test this approach on a real neuroimaging dataset we used resting state
fMRI data described in the previous section.

For each subject, we evaluated the first terms in the expansions of the conditional
mutual information. We then pooled all the values of the terms in the expansions,
from all subjects and all targets, and we report their distributions in the following
figures. In figure (17) we compare the distributions of A0

i , the first order terms in the
expansion of the information flow (equivalent to the bivariate transfer entropy), with
those of the equal time dependenciesW 0

i . This figure shows that the expansion terms
of the mutual information have a quite wide distribution, and also that the maximum
of the distribution is not at zero, suggesting that the data set is characterized by
many equal time statistical dependencies and by nontrivial causal connections. In
figure (18) the distribution of the bivariate transfer entropies is compared with those
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Fig. 22 Concerning EEG
data, the distribution of
the first order term in the
expansions, eqs. (18) and
(13) are depicted.
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Fig. 23 Concerning EEG
data, the distribution of the
first order term in the expan-
sion of the transfer entropy,
eq. (18), is compared with
the results corresponding to
a reshuffling of the target
time series.
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obtained after a random reshuffling of the target time series: the surrogate test at 5%
confidence shows that a relevant fraction of bivariate interactions is statistically sig-
nificant. In figure (19) we report the distributions of the second order terms, both for
information flow and for instantaneous correlations: negative and positive terms are
present, i.e. both synergetic and redundant circuits of three variables are evidenced
by the proposed approach. Some of these interactions are statistically significant,
see figure (20).

In figure (21) we report the distribution of the third order terms for the infor-
mation flow which correspond to the target Posterior cingulate gyrus, a major node
within the default mode network (DMN) with high metabolic activity and dense
structural connectivity to widespread brain regions, which suggests it has a role as
a cortical hub. The region appears to be involved in internally directed thought, for
example, memory recollection. We compare the distribution with the corresponding
one for shuffled target; it appears that there are significant circuits of four variables,
involving Posterior cingulate gyrus, and most of them are redundant.

As another example, we consider electroencephalogram (EEG) data obtained at
rest from 10 healthy subjects and described in the first section. In figure (22) we
compare the distributions of A0

i and W 0
i . This figure shows that also EEG data

are characterized by nontrivial causal connections. In figure (23) the distribution
of the bivariate transfer entropies is compared with those obtained after a random
reshuffling of the target time series: it shows that a remarkable amount of bivariate
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Fig. 24 Concerning EEG
data, the distribution of the
second order term in the
expansions, eqs. (19) and
(14) are depicted.
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interactions is statistically significant. In figure (24) we report the distributions of
the second order terms, both for information flow and for instantaneous correlations.

4.2 Relationship with Information Storage

Information storage is a fundamental aspect of the dynamics of all the processes on
complex networks. The full comprehension of the relationship between networks
properties and information storage remains a challenge; however some novel in-
sights have been suggested in a recent paper [25], where a connection between in-
formation storage and networks motifs has been pointed out. In this subsection we
show that the information storage at each node of a network is also connected to the
presence of multiplets of variables sending information to that node. Let us consider
the following set of three variables, evolving according to:

xt+1 = cyt + 0.1ξ (1)
t+1

yt+1 = czt + 0.1ξ (2)
t+1

zt+1 = cxt + 0.1ξ (2)
t+1,

(23)

thus constituting a realization of the network motif (a) in figure 1 of [25]. In figure
25, left we depict, as a function of the coupling c, both the information storage at
the node corresponding to the variable x, and the information flow term {y,z} → x.
In this case the three variables are redundant and a relation between information
storage and information flow can be established. Figures 25, center and right refer
to similar dynamical systems of 3 and 4 variables, corresponding to the motifs (c)
and (d), respectively, of figure 1 of [25]. These two cases correspond to synergy: still
the presence of these informational terms is connected to information storage in the
small network. Summarizing, we have shown that the expansion of the transfer en-
tropy is deeply connected with the expansion of the information storage developed
in [25], hence the search of redundant and synergetic multiplets of variables, send-
ing information to each given target, will also put in evidence the mechanisms for
information storage at that node.
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Fig. 25 Information storage (squares) and information flow term {y,z} → x (crosses) for
three motifs described in [25], figure 1. Left: motif (a), redundant variables. Center: motif
(c), synergetic variables. Right: motif (d), synergetic variables.

5 Conclusions

The transfer entropy analysis describes the information flow pattern in complex sys-
tems in terms of an N ×N matrix, N being the number of subcomponents, each
element being the information flowing from each subsystem to each other. The ap-
proaches described in the present chapter represent our attempts to deal with phys-
ical constraints (e.g., the limited capacity of nodes and the limited number of data
samples) within this picture, and to go beyond the N×N description when the actual
senders of information are network motifs rather than single nodes.

Concerning the physical constraints, we have shown that information flow pat-
terns show a signature of the law of diminishing marginal returns and we addressed
the problem of partial conditioning to a limited subset of variables.

As far as the search for multiplets of correlated variables is concerned, we have
proposed a formal expansion of the transfer entropy to put in evidence irreducible
sets of variables which provide information for the future state of each assigned
target. The applications to real data-set show the effectiveness of the proposed
methodology.
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23. Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J.: Causality detec-
tion based on information-theoretic approaches in time series analysis. Physics Re-
ports 441(1), 1–46 (2007)
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