
 

 

 

 

Retrotransposon Activity and DNA Methylation 

Control in Bovine Preimplantation Embryos 

Retrotransposon Activiteit en DNA-methylatie Controle in Bovine 

Preimplantatie Embryo's 

 

 

Wenwen Li 

 

 

Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in 

Veterinary Medicine, Faculty of Veterinary Medicine 

Ghent University 

2016 

 

 

Promoter 

Prof. Dr. Luc Peelman 

Co-promoter 

Prof. Dr. Ann van Soom 

  

Department of Nutrition, Genetics and Ethology 

Faculty of Veterinary Medicine 

Ghent University 



 

 

 

 

 

 

 

 

 



 

                                                                                  iii 

Members of the Jury 

Prof. Dr. Geert Opsomer (Chairman) 

Faculty of Veterinary Medicine 

Ghent University   

 

Prof. Dr. Peter Bols  

Department of Veterinary Science 

University of Antwerp 

 

Prof. Dr. Filip Van Nieuwerburgh  

Faculty of Pharmaceutical Sciences 

Ghent University   

 

Prof. Dr. Ward De Spiegelaere 

Faculty of Veterinary Medicine 

Ghent University  

 

Dr. Karen Goossens 

Institute for Agricultural and Fisheries Research (ILVO) 

 

Dr. Bart Leemans (Secretary) 

Faculty of Veterinary Medicine 

Ghent University   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                                  v 

Members of the Jury .................................................................................................................. iii 

List of figures ............................................................................................................................ ix 

List of abbreviations .................................................................................................................. xi 

Chapter 1 General introduction .................................................................................................. 1 

1.1 Introduction of retrotransposons ............................................................................................... 3 

1.1.1 Classification of retrotransposons .......................................................................................... 3 

1.1.2 Retrotransposons in the bovine genome ................................................................................. 9 

1.1.3 Mechanisms of retrotransposition ........................................................................................ 11 

1.1.4 Expression and mobilization of retrotranposons in mammalian genomes ........................... 15 

1.1.5 Impact of retrotransposon activity on the mammalian genome ........................................... 19 

1.1.6 Regulation of retrotransposition ........................................................................................... 26 

1.1.7 DNA methylation of retrotransposons as marker for global cell methylation status ........... 34 

1.2 Introduction of early embryo development ............................................................................. 37 

1.2.1 In vivo bovine preimplantation embryo development.......................................................... 37 

1.2.2 Transcriptional dynamics in preimplantation embryo .......................................................... 39 

1.2.3 Epigenetic dynamics in preimplantation embryo ................................................................. 40 

1.2.4 Activation of retrotransposons in early development ........................................................... 42 

1.2.5 ARTs used in bovine embryo production ............................................................................. 46 

1.2.6 Influence of IVC on embryo development ........................................................................... 47 

1.2.7 Oxidative stress in early embryo development .................................................................... 49 

1.3 References ............................................................................................................................... 52 

Chapter 2 Aims of the study ..................................................................................................... 83 

Chapter 3 Retrotransposon Expression Profiling and Reference Gene Selection for qPCR 

Analysis in Bovine Preimplantation Embryos ......................................................................... 87 

Chapter 3.1 Retrotransposon Expression Profiling in Bovine Preimplantation Embryos ............. 89 



 

 vi 

3.1.1 Abstract ......................................................................................................................... 90 

3.1.2 Introduction .................................................................................................................. 90 

3.1.3 Material and methods ................................................................................................... 91 

3.1.4 Results and discussion .................................................................................................. 98 

3.1.5 Conclusions ................................................................................................................ 100 

3.1.6 Acknowledgements .................................................................................................... 100 

Chapter 3.2 Reference Gene Selection for Normalization of RT-qPCR Data in Sexed Bovine 

Preimplantation Embryo under Low and High Oxygen Tension ................................................ 101 

3.2.1 Abstract ....................................................................................................................... 102 

3.2.2 Introduction ................................................................................................................ 102 

3.2.3 Material and methods ................................................................................................. 103 

3.2.4 Results and discussion ................................................................................................ 108 

3.2.5 Conclusions ................................................................................................................ 114 

3.2.6 Acknowledgements .................................................................................................... 115 

3.3 References ............................................................................................................................. 115 

Chapter 4 High Oxygen Tension Increases Global Methylation in Bovine 4-cell Embryos and 

Blastocysts but does not Affect General Retrotransposon Expression .................................. 119 

4.1 Abstract .................................................................................................................................. 121 

4.2 Introduction ........................................................................................................................... 122 

4.3 Materials and methods ........................................................................................................... 124 

4.4 Results ................................................................................................................................... 129 

4.4 Discussion .............................................................................................................................. 135 

4.5 Acknowledgements ............................................................................................................... 140 

4.6 References ............................................................................................................................. 141 

Chapter 5 Repeats as Global DNA Methylation Marker in Bovine Preimplantation Embryos .......... 149 

5.1 Abstract .................................................................................................................................. 151 

Preimplantation embryo; DNA methylation; retrotransposon; bisulfite sequencing ................... 151 



 

                                                                                  vii 

5.2 Introduction ........................................................................................................................... 152 

5.3 Materials and Methods .......................................................................................................... 154 

5.4 Results ................................................................................................................................... 159 

5.5 Discussion ............................................................................................................................. 165 

5.6 Conclusion ............................................................................................................................. 167 

5.7 Acknowledgements ............................................................................................................... 168 

5.8 References ............................................................................................................................. 168 

Chapter 6 General discussion and conclusions....................................................................... 173 

6.1 Correlation of DNA methylation and expression of retrotransposons during preimplantation 

development ................................................................................................................................ 175 

6.2 Oxidative stress influence on methylation and retrotransposon expression .......................... 178 

6.3 Difficulties encountered in the immunofluorescence staining .............................................. 180 

6.4 Comparison of DNA methylation experiments ..................................................................... 183 

6.5 DNA methylation reprogramming during preimplantation embryo development ................ 186 

6.6 Retrotransposons as DNA methylation marker ..................................................................... 188 

6.7 General conclusions .............................................................................................................. 189 

6.8 Perspectives for future research ............................................................................................ 190 

6.9 References ............................................................................................................................. 192 

Summary ................................................................................................................................. 199 

Samenvatting .......................................................................................................................... 205 

Curriculum Vitae .................................................................................................................... 211 

Acknowledgements ................................................................................................................ 215 

 



 

 viii 

List of tables  

Table 1.1 Distribution of TEs in the genomes of different species 

Table 1.2  Transcription factors interacting with retrotransposon promoters 

Table 1.3  
Advantages and disadvantages of selected methods for analysis of global 

DNA methylation 

Table 3.1 Information on the primers used in the study 

Table 3.2  Sequences of retrotransposon families PCR amplicons 

Table 3.3  
RNA expression of retrotransposons in pools of bovine oocytes and 

preimplantation embryos by RT-PCR 

Table 3.4  Primer information for embryo sexing and RNA integrity check 

Table 3.5 
Ranking of expression stability (M) for each embryo developmental 

stage by geNorm 

Table 3.6  
Ranking of expression stability (M) for different sample combinations 

by geNorm 

Table 4.1  Information on the primers used in the study 

Table 5.1 Characteristics of the bisulfite primers used in the methylation analysis 

Table 5.2 Unconverted target genomic sequences of each repeat 

Table 6.1 DNA methylation patterns in mammalian preimplantation embryos 

 

 

 



 

                                                                                  ix 

List of figures 

 

Figure 1.1 
Classification of transposable elements hierarchized in classes, subclasses, orders 

and superfamilies 

Figure 1.2 Life cycle of LINE and LTR retrotransposons 

Figure 1.3 The piRNA Ping-Pong amplification cycle 

Figure 1.4 Model of LINE participation during XCI 

Figure 3.1 
Structures of the retrotransposons in the study, and locations of PCR amplicons 

within retrotransposon ORFs 

Figure 3.2 Embryos produced by IVF at different stages of development 

Figure 3.3 Scheme of reference gene selection in bovine embryos 

Figure 3.4 
Blastocyst rate at 8 dpi from presumed zygotes under normal in vitro embryo 

culture or oxidative stress 

Figure 3.5 RNA quality control primer assay 

Figure 3.6 Accordance of DNA-based and RNA-based embryo sexing results 

Figure 3.7 
Determination of optimal number of control genes for normalization of all 

samples 

Figure 4.1 
Global DNA methylation analysis in bovine in vitro embryos cultured at 5% O2 

or 20% O2 from 2-cell stage to blastocyst 

Figure 4.2 

Relative DNMTs mRNA expression levels in 4-cell stage embryos and 

blastocysts cultured at 5% O
2
 (blue) or 20% O

2
 (orange) by RT-qPCR 



 

 x 

Figure 4.3 

Relative retrotransposon mRNA expression levels in 4-cell stage embryos and 

blastocysts cultured at 5% O
2
 (blue) or 20% O

2
 (orange) by RT-qPCR 

Figure 4.4 Linear relationship between the expression of DNMTs and retrotransposons 

Figure 5.1 DNA methylation status of each CpG site of the repeats 

Figure 5.2 Methylation comparison of different embryo stages and treatment 

Figure 6.1 
DNA methylation and retrotransposon expression in bovine preimplantation 

embryos 

Figure 6.2 Different cytosine modifications and their interactions 

Figure 6.3 
5-mC immunofluorescence stainingimmunofluorescence staining of bovine 

blastocysts 



 

                                                                                  xi 

List of abbreviations 

5-caC 5-carboxylcytosine 

5-fC 5-formylcytosine 

5-hmC 5-hydroxymethylcytosine 

5-mC 5-methylcytosine 

AGO Argonaute 

AI Artificial insemination 

APOBEC Apolipoprotein B mRNA editing enzyme 

AUB Aubergine 

BER Base excision repair machinery 

BLAST Basic Local Alignment Search Tool 

bp Base pair 

BSA Bovine serum albumin 

BSA-ITS Serum-free supplementation 

BSP Bisulfite sequencing PCR 

BWS Beckwith-Wiedemann syndrome 

C Cytosine  

CC Cumulus cell 

cDNA Complementary DNA 

CGI CpG island 

CHM Choroideremia 

COBRA Combined bisulfite restriction analysis 

COCs Cumulus oocyte complexes 

CpG Cytosine-phosphorous-guanine 

DAPI 4’,6-diamidino-2-phenylindole 

DMD Duchenne muscular dystrophy 

DNA Deoxyribonucleic acid 

DNMTs DNA methyltransferases  

dpi Days post insemination 

http://www.ncbi.nlm.nih.gov/blast/
https://en.wikipedia.org/wiki/DNA_methyltransferase


 

 xii 

DTT Dithiothreitol 

EDMA EmbryoGENE DNA Methylation Analysis 

EGA Embryonic genome activation 

EGF Epidermal growth factor 

EGFP Enhanced green fluorescent protein 

EN Endonuclease 

ERVs Endogenous retroviruses 

EthD-2 Ethidium Homodimer-2 

FBS Fetal bovine serum 

FITC Fluorescein isothiocyanate  

FSH Follicle-stimulating hormone  

gDNA Genomic deoxyribonucleic acid 

HCl Hydrogen chloride  

HELP High-performance liquid chromatography 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hpi Hours post insemination 

ICM Inner cell mass 

ICSI Intracytoplasmic sperm injection  

ITS Insulin-transferrin-selenium 

IVC In vitro embryo culture 

IVF In vitro fertilization 

IVM In vitro oocyte maturation 

IVP In vitro embryo production 

L1/LINE1 Long interspersed nuclear element 1 

LINEs Long interspersed nuclear elements 

lncRNAs Long non-coding RNAs 

LOS Large offspring syndrome  

LTR Long terminal repeat 

MBD-seq Methylated DNA binding domain protein sequencing 

https://www.thermofisher.com/order/catalog/product/E3599
https://en.wikipedia.org/wiki/Fluorescein_isothiocyanate
https://en.wikipedia.org/wiki/Follicle-stimulating_hormone
https://en.wikipedia.org/wiki/Hydrogen_chloride
https://en.wikipedia.org/wiki/Intracytoplasmic_sperm_injection


 

                                                                                  xiii 

MeDIP-seq Methylated DNA immunoprecipitation sequencing 

MII Metaphase of the second meiotic division 

MIQE Minimum information for publication of quantitative real-time PCR 

experiments 

miRNA microRNA 

MOET Multiple ovulation and embryo transfer 

NCBI National Center for Biotechnology Information 

ncRNA Non-coding RNA 

nt Nucleotide 

NF Normalization factor 

NGS Next-generation sequencing 

ORF Open reading frame 

oxBS-seq Oxidative bisulfite sequencing 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 

PI Propidium Iodide 

piRNA Piwi-interacting RNA 

PN Pronucleus  

Pol II RNA polymerase II  

Pol III RNA polymerase III  

qPCR Quantitative real-time polymerase chain reaction 

redBS-seq Reduced representation bisulfite sequencing 

RIFTs Retrotransposon-initiated fusion transcripts 

RISC RNA-induced silencing complex 

RNA Ribonucleic acid 

RNAi RNA interference  

ROS Reactive oxygen species 

RRBS Reduced representation bisulfite sequencing 

http://www.ncbi.nlm.nih.gov/
https://en.wikipedia.org/wiki/RNA_polymerase_II
https://en.wikipedia.org/wiki/RNA_polymerase_II


 

 xiv 

rRNA Ribosomal RNA 

RT Reverse transcriptase 

RT-PCR Reverse transcription polymerase chain reaction 

RT-qPCR Reverse transcription quantitative real-time polymerase chain reaction 

SBS Shotgun bisulfite sequencing 

SCNT Somatic cell nuclear transfer 

SINEs Short interspersed nuclear elements 

siRNA Short interfering RNA 

SOF Synthetic oviduct fluid 

ssDNA Single-stranded DNA 

TA annealing temperature 

TALP Tyrode’s albumin lactate pyruvate 

TCM-199 Tissue culture medium 199 

TE Trophectoderm  

TEs Transposable elements 

TETs Ten-eleven translocation enzymes 

TPRT Target-primed reverse transcription 

TSD Target site duplication 

TSG Tumor suppressor gene 

UTR Untranslated region 

XCI X chromosome inactivation 

XIC X-inactivation center 

ZP Zona pellucida 



                                     

 1 

 

Chapter 1 

                         General introduction 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 General introduction   

 3 

1.1 Introduction of retrotransposons 

Transposable elements (TEs), the largest class of mammalian genome sequences, are 

repetitive DNA sequences, that can move directly or by replication from one locus to another 

within the genome when they are activated. They were first discovered in maize by Barbara 

McClintock in the 1940s, were long considered as ‘junk’ or ‘selfish’ DNA and dismissed as 

uninteresting. In 1988, a report of insertions of L1 into exon 14 of the factor VIII gene in two 

unrelated patients with haemophilia A indicated the activity of TEs (Kazazian et al. 1988). 

Since then it has been found that most eukaryotic genomes allow the expression and 

accommodate transposition of a few transposon families (Beato et al. 1996). Transposons 

turned out to be important players in genome evolution and gene regulation (Gifford et al. 

2013). 66% - 69% of the human genome was suggested to be repetitive or repeat-derived (de 

Koning et al., 2011). This implies that repetitive DNA may have played a larger part in 

(human) evolution than was previously assumed. The potential relationship between these 

elements and their hosts should not been underestimated. Recent data suggest that in healthy 

mammalian tissue TEs are mostly active in undifferentiated cells like germ line cells and early 

stage embryos (Peaston et al. 2004; van den Hurk et al. 2007). Therefore, this review will be 

focused on the activities and functions of TEs during early development.   

1.1.1 Classification of retrotransposons  

A unified classification system of TEs was proposed by Wicker et al. (2007). In this system 

TEs are classified by class, subclass, order, superfamily, family and subfamily (Figure 1.1). 

Transposons are broadly grouped in two main classes according to their mechanism of 

transposition, which can be described as either copy and paste (class I or retrotransposons) or 

cut and paste (class II or DNA transposons) (Finnegan 1989). Class I retrotransposons, also 

called RNA transposons, copy themselves to RNA and then back to DNA by reverse 

transcriptase. Subsequently the DNA copies may integrate in to the genome. This RNA 

intermediate copy and paste mechanism can rapidly increase the copy number of the elements 
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and therefore increase genome size. Retrotransposons are estimated to comprise about 30 to 

40% of the mammalian genome (Varmus 1988; Adelson et al. 2009), and functionally they 

are the most important TEs in the genome. Class II DNA transposons do not involve an RNA 

intermediate, do not enlarge the genome and the transposition is catalyzed by transposase 

enzymes. DNA transposons are estimated to occupy very little of the genomes: 4% in human, 

2% in cow and only 1% in mouse and rat (Table 1.1). They are remnants or fossils of ancient 

elements, and unlikely to remain transpositionally active (Lander et al. 2001). They were not 

studied in this work and will not be described further in detail. 
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Figure 1.1 Classification of transposable elements hierarchized in classes, subclasses, orders and 

superfamilies. TSD: target site duplication. Figure from Wicker et al. (2007). 

Both Class I and Class II TEs can be classified as either ‘autonomous transposons’ or 

‘non-autonomous transposons’ by their self-sufficiency. Autonomous TEs have an open 

reading frame (ORF) which can encode transcriptase or reverse transcriptase, so they have the 

ability to ‘jump’ in the genome by themselves; while non-autonomous TEs encode defective 



Chapter 1 General introduction 

 

 

 6 

polypeptides or cannot encode any, and accordingly require transcriptase or reverse 

transcriptase from another source (Dewannieux et al. 2003; Raiz et al. 2012).    

Different from older classification systems of retrotransposons based on the presence of a 

long terminal repeat (LTR) or not (non-LTR), Wicker et al. (2007) suggested to divide 

retrotransposons into five orders based on their mechanistic features, organization and reverse 

transcriptase phylogeny: LTR retrotransposons, Dirs-like elements, Penelope-like elements, 

long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). 

A schematic representation of the TE composition of some species is presented in Table 1.1. 

LTR retrotransposons 

LTR retrotransposons are more abundant in plants compared to animals. They have direct 

sequence repeats flanking the internal coding region, that range from 100 bp to over 5 kb in 

size, hence the name long terminal repeats. The size of LTR retrotransposons can range from 

a few hundred base pairs up to, exceptionally, 25 kb (Ogre) (Neumann et al. 2003). All 

autonomous LTR retrotransposons include ORFs encoding both structural and enzymatic 

proteins (Figure 1.1). The typical ORFs they contain are gag - coding for a structural protein 

for virus-like particles, and pol which encodes several enzymes, including aspartic proteinase 

(AP), reverse transcriptase (RT), RNase H (RH) and DDE integrase (INT) (Wicker et al. 

2007). The long terminal repeats of LTR retrotransposons do not encode any known proteins, 

but they contain the promoters and terminators required for transcription. 
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A common LTR superfamily in the mammalian genome is that of the endogenous retroviruses 

(ERVs). ERVs supposedly originate from retroviruses that infected the germline of 

vertebrates and stably integrated their genome in that of the host genomes (Ribet et al. 2008). 

Full ERVs have an env sequence (Figure 1.1), but most of them do not encode a functional 

envelope protein anymore and are incapable of horizontal transmission. Although ERVs lost 

their infectivity, some, such as ERV-K-type family in rats, may still keep their mobility and 

can significantly multiply in their host (Wang et al. 2010).  

LINE retrotransposons 

LINEs are the biggest mammalian TE component, comprising on average 20% of the 

mammalian genome (Table 1.1). Based on structural features and the phylogeny of the key 

enzyme - the reverse transcriptase, LINEs are grouped into five main groups, called R2, RTE, 

Jockey, L1 and I. The L1, or LINE-1 element is found in all mammals and has been found 

active in many species (Warren et al. 2008). A typical integral L1 element is approximately 

6000 bp, and contains an open reading frame for an RNA binding protein (ORF1) and one 

coding for an endonuclease and reverse transcriptase (ORF2). The LINE encoded reverse 

transcriptase recognizes the RNA from which it was translated (Wei et al. 2001), and initiates 

the mobility reactions termed target-primed reverse transcription (TPRT) (Luan et al. 1993). 

This reverse transcription mechanism will be discussed in more detail later in this review. 

SINE retrotransposons 

SINEs are short DNA sequences, usually 90 to 300 bp in length, and do not have reverse 

transcriptase protein coding capacity. They are non-autonomous retrotransposons dependent 

on LINEs for their amplification. The most prominent SINEs are the human Alu elements and 

the rodent B1 elements. The 5’ end of SINEs are derived from tRNA, 5S rRNA, and 7SL 

RNA with promoter activity for RNA polymerase III (A and B boxes) (Deininger & Batzer 

2002). The 3’ end of SINEs was suggested to originate from a corresponding LINE (Ohshima 
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et al. 1996; Okada & Hamada 1997). However, more recently it was described that the 3’ 

ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 

3’-poly(A) repeats. Since the 3’-poly(A) repeats are critical for their retrotransposition, L1s 

may recognize the poly(A) repeats (Ohshima 2013). This enables the SINE RNA to be reverse 

transcribed by the partner LINE reverse transcriptase (Ichiyanagi 2013).  

Dirs-like elements and Penelope-like elements 

Dirs-like elements and Penelope-like elements are the least studied retrotransposons, although 

they were found quite widespread in plants, metazoans, fungi and animals (Goodwin & 

Poulter 2001; Schostak et al. 2008). Dirs-like elements differ from other retrotransposons as 

they lack integrases or aspartic proteases. They encode a tyrosine recombinase, suggesting 

that they use this enzyme to insert copies into the host genome by recombination (Goodwin & 

Poulter 2004). The other unusual type, the Penelope-like elements, is delimited by two direct 

repeats flanking a single ORF coding for two protein domains: a reverse transcriptase (RT) 

similar to telomerase RTs, and an endonuclease (EN) (Cervera & De la Peña 2014). 

Penelope-like elements were suggested to use the same TPRT mechanism as LINEs, and 

exhibit a similar evolution pattern as LINEs, originating from deep branching clades dating 

back to the Precambrian era. However, they have experienced a much higher degree of 

lineage losses than LINEs (Arkhipova 2006). Penelope isolated from Drosophila virilis was 

the first known transpositionally active representative of this class (Evgen’ev et al. 1997). 

Since then similar elements were found in amoebae, fungi, cnidarians, rotifers, flatworms, 

roundworms, fish, amphibia, and reptilia, but less so in mammals. 

1.1.2 Retrotransposons in the bovine genome 

The bovine genome, as other mammalian genomes, contains all the main classes of TEs, with 

the bulk being LINEs and SINEs. As shown in Table 1.1, L1s are the dominant 

retrotransposon type in extant species, such as in cow, pig, horse, human, mouse and rat.  

With the exception of L1 and LINE RTE in ruminants and marsupials, few retrotransposons 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ohshima%20K%5Bauth%5D
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are active in mammalian genomes (Gentles et al. 2007). RTE (BovB) and L1 (L1_BT) 

comprise 12.9% respectively 13.3% of the bovine genome (data collected from bosTau7 

repeat library on RepeatMasker Genomic Datasets 

http://www.repeatmasker.org/species/bosTau.html). There are 1248 full-length BovB elements 

in the bovine genome, but only 9 of them contain a large ORF meeting the domain criteria, 

and are likely to retrotranspose in cattle. On the other hand, 811 intact L1_BT that are able to 

transpose were identified (Adelson et al. 2009).  

It is notable that a high number of RTEs in the bovine genome were found compared to other 

species (Table 1.1). RTEs have been found in all ruminantia (mouse deer, deers, giraffes, 

sheeps, and cows), and are named BovB, after their initial discovery in the bovine genome. 

However, their relatives, such as Suina (pigs and peccaries), Tylopoda (camels), and Cetacea 

(whales and dolphins) lack RTE elements. based on the high level of nucleotide identity, and 

by the phylogenetic relationships, it has been suggested that BovB is introduced into the 

genome of ancestor to ruminants by horizontal transfer from Squamata 40-50 million years 

ago (Kordis et al., 1998). After the introduction into the ancestor genomes, new BovB-related 

SINEs were generated due to rearrangement between older SINEs and BovBs. Based on the 

proportion of BovB in bovine genome, it was suggested an average increase in genome size 

by BovB retrotransposition of 0.4% per million years (Nilsson et al. 2012). 

It was suggested that every species/clade has one or more unique kind of SINE, contributing 

heavily to species-specific genome sequences (Jurka et al. 2007). In the bovine genome, 

ruminant-specific SINES, such as BovA (Bov-A2, Bov-tA) and ART2A constitute about 14% 

of the genomic sequences (Adelson et al. 2009). These SINEs are transposed by the BovB 

encoded machinery (Ohshima & Okada 2005). On the other hand, LTR retrotransposons 

(mainly ERVs) constitute only a very low percentage of the bovine genome as compared to 

other species listed in Table 1.1.  

http://www.repeatmasker.org/species/bosTau.html
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1.1.3 Mechanisms of retrotransposition 

Although the mechanism of retrotransposition is not completely understood, a general 

understanding can be deduced from the mechanisms of retrovirus integration (Varmus et al. 

1989). L1 is the mostly studied retrotransposon on mechanistic aspects (Ostertag & Kazazian 

Jr 2001; Ostertag et al. 2002). All retrotransposons transpose through the formation of an 

RNA transcript that is then reverse transcribed and inserted into a new location in the genome. 

It was found that both LTR elements and LINEs use at least two enzymes: reverse 

transcriptase, which is a RNA-dependent DNA polymerase used to generate complementary 

DNA from an RNA template, and an integrase, which is an endonuclease that cleaves at the 

site of integration to generate a staggered break. These two enzymes are encoded by genes in 

autonomous retrotransposons, that are not only utilized by the carriers but can also be used by 

non-autonomous retrotransposons. 

In the following paragraphs, a summary of the best known mechanisms will be presented, 

with indication of the similarities and differences among different types of retrotransposons, 

to illustrate how these mechanisms have influenced the colonized genomes. The life cycles of 

both LINE and LTR retrotransposons are presented as reference model in Figure 1.2.  

Transcription 

The insights in the mechanism of LTR retrotransposition are first extensively studied from 

work on yeast retrotransposons (Ty elements), but it is generally assumed that the mechanism 

is very similar among LTR retrotransposons from divergent hosts (Havecker et al. 2004). 

LTR retrotransposon RNA is transcribed by RNA polymerase II from a promoter located 

within the 5’ LTR sequence, and initiates downstream from the promoter region in the middle 

of the LTR. In contrast, LINEs have a strong, internal sense-stranded promoter harbored 

within the 5’ UTR for RNA polymerase II (Alexandrova et al. 2012). A less strong anti-sense 
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Figure 1.2 Life cycle of LINE and LTR retrotransposons, including transcription, translation, reverse 

transcription and integration.  

 

promoter was found in human and mouse, initiating expression of anti-sense L1 

retrotransposon-initiated fusion transcripts (RIFTs) and modifying the expression of 

numerous neighboring genes (Mätlik et al. 2006). An in vitro transcription study revealed that 

transcription from the human L1 promoter is highly sensitive to tagetitoxin - an inhibitor of 

RNA polymerase III - indicating that the human L1 promoter is also polymerase III dependent 

(Kurose et al. 1995). Therefore, it is possible that L1 promoters use a hybrid transcription 

system that takes advantage of factors from both the RNA polymerase II and polymerase III 

transcription apparatus (Deininger & Batzer 2002). 

Transportation 

Retrotransposon nucleotides export and entry in the nucleus are important steps in the 

retrotransposition mechanism. RNAs transcribed by polymerase II are typically modified by 
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addition of a 7-methylguanosine cap and a poly(A) tail, cleavage and splicing of introns, and 

then form an export-competent mRNP to be exported to the cytoplasm through nuclear pores 

(Tollervey & Caceres 2000). Different pathways have been reported for retrotransposons. It 

was first shown in retroviral replication studies that intron-containing RNA is actively 

transported from the nucleus to the cytoplasm. Human immunodeficiency virus type 1 (HIV-1) 

encodes a protein called REV that binds to the cis-acting Rev-response element (RRE) present 

in unspliced viral RNA, thereby mediating their nucleocytoplasmic export (Cullen 1998). 

LTR elements, like human endogenous retroviruses (HERVs) were found to contain an ORF 

coding for REV homologs with the same function in RNA export (Magin et al. 1999). Also, 

IAP, a mouse LTR retrotransposon was reported to contain a conserved element termed RTE 

(RNA transport element) with the same function as RRE, promoting RNA export from nuclei 

(Nappi et al. 2001). Thus, those elements were suggested to be essential for the 

nucleocytoplasmic transport of LTR retrotransposon full-length RNA (Zolotukhin et al. 2008). 

On the other hand, L1s do not contain any introns, and do not face the problem of exporting 

unspliced RNA. It was suggested that the mechanism of L1 RNA transport may contain 

cis-elements similar to those of intronless mRNA (Huang & Steitz 2001). Interestingly, in a 

cultured cell assay, assembled L1 transcripts containing an intron are spliced and 

retrotranspose appropriately (Moran et al. 1996).  

For further steps of reverse transcription and integration, both retrotransposon nucleotides and 

the proteins must re-enter the nucleus and get access to genomic DNA. Due to different 

reverse transcription mechanisms, LTR retrotransposons and LINEs enter the nucleus in 

different forms of nucleoprotein complexes (Figure 1.2). For LTR retrotransposons, reverse 

transcription of mRNA happens in the cytoplasm, therefore, they entry the nucleus as 

nucleoprotein complexes composed by DNA and integrase. For LINEs, both reverse 

transcription and integration take place in the nucleus, and they enter the nucleus as bigger 

nucleoprotein complexes composed with mRNA and integrase/reverse transcriptase. These 

two enzymes are encoded from L1 ORF2, and the protein weight can be up to 150 kDa 

(Ergün et al. 2004). It was suggested the nuclear pore allows the passive diffusion of proteins 
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with a size up to 110 kDa and even larger ones, depending on the protein structure (Wang & 

Brattain 2007). If the integrases can not enter the nucleus by passive diffusion, then nuclear 

localization/export signals will be needed for them to diffuse through the nuclear pore. 

Ostertag and Kazazian suggested that L1 ORF2 may encode a functional nuclear localization 

signal by itself or bind an additional protein that contains a nuclear localization signal 

(Ostertag & Kazazian Jr 2001).   

Reverse transcription and integration 

The priming of reverse transcription and integration in the genome is different between LTR 

retrotransposons and LINEs. For LTR retrotransposons, the entire process is catalyzed by 

reverse transcriptase which has both DNA polymerase and RNase H activities. The most 

common mechanism of LTRs for priming reverse transcription is by the annealing of the 3’ 

end of a specific cellular tRNA to a complementary region called the primer-binding site 

(PBS) adjacent to the upstream LTR. This tRNA 3’ end serves as a primer for the reverse 

transcriptase that copies the RNA in a complex series of events into a double-stranded DNA. 

This process occurs in the cytoplasm, and then the double-stranded DNA molecule is 

transported to the nucleus and integrated back into the host DNA, adding another copy of the 

retrotransposon to the genome. This integration process is similar to the integration of DNA 

transposons, with an element-encoded nuclease making specific nicks in both the element 

DNA and the integration site to catalyze the integration process (Deininger & Batzer 2002).    

Unlike the LTR retrotransposons that transport double-stranded DNA back to the nucleus for 

integration, LINEs use their RNA in the integration process directly. This mechanism is 

named target-primed reverse transcription (TPRT). The initial stages of the mechanism have 

been demonstrated most convincingly with in vitro studies of the Bombys mori R2 element 

(Luan et al. 1993), and were then extensively studied in the mammalian L1 elements. L1 

ORF1 encodes an RNA-binding protein that shows some specificity for binding their RNA 

(Hohjoh & Singer 1997), and the L1 ORF2 encodes the reverse transcriptase and an 
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endonuclease that appears to nick the insertion site (Mathias et al. 1991; Cost & Boeke 1998). 

During TPRT, the retrotransposon’s endonuclease cleaves one strand of genomic DNA at the 

target site, producing a 3’ OH at the nick, and then the retrotransposon RNA inserts at the 

nick and the reverse transcriptase uses the free 3’ OH to prime the reverse transcription, 

which is followed by a cleavage of the other DNA strand and integration. Since SINEs and 

pseudogenes share the same consensus integration site as L1 (Jurka 1997), they are suggested 

to take advantage of this TPRT mechanism (Boeke 1997).  

1.1.4 Expression and mobilization of retrotranposons in mammalian genomes 

Transcription 

In the mouse, 13% of oocytes’ and 7.5% of 2-cell embryos’ protein-coding cDNAs contain 

retrotransposon-derived sequences (Evsikov et al. 2004; Peaston et al. 2004). These 

retrotransposon families were suggested to act as alternative promoters and first exons for a 

subset of host genes, regulating their expression in oocytes and early stage embryos (Peaston 

et al. 2004). The retrotransposon RNA was not only found in early development, but also in 

many adult tissues by Northern blot (Belancio et al. 2010). Full-length L1 RNA was found 

widespread in human somatic tissues, including ovary, placenta, esophagus, heart muscle and 

stomach. Translatable spliced transcript (SpORF2), which has the potential to express L1 

ORF2, was also detected in lung, thymus, testis and mesenchymal stem cells. Using the same 

method, L1 RNA was found in rat liver, kidney, and neural cell lines (Witney & Furano 1984). 

The RNA of more types of retrotransposons was more recently found in different human and 

mouse tissues using the Cap Analysis Gene Expression (CAGE) technique (Faulkner et al. 

2009).  

Many of the retrotransposon RNAs are not coding for proteins and therefore are classified as 

long noncoding RNAs (lncRNA). They potentially bind to chromatin-modifying proteins and 

recruit their catalytic activity to specific sites in the genome to further modulate chromatin 

states and impact gene expression (Mercer & Mattick 2013). This gene expression regulation 
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is not limited locally to neighboring genes. These lncRNAs can interact with chromatin at 

several thousand different locations crossing multiple chromosomes and can modulate 

large-scale gene expression (Vance & Ponting 2014).  

Translation 

Using immunohistochemistry and western blot analysis on cell lines and tissues it was found 

that L1 proteins are present in tumor cell lines, such as human teratocarcinoma, 

choriocarcinoma, bladder carcinoma, colon carcinoma, melanoma, fibrosarcoma cells and 

breast carcinomas among others (Leibold et al. 1990; Asch et al. 1995; Nangia-Makker et al. 

1998). Besides in the human cancer cell lines, L1 ORF1 protein was detected by 

immunohistochemistry in mouse germ lines and gonads, including fetal oocytes, leydig cells, 

prepuberal and adult testes, myoid cells, and cyncytiotrophoblast cells of the placenta 

(Branciforte & Martin 1994; Trelogan & Martin 1995; Malki et al. 2014). The L1 protein 

expression was also found in neurons (Richardson et al. 2014). For LTR retrotransposons, 

PEG 10 is a paternally expressed imprinted gene that is thought to have been driven from the 

Ty3/Gypsy LTR elements. It contains two overlapping ORFs and expresses two proteins: a 

shorter, gag-like protein and a longer, gag/pol like fusion protein. The protein expression was 

found in human placenta, testis, and adrenal gland 

(http://www.proteinatlas.org/ENSG00000242265-PEG10/tissue, Uhlén el al. 2015). 

Mobilization 

A full retrotransposition process includes the final insertion of the repeats. Till today, active 

retrotransposition in mammalian genomes was found mainly for L1. The insertion activity 

was first studied using a retrotransposition cassette (Heidmann et al. 1988) containing a 

marker to detect new retrotransposition events. This neomycin phosphotransferase (neo) 

retrotransposition cassette was used to demonstrate the mobility of mouse IAP elements 

(Heldmann & Heidmann 1991), pseudogenes (Maestre et al. 1995), and mammalian L1 

http://www.proteinatlas.org/ENSG00000242265-PEG10/tissue
https://scholar.google.be/citations?user=S8ER7X4AAAAJ&hl=zh-CN&oi=sra
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(Moran et al. 1996; Naas et al. 1998). An enhanced green fluorescent protein (EGFP) gene 

was later added to the cassette making retrotransposition detection in living cells possible 

(Ostertag et al. 2000). By using this cassette, L1 retrotransposition was revealed both in vitro 

and in vivo, mainly in germ cells and early embryos. Human embryonic stem cells express 

endogenous L1 with retrotransposition, which provided in vitro evidence (Garcia-Perez et al. 

2007). Later in vivo evidence was shown in a study of a patient with choroideremia (CHM), in 

which a full-length L1 insertion was found in the coding region of the CHM gene (van den 

Hurk et al. 2003). Analysis of genomic DNA from the CHM patient’s mother indicated L1 

retrotransposition can occur very early in human embryonic development and cause 

choroideremia by insertion in the CHM gene (van den Hurk et al. 2007). L1 retrotransposition 

was also found in male germ cells (Ostertag et al. 2002), and L1 and other retrotransposons 

like HERV-K10 and VL30 were found retrotransposed in human oocytes (Noutsopoulos et al. 

2006; Georgiou et al. 2009). It was suggested that a controlled network of retrotransposon 

transcripts might serve important roles during gamete development and fertilization, while the 

uncontrolled ones might lead to genetic disorders (Georgiou et al. 2009). Although 

retrotransposon insertions were reported in germ cells, and a similar level of retrotransposon 

RNA expression was found in both germ cells and early embryos, a retrotransposon insertion 

study of transgenic mouse and rat models containing human or mouse L1s showed that L1 

insertions predominantly occur during early embryogenesis and less so in germ cells. This 

was thought to be due to the combined control by DNA methylation and piRNAs in 

mammalian germ cells (Heras et al. 2014). 

Retrotransposon insertions were also found in adult tissues/cells, but are often malicious. L1 

mobilization was found during both embryonic and adult neurogenesis in rodents and humans, 

and was suggested to cause extensive somatic mosaicism in the brain (Muotri et al. 2005; 

Coufal et al. 2009). Moreover, L1 mediated retrotransposition was found in a variety of tumor 

types, including colorectal (Miki et al. 1992; Solyom et al. 2012), lung (Iskow et al. 2010), 

liver (Shukla et al. 2013), prostate and ovarian cancers (Lee et al. 2012).   
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Estimating Transposition Frequency 

An important question that can be asked considering the potential effects of transposition on 

the genome is: how often do retrotransposons jump? Alu and L1 elements, comprising about 

30% of the whole human genome, are the two major active families currently expanding in 

the human genome (Lander et al. 2001; Ostertag & Kazazian Jr 2001; Batzer & Deininger 

2002), and thus are the most studied as to the natural retrotransposition rate.  

For Alu’s, two methods for retrotransposition rate estimation were reported (Cordaux et al. 

2006). The first method utilizes an evolutionary framework, estimating the average Alu 

retrotransposition rate over the past 6 million years. The average rate obtained with this 

method is one Alu insertion in every 18 to 26 individuals over the past 6 million years. The 

other method estimates the current Alu retrotransposition rate by comparing the frequency of 

the de novo Alu insertions involved in genetic diseases in humans to that of the de novo 

nucleotide mutations causing disease in the same set of genes. This method gives an 

estimation of one new insertion in every 15 individuals (Cordaux et al. 2006).  

There is more variance in estimation of L1 insertion frequency. By comparing the diploid 

genome of individual humans with the Human Genome Project reference assembly, it was 

estimated that the L1 retrotransposition rate is one new insert in 212 births, and one in 21 

births and 916 births for Alu and SVA respectively (Xing et al. 2009). The insertion rate is 

almost doubled in other groups, by one in 140 and 108 births separately (Ewing & Kazazian 

2010; Huang et al. 2010). So far, natural retrotransposition rate estimations in other species 

are not available yet.  
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1.1.5 Impact of retrotransposon activity on the mammalian genome 

1.1.5.1 Formation of new genetic elements 

Reverse transcription is one of the key processes that shape eukaryotic genomes. The huge 

amount of retrotransposons in the genomes is resulting from such events, but it can also 

produce many new sequence elements in the genome. Here an overview is given of the most 

important genetic elements formed by the RT activity of retrotransposons. 

Formation of processed pseudogenes  

Pseudogenes are DNA sequences homologous to a functional gene. They can be divided in 

two broad groups based on the way they are generated: Duplicate pseudogenes arise by 

genomic duplication of the functional gene, and become ‘genomic fossils’ due to mutations 

that prevent the transcription of the gene, such as within the gene promoter region, or disturb 

the translation of the gene, for example as consequence of the introduction of a premature 

stop codon or frameshift. The other type is called processed pseudogenes. They arise from 

reverse transcription of mRNAs through the activity of the reverse transcriptase encoded by 

retrotransposons such as LINEs and LTR elements (Esnault et al. 2000). DNA copies of the 

mRNAs are produced and inserted into the genome. The insertion contains coding sequences 

of the gene, but does normally not contain promoters and introns. They end in a poly(A) tail, 

and are flanked by short direct repeats (Zheng et al. 2007).  

Pseudogenes were first defined as non-functional DNA sequences, but recently they were 

suggested ‘not so pseudo anymore’. A genome-wide analysis of EST databases and 

transcriptional analysis of individual pseudogenes has revealed that up to one third of 

processed pseudogenes are transcribed, mostly in testes (Babushok et al. 2007). More than 

1000 pseudogene transcripts were detected in human, 20 of which were suggested to be 

functionally active (Vinckenbosch et al. 2006). Some pseudogenes function as microRNA 

sponges, which mean they are competitive inhibitors of small RNAs in mammalian cells 
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(Ebert et al. 2007). For example, a pseudogene of OCT4 (OCT4-pg4) functions as a natural 

microRNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular 

carcinoma (Wang et al. 2013). 

Formation of new retrotransposons 

Retrotransposon integrations into the genome can lead to the formation of new 

retrotransposons, such as SVA elements. SVAs are hominoid specific composite elements 

named after their main components: SINE, VNTR and Alu (Wang et al. 2005). The first SVA 

probably appeared in the genome due to the integration of these elements into the same 

genomic locus (Shen et al. 1994). They originated <25 million years ago and have increased 

to about 3000 copies in the human genome (Wang et al. 2005). They were suggested to 

represent non-autonomous retrotransposons that are mobilized by L1 encoded proteins and are 

presumed to be still active in the human genome. A de novo SVA insertion was found in the 

α-spectrin gene, leading to a variety of hereditary red blood cell disorders (Ostertag et al. 

2003). Moreover, it was suggested that LTR retrotransposons might have been formed as a 

fusion product of DNA transposons and non-LTR retrotransposons (Malik & Eickbush 2001).  

Formation of chimeric retrogenes 

Chimeric retrogenes, found in mammalian and fungal genomes, are bipartite elements 

composed of DNA copies of cellular transcripts either directly fused to each other or fused to 

the 3′ part of retrotransposons (Buzdin et al. 2007). New chimeric retrogenes, that are often 

expressed, can be produced by L1 retrotransposition (Kazazian 2004). These genes were 

suggested to be generated through RNA template switching from retrotransposons like L1 and 

Alu to other small nuclear RNAs during reverse transcription. A total of 82, 116, 66, and 31 

retrogenes potentially encoding TE derived proteins and to have evolved new cellular 

functions, were found in human, mouse, rat and rice respectively (Gogvadze & Buzdin 2009). 

The chimeric retrogenes in the human genome were suggested to consist of 5′ regions 
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originating from small nuclear RNAs, such as U6, U3, U5, and 5S RNA, and 3′ regions 

derived from the 3′ ends of L1 or Alu elements (Kazazian 2004). 

Recombination of retrotransposons 

Recombination is another powerful factor of evolution that produces genetic variability by 

using already existing blocks of biological information (Makalowski 2000). The human 

glycophorin gene family evolved through several duplication steps that involved 

recombination between Alu elements (Makalowski 2000). Furthermore, Alu-derived ectopic 

recombination generated 492 human-specific deletions, of which 60% were shown to be 

located in genes, and in at least three cases, exons have been deleted in human genes relative 

to their chimpanzee orthologs (Sen et al. 2006). 

Recombination between retrotransposons may cause various diseases. Almost 50 diseases 

were suggested to be related to Alu recombination (Belancio et al. 2008; Xing et al. 2009). 

Disorders such as glycogen storage disease and alport syndrome are due to the recombination 

between L1 elements (Burwinkel & Kilimann 1998; Segal et al. 1999) and complete germ cell 

aplasia is due to recombination between HERV-I elements (Kamp et al. 2000). 

1.1.5.2 Retrotransposons as regulators in the genome 

Promoters  

A whole-genome analysis revealed that about 24% of the human promoter sequences 

analyzed contain retrotransposon-derived sequences, making up more than 7% of the total 

nucleotides in all of the promoters. Those sequences are derived from all types of common 

human retrotransposons, such as LINEs (1.6%), SINEs (5.3%), and LTRs (0.4%) (Jordan et al. 

2003). These retrotransposon-derived sequences can act as the main promotor of a gene, for 

example the antisense L1 and Alu sequences of the HYAL-4 gene, which is necessary for 

hyaluronan catabolism (van de Lagemaat et al. 2003), but mostly they act as alternative 
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promoters and thus can influence the RNA transcription level and/or change the tissue 

specificity of the gene it is residing in. There are numerous examples of retrotransposons 

acting as cis-promoters, such as LTR retrotransposons that cause placental-specific expression 

of CYP19 (van de Lagemaat et al. 2003) and regulate transcription of NAIP (Romanish et al. 

2007).  

Surprisingly, retrotransposons were found with a preference in antisense direction when 

located in gene introns, which was explained by the fact that sense oriented insertions are 

more likely to be harmful to regulatory motifs, so they are less likely to be fixed (van de 

Lagemaat et al. 2003). Thus, antisense transcription of genes is also promoted (Conley et al. 

2008). Using cap analysis of gene expression (CAGE) 48718 human gene antisense 

transcriptional start sites with TE elements were identified (Conley et al. 2008). For example, 

human specific HERV-K can generate antisense transcripts of SLC4A8 and IFT172 mRNAs 

(Gogvadze et al. 2009). Although they may drive transcription of RNAs that are 

complementary to the genes, the full function of the antisense transcripts remains unclear.  

Transcriptional enhancers 

Enhancers are short (50 ~ 1500 bp) regions of DNA that can be bound by transcriptional 

factors to activate transcription of a gene (Blackwood & Kadonaga 1998). Many 

retrotransposons have been reported to play an enhancer role in gene regulation. SINEs were 

reported to act as distal transcriptional enhancers for Isl1, Fgf8 and Satb2 genes in mouse 

(Bejerano et al. 2006; Sasaki et al. 2008; Tashiro et al. 2011) and human SINE B2 was 

reported to serve as a domain boundary blocking the influence of repressive chromatin 

modifications during organogenesis (Lunyak et al. 2007). In human, it was shown that LINE 

sequences reside in an enhancer of apolipoprotein a (APOA) and Alu sequences are part of the 

MAL gene (also known as CD8A) enhancer (Hambor et al. 1993; Yang et al. 1998). A study 

comparing biochemically predicted enhancers in mouse and rat trophoblast stem cells found 

that species-specific enhancers were highly enriched for ERVs on a genome-wide level 
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(Chuong et al. 2013), and one ERV family (RLTR13D5) contributes hundreds of 

mouse-specific histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 27 

acetylation (H3K27ac) defined enhancers that functionally bind Cdx2, Eomes and Elf5 core 

factors k in trophoblast stem cells. The ERV-9 element in the human β-globin cluster was 

reported to be responsible for controlling expression of this cluster in erythroid cells (Long et 

al. 1998). In transgenic zebrafish harboring the β-globin ERV-9 coupled to the GFP gene the 

ERV-9 was shown to possess enhancer activity enabling GFP expression in oocytes (Pi et al. 

2004).  

Environment response elements  

Barbara McClintock’s ‘genomic shock’ hypothesis proposed that TE activity could be a 

response to environmental pressures (McClintock 1983). This hypothesis has been proven by 

the finding that numerous TEs contain motifs such as hormone response elements and 

therefore are targets of chemical and molecular environmental changes (Ono et al. 1987; 

Babich et al. 1999; Laperriere et al. 2007). These hormone response elements influence the 

transcription of a large number of genes by interaction with intracellular receptors (Beato et al. 

1996). For example, DR2-type hormone response elements are heavily present in Alus (90%) 

(Laperriere et al. 2007). These Alu-DR2 elements were suggested to drive retinoic acid 

regulated genes, and bind retinoic acid receptors in vivo (Laperriere et al. 2007). 

Insulators 

Insulators are genetic boundary elements that block the interaction between distal enhancers 

and inappropriate target promoters (Kellum & Schedl 1991). Some evidence has been 

provided that retrotransposons can function as insulators in vivo to distinguish blocks of active 

and transcriptionally silent chromatin. Gypsy, a LTR retrotransposon has been widely reported 

to possess insulator activity in Drosophila (Cai & Levine 1995; Gdula et al. 1996; 

Nabirochkin et al. 1998; Pai et al. 2004). This gypsy insulator insertion was suggested 

blocking enhancers and down regulating the genes yellow and miniwhite (Dorsett 1993; 
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Kostyuchenko et al. 2008). It might establish higher-order domains of chromatin structure and 

regulate nuclear organization by tethering the DNA to the nuclear matrix and creating 

chromatin loops (Byrd & Corces 2003).  

Mammalian LINEs and SINEs functional as insulators were found within matrix attachment 

regions (Purbowasito et al. 2004; Akopov et al. 2006; Román et al. 2011). For example, a B2 

retrotransposon in the murine growth hormone locus serves as a boundary to block the 

influence of repressive chromatin modifications by generating short, overlapping Pol II- and 

Pol III- driven transcripts (Lunyak et al. 2007). 

New poly(A) sites 

The polyadenylation or poly(A) sites are cleavage recognition sites at which poly(A) tails are 

added during the processing of the 3’end of pre-mRNA. Many retrotransposons were reported 

to generate new poly(A) sites. It was estimated that about 8% of all poly(A) sites are 

associated with TEs (Lee et al. 2008). Chen et al. (2009) found that 10,000 of the 1.1 million 

Alus in the human genome are inserted in the 3’UTRs of protein coding genes. Of these about 

1% (107 events) is active as poly(A) site. They also found that Alu insertions in 3’UTRs are 

equally in the forward and reverse direction, but 99% of polyadenylation-active Alus are 

forward oriented. These Alu-borne poly(A) sites are intronic and produce truncated transcripts 

that may impact gene function and / or contribute to gene remodeling (Chen et al. 2009).  

L1 elements also created premature poly(A) sites with insertions into endogenous genes and 

produced new mRNA isoforms (Han et al. 2004). Many LTR retrotransposons were also 

suggested as a source of poly(A) sites. For example, HERV were reported as an alternative or 

major poly(A) site for the genes PLT (Goodchild et al. 1992), ZNF195 (Kjellman et al. 1999), 

HHLA2 and HHLA3 (Mager et al. 1999).  
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Novel splice sites 

Alternative splicing is a mechanism by which different mRNAs are generated from a single 

gene. Some retrotransposons contain splice donor/acceptor sites that compete with the 

original ones of exons. Alus were suggested to play a crucial role in the birth of new exons 

(Lin et al. 2008). Complete or partial Alus are found present in coding regions of mature 

mRNAs, and they were suggested to be recruited in the coding region, possibly because Alus 

contain motifs that resemble consensus splice sites (Makałowski et al. 1994; Sorek et al. 

2002). Mutation within intronic Alus may yield active splice sites, which makes partial or 

complete Alus part of the newly generated exon (exonization). It was reported that Alu exons 

with high splicing activities were strongly enriched in the 5’-UTR, and two-thirds of the Alu 

exons significantly altered mRNA transcriptional efficiency (Shen et al. 2011). Alternative 

splicing does not only cause exonization, but also exon skipping. About 1.5% to 4% of the 

alternatively skipped exons in human were reported to be due to intronic retrotransposons 

flanking the exons (Lev-Maor et al. 2008).  

A study of a L1 insertion into the dystrophin gene, which when defect causes Duchenne 

muscular dystrophy (DMD), disclosed that the L1 insertion altered splicing, skipping exon 44 

of the gene (Narita et al. 1993). Although LINEs were reported to utilize the same 

retrotranspositional mechanism as SINEs, the proportion of L1s in gene introns is 

significantly lower than that of Alus (Buzdin 2004). This difference was suggested to be due 

to purifying selection acting against accumulation of L1s in genes (Pavlı́ček et al. 2001). The 

direction of retrotransposon insertion also influences the splicing mRNA events. For example, 

when HERV9 and HERV-K are present in sense direction in transcribed regions, they show 

considerable bias for use of strong splice sites, but not when they are in antisense direction 

(van de Lagemaat et al. 2006).  
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Heterochromatin 

Heterochromatin is tightly packed DNA that is inaccessible to polymerases and is therefore 

not transcribed. One type of heterochromatin called constitutive heterochromatin can affect 

the genes near itself. Constitutive heterochromatin is composed of predominantly repetitive 

DNA sequences, including simple repeats, DNA transposons, and retrotransposons (LINEs, 

SINEs and ERVs), and is mostly found near centromeres, telomeres, but also scattered 

throughout the chromosomes (Saksouk et al. 2015). The other type of heterochromatin called 

facultative heterochromatin is the result of genes that are silenced through a mechanism such 

as histone deacetylation or RNAi. Both LINEs (L1) and SINEs (B2) were reported to help in 

facultative heterochromatin formation during X chromosome inactivation (XCI), (Chow et al. 

2010). 

Transcriptional silencer 

Retrotransposons are also known to function as transcriptional silencers of the enclosing 

genes (Gogvadze & Buzdin 2009). For example, a transcriptional silencer at the distal end of 

the human tumor-suppressor (BRCA2) gene promoter was identified as a full-length Alu, and 

this Alu was shown to be involved in the negative regulation of the gene expression in breast 

cell lines (Sharan et al. 1999). An endogenous retroviral sequence, RTVL-la, was also 

reported with a silencer activity. The insertion of RTVL-la in HPR (92% identical to human 

haptoglobin gene) reduced HPR expression with 50% (Hatada et al. 2003).  

1.1.6 Regulation of retrotransposition 

In somatic tissues and mature germ cells, retrotransposition and even transcriptional activity 

of retrotransposons is largely suppressed by several different cellular defense mechanisms. 

These defense mechanisms will be described in the following part.  
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DNA methylation 

DNA methylation is an important epigenetic regulatory mechanism characterized by the 

addition of methyl groups to certain nucleotides, mostly at CpG sites 

(5’-cytosine-phosphate-guanine-3’ sites). This methylation results in the conversion of the 

cytosine to 5-methylcytosine. When located in a gene promoter, DNA methylation typically 

acts to repress gene transcription. The vast majority of retrotransposons, including LINEs, 

SINEs and ERVs are densely methylated in normal somatic cells and contained in inactive 

chromatin. Regulation of this DNA methylation ensures a stable equilibrium between 

retrotransposons and their host (Schulz et al. 2006). CpG sites in retrotransposon promoters 

are largely methylated in normal cells. In Alus, crucial CpG sites are localized in the essential 

A and B boxes and their methylation prevents binding of the Pol III co-factors (Liu & Schmid 

1993). In L1 elements, the repression by methylation appears to be mediated by the 

methylcytosine-binding proteins MeCP2 and MBD2 (Yu et al. 2001; Steinhoff & Schulz 

2004). The effects of methylation on HERV regulation have not been studied in detail. HERV 

expression at relatively low levels has been reported in some carcinomas with 

hypomethylated genomes (Wang-Johanning et al. 2003; 2007). 

A correlation between DNA methylation level and retrotransposon activity has been found: 

retrotransposons are most activated in hypomethylated cells, like cancer cells, and the 

retrotransposons themselves are found hypomethylated as well. In various human cancer cell 

lines, from germ cell cancers to ovarian carcinoma, hypomethylation and strong expression 

were found for Alu, L1 and HERV (Schulz et al. 2006).  

Besides in cancer cells, retrotransposon promoters undergo two waves of partial 

demethylation: one occurs during the specification and migration of primordial germ cells and 

the other during the preimplantation stage (Lee et al. 2014). It was reported that mouse 

embryos deficient for the maintenance DNA methyltransferase DNMT1 lose methylation of 

several types of TEs (Walsh et al. 1998), and a similar phenotype has been observed for the 

double-mutant mouse for DNMT3a and DNMT3b that encode de novo DNA 
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methyltransferases (Okano et al. 1999).  

Furthermore, DNA methylation is not the only epigenetic repressor in the control 

retrotransposons’ transcription and movement. Overlapping epigenetic mechanisms evolved 

to control the expression of TEs in human and mouse embryonic stem cells (Slotkin & 

Martienssen 2007; Castro-Diaz et al. 2014). Another important epigentic regulationary 

mechanism is by histone modification and different marks appear to be important for different 

elements and/or developmental stages. Histone H3 trimethylated at lysine9 (H3K9me3) and 

DNA methylation work together to repress most RT through a constitutive hererochromatin 

signature. Mutations in the histone H3K9 methyltransferase gene Suv39 result in modest 

upregulation of transcripts in mouse embryonic stem cells (Martens et al. 2005). In the mouse 

histone lysine methyation study, it was found different histone modifications have a selective 

enrichment region over the TEs: The most prominent enrichment for repressive histone 

modifications was observed over tandem satellite repeats and DNA transposons 

(combinations of H3K9me3, H3K27me1 and H4K20me3 or me2); only one mark was found 

for IAP LTRs (H4K20me3); and for LINEs and SINEs, no infomative signals were found 

(Martens et al. 2005). However, Fadloun et al. (2013) found that in mouse embryos, L1 and 

IAP are enriched for both the activating mark H3K4me3 and the repressive mark H3K9me3, 

when they are expressed at the 2-cell stage, but are only enriched for H3K9me3 at the 8-cell 

stage as expression begins to decrease. It was also shown that the H3K9me3 exhibited the 

same tendency as DNA methylation in early mouse embryo development.  

  

Small RNA  

Small RNAs are <200 nucleotide in length and are usually non-coding RNAs (Storz 2002). 

The three major classes of endogenous small RNAs identified in mammals are microRNAs 

(miRNAs), small interacting RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) 

(McManus & Sharp 2002; Siomi et al. 2011). miRNA and siRNA are well studied as they are 

important in post-transcriptional gene silencing. They can bind to mRNAs to regulate their 

activity, typically causing the degradation of the target mRNAs or inhibiting their translation.  



Chapter 1 General introduction   

 29 

miRNAs and siRNAs are generated from double-stranded precursor RNAs by a process of 

cleavage (by Dicer or related endonuclease) and modification after which the small RNAs are 

loaded into the RNA-induced silencing complex (RISC). One of the proteins in RISC, called 

Argonaute (AGO), cleaves the bound target mRNA (Valencia-Sanchez et al. 2006). miRNA 

induced silencing RISC is guided by miR-128 to bind directly to a target site residing in the 

L1 ORF2 RNA, which results in destabilization of L1 transcript and subsequently, repression 

of the L1 protein (Hamdorf et al. 2015). siRNAs processed from sense and antisense 

promoters in the 5’UTR of full-length human L1 were found to suppress L1 retrotransposition 

by RNAi (Yang & Kazazian 2006), and miRNA from the maternally inherited chromosome 

12 was found to inhibit a retrotransposon-like gene (Rtl1) expressed from the paternal allele in 

mouse (Seitz et al. 2003). The regulation of retrotransposons by small RNAs was further 

confirmed by the evidence that ERVs and LINEs serve as substrates for the production of 

siRNAs (Soifer et al. 2005), and a nuclear protein complex involved in miRNA biogenesis 

binds L1, Alu, and SVA-derived small RNAs in human cells (Heras et al. 2013). 

Another class of small RNAs, PIWI interacting RNA (piRNA, originally P-element induced 

wimpy testis in Drosophila) has been especially linked to transcriptional and 

post-transcriptional gene silencing of retrotransposons and therefore are also called 

repeat-associated small interfering RNAs (rasiRNAs) (Saito et al. 2006). piRNAs are 

normally 26-31 nt long. piRNAs are found mainly in germ cells (in fruit fly, mouse, rat and 

human) derived from TEs and long non-coding RNA, and interact only with PIWI proteins 

(Siomi et al. 2011). Based on work with Drosophila, the piRNA pathway is proposed to work 

with a ‘Ping-Pong’ mechanism to amplify the inhibitory signal (Grimson et al. 2008), as 

outlined in Figure 1.3. In this system, primary antisense piRNAs loaded onto the protein 

Aubergine (AUB) bind to complementary TE RNAs. The targets are then cleaved by AUB 

generating new sense piRNAs that are loaded into an Argonaute-3 (AGO3) complex. The 

AGO3 bound sense piRNAs lack the ability to target transposable element transcripts directly, 

but are proposed to guide the production of piRNAs that are loaded into AUB by targeting 

newly exported piRNA cluster transcripts. This AGO3-directed cleavage generates additional 



Chapter 1 General introduction 

 

 

 30 

antisense piRNAs that actively silence their target elements, thus reinforcing the cycle 

through the creation of additional sense piRNAs (Brennecke et al. 2007). This mechanism 

was also observed with piRNAs associated with PIWI family members MILI and MIWI2 

isolated from mouse testes (Brennecke et al. 2007). It was also found that PIWI proteins 

associating with piRNAs originating from repetitive targets function in silencing  

 

Figure 1.3 The piRNA Ping-Pong amplification cycle consisting of AUB complexes, AGO3 

complexes, piPNA cluster transcripts and transcripts of active transposons. Nucleotide cleavage events 

are shown as scissors. Adapted from Brennecke et al. (2007). 

retrotransposons through the RNAi mechanism (Saito et al. 2006). Recent evidence indicates 

that the PIWI pathway is also functional in human early embryonic cells and ape pluripotent 

stem cells controlling expression of L1s (Marchetto et al. 2013). 
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In addition to their role in post-transcriptional regulation, piRNAs also seem active on the 

transcriptional level. MILI and MIWI2 were reported to play essential roles in establishing de 

novo DNA methylation of retrotransposons (L1 and IAP) in murine fetal testes 

(Kuramochi-Miyagawa et al. 2008). Mice with inactivated MILI and MIWI2 show not only 

enhanced L1 and IAP expression, but also hypomethylation of the L1 5’URT. This relation 

between piRNA and de novo DNA methylation is also supported by the observation that 

piRNAs recruit de novo DNA methyltransferases at repeated elements (Aravin et al. 2008; 

Aravin & Bourc’his 2008). 

Other transcription and post-transcription factors 

Some transcription and post-transcription factors interacting with retrotransposon promoters 

have been identified and shown to act as activator, repressor, or initiator.  

Retrotransposons are mostly expressed in early embryonic cells and cancer as discussed 

above, and this tissue-specific expression is determined in part by transcription factors. Some 

retrotransposon related transcription factors are listed in Table 1.2. The majority of 

transcription factor binding sites occur in the LTRs of LTR retrotransposons or in UTRs of 

LINEs and SINEs. Therefore, LTRs and UTRs serve as platforms for recruitment of the 

transcription factor and co-factor’s to regulate expression of the TEs (Robbez-Masson & 

Rowe 2015). Certain classes of retrotransposons are enriched for particular transcription 

factors. For example, OCT4/ SOX2 binding is enriched on ERV-K in mouse and ERV1 in 

human, while TP53 is predominantly found on mer61-type ERV1 in human (Bourque et al. 

2008).  

On the post-transcriptional level 3’ repair exonuclease 1 (TREX1) and some cytidine 

deaminases are reported as potential host factors regulating retrotransposon activity. 

APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3) is a family 

of cytidine deaminases, converting cytidine to uridine (or deoxycytidine to deoxyuridine). 

APOBEC3 proteins (3A, 3B, 3F, 3G) have been reported to inhibit retrotransposition of Alus, 
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ERVs and L1 (Turelli et al. 2004; Bogerd et al. 2006; Chen et al. 2006; Chiu et al. 2006; 

Hulme et al. 2007; Khatua et al. 2010). A retrotransposition reporter assay in HeLa cells 

revealed that presence of APOBEC3A reduced the L1 retrotransposition frequency by up to 

85%. A combination of APOBEC3B, 3C and 3F inhibited retrotransposition about 75% and 

down-regulation of APOBEC3C could enhance the movement by about 78% (Muckenfuss et 

al. 2006). APOBEC3G inhibits retrotransposition of IAP and MusD, and induces G to A 
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Table 1.2 Transcription factors interacting with retrotransposon promoters 

Gene name  Function  Regulation of retrotransposons  
RUNX3  
Runt-Related Transcription 
Factor 3  

It functions as a tumor suppressor, and is frequently 
deleted or transcriptionally silenced in cancer.  

Exogenous expression of RUNX3, increases human L1 transcription, and 
influences L1 5’UTRs in both sense and antisense directions (Yang et al. 2003).  

SOX2  
SRY (Sex Determining Region 
Y)-Box 2  

It is involved in the regulation of embryonic 
development and in the determination of cell fate.  

L1 promoter recruits NANOG, OCT4 and SOX2, and silences expression of OCT4, 
NANOG, and SOX2 resulting in decreased expression of L1 (Närvä et al. 2012).  

KRAB-ZFP 
Kruppel-associated box-zinc 
finger protein 

It is involved in transcriptional repression of RNA 
polymerase I, II, and III promoters and binding and 
splicing of RNA 

It represses together with its cofactor KAP1 through histone and DNA 
methylation, a process resulting in irreversible silencing of TEs (Ecco et al., 
2016). 

TP53  
Tumor Protein P53  It acts as a tumor suppressor in many tumor types.  TP53 is predominantly found on mer61-type ERV1 in human (Bourque et al. 

2008).  

NANOG  
Nanog Homeobox  It is involved in embryonic stem (ES) cell proliferation, 

renewal, and pluripotency.  
LINEs and LTR retrotransposons embedded human-specific transcription factor 
binding sites consititute 64% of all human-specific binding events for NANOG 
(Glinsky 2015).  

OCT4 (POU5F1) 
octamer-binding transcription 
factor 4  

It plays a key role in embryonic development and 
stem cell pluripotency.  

Binds the LTR of HERV-H, which is highly expressed in human ES cells (Santoni et 
al. 2012). During reprogramming to iPSCs, TEs are co-expressing with OCT4, 
SOX2 and KLF4 (Friedli et al. 2014).  

YY1  
Yin yang 1  It is involved in repressing and activating a diverse 

number of promoters.  
A YY1-binding site is required for accurate human LINE-1 transcription initiation 
(Athanikar et al. 2004)  

CTCF  
CCCTC-Binding Factor (Zinc 
Finger Protein)  

It plays an essential role in oocyte and 
preimplantation embryo development by activating or 
repressing transcription.  

Over 10,000 and 5,000 CTCF binding events were observed on SINE B2 elements 
in mouse and rat respectively (Schmidt et al. 2012).  

MITF  
Microphthalmia-Associated 
Transcription Factor  

It regulates the differentiation and development of 
melanocytes retinal pigment epithelium and is 
involved in pathways in cancer and gioma.  

It serves as transcription activator of HERV-K (Katoh et al. 2011).  
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hypermutations in their DNA copies (Esnault et al. 2005). Hulme et al. found that 

APOBEC3G inhibits Alu retrotransposition selectively in an ORF1p-independent manner and 

suggested that the Alu ribonucleoprotein complex may be targeted by APOBEC3G (Hulme et 

al. 2007). In vitro experiments showed that overexpression of TREX1 can cause a dramatic 

reduction in IAP and L1 retrotransposition efficiency (40% and 80% respectively) by 

mediating the degradation of their reverse transcripts (Stetson et al. 2008). 

1.1.7 DNA methylation of retrotransposons as marker for global cell methylation status 

As the main regulator of the activity of repetitive sequences DNA methylation within 

retrotransposons has been suggested to be a marker for estimating the global DNA 

methylation status, mostly in cancer cells (Yang et al. 2004; Weisenberger et al. 2005; 

Sunami et al. 2011), or as a biomarker for cell growth in stress situations, such as under lead 

exposure (Wright et al. 2010).  

As outlined in previous sections DNA methylation is essential for normal development and is 

associated with a number of key processes within embryonic development, such as genomic 

imprinting, X-chromosome inactivation, aging and carcinogenesis. Aberrant DNA 

methylation, both hypermethylation and hypomethylation, has been associated with 

embryonic development failure, aging, cancer and other diseases (Toyota & Issa 1999; 

Ehrlich 2002; Shi & Haaf 2002).  
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Table 1.3   Advantages and disadvantages of selected methods for analysis of global DNA methylation 

Methods  Purpose  Pros Cons 

SssI methyltransferase Non-next-generation 

sequencing based Global 

DNA methylation 

analysis 

 

Inexpensive; Complete coverage of CpG 

sites 

Radioactivity based; unstable SAM and the SssI enzymes  

Reverse-phase high-performance 

liquid chromatography (RP-HPLC) 

Non-radioactive; Measures all CpG sites Costs and advanced knowledge of instrumentation. 

Anti-5-methylcytosine (5-mC) 

immunofluorescence staining 

Non-radioactive; Measures all CpG sites; 

DNA methylation loci is visualized 

Costs associated with specific antibody and instrumentation; 

Interference of cell membrane autofluorescence or noise background 

under observation 

Methylated DNA 

immunoprecipitation followed by 

sequencing (MeDIP-Seq) 

Genome-wide 

next-generation 

sequencing based analysis 

Coverage is independent of restriction site 

limitations; Costs of sequencing are not so 

high due to the reduced representation of 

the genome; Good coverage of methylome 

Costs for specific antibody and sequencing; intensive bioinformatics 

expertise needed for data analysis; less powerful than equivalent 

methods to identify differentially methylated regions 

Reduced representation bisulfite 

sequencing (RRBS) 

Coverage is independent of restriction site 

limitations. 

High cost associated with sequencing; intensive bioinformatics 

expertise needed for data analysis; Limited coverage of the 

methylome in CpG poor region. 

Capture of methylated DNA using 

the methyl DNA binding domain 

MeCP2 followed by sequencing 

(MBD-seq) 

Coverage is independent of restriction site 

limitations; good coverage of the 

methylome.  

High cost associated with sequencing; intensive bioinformatics 

expertise needed for data analysis. 
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In the last several decades, the technology to determine DNA methylation went through a 

steady progress. Methods to detect global DNA methylation in the genome have been 

discussed in detailed in several reviews (Oakeley 1999; Zilberman & Henikoff 2007; Laird 

2010; Guerrero-Bosagna 2014). DNA can be digested into single nucleotides and total 

5-methylcytosine (5-mC) can be quantified by either high-performance liquid 

chromatography (HPLC), thin-layer chromatography, or liquid chromatography/mass 

spectroscopy (Oakeley 1999). Sodium bisulfite conversion based analysis combined with 

PCR, has also been widely used. These methods include direct bisulfite sequencing PCR 

(BSP), pyrosequencing, combined bisulfite restriction analysis (COBRA) and so on. Although 

these PCR based methods were used mostly for gene-specific methylation analysis, they 

paved the way for more advanced analysis of global DNA methylation. More recently, due to 

the boom in sequencing technologies, DNA methylation analysis based on next-generation 

sequencing has made the mapping of DNA methylation feasible on a genome-wide scale. 

However, each method has its limitations. Non-PCR-based methods require large amounts of 

good quality DNA, while genome-wide sequencing is still expensive and requires intensive 

bioinformatics expertise (Boyle et al. 2012). The most common analysis methods with their 

advantages and disadvantages are listed in Table 1.3. Among these methods, 

immunofluorescence staining, which allows visualization of 5-mC by using fluorescent 

secondary antibody to target anti 5-mC antibody, is the most widely used in embryonic 

methylation analysis (Dean et al. 2001; Beaujean et al. 2004; Dobbs et al. 2013; Heras et al. 

2014).  

Due to the large amount of retrotransposons in the genome, measuring DNA methylation 

status of retrotransposons has been suggested as an alternative method for global methylation 

quantification (Yang et al. 2004). It has been used intensively in cancer research, mostly with 

L1, due to its high proportion in the genome. Recently, other retrotransposons such as IAP 

(Bakshi & Kim 2014) and Rlt1 (retrotransposon-like 1) were also suggested for use as 

epigenetic biomarkers. The advantage of using retrotransposons as global methylation marker 

is a big coverage of the genome (different coverage depending on retrotransposon families), 
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low cost and no need of intensive bioinformatics expertise for data analysis. In this thesis, we 

tested and used a combination of the most widespread retrotransposon families in the bovine 

genome to represent the global methylation, which provides a more accurate result than using 

a single retrotransposon. 

1.2 Introduction of early embryo development 

Preimplantation embryo development comprises the initial stages of mammalian development, 

before the embryo implants into the mother’s uterus. This complex developmental transition 

begins with the fertilization of the oocyte and runs until the formation of a blastocyst, 

including first cleavage division, genetic and epigenetic reprogramming, activation of the 

embryonic genome and differentiation to the inner cell mass (ICM) and trophectoderm (TE) 

cells. Besides the natural preimplantation development in vivo, assisted reproductive 

technologies (ARTs) have been widely used in many mammalian species for clinical, 

commercial and research purposes. In cattle, ARTs intend to be used routinely to shorten 

generational intervals, obtain desired gender and propagate genotype (mainly on milk and 

meat) in production. In the following pages, the events happening during bovine 

preimplantation and the influence of ARTs used in bovine embryo production will be 

described. 

1.2.1 In vivo bovine preimplantation embryo development 

The development of an embryo starts with the fusion of a single capacitated spermatozoon 

with a mature oocyte. Before this happens, one or more mature oocytes are arrested in 

metaphase of the second meiotic division (MII), and released in the oviduct, surrounded by a 

glycoprotein matrix, called zona pellucida (ZP) and several layers of cumulus cells. At mating, 

more than 109 spermatozoa are delivered in the female genital tract, and only several 

thousands of viable spermatozoa will reach the caudal isthmus of the oviduct to form a sperm 

reservoir (Van Soom & Kruif 1998). Afterwards, a small number of sperm from this reservoir 

becomes capacitated and released to ampulla activated by imminent ovulation, and finally 
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reach the ovulated oocyte (Hunter 1993). The capacitated sperm binds to and penetrates the 

ZP, fuses with the oolemma and triggers oocyte activation. This activation changes oocyte 

cell membrane to prevent fusion with other sperm. The penetration of the sperm also activates 

the oocytes, finishes the second meiotic division, with extrusion of the second polar body, 

leaving a haploid (n) maternal nucleus and forming a one-cell embryo (zygote). The haploid 

sperm and oocyte then form paternal and maternal pronuclei (Hyttel et al. 1988). The 

membranes dissolve, leaving no barriers between the male and female chromosomes, and then 

their chromosomes can combine and become part of a single nucleus in the resulting embryo 

with full set of chromosomes. 

The timing of first cleavage division varies among species. For in vivo bovine embryos, the 

time required for progression to the first cleavage ranges from 23 to 31 hours post fertilization, 

but this period includes sperm capacitation, oocyte penetration, activation and completion of 

meiosis II (Barnes & Eyestone 1990), and the first cell cycle is 20-24 h (Eyestone & First 

1988). Cleavage to the 4- and 8-cell stage occurs at approximately 36-50 and 56-64 hpi, 

respectively; and cleavage to 16-cell stage occurs at approximately 80-86 hpi with a fourth 

cell cycle duration of 21-30 h (Eyestone & First 1988). During the first several divisions, the 

size of the embryo remains constant, but the nuclei number increases and smaller blastomeres 

are produced. Around 5 dpi, in vivo bovine embryos reach the 32-cell stage and starts 

compaction (Betteridge & Flechon 1988). Compaction is the first morphogenetic event in 

which the embryos undergo changes in cell morphology and cell-cell adhesion between the 

blastomeres until the individual outlines disappear and the formation of a uniform cellular 

mass, called compacted morula. In this stage, cell polarity is established and initiates the first 

differentiation event - blastocyst formation.  

The first step of blastocyst formation is the differentiation of the trophectoderm (TE) cells and 

the inner cell mass (ICM). The TE cells acquire the characteristics of epithelial cells in being 

flattened and joined together by tight junctional complexes, forming one or several cavities, 

called blastocoel (Watson & Barcroft 2001). ICM, on the other hand, attached and enclosed 

by TE, will further specify into the epiblast and primitive endoderm. At this time of 

development, the in vivo embryo resides in the uterus and starts expanding. The volume of the 
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embryo increases by the inflation of the blastocoel cavity, and this expansion thins the ZP 

until the embryo frees itself by series of expansion and contraction cycles. The ZP is 

dissolved at the abembryonic pole by enzymes and the embryo bulges out from the ZP 

envelop. This process is called hatching. In human and rodent, embryos implant soon after 

hatching. In ruminants, on the other hand, the implantation in the uterus is delayed. In cattle, 

trophoblast cells start to elongate at 14 dpi and the embryonic membrane can extend the entire 

length of both uterine horns by 24 dpi. By that time, the bovine conceptus size increases more 

than 1000-fold during elongation (Maddox-Hyttel et al. 2003). This in vivo development is 

considered as the ideal and be used as the gold standard to validate embryo quality under in 

vitro condition.  

1.2.2 Transcriptional dynamics in preimplantation embryo 

Fertilization brings the two haploid genomes of the gametes into the oocyte cytoplasm, giving 

rise to a totipotent embryo. The gametic genomes are silenced at this time and the mRNA and 

proteins are supplied by the oocyte cytoplasm. Then the existing messages are degraded and 

few new transcripts are produced, which is followed by the embryonic genome activation 

(EGA). The embryo stage of EGA is species-specific, with 2-cell in mice, 4-cell in human rats 

and pigs, and 8- to 16-cell in cattle and sheep (Whitworth et al. 2004). In cattle, a lot of IVP 

bovine embryos fail to develop around the 8-16 stage, which is concurrent with the genome 

activation and therefore also called critical or block-stage (De Sousa et al. 1998). Instead of 

one single global transcriptional switch, the genome activation is suggested to consist of 

multi-steps. In cattle, embryo development starts the first transcriptional activity already in 

1-cell stage. Genes related to different functions have different transcriptional activation times. 

Genes activated at or before the 4-cell stage are functionally related to RNA processing, 

translation, and transport, preparing the embryo for the major EGA at 8- to 16-cell, when 

genes from a broad range of functional categories start to be activated, including 

transcriptional and translational, as well as protein ubiquitination (Graf et al. 2014). Genes 

expressed around compaction or in the blastocyst stage but not early stages, were suggested 
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functional in the regulative processes at the onset of differentiation (Ponsuksili et al. 2002; 

Hamatani et al. 2004). 

At the first differentiation event, blastomeres form either ICM that gives rise to the embryo, or 

TE that develops into extraembryonic membranes. Lineage commitment towards ICM and TE 

in under the control of specific transcription factors. For example, in mouse, the ICM is 

regulated by Sall4, Pou5f1, Sox2 and Nanog, while TE formation results from a cascade of 

events involving Tead4, Gata3, Cdx2, Eomes and Elf5 (Chen et al. 2010). A global gene 

expression study showed a total of 870 genes were differentially expressed between bovine 

ICM and TE (Ozawa et al. 2012). Several genes characteristic of ICM (e.g. NANOG, SOX2 

and STAT3) and TE (e.g. ELF5, GATA3, and KRT18) in mouse and human showed similar 

patterns in bovine. 

1.2.3 Epigenetic dynamics in preimplantation embryo 

The term ‘epigenetics’ was introduced and defined as ‘heritable changes in gene expression 

that occur without any changes in gene sequence’ by Waddington in 1942. During 

development, cells start in a pluripotent state, then they can differentiate into many cell types, 

which is controlled by epigenetics activating some genes while inhibiting the expression of 

others (Reik 2007). There are many types of epigenetic modifications that are known to affect 

gene expression, including DNA methylation, histone modifications (such as acetylation, 

phosphorylation, methylation and ubiquitination) and non-histone proteins that bind to 

chromatin (Berger 2007). Briefly, transcriptionally inactive heterochromatin is characterized 

by deacetylated histones, methylation of histone H3 lysine 9, and DNA methylation, whereas 

acetylation of H3 and H4 histones, methylation of histone H3 lysine 4, and low level of DNA 

methylation are associated with active euchromatin regions (Duranthon et al. 2008). 

DNA methylation is the most extensively studied epigenetic modification, which plays an 

important role in the regulation of gene expression and chromatin architecture, in association 

which histone modification and other chromatin-associated proteins. DNA methylation in 

mammals is almost exclusively restricted to CpG dinucleotides. The methylation of CpG 
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dinucleotides can repress transcription either by blocking the binding of transcription factors 

to the promoters or recruiting histone-modifying protein complexes that repress transcription 

through the formation of a more condensed chromatin structure.  

In mammalian development, there are two critical periods of epigenetic reprogramming: 

gametogenesis and early preimplantation development (Reik et al. 2001). During 

gametogenesis, genome-wide demethylation occurs, which is followed by remethylation 

before fertilization. Early embryogenesis is characterized by a second genome-wide 

demethylation event, a process that is sensitive to environmental factors (Santos et al. 2002). 

Disturbances in epigenetic reprogramming may lead to developmental problems and early 

mortality. 

In many mammalian species, including human, mouse, cattle, pig and sheep, a global DNA 

demethylation is observed in preimplantation embryos after fertilization (Dean et al. 2001; 

Beaujean et al. 2004; Deshmukh et al. 2011). However, there is no consensus on how the 

demethylation proceeds. It was suggested that the paternal genome is actively demethylated in 

the zygote before the first cleavage division, while the maternal genome undergoes passive 

demethylation. During DNA replication preceding each cell division, no new methyl groups 

are added to the newly synthesized DNA of the maternal genome (Mayer et al. 2000; Oswald 

et al. 2000). However, more recent experiments indicate that both maternal and paternal 

genomes undergo widespread active and passive demethylation in zygotes before the first 

mitotic division in mouse (Guo et al. 2014). 

The demethylation is followed by a wave of the de novo methylation mediated by de novo 

methyltransferases DNMT3a and DNMT3b (Okano et al. 1999). Different DNA methylation 

dynamics have been observed in different species. In bovine embryos, demethylation occurs 

from the 2-cell stage until the 8-cell stage, and increasing methylation level in 16-cell (Dean 

et al. 2001; Dobbs et al. 2013). In mouse embryos, DNA methylation is gradually lost during 

embryo development and reaches its lowest level at the morula stage, and de novo 

methylation starts from the blastocyst stage (Santos et al. 2002). In human embryos, DNA 
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remains intensively methylated until the 4-cell stage and then a quick decrease of the 

methylation level occurs, followed by the de novo methylation at the early blastocyst stage 

(Fulka et al. 2004). 

1.2.4 Activation of retrotransposons in early development 

Retrotransposons can cause deleterious genomic rearrangements and somatic mosaicism and 

hence have long been viewed as harmful parasites. However, their relationship with the hosts 

is much more complicated and more recently it was shown they are necessary in 

preimplantation development (Sciamanna et al. 2011). Two independent approaches were 

applied to establish whether reverse transcription plays a role in early embryonic development: 

one is exposing embryos to nevirapine, an RT inhibitor currently employed in AIDS treatment 

and the other is microinjecting anti-RT antibodies into one blastomere of 2-cell embryo. Both 

types of RT inhibition stopped embryo development before the blastocyst stage (Pittoggi et al. 

2003). The injection of antisense oligonucleotides against RT in zygotes also stopped the 

embryonic development at the 2-4 cell stage (Beraldi et al., 2006). However, when nevirapine 

was added after the 8-cell stage, the embryo development was not affected, which indicates 

that the RT activity is required in mouse early embryonenesis, specifically between the late 

1-cell and 4-cell stage (Pittoggi et al. 2003). Knockout of retrotransposon-derived genes also 

causes early embryonic lethality owing to defects in the placenta (Ono et al. 2005). 

Preimplantation development includes stages from fertilization to blastocyst formation, and 

involves events such as cell proliferation and differentiation, embryonic genome activation, 

gene imprinting and sex chromosome dosage compensation, which are regulated by 

epigenetic reprogramming during early embryos (Messerschmidt et al. 2014). Here are some 

hypotheses of retrotransposon function in embryonic activities. 
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Cell proliferation and differentiation 

Not many studies about the involvement of retrotransposons in cell proliferation and 

differentiation in embryos have been reported. On the other hand, their effect in transformed 

cells and cancer cells has been broadly studied and this may provide a reference for 

embryonic research, considering the analogies between early embryogenesis and 

tumorigenesis (Bailey & Cushing 1925). Typical embryonic genes including OCT4, 

homeobox and twist family members are re-expressed in cancer cells (Sciamanna et al. 2011). 

Chromosome instability in cancer cells promoted by DNA hypomethylation also occurs 

commonly in early embryos (Vanneste et al. 2009). In line with this background, 

retrotransposon activity was also found both in embryogenesis and tumorigenesis (Kano et al. 

2009; Lee et al. 2012). In human cell lines, L1 encoded RT was found essential to maintain 

the cancer cells in a highly proliferating, poorly differentiated or de-differentiated state 

(Sciamanna et al. 2011). In contrast, RT inhibition of L1, either pharmacological or by RNAi, 

reduced proliferation, induced differentiation and reprogrammed gene expression in human 

tumorigenic cell lines (Mangiacasale et al. 2003; Landriscina et al. 2005). In mouse 

embryonic kidney cells, L1RP (an active human retrotransposon 99% identical to the 

consensus L1 sequence (Kimberland et al. 1999)) was also found to increase proliferation 

rates and markedly down regulated differentiation programming (Ramos et al. 2011). 

However, RT inhibition of HERV-K by RNAi did not change cell proliferation and 

differentiation (Oricchio et al. 2007). 

Genomic imprinting 

Genomic imprinting is a gene regulatory mechanism by which certain genes are expressed in 

a parent-of-origin-specific manner. It is hypothesized that genomic imprinting arose as a 

by-product of a DNA methylation mechanism that silences foreign DNA, such as 

retrotransposons. An observation in favor of this ‘host defense’ hypothesis was made during a 

comparative analysis of the origin of genomic imprinting in mammals (Suzuki et al. 2007). 

Peg10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an 
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essential role in proper placental formation in mice (Ono et al. 2005), and interestingly, it is 

also found in marsupials but not in monotremes. Peg10 is the first example of a differentially 

methylated region associated with genomic imprinting in marsupials, and the marsupials 

differentially methylated region was strictly limited to the 5’ region of Peg10, unlike the 

eutherian differentially methylated region, which covers the promoter region of Peg10 and 

also the adjacent imprinted gene (Suzuki et al. 2007). The authors suggested that the genomic 

imprinting in eutherians can originate from the repression of exogenous DNA sequences and 

/or retrotransposons by DNA methylation (Suzuki et al. 2007). Peg11, also known as Rtl1 

(retrotransposon-like 1) is also a retrotransposon-derived imprinted gene (Sekita et al. 2008). 

Additionally, five murine imprinted genes were reported to have arisen through 

retrotransposition: Mcts2, Nap1l5, U2af1-rs1, Inpp5f_v2 and Peg12 (Cowley & Oakey 2010). 

Unlike Peg10, these five retrogenes are derived from cellular mRNA molecules that did not 

possess autonomous retrotransposon activity.  

However, more recently imprinted genes were also found in chickens. This seems to 

undermine the ‘host defense’ hypothesis since chickens possess a low level of repeats and 

active TEs compared to mammals (Frésard et al. 2014).  

X chromosome inactivation 

X chromosome inactivation (XCI), also called Lyonization, is a well-established phenomenon 

among placental mammals. By this process one of the copies of the X chromosome in female 

mammals is inactivated in order to maintain the correct dosage relationship of genes between 

females (XX) and males (XY). One of the two X chromosomes in females is silenced by 

packaging into transcriptionally inactive heterochromatin in every cell in the early embryo 

and remains so in all somatic cells throughout life (Lyon 1972). Unlike other gene-silencing 

mechanisms, XCI is initiated from an X-inactivation center (XIC) on the X chromosome and 

spreads throughout the chromosome. Since this type of spreading and inactivation are less 

efficient in autosomes, it was suggested the X chromosome contains ‘way stations’ or 

‘boosters’ that act as promoters for spreading (Riggs 1990). Lyon further showed that XCI is 
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mediated by Xist mRNA, which coats the inactive X chromosome and he proposed, based on 

the evidence that the X chromosomes of human and mouse are rich in L1s, the hypothesis 

(Lyon 1998) that L1 elements act as booster to promote the spread of Xist mRNA (shown in  

 

 

Figure 1.4 Model of LINE participation during XCI. (a) Silent L1s may facilitate assembly of a 

heterochromatic nuclear compartment early in XCI; (b) transcriptionally active L1 elements may 

facilitate the spread of silencing into certain regions on the X. Figures from Chow et al. (2010). 
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Figure 1.4). This L1 enrichment was later confirmed by sequence analysis of the human 

genome. The X chromosome is enriched 2-fold for L1 elements compared to human 

autosomes (Bailey et al. 2000). It was also shown that L1 and L2 are significantly enriched in 

regions surrounding transcription start sites of genes that are subject to inactivation, while Alu 

and short motifs containing ACG/CGT are significantly enriched in those that escape 

inactivation (Wang et al. 2006). The enrichment of L1 in the mouse X chromosome was 

confirmed by some other groups (Chow et al. 2010; Deng et al. 2015), but different results 

were found by Chureau et al. (2002). Using comparative sequence analysis of mouse, human 

and bovine, they found that human and bovine XIC regions have a high density of L1 with 

39% and 46% of sequence length respectively, while the L1 density in mouse XIC region is 

only 14.5% (Chureau et al. 2002). Although more verification and precise elucidation of the 

relationship between the retrotransposons and XCI is needed, the correlation of repetitive 

sequences with XCI status cannot be denied (Bailey et al. 2000). 

1.2.5 ARTs used in bovine embryo production   

ARTs including artificial insemination (AI), multiple ovulation and embryo transfer (MOET), 

in vitro embryo production (IVP) and somatic cell nuclear transfer (SCNT) have been 

developed over decades in bovine production. 

AI is the deliberate introduction of sperm into a female’s reproductive tract for the purpose of 

achieving a conception through in vivo fertilization rather than sexual intercourse. In this way, 

it uses the superior genetic merit (the best bull), and prevent exposure to infectious genital 

diseases. In 1899, the first artificial inseminated cattle were successfully produced by Russian 

pioneer AI researcher Ilya Ivanovich Ivanov (Webb 1992). Nowadays, this technique is still 

widely used. MOET uses follicle stimulating hormones (FSH) to induce superovulation, 

followed by AI to fertilize inside the cow, and then the embryos are transferred into surrogate 

recipients that are at the same stage of their cycle but not mated. In this way, the merit of 

genetically superior females can pass to the offspring.  

IVP is a newer approach that has seen greatly expanded use for commercial purposes in the 

last years. Cattle is one the most successful species with the IVP technique, with around 
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30-40% of inseminated oocytes developing into blastocysts and the birth of innumerable 

calves worldwide (Rodriguez‐Martinez 2012). This technique includes three main steps: in 

vitro oocyte maturation (IVM), in vitro fertilization (IVF) and in vitro embryo culture (IVC) 

(Ward et al. 2002). It requires specific laboratory expertise and equipment, and needs to be 

performed following a strict timing (Van Soom et al. 1997). This is the main technique used 

for research purpose and some problems and the culture condition will be described later. 

SCNT is a laboratory strategy for creating a viable embryo from a body cell and an oocyte. 

Dolly the famous sheep was the first successful case of SCNT, created by transferring a 

mammary gland cell from an adult sheep to an enucleated oocyte. Cloning by SCNT allows to 

make a copy of any given animal whose genotype and phenotype are well known. However, 

SCNT can be inefficient due to, among others, stress placed on both oocyte and the 

introduced nucleus, resulting in a low percentage of successfully reprogrammed cells. 

Moreover, with the production of cloned animals becoming more popular, ethical and societal 

concerns are rising as well.  

1.2.6 Influence of IVC on embryo development 

IVP of ruminant embryos has become routine and is increasingly available as a commercial 

service to dairy, meat and wool production. However, the efficiency of producing viable 

embryos and the development of such embryos are perceived to be inferior to their in vivo 

counterparts. IVP has been reported to alter many embryonic characteristics, such as a darker 

cytoplasm and a lower buoyant density due to their high lipid content (Pollard & Leibo 1994), 

a more fragile ZP (Duby et al. 1997), differences in intracellular communication and 

metabolism (Boni et al. 1999; Khurana & Niemann 2000), a higher chance of chromosomal 

abnormalities (mixoploid) (Lonergan et al. 2004), a higher apoptotic rate (Gjørret et al. 2003), 

a slower growth rate, a higher thermal sensitivity, and a lower ICM/TE ratio (Van Soom et al. 

1997) and so on. Furthermore, different gene expression patterns and epigenetic regulation 

were found in IVP embryos compared to their in vivo counterparts. 
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Influence on gene expression 

Many studies have been conducted on the influence of IVP on the gene expression pattern of 

preimplantation embryos. It was reported that approximately 85% of differentially expressed 

genes was down-regulated in IVP bovine blastocysts compared to in vivo counterparts, most 

of which are involved in transcriptional and translational events, suggesting that a deficient 

machinery associated with transcription and translation is behind the inferior quality of IVP 

embryos (Corcoran et al. 2006). Comparing to in vivo embryos, genes related to metabolism, 

growth and differentiation were down-regulated while genes related to stress were 

up-regulated in IVP bovine embryos. This significant change supports the hypothesis that the 

IVC system is associated with a considerable amount of (oxidative) stress. Different culture 

media have a different impact on genes involved in cell communication, differentiation, 

apoptosis and oxidative stress (Boni et al. 1999; Rizos et al. 2003). Other culture conditions 

such as oxygen concentrations were shown to have an impact on gene expression as well 

(Harvey et al. 2004).  

Influence on embryo epigenetic change 

IVC affects DNA epigenetic patterns of embryos, as was shown in many species. An 

increased global DNA methylation has been found in IVP rat and mice embryos (Zaitseva et 

al. 2007). In bovine blastocysts, longer exposure to IVC increased DNA methylation profile 

alterations (Salilew-Wondim et al. 2015). IVC was also found to alter gene imprinting. In 

mouse, loss of methylation in H19 was reported in embryos cultured in different media 

(Doherty et al. 2000). Serum supplementation in culture medium induced alterations in the 

DNA methylation pattern of several imprinted genes (H19, Igf2, Grb7, Grb10 and Peg1) in 

mouse embryos (Velker et al. 2012). Large offspring syndrome (LOS), which is associated 

with loss of methylation at an imprinting region in the IGF2R gene, is a well-known 

phenotype of cattle born after in vitro culture of embryos (Young et al. 1998). It is 

characterized by large size at birth, breathing difficulties, reluctance to suckle and sudden 

perinatal death. A major cause was found in the use of serum in the culture media (Sinclair et 
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al. 1999). The same imprinting disorder has been found in human as well. 

Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder usually present at birth, 

and it shares many features with LOS, such as large tongue, and ear creases and 

predisposition to childhood cancer. A case control study showed children conceived through 

IVF have a significant higher chance of BWS (Halliday et al., 2004). Recent studies provide 

evidence for epigenetic similarities between BWS and LOS, as these syndromes share 

misregulation of the imprinted genes such as IGF2R, KCNQ1OT1 or CDKN1C (Chen et al. 

2013; Chen et al. 2015), which makes LOS a good bovine model of human BWS. 

1.2.7 Oxidative stress in early embryo development 

IVC and Oxidative stress 

As mentioned previously, the suboptimal environment encountered by early embryos during 

IVC is one big cause of poor blastocyst quality. Under IVC conditions, embryos face a variety 

of pressures, including heat stress, oxygen tension, light, supplement of serum in the culture 

media and so on, that impair their further development. All of these have been reported to 

potentially lead to oxidative stress (Thompson et al. 1990; Goto et al. 1993; Rizos et al. 2003). 

Oxidative stress is an imbalanced situation of enhanced concentration of oxidants or a lack of 

antioxidants in cells leading to the presence of reactive oxygen species (ROS) above its 

biological values. ROS includes superoxide anion (O2
-) and the hydroxy radical (OH-). 

Hydrogen peroxide (H2O2) is not a free radical, but usually a product of O2
- dismutation, 

catalyzed by the superoxide dismutase. Physiologically, a certain amount of ROS is required 

for the regulation of several transmembrane signal transduction pathways in cells, and control 

of cellular fate, like differentiation into specific cell types (Ji et al. 2010). ROS act as second 

messengers by regulating key transcription factors that alter gene expression in embryos. 

Many of the redox sensitive transcription factors, such as HIF-1, Nf-kB, AP-1, Ref-1 and 

Nrf-1, are vital to cell signaling pathways that dictate proliferation, differentiation and 

apoptosis and thus can have a significant role in embryonic development (Dennery 2007). 

Studies on redox metabolism in murine and bovine oocytes and preimplantation embryos 
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confirmed that ROS have a key role during IVM, fertilization and embryo development 

(Tanghe et al. 2003; Dumollard et al. 2007). Moreover, short-term exposure to H2O2 at the 

end of maturation showed a beneficial effect on subsequent embryo development (Vandaele 

et al. 2010).  

On the other hand, high concentration of ROS can induce oxidative modifications of the cell 

components, thus indirectly causing DNA fragmentation, protein oxidation, lipid peroxidation 

and mitochondrial damage (Dennery 2007). In vivo, the oviduct provides the optimal red/ox 

environment for an embryo to maintain its oxidative homeostasis by equilibrium between 

ROS and anti-oxidant defense, which is critical for normal cell division and differentiation. In 

IVC models, however, an over production of ROS during early embryo development breaks 

the oxidative homeostasis and affects metabolism, resulting in lower embryo quality (Guerin 

et al. 2001). For instance, variations in oxygen concentration and temperature have been 

shown to modulate the rate of ROS production. 

Oxygen tension 

Oxygen tension is an important regulator of oxidative metabolism. In vivo developing 

embryos are exposed to decreasing oxygen concentration when they travel from oviduct to 

uterus. An atmosphere with 5% O2 which is more comparable to the in vivo condition, is 

recommended for in vitro embryo culture. Embryos cultured under normal atmospheric 

oxygen concentration (20% O2) show more deleterious effects in development and quality in 

many species, including cattle, horse, pig and human (Yuan et al. 2003; Bontekoe et al. 2012; 

Appeltant et al. 2015). It was suggested that high oxygen tension increases hydrogen peroxide 

production, DNA fragmentation, cell apoptosis, and decreases the chance of IVC embryo 

developing to blastocyst stage (Van Soom et al. 2002). The use of 20% O2 is correlated with 

increased generation of ROS, and further lead to oxidative stress (Takahashi 2012), and 

embryos cultured under 20% O2 have been associated with a great perturbation in global 

expression profiles (Rinaudo et al. 2006).  
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Influence of oxidative stress on epigenetics 

Oxidative stress and DNA methylation are characteristics of various cancer types, therefore 

the cause-consequence relationship between ROS and DNA methylation was mostly studied 

in cancer research. ROS-induced oxidative stress is associated with both aberrant 

hypermethylation of tumor suppressor gene (TSG) and global hypomethylation. ROS may 

also induce site specific hypermethylation by regulation of expression of DNA 

methyltransferases (DNMTs) or the formation of a new DNMT containing complex (Wu & 

Ni 2015). ROS may also affect DNA methylation by DNA oxidation or TET mediated 

hydroxymethylation in cancer (Vanden Berghe 2012). The oxygen level was reported to 

epigenetically regulate fate switching of neural precursor cells (Mutoh et al. 2012). In in vitro 

embryo culture, oxidative stress by means of high O2 tension alters the expression of 

epigenome modifying genes such as the ten-eleven translocation (TET) gene, which is 

associated with conversion of 5-methylcytosine to 5-hydroxymethylcytosine at the 16-cell and 

blastocyst stages of bovine IVF embryos (Burroughs et al. 2013). Besides the influence on 

DNA methylation, ROS was also reported to increase histone acetylation in early embryo 

development (Chason et al. 2011). 

Oxidative stress activates retrotransposons 

McClintock’s (1984) ‘genomic shock’ hypothesis suggests that environmental stimuli 

(including oxidative stress) may mobilize transposable elements. This hypothesis is supported 

by evidence that retrotransposons from various organisms can be transcriptional induced by a 

variety of environmental stresses, including oxidative stress (Morales et al. 2003). Using 

H2O2 treatment to induce oxidative stress in neuroblastoma cells, L1 expression was found 

twice as high when compared to control cells (Giorgi et al. 2011). Endogenous L1 expression 

was also found to be induced by oxidative stress in many other cell types, including vascular 

smooth muscle cells, ovarian, breast and some somatic carcinomas (Teneng et al. 2006). The 

transcriptional rise of the autonomous retrotransposon L1, potential increases the translation 

chance of reverse transcriptase, which in turn may facilitate the mobilization of the 
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transposable elements. SINE elements, such as the human Alu and mouse SINE B2 RNAs 

were also found transcriptionally increased by cellular stresses (Ichiyanagi 2013).  

1.3 References 

Adelson D.L., Raison J.M. & Edgar R.C. (2009) Characterization and distribution of 

retrotransposons and simple sequence repeats in the bovine genome. Proceedings of 

the National Academy of Sciences 106, 12855-60. 

Alexandrova E.A., Olovnikov I.A., Malakhova G.V., Zabolotneva A.A., Suntsova M.V., 

Dmitriev S.E. & Buzdin A.A. (2012) Sense transcripts originated from an internal part 

of the human retrotransposon LINE-1 5’ UTR. Gene 511, 46-53. 

Akopov S.B., Ruda V.M., Batrak V.V., Vetchinova A.S., Chernov I.P., Nikolaev L.G., Bode J. 

& Sverdlov E.D. (2006) Identification, genome mapping, and CTCF binding of 

potential insulators within the FXYD5-COX7A1 locus of human Chromosome 19q13. 

12. Mammalian genome 17, 1042-9. 

Appeltant R., Beek J., Vandenberghe L., Maes D. & Van Soom A. (2015) Increasing the 

cAMP concentration during in vitro maturation of pig oocytes improves cumulus 

maturation and subsequent fertilization in vitro. Theriogenology 83, 344-52. 

Aravin A.A. & Bourc’his D. (2008) Small RNA guides for de novo DNA methylation in 

mammalian germ cells. Genes & development 22, 970-5. 

Aravin A.A., Sachidanandam R., Bourc'his D., Schaefer C., Pezic D., Toth K.F., Bestor T. & 

Hannon G.J. (2008) A piRNA pathway primed by individual transposons is linked to 

de novo DNA methylation in mice. Molecular cell 31, 785-99. 

Arkhipova I.R. (2006) Distribution and phylogeny of Penelope-like elements in eukaryotes. 

Systematic biology 55, 875-85. 

Asch H.L., Eliacin E., Fanning T.G., Connolly J.L., Bratthauer G. & Asch B.B. (1995) 

Comparative expression of the LINE-1 p40 protein in human breast carcinomas and 

normal breast tissues. Oncology research 8, 239-47. 

Athanikar J.N., Badge R.M. & Moran J.V. (2004) A YY1-binding site is required for accurate 



Chapter 1 General introduction 

 53 

human LINE-1 transcription initiation. Nucleic acids research 32, 3846-55. 

Babich V., Aksenov N., Alexeenko V., Oei S., Buchlow G. & Tomilin N. (1999) Association of 

some potential hormone response elements in human genes with the Alu family 

repeats. Gene 239, 341-9. 

Babushok D., Ostertag E. & Kazazian Jr H. (2007) Current topics in genome evolution: 

molecular mechanisms of new gene formation. Cellular and Molecular Life Sciences 

64, 542-54. 

Bailey J.A., Carrel L., Chakravarti A. & Eichler E.E. (2000) Molecular evidence for a 

relationship between LINE-1 elements and X chromosome inactivation: the Lyon 

repeat hypothesis. Proceedings of the National Academy of Sciences 97, 6634-9. 

Bailey P. & Cushing H. (1925) Medulloblastoma cerebelli: a common type of midcerebellar 

glioma of childhood. Archives of Neurology & Psychiatry 14, 192-224. 

Bakshi A. & Kim J. (2014) Retrotransposon-based profiling of mammalian epigenomes: DNA 

methylation of IAP LTRs in embryonic stem, somatic and cancer cells. Genomics 104, 

538-44. 

Barnes F. & Eyestone W. (1990) Early cleavage and the maternal zygotic transition in bovine 

embryos. Theriogenology 33, 141-52. 

Batzer M.A. & Deininger P.L. (2002) Alu repeats and human genomic diversity. Nature 

Reviews Genetics 3, 370-9. 

Beato M., Chávez S. & Truss M. (1996) Transcriptional regulation by steroid hormones. 

Steroids 61, 240-51. 

Beaujean N., Taylor J., Gardner J., Wilmut I., Meehan R. & Young L. (2004) Effect of limited 

DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear 

transfer. Biology of reproduction 71, 185-93. 

Bejerano G., Lowe C.B., Ahituv N., King B., Siepel A., Salama S.R., Rubin E.M., Kent W.J. 

& Haussler D. (2006) A distal enhancer and an ultraconserved exon are derived from a 

novel retroposon. Nature 441, 87-90. 

Belancio V.P., Hedges D.J. & Deininger P. (2008) Mammalian non-LTR retrotransposons: for 

better or worse, in sickness and in health. Genome research 18, 343-58. 



Chapter 1 General introduction  

 54 

Belancio V.P., Roy-Engel A.M., Pochampally R.R. & Deininger P. (2010) Somatic expression 

of LINE-1 elements in human tissues. Nucleic acids research 38, 3909-22. 

Beraldi, R., Pittoggi, C., Sciamanna, I., Mattei, E. and Spadafora, C. (2006) Expression of 

LINE-1 retroposons is essential for murine preimplantation development. Molecular 

reproduction and development 73, 279-87. 

Berger S.L. (2007) The complex language of chromatin regulation during transcription. 

Nature 447, 407-12. 

Bestor T. & Bourc'his D. (2004) Transposon silencing and imprint establishment in 

mammalian germ cells. In: Cold Spring Harbor symposia on quantitative biology, pp. 

381-8. Cold Spring Harbor Laboratory Press. 

Betteridge K. & Flechon J.-E. (1988) The anatomy and physiology of pre-attachment bovine 

embryos. Theriogenology 29, 155-87. 

Blackwood E.M. & Kadonaga J.T. (1998) Going the distance: a current view of enhancer 

action. Science 281, 60-3. 

Boeke J.D. (1997) LINEs and Alus-the polyA connection. Nature genetics 16, 6-7. 

Bogerd H.P., Wiegand H.L., Doehle B.P., Lueders K.K. & Cullen B.R. (2006) APOBEC3A 

and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. 

Nucleic acids research 34, 89-95. 

Boni R., Tosti E., Roviello S. & Dale B. (1999) Intercellular communication in in vivo-and in 

vitro-produced bovine embryos. Biology of reproduction 61, 1050-5. 

Bontekoe S., Mantikou E., van Wely M., Seshadri S., Repping S. & Mastenbroek S. (2012) 

Low oxygen concentrations for embryo culture in assisted reproductive technologies. 

Cochrane Database of Systematic Reviews 11, 7 (CD008950). 

Borchert G.M., Lanier W. & Davidson B.L. (2006) RNA polymerase III transcribes human 

microRNAs. Nat Struct Mol Biol 13, 1097-101. 

Bourque G., Leong B., Vega V.B., Chen X., Lee Y.L., Srinivasan K.G., Chew J.-L., Ruan Y., 

Wei C.-L. & Ng H.H. (2008) Evolution of the mammalian transcription factor binding 

repertoire via transposable elements. Genome research 18, 1752-62. 

Boyle P., Clement K., Gu H., Smith Z.D., Ziller M., Fostel J.L., Holmes L., Meldrim J., 

http://community-archive.cochrane.org/editorial-and-publishing-policy-resource/cochrane-database-systematic-reviews-cdsr


Chapter 1 General introduction 

 55 

Kelley F. & Gnirke A. (2012) Gel-free multiplexed reduced representation bisulfite 

sequencing for large-scale DNA methylation profiling. Genome Biol 13, R92. 

Branciforte D. & Martin S.L. (1994) Developmental and cell type specificity of LINE-1 

expression in mouse testis: implications for transposition. Molecular and cellular 

biology 14, 2584-92. 

Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R. & Hannon G.J. 

(2007) Discrete small RNA-generating loci as master regulators of transposon activity 

in Drosophila. Cell 128, 1089-103. 

Burwinkel B. & Kilimann M.W. (1998) Unequal homologous recombination between LINE-1 

elements as a mutational mechanism in human genetic disease. Journal of molecular 

biology 277, 513-7. 

Buzdin A. (2004) Retroelements and formation of chimeric retrogenes. Cellular and 

Molecular Life Sciences CMLS 61, 2046-59. 

Buzdin A., Gogvadze E. & Lebrun M.-H. (2007) Chimeric retrogenes suggest a role for the 

nucleolus in LINE amplification. FEBS letters 581, 2877-82. 

Byrd K. & Corces V.G. (2003) Visualization of chromatin domains created by the gypsy 

insulator of Drosophila. The Journal of cell biology 162, 565-74. 

Cai H. & Levine M. (1995) Modulation of enhancerá¤-promoter interactions by insulators in 

the Drosophilaembryo. 

Castro-Diaz N., Ecco G., Coluccio A., Kapopoulou A., Yazdanpanah B., Friedli M., Duc J., 

Jang S.M., Turelli P. & Trono D. (2014) Evolutionally dynamic L1 regulation in 

embryonic stem cells. Genes & development 28, 1397-409. 

Cervera A. & De la Peña M. (2014) Eukaryotic Penelope-like retroelements encode 

hammerhead ribozyme motifs. Molecular biology and evolution, msu232. 

Chason R.J., Csokmay J., Segars J.H., DeCherney A.H. & Armant D.R. (2011) Environmental 

and epigenetic effects upon preimplantation embryo metabolism and development. 

Trends in Endocrinology & Metabolism 22, 412-20. 

Chen C., Ara T. & Gautheret D. (2009) Using Alu elements as polyadenylation sites: A case of 

retroposon exaptation. Molecular biology and evolution 26, 327-34. 



Chapter 1 General introduction  

 56 

Chen H., Lilley C.E., Yu Q., Lee D.V., Chou J., Narvaiza I., Landau N.R. & Weitzman M.D. 

(2006) APOBEC3A is a potent inhibitor of adeno-associated virus and 

retrotransposons. Current Biology 16, 480-5. 

Chen L., Wang D., Wu Z., Ma L. & Daley G.Q. (2010) Molecular basis of the first cell fate 

determination in mouse embryogenesis. Cell research 20, 982-93. 

Chen Z., Hagen D.E., Elsik C.G., Ji T., Morris C.J., Moon L.E. & Rivera R.M. (2015) 

Characterization of global loss of imprinting in fetal overgrowth syndrome induced by 

assisted reproduction. Proceedings of the National Academy of Sciences 112, 4618-23. 

Chen Z., Robbins K.M., Wells K.D. & Rivera R.M. (2013) Large offspring syndrome: a 

bovine model for the human loss-of-imprinting overgrowth syndrome 

Beckwith-Wiedemann. Epigenetics 8, 591-601. 

Chiu Y.-L., Witkowska H.E., Hall S.C., Santiago M., Soros V.B., Esnault C., Heidmann T. & 

Greene W.C. (2006) High-molecular-mass APOBEC3G complexes restrict Alu 

retrotransposition. Proceedings of the National Academy of Sciences 103, 15588-93. 

Chow J.C., Ciaudo C., Fazzari M.J., Mise N., Servant N., Glass J.L., Attreed M., Avner P., 

Wutz A. & Barillot E. (2010) LINE-1 activity in facultative heterochromatin formation 

during X chromosome inactivation. Cell 141, 956-69. 

Chuong E.B., Rumi M.K., Soares M.J. & Baker J.C. (2013) Endogenous retroviruses function 

as species-specific enhancer elements in the placenta. Nature genetics 45, 325-9. 

Chureau C., Prissette M., Bourdet A., Barbe V., Cattolico L., Jones L., Eggen A., Avner P. & 

Duret L. (2002) Comparative sequence analysis of the X-inactivation center region in 

mouse, human, and bovine. Genome research 12, 894-908. 

Conley A.B., Miller W.J. & Jordan I.K. (2008) Human cis natural antisense transcripts 

initiated by transposable elements. Trends in genetics 24, 53-6. 

Corcoran D., Fair T., Park S., Rizos D., Patel O., Smith G., Coussens P., Ireland J., Boland M. 

& Evans A. (2006) Suppressed expression of genes involved in transcription and 

translation in in vitro compared with in vivo cultured bovine embryos. Reproduction 

131, 651-60. 

Cordaux R., Hedges D.J., Herke S.W. & Batzer M.A. (2006) Estimating the retrotransposition 



Chapter 1 General introduction 

 57 

rate of human Alu elements. Gene 373, 134-7. 

Cost G.J. & Boeke J.D. (1998) Targeting of human retrotransposon integration is directed by 

the specificity of the L1 endonuclease for regions of unusual DNA structure. 

Biochemistry 37, 18081-93. 

Coufal N.G., Garcia-Perez J.L., Peng G.E., Yeo G.W., Mu Y., Lovci M.T., Morell M., O’Shea 

K.S., Moran J.V. & Gage F.H. (2009) L1 retrotransposition in human neural progenitor 

cells. Nature 460, 1127-31. 

Cowley M. & Oakey R.J. (2010) Retrotransposition and genomic imprinting. Briefings in 

functional genomics 9, 340-6. 

Cullen B.R. (1998) Retroviruses as model systems for the study of nuclear RNA export 

pathways. Virology 249, 203-10. 

de Koning, A. J., Gu, W., Castoe, T. A., Batzer, M. A., & Pollock, D. D. (2011). Repetitive 

elements may comprise over two-thirds of the human genome. PLoS Genet 7(12), 

e1002384. 

De Sousa P.A., Watson A.J. & Schultz R.M. (1998) Transient Expression of a Translation 

Initiation Factor Is Conservatively Associated with Embryonic Gene Activation in 

Murine and Bovine Embryos. Biology of reproduction 59, 969-77. 

Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E. & Reik W. (2001) 

Conservation of methylation reprogramming in mammalian development: aberrant 

reprogramming in cloned embryos. Proceedings of the National Academy of Sciences 

98, 13734-8. 

Deininger P.L. & Batzer M.A. (2002) Mammalian retroelements. Genome research 12, 

1455-65. 

Deng X., Ma W., Ramani V., Hill A., Yang F., Ay F., Berletch J.B., Blau C.A., Shendure J. & 

Duan Z. (2015) Bipartite structure of the inactive mouse X chromosome. Genome 

biology 16, 1-21. 

Dennery P.A. (2007) Effects of oxidative stress on embryonic development. Birth Defects 

Research Part C: Embryo Today: Reviews 81, 155-62. 

Deshmukh R.S., Østrup O., Østrup E., Vejlsted M., Niemann H., Lucas-Hahn A., Petersen B., 



Chapter 1 General introduction  

 58 

Li J., Callesen H. & Hyttel P. (2011) DNA methylation in porcine preimplantation 

embryos developed in vivo and produced by in vitro fertilization, parthenogenetic 

activation and somatic cell nuclear transfer. Epigenetics 6, 177-87. 

Dewannieux M., Esnault C. & Heidmann T. (2003) LINE-mediated retrotransposition of 

marked Alu sequences. Nature genetics 35, 41-8. 

Dobbs K.B., Rodriguez M., Sudano M.J., Ortega M.S. & Hansen P.J. (2013) Dynamics of 

DNA Methylation during Early Development of the Preimplantation Bovine Embryo. 

PLOS ONE 8, e66230. 

Doherty A.S., Mann M.R., Tremblay K.D., Bartolomei M.S. & Schultz R.M. (2000) 

Differential effects of culture on imprinted H19 expression in the preimplantation 

mouse embryo. Biology of reproduction 62, 1526-35. 

Dorsett D. (1993) Distance-independent inactivation of an enhancer by the suppressor of 

Hairy-wing DNA-binding protein of Drosophila. Genetics 134, 1135-44. 

Duby R., Hill J., O'Callaghan D., Overstrom E. & Boland M. (1997) Changes induced in the 

bovine zona pellucida by ovine and bovine oviducts. Theriogenology 1, 332. 

Dumollard R., Ward Z., Carroll J. & Duchen M.R. (2007) Regulation of redox metabolism in 

the mouse oocyte and embryo. Development 134, 455-65. 

Duranthon V., Watson A.J. & Lonergan P. (2008) Preimplantation embryo programming: 

transcription, epigenetics, and culture environment. Reproduction 135, 141-50. 

Ebert M.S., Neilson J.R. & Sharp P.A. (2007) MicroRNA sponges: competitive inhibitors of 

small RNAs in mammalian cells. Nature methods 4, 721-6. 

Ecco G., Cassano M., Kauzlaric A., Duc J., Coluccio A., Offner S., Imbeault M., Rowe H.M., 

Turelli P. & Trono D. (2016) Transposable elements and their KRAB-ZFP controllers 

regulate gene expression in adult tissues. Developmental cell 36, 611-23. 

Ehrlich M. (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21, 

5400-13. 

Ergün S., Buschmann C., Heukeshoven J., Dammann K., Schnieders F., Lauke H., Chalajour 

F., Kilic N., Strätling W.H. & Schumann G.G. (2004) Cell type-specific expression of 

LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. Journal of 



Chapter 1 General introduction 

 59 

Biological Chemistry 279, 27753-63. 

Esnault C., Heidmann O., Delebecque F., Dewannieux M., Ribet D., Hance A.J., Heidmann T. 

& Schwartz O. (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of 

endogenous retroviruses. Nature 433, 430-3. 

Esnault C., Maestre J. & Heidmann T. (2000) Human LINE retrotransposons generate 

processed pseudogenes. Nature genetics 24, 363-7. 

Evgen’ev M.B., Zelentsova H., Shostak N., Kozitsina M., Barskyi V., Lankenau D.-H. & 

Corces V.G. (1997) Penelope, a new family of transposable elements and its possible 

role in hybrid dysgenesis in Drosophila virilis. Proceedings of the National Academy 

of Sciences 94, 196-201. 

Evsikov A., De Vries W., Peaston A., Radford E., Fancher K., Chen F., Blake J., Bult C., 

Latham K. & Solter D. (2004) Systems biology of the 2-cell mouse embryo. 

Cytogenetic and genome research 105, 240-50. 

Ewing A.D. & Kazazian H.H. (2010) High-throughput sequencing reveals extensive variation 

in human-specific L1 content in individual human genomes. Genome research 20, 

1262-70. 

Eyestone W. & First N. (1988) Cell cycle analysis of early bovine embryos. Theriogenology 

29, 243. 

Fadloun A., Le Gras S., Jost B., Ziegler-Birling C., Takahashi H., Gorab E., Carninci P. & 

Torres-Padilla M.E. (2013) Chromatin signatures and retrotransposon profiling in 

mouse embryos reveal regulation of LINE-1 by RNA. Nature Structural & Molecular 

Biology 20, 332-8. 

Faulkner G.J., Kimura Y., Daub C.O., Wani S., Plessy C., Irvine K.M., Schroder K., Cloonan 

N., Steptoe A.L. & Lassmann T. (2009) The regulated retrotransposon transcriptome 

of mammalian cells. Nature genetics 41, 563-71. 

Finnegan D.J. (1989) Eukaryotic transposable elements and genome evolution. Trends in 

genetics 5, 103-7. 

Frésard L., Leroux S., Servin B., Gourichon D., Dehais P., San Cristobal M., Marsaud N., 

Vignoles F., Bed'Hom B. & Coville J.-L. (2014) Transcriptome-wide investigation of 

http://www.nature.com/nsmb
http://www.nature.com/nsmb


Chapter 1 General introduction  

 60 

genomic imprinting in chicken. Nucleic acids research 42, 3768-82. 

Friedli M., Turelli P., Kapopoulou A., Rauwel B., Castro-Díaz N., Rowe H.M., Ecco G., Unzu 

C., Planet E. & Lombardo A. (2014) Loss of transcriptional control over endogenous 

retroelements during reprogramming to pluripotency. Genome research 24, 1251-9. 

Fulka H., Mrazek M., Tepla O. & Fulka J. (2004) DNA methylation pattern in human zygotes 

and developing embryos. Reproduction 128, 703-8. 

Garcia-Perez J.L., Marchetto M.C., Muotri A.R., Coufal N.G., Gage F.H., O'shea K.S. & 

Moran J.V. (2007) LINE-1 retrotransposition in human embryonic stem cells. Human 

molecular genetics 16, 1569-77. 

Gdula D.A., Gerasimova T.I. & Corces V.G. (1996) Genetic and molecular analysis of the 

gypsy chromatin insulator of Drosophila. Proceedings of the National Academy of 

Sciences 93, 9378-83. 

Gentles A.J., Wakefield M.J., Kohany O., Gu W., Batzer M.A., Pollock D.D. & Jurka J. (2007) 

Evolutionary dynamics of transposable elements in the short-tailed opossum 

Monodelphis domestica. Genome research 17, 992-1004. 

Georgiou I., Noutsopoulos D., Dimitriadou E., Markopoulos G., Apergi A., Lazaros L., 

Vaxevanoglou T., Pantos K., Syrrou M. & Tzavaras T. (2009) Retrotransposon RNA 

expression and evidence for retrotransposition events in human oocytes. Human 

molecular genetics 18, 1221-8. 

Glinsky G.V. (2015) Transposable elements and DNA methylation create in embryonic stem 

cells human-specific regulatory sequences associated with distal enhancers and 

noncoding RNAs. Genome biology and evolution 7, 1432-54. 

Gifford W.D., Pfaff S.L. & Macfarlan T.S. (2013) Transposable elements as genetic regulatory 

substrates in early development. Trends in cell biology 23, 218-26. 

Giorgi G., Marcantonio P. & Del Re B. (2011) LINE-1 retrotransposition in human 

neuroblastoma cells is affected by oxidative stress. Cell and tissue research 346, 

383-91. 

Gjørret J.O., Knijn H.M., Dieleman S.J., Avery B., Larsson L.-I. & Maddox-Hyttel P. (2003) 

Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biology of 



Chapter 1 General introduction 

 61 

reproduction 69, 1193-200. 

Gogvadze E. & Buzdin A. (2009) Retroelements and their impact on genome evolution and 

functioning. Cellular and Molecular Life Sciences 66, 3727-42. 

Gogvadze E., Stukacheva E., Buzdin A. & Sverdlov E. (2009) Human-specific modulation of 

transcriptional activity provided by endogenous retroviral insertions. Journal of 

virology 83, 6098-105. 

Goodchild N.L., Wilkinson D.A. & Mager D.L. (1992) A human endogenous long terminal 

repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in 

normal placenta. Gene 121, 287-94. 

Goodwin T.J. & Poulter R.T. (2001) The DIRS1 group of retrotransposons. Molecular biology 

and evolution 18, 2067-82. 

Goodwin T.J. & Poulter R.T. (2004) A new group of tyrosine recombinase-encoding 

retrotransposons. Molecular biology and evolution 21, 746-59. 

Goto Y., Noda Y., Mori T. & Nakano M. (1993) Increased generation of reactive oxygen 

species in embryos cultured in vitro. Free Radical Biology and Medicine 15, 69-75. 

Graf A., Krebs S., Heininen-Brown M., Zakhartchenko V., Blum H. & Wolf E. (2014) 

Genome activation in bovine embryos: review of the literature and new insights from 

RNA sequencing experiments. Animal reproduction science 149, 46-58. 

Grimson A., Srivastava M., Fahey B., Woodcroft B.J., Chiang H.R., King N., Degnan B.M., 

Rokhsar D.S. & Bartel D.P. (2008) Early origins and evolution of microRNAs and 

Piwi-interacting RNAs in animals. Nature 455, 1193-7. 

Guerrero-Bosagna C. (2014) DNA Methylation Research Methods. Materials and methods 3, 

206-13. 

Guerin P., El Mouatassim S. & Menezo Y. (2001) Oxidative stress and protection against 

reactive oxygen species in the pre-implantation embryo and its surroundings. Human 

Reproduction Update 7, 175-89. 

Guo F., Li X., Liang D., Li T., Zhu P., Guo H., Wu X., Wen L., Gu T.-P. & Hu B. (2014) 

Active and passive demethylation of male and female pronuclear DNA in the 

mammalian zygote. Cell stem cell 15, 447-58. 



Chapter 1 General introduction  

 62 

Halliday J, Oke K, Breheny S, Algar E & Amor D. (2004) Beckwith-Wiedemann syndrome 

and IVF: a case-control study. American Journal of Human Genetics 75,526-8. 

Hamatani T., Carter M.G., Sharov A.A. & Ko M.S. (2004) Dynamics of global gene 

expression changes during mouse preimplantation development. Developmental cell 6, 

117-31. 

Hambor J., Mennone J., Coon M., Hanke J. & Kavathas P. (1993) Identification and 

characterization of an Alu-containing, T-cell-specific enhancer located in the last 

intron of the human CD8 alpha gene. Molecular and cellular biology 13, 7056-70. 

Hamdorf M., Idica A., Zisoulis D.G., Gamelin L., Martin C., Sanders K.J. & Pedersen I.M. 

(2015) miR-128 represses L1 retrotransposition by binding directly to L1 RNA. Nat 

Struct Mol Biol 22, 824-31. 

Han J.S., Szak S.T. & Boeke J.D. (2004) Transcriptional disruption by the L1 retrotransposon 

and implications for mammalian transcriptomes. Nature 429, 268-74. 

Harvey A., Kind K., Pantaleon M., Armstrong D. & Thompson J. (2004) Oxygen-regulated 

gene expression in bovine blastocysts. Biology of reproduction 71, 1108-19. 

Hatada S., Grant D.J. & Maeda N. (2003) An intronic endogenous retrovirus-like sequence 

attenuates human haptoglobin-related gene expression in an orientation-dependent 

manner. Gene 319, 55-63. 

Havecker E.R., Gao X. & Voytas D.F. (2004) The diversity of LTR retrotransposons. Genome 

biology 5, 225-. 

Heidmann T., Heidmann O. & Nicolas J.-F. (1988) An indicator gene to demonstrate 

intracellular transposition of defective retroviruses. Proceedings of the National 

Academy of Sciences 85, 2219-23. 

Heldmann O. & Heidmann T. (1991) Retrotransposition of a mouse IAP sequence tagged with 

an indicator gene. Cell 64, 159-70. 

Heras S., Forier K., Rombouts K., Braeckmans K., & Van Soom A. (2014). DNA 

counterstaining for methylation and hydroxymethylation immunostaining in bovine 

zygotes. Analytical biochemistry 454, 14-6. 

Heras S.R., Macias S., Cáceres J.F. & Garcia-Perez J.L. (2014) Control of mammalian 



Chapter 1 General introduction 

 63 

retrotransposons by cellular RNA processing activities. Mobile genetic elements 4, 

1173-81. 

Heras S.R., Macias S., Plass M., Fernandez N., Cano D., Eyras E., Garcia-Perez J.L. & 

Cáceres J.F. (2013) The Microprocessor controls the activity of mammalian 

retrotransposons. Nat Struct Mol Biol 20, 1173-81. 

Hohjoh H. & Singer M.F. (1997) Sequence-specific single-strand RNA binding protein 

encoded by the human LINE-1 retrotransposon. The EMBO journal 16, 6034-43. 

Huang C.R.L., Schneider A.M., Lu Y., Niranjan T., Shen P., Robinson M.A., Steranka J.P., 

Valle D., Civin C.I. & Wang T. (2010) Mobile interspersed repeats are major structural 

variants in the human genome. Cell 141, 1171-82. 

Huang Y. & Steitz J.A. (2001) Splicing factors SRp20 and 9G8 promote the 

nucleocytoplasmic export of mRNA. Molecular cell 7, 899-905. 

Hulme A.E., Bogerd H.P., Cullen B.R. & Moran J.V. (2007) Selective inhibition of Alu 

retrotransposition by APOBEC3G. Gene 390, 199-205. 

Hunter R. (1993) Sperm: egg ratios and putative molecular signals to modulate gamete 

interactions in polytocous mammals. Molecular reproduction and development 35, 

324-7. 

Hyttel P., Greve T. & Callesen H. (1988) Ultrastructure of in-vivo fertilization in 

superovulated cattle. Journal of reproduction and fertility 82, 1-13. 

Ichiyanagi K. (2013) Epigenetic regulation of transcription and possible functions of 

mammalian short interspersed elements, SINEs. Genes & genetic systems 88, 19-29. 

Iskow R.C., McCabe M.T., Mills R.E., Torene S., Pittard W.S., Neuwald A.F., Van Meir E.G., 

Vertino P.M. & Devine S.E. (2010) Natural mutagenesis of human genomes by 

endogenous retrotransposons. Cell 141, 1253-61. 

Ji A.-R., Ku S.-Y., Cho M.S., Kim Y.Y., Kim Y.J., Oh S.K., Kim S.H., Moon S.Y. & Choi Y.M. 

(2010) Reactive oxygen species enhance differentiation of human embryonic stem 

cells into mesendodermal lineage. Experimental & molecular medicine 42, 175-86. 

Johnson E.J., Sizemore R.C. & Gottlieb A.A. (1995) HIV retrotransposon activity and the 

immunopathogenesis of AIDS. Trends in microbiology 3, 115-7. 



Chapter 1 General introduction  

 64 

Jordan I.K., Rogozin I.B., Glazko G.V. & Koonin E.V. (2003) Origin of a substantial fraction 

of human regulatory sequences from transposable elements. Trends in genetics 19, 

68-72. 

Jurka J. (1997) Sequence patterns indicate an enzymatic involvement in integration of 

mammalian retroposons. Proceedings of the National Academy of Sciences 94, 1872-7. 

Jurka J., Kapitonov V.V., Kohany O. & Jurka M.V. (2007) Repetitive sequences in complex 

genomes: structure and evolution. Annu. Rev. Genomics Hum. Genet. 8, 241-59. 

Kamp C., Hirschmann P., Voss H., Huellen K. & Vogt P.H. (2000) Two long homologous 

retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of 

intrachromosomal recombination events. Human molecular genetics 9, 2563-72. 

Kano H., Godoy I., Courtney C., Vetter M.R., Gerton G.L., Ostertag E.M. & Kazazian H.H. 

(2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic 

mosaicism. Genes & development 23, 1303-12. 

Katoh I., Mírová A., Kurata S.-i., Murakami Y., Horikawa K., Nakakuki N., Sakai T., 

Hashimoto K., Maruyama A. & Yonaga T. (2011) Activation of the long terminal 

repeat of human endogenous retrovirus K by melanoma-specific transcription factor 

MITF-M. Neoplasia 13, 1081-IN42. 

Kazazian H.H. (2004) Mobile elements: drivers of genome evolution. Science 303, 1626-32. 

Kazazian H.H., Wong C., Youssoufian H., Scott A.F., Phillips D.G. & Antonarakis S.E. (1988) 

Haemophilia A resulting from de novo insertion of L1 sequences represents a novel 

mechanism for mutation in man. 

Kellum R. & Schedl P. (1991) A position-effect assay for boundaries of higher order 

chromosomal domains. Cell 64, 941-50. 

Khatua A.K., Taylor H.E., Hildreth J.E.K. & Popik W. (2010) Inhibition of LINE-1 and Alu 

retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. Virology 

400, 68-75. 

Khurana N.K. & Niemann H. (2000) Energy metabolism in preimplantation bovine embryos 

derived in vitro or in vivo. Biology of reproduction 62, 847-56. 

Kimberland M.L., Divoky V., Prchal J., Schwahn U., Berger W. & Kazazian H.H. (1999) 



Chapter 1 General introduction 

 65 

Full-length human L1 insertions retain the capacity for high frequency 

retrotransposition in cultured cells. Human molecular genetics 8, 1557-60. 

Kjellman C., Sjögren H. O., Salford L.G. & Widegren B. (1999) HERV-F (XA34) is a 

full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene 

239, 99-107. 

Kordiš D. & Gubenšek F. (1998) The Bov-B lines found in Vipera ammodytes toxic PLA 2 

genes are widespread in snake genomes. Toxicon 36, 1585-90. 

Kostyuchenko M., Savitskaya E., Volkov I., Golovnin A. & Georgiev P. (2008) Study of 

functional interaction between three copies of the insulator from the MDG4 

transposable element in the model system of the miniwhite gene of Drosophila 

melanogaster. In: Doklady Biochemistry and Biophysics, pp. 239-43. Springer. 

Kuramochi-Miyagawa S., Watanabe T., Gotoh K., Totoki Y., Toyoda A., Ikawa M., Asada N., 

Kojima K., Yamaguchi Y. & Ijiri T.W. (2008) DNA methylation of retrotransposon 

genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. 

Genes & development 22, 908-17. 

Kurose K., Hata K., Hattori M. & Sakaki Y. (1995) RNA polymerase III dependence of the 

human L1 promoter and possible participation of the RNA polymerase II factor YY1 

in the RNA polymerase III transcription system. Nucleic acids research 23, 3704-9. 

Laird P.W. (2010) Principles and challenges of genome-wide DNA methylation analysis. 

Nature Reviews Genetics 11, 191-203. 

Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar 

K., Doyle M. & FitzHugh W. (2001) Initial sequencing and analysis of the human 

genome. Nature 409, 860-921. 

Landriscina M., Fabiano A., Altamura S., Bagalà C., Piscazzi A., Cassano A., Spadafora C., 

Giorgino F., Barone C. & Cignarelli M. (2005) Reverse transcriptase inhibitors 

down-regulate cell proliferation in vitro and in vivo and restore thyrotropin signaling 

and iodine uptake in human thyroid anaplastic carcinoma. The Journal of Clinical 

Endocrinology & Metabolism 90, 5663-71. 

Laperriere D., Wang T.-T., White J.H. & Mader S. (2007) Widespread Alu repeat-driven 



Chapter 1 General introduction  

 66 

expansion of consensus DR2 retinoic acid response elements during primate evolution. 

BMC genomics 8, 23. 

Lee E., Iskow R., Yang L., Gokcumen O., Haseley P., Luquette L.J., Lohr J.G., Harris C.C., 

Ding L. & Wilson R.K. (2012) Landscape of somatic retrotransposition in human 

cancers. Science 337, 967-71. 

Lee H.J., Hore T.A. & Reik W. (2014) Reprogramming the methylome: erasing memory and 

creating diversity. Cell stem cell 14, 710-9. 

Lee J.Y., Ji Z. & Tian B. (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals 

a role of transposable elements in evolution of the 3′-end of genes. Nucleic acids 

research 36, 5581-90. 

Leibold D.M., Swergold G.D., Singer M.F., Thayer R.E., Dombroski B.A. & Fanning T. (1990) 

Translation of LINE-1 DNA elements in vitro and in human cells. Proceedings of the 

National Academy of Sciences 87, 6990-4. 

Lev-Maor G., Ram O., Kim E., Sela N., Goren A., Levanon E.Y. & Ast G. (2008) Intronic Alu 

s influence alternative splicing. PLOS Genet 4, e1000204. 

Lim A.K., Tao L. & Kai T. (2009) piRNAs mediate posttranscriptional retroelement silencing 

and localization to pi-bodies in the Drosophila germline. The Journal of cell biology 

186, 333-42. 

Lin L., Shen S., Tye A., Cai J.J., Jiang P., Davidson B.L. & Xing Y. (2008) Diverse splicing 

patterns of exonized Alu elements in human tissues. PLOS Genet 4, e1000225. 

Liu W.-M. & Schmid C.W. (1993) Proposed roles for DNA methylation in Alu transcriptional 

repression and mutational inactivation. Nucleic acids research 21, 1351-9. 

Lonergan P., Pedersen H.G., Rizos D., Greve T., Thomsen P.D., Fair T., Evans A. & Boland 

M.P. (2004) Effect of the post-fertilization culture environment on the incidence of 

chromosome aberrations in bovine blastocysts. Biology of reproduction 71, 1096-100. 

Long Q., Bengra C., Li C., Kutlar F. & Tuan D. (1998) A long terminal repeat of the human 

endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human β-globin 

locus control region. Genomics 54, 542-55. 

López-Flores I. & Garrido-Ramos M. (2012) The repetitive DNA content of eukaryotic 



Chapter 1 General introduction 

 67 

genomes. 

Luan D.D., Korman M.H., Jakubczak J.L. & Eickbush T.H. (1993) Reverse transcription of 

R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for 

non-LTR retrotransposition. Cell 72, 595-605. 

Lunyak V.V., Prefontaine G.G., Núñez E., Cramer T., Ju B.-G., Ohgi K.A., Hutt K., Roy R., 

García-Díaz A. & Zhu X. (2007) Developmentally regulated activation of a SINE B2 

repeat as a domain boundary in organogenesis. Science 317, 248-51. 

Lyon M.F. (1972) X-chromosome inactivation and developmental patterns in mammals. 

Biological Reviews 47, 1-35. 

Lyon M.F. (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenetic and genome 

research 80, 133-7. 

Maddox-Hyttel P., Alexopoulos N., Vajta G., Lewis I., Rogers P., Cann L., Callesen H., 

Tveden-Nyborg P. & Trounson A. (2003) Immunohistochemical and ultrastructural 

characterization of the initial post-hatching development of bovine embryos. 

Reproduction 125, 607-23. 

Maestre J., Tchenio T., Dhellin O. & Heidmann T. (1995) mRNA retroposition in human cells: 

processed pseudogene formation. The EMBO journal 14, 6333. 

Mager D.L., Hunter D.G., Schertzer M. & Freeman J.D. (1999) Endogenous retroviruses 

provide the primary polyadenylation signal for two new human genes (HHLA2 and 

HHLA3). Genomics 59, 255-63. 

Magin C., Löwer R. & Löwer J. (1999) cORF and RcRE, the Rev/Rex and RRE/RxRE 

homologues of the human endogenous retrovirus family HTDV/HERV-K. Journal of 

virology 73, 9496-507. 

Makalowski W. (2000) Genomic scrap yard: how genomes utilize all that junk. Gene 259, 

61-7. 

Makałowski W., Mitchell G.A. & Labuda D. (1994) Alu sequences in the coding regions of 

mRNA: a source of protein variability. Trends in genetics 10, 188-93. 

Malik H.S. & Eickbush T.H. (2001) Phylogenetic analysis of ribonuclease H domains 

suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. 



Chapter 1 General introduction  

 68 

Genome research 11, 1187-97. 

Malki S., van der Heijden G.W., O’Donnell K.A., Martin S.L. & Bortvin A. (2014) A role for 

retrotransposon LINE-1 in fetal oocyte attrition in mice. Developmental cell 29, 

521-33. 

Mangiacasale R., Pittoggi C., Sciamanna I., Careddu A., Mattei E., Lorenzini R., Travaglini L., 

Landriscina M., Barone C. & Nervi C. (2003) Exposure of normal and transformed 

cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes 

differentiation. Oncogene 22, 2750-61. 

Marchetto M.C., Narvaiza I., Denli A.M., Benner C., Lazzarini T.A. & Nathanson J.L. (2013) 

Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503. 

Martens J.H., O'Sullivan R.J., Braunschweig U., Opravil S., Radolf M., Steinlein P. & 

Jenuwein T. (2005) The profile of repeat-associated histone lysine methylation states 

in the mouse epigenome. The EMBO journal 24, 800-12. 

Mathias S.L., Scott A.F., Kazazian H.H., Boeke J.D. & Gabriel A. (1991) Reverse 

transcriptase encoded by a human transposable element. Science 254, 1808-10. 

Mätlik K., Redik K. & Speek M. (2006) L1 antisense promoter drives tissue-specific 

transcription of human genes. BioMed Research International 2006. 

Mayer W., Niveleau A., Walter J., Fundele R. & Haaf T. (2000) Embryogenesis: 

demethylation of the zygotic paternal genome. Nature 403, 501-2. 

McClintock B. (1983) The significance of responses of the genome to challenge. Physiology 

Or Medicine Literature Peace Economic Sciences, 180. 

McManus M.T. & Sharp P.A. (2002) Gene silencing in mammals by small interfering RNAs. 

Nature Reviews Genetics 3, 737-47. 

Mercer T.R. & Mattick J.S. (2013) Structure and function of long noncoding RNAs in 

epigenetic regulation. Nat Struct Mol Biol 20, 300-7. 

Messerschmidt D.M., Knowles B.B. & Solter D. (2014) DNA methylation dynamics during 

epigenetic reprogramming in the germline and preimplantation embryos. Genes & 

development 28, 812-28. 

Miki Y., Nishisho I., Horii A., Miyoshi Y., Utsunomiya J., Kinzler K.W., Vogelstein B. & 



Chapter 1 General introduction 

 69 

Nakamura Y. (1992) Disruption of the APC gene by a retrotransposal insertion of L1 

sequence in a colon cancer. Cancer research 52, 643-5. 

Moran J.V., Holmes S.E., Naas T.P., DeBerardinis R.J., Boeke J.D. & Kazazian H.H. (1996) 

High frequency retrotransposition in cultured mammalian cells. Cell 87, 917-27. 

Muckenfuss H., Hamdorf M., Held U., Perković M., Löwer J., Cichutek K., Flory E., 

Schumann G.G. & Münk C. (2006) APOBEC3 proteins inhibit human LINE-1 

retrotransposition. Journal of Biological Chemistry 281, 22161-72. 

Muotri A.R., Chu V.T., Marchetto M.C., Deng W., Moran J.V. & Gage F.H. (2005) Somatic 

mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 

903-10. 

Mutoh T., Sanosaka T., Ito K. & Nakashima K. (2012) Oxygen Levels Epigenetically 

Regulate Fate Switching of Neural Precursor Cells via Hypoxia‐Inducible Factor 

1α‐Notch Signal Interaction in the Developing Brain. Stem Cells 30, 561-9. 

Naas T.P., DeBerardinis R.J., Moran J.V., Ostertag E.M., Kingsmore S.F., Seldin M.F., 

Hayashizaki Y., Martin S.L. & Kazazian H.H. (1998) An actively retrotransposing, 

novel subfamily of mouse L1 elements. The EMBO journal 17, 590-7. 

Nabirochkin S., Ossokina M. & Heidmann T. (1998) A nuclear matrix/scaffold attachment 

region co-localizes with the gypsy retrotransposon insulator sequence. Journal of 

Biological Chemistry 273, 2473-9. 

Nangia-Makker P., Sarvis R., Visscher D.W., Bailey-Penrod J., Raz A. & Sarkar F.H. (1998) 

Galectin-3 and L1 retrotransposons in human breast carcinomas. Breast cancer 

research and treatment 49, 171-83. 

Nappi F., Schneider R., Zolotukhin A., Smulevitch S., Michalowski D., Bear J., Felber B.K. & 

Pavlakis G.N. (2001) Identification of a novel posttranscriptional regulatory element 

by using a rev-and RRE-mutated human immunodeficiency virus type 1 DNA proviral 

clone as a molecular trap. Journal of virology 75, 4558-69. 

Narita N., Nishio H., Kitoh Y., Ishikawa Y., Ishikawa Y., Minami R., Nakamura H. & Matsuo 

M. (1993) Insertion of a 5'truncated L1 element into the 3'end of exon 44 of the 

dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne 



Chapter 1 General introduction  

 70 

muscular dystrophy. Journal of Clinical Investigation 91, 1862. 

Närvä E., Rahkonen N., Emani M.R., Lund R., Pursiheimo J.P., Nästi J., Autio R., Rasool O., 

Denessiouk K. & Lähdesmäki H. (2012) RNA-Binding Protein L1TD1 Interacts with 

LIN28 via RNA and is Required for Human Embryonic Stem Cell Self-Renewal and 

Cancer Cell Proliferation. Stem Cells 30, 452-60. 

Neumann P., Požárková D. & Macas J. (2003) Highly abundant pea LTR retrotransposon 

Ogre is constitutively transcribed and partially spliced. Plant molecular biology 53, 

399-410. 

Noutsopoulos D., Vartholomatos G., Kolaitis N. & Tzavaras T. (2006) SV40 large T antigen 

up-regulates the retrotransposition frequency of viral-like 30 elements. Journal of 

molecular biology 361, 450-61. 

Oakeley E.J. (1999) DNA methylation analysis: a review of current methodologies. 

Pharmacology & therapeutics 84, 389-400. 

Ohshima K., Hamada M., Terai Y. & Okada N. (1996) The 3'ends of tRNA-derived short 

interspersed repetitive elements are derived from the 3'ends of long interspersed 

repetitive elements. Molecular and cellular biology 16, 3756-64. 

Ohshima K. & Okada N. (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a 

common tail. Cytogenetic and genome research 110, 475-90. 

Ohshima K. (2013) RNA-mediated gene duplication and retroposons: retrogenes, LINEs, 

SINEs, and sequence specificity. International journal of evolutionary biology 2013. 

Okada N. & Hamada M. (1997) The 3′ ends of tRNA-derived SINEs originated from the 

3’ends of LINEs: A new example from the bovine genome. Journal of Molecular 

Evolution 44, S52-S6. 

Okano M., Bell D.W., Haber D.A. & Li E. (1999) DNA methyltransferases Dnmt3a and 

Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 

247-57. 

Okano M., Takebayashi S., Okumura K. & Li E. (1999) Assignment of cytosine-5 DNA 

methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2–A3 and 

2H1 by in situ hybridization. Cytogenetic and genome research 86, 333-4. 



Chapter 1 General introduction 

 71 

Ono M., Kawakami M. & Ushikubo H. (1987) Stimulation of expression of the human 

endogenous retrovirus genome by female steroid hormones in human breast cancer 

cell line T47D. Journal of virology 61, 2059-62. 

Ono R., Nakamura K., Inoue K., Naruse M., Usami T., Wakisaka-Saito N., Hino T., 

Suzuki-Migishima R., Ogonuki N. & Miki H. (2005) Deletion of Peg10, an imprinted 

gene acquired from a retrotransposon, causes early embryonic lethality. Nature 

genetics 38, 101-6. 

Oricchio E., Sciamanna I., Beraldi R., Tolstonog G., Schumann G. & Spadafora C. (2007) 

Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, 

differentiation and tumor progression. Oncogene 26, 4226-33. 

Ostertag E.M., DeBerardinis R.J., Goodier J.L., Zhang Y., Yang N., Gerton G.L. & Kazazian 

H.H. (2002) A mouse model of human L1 retrotransposition. Nature genetics 32, 

655-60. 

Ostertag E.M., Goodier J.L., Zhang Y. & Kazazian H.H. (2003) SVA elements are 

nonautonomous retrotransposons that cause disease in humans. The American Journal 

of Human Genetics 73, 1444-51. 

Ostertag E.M. & Kazazian Jr H.H. (2001) Biology of mammalian L1 retrotransposons. 

Annual review of genetics 35, 501-38. 

Ostertag E.M., Prak E.T.L., DeBerardinis R.J., Moran J.V. & Kazazian Jr H.H. (2000) 

Determination of L1 retrotransposition kinetics in cultured cells. Nucleic acids 

research 28, 1418-23. 

Oswald J., Engemann S., Lane N., Mayer W., Olek A., Fundele R., Dean W., Reik W. & 

Walter J. (2000) Active demethylation of the paternal genome in the mouse zygote. 

Current Biology 10, 475-8. 

Ozawa M., Sakatani M., Yao J., Shanker S., Yu F., Yamashita R., Wakabayashi S., Nakai K., 

Dobbs K.B. & Sudano M.J. (2012) Global gene expression of the inner cell mass and 

trophectoderm of the bovine blastocyst. BMC developmental biology 12, 1. 

Pai C.-Y., Lei E.P., Ghosh D. & Corces V.G. (2004) The centrosomal protein CP190 is a 

component of the gypsy chromatin insulator. Molecular cell 16, 737-48. 



Chapter 1 General introduction  

 72 

Pavlı́ček A., Jabbari K., Pačes J., Pačes V., Hejnar J. & Bernardi G. (2001) Similar integration 

but different stability of Alus and LINEs in the human genome. Gene 276, 39-45. 

Peaston A.E., Evsikov A.V., Graber J.H., de Vries W.N., Holbrook A.E., Solter D. & Knowles 

B.B. (2004) Retrotransposons regulate host genes in mouse oocytes and 

preimplantation embryos. Developmental cell 7, 597-606. 

Pi W., Yang Z., Wang J., Ruan L., Yu X., Ling J., Krantz S., Isales C., Conway S.J. & Lin S. 

(2004) The LTR enhancer of ERV-9 human endogenous retrovirus is active in oocytes 

and progenitor cells in transgenic zebrafish and humans. Proceedings of the National 

Academy of Sciences of the United States of America 101, 805-10. 

Pittoggi C., Sciamanna I., Mattei E., Beraldi R., Lobascio A.M., Mai A., Quaglia M.G., 

Lorenzini R. & Spadafora C. (2003) Role of endogenous reverse transcriptase in 

murine early embryo development. Molecular reproduction and development 66, 

225-36. 

Pollard J. & Leibo S. (1994) Chilling sensitivity of mammalian embryos. Theriogenology 41, 

101-6. 

Ponsuksili S., Tesfaye D., El‐Halawany N., Schellander K. & Wimmers K. (2002) 

Stage‐specific expressed sequence tags obtained during preimplantation bovine 

development by differential display RT‐PCR and suppression subtractive 

hybridization. Prenatal diagnosis 22, 1135-42. 

Purbowasito W., Suda C., Yokomine T., Zubair M., Sado T., Tsutsui K. & Sasaki H. (2004) 

Large-scale identification and mapping of nuclear matrix-attachment regions in the 

distal imprinted domain of mouse chromosome 7. DNA research 11, 391-407. 

Raiz J., Damert A., Chira S., Held U., Klawitter S., Hamdorf M., Löwer J., Strätling W.H., 

Löwer R. & Schumann G.G. (2012) The non-autonomous retrotransposon SVA is 

trans-mobilized by the human LINE-1 protein machinery. Nucleic acids research 40, 

1666-83. 

Ramos K.S., Montoya–Durango D.E., Teneng I., Nanez A. & Stribinskis V. (2011) Epigenetic 

control of embryonic renal cell differentiation by L1 retrotransposon. Birth Defects 

Research Part A: Clinical and Molecular Teratology 91, 693-702. 



Chapter 1 General introduction 

 73 

Reik W. (2007) Stability and flexibility of epigenetic gene regulation in mammalian 

development. Nature 447, 425-32. 

Reik W., Dean W. & Walter J. (2001) Epigenetic reprogramming in mammalian development. 

Science 293, 1089-93. 

Ribet D., Harper F., Dupressoir A., Dewannieux M., Pierron G. & Heidmann T. (2008) An 

infectious progenitor for the murine IAP retrotransposon: emergence of an 

intracellular genetic parasite from an ancient retrovirus. Genome research 18, 

597-609. 

Richardson S.R., Morell S. & Faulkner G.J. (2014) L1 retrotransposons and somatic 

mosaicism in the brain. Annual review of genetics 48, 1-27. 

Riggs A.D. (1990) Marsupials and mechanisms of X-chromosome inactivation. Australian 

Journal of Zoology 37, 419-41. 

Rinaudo P.F., Giritharan G., Talbi S., Dobson A.T. & Schultz R.M. (2006) Effects of oxygen 

tension on gene expression in preimplantation mouse embryos. Fertility and Sterility 

86, 1265. e1-. e36. 

Rizos D., Gutierrez-Adan A., Perez-Garnelo S., De La Fuente J., Boland M. & Lonergan P. 

(2003) Bovine embryo culture in the presence or absence of serum: implications for 

blastocyst development, cryotolerance, and messenger RNA expression. Biology of 

reproduction 68, 236-43. 

Robbez-Masson L. & Rowe H.M. (2015) Retrotransposons shape species-specific embryonic 

stem cell gene expression. Retrovirology 12, 1-12. 

Rodriguez‐Martinez H. (2012) Assisted reproductive techniques for cattle breeding in 

developing countries: a critical appraisal of their value and limitations. Reproduction 

in Domestic Animals 47, 21-6. 

Román A.C., González-Rico F.J., Moltó E., Hernando H., Neto A., Vicente-Garcia C., 

Ballestar E., Gómez-Skarmeta J.L., Vavrova-Anderson J. & White R.J. (2011) Dioxin 

receptor and SLUG transcription factors regulate the insulator activity of B1 SINE 

retrotransposons via an RNA polymerase switch. Genome research 21, 422-32. 

Romanish M.T., Lock W.M., van de Lagemaat L.N., Dunn C.A. & Mager D.L. (2007) 



Chapter 1 General introduction  

 74 

Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic 

locus NAIP during mammalian evolution. PLOS Genet 3, e10. 

Rosser J.M. & An W. (2012) L1 expression and regulation in humans and rodents. Frontiers 

in bioscience (Elite edition) 4, 2203-25. 

Saito K., Nishida K.M., Mori T., Kawamura Y., Miyoshi K., Nagami T., Siomi H. & Siomi 

M.C. (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon 

and heterochromatic regions in the Drosophila genome. Genes & development 20, 

2214-22. 

Saksouk N., Simboeck E. & Déjardin J. (2015) Constitutive heterochromatin formation and 

transcription in mammals. Epigenetics & chromatin 8, 1. 

Salilew-Wondim D., Fournier E., Hoelker M., Saeed-Zidane M., Tholen E., Looft C., Neuhoff 

C., Besenfelder U., Havlicek V. & Rings F. (2015) Genome-Wide DNA Methylation 

Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different 

Stages of Development In Vitro. PLOS ONE 10, e0140467. 

Santoni F.A., Guerra J. & Luban J. (2012) HERV-H RNA is abundant in human embryonic 

stem cells and a precise marker for pluripotency. Retrovirology 9. 

Santos F., Hendrich B., Reik W. & Dean W. (2002) Dynamic reprogramming of DNA 

methylation in the early mouse embryo. Developmental biology 241, 172-82. 

Sasaki T., Nishihara H., Hirakawa M., Fujimura K., Tanaka M., Kokubo N., Kimura-Yoshida 

C., Matsuo I., Sumiyama K. & Saitou N. (2008) Possible involvement of SINEs in 

mammalian-specific brain formation. Proceedings of the National Academy of 

Sciences 105, 4220-5. 

Schmidt D., Schwalie P.C., Wilson M.D., Ballester B., Gonçalves Â., Kutter C., Brown G.D., 

Marshall A., Flicek P. & Odom D.T. (2012) Waves of retrotransposon expansion 

remodel genome organization and CTCF binding in multiple mammalian lineages. 

Cell 148, 335-48. 

Schostak N., Pyatkov K., Zelentsova E., Arkhipova I., Shagin D., Shagina I., Mudrik E., 

Blintsov A., Clark I. & Finnegan D.J. (2008) Molecular dissection of Penelope 

transposable element regulatory machinery. Nucleic acids research 36, 2522-9. 



Chapter 1 General introduction 

 75 

Schulz W., Steinhoff C. & Florl A. (2006) Methylation of endogenous human retroelements in 

health and disease. In: DNA Methylation: Development, Genetic Disease and Cancer 

(pp. 211-50. Springer. 

Sciamanna I., Vitullo P., Curatolo A. & Spadafora C. (2011) A reverse transcriptase-dependent 

mechanism is essential for murine preimplantation development. Genes 2, 360-73. 

Segal Y., Peissel B., Renieri A., de Marchi M., Ballabio A., Pei Y. & Zhou J. (1999) LINE-1 

elements at the sites of molecular rearrangements in Alport syndrome–diffuse 

leiomyomatosis. The American Journal of Human Genetics 64, 62-9. 

Seitz H., Youngson N., Lin S.-P., Dalbert S., Paulsen M., Bachellerie J.-P., Ferguson-Smith 

A.C. & Cavaillé J. (2003) Imprinted microRNA genes transcribed antisense to a 

reciprocally imprinted retrotransposon-like gene. Nature genetics 34, 261-2. 

Sekita Y., Wagatsuma H., Nakamura K., Ono R., Kagami M., Wakisaka N., Hino T., 

Suzuki-Migishima R., Kohda T. & Ogura A. (2008) Role of retrotransposon-derived 

imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nature genetics 

40, 243-8. 

Sen S.K., Han K., Wang J., Lee J., Wang H., Callinan P.A., Dyer M., Cordaux R., Liang P. & 

Batzer M.A. (2006) Human genomic deletions mediated by recombination between 

Alu elements. The American Journal of Human Genetics 79, 41-53. 

Shankar R., Grover D., Brahmachari S.K. & Mukerji M. (2004) Evolution and distribution of 

RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu 

elements. BMC evolutionary biology 4, 37. 

Sharan C., Hamilton N.M., Parl A.K., Singh P.K. & Chaudhuri G. (1999) Identification and 

characterization of a transcriptional silencer upstream of the human BRCA2 gene. 

Biochemical and biophysical research communications 265, 285-90. 

Shen L., Wu L.C., Sanlioglu S., Chen R., Mendoza A.R., Dangel A.W., Carroll M.C., Zipf 

W.B. & Yu C.-Y. (1994) Structure and genetics of the partially duplicated gene RP 

located immediately upstream of the complement C4A and the C4B genes in the HLA 

class III region. Molecular cloning, exon-intron structure, composite retroposon, and 

breakpoint of gene duplication. Journal of Biological Chemistry 269, 8466-76. 



Chapter 1 General introduction  

 76 

Shen S., Lin L., Cai J.J., Jiang P., Kenkel E.J., Stroik M.R., Sato S., Davidson B.L. & Xing Y. 

(2011) Widespread establishment and regulatory impact of Alu exons in human genes. 

Proceedings of the National Academy of Sciences 108, 2837-42. 

Shi W. & Haaf T. (2002) Aberrant methylation patterns at the two‐cell stage as an indicator 

of early developmental failure. Molecular reproduction and development 63, 329-34. 

Shukla R., Upton K.R., Muñoz-Lopez M., Gerhardt D.J., Fisher M.E., Nguyen T., Brennan 

P.M., Baillie J.K., Collino A. & Ghisletti S. (2013) Endogenous retrotransposition 

activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101-11. 

Sinclair K.D., McEvoy T., Maxfield E., Maltin C., Young L., Wilmut I., Broadbent P. & 

Robinson J. (1999) Aberrant fetal growth and development after in vitro culture of 

sheep zygotes. Journal of reproduction and fertility 116, 177-86. 

Siomi M.C., Sato K., Pezic D. & Aravin A.A. (2011) PIWI-interacting small RNAs: the 

vanguard of genome defence. Nature reviews Molecular cell biology 12, 246-58. 

Slotkin R.K. & Martienssen R. (2007) Transposable elements and the epigenetic regulation of 

the genome. Nature Reviews Genetics 8, 272-85. 

Soifer H.S., Zaragoza A., Peyvan M., Behlke M.A. & Rossi J.J. (2005) A potential role for 

RNA interference in controlling the activity of the human LINE-1 retrotransposon. 

Nucleic acids research 33, 846-56. 

Solyom S., Ewing A.D., Rahrmann E.P., Doucet T., Nelson H.H., Burns M.B., Harris R.S., 

Sigmon D.F., Casella A. & Erlanger B. (2012) Extensive somatic L1 retrotransposition 

in colorectal tumors. Genome research 22, 2328-38. 

Sorek R., Ast G. & Graur D. (2002) Alu-containing exons are alternatively spliced. Genome 

research 12, 1060-7. 

Steinhoff C. & Schulz W. (2004) Transcriptional regulation of the human LINE-1 

retrotransposon L1. 2B. Molecular Genetics and Genomics 270, 394-402. 

Stetson D.B., Ko J.S., Heidmann T. & Medzhitov R. (2008) Trex1 prevents cell-intrinsic 

initiation of autoimmunity. Cell 134, 587-98. 

Storz G. (2002) An expanding universe of noncoding RNAs. Science 296, 1260-3. 

Sunami E., De Maat M., Vu A., Turner R.R. & Hoon D.S. (2011) LINE-1 hypomethylation 



Chapter 1 General introduction 

 77 

during primary colon cancer progression. PLOS ONE 6, e18884. 

Suzuki S., Ono R., Narita T., Pask A.J., Shaw G., Wang C., Kohda T., Alsop A.E., Graves 

J.A.M. & Kohara Y. (2007) Retrotransposon silencing by DNA methylation can drive 

mammalian genomic imprinting. PLOS genetics 3, e55. 

Takahashi M. (2012) Oxidative stress and redox regulation on in vitro development of 

mammalian embryos. Journal of Reproduction and Development 58, 1-9. 

Tanghe S., Van Soom A., Mehrzad J., Maes D., Duchateau L. & de Kruif A. (2003) Cumulus 

contributions during bovine fertilization in vitro. Theriogenology 60, 135-49. 

Tashiro K., Teissier A., Kobayashi N., Nakanishi A., Sasaki T., Yan K., Tarabykin V., Vigier L., 

Sumiyama K. & Hirakawa M. (2011) A mammalian conserved element derived from 

SINE displays enhancer properties recapitulating Satb2 expression in early-born 

callosal projection neurons. PLOS ONE 6, e28497. 

Teneng I., Stribinskis V. & Ramos K.S. (2006) Stress-Mediated Activation of LINE-1 in 

Mammalian Cells. The FASEB Journal 20, A1359. 

Thompson J., Simpson A., Pugh P., Donnelly P. & Tervit H. (1990) Effect of oxygen 

concentration on in-vitro development of preimplantation sheep and cattle embryos. 

Journal of reproduction and fertility 89, 573-8. 

Tollervey D. & Caceres J.F. (2000) RNA processing marches on. Cell 103, 703-9. 

Toyota M. & Issa J.-P.J. (1999) CpG island methylator phenotypes in aging and cancer. In: 

Seminars in cancer biology, pp. 349-57. Elsevier. 

Trelogan S.A. & Martin S.L. (1995) Tightly regulated, developmentally specific expression of 

the first open reading frame from LINE-1 during mouse embryogenesis. Proceedings 

of the National Academy of Sciences 92, 1520-4. 

Turelli P., Vianin S. & Trono D. (2004) The innate antiretroviral factor APOBEC3G does not 

affect human LINE-1 retrotransposition in a cell culture assay. Journal of Biological 

Chemistry 279, 43371-3. 

Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., ... & 

Olsson, I. (2015). Tissue-based map of the human proteome. Science 347(6220), 

1260419. 



Chapter 1 General introduction  

 78 

Valencia-Sanchez M.A., Liu J., Hannon G.J. & Parker R. (2006) Control of translation and 

mRNA degradation by miRNAs and siRNAs. Genes & development 20, 515-24. 

van de Lagemaat L.N., Landry J.-R., Mager D.L. & Medstrand P. (2003) Transposable 

elements in mammals promote regulatory variation and diversification of genes with 

specialized functions. Trends in genetics 19, 530-6. 

van de Lagemaat L.N., Medstrand P. & Mager D.L. (2006) Multiple effects govern 

endogenous retrovirus survival patterns in human gene introns. Genome biology 7, 

R86. 

van den Hurk J.A., Meij I.C., del Carmen Seleme M., Kano H., Nikopoulos K., Hoefsloot 

L.H., Sistermans E.A., de Wijs I.J., Mukhopadhyay A. & Plomp A.S. (2007) L1 

retrotransposition can occur early in human embryonic development. Human 

molecular genetics 16, 1587-92. 

van den Hurk J.A., van de Pol D.J., Wissinger B., van Driel M.A., Hoefsloot L.H., de Wijs I.J., 

van den Born L.I., Heckenlively J.R., Brunner H.G. & Zrenner E. (2003) Novel types 

of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an 

intronic mutation activating a cryptic exon. Human genetics 113, 268-75. 

Van Soom A. & Kruif A.d. (1998) Bovine embryonic development after in vivo and in vitro 

fertilization. Reproduction in Domestic Animals 33, 261-5. 

Van Soom A., Ysebaert M.T. & de Kruif A. (1997) Relationship between timing of 

development, morula morphology, and cell allocation to inner cell mass and 

trophectoderm in in vitro‐produced bovine embryos. Molecular reproduction and 

development 47, 47-56. 

Van Soom A., Yuan Y.Q., Peelman L.J., de Matos D.G., Dewulf J., Laevens H. & de Kruif A. 

(2002) Prevalence of apoptosis and inner cell allocation in bovine embryos cultured 

under different oxygen tensions with or without cysteine addition. Theriogenology 57, 

1453-65. 

Vance K.W. & Ponting C.P. (2014) Transcriptional regulatory functions of nuclear long 

noncoding RNAs. Trends in genetics 30, 348-55. 

Vandaele L., Thys M., Bijttebier J., Van Langendonckt A., Donnay I., Maes D., Meyer E. & 



Chapter 1 General introduction 

 79 

Van Soom A. (2010) Short-term exposure to hydrogen peroxide during oocyte 

maturation improves bovine embryo development. Reproduction 139, 505-11. 

Vanden Berghe W. (2012) Epigenetic impact of dietary polyphenols in cancer 

chemoprevention: Lifelong remodeling of our epigenomes. Pharmacological Research 

65, 565-76. 

Vanneste E., Voet T., Le Caignec C., Ampe M., Konings P., Melotte C., Debrock S., Amyere 

M., Vikkula M. & Schuit F. (2009) Chromosome instability is common in human 

cleavage-stage embryos. Nature medicine 15, 577-83. 

Varmus H. (1988) Retroviruses. Science 240, 1427-35. 

Varmus H., Brown P. & Retroviruses I. (1989) Mobile DNA. Retroviruses. American Society 

for Microbiology, Washington, DC, 53-108. 

Velker B.A.M., Denomme M.M. & Mann M.R. (2012) Embryo culture and epigenetics. 

Embryo culture: Methods and protocols, 399-421. 

Vinckenbosch N., Dupanloup I. & Kaessmann H. (2006) Evolutionary fate of retroposed gene 

copies in the human genome. Proceedings of the National Academy of Sciences of the 

United States of America 103, 3220-5. 

Xing J., Zhang Y., Han K., Salem A.H., Sen S.K., Huff C.D., Zhou Q., Kirkness E.F., Levy S. 

& Batzer M.A. (2009) Mobile elements create structural variation: analysis of a 

complete human genome. Genome research 19, 1516-26. 

Walsh C.P., Chaillet J.R. & Bestor T.H. (1998) Transcription of IAP endogenous retroviruses 

is constrained by cytosine methylation. Nature genetics 20, 116-7. 

Wang-Johanning F., Frost A.R., Jian B., Epp L., Lu D.W. & Johanning G.L. (2003) 

Quantitation of HERV-K env gene expression and splicing in human breast cancer. 

Oncogene 22, 1528-35. 

Wang-Johanning F., Liu J., Rycaj K., Huang M., Tsai K., Rosen D.G., Chen D.T., Lu D.W., 

Barnhart K.F. & Johanning G.L. (2007) Expression of multiple human endogenous 

retrovirus surface envelope proteins in ovarian cancer. International journal of cancer 

120, 81-90. 

Wang H., Xing J., Grover D., Hedges D.J., Han K., Walker J.A. & Batzer M.A. (2005) SVA 



Chapter 1 General introduction  

 80 

elements: a hominid-specific retroposon family. Journal of molecular biology 354, 

994-1007. 

Wang L., Guo Z.-Y., Zhang R., Xin B., Chen R., Zhao J., Wang T., Wen W.-H., Jia L.-T. & 

Yao L.-B. (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to 

regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. 

Carcinogenesis 34, 1773-81. 

Wang R. & Brattain M.G. (2007) The maximal size of protein to diffuse through the nuclear 

pore is larger than 60 kDa. FEBS letters 581, 3164-70. 

Wang Y., Liška F., Gosele C., Šedová L., Křen V., Křenová D., Ivics Z., Hubner N. & Izsvák 

Z. (2010) A novel active endogenous retrovirus family contributes to genome 

variability in rat inbred strains. Genome research 20, 19-27. 

Wang Z., Willard H.F., Mukherjee S. & Furey T.S. (2006) Evidence of influence of genomic 

DNA sequence on human X chromosome inactivation. PLOS Comput Biol 2, e113. 

Ward F., Enright B., Rizos D., Boland M. & Lonergan P. (2002) Optimization of in vitro 

bovine embryo production: effect of duration of maturation, length of gamete 

co-incubation, sperm concentration and sire. Theriogenology 57, 2105-17. 

Warren W.C., Hillier L.W., Graves J.A.M., Birney E., Ponting C.P., Grützner F., Belov K., 

Miller W., Clarke L. & Chinwalla A.T. (2008) Genome analysis of the platypus reveals 

unique signatures of evolution. Nature 453, 175-83. 

Watson A.J. & Barcroft L.C. (2001) Regulation of blastocyst formation. Frontiers in 

Bioscience 6, D708-30. 

Webb D.W. (1992) Artificial insemination in dairy cattle. University of Florida Cooperative 

Extension Service, Institute of Food and Agriculture Sciences, EDIS. 

Wei W., Gilbert N., Ooi S.L., Lawler J.F., Ostertag E.M., Kazazian H.H., Boeke J.D. & Moran 

J.V. (2001) Human L1 retrotransposition: cispreference versus trans complementation. 

Molecular and cellular biology 21, 1429-39. 

Weis L. & Reinberg D. (1997) Accurate positioning of RNA polymerase II on a natural 

TATA-less promoter is independent of TATA-binding-protein-associated factors and 

initiator-binding proteins. Molecular and cellular biology 17, 2973-84. 

https://www.bioscience.org/
https://www.bioscience.org/


Chapter 1 General introduction 

 81 

Weisenberger D.J., Campan M., Long T.I., Kim M., Woods C., Fiala E., Ehrlich M. & Laird 

P.W. (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic 

acids research 33, 6823-36. 

Whitworth K., Springer G.K., Forrester L.J., Spollen W.G., Ries J., Lamberson W.R., Bivens 

N., Murphy C.N., Mathialigan N. & Green J.A. (2004) Developmental expression of 

2489 gene clusters during pig embryogenesis: an expressed sequence tag project. 

Biology of reproduction 71, 1230-43. 

Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., 

Morgante M. & Panaud O. (2007) A unified classification system for eukaryotic 

transposable elements. Nature Reviews Genetics 8, 973-82. 

Witney F. & Furano A. (1984) Highly repeated DNA families in the rat. Journal of Biological 

Chemistry 259, 10481-92. 

Wright R.O., Schwartz J., Wright R.J., Bollati V., Tarantini L., Park S.K., Hu H., Sparrow D., 

Vokonas P. & Baccarelli A. (2010) Biomarkers of lead exposure and DNA methylation 

within retrotransposons. Environmental health perspectives 118, 790. 

Wu Q. & Ni X. (2015) ROS-mediated DNA methylation pattern alterations in carcinogenesis. 

Current drug targets 16, 13-9. 

Xing J., Zhang Y., Han K., Salem A.H., Sen S.K., Huff C.D., Zhou Q., Kirkness E.F., Levy S. 

& Batzer M.A. (2009) Mobile elements create structural variation: analysis of a 

complete human genome. Genome research 19, 1516-26. 

Yakovchuk P., Goodrich J.A. & Kugel J.F. (2009) B2 RNA and Alu RNA repress transcription 

by disrupting contacts between RNA polymerase II and promoter DNA within 

assembled complexes. Proceedings of the National Academy of Sciences 106, 

5569-74. 

Yang A.S., Estécio M.R., Doshi K., Kondo Y., Tajara E.H. & Issa J.P.J. (2004) A simple 

method for estimating global DNA methylation using bisulfite PCR of repetitive DNA 

elements. Nucleic acids research 32, e38-e. 

Yang N. & Kazazian H.H. (2006) L1 retrotransposition is suppressed by endogenously 

encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13, 



Chapter 1 General introduction  

 82 

763-71. 

Yang N., Zhang L., Zhang Y. & Kazazian Jr H.H. (2003) An important role for RUNX3 in 

human L1 transcription and retrotransposition. Nucleic acids research 31, 4929-40. 

Yang Z., Boffelli D., Boonmark N., Schwartz K. & Lawn R. (1998) Apolipoprotein (a) gene 

enhancer resides within a LINE element. Journal of Biological Chemistry 273, 891-7. 

Yoder J.A., Walsh C.P. & Bestor T.H. (1997) Cytosine methylation and the ecology of 

intragenomic parasites. Trends in genetics 13, 335-40. 

Young L.E., Sinclair K.D. & Wilmut I. (1998) Large offspring syndrome in cattle and sheep. 

Reviews of reproduction 3, 155-63. 

Yu F., Zingler N., Schumann G. & Strätling W.H. (2001) Methyl-CpG-binding protein 2 

represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic 

acids research 29, 4493-501. 

Yuan Y., Van Soom A., Coopman F., Mintiens K., Boerjan M., Van Zeveren A., de Kruif A. & 

Peelman L. (2003) Influence of oxygen tension on apoptosis and hatching in bovine 

embryos cultured in vitro. Theriogenology 59, 1585-96. 

Zaitseva I., Zaitsev S., Alenina N., Bader M. & Krivokharchenko A. (2007) Dynamics of 

DNA‐demethylation in early mouse and rat embryos developed in vivo and in vitro. 

Molecular reproduction and development 74, 1255-61. 

Zheng D., Frankish A., Baertsch R., Kapranov P., Reymond A., Choo S.W., Lu Y., Denoeud F., 

Antonarakis S.E. & Snyder M. (2007) Pseudogenes in the encode regions: consensus 

annotation, analysis of transcription, and evolution. Genome research 17, 839-51. 

Zilberman D. & Henikoff S. (2007) Genome-wide analysis of DNA methylation patterns. 

Development 134, 3959-65. 

Zolotukhin A.S., Schneider R., Uranishi H., Bear J., Tretyakova I., Michalowski D., 

Smulevitch S., O'Keeffe S., Pavlakis G.N. & Felber B.K. (2008) The RNA transport 

element RTE is essential for IAP LTR-retrotransposon mobility. Virology 377, 88-99  



 

 83 

 

Chapter 2 

Aims of the study 

 



 

 84 



                                                               Chapter 2 Aims of the study  

 85 

Autonomous retrotransposons are found to be active and functional in preimplantation 

embryos. The impact of retrotransposon activity on the genome is unneglectable. They are 

suggested to participate in many activities during early embryonic development, including 

genomic imprinting, X chromosome inactivation, cell proliferation and differentiation. The 

role of retrotransposons in these processes is strongly correlated to the DNA methylation 

status and thus epigenetic regulation. Based on the ‘genomic shock’ hypothesis that 

environmental stimuli (including oxidative stress) may mobilize transposable elements, as 

first proposed by Barbara McClintock, it can be hypothesized that oxidative stress induces 

DNA methylation changes and this, in turn, influences retrotransposon expression and 

eventually embryo health. To test that hypothesis, we applied sustained oxidative stress (20% 

O2) during in vitro bovine preimplantation embryo development and measured global DNA 

methylation and expression of bovine autonomous retrotransposons.    

The specific aims of the study were: 

1. To profile autonomous retrotransposon expression in bovine preimplantation embryos in 

order to select the expressed ones for further study (Chapter 3.1). 

2. To select reliable reference genes for evaluating retrotransposon expression in bovine 

embryos cultured under standard condition and high oxygen stress (Chapter 3.2). 

3. To study the relationship between DNA methylation and retrotransposon expression 

under high oxygen tension (Chapter 4). 

4. To use repetitive sequences as global DNA methylation marker in bovine preimplantation 

embryos (Chapter 5). 
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3.1.1 Abstract 

Retrotransposons in general were previously found to be active in preimplantation 

embryos. The purpose of this study was to make an expression profile of the different 

autonomous retrotransposons in bovine oocytes and all stages during preimplantation 

development. L1_BT, BovB, and ERV1-1-I_BT were found to be expressed in all stages 

whereas the other retrotransposon elements tested showed low or inconsistent expression. 

These were excluded from further research.  

3.1.2 Introduction 

Retrotransposons are genetic elements that insert extra copies of themselves throughout 

the genome via a ‘copy and paste’ mechanism, through which they can rapidly increase 

the copy number and therefore increase genome size. Autonomous retrotransposons have 

an ORF which can encode reverse transcriptase necessary for their reverse transcription 

and ‘jumping ability’. They can not only copy and transport themselves back to the 

genome, but also facilitate the reverse transcription of non-autonomous retrotransposons, 

such as SINEs (Raiz et al. 2012). The expression of these elements determines when and 

where the retrotransposition can potentially occur. LINEs and ERVs are two typical 

autonomous retrotransposons. LINEs are the largest mammalian transposable element 

components, comprising on average about 20% of mammalian genome - 21.9% in human, 

19% in rat, 20.3% in mouse, and even 29.2% in cow. A typical integral L1 element is 

approximately 6000 bp, and codes for an RNA binding protein (ORF1), and an ORF2 for 

endonuclease and reverse transcriptase. ERVs are another superfamily in the mammalian 

genome. A typical structure of ERVs comprises a central part with three major genes 

(gag, pol and env) flanked by two long terminal repeats (LTRs).  
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Both LINEs and ERVs are known to play biologically significant roles in mutation, 

disease (i.e. breast cancer in human) and genome evolution, and to have a strong 

expression in mouse oocytes and early embryos, possibly due to demethylation during 

these stages (Peaston et al. 2004). However, little is known about the ERV families’ 

expression in different bovine embryonic stages. The aim of the present study was to 

analyse the specific autonomous retrotransposon expression during cattle preimplantation 

embryo development.  

3.1.3 Material and methods 

Materials 

Unless stated otherwise, all chemicals, reagents and media were obtained from Sigma 

(USA) and Life Technologies (Belgium). 

Autonomous retrotransposon selection and primer design 

Repbase (Jurka et al. 2005) was used to select autonomous retrotransposon classes 

originating from Bos taurus with a potential complete open reading frame (ORF) of 

reverse transcriptase. These include LTR retrotransposons, Endogenous Retroviruses 

(ERVs) and non-LTR retrotransposons. In this way, seven bovine autonomous 

retrotransposon families with complete reverse transcriptase ORFs were found: L1_BT, 

BovB, ERV1-1-I_BT, BtERVF2-I, ERV2-1-I_BT, ERV2-2-I_BT, and ERV2-3-I_BT.  

As the aim was to amplify as many as possible individual repeats of each retrotransposon 

family present in the genome, the repeat sequences for each retrotransposon were 

collected from the bovine genome (UMD_3.1 and Btau_4.2) using NCBI BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The selected sequences were further checked by 

NCBI ORF Finder (Wheeler et al. 2000) to determine the ORFs for each of these 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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retrotransposon repeat sequences. Then, MultAlin (Corpet 1988) and ClustalW2 (Larkin 

et al. 2007) were used to identify conserved regions in the reverse transcriptase ORFs for 

each of the seven autonomous retrotransposon families. For some retrotransposons, such 

as L1_BT, which was suggested to have 811 complete copies in the genome (Adelson et 

al. 2009), 80 representative copies of those were used in alignment in the present study.   

Based on the conserved sequences within ORFs, specific primers were designed for each 

of the seven families using Primer3 software (Rozen & Skaletsky 1999). All amplicons 

are located in the ORFs of the retrotranposons (Figure 3.1). The number of amplicons in 

the genome was checked using BiSearch software (Arányi et al. 2006) with default 

settings and listed in Table 3.1. Mfold (Zuker 2003) was used to account for any 

secondary structure in the PCR amplicons.   

RT-PCR amplified products were analyzed in 2% agarose gels containing ethidium 

bromide. For cloning, RT-PCR bands of interest were excised from agarose gels, purified 

using the GENECLEAN® II Kit (MP Biomedicals, Belgium), cloned into pCR 2.1 and 

the re-amplified products were sequenced for verification. All the amplicons are listed in 

Table 3.2.  

There are many studies about repetitive sequence PCR amplification (Bratthauer & 

Fanning 1992; Georgiou et al. 2009; Macia et al. 2011), but in the present study, our 

purpose was to amplify as many copies as possible. Therefore, extra steps such as 

genome-wide BLAST to find the copies, and alignment for conserved sequences to 

design primers were required. With the analysis of BiSearch, amplicon numbers of each 

pair of primers were found as well, and were listed in Table 3.1.  
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Figure 3.1 Structures of the retrotransposons in the study, and locations of PCR amplicons within 

retrotransposon ORFs. 
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Table 3.1 Information of the primers used in the study. The amplicon number for GAPDH is 

based on bovine cDNA database (UMD 3.1.86); while the potential amplicon numbers for 

retrotransposons are based on bovine genome (UMD_3.1.86). 

 

Retrotransposon 

name  

Potential 

amplicon 

numbers 

(BiSearch) 

Sequence 5’ – 3’  Amplicon 

length 

cDNA  

Ta (oC)  

 

GAPDH  1 TTCAACGGCACAGTCAAGG 119 62 

  ACATACTCAGCACCAGCATCAC   

L1_BT  6606 GCAATCCCTATCAAGCTACCA  133  60  

  TGATTCCTCCAGTTCCATTCTT    

BovB  25639 CCTCAGATATGCAGATGACACC  283 60  

  GTTGGTCATAACTTTCCTTCCA    

ERV1-1-I_BT  103 TGTTAAGCTCAAAGACCCACAC 277 60  

  CCGTTCAGGAATTTCAGACAA   

BtERVF2_I  17 ACCTTCCCTTGGATCTACCC 231  63  

  TAGGGGTGTTGTGTGGTGAA   

ERV2-1-I_BT  15 GGCTTAAAAATTGCCCCAGA 125 60  

  AAAGTAACAAGGTGATCTTTTCTCAA   

ERV2-2-I_BT  13 CCTGACCCTAATAGTCCTAGACAG 243  60  

  TGCCCTATTTTCTCAATGTATGA   

ERV2-3-I_BT  5 GCTTTTAGTGTCCCTTCTACAAAT 186  60  

  TGCCAAAAGAATATCATCCAT   
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Table 3.2 Sequences of retrotransposon PCR amplicons 

 

Retrotransposon 

name  

Sequence  

L1_BT 

(133 bp) 

TGATTCCTCCAGTTCCATTCTTCTTTCTCAAGATCGCTTTGGCTATTCGAGGTTTTTTGTATTTCCA

TACAAATTGTGAAATTATTTGTTCTAGCTCTGTGAAAAATACTGTTGGTAGCTTGATAGGGATT

GC 

BovB 

(283 bp) 

CCTCAGATATGCAGATGACACCACCCTTATGGTAGAAAGTAAAGAGGAACTAAAAAGCCTCTT

GATGAAAGTGAAAGAGGAGAGTGAAAAAGCTGGCTTAAAGCTCAACATTCAGAAAATGAAGA

TCATGGCATCCGGTCCCATCACTTCATGGGAAATAGATGGGGAAACAGTGGAAACAGTGTCAG

ACTTTATTTTTCTGGGCTCCAAAATCACGACAGATGGTGACAGCAGCCATGAAATTAAAAGACG

CTTACTCCTTGGAAGGAAAGTTATGACCAAC 

ERV1-1-I_BT  

(277 bp) 

TGTTAAGCTCAAAGACCCACACGTATTTCCGCATAAGAAGCAGTATCCACTGAAACCTGAAGTT

AAGGAAGAGTTAAAACCCATCATCAAAAATTTAAAGGAGCAGGGACTATTAATTCCCTGTAAC

AGTCCTTGCAACACTCCTATTTTGGGTATAAAGAAATCGAATGGTAAATGAAGACTAGTTCAAG

ATTTATGAATAATAAATGAGGCTGTAGTTCCTTTACACCCCGTGGTGCCTAATCCTTATACTCTA

TTGTCTGAAATTCCTGAACGGAA 

BtERVF2_I 

(231 bp) 

ACCTTCCCTTGGATCTACCCACCTTANACCCCCAAGTCTGGGACACTGATCACCCATCCATAGCC

AAACATCATCCCCCAGTCCACATTACCCTAAAAGACCCCTCGACTATAATCTCCCAACAGTACTC

GCCACCCCGAAGACCCACAAGGGACTTAAGCCTATCATAGATCGTCTTCTTCAAGCCCCTATCCT

AATTCCTAACCATTCACCACACAACACCCCTA 

ERV2-1-I_BT 

(125 bp) 

GGCTTAAAAATTGCCCCAGAGAAAATTCAAGTCAATCCGCCCATAACTTACTTAGGGCGGGTTA

TCAATTCAGAAACTGTGACTCATGCCCCATTAAAATTGAGAAAAGATCACCTTGTTACTTT 

ERV2-2-I_BT 

(243 bp) 

CCTGACCCTAATAGTCCTAGACAGCTAACAAAAGAAGTGGAAGAAGAATTAAAATTTGTTGAA

AAATGCATTCAACAAGCTTTCACAACTCAGCTGGATCATACCCAACCGGTCTGTTTATATATATA

TATTCCCCACCAAACATTCACCTACTGCAATCATAGCTCAATACAGCCCGATAGAGTGGGTATAT

CTACAGACTAAACAGTTAAA-ATTTTCTTATCATACATTGAGAAAATAGGGCA 

ERV2-3-I_BT 

(186 bp) 

GCTTTTAGTGTCCCTTCTACAAATTATAAAGAACCTATGAAAAGATATCAGTGGCAAGTTTTACC

TCAGGGAATGGCTAATAGTCCTACTCTCTGTCAGAAATTTGTTGCTCAAGCTTTAAAAACCACTA

GGTCCTTGTACTCCCAAGTATATATTATTCATTATATGGATGATATTCTTTTGGCA 
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Oocytes and in vitro embryo collection 

In vitro bovine embryos were produced in serum-free media according to our standard 

procedures (Wydooghe et al. 2013). Briefly, bovine ovaries were collected at the local 

slaughterhouse. Immature cumulus-oocyte complexes were aspirated from follicles between 2 

and 8 mm diameter and matured in groups of 60 in 500 µl modified bicarbonate-buffered 

TCM-199 supplemented with 50 mg/ml gentamycin and 20 ng/ml EGF for 22 hrs at 38.5°C in 

a 5% CO2 incubator. After maturation, the cumulus-oocyte complexes were inseminated with 

frozen-thawed bovine spermatozoa at a final concentration of 106 spermatozoa/ml. The 

cumulus cells and excess spermatozoa were removed from presumed zygotes by vortex after 

21 hrs of incubation. The presumed zygotes were incubated in groups of 25 in 50 µl synthetic 

oviductal fluid supplemented with essential and non-essential amino acids (SOFaa), 0.4% 

BSA and ITS (5 µg/ml insulin + 5 µg/ml transferrin + 5 ng/ml selenium) covered with 

mineral oil, and incubated at 38.5°C at 5% CO2, 5% O2 and 90% N2 (as control group). 

Embryos with good morphology (some examples are shown in Figure 3.2) were collected at 

specific time points: 2 to 4- cells at 36-40 hpi, 5 to 8- cells at 64 hpi, 9 to 16-cell at 5 dpi, 

morula at 6 dpi, normal blastocyst at 7 dpi, expanded blastocyst at 8 dpi and hatched 

blastocyst at 9 dpi, together with immature and mature oocytes.  

 

Figure 3.2 Embryos produced by IVF at different stages of development 
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Oocytes and embryos were further washed three times with RNase-free PBS, frozen in pools 

of five in lysis buffer (10% RNAsin Plus RNase inhibitor (Promega, Netherlands), 5% DTT 

(Promega, Netherlands), and 0.8% Igepal CA-630 in RNase free water) and stored at -80 °C, 

until use. For each stage, 3 pools of 5 oocytes or embryos were collected. 

RNA extraction and cDNA synthesis 

Total RNA was isolated from pooled oocytes or embryos from each stage, using the RNeasy 

Micro kit (Qiagen, Belgium) according to the manufacturer’s instructions, including a 

genomic DNA removal step in the procedure. The extracted RNA was dissolved in 14 µl of 

RNase-free water. A minus RT control was performed with primers based on the genomic 

sequence of GAPDH to check for contaminating genomic DNA, and only the RNA samples 

without DNA contamination were used for reverse transcription (Goossens et al. 2005). First 

strand cDNA was generated from the total amount of RNA using the iScript cDNA synthesis 

kit (BioRad, Belgium) according to the product manual. After reverse transcription, the cDNA 

was 2.5 times diluted and used for downstream PCR. 

Retrotransposon expression profiling by polymerase chain reaction (PCR) 

All PCR reactions were performed in a 10 µl volume on the Eppendorf Mastercycler PCR 

System (Eppendorf, Belgium), with 0.5 U FastStart Taq DNA Polymerase and 1 µl 10x 

reaction buffer (Roche, Belgium), 200 µM dNTPs (Bioline Reagents Ltd., UK), 500 nM of 

each primer (LDT, Belgium) and 2.5 µl of diluted cDNA of pooled oocytes or embryos. The 

PCR program consisted of initial denaturation at 95°C for 5 min, followed by 40 cycles of 15 

sec at 95°C, 15 sec at the specific annealing temperature for each retrotransposon (Table 3.1) 

and 30 sec at 72°C, and a final 10 min elongation at 72°C. The PCR products were verified by 

electrophoresis for confirmation of expression. 
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3.1.4 Results and discussion 

The PCR results of the seven autonomous retrotransposon families in bovine oocytes and 

preimplantation embryos are summarized in Table 3.3. L1_BT, BovB, ERV1-1-I_BT, and 

ERV2-1-1_BT show strong RNA expression crossing the development from oocyte to 

blastocyst stage, while other ERVs have specific, developmentally regulated expression 

patterns. Similar differences in LTR retrotransposon expression pattern were found in mouse 

and it was suggested that normal repressive chromatin structure including these loci is 

established sequentially during the oocyte to embryo transition and preimplantation stages 

(Peaston et al. 2004). Also, the potential copies for BtERVF2-I, ERV2-2-I_BT and 

ERV2-3-I_BT in the bovine genome are 17, 13 and 5, which may lack functional promoters 

and/or relulatory elements to guarantee their transcription. This also explains the variable 

expression in the pooled oocytes or embryos of the same stage. Although ERV2-1-1_BT is 

expressed in all the developmental stages, the fact that there is no expression in some 

replicates makes it unsuitable for further quantitive study.   

It is notable that expression of BtERVF2-I starts from the 9-16 cell stage and ERV2-2-I_BT is 

more consistently expressed from this stage on compared to earlier stages. The specific 

function of these two retrotransposons is still not clear, but the increased expression at this 

stage may be due to the embryonic genome activation (EGA). EGA is an important event for 

maternal-to-embryonic transcriptome transition. The major EGA in bovine embryos was 

identified to start from the 8-cell onwards, with a marked increase in number of differentially 

expressed genes, compared with the 4-cell stage (Graf et al. 2014). Expression quantification 

using the ratio of ERV copies / luciferase reporter transcripts showed a 1000-fold increase in 

post-EGA stage (morula) ERV expression compared to the pre-EGA stage (4-cell) in bovine 

embryos (Bui et al. 2009). This massive transcriptional activation of ERV retrotransposons is 

also suggested as a defining event of genome reprogramming in bovine embryos.
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3.1.5 Conclusions  

Three autonomous retrotransposons, L1_BT, BovB, and ERV1-1-I_BT, with complete ORFs 

were found with consistent expression in bovine oocytes and crossing all stages during 

preimplantation embryo development. These retrotransposons were analysed during further 

research in this thesis.  
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3.2.1 Abstract 

Real-time quantitative polymerase chain reaction (RT-qPCR) is an efficient and accurate tool 

for gene expression analysis in preimplantation embryos. To normalize gene expression data, 

stable reference genes are needed. The stability of reference genes can vary under different 

developing stages or culture conditions, hence it is essential to determine reference gene 

stability before initiating a gene expression analysis. In the present study, we have analyzed 

and selected reference genes for normalization of RT-qPCR data of bovine preimplantation 

embryos, considering gender, developmental stages and culture conditions. GAPDH, YWHAZ, 

18S rRNA and SDHA were identified as the most stable genes overall (all embryos stages, 

both male and female, and cultured under 5% and 20% O2). Oxygen tension shows no effect 

on the gene expression stability ranking order, while in female embryos, HPRT1 and H2A are 

the most stably expressed genes.  

3.2.2 Introduction 

Preimplantation embryo development is a dynamic developmental process from fertilization 

until formation of a blastocyst, including first cleavage division, activation of the embryonic 

genome and differentiation to the inner cell mass (ICM) and trophectoderm (TE) cells. These 

developmental activities are directed by gene expression regulation dynamics leading to 

complex expression patterns that not only vary from embryonic stage to stage, but also differ 

between in vivo and in vitro produced embryos (Niemann & Wrenzycki 2000).   

To detect and analyze gene expression levels, RT-qPCR (reverse transcription quantitative 

polymerase chain reaction) is one of the most widely used methods. It is a highly specific and 

sensitive tool for quantifying RNA levels in preimplantation embryos. The reliability of 

RT-qPCR results, besides a good experimental and primer design, also depends on accurate 

applications of all the procedures, such as quality RNA extraction, cDNA synthesis, dilution 

series, pipetting, use of appropriate controls, and analysis methods (Gál et al. 2006). Unlike 

cell lines and single tissue samples, embryonic cells have a heterogeneous nature, which leads 
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to a greater variation in the endogenous biological processes, and a greater variation in the 

sensitivity of the cells to administered compounds (Zhang et al. 2003). Therefore, a reliable 

normalization procedure is of utmost importance.  

Constitutively expressed genes minimally influenced by the experimental treatments, are used 

in most experiments to normalize the gene expression levels. Reference genes have been 

previously validated in bovine preimplantation embryos (Goossens et al. 2005). However, it is 

essential to determine reference gene stability before initiating a gene expression study in new 

conditions. The stability of reference genes can vary under different culture conditions, for 

example high oxygen tension. Another factor that can have an influence on the gene 

expression is the sex of the embryo. It was reported that male and female preimplantation 

embryos display a sex-specific transcriptional regulation. Using DNA microarrays almost one 

third of the expressed genes were reported as having different expression levels in male and 

female bovine blastocysts (Bermejo-Alvarez et al. 2010). To incorporate this potential gender 

specific expression, an embryo sexing method is needed before proceeding with the RT-qPCR 

analysis. Normally, the sexing technique is based on chromosomal difference between the 

sexes (presence or absence of Y chromosome). By PCR amplification of embryo genomic 

DNA (from whole embryos or some blastomeres), Y-specific sequences can be detected. 

However, in the present study, an RNA-based embryo sexing method was evaluated before 

proceeding with the RT-qPCR analysis in order to avoid consumption of cells for DNA 

extraction and reduce the already limited material for RNA expression.  

3.2.3 Material and methods 

Material 

Unless stated otherwise, all chemicals, reagents and media were obtained from Sigma (USA) 

and Life Technologies (Belgium). 
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Experimental design 

The scheme of the study is show in Figure 3.3. For the reference gene selection, embryos 

were collected from all stages cultured under 5% O2 and 20% O2. RT-qPCR was performed 

with 20 experimental groups of 6 single embryos, including 2-cell, 4-cell, 8-cell male, 8-cell 

female, 16-cell male, 16-cell female, morula male, morula female, blastocyst male and 

female.  

 

Figure 3.3 Scheme of reference gene selection in bovine embryos 

 

In vitro embryo production 

In vitro bovine embryos were produced in serum-free media according to our standard 

procedures, as mentioned in Chapter 3.1 Method. For the high oxygen tension group, 

embryos were cultured under 20% O2, instead of 5% O2. Embryos with good morphology 

were collected at specific time points: 2-cell and 4- cell at 36-40 hpi, 8- cells at 64 hpi, 16-cell 

at 5 dpi, morula at 6 dpi, and expanded blastocyst at 8 dpi. Embryo developmental 

competence was evaluated at 8 dpi by the percentage of blastocysts obtained from 

presumptive zygotes. 
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For evaluating the RNA-based sex determination test, 8-cell embryos and blastocysts were cut 

into two halves. One half of the embryo was used to test the RNA-based sexing method and 

the other half was used in a classic DNA-based sexing method. Embryos used for the DNA 

test were washed and frozen with PBS, and stored at -80 °C until use. All embryos for RNA 

extraction were further washed three times with RNase-free PBS, frozen individually in lysis 

buffer (10% RNAsin Plus RNase inhibitor (Promega, Netherlands), 5% DTT (Promega, 

Netherlands), and 0.8% Igepal CA-630 in RNase free water) and stored at -80 °C, until use.  

Embryo RNA extraction, cDNA synthesis and quality control 

Total RNA was isolated from the individual embryos of each stage, using the RNeasy Micro 

kit (Qiagen, Belgium) according to the manufacturer’s instructions, including a genomic DNA 

removal step in the procedure. The extracted RNA was dissolved in 14 µl of RNase-free water. 

A minus RT control was performed with GAPDH primers to check for contaminating 

genomic DNA. First strand cDNA was generated from the total amount of RNA using the 

iScript cDNA synthesis kit (BioRad, Belgium) according to the product manual. After reverse 

transcription, the cDNA was 2.5 times diluted and used for downstream PCR. 

An YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta) 

primer assay was used to check embryo cDNA integrity for the RT-qPCR experiment. The 

assay has one forward primer and three reverse primers, which can amplify amplicons of 109, 

497, 909 bp. Samples with three amplicons are considered as sufficient quality for RT-qPCR 

(primers shown in Table 3.4).   

RNA-based embryo sex determination 

An RNA-based method for embryo sexing was performed using a Y-linked gene and an 

X-linked gene as an internal control. The Y-linked gene DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 3 (DDX3Y) primers were taken from Hamilton et al. (2012). According to our 

preliminary results from expression profiling of DDX3Y among embryo stages, DDX3Y was 
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found expressed from the 8-cell stage on, maybe due to embryo genome activation (EGA). 

Consequently, RNA expression of this gene can only be used for gender determination from 

the 8-cell stage onwards. As X-linked internal control hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) was used, and the primers were taken from previous 

work of the lab (Goossens et al. 2005). Primer sequences are given in Table 3.4. The PCR 

protocol used was as described above for the retrotransposon expression profiling experiment 

with an annealing temperature of 60°C.  

Table 3.4 Information of the primers used for embryo sexing and RNA integrity check  

Gene name  Sequence 5’ – 3’  Amplicon 

length cDNA  

Ta 

(oC)  

 

DDX3Y GGACGTGTAGGAAACCTTGG 225 60 

 GCCAGAACTGCTACTTTGTCG   

HPRT1 TGCTGAGGATTTGGAGAAGG 154  60  

 CAACAGGTCGGCAAAGAACT   

AMXY CAGCCAAACCTCCCTCTGC 280 on X chr 58 

 CCCGCTTGGTCTTGTCTGTTGC 217 on Y chr  

YWHAZ assay +1 GAGCAAAAGACGGAAGGTGCT  60 

YWHAZ assay -1 TCCCCACCAGGACATACCAA 909  

YWHAZ assay -2 TCCGATGTCCACAATGTCAAGT 497  

YWHAZ assay -3 CCAAAAGAGACAGTACATCATTGCA 109  

 

 Embryo DNA preparation and DNA sexing method 

Genomic DNA of half 8-cell embryos and half blastocysts was isolated according to our 

routine lab protocol, including Proteinase K treatment, with minor changes (Van Poucke et al. 

2005). In brief, each sample was added to 20 μl Lysis Buffer K (10 mM Tris-HCl pH 8; 50 
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mM KCl; 0.5% Tween 20) supplemented with 500 μg/ml proteinase K (Roche Diagnostics, 

Belgium) and incubated for 45 min at 56°C to release the DNA. The lysate was incubated for 

10 min at 95°C to inactivate the proteinase K and centrifuged at 16100 g for 1 min to pellet 

down the cell debris.   

The amelogenin gene present on both the X and the Y chromosome in the bovine genome was 

used for the embryo sexing. The amelogenin gene on the X chromosome has a different size 

compared to the gene on the Y (also called AMXY) chromosome and therefore can be used 

for sexing. The primers used are listed in Table 3.4. 

RT-qPCR analysis 

Seven candidate gene primer sequences for RT-qPCR experiments were taken from previous 

work in the laboratory (Goossens et al. 2005). Six single embryos were used for each 

developmental stage and sex (2-cell, 4-cell, 8-cell male and female, 16-cell male and female, 

morula male and female, expanded blastocyst male and female) from the high oxygen (20% 

O2) and control (5% O2) groups separately. 

RT-qPCR reactions were performed in 10 µl reaction volume on a BioRad CFX 96 PCR 

Detection system, including 5 µl Sso Advanced SYBR Green Supermix (BioRad, Belgium), 

300 nM each primer and 2.5 µl diluted embryo cDNA. The PCR program consisted of an 

initial denaturation step at 95°C for 3 min to activate the Taq DNA polymerase, followed by 

40 cycles of denaturation for 5 s at 95°C and a combined primer annealing-extension step for 

30 s at specific primer annealing temperatures, during which fluorescence was measured. A 

melting curve was produced afterwards by heating the samples from 70°C to 95°C in 0.5°C 

increments for 5 s and fluorescence was monitored at the same time to confirm a single 

specific peak for each pair of primers. Each reaction was run in duplicate. PCR efficiencies 

were calculated by a relative standard curve derived from a pooled bovine cDNA mixture (a 

10-fold dilution series with five measuring points).  
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Determination of reference genes by geNorm 

Raw RT-qPCR data were calculated taking into account exact PCR efficiencies and were 

analysed using the geNorm program (Vandesompele et al. 2002). This program ranks the 

stability of gene expression from a set of tested candidate reference genes by M value in a 

given sample panel. The M value for each reference gene is the average pairwise variation for 

that gene with all the other tested control genes. A higher M value indicates a greater variation 

of gene expression. Stepwise exclusion of the gene with the highest M value and recalculation 

of the M value allows the ranking of the tested genes according to their expression stability. 

Finally, a normalization factor (NF) was calculated based on the geometric mean of the given 

housekeeping genes. 

3.2.4 Results and discussion 

In vitro embryo production under low and high oxygen tension 

In six replicate IVF experiments (both a control group at 5% O2 and an oxidative stress group 

at 20% O2), 20% O2 had an impact on embryo development. The blastocyst rate at 8 d.p.i. was 

significantly (P < 0.01) reduced under conditions of oxidative stress (20% O2) compared to 

control (23.34 ± 5.47% vs 45.32 ± 7.73%, respectively; Figure 3.4).  
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Figure 3.4 Blastocyst rate at 8 dpi from presumed zygotes under normal in vitro embryo culture or 

oxidative stress (n= presumed zygotes number, in 6 replicate IVF experiments). Data are shown as 

Mean±SEM, and an asterisk indicates a significant difference between two culture conditions (P<0.01) 

by paired student t-test.  

 

RNA quality of the embryo samples 

RNA samples without genomic DNA contamination were further tested with the YWHAZ 

primer assay. For each cDNA sample, three amplicons were found, with the largest of 909 bp 

(Figure 3.5). Since the primers designed for qPCR only amplify fragments < 300 bp in length, 

we suppose that samples with a 497 bp-amplicon have sufficient quality for further qPCR 

analysis.  
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(a) 

 

 

(b) 

 

 

Figure 3.5 RNA quality control primer assay. (a) YWHAZ primers design (b) embryo samples 

checked by the primer assay; samples are used when 909 bp can be amplified. M: DNA marker; 1-8: 

single preimplantation embryo cDNA (1&2: 2-cell; 3&4: 4-cell; 5-6: 8-cell; 7: morula; 8: blastocyst); 

9: bovine tissue cDNA; 10: negative control. 

 

RNA-based embryo sex determination 

Comparison of the results from the DDX3Y-HPRT1 RNA-based method and the AMXY 

DNA-based gender marker showed the DDX3Y-HPRT1 RNA-based method is reliable for 

bovine embryo sexing from the 8-cell stage onwards (Figure 3.6). Moreover, four 

blastomeres from an 8-cell embryo can provide enough RNA for this test. Therefore, embryos 

used in the present study were all sexed from the 8-cell stage onwards.
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Figure 3.6 Accordance of DNA-based and RNA-based embryo sexing results. Genomic AMXY was 

used as a gender marker (upper penal), and Y-specific gene DDX3Y expression was used for sexing 

while HPRT1 was added as an internal control. 1-4: 8-cell; 5-8 blastocyst; 9: female tissue DNA and 

RNA; 10: male tissue DNA and RNA; 11: negative control. 1, 4, 8 are female embryos and 2, 3, 5, 6, 7 

are male embryos.  

 

Reference gene selection 

A good reference gene should express stably over all experimental groups. The selection of 

reference genes for qPCR in bovine preimplantation embryos has been reported before 

(Goossens et al. 2005). Different with that study, we selected reference genes for individual 

embryo qPCR instead of embryo groups, sexed the embryos and tested the influence of high 

oxygen tension (20% O2 culture).  

Table 3.5 Ranking of expression stability (M) for each embryo developmental stage by geNorm 

2-cell  M  4-cell  M  8-cell  M  16-cell  M  Morula  M  Blastocyst  M  

YWHAZ/ 

HPRT1  0.426  

GAPDH/ 

YWHAZ  0.461  

YWHAZ/ 

ACTB  0.811  

YWHAZ/ 

SDHA  0.927  

ACTB/ 

SDHA  0.980  

YWHAZ/ 

ACTB  0.546  

GAPDH  0.733  ACTB  0.638  GAPDH  0.913  GAPDH  1.046  YWHAZ  1.020  SDHA  0.578  

SDHA  0.909  HPRT1  0.870  H2A  0.975  ACTB  1.131  GAPDH  1.054  GAPDH  0.637  

H2A  0.969  H2A  0.949  18S rRNA  1.070  18S rRNA  1.200  H2A  1.098  H2A  0.708  

ACTB  1.024  SDHA  1.013  HPRT1  1.165  HPRT1  1.344  18S rRNA  1.174  18S rRNA  0.761  

18S 

rRNA  1.123  18S rRNA  1.212  SDHA  1.270  H2A  1.578  HPRT1  1.337  HPRT1  0.905  

Reference genes were analysed by geNorm and ranked according to the gene stability 

measure (M) (Vandesompele et al. 2002). The ranking of gene expression stability is shown 



Chapter 3 Retrotransposon expression profiling and reference gene selection 

 

 112 

by stages (Table 3.5) and by other sample combinations (Table 3.6). As expected, the 

expression stability ranking of the reference genes varied among stages and varied according 

to gender (from the 8-cell to blastocyst stage). Compared to the results of Goossens et al. 

(2005), we found no difference in the stability ranking of the reference genes between pooled 

and individual embryos. For both, the most stable genes are GAPDH, YWHAZ and 18S rRNA. 

When gene expression is calculated only within one developmental stage, the gene expression 

stability (M) is relatively low, and the stability ranking order is slightly different. It is notable 

that in female embryos the stability rank is different from male embryos. HPRT1 is the most 

stable reference gene in female embryos, maybe due to the X-linked expression, with a double 

expression before X-inactivation compared to males (Table 3.6). In male embryos, GAPDH 

and YWHAZ are the most stable genes. High oxygen tension does not change the ranking 

significantly. GAPDH and YWHAZ are the most stable reference genes, with low M-value, 

when all stages, both sexes and oxygen tension are considered (Table 3.6).  

 

Table 3.6 Ranking of expression stability (M) for different sample combinations by geNorm  

 

Surprisingly, we found that 18S rRNA is always among the least stable genes in Table 3.5, 

while one of the most stable genes in Table 3.6. In this reference gene selection experiment, 

we found that 18s rRNA is one of the least stable genes in single embryonic stage ranking, but 

one of the most stable across the embryo stages, which indicates 18s rRNA is relatively stable 

expressed in different stages compared to other candidate genes.  

All female 
(8-cell to  
Blastocyst)    M 

All male 
(8-cell to  
Blastocyst)    M 

All 5% O2 
(2-cell to  
Blastocyst)     M 

All 20% O2 
(2-cell to  
Blastocyst)     M  All        M 

HPRT1/ 
H2A  

1.339  GAPDH/ 
YWHAZ  

1.025  GAPDH/ 
YWHAZ  

1.066  GAPDH/ 
YWHAZ  

0.972  GAPDH/ 
YWHAZ  

1.016  

YWHAZ  1.436  18S rRNA  1.231  HPRT1  1.407  18S rRNA  1.395  18S 
rRNA  

1.458  

GAPDH  1.503  SDHA  1.477  H2A  1.468  SDHA  1.546  SDHA  1.566  

18S rRNA  1.637  ACTB  1.632  18S rRNA  1.648  ACTB  1.696  HPRT1  1.742  

SDHA  1.722  HPRT1  1.907  SDHA  1.746  HPRT1  1.918  H2A  1.849  

ACTB  1.896  H2A  2.053  ACTB  1.861  H2A  2.076  ACTB  1.976  
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After gene expression stability (M) calculation and ranking by geNorm, the number of 

reference genes chosen for RT-qPCR normalization needs to be determined. It was suggested 

that in order to measure gene expression levels accurately, a normalization factor (NF) 

calculated by the geometric mean of multiple control genes instead of one is required 

(Vandesompele et al. 2002). These authors recommend three reference genes as the minimum 

number for RT-qPCR normalization. The optimal number of reference genes can be 

determined by a pairwise variation (Vn/n+1) between the sequential normalization factors (NFn 

and NFn+1) after successive inclusion of less stable reference genes. In other words, stepwise 

inclusion of more control genes until the (n+1)th gene has no significant contribution to the 

recalculated NF. Figure 3.7 shows the pair wise variation Vn/Vn+1 between 2 sequential 

normalization factors NFn and NFn+1 for all samples (all stages, both genders, 5% and 20% 

O2). In this case, V3/4 (0.360) is much lower than V2/3 (0.534), while adding the 5th gene does 

not change the pairwise variation value (0.356). Adding the 6th gene reduces the value to 

0.299. However, due to the limited RNA amount that can be extracted from single embryos, 

and the relative small gain of adding more genes, four reference genes is considered a good 

compromise in this case. The four most stable genes are GAPDH, YWHAZ, 18S rRNA and 

SDHA. 
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Figure 3.7 Determination of optimal number of control genes for normalization of all samples. The 

optimal number of control genes was calculated by geNorm. The value of the pair wise variation 

significantly reduces to 0.360 for V3/4, and inclusion of the 5th gene shows no difference in calculation.  

 

3.2.5 Conclusions   

In conclusion, methods of quality controlled RNA extraction from embryos and RNA-based 

embryo sexing were optimized, and a selection of reference genes for RT-qPCR analysis for 

individual (male or/and female) embryos under 5% and 20% O2 was made.  GAPDH, 

YWHAZ, 18S rRNA and SDHA are the most stable genes over all the embryonic stages (both 

male and female, and cultured under 5% and 20% O2). Oxygen tension shows no effect on the 

gene expression stability ranking order.   
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4.1 Abstract 

Retrotransposons are transposable elements that insert extra copies of themselves throughout 

the genome via an RNA intermediate using a ‘copy and paste’ mechanism. They account for 

more than 44% of the bovine genome and have been reported to be functional, especially 

during preimplantation embryo development. In the present study, we tested whether high 

oxygen tension (20% O2) influences global DNA methylation analysed by 

immunofluorescence staining of developing bovine embryos and whether this has an effect on 

the expression of some selected retrotransposon families. High oxygen tension significantly 

increased global DNA methylation in 4-cell embryos and blastocysts. A significant expression 

difference was observed for ERV1-1-I_BT in female blastocysts, but no significant changes 

were observed for the other retrotransposon families tested. Therefore, the study indicates that 

global DNA methylation is not necessarily correlated with retrotransposon expression in 

bovine preimplantation embryos. 

Keywords: bovine preimplantation embryo, DNA methylation, oxidative stress, reference 

genes. 
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4.2 Introduction 

Transposable elements, the largest class of mammalian genome sequences, were long 

considered as ‘junk’ or ‘selfish’ DNA. The major part of transposable elements in mammals is 

made up of retrotransposons also called RNA transposons. They insert extra copies of 

themselves throughout the genome via an RNA intermediate using a ‘copy and paste’ 

mechanism. Retrotransposons account for more than 44% of the bovine genome (Adelson et 

al. 2009). Most retrotransposons have accumulated mutations and are evolutionarily 

inactivated (Horie et al. 2007). Those still potentially capable of jumping within the genome 

play an important role in gene regulation in developing embryos, especially autonomous 

retrotransposons with an open reading frame (ORF) for reverse transcriptase, because not only 

can they transport themselves back to the genome, but they also help the insertion of short 

interspersed elements (SINEs; Dewannieux et al. 2003; Raiz et al. 2012). Endogenous reverse 

transcriptase encoded from autonomous retrotransposons is also a mediator of cell 

proliferation and differentiation (Spadafora 2004). It was proposed that differential 

retrotransposon expression triggers sequential reprogramming of the embryonic genome in 

preimplantation embryos (Peaston et al. 2004). It was also shown that expression of 

autonomous long interspersed element (LINE)-1 retrotransposons is essential for 

preimplantation embryo development in the mouse (Beraldi et al. 2006) and that elimination 

of these autonomous retrotransposons resulted in developmental arrest at the 2-cell stage and 

deviant expression of approximately 40% of genes sampled. Most retrotransposition events 

are demonstrated to take place in early embryos, gametes and cancer cells (Ostertag et al. 

2002; Kigami et al. 2003; Schulz 2006). Transposition is markedly downregulated in 

non-pathological differentiated tissues with a highly methylated genome (Reik et al. 2001; Shi 

et al. 2007; Howard et al. 2008). DNA methylation is a major epigenetic mechanism in 

silencing retrotransposons (Bestor and Bourc’his 2004), influencing DNA transcription by 

preventing or enhancing the binding of regulatory transcription factors to the promoter region, 

and thus determining which genes are eventually transcribed. Because of the enormous 

percentage of retrotransposons in the whole genome, it was suggested that most methylated 
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cytosines are within transposons (Yoder et al. 1997), and more than 90% of all 

5-methylcytosines lie within cytosine-phosphorous-guanine (CpG) islands of transposons, 

including LINEs and SINEs (Asada et al. 2006). An in vitro study suggested that DNA 

methylation of the LINE-1 retrotransposon promoter is essential for LINE-1 silencing (Hata 

and Sakaki 1997) and activation of retrotransposons during preimplantation embryo 

development correlates with the loss of DNA methylation in mice (Peaston et al. 2004). 

Oxidative stress is generated by excessive production of reactive oxygen species and/or 

reduction of antioxidant defenses, and has been reported to induce epigenetic changes in 

different cell types (Ehrlich 2002; Burroughs et al. 2013). Oxidative stress by means of high 

O2 tension during embryo culture alters the expression of epigenome modifying genes such as 

the ten-eleven translocation (TET) gene, which is associated with conversion of 

5-methylcytosine to 5-hydroxymethylcytosine at the 16-cell and blastocyst stages of bovine 

IVF embryos (Burroughs et al. 2013). 

McClintock’s (1984) ‘genomic shock’ hypothesis suggests that environmental stimuli may 

mobilise transposable elements. This hypothesis is supported by evidence that 

retrotransposons from various organisms can be mobilised by a variety of environmental 

stresses, including oxidative stress (Morales et al. 2003). Based on these findings, it can be 

hypothesised that excess oxidative stress induces DNA methylation changes and this, in turn, 

influences retrotransposon expression and eventually embryo health. To test this hypothesis, 

we applied sustained oxidative stress (20% O2) during in vitro bovine preimplantation embryo 

development and measured global DNA methylation and expression of three bovine 

retrotransposon families in different preimplantation stages up to the blastocyst, also taking 

into account embryo gender, because this is known to affect one-third of the actively 

expressed genes in bovine blastocysts (Bermejo-Alvarez et al. 2010b).  
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4.3 Materials and methods 

Materials 

Unless stated otherwise, all chemicals, reagents and media were obtained from Sigma (USA) 

and Life Technologies (Belgium). 

Experimental design 

To study retrotransposon expression in bovine embryos, preliminary expression profiling of 

potentially autonomous retrotransposon families was described in Chapter 3.1 by reverse 

transcription-polymerase chain reaction (RT-PCR). Because no consistent results could be 

obtained with four of the seven families tested due to low expression and/or high variation, 

these four families were left out, and L1_BT, BovB and ERV1-1-I_BT were used for 

quantification by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in 

further experiments. 

Global DNA methylation was measured by immunofluorescence staining of embryos cultured 

at 5% and 20% O2. Because DNA methylation differences between the two groups were 

observed only in 4-cell embryos and blastocysts, these specific stages were used for the 

RT-qPCR experiment. Before performing the RT-qPCR experiment with the three selected 

retrotransposon families, a set of reference genes was evaluated for normalisation of the final 

RT-qPCR data of these two embryo stages. 

In vitro embryo production 

In vitro bovine embryos were produced in serum-free media according to standard procedures 

(Wydooghe et al. 2014). Briefly, bovine ovaries were collected at the local slaughterhouse. 

Immature cumulus-oocyte complexes (COCs) were aspirated from follicles between 2 and 8 

mm in diameter and matured in groups of 60 in 500 µl modified bicarbonate-buffered 

TCM-199 supplemented with 50 mg/ml gentamicin and 20 ng/ml epidermal growth factor 
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(EGF) for 22 h at 38.5°C in a 5% CO2 incubator. After maturation, the COCs were 

inseminated with frozen-thawed bovine spermatozoa at a final concentration of 106 

spermatozoa/ml. The cumulus cells and excess spermatozoa were removed from presumptive 

zygotes by vortexing after 21 h incubation. The presumptive zygotes were incubated in 

groups of 25 in 50 µl synthetic oviductal fluid supplemented with essential and non-essential 

amino acids (SOFaa), 0.4% bovine serum albumin (BSA) and ITS (5 µg/ml insulin + 5 µg/ ml 

transferrin + 5 ng/ml selenium), covered with mineral oil and incubated at 38.5°C under 5% 

CO2, 5% O2 and 90% N2 (as control group) or 5% CO2 in air (20% O2; as the high oxygen 

tension group). Embryos with good morphology were collected for immunofluorescence 

staining and gene expression at specific time points: 2-cell and 4- cell at 36-40 hpi, 8- cell at 

64 hpi, 16-cell at 5 dpi, morula at 6 dpi, and expanded blastocyst at 8 dpi. 

Embryos destined for gene expression analysis were washed three times with RNase-free 

phosphate-buffered saline (PBS), frozen individually or in pools of five in lysis buffer (10% 

RNAsin Plus RNase inhibitor (Promega, Netherlands), 5% dithiothreitol (Promega, 

Netherlands) and 0.8% Igepal CA-630 in RNase free water) and stored at -80°C, whereas 

embryos for immunofluorescence staining were washed in warm PBS supplemented with 

0.5% BSA (PBS-BSA), fixed for 20 min in 4% paraformaldehyde at room temperature and 

then stored in PBS-BSA at 4°C until use. 

DNA methylation immunofluorescence staining 

Staining was performed as described by Beaujean et al. (2004). In all cases, at least 10 

embryos from each stage (2-cell to blastocyst) and both culture conditions (5% O2 and 20% 

O2) were washed extensively in PBS-BSA before further processing, and all steps were 

performed at room temperature if not detailed otherwise. Briefly, fixed embryos were 

permeabilised with 0.5% Triton X-100 and 0.05% Tween overnight at 4°C, and treated with 4 

M HCl for 1 h at 37°C before being neutralised with 100 mM Tris-HCl (pH 8.0) for 10 min. 

After three washes in PBS-BSA, embryos were blocked with 10% goat serum for 1 h to block 

non-specific binding sites. Next, samples were incubated overnight at 4°C with a mouse 
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monoclonal antibody against 5-methylcytosine (1: 100 dilution in blocking solution; Gentaur, 

Belgium), followed by a 30 min wash with PBS-BSA and 1 h incubation with a secondary 

antibody, namely goat anti-mouse fluorescein isothiocyanate (FITC; 1 : 100 dilution in 

blocking solution; Invitrogen, Belgium). Nuclei were stained with 25 µg/mlpropidium iodide 

(Invitrogen, Belgium) for 30 min in the dark. Embryos were finally deposited on slides and 

mounted in DABCO under a coverslip. 

Images were taken with the Nikon (Japan) C1si confocal laser scanning microscope system 

using an oil-free objective (40) and excitation wavelengths of 488 and 637 nm. The depth of 

the confocal slide was 4 µm and Z-stacks were merged by ImageJ software (Abràmoff et al. 

2004) to produce a two-dimensional image under each channel. The fluorescence 

quantification was corrected for background by subtracting the mean intensity of the 

cytoplasmic area surrounding each nucleus (Beaujean et al. 2004). All nuclei from 2-cell to 

morula embryos were analysed and 25 nuclei were randomly selected per blastocyst to 

analyse. Due to the DNA methylation dynamics, one microscopy setting will induce over 

exposure or underexposure, which leads to wrong quantification. Therefore, we applied one 

setting for each embryonic stage, and the DNA methylation level between high oxygen 

tension and the control group are only compared within each stage. Statistical analysis was 

performed using an unpaired Student’s t-test comparing the methylation level (corrected 

fluorescence) of individual nuclei from embryos cultured at 20% O2 or 5% O2 of each 

developing stage.  

RNA extraction and cDNA synthesis 

For RNA extraction, total RNA was isolated from the individual embryos of each stage, using 

the RNeasy Micro kit (Qiagen, Belgium) according to the manufacturer’s instructions, 

including a genomic DNA removal step in the procedure. The extracted RNA was dissolved 

in 14 µl of RNase-free water. A minus RT control was performed with GAPDH primers to 

check for contaminating genomic DNA. First strand cDNA was generated from the total 

amount of RNA using the iScript cDNA synthesis kit (BioRad, Belgium) according to the 
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product manual. After reverse transcription, the cDNA was 2.5 times diluted and used for 

downstream PCR.  

RNA quality control and RNA-based sexing for embryos 

Because the cDNA amount is too low to be evaluated by traditional methods, an YWHAZ 

primer assay was applied to check embryo cDNA integrity for the RT-qPCR experiment, as 

described in Chapter 3.2. Samples with three amplicons of 109, 497 and 909 bp are 

considered as sufficient quality for RT-qPCR. As described in Chapter 3.2, embryos from 

8-cell stage can be sexed with the DDX3Y-HPRT1 RNA-based method, and the expression of 

retrotransposons was analysized for both genders. 

Reference gene selection by geNorm 

We have described reference gene selection for normalization of qPCR data in bovine 

preimplantation embryos before. However, a re-selection of the reference genes based on the 

new experimental parameters improves RT-qPCR normalization, as described in Chapter 3.2.  

Based on the results of the DNA methylation immunofluorescence staining only the relevant 

embryo stages were further studied. The stability of housekeeping genes and the optimal 

number of reference genes were recalculated with the geNorm program including only the 

stages showing differential methylation staining. 

DNA methyltransferase and retrotransposon expression analysis by RT-qPCR 

Retrotransposon families with quantifiable expression (L1_BT, BovB and ERV1-1-I_BT) were 

selected for RT-qPCR. Of the DNA methyltransferases (DNMTs), three members have been 

shown to be active (Okano et al. 1999): DNMT1 is the most abundantly expressed 

methyltransferase and is considered the key maintenance methyltransferase, whereas 

DNMT3a and DNMT3b can methylate hemimethylated and unmethylated DNA, as required 

for de novo methylation. Therefore, expression of these three members was determined. 
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RT-qPCR was only performed on the stages with differential methylation staining results, 

resulting in six experimental groups (4-cell, male and female expanded blastocyst from both 

5% O2 and 20% O2 culture). Six single embryos were used per experimental group.  

All RT-qPCR experiments were performed according to the MIQE (Minimum Information for 

Publication of Quantitative Real- Time PCR Experiments) guidelines (Bustin et al. 2009). 

qPCR reactions were performed in 10 µL reaction volume on a BioRad CFX 96 PCR 

Detection system, including 5 µL Sso Advanced SYBR Green Supermix (BioRad), 300 nM 

each primer and 2.5 µL diluted embryo cDNA. The PCR program consisted of an initial 

denaturation step at 95°C for 3 min to activate the Taq DNA polymerase, followed by 40 

cycles of denaturation for 5 s at 95°C and a combined primer annealing-extension step for 30 

s at specific primer annealing temperatures as given in Table 4.1, during which fluorescence  

Table 4.1 Information on the primers used in the study, and those with qPCR efficiency were used for 

expression quantification. The amplicon number for DNMTs is based on bovine cDNA databases 

(UMD 3.1.86); while the potential amplicon numbers for retrotransposons are based on bovine 

genome (UMD_3.1.86). 

 

Retrotransposon 

name  

Amplicon 

numbers (by 

BiSearch) 

Sequence 5’ – 3’  Amplicon 

length 

cDNA  

Ta 

(oC)  

 

qPCR 

efficiency 

DNMT1 1 AGCGCCTCAGCTAAAATCAA 157 58 105.85% 

  ACAAACACCGCATACGACAC    

DNMT3a 1 GCATTGTGTCTTGGTGGATG 158 60 104.35% 

  CTTGTTGTAGGTGGCCTGGT    

DNMT3b 1 AAGACCGGCCTTTCTTCTGGATGT 129 57 97.23% 

  TGTGAGCAGCAGACACTTTGATGG    

L1_BT  6606 GCAATCCCTATCAAGCTACCA  133  60  100.30% 

  TGATTCCTCCAGTTCCATTCTT     

BovB  25639 CCTCAGATATGCAGATGACACC  283 60  101.10% 

  GTTGGTCATAACTTTCCTTCCA      

ERV1-1-I_BT  103 TGTTAAGCTCAAAGACCCACAC 277 60  107.00% 

  CCGTTCAGGAATTTCAGACAA    
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was measured. A melting curve was produced afterwards by heating the samples from 70°C 

to 95°C in 0.5°C increments for 5 s and fluorescence was monitored at the same time to 

confirm a single specific peak for each pair of primers. Each reaction was run in duplicate. 

PCR efficiencies were calculated by a relative standard curve derived from a pooled bovine 

cDNA mixture (a 10-fold dilution series with five measuring points). All PCR efficiencies 

were between 90% and 110%. 

The geometric mean of the reference genes was used to calculate an accurate normalisation 

factor. The mean quantity of each transcript was divided by the respective normalisation 

factor to obtain a normalised value according to the method described by Hellemans et al. 

(2007). The highest value was assigned 100%, and the other normalised values were divided 

by the calibrator value to generate relative expression levels. 

4.4 Results 

DNA methylation immunofluorescence staining 

Representative images of global DNA methylation staining for embryos from the 2-cell to 

blastocyst stage are shown in Figure 4.1a, with quantification of normalised DNA 

methylation levels summarised in Figure 4.1b (control group at all stages set to 100%). There 

was a significant (P < 0.05) increase in normalised DNA methylation levels at 20% O2 in 

embryos at the 4-cell and blastocyst stages based on mean fluorescence per nucleus compared 

with the control group (151.5 ± 11.9% vs 100 ± 9.6%, respectively, for 4-cell embryos; 220.1 

± 8.6% vs 100 ± 4.3%, respectively, for blastocysts). No differences were observed at the 

other developmental stages. Consequently, we used only 4-cell and blastocyst embryos to test 

the hypothesis put forward in the Introduction. 
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(b) 

 

Figure 4.1 Global DNA methylation analysis in bovine in vitro embryos cultured at 5% O2 or 20% O2 

from 2-cell stage to blastocyst. (a) Confocal Z-stack images of 5-methylcytosine immunodetection in 

bovine preimplantation embryos at 5% O2 (upper panel) and 20% O2 (lower panel). The scale bar 

represents 20 µm. (b) Statistical analysis by corrected fluorescence quantification per nucleus. 

Corrected fluorescence of all stages from the 5% O2 culture is set as 1 (red), and 20% O2 cultured 

embryos are presented relatively to the corresponding stage. The non-parametric test Kruskal-Wallis 

was used to compare corrected fluorescence between two groups since the variances were not equal. 

Significances were presented as *<0.05; ** < 0.01; ***<0.001.   

 

 

 

 

   



Chapter 4 High oxygen tension, methylation and retrotransposon expression  

 

 132 

Reference gene selection 

A good reference gene is stably expressed over all experimental groups. In the present study, 

because we found significant changes in DNA methylation between 20% O2 and 5% O2 

treatments in 4-cell and blastocyst embryos, reference gene selection and retrotransposon 

expression were further focused on these two stages. With geNorm analysis, three reference 

genes, namely GAPDH, YWHAZ and SDHA were chosen for normalisation of retrotransposon 

expression data in 4-cell embryos and blastocysts (taking into account gender and oxygen 

tension). 

 

Figure 4.2 Relative DNMTs mRNA expression levels in 4-cell stage and blastocyst cultured at 5% O
2
 

(blue) or 20% O
2
 (orange) by RT-qPCR. For each gene, expression levels were compared to the 

highest expression, set as 100%. Data shown are Mean±SEM. The unpaired student-t test was used to 

compare gene expression of each stage between two groups. Significant differences between two 

culture conditions were presented as *<0.05; ** < 0.01; ***<0.001. MB: male blastocyst; FB: female 

blastocyst. 
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 Expression of DNMTs 

Expression of DNMT1 was higher in female, but not male, blastocysts cultured under 20% O2 

compared with 5% O2. DNMT3a expression was higher at the 4-cell stage in embryos cultured 

under 20% O2 compared with 5% O2. No significant differences were found in DNMT3b 

expression for embryos cultured under 20% O2 versus 5% O2, but there was a decrease in 

expression between 4-cell embryos and blastocysts. In addition, DNMT1 expression dropped 

markedly in blastocysts compared with 4-cell embryos. There was no significant change in 

DNMT3a expression between 4-cell embryos and blastocysts (Figure 4.2). 

 

Figure 4.3 Relative retrotransposon mRNA expression levels in 4-cell stage and blastocyst cultured at 

5% O
2
 (blue) or 20% O

2
 (orange) by RT-qPCR. For each gene, expression levels were compared to the 

highest expression, set as 100%. Data shown are Mean±SEM. The unpaired student-t test was used to 

compare gene expression of each stage between two groups. Significant differences between two 

culture conditions were presented as *<0.05; ** < 0.01; ***<0.001. MB: male blastocyst; FB: female 

blastocyst. 
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Retrotransposon expression 

RT-qPCR was performed for L1_BT, BovB and ERV1-1-I_BT on single embryo samples from 

the 4-cell stage and sexed blastocysts cultured at 20% O2 and 5% O2 tension (stages chosen 

according to the results of the DNA methylation study). In general, for the three 

retrotransposon families tested (Figure 4.3), the transcription level was significantly lower 

4-cell embryos than blastocyst regardless of oxygen tension or gender. For L1_BT, BovB and 

ERV1-1-I_BT, there were no differences between 5% and 20% O2 culture conditions in 4-cell 

embryos. 

In blastocysts, there was a significant increase in ERV1-1-I_BT expression at 20% O2 in 

female blastocysts (P < 0.01; Figure 4.3c), but no significant difference was observed for 

other retrotransposons. 

Correlation between the DNMTs and retrotransposon expression 

As can be seen in Figure 4.2 and Figure 4.3 the expression of DNMTs dropped from 4-cell to 

blastocyst, while the expression of retrotransposons was increased in blastocysts. Based on 

these results, a correlation of the expression pattern between the two embryonic stages was 

checked with SPSS (Figure 4.4). A negative correlation between DNMT1/DNMT3b and the 

retrotransposon expression was found. No linear relationship has been found between 

DNMT3a and the retrotransposon expression.  
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Figure 4.4 Linear relationship between the expression of DNMTs and retrotransposons. 

 

4.4 Discussion 

Following Barbara McClintock’s (1984) ‘genomic shock’ hypothesis, we hypothesised that 

oxidative stress induces changes in DNA methylation and that this, in turn, influences 

retrotransposon silencing and eventually embryo health. In the present study, we confirmed 

that 20% O2 leads to a significantly lower 8 dpi blastocyst rate compared with culture at 5% 

O2. This is in agreement with other studies (Van Soom et al. 2002; Yuan et al. 2003; 

Burroughs et al. 2013). In those studies, it was found that culture at 20% O2 leads to a lower 

blastocyst rate and a higher apoptotic cell ratio, and that 20% O2 has an effect on 

epigenetic-related gene expression. It has been proposed recently that oxidative stress may 

affect DNA methylation by DNA oxidation or TET protein-mediated hydroxymethylation 

(Perillo et al. 2008; Vanden Berghe 2012). 

An indirect immunofluorescence staining method with antibodies against 5-methylcytosine 

has been widely used in the past decade to detect dynamic changes in preimplantation embryo 
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DNA methylation (Santos and Dean 2006). The paternal and maternal genomes are both 

highly methylated at the moment of fertilization, and previous studies with 

immunofluorescence staining showed that in bovine preimplantation embryos the paternal 

genome undergoes sharp active demethylation within only a few hours of fertilization, 

whereas the maternal genome undergoes passive demethylation from cleavage division to the 

8-cell stage. De novo methylation starts at the 8-cell stage (Dean et al. 2001; Reik et al. 2001; 

Dobbs et al. 2013). In the present study, immunofluorescence staining revealed a significant 

increase in methylation at the 4-cell stage under high oxygen tension, but not at the 2- or 

8-cell stages. This points to a more moderate rate or a delay in demethylation induced by 

oxidative stress. A similar trend was found in cloned bovine embryos (Bourc’his et al. 2001; 

Dean et al. 2001). Conversely, higher expression of DNMT3a was found at the 4-cell stage 

under high oxygen tension. It has been reported that after the first cell division and another 

round of DNA replication, the maternal chromosome consists of a hemimethylated and a fully 

demethylated sister chromatid (Haaf 2006), and DNMT3a shows methylation activity on both 

unmethylated and hemimethylated DNA (Hsieh 2005); thus, we suggest that oxidative stress 

may accelerate de novo methylation at the 4-cell stage. Normal IVF bovine embryos reach the 

lowest methylation level at the 8-cell stage (Reik et al. 2001; Dobbs et al. 2013). This is a 

critical survival period, as is indicated by the observation that approximately half the embryos 

stop growing at this stage (Bourc’his et al. 2001). Thus, it is possible that embryos with an 

altered methylation status may stop developing at the 4- to 8-cell stage, explaining the drop in 

methylation status observed after the 4-cell stage because only correctly demethylated 

embryos develop further. More intensive 5-methylcytosine staining was found in blastocysts 

under high oxygen tension, whereas increased DNMT1 expression was found only in female 

blastocysts. It has been reported that overexpression of DNMT1 causes genomic 

hypermethylation (Biniszkiewicz et al. 2002). 

We did not find different methylation levels between genders in the present study; however, 

there are some conflicting reports about methylation in both sexes. It was reported that 

DNMT3a and DNMT3b were significantly upregulated in male compared with female bovine 
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blastocysts and a higher methylation level for a repeated sequence was found in male 

blastocysts (Bermejo-Alvarez et al. 2008; Bermejo-Álvarez et al. 2010a). However, others 

have reported more intense labelling for 5-methylcytosine in female embryos at the 6- to 

8-cell stage and lower staining in male embryos at the blastocyst stage (Dobbs et al. 2013). 

Given these results, DNA methylation in both sexes may be best approached separately in 

future studies. 

A recent study using a new staining method challenges the widely accepted idea that 

preimplantation development goes through a global demethylation phase (Li and O’Neill 

2012). In that study, the authors found different results of paternal demethylation during 

mouse zygote maturation when a trypsin digestion step was included. They claimed that this 

is due to the onset of a progressive acid-resistant antigenic masking of 5-methylcytosine and 

that trypsin digestion of zygotes can remove this masking (Li and O’Neill 2012). However, it 

was not mentioned whether trypsin digestion changed methylation detection at later embryo 

stages or in other species, and this step should be taken into account in future staining also. In 

addition to anti-5-methylcytosine immunofluorescence staining, DNA methylation is being 

studied more and more by sequencing-based methods, including bisulfite sequencing (BS-seq; 

Nakanishi et al. 2012; Smith et al. 2012), methylated DNA binding domain protein 

sequencing (MBD-seq), methylated DNA immunoprecipitation sequencing (MeDIP-seq; Li et 

al. 2010) and whole-genome shotgun bisulfite sequencing (SBS; Kobayashi et al. 2012). 

However, these methods differ in CpG coverage, resolution, quantitative accuracy and cost 

(Harris et al. 2010), so one should be cautious when interpreting the results obtained with 

only one of these techniques. 

In blastocysts, we observed weaker methylation in the inner cell mass (ICM) than in 

trophectoderm (TE) cells under both low and high oxygen tension. Other studies showed a 

species-specific methylation pattern between ICM and TE at the blastocyst stage. For instance, 

higher methylation levels in ICM than TE cells have been found in mouse and sheep (Dean et 

al. 2001; Beaujean et al. 2004), whereas more methylation in TE cells than the ICM was 
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found in humans and rabbits (Fulka et al. 2004; Shi et al. 2004). However, there are 

conflicting data as to whether DNA methylation is more extensive in ICM or TE cells in 

bovine blastocysts (Dean et al. 2001; Hou et al. 2007; Dobbs et al. 2013). A possible 

explanation for the conflicting results may be differences in the staining methods used. For 

this reason, we tested some modifications to the immunofluorescence staining method. 

Interventions such as prolonging the time of DNA denaturation or antibody incubation, or 

cutting the edge of the blastocysts to make it easier for the antibodies to reach ICM cells, did 

not change the methylation levels we observed. It has also been suggested that different 

embryo production methods generate different methylation patterns in pigs and cattle (Santos 

et al. 2003; Deshmukh et al. 2011), so another explanation for the differences observed may 

be the influence of the serum-free embryo culture medium that we used. Compared with in 

vivo embryo and serum-plus in vitro embryo culture, blastocysts produced under serum-free 

condition have slower development (Rizos et al. 2003) and the slower development may also 

cause a delay in the de novo methylation of the ICM. 

We further tested whether the differences in methylation caused by the high O2 tension had an 

effect on the expression of the three selected retrotransposon families. Only ERV1-1-I_BT was 

significantly differentially expressed with higher expression (P = 0.007) in female blastocysts 

in the 20% O2 group. This is surprising because a higher methylation level, as observed in 

blastocysts cultured at 20% O2 compared with 5% O2, would be expected to lead to lower 

gene expression. For the other two retrotransposon families tested, there was a tendency for 

lower expression, but the differences did not reach statistical significance (Figure 4.3). This 

unexpected result may be because the global methylation status as determined here is not 

representative for specific loci containing certain genes. The fact that the difference was 

observed in female and not in male blastocysts may be a consequence of the complex 

interactions between chromatin modifiers encoded by the X-chromosome induced by 

oxidative stress. Because X-inactivation happens between 8 and 14 dpi in bovine embryos 

(De La Fuente et al. 1999), female embryos carrying two active X-chromosomes can 

potentially produce twice the amount of X-linked transcripts relative to the male embryos 
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with only one X-chromosome (Epstein et al. 1978); the damage to X-chromosomes is also 

double in female than male embryos. This may also explain the reports of one group that not 

only do male embryos develop faster than female embryos, but that more male than female 

embryos reach the expanded blastocyst stage under in vitro culture conditions 

(Gutiérrez-Adán et al. 1996, 2001). ERV elements were found to be significantly enriched in 

bovine X-chromosomes using BLAST and Retrotector v1.0 (Sperber et al. 2007; 

Garcia-Etxebarria and Jugo 2010). Together, these results indicate that regulation of 

retrotransposon expression is not a simple consequence of DNA methylation. 

As found here, except for ERV1-1-I_BT in female blastocysts, high O2 tension-induced DNA 

methylation does not have a significant effect on the expression of other retrotransposon 

families in this study. The same phenomenon has been found recently in mouse zygotes 

(Inoue et al. 2012), as well as in MORC (microrchidia) ATPases mutants in Arabidopsis and 

Caenorhabditis elegans (Moissiard et al. 2012). Inoue et al. (2012) used short interference (si) 

RNA-mediated depletion of Tet3, which is responsible for oxidation of 5-methylcytosine to 

5-hydroxymethylcytosine (Gu et al. 2011), to inhibit 5-methylcytosine oxidation in mouse 

zygotes and found that the transcriptional levels of LINE-1 and ERV1 were not significantly 

correlated with changes in DNA methylation. It was also found that DNA methylated genes 

and transposable elements were derepressed, with no loss of DNA methylation or histone 

modification, which was associated with decondensation of pericentromeric heterochromatin 

and disruption of the chromosome superstucture (Moissiard et al. 2012). In addition to DNA 

methylation and chromosome structure, endogenous siRNAs have been reported to play an 

important role in retrotransposon silencing (Yang and Kazazian 2006; Tam et al. 2008; 

Watanabe et al. 2008). 

In conclusion, in the present study we found that oxidative stress (20% O2) induced higher 

DNA methylation at the 4-cell and blastocyst stages in bovine embryo development. However, 

a link between global DNA methylation and general retrotransposon expression was not 

found under oxidative stress conditions, but in bovine implantation embryos stages. The 
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regulation of retrotransposon expression is probably, like that of other genes, a combination of 

various mechanisms with an interplay of different types of regulatory factors and not a simple 

consequence of methylation-demethylation. 
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5.1 Abstract 

DNA methylation undergoes dynamic changes and is a crucial part of the epigenetic 

regulation during mammalian early development. To determine the DNA methylation levels 

in bovine embryos, we applied a bisulfite sequencing based method aimed at repetitive 

sequences including three retrotransposons (L1_BT, BovB and ERV1-1-I_BT) and Satellite I. 

A more accurate estimate of the global DNA methylation level compared to previous methods 

using only one repeat sequence, like Alu, could be made by calculation of the Weighted 

Arithmetic Mean of multiple repetitive sequences, considering the copy number of each 

repetitive sequence. Satellite I and L1_BT showed significant methylation reduction at the 

blastocyst stage, while BovB and ERV1-1-I_BT showed no difference. The mean methylation 

level of the repetitive sequences during preimplantation development was lowest at the 

blastocyst stage. No methylation difference was found between embryos cultured in 5% and 

20% O2. Because mutations of CpGs negatively influence the calculation accuracy, we 

checked the mutation rate of the sequenced CpG sites. Satellite I and L1_BT showed a 

relatively low mutation rate (1.92% and 3.72% respectively) while that of ERV1-1-I_BT and 

BovB was higher (11.95% and 24% respectively). Therefore, we suggest using a combination 

of repeats with low mutation rate, taking into account the proportion of each sequence, as a 

relatively quick marker for the global DNA methylation status of preimplantation stages and 

eventually also for other cell types.   
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5.2 Introduction  

Preimplantation development from separate parental germ cells to a fertilized zygote, and 

further to a blastocyst is a complex process including cell proliferation and differentiation. 

Epigenetic mechanisms play a crucial role here, allowing for activation of some genes and 

silencing of others. Among all the epigenetic mechanisms, DNA methylation is best known. It 

is associated with key processes in embryo development, including genomic imprinting, 

X-chromosome inactivation and repression of repetitive elements to maintain the genome 

stability (Messerschmidt et al. 2014).  

Bovine embryos can be successfully produced in vitro by various procedures. However, 

compared to in vivo embryos, in vitro produced and cloned embryos still remain of inferior 

quality and are associated with more losses during pregnancy (Farin et al. 2006). Furthermore, 

calves derived from in vitro produced embryos can be affected by the large offspring 

syndrome (LOS), and an altered methylation pattern that disturbs the gene expression during 

preimplantation is suggested as the primary cause for LOS (Young et al. 2001). The DNA 

methylation pattern of sperm is suggested to be predictive of embryo quality during IVF 

(Aston et al. 2015). It is proposed that incomplete nuclear reprogramming in cloned embryos, 

which contributes to a low developmental success, is caused by failure of DNA demethylation 

(Bourc'His et al. 2001). 

A common method used to study DNA methylation of preimplantation embryos is 

5-methylcytosine (5-mC) immunofluorescence staining (Dean et al. 2001; Hou et al. 2007; 

Dobbs et al. 2013). However, conflicting results were found among these studies, for example 

as to whether methylation is more intensive in ICM or TE cells in IVF bovine blastocysts, and 

the staining result can be affected by the protocol used (Li et al. 2012). Therefore, another 

simple and direct method is needed for determining the global DNA methylation in 

preimplantation embryos.  

Bisulfite sequencing is another approach to evaluate DNA methylation at CpG dinucleotides, 

mostly applied for specific loci. The bisulfite (HSO3
-) treatment converts cytosine residues to 



 

Chapter 5 Repeats as global DNA methylation marker 

153 
 

uracil, but leaves 5-methylcytosine residues unaffected (Frommer et al. 1992). By comparing 

the sequences the methylation pattern can be determined. More recently, new methods based 

on bisulfite conversion and whole genome sequencing were developed (Guo et al. 2014; 

Salilew-Wondim et al. 2015). These platforms can determine the methylation status of 

thousands of genes at CpG site-level, but are still very expensive and require intensive 

bioinformatics (data analysis) expertise, which makes it not practical when a large number of 

treatments or samples are studied. Therefore, a genomic marker that is cheap, relatively easy 

to type and representative for the global DNA methylation status is wanted. The aim of this 

study was to develop a routine technique that can predict embryo quality based on the DNA 

methylation status. 

Satellite DNA sequences have been used for this purpose, due to the presence of high order 

repeats that are from several hundred to several thousand bp in length (Sawai et al. 2011; 

Couldrey & Wells 2013). Besides satellite DNA, most of the DNA methylation in mammalian 

genomes is found in retrotransposons (Schulz et al. 2006). Retrotransposons, which account 

for almost half of the genome (44% of bovine genome (Adelson et al. 2009) and 45% of 

human genome (Lander et al. 2001)), were previously suggested as biomarker for global 

methylation status (Klose & Bird 2006). Recent research on epigenetics of mammalian 

preimplantation embryos found that transposable elements show a similar dynamic trend 

towards global methylation (Guo et al. 2014). Among all types of retrotransposons, L1 is 

mostly studied and has been used for indicating methylation changes in cancer cells (Hsiung 

et al. 2007), and a recent study of global methylation found a good correlation between L1 

methylation and total amount of 5-methylcytosine measured by liquid chromatography mass 

spectrometry in murine cells and tissues (Newman et al. 2012).  

In this paper, we selected three bovine retrotransposons with complete internal promoter 

sequence (L1_BT, BovB and ERV1-1-I_BT), together with Satellite I DNA to test as marker 

for global DNA methylation estimation in bovine preimplantation embryo development. Since 

in vitro culture conditions alter DNA methylation (Salilew-Wondim et al. 2015) and different 

methylation patterns under oxygen stress (20% O2) compared to normal (5% O2) were found 
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in a previous study by 5-methylcytosine immunofluorescence staining (Li et al. 2014), we 

included this in the study.  

5.3 Materials and Methods 

Materials 

Unless stated otherwise, all chemicals, reagents and media were obtained from Sigma (USA) 

and Life Technologies (Belgium). 

Primer design 

L1_BT, BovB and ERV1-1-I_BT, three autonomous retrotransposons were used for the 

methylation analysis. First, retrotransposon sequences were retrieved from Repbase (Jurka et 

al. 2005). The amplicons were targeted to the internal promoter regions upstream of the open 

reading frame (ORF) from each retrotransposon sequence. In order to amplify as many as 

possible repeats to represent the whole genome, we used NCBI blast bovine genome 

(Btau_4.2) and MultiAlin (Hemberger 2007) to find the consensus sequence of each promoter, 

and then designed BSP primers based on the consensus sequences with BiSearch software 

(Aranyi et al. 2006). Primers are listed with predicted amplicon number in Table 5.1. 

IVF embryo production and sample collection 

In vitro bovine embryos were produced in serum-free media as previously reported (Li et al. 

2014). The control group and high oxygen tension group were incubated at 38.5°C under 5% 

CO2, 5% O2 and 90% N2, and 5% CO2 in air (20% O2) separately. Embryos were collected at 

specific time points (2-4 cell at 36-40 h post-insemination (h.p.i.), 8-cell at 64 h.p.i., expanded 

blastocyst at 8.d.p.i).  

Embryos were washed three times with phosphate-buffered saline (PBS), and then frozen in 3 

pools of embryos for each stage (75 for 2-4 cell, 25 for 8-cell and 5 for blastocyst) at –80°C 

until use.    
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Table 5.1 Characteristics of the bisulfite primers used in the methylation analysis 

Repetitive 

sequence name  

Amplicon 

numbers 

(by BiSearch) 

Sequence 5’ – 3’  Amplicon 

length 

cDNA  

CpG 

numbers 

Ta (oC)  

 

Satellite1 

(Wroclawska et al. 2000) 

859 TTGGTTTTTAGGTTATGTAGGAG 379 25 55 

 AATACACCAAACCCAATAAAAT    

L1_BT 303 TAATTAAAATTTTTTGGGGGTTTG 254 14 55 

  TAACCCTAAACTACATACACCTCCC    

BovB 467 AGGAGGGTTTAGAGGAGTTATTTTA 210 6 58 

  TCTATAAATATAATTTCAATATATTTACCC    

ERV1-1-I_BT 44 TTTTTGGTATATTTTTATTTTATTT 214 11 55 

  AATTATTAACTCCCATCTATAAAAA    
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DNA extraction and bisulfite conversion  

Embryo DNA extraction and bisulfite conversion were performed with EZ Methylation Direct 

kit (Zymo research, USA), according to the manufacturer’s instructions with minor changes. 

Instead of incubating 20 min, we applied 3 h of incubation in M-Digestion buffer and 

Proteinase K for embryo lysis and genomic DNA release, and the bisulfite converted DNA 

was eluted in 20 µl water. Blood samples were taken from healthy cows, and genomic DNA 

was released with Proteinase K from 200 µl blood. Twenty μl of unpurified DNA solution 

was taken for bisulfite conversion directly with EZ Methylation Gold kit (Zymo research, 

USA), according to the manufacturer’s instructions, and eluted in 20 µl water. All converted 

DNA samples were checked by PCR with GAPDH primers (F: 

TTCAACGGCACAGTCAAGG; R: ACATACTCAGCACCAGCATCAC) to check for 

conversion completion. These primers amplify genomic DNA, but not converted DNA, so 

samples without a PCR amplicon, which represent samples without unconverted genomic 

DNA, were used for further methylation study. 

Amplifying, Cloning and sequencing 

After bisulfite treatment, retrotransposons and satellite DNA were amplified by PCR. To 

amplify the part of the repeat region, we used the following PCR mixture: 0.5 U FastStart Taq 

DNA Polymerase and 1 µl 10x reaction buffer (Roche, Belgium), 200 µM dNTPs (Bioline 

Reagents Ltd., UK), 500 nM of each primer (LDT, Belgium) and 2 µl of bisulfite converted 

DNA. The PCR program consisted of initial denaturation at 95°C for 5 min, followed by 30 

cycles of 15 sec at 95°C, 15 sec at the specific annealing temperature (Table 5.1) and 30 sec 

at 72°C, and a final 10 min elongation at 72°C. The PCR products were verified by 

electrophoresis (2 µl out of 10 µl).  

For each retrotransposon or satellite DNA, PCR products for three replicate samples were 

purified from gel (GENECLEAN II kit), checked by electrophoresis, pooled and cloned in 

plasmid pCR2.1, and transformed into DH5α competent cells (Invitrogen™, Belgium). 

Selected colonies were verified by PCR with universal and reversal primers (U: 
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CGACGTTGTAAAACGACGGCCAG; R: 

CACAGGAAACAGCTATGACCATGATTACG), and those colonies with correct amplicon 

size with a bright band on gel were sequenced.  

Methylation analysis 

Sequence analyses and statistical comparisons (nonparametric two-tailed Mann- Whitney test) 

were performed using the QUMA web service (quma.cdb.riken.jp). “Strict CpG site check of 

bisulfite sequence” was selected for repetitive sequence analysis. In this case, the divergence 

of retrotransposons is considered and a more corrected result can be obtained (Kumaki et al. 

2008). Compared to regular genes, retrotransposons have a higher rate of mutation, so 

sequences that passed 90% bisulfite conversion were included in the analysis (normally 95% 

for genes). A P-value threshold of ≤ 0.05 was chosen to identify significant differences in the 

variance between groups. The target genomic sequences of each repeat are listed in Table 5.2. 

Since different repetitive sequences have their own amplified number in the BS-PCR, we 

propose a method by using more than one retrotransposon as a global methylation marker 

considering the proportion of each repetitive sequence by calculating the Weighted Arithmetic 

Mean of the multiple repetitive sequences used, according to the following formula. 

 

 

x- methylation ratio of each repetitive sequence (calculated by QUMA) 

n- number of repetitive sequences  

w-amplicon number of each repetitive sequence from BiSearch (Listed in Table 5.1) 
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Table 5.2 Unconverted target genomic sequences of each repeat.  

Satellite1 

 

TTGGTCTCTAGGCCATGCAGGAGACGAAGGCCtTCATCTCTCGA

TGACGGGGGAATCTCGGGGTTGTTCTCGAGCGGCGGCCCCAGT

GTGCGTTTTCTCACGAGGTACGACGGCGAGGTCAGTGAGCCTCt

CGTGGGGCGCCAGGGAAGTCGGGTCTCCTTGCGAGTGGCGAGG

GGGAGCGCGTCACTGCTCCCGAGCCATGGTAGGGGAATCTGGC

CTCGAGACATGTTGAAGAAGGTCTCTCGAGGCCTTTCCCGGGTT

GAGGCAGGAAACCCTGGGTTCCCTCGACtTGTGCAGGTGACCTC

AGGGGAATTCTCATGGTGGCTCtGAGAAGCCAGGGAAACTGGA

GGTGATAGGGGCCTCTCGGGACTCTACTGGGTTTGGTGCATT 

L1_BT TAATTAAAATTTTTTGGGGGTTTGGACGGTTAACATCTGCCTGA

GAAGGTGCGCCGGTTTTACACCCAGATAACCGAGTGGCGGGGA

GGCGATAAGTCGCAGCATTGGCGCTCGCCAAACACCTCATCAC

CTGAGCTGCTCGGACCTGGGAAGAGCACAAAACGCAGGCCCA

ACTGAGTTTGCGCCTTTGAGGACTACCCGAGTGCCTGAATTTGA

GCGGCTTGGACCTGGGAGGTGCATGTAGTTTAGGGTTA 

BovB AGGAGGGCCTAGAGGAGCTATCCCACGTTGAAGGTCAGGAAG

GGCGGCGGTGAGGAGATACCCCTCGTCCAAGGTAAGGAGCAAT

GGTTGCGCTTTGCTGGAGCAGCTGTGAAGAGATATCCCATGCC

CAAGGTAAGAGAAACCCAAGTAAGACGGTAGGTGTTGCAAGA

GGGCATCAGAGGGCAAACACACTGAAATCATACTCACAGA 

ERV1-1-I_BT CCCCTGGTACATCCCCACCCCATTTCGGTGGTAGAACCGGGAG

GGACGAGGACGGCGCCTGCGTCAGTAAGGGACAGACTAAGTC

CGACCAGGAAGGAAAAGCTTTTGGTGTAATGTCTGTCTACACC

CCCATCTAGAGCAGGGAGGGACGCCTCCGGTAGAAAAATGGC

GTTGGTCGCTTTTTTCTCTCTTACAGATGGGAGCTAACAATT 
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5.4 Results 

Methylation changes during embryo development 

The DNA methylation levels of the four repetitive sequences in embryos and blood samples 

(used as reference) are indicated in Figure 5.1 (methylation status of each CpG site) and 

Figure 5.2 (methylation level of each repetitive sequence). As expected, the promoter regions 

in all four repetitive sequences were significantly hypermethylated in blood samples (with 

Satellite I 87.1%, L1_BT 89.5%, BovB 63.4% and ERV1-1-I_BT 88.6% of CpGs methylated) 

compared to the preimplantation embryos. The methylation level of different stages of 

embryo development in standard culture (5% O2) varies. In Satellite I DNA and L1_BT, there 

is a sharp decreased methylation in blastocyst as compared to the 2-4 and 8-cell stages 

(P-value of 0.0072 and 0.0175 respectively); in ERV1-1-I_BT, an increased methylation was 

found in 8-cell stage (P-value of 0.0362); while no significant methylation difference was 

found in BovB.  
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(a) Satellite I methylation status 

 

 

Figure 5.1 Methylation status of each CpG site of the repeats. Filled, methylated; open, 

unmethylated; cross, mutation. (a) Satellite I methylation status (b) L1_BT methylation status (c) 

BovB methylation status (d) ERV1-1-I_BT methylation status. 
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(b) L1_BT methylation status 
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(c) BovB methylation status 
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(d) ERV1-1-I_BT methylation status 
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Methylation changes under high oxygen tension 

Oxygen stress (20% O2) does not seem to have an influence on the methylation level of the 

four repeat families studied with the exception of L1_BT which was more methylated in the 

8-cell stage under 20% O2 (70.8%) compared to 41.8% under 5% O2, with P-value of 0.0203 

(Figure 5.2b). 

 

 

Figure 5.2 Methylation comparison of different embryo stages and treatment. a.–d. methylation 

comparison of each repetitive sequence. e. Comparison of Weighted Arithmetic Mean methylation. 

Data are shown as Mean±SEM, and an asterisk indicates significant difference between two groups. 

(P<0.05).   
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Retrotransposon mutation frequency 

Since repetitive sequences are variable, CpG sites may be present in some copies of the repeat 

and not in others. To estimate the CpG mutation frequency in the four repeats studied we took 

the consensus sequence of the repetitive elements as reference sequence and applied the 

“strict CpG site check” on QUMA. In that case, TG is calculated as unmethylated; CG as 

methylated and others as site mutation. The mutation rate thus estimated was 1.92% in 

Satellite I, 3.72% in L1_BT, 24.03% in BovB and 11.95% in ERV1-1-I_BT.   

Global methylation estimation by combining the four repetitive sequences 

The global methylation level was calculated by using the Weighted Arithmetic Mean of the 

four repetitive sequences studied as shown in Figure 5.2e. No significant methylation 

difference was observed between embryos produced under 5% O2 and 20% O2 culture, but 

methylation at the blastocyst stage was much lower than that in earlier stages.  

5.5 Discussion 

The alteration of DNA methylation patterns in preimplantation embryo development has been 

studied widely in different species (Bourc'His et al. 2001; Fulka et al. 2004). Global DNA 

demethylation and de novo methylation in this period has been shown to guide and restrict 

differentiation and prevent cell regression into an undifferentiated state, and on the other hand 

are also crucial to establish pluripotency (Messerschmidt et al. 2014). An accurate 

quantitative assay representative for global DNA methylation may not exist, but repetitive 

genomic sequences such as satellite DNA and L1 which accounts for almost 20% of the 

mammalian genome have been widely used as a means for estimating global methylation 

status in cancer research (Yang et al. 2004).  

In the present study, we evaluated bisulfite sequencing of four repetitive sequences as global 

DNA methylation marker during bovine early embryo development and used it to check if 

oxygen stress (20% O2) has an influence on the global methylation level of preimplantation 

embryos. Satellite I and L1_BT showed the lowest methylation level at the blastocyst stage. 
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This is consistent with DNMT1 (DNA cytosine-5-methyltransferase1) RNA expression and 

the results of a recent report (Salilew-Wondim et al. 2015). We previously found DNMT1 

expression dropped markedly in blastocysts compared to earlier stages (4-cell embryo) (Li et 

al. 2014), implying hypomethylation in the blastocyst. However, the DNMT1 expression was 

not corroborated by the DNA methylation level as measured by 5-mC immunofluorescence 

staining which indicated the highest level in the blastocyst stage (Li et al. 2014). In other 

species, conflicting results were found as well. In human embryos, 5-cytosine 

immunofluorescence staining showed an increased methylation in blastocysts, compared to 

morula (Fulka et al. 2004); while Guo et al. (2014) found, by using a bisulfite sequencing 

based method - reduced representation bisulphite sequencing (RRBS), the lowest DNA 

methylation level in blastocysts. The same conflicting results were found also in mouse 

embryos, with high methylation levels compared to previous stages found in blastocysts by 

staining (Dean et al. 2001); whereas RRBS showed the lowest methylation level in mouse 

morula/blastocyst stages (Smith et al. 2012). These conflicting results were not only found 

between these two analytical methods, but also between studies using the same staining 

method. There is disagreement in whether methylation is higher in ICM or TE of blastocysts 

(Dean et al. 2001; Hou et al. 2007; Dobbs et al. 2013; Li et al. 2014), and differences in 

staining protocols maybe responsible for the conflicting results. 

There are several possible explanations for the different results obtained with 5-mC staining. 

First of all, changes in the staining protocol may lead to different results. Li and O’Neill 

(2012) used a step of trypsin digestion in methylation staining and a different result of 

paternal demethylation during mouse zygote maturation was found. Besides the staining 

method itself, the lack of standard quantification for staining may contribute to different 

results as well. The ratio of 5-mC to a DNA counter stain is often used for methylation level 

estimation. The most common dyes for DNA counter staining are Hoechst, DAPI, Propidium 

Iodide (PI) and Ethidium homodimer-2 (EthD-2) which only bind to double-stranded DNA, or 

weakly bind to single-stranded DNA and RNA as well. Therefore, this widely used ratio 

presents actually single-stranded methylated DNA/ total double-stranded DNA, which can be 
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easily influenced by the denaturation of DNA. Furthermore, the fluorescence intensity 

observed may be affected by cell size or shape and even the placement orientations under the 

microscope. The compact composition of morula and ICM in blastocysts also make the 

staining and methylation quantification more difficult.  

Bisulfite sequencing of repetitive sequences, on the other hand, has its limitations as well and 

we tried to improve on that. First of all, the high mutation rate of repetitive sequences makes 

the number of potential targets for DNA methylation variable between the individual 

members of a repeat family. This is the reason we did not include SINEs in the study, since 

they are super mutated. For example, almost two-thirds of the CpG methylation sites in Alu 

elements (the most widespread SINE family in the human genome) are mutated (Yang et al. 

2004). In the present study, we calculated the mutation rate of CpG sites of the four repetitive 

sequences studied. Satellite I showed the lowest mutation rate (1.92%), while BovB has the 

highest mutation rate (24.03%) making it less suitable as global methylation marker when 

used individually.  

Another factor that affects the methylation result is primer design, which can influence the 

number of amplified repetitive sequence directly. For example, the Alu bisulfite primers used 

in a recent study could amplify only 16 different copies, with length differing from 46 bp up 

to 1017 bp (Lisanti et al. 2013), making it dubious as marker for global methylation status. In 

the present study, we tried to amplify as many as possible copies of the repeat families to 

represent the whole genome. All primers were designed based on the consensus sequence of 

the promoters and the amplified number (listed in Table 5.1) could be checked by BiSearch. 

To improve the method even more we calculated the Weighted Arithmetic Mean of the four 

repetitive sequences studied and use that for calculation of the global methylation status.  

5.6 Conclusion 

In conclusion, this study is the first report using L1_BT, BovB, ERV1-1-I_BT and Satellite I 

DNA as global methylation marker in bovine early embryo development. The mean 

methylation of the repeats showed the same tendency as observed in a recent DNA 
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methylation study (Salilew-Wondim et al. 2015), with blastocysts showing the lowest 

methylation level. We also compared DNA methylation in embryos cultured under normal 

(5% O2) with high oxygen tension (stress group, 20% O2), and found only significant 

hypermethylation in L1_BT at 8-cell under stress. Although the accuracy and sensitivity of the 

method used needs to be tested in more independent studies, we propose using the Weighted 

Arithmetic Mean of several repetitive sequences as global methylation marker. Especially the 

repeats with (relatively) low mutation rate and more copies targeted during PCR, like Satellite 

I DNA and L1_BT, are promising. 
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The aim of the present thesis was to perform a detailed investigation of the retrotransposon 

expression and to analyse its relation with global DNA methylation during bovine 

preimplantation embryo development. In this final chapter, the results of and the difficulties 

encountered during the study will be discussed. We will consequently focus on (1) correlation 

of DNA methylation and retrotransposon expression; (2) influence of oxidative stress on 

methylation and retrotransposon expression; (3) problems in immunofluorescence staining; (4) 

comparison of the methylation research methods used in the thesis; (5) DNA methylation 

dynamics during bovine preimplantation embryo development; and (6) retrotransposons used 

as global DNA methylation marker.  

6.1 Correlation of DNA methylation and expression of retrotransposons during 

preimplantation development 

DNA methylation is an important epigenetic mechanism regulating retrotransposon repression, 

and a correlation between DNA methylation and retrotransposon expression (especially L1 

elements) has been established in many studies. In this thesis, we have studied the relation 

between DNA methylation and the expression of three autonomous retrotransposons (L1-BT, 

BovB and ERV1-1-I_BT) in bovine preimplantation embryos.  

Immunofluorescence staining and RNA expression of DNMTs and three retrotransposons in 

4-cell and blastocyst stages was performed (Chapter 4), while in a second set of experiments, 

bisulfite sequencing (BS) of repetitive sequences was done (Chapter 5). The results of the 

studies are summarized in Figure 6.1. All retrotransposons and satellite I DNA show a 

decrease in methylation level during development reaching the lowest level in blastocysts 

(Figure 6.1a). The RNA expression of DNMT1, dramatically dropping in blastocysts 

compared to earlier stages, is in line with the decrease in DNA methylation level (Figure 

6.1b). DNA methylation dynamics in bovine early development is discussed in more detail in 

6.5. No difference was observed in expression of DNMT3a and DNMT3b between 4-cell and 

blastocyst. As DNMT3a and DNMT3b were suggested to be essential for de novo methylation 
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in mammalian early development (Okano et al. 1999) their expression pattern together with 

the BS result indicates global de novo methylation is not happening at the blastocyst stage. 
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(d) 

 

Figure 6.1 DNA methylation and retrotransposon expression in bovine preimplantation embryos. (a) 

Methylation level determined by bisulfite sequencing of repetitive sequences. (b) RNA expression of 

methyltransferases. (c) RNA expression of retrotransposons. (d) Correlation between DNA 

methylation and retrotransposon expression. The correlation was tested using Pearson’s Correlation 

Coefficient. Negative correlations are shown in blue, and positive correlations are shown in orange, 

numbers represent the p-value, dark blue and orange represent significant linear relationship (p<0.05). 

The RNA expression of retrotransposons showed a negative correlation with DNA 

methylation during preimplantation development (Figure 6.1d), with low DNA methylation 

level and high RNA expression in the blastocyst stage compared to the earlier stages. 

Furthermore, this negative correlation exists also when single retrotransposon classes are 

considered. In blastocysts, the methylation level is L1_BT < BovB < ERV1-1-I_BT, while the 

RNA expression is L1_BT > BovB > ERV1-1-I_BT. Guo et al. (2014) found that during 

demethylation in human embryos, evolutionarily younger LINEs and SINEs are demethylated 

to a milder extent compared to older elements. However, this phenomenon was not observed 

in our study, because L1_BT is a younger repeat than BovB (Adelson et al. 2009), but is more 
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demethylated in blastocysts. A recent report showed different DNA methylation mechanisms 

between LINEs and LTR retrotransposons: the methylation of LINEs is dependent on piRNAs, 

but the methylation of LTR elements is Mili-dependent, and Miwi2-independent (Nagamori et 

al. 2015). 

6.2 Oxidative stress influence on methylation and retrotransposon expression 

Oxidative stress is generated by excessive production of reactive oxygen species and/or 

reduction of antioxidant defences, and has been reported to induce epigenetic changes in 

different cell types (Franco et al. 2008; Giacco et al. 2010). Mild oxidative stress is important 

in embryo development, as it regulates key transcription factors that influence cell-signaling 

pathways involved in proliferation, differentiation and apoptosis, but high oxidative stress can 

cause DNA damage, epigenetic change, defective embryo development, and can even be 

lethal (Guerin et al. 2001; Dennery 2007; Donkena et al. 2010). For in vitro culture of 

embryos, excess oxidative stress can be induced by many factors, including: heat, oxygen 

tension, freeze-thaw process, light, serum in the culture media and so on (Thompson et al. 

1990; Goto et al. 1993; Bilodeau et al. 2000; Rizos et al. 2003). 

High concentration of oxygen was reported by our group to influence the efficiency of 

embryo production and embryo quality (Yuan et al. 2003). Oxidative stress by high 

concentration of oxygen during embryo culture was also reported altering the expression of 

epigenome modifying genes such as the ten-eleven translocation (TET) gene, which is 

associated with conversion of 5-methylcytosine to 5-hydroxymethylcytosine at the 16-cell and 

blastocyst stages of bovine IVF embryos (Burroughs et al. 2012). It has also been proposed 

that oxidative stress may affect DNA methylation by DNA oxidation or TET mediated 

hydroxymethylation in cancer (Vanden Berghe 2012). Marked perturbations were also found 

in global patterns of gene expression in mouse embryos cultured in 20% O2 as compared with 

5% O2 (Rinaudo et al. 2006). Therefore, in this thesis, we applied 20% O2 culture to expose 

bovine embryos to excess oxidative stress, and found a significant decrease in day 8 

blastocyst rate, 23.34% compared to 45.32% in the control group. Furthermore, we found an 
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influence of high oxygen tension on DNA methylation by 5-mC immunofluorescence staining 

at 4-cell and blastocyst stages, but not when using bisulfite sequencing (BS) based method, 

this may also due to the different methylation coverage of the two methods, which is 

discussed in Chapter 6.4.  

When looking at retrotransposon expression, we found that oxygen tension only increased 

ERV1-1-I_BT in female blastocysts, which may be explained by enrichment of ERVs in the 

bovine X-chromosome (Sperber et al. 2007; Garcia-Etxebarria & Jugo 2010). Moreover, the 

females carry a double amount of X-linked transcripts before X-chromosome inactivation, so 

the effect is also more obvious than in male embryos. Giorgi et al. (2011) used hydrogen 

peroxide (H2O2) treatment to induce oxidative stress in neuroblastoma cells, and found L1 

expression was twice as high when compared to control cells. Two ERV families were found 

with significantly increased expression in preimplantation rabbit embryos cultered in two 

different IVC conditions when compared to in vivo (Salvaing et al. 2016). However, with high 

oxygen treatment, we did not find the same result in bovine embryos. 

A recent study found no significant difference in DNA methylation between mouse embryos 

cultured under 5% O2 and 20% O2, while culturing embryos in both oxygen concentrations 

resulted in a significant increase of epigenetic defects later on in placental tissues compared to 

naturally conceived controls (de Waal et al. 2014). This result indicates that even culturing 

embryos in a 5% O2 environment is far from optimal. Many other factors during IVP, such as 

heat, light, culture media can all induce oxidative stress to the embryo. Using IVC embryo 

culture under reduced oxygen concentration, as a standard control to study global methylation 

and retrotransposon activity, may already induce oxidative stress and disturb the 

transcriptional and epigenetic dynamics.  A recent study showed that although embryos 

cultured under 5% O2 have up-regulation of genes involved in cell morphogenesis, which is 

relevant for embryo development and blastocyst formation, but no difference in expression of 

genes involved in functions as oxidative phosphorylation and stress processes when compared 

with 20% O2 culture (Mantikou et al. 2016).  
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The influence of oxidative stress on DNA methylation is suggested to work via many 

pathways, including regulation of methylation related enzymes (TETs) (Burroughs et al. 2012) 

and DNA repair pathways in which DNA lesions function as a substrate for binding DNMTs, 

resulting in global hypomethylation (Wachsman 1997). Oxidative stress may also induce 

site-specific hypermethylation by either the up-regulation of DNMTs or formation of new 

DNMT containing complexes (Wu & Ni 2015). However, it is also involved in metabolic 

pathways, apoptosis, pregnancy recognition regulation of growth factors and other cellular 

processes (reviewed by Takahashi 2012), and interaction among these processes may lead to a 

more complex influence on gene expression and epigenetics than was previously anticipated. 

Therefore, it can be concluded that high oxygen concentration is not an ideal stressor to study 

stress effects on DNA methylation and activity of retrotransposons. More specific stimuli for 

influencing DNA methylation, such as to expose embryos to 5-Aza-2’-deoxycytidine (DNA 

methyltransferase inhibitor), should be used, to test the ‘genomic shock’ hypothesis. Besides, 

in vivo produced embryos would be more ideal as a standard for this study to avoid extra 

stress from IVC procedure, and evaluation or quantification of the stress or stimuli should be 

taken into account, instead of only using blastocyst rate.  

6.3 Difficulties encountered in the immunofluorescence staining 

Immunofluoresent staining is often used to detect DNA methylation status in preimplantation 

embryos, because it can show DNA methylation changes on 5-mC (and other cytosine 

modifications, such as 5-hmC) within the genome from single embryos, and even single 

nuclei. 5-mC immunofluorescence staining on preimplantation embryos has been reported 

widely across different species (Santos et al. 2002; Beaujean et al. 2004; Fulka et al. 2004; 

Shi et al. 2004; Deshmukh et al. 2011). However, the results obtained with 

immunofluorescence staining can be highly influenced by the protocol used. Therefore, 

careful validation and control are required for reliable results of the cytosine staining. A 

recent review described determinants of valid measurements of this staining in the early 
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embryos (Salvaing et al. 2015). Some crucial steps we encountered in the staining described 

in Chapter 4 are discussed here. 

Denaturation of DNA 

DNA denaturation is a very important step in 5-mC immunofluorescence staining. It is crucial 

for detecting and quantifing DNA methylation (5-mC) efficiently and accurately. 

Double-stranded DNA blocks antibody binding to 5-mC. Therefore successful detection of 

5-mC requires DNA denaturation to make the nucleotides accessible for the antibody. HCl is 

widely used for denaturing DNA (Dean et al. 2001; Beaujean et al. 2004; Dobbs et al. 2013). 

HCl breaks the hydrogen bonds between complementary DNA strands converting 

double-stranded DNA into single-stranded DNA. Ideally, complete denaturation of DNA 

makes all 5-methylcytosine exposed to the antibody, but a high HCl concentration or long 

time treatment may disturb DNA counter staining. For example, Kennedy et al. (2000) 

observed divergent bromodeoxyuridine (BrdU) staining results under different HCl 

concentrations. BrdU is a synthetic nucleoside analog of thymidine commonly used in the 

detection of proliferating cells in living tissues. As 5-mC staining, BrdU antibodies only bind 

to single-stranded DNA. They showed that BrdU staining is more visable with increasing HCl 

concentration while the DAPI counter staining disappeared in high HCl concentrations, 

because it binds only to double-stranded DNA. It was also reported that when 4N HCl is used 

for denaturation, DAPI and Hoechst are failed to bind DNA (Heras et al. 2014). Furthermore, 

the denaturation protocol required adjustments for different tissues or samples. A denaturation 

protocol using combined HCl and trypsin treatment was suggested for mouse zygote 5-mC 

immunofluorescence staining. The extra trypsin treatment showed different 5-mC levels in 

zygotic PN5 and metaphase (Li & O'Neill 2012). The explanation is that a range of methyl 

binding domain (MBD) proteins are highly specifically binding to 5-mC and the treatment 

with trypsin can remove the MBDs exposing the 5-mC to the anti 5-mC antibody, but so far 

this phenomenon is not studied in later mouse embryo stages. 
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Image acquisition 

Normally, embryo images are acquired and analyzed in a z-stack, which combines multiple 

images taken at different focal distances to provide a composite image with a greater depth of 

field. In other words, the object is ‘sliced’ for single image, and the images are z-stacked to 

form a composite 3D image of the object. The image slices should go through the sample, and 

the number of slices depends on the thickness of the sample and the depth between each slice.  

In that case, the more slices, the less information is lost. However, during the image 

acquisition, bleaching of the fluorescence can cause the image to become darker over time, 

and lead to bias between the first and the last image acquired, especially for expanded 

blastocysts, that can be more than 200 µm in diameter.  

Moreover, fluorescent photomicrography suffers from common problems as other forms of 

optical microscopy and photomicrography, including overexposure and underexposure, which 

may lead to wrong quantification results. Image acquisition systems should be set so that the 

fluorescent intensity of the images avoids over- or underexposure among the z-stack images 

and samples. However, preimplantation embryos experience rapid DNA methylation 

dynamics, thus one setting for all is not possible. Therefore, in the present study we applied 

one setting for each embryo stage to compare DNA methylation between two culture 

conditions (5% and 20% O2) (Chapter 4), but not among different stages, to avoid wrong 

results caused by overexposure. 

Quantification of the fluorescence 

The methylation level is estimated by the fluorescence of a selected region of interest 

corrected for background by subtracting the mean intensity of the cytoplasmic area 

surrounding each nucleus. There are different ways for fluorescence quantification. The two 

most frequently used are: all 5-mC fluorescence of nucleus z-stack (Beaujean et al. 2004) and 

5-mC/DNA fluorescence ratio (Reis et al. 2011). The former’s advantage is all fluorescence 

of the nucleus can be taken into account, but the disadvantage is fluorescence of overlapping 
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nuclei may be included in the analysis and increase the fluorescence intensity; the latter 

method can avoid the overlapping, but the result is depending on the DNA staining. As 

mentioned in Chapter 5, The most common dyes for DNA counter staining are Hoechst, 

DAPI, Propidium Iodide (PI) and Ethidium homodimer-2 (EthD-2) which only bind to 

double-stranded DNA, or weakly bind to single-stranded DNA and RNA as well. Therefore, 

this widely used ratio of 5-mC/DNA presents actually single-stranded methylated DNA/total 

double-stranded DNA, which can be easily influenced by the denaturation status of the DNA. 

Therefore, anti-single-stranded DNA antibodies are recommended to use for this 

normalization.  

6.4 Comparison of DNA methylation experiments 

The major and traditional DNA methylation involves the transfer of a methyl group to the 

carbon 5-position of the cytosine base, often at CG dinucleotides (CpG), to produce 

5-methylcytosine (5-mC). 5-mC is implicated in numerous cellular processes during 

development by gene regulation. However, during the last several years, new methylation 

modifications of cytosine have been reported. Ten-eleven translocation (TET) enzymes are 

cytosine oxygenases that convert 5-mC to 5-hydroxymethylcytosine (5-hmC) and further to 

5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) (Ito et al. 2011). It is suggested that 

these intermediates could have functions in controlling cell identity and the transition between 

the cell states, especially 5-fC, which was reported to bind gene regulatory factors (Iurlaro et 

al. 2013). Based on that, new insights of mechanisms that regulate DNA methylation have 

been suggested by many researchers (Tahiliani et al. 2009; Seisenberger et al. 2012; Song et 

al. 2012; Ficz 2015), shown in Figure 6.2. DNA methylation is established and maintained by 

DNMTs. Active demethylation can be initiated by TETs by converting 5-mC to 5-hmC, 

5-hmC to 5-fC and 5-fC to 5-caC. 5-fC and 5-caC can then be excised by thymine DNA 

glycosylase (TDG) to generate an abasic site. This abasic site can be repaired to a cytosine by 

the base excision repair (BER) pathway. 5-hmC may be deaminated by AID and APOBEC1 

to 5-hmU, then to an abasic site by TDG or single-strand selective monofunctional uracil 
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DNA glycosylase (SMUG1), or directly be dehydroxymethylated by DNMT3a/3b (Chen et al. 

2012). Besides, all methylcytosine variants can be passively demethylated back to cytosine 

through DNA replication. 

 

 

Figure 6.2  Different cytosine modifications and their interactions. * studied by RNA expression 

experiment; ** studied by immunofluorescence staining; *** studied by bisulfite sequencing. 

We applied three methods to study DNA methylation dynamics in bovine preimplantation 

embryos: anti-5-mC immunofluorescence staining, gene expressing of DNMTs, and bisulfite 

sequencing of repetitive sequences. However, the results of these three methods were not 

exact in line with each other, which has been mentioned in 6.1. This difference may be due to 

the fact that the three methods target different steps in the methylation biochemistry (indicated 

in Figure 6.2) or to a potential bias inherent to the methods used or a combination of both.   

Using the immunofluorescence staining method described in Chapter 4, all methylcytosines 

throughout the genome are detected, not only those restricted to the CpG islands. Gene 

expressing of DNMTs was studied also in Chapter 4. DNMT1 is responsible for the 
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maintenance of DNA methylation during replication, and overexpression of DNMT1 causes 

genomic hypermethylation (Biniszkiewicz et al. 2002). DNMT3a and DNMT3b are de novo 

methyltransferases responsible for methylation of DNA in the absence of a template. They 

function as dehydroxymethylases that convert 5-hmC to C (Chen et al. 2012). Therefore, the 

RNA expression of DNMTs is positively correlated to the DNA methylation level in the 

embryos. Bisulfite sequencing (Chapter 5) can not distinguish 5-hmC from 5-mC, so the 

result of the experiment represents the total amount of 5-mC and 5-hmC (Jin et al. 2010). 

However, recently modifications of bisulfite sequencing, oxidative bisulfite sequencing 

(oxBS-Seq) and reduced bisulfite sequencing (redBS-Seq), were developed to quantitatively 

determine 5-mC, 5-hmC and 5-fC (Booth et al. 2013; Booth et al. 2014). With these 

modifications, repetitive sequences can potentially be used as global marker for 5-mC, 5-hmC 

and 5-fC separately. Nevertheless, we found consistently that the methylation level is 

relatively high in 4-cell embryos and low in blastocysts in both the DNMTs expression and 

bisulfite sequence experiments. 

Another factor potentially introducing differences observed is variation in DNA methylation 

level during progression of the cell cycle. Expression of DNMT1 and 3b was shown 

significantly downregulated in G0/G1 while DNMT3a mRNA levels were less sensitive to cell 

cycle alterations (Robertson et al. 2000). Brown et al. (2007) found, using 

immunofluorescence staining, that the global levels of DNA methylation decreased in G1 and 

increase during the S phase, while the DNA methylation level of repetitive sequences changed 

little throughout the cell cycle by bisulfite sequencing (Brown et al. 2007). In line with this 

last observation is a report of Vandiver and colleagues. Using whole genome bisulfite 

sequencing they found no global changes during cell cycle phases and that global DNA 

methylation is stable during replication and cell cycle arrest (Vandiver et al. 2015). 
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Table 6.1 DNA methylation patterns in mammalian preimplantation embryos. EDMA: EmbryoGENE 

DNA Methylation Analysis. 

Species Method Feature Reference 

Human RRBS Lowest methylation at blastocyst (ICM). (Guo et al. 2014; 

Smith et al. 2014) 

Human  Staining Lowest methylation at morula, and more 

methylation in TE than ICM. 

(Fulka et al. 2004) 

Mouse RRBS Lowest methylation at blastocyst (ICM). (Smith et al. 

2012) 

Mouse Staining Demethyltion until morula, ICM but not TE 

undergoes de novo methylation. 

(Dean et al. 2001) 

Cow EDMA  Demethylation until blastocyst. (Saadi et al. 2014) 

Cow Staining Lowest methylation at 6-8 cell, and followed 

by de novo methylation. More methylation 

in ICM than TE. 

(Dean et al. 2001) 

Cow Staining Lowest methylation at 6-8 cell. More 

methylation in TE than ICM. 

(Dobbs et al. 

2013) 

Cow Staining Lowest methylation at morula stage, and 

more methylation in TE than ICM. 

(Hou et al. 2007) 

Pig Staining No loss of methylation during development, 

and more methylation in ICM than TE.  

(Fulka et al. 2006) 

Sheep Staining  Methylation declines until blastosyct, and 

more methylation in ICM than TE.  

(Beaujean et al. 

2004) 

Rabbit  Staining  No loss of methylation during development, 

and more methylation in TE than ICM.  

(Shi et al. 2004) 

 

6.5 DNA methylation reprogramming during preimplantation embryo development  

An important step in the DNA methylation reprogramming in mammalian preimplantation 

embryos is demethylation of parental genomes after fertilization, followed by de novo 

methylation of the embryo genome. These methylation changes were first observed in mouse 

embryos. The detected de novo methylation began at the blastocyst stage and was more 



                                            Chapter 6 General discussion and conclusions                                                                          

                                                                                                                                                               

187 
 

intense in ICM than TE (Carlson et al. 1992). Later, the methylation patterns in 

preimplantation embryos were studied in many other species (listed in Table 6.1). For bovine 

embryos, different opinions still exist on the exact timing of de novo methylation. There are 

reports indicating that the global methylation drops during cleavage and reaches the lowest 

point at 6-8 cells stages, and increases again at the 16-cell stage of development (Dean et al. 

2001; Dobbs et al. 2013), while other reports indicated that demethylation was only observed 

after the 8-cell stage and persisted throughout the morula stage (Hou et al. 2007). On the other 

hand, 5-mC stained blastocysts showed intense fluorescence, mostly in TE cells (Figure 4.1), 

but we did not compare it with other stages statistically. Whether there is more methylation in 

TE cells or in ICM cells in bovine blastocysts is still debated. Different methylation patterns 

in the ICM and TE are shown in Figure 6.3 (Dean et al. 2001; Hou et al. 2007). This 

variability may be due to the differences in staining or embryo culture protocols used.  

However, in contrast to the variation in DNA methylation patterns observed in different 

species or even one species as carried out by immunofluorescent staining, the sequencing 

based methods showed a similar tendency, which is that the methylation is decreasing during 

early development and is very low at the blastocyst stage; and less methylation is found in 

ICM in mouse, human and cow (Smith et al. 2012; Guo et al. 2014; Saadi et al. 2014; Smith 

et al. 2014). Our results from DNMTs expression and bisulfite sequencing experiments 

indicate that in blastocysts the DNA methylation still remains very low and is even the lowest 

compared to other stages in BS experiment, which is in consonance with these results. There 

is still lack of data from sequencing based method from other species. Therefore, we would 

strongly suggest that the ‘species-specific’ methylation which has been claimed by staining in 

the past, now needs to be confirmed by novel sequencing based technology. 
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Figure 6.3 5-mC immunofluorescence staining of bovine blastocyst. (a) high methylated in ICM 

(Dean et al. 2001). (b) homogeneously methylated (Dean et al. 2001). (c) high methylated in 

trophectoderm (Hou et al. 2007). 

 

6.6 Retrotransposons as DNA methylation marker 

Recent research on epigenetics of mammalian preimplantation embryos found that 

transposable elements show a similar dynamic trend as global methylation (Guo et al. 2014). 

A bovine study also showed that the majority of the repetitive elements, particularly LINEs, 

SINEs and LTR retrotransposons, are hypermethylated in spermatozoa compared to 

blastocysts, which was in line with the methylation pattern of all types of promoter, intronic 

and exonic regions, non-CpG islands and CpG islands studied (Saadi et al. 2014). Therefore, 

those retrotransposons can be considered as global methylation markers in embryo 

development.  

An advantage of using retrotransposons as methylation marker is the great coverage of the 

genome. In bovine, retrotransposons take almost half of the genome, and L1_BT and BovB 

alone take more than 20%. Other sequencing based methods, such as EDMA and RRBS, have 

a genome coverage of about 5%, respectively 10% of all CpG sites (Wu & Zhang 2012; Saadi 

et al. 2014). In this thesis, we suggested to use a weighted arithmetic mean of the repeat 

methylation, taking each retrotransposon or repeat genome coverage, which makes the 

calculation more accurate.  
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However, when repetitive sequences are used as global methylation marker, there are two 

factors that need to be considered. First is the mutation rate of repetitive sequences. High 

mutation rate of retrotransposons makes the number of potential targets for DNA methylation 

variable between the individual members of a repeat family. When selecting a retrotransposon 

as a global methylation marker, low mutation rate is the first criterion. For example, almost 

two-thirds of the CpG methylation sites of Alu are mutated, which makes Alu not suitable to 

be used as a methylation marker. Another factor that affect the methylation results is primer 

design for bisulfite PCR, which can influence the number of amplified repetitive sequences 

directly. In the present study, we tried to amplify as many as possible copies of the repeat 

families to represent the whole genome. All primers were designed based on the consensus 

sequence of each family and the amplified number was checked by BiSearch using the 

weighted arithmetic mean of methylation level of each repetitive sequence family.  

6.7 General conclusions 

The general conclusions of the thesis are: 

1) Three autonomous retrotransposons, L1_BT, BovB, and ERV1-1-I_BT, with complete ORFs 

were found with consistent expression in bovine oocytes and crossing all stages during 

preimplantation embryo development. These retrotransposons were analysed during further 

research in this thesis. 

2) A reliable assay was designed for the normalization of RT-qPCR analysis in bovine 

preimplantation embryos, considering developmental stages, gender and oxygen tension. 

Different stability rankings of gene expression were found for different sample group 

combinations. The four most stable reference genes (GAPDH, YWHAZ, 18S rRNA and SDHA) 

were selected when all samples were considered. Specifically, HPRT1 and H2A are the most 

stable genes for female embryo normalization, and for 4-cell and blastocyst embryos analysis, 

GAPDH, YWHAZ and SDHA are used for an accurate normalization, allowing small 

expression differences to be reliably measured.  
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3) Oxygen tension, as an oxidative stress, reduced the embryonic development, and induced 

RNA expression of ERV-1-1-I_BT in female blastocyst, which suggesting it is more harmful 

to female embryo than male ones. 

4) A global DNA methylation immunofluorescence staining for embryo from the 2-cell to 

blastosyt stage cultured under 5% O2 and 20% O2 was performed. By this analytical method, 

significant increased methylation was found in 4-cell and blastocyst stages under 20% O2 

comparing to 5% O2. 

5) RT-qPCR analysis of DNMTs and retrotransposons showed a negative correlation with 

high expression of DNMT1 and low expression of retrotransposon at 4-cell stage, and an 

opposite of expression at blastocyst stage.  

6)A bisulfite sequence analysis of retrotransposon promoter regions showed a DNA 

methylation pattern in line with the DNMT1 expression, both high in 4-cell and low in 

blastocyst stage. Moreover, an assay using Weighted Arithmetic Mean of the multiple 

repetitive sequences was designed, as a promising quick marker for the global DNA 

methylation status in preimplantation stages, while attention should be paid to primer design 

and mutation rates of the repeats selected. 

6.8 Perspectives for future research  

In this thesis, we induced oxidative stress (high oxygen concentration during embryo 

development), and studied if the stress triggers activation of retrotransposons and the 

relationship between global DNA methylation and retrotransposon expression. Unfortunately, 

we succeeded only partially in obtaining our goals. A correlation between global DNA 

methylation and retrotransposon expression was shown. However, this stressor does not give 

a significant influence, which may be due to the involvement of many cellular processes and 

interaction among the processes may lead to a more complex influence to gene expression and 

epigenetics, or because even under 5% O2, the in vitro culture condition is still prone to 
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inducing stress and is far from optimal. Using only the blastocyst rate as an evaluation of the 

stress is not sufficient, so oxidative stress monitoring or evaluation, such as quantification of 

ROS during the development should be taken into consideration in the future. On the other 

hand, more specific stimuli for affecting DNA methylation should be used, such as to expose 

embryos to 5-Aza-2’-deoxycytidine (DNA methyltransferase inhibitor) to test the ‘genomic 

shock’ hypothesis.   

Furthermore, methyltransferases RNA expression and bisulfite sequencing of repeats in the 

thesis showed a decreasing methylation pattern from cleavage to blastocyst in bovine embryos. 

However, considering the different patterns in previous 5-mC immunofluorescence staining 

results, we propose that methylation dynamics in preimplantation embryos should be studied 

by more than one method. Besides, conflicting results remain concerning the different 

methylation levels detected between ICM and TE in bovine blastocysts using different 

detection methods. We strongly suggest reliably separating ICM from TE for both epigenetic 

and genetic studies. 

Also, during the last several years new insights in the mechanisms that regulate DNA 

methylation have been found and new methylation modifications of cytosine of which the 

biological significance is unclear have been detected. With the development of new 

technologies: oxidative bisulfite sequencing (oxBS-Seq) and reduced bisulfite sequencing 

(redBS-Seq), methylation intermediates can be studied separately, and multiple repeats can be 

used as the marker for to quantitatively determine the global 5-mC, 5-hmC and 5-fC.  

In this thesis, we focused on three autonomous retrotransposons: L1_BT, BovB and 

ERV1-1-I_BT, but their non-autonomous counterparts can play regulatory functions also, thus 

non-autonomous retrotransposons should be taken into consideration for further studies.  
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Retrotransposons, or RNA intermediated transposable elements, have been considered as 

‘junk’ or ‘selfish’ DNA and dismissed as uninteresting for a long time. However, they were 

found active and functional in preimplantation embryos in the last decades. The impact of 

retrotransposon activity on the genome such as formation of new genetic elements and 

regulators in the genome is unneglectable. They are also suggested to participate in many 

activities during early embryo development, like genomic imprinting, X chromosome 

inactivation, cell proliferation and differentiation.  

In Chapter 1, the current literature on retrotransposons in mammalian genomes is reviewed. 

An overview of the classification and composition of retrotransposons in the genome is given, 

with emphasis of the bovine genome. Furthermore, the mechanisms of retrotransposition are 

described in detail and the activities of retrotransposons on the level of transcription, 

translation and mobilization are explained. The impact of retrotransposon activity on the 

mammalian genome is discussed, illustrating that retrotransposons influence the genome by 

formatting new genetic elements and working as regulators. The defense mechanisms against 

retrotransposon to prevent their disturbance of the genomes are also given in Chapter 1. 

In the latter part of Chapter 1, activation of retrotransposons in early development is 

discussed. Retrotransposons participate in many embryonic activities, including cell 

proliferation and differentiation, genomic imprinting, and X-chromosome inactivation. These 

activities are suggested to be mainly a consequence of DNA methylation loss during 

epigenetic reprogramming of preimplantation. Therefore, a description of the dynamics of 

DNA methylation during bovine preimplantation embryo development is included. Those 

facts reveal the importance of the study of the relation between DNA methylation and 

retrotransposon expression in embryo development. At last, a short review of using 

retrotransposons as marker for global DNA methylation status is given. 

The aims of the study are presented in Chapter 2. The general aim of the thesis was to study 

retrotransposon expression and their DNA methylation control in bovine preimplantation 

embryos. The first aim was to find out autonomous retrotransposons with consistent RNA 
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expression, and reliable reference genes for gene expression normalization during bovine 

preimplantation embryo development. The second aim was to study the relation between 

DNA methylation and retrotransposon expression under high oxygen. The third aim was to 

use repetitive sequences as global DNA methylation marker in bovine preimplantation 

embryos.  

To achieve these goals, we first profiled autonomous retrotransposon expression in bovine 

preimplantation embryos. L1_BT, BovB and ERV1-1-I_BT were found to be expressed 

throughout all stages of preimplantation development (Chapter 3.1). Furthermore, reference 

genes were evaluated and selected for estimating retrotransposon expression in bovine 

embryos of different stages and under different conditions (Chapter 3.2).  

In Chapter 4, the relation between DNA methylation and retrotransposon expression under 

influence of high oxygen tension as stressor was studied. The global DNA methylation of 

embryos was estimated by 5-methylcytosine immunofluorescent (5-mC) staining. We found a 

significant increase in DNA methylation under 20% O2 at the 4-cell stage and in blastocysts. 

Gene expression of DNA methytransferases (DNMTs) and three retrotransposons (L1_BT, 

BovB and ERV1-1-I_BT) in 4-cell embryos and blastocysts was analyzed by RT-qPCR. 

Unexpectedly, the retrotransposon expression was not correlated with the global DNA 

methylation level estimated by 5-mC staining, but was negatively correlated with the 

expression of DNMT1.  

We further studied the DNA methylation level of retrotransposons during embryo 

development by bisulfite sequencing (Chapter 5). Using this method, a negative correlation 

between the methylation level (L1_BT < BovB < ERV1-1-I_BT) and their RNA level 

(L1_BT > BovB > ERV1-1-I_BT) was found. Additionally, we developed a global DNA 

methylation marker using a combination of repetitive sequences with low mutation rate, 

taking in to account the proportion of each sequence. 



                                

203 
 

The general discussion and the conclusions are presented in Chapter 6. The discussion 

focuses on the following aspects: 1) correlation of DNA methylation and retrotransposon 

expression; 2) influence of oxidative stress on methylation and retrotransposon expression; 3) 

problems in immunofluorescence staining; 4) comparison of the methylation research 

methods used in the thesis; 5) DNA methylation dynamics during bovine preimplantation 

embryo development; and 6) retrotransposons used as global DNA methylation marker.  
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Retrotransposons of  RNA geïntermedieerde transposons werden lange tijd als 'junk' of  

'egoïstisch' DNA beschouwd  en van de hand gedaan als oninteressant. In de laastste 

decennia werd echter gevonden dat ze actief en fuctioneel zijn in pre-implantatie embryo’s. 

De gevolgen van retrotransposon activiteit in het genoom, zoals vorming van nieuwe 

genetische elementen en regulatoren in het genoom is niet verwaarloosbaar. Er wordt nu 

verondersteld dat ze betrokken zijn bij vele activiteiten tijdens de vroege embryo 

ontwikkeling, zoals genomische imprinting, X chromosoom inactivatie, cel proliferatie en 

differentiatie. 

In hoofdstuk 1 wordt de huidige literatuur over retrotransposons in zoogdiergenomen 

beoordeeld. Een overzicht van de indeling en de samenstelling van retrotransposons in het 

genoom wordt gegeven, met de nadruk op het rundergenoom. Daarnaast worden de 

mechanismen van retrotranspositie beschreven en de activiteiten van retrotransposons op het 

niveau van transcriptie, translatie en mobilisatie worden toegelicht. De impact van 

retrotransposonactiviteit op het zoogdiergenoom wordt besproken als illustratie dat 

retrotransposons het genoom beïnvloeden door vorming van nieuwe genetische elementen en 

het werken als regulatoren. De beschermingsmechanismen om de verstoring van het genoom 

door retrotransposons te voorkomen worden ook beschreven in hoofdstuk 1. 

In het laatste deel van hoofdstuk 1 wordt de activering van retrotransposons in de vroege 

ontwikkeling besproken. Retrotransposons nemen deel aan tal van embryonale activiteiten, 

waaronder cel proliferatie en differentiatie, genomische imprinting en X-chromosoom 

inactivatie. Het werd gesuggereerd dat deze activiteiten vooral een gevolg zijn van het verlies 

van DNA-methylatie tijdens epigenetische herprogrammering tijdens de pre-implantatie 

ontwikkeling. Daarom werd een beschrijving van de DNA methylatie in boviene 

pre-implantatie embryoontwikkeling inbegrepen. Deze feiten laten het belang zien van het 

onderzoek naar de relatie tussen DNA methylatie en retrotransposonexpressie in 

embryo-ontwikkeling. Tot slot wordt een kort overzicht van het gebruik van retrotransposons 

als marker voor de wereldwijde status van DNA-methylatie gegeven. 

De doelstellingen van de studie worden gepresenteerd in Hoofdstuk 2. Het algemene doel 
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van het proefschrift was om retrotransposonexpressie en de DNA-methylatie controle bij 

pre-implantatie embryo’s van runderen te bestuderen. Het eerste doel was om autonome 

retrotransposons met consistente RNA expressie en betrouwbare referentiegenen voor 

genexpressie normalisering tijdens pre-implantatie embryo-ontwikkeling van runderen te 

identificeren. Het tweede doel was om de relatie tussen DNA-methylatie en 

retrotransposonexpressie onder hoge zuurstof te bestuderen. Het derde doel was om 

repetitieve sequenties als globale DNA-methylatie merker in pre-implantatie embryo’s van 

runderen te gebruiken.  

Om deze doelen te bereiken hebben we eerst de expressie van autonome retrotransposons 

geprofileerd in pre-implantatie embryo’s van runderen. Expressie van L1_BT, BovB en 

ERV1-1-I_BT werd in alle stadia van de pre-implantatie ontwikkeling aangetroffen 

(hoofdstuk 3.1). Verder werden referentiegenen voor het bepalen van 

retrotransposonexpressie in runderembryo's van verschillende stadia en onder verschillende 

omstandigheden geëvalueerd en geselecteerd (hoofdstuk 3.2). 

In hoofdstuk 4 werd de relatie tussen DNA methylatie en retrotransposonexpressie onder 

invloed van hoge zuurstofspanning als stressor bestudeerd. De globale DNA methylatie van 

embryo's werd geschat via 5-methylcytosine immunofluorescentie (5-mC) kleuring. We 

vonden een significante toename van DNA methylering onder 20% O2 in het 4-cel stadium en 

in blastocysten. Genexpressie van DNA methytransferases (DNMTs) en drie retrotransposons 

(L1_BT, BovB en ERV1-1-I_BT) in 4-cel embryo's en blastocysten werd verder geanalyseerd 

door RT-qPCR. Onverwacht bleek de retrotransposonexpressie niet gecorreleerd te zijn met 

het globale DNA methylatieniveau geschat door 5-mC kleuring, maar was het wel negatief 

gecorreleerd met de expressie van DNMT1. 

Verder onderzochten we het DNA methylatieniveau van retrotransposons tijdens de 

embryonale ontwikkeling door bisulfietsequencing (hoofdstuk 5). Met behulp van deze 

methode werd een negatieve correlatie tussen het methylatieniveau (L1_BT <BovB 

<ERV1-1-I_BT) en hun RNA-niveau (L1_BT> BovB> ERV1-1-I_BT) gevonden. Daarnaast 
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hebben we een globale DNA methylatiemerker ontwikkeld gebruik makende van een 

combinatie van repetitieve sequenties met een lage mutatiefrequentie en rekening houdend  

met het aandeel van elke sequentie. 

De algemene discussie en de conclusies worden gepresenteerd in hoofdstuk 6. De discussie 

richt zich op de volgende aspecten: 1) correlatie van DNA-methylatie en 

retrotransposonexpressie; 2) invloed van oxidatieve stress op methylatie en 

retrotransposonexpressie; 3) problemen bij immunofluorescentiekleuring; 4) vergelijking van 

de methylatie onderzoeksmethoden gebruikt in het proefschrift; 5) DNA-methylatie dynamiek 

tijdens runderen pre-implantatie embryo-ontwikkeling en 6) het gebruik van retrotransposons  

als globale DNA-methylatie merker. 
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