
FPGA-based design using the FASTER toolchain:
the case of STM Spear development board

F. Spada∗, A. Scolari∗, G.C. Durelli∗, R. Cattaneo∗, M.D. Santambrogio∗, D. Sciuto∗, D.N. Pnevmatikatos†,
G.N. Gaydadjiev‡, O. Pell§, A. Brokalakis¶, W. Luk‖, D. Stroobandt∗∗, D. Pau††

∗Politecnico di Milano, Italy
†Foundation for Research & Technology - Hellas, Greece

‡Chalmers University of Technology, Sweden
§Maxeler Technologies, UK

¶Synelixis, Greece
‖Imperial College London, UK
∗∗Ghent University, Belgium
††STMicroelectronics, Italy

Abstract—Even though FPGAs are becoming more and more
popular as they are used in many different scenarios like
communications and HPC, the steep learning curve needed to
work with this technology is still the major limiting factor to
their full success. Many works proposed to mitigate this problem
by creating a companion of tools to support the designer during
the development phase for this technology.

The EU FASTER Project aims at realizing an integrated
toolchain that assists the designer in the steps of the design flow
that are necessary to port a given application onto an FPGA
device. The novelty of the framework relies in the fact that the
partial dynamic reconfiguration, which FPGA devices can exploit,
is seen as a first class citizen throughout the whole design flow.
This work reports a case study in which the FASTER toolchain
has been used to port a raytracer application onto the STM Spear
prototyping embedded platform. The paper discusses the steps
done for the realization of the prototype and the results obtained
on the target device. It finally reports some improvements that
can be exploited to improve the performance of the hardware
implementation that has been realized.

Keywords—partial reconfiguration

I. INTRODUCTION

In an ever-changing world, there is an increasing demand
for embedded, multi-core systems that are able to adapt to the
surrounding environment or to meet new application demands.
Adaptability by means of changing the software running on the
processors is not always adequate: many applications require
hardware acceleration due to strict requirements in terms of
performance and energy efficiency. It is thus imperative that
this hardware can adapt to application’s changes and partial
dynamic reconfiguration is the key enabler for such kinds of
systems. In fact, this provides the flexibility needed to add
or substitute functionalities (i.e. hardware modules) after the
system has been manufactured and deployed. These hardware-
supported adaptation mechanisms provide a cost-effective way
to cope with changing environmental requirements, improve-
ments in system features, changing protocols and data-coding
standards, etc.

However, the designers still need the ability to properly
take reconfiguration issues into account directly from the appli-
cation specification down to the final system implementation.
Moreover, the mechanisms required to verify and support this
functionality at run-time are currently lacking. The FASTER
(Facilitating Analysis and Synthesis Technologies for Effective
Reconfiguration) project [3] aims at providing a complete
methodology that will enable the designers to easily implement
and verify applications on platforms with one or more general-
purpose processors and multiple accelerators, which have been
implemented on the top of the latest reconfigurable technology.
Our goal is that, for the selected application domains, the
envisioned toolchain will be able to reduce the design and
verification time of complex reconfigurable systems by at
least 20%, providing additional novel verification features
that are not available in any existing tool flows. In terms
of performance, for these application domains, the toolchain
could be used to achieve the same performance with up to
50% smaller cost compared to programmable SoC-based ap-
proaches, or exceed the performance by up to a factor of 2x for
a fixed power consumption envelope. Previous research and EU
projects such as hArtes [4], Reflect [6], ACOTES [1], Andres
[2], Morpheus and others focus on the necessary toolchain and
address similar issues as FASTER but focus more on system-
level or architectural aspects of reconfiguration. Moreover, they
do not explicitly emphasize on the design and runtime aspects
of partial and dynamic reconfiguration, or on choosing the best
reconfiguration grain-size.

The FASTER toolchain will accept input that can be in
HDL or C whose initial decomposition could be described with
existing formalisms such as OpenMP [5] and derive the cor-
responding task graph. Using new graph-theoretic algorithms
we will partition the specification in space and time. Then we
will pursue a task-cluster definition of a system specification by
detecting recurrent structures in the specification itself. These
modules are candidates for reconfiguration, thus saving device
resources and reconfiguration time. FASTER will support both
region-based [11] and micro-reconfiguration, a technique to
reconfigure very small parts of the device [7]. The ability to

2014 IEEE International Symposium on Parallel and Distributed Processing with Applications

978-1-4799-4293-0/14 $31.00 © 2014 IEEE

DOI 10.1109/ISPA.2014.26

134

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84042346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Screenshot of the GUI application, with DFG exploration.

handle both types of reconfiguration opens up a new range
of application possibilities for run-time reconfiguration, as
a much broader time frame for the reconfiguration itself is
available and the underlying concepts are different for both
types of reconfiguration. FASTER will also develop techniques
for verifying static and dynamic aspects of a reconfigurable
design at compile time using symbolic simulation - a powerful
verification approach for static designs, and extending it to
support both static and dynamic aspects of a reconfigurable
design. We will also explore techniques for verifying selected
static and dynamic aspects of a reconfigurable design at run
time with a small impact on speed, area and power consump-
tion. Finally, FASTER will provide a powerful runtime system
that will be able to run on multiple reconfigurable platforms
and manage the various aspects of parallelism and adaptivity
with the least overhead.

Within this paper we are focusing our attention to present
the work done by FASTER on global illumination and image
analysis algorithms. In future graphics applications (games, vi-
sualization, etc.), it will be important to achieve photorealistic
rendering in a coherent manner, in order to greatly improve
picture quality with an ever-increasing scene complexity, with
support for real reflection, soft shadows, area light source, indi-
rect illumination, etc. This is a computationally intensive prob-
lem, addressed by the increasing interest in real-time global
illumination approaches. Within FASTER, STMicroelectronics
(STM) is developing a C global illumination pipeline. This
system should be flexible enough to help accelerating different
algorithms based on ray casting (ray tracing, path tracing,
Monte Carlo ray tracing, etc.).

II. TOOLCHAIN FOR HW/SW CODESIGN

The methodology developed in FASTER is accompanied
by an effective step-by-step Graphical User Interface (GUI)
that helps the designer in completing each step of the design
[13]. The designer is responsible of providing the task graph
of the application, which is encoded in a XML format. The
GUI, shown in Fig. 1, provides a simple frontend to manually
generate and feed information to the XML file. Each task
is associated with a function in the C source files that are
also included in the XML file; also in this case the GUI
provides a simple way to load application files and modify
them if needed. This binding between the tasks and functions
is the one that permits the analysis of the C code and the
generation of the function Data Flow Graph (DFG) that can
be used for further analysis and optimizations. The GUI, along
with the XML file, provides a simple integration with third
party tools. The exploration phase starts from the information

Application
(Task Graph)

Architecture
Template

DSE
Parameters

Implementations

Architecture
Customization

Mapping and
Scheduling

Convergence?

No

Yes

Design Space Exploration

Performance
Vector

Inputs

Ant Colony Optimization

TG

Step-by-step GUI

AT DSE-P IMP

U

User

Architecture
Descritpion

Task
Schedule

Floorplacer

Fig. 2. Overview of the Design Space Exploration.

included in the XML, which are generated in several ways:
by manually inserting the data to the XML with a text editor,
by using the GUI, by profiling or by other FASTER related
tools. The exploration phase represented in Figure 1 starts
from reading 4 input parameters from the XML files, which
are the application task graph, the architecture description,
the implementations associated with each task and the Design
Space Exploration parameters to be used. After analyzing
the input task graph, the toolchain assembles the information
into an intermediate representation format that will be further
manipulated by the mapper [9] and the scheduler [10]. After
this initial step, the task graph is manipulated by the mapper,
which will tightly interact with the scheduler to generate
a mapping characterized by some performance metrics like
execution time (an information computed by the scheduler) and
the amount of utilized resources, which is computed from the
board specifications and implementation details. The mapping
phase is implemented as an evolutionary algorithm, namely
Ant Colony Optimization, which uses the information fed back
by the scheduler to evolve towards increasingly better mapping
solutions.

III. STM SPEAR ARCHITECTURE

The STM SPEAR prototyping embedded platform is a
development board that is intended to be used for feasibility
studies, in particular to evaluate software systems developed
for embedded platforms and how they could benefit from
external hardware acceleration. As such, its primary target are
R&D projects that aim to customize the architecture starting
from an existing but flexible one. Therefore, this platform is
not designed for production environments.

The Spear board has an ARM dual-core Cortex-A9 with
two level of caching and 256MB DDR3 as Central Memory,
which communicates with the ARM processors through an
AXI 64 bits bus. The Spear is equipped with several interfaces
that allow external peripherals to be connected to the board
through standard interfaces like Ethernet, USB or UART. By
means of the auxiliary EXPansion Interface (EXPI) present
on the board, it is possible to plug in dedicated boards to
expand the SOC with customizable external hardware. On this

135

Fig. 3. Architecture of the STM Spear Development board.

interconnection, the communication is driven by the AHBLite
protocol. The choice of the EXPI interface and of the AHBlite
protocol lets designers attach custom acceleration boards and
interface them quickly, thanks to the simplicity of the AHBLite
protocol. Overall, the interconnection scheme of the system is
summarized in Fig. 3.

The performances of AHB bus are lower than the AXI one:
for example, the AXI protocol defines double data channel
and the read and write can be done simultaneously, while the
AHB has only one data channel and the read and write cannot
be executed in parallel. Moreover, the internal interconnection
crossbars, with conversion from AHB bus to AXI bus, consti-
tute a further physical limits that impacts on the performance
when considering the overall transfer time, because it increases
the latency of the transmission and can create bottleneck
effects when multiple transmissions from main memory and
the external components are happening simultaneously.

Virtex5 Daughter Board

The FPGA board ships an auxiliary bidirectional interface
(EXPI) to connect external peripherals. Since the Spear board
was designed for functional prototyping, the EXPI interface
provides a single AHBLite bus with both master and slave in-
terfaces on the board side, thus requiring external components
to implement these same interfaces.

The AHBLite protocol uses a single data channel for
communications, so that it is impossible to receive and send
data at the same time, e.g., to have a continuous stream
between memory and computing cores. This can be a major
limitation in exploiting hardware acceleration, also considering
the low frequency of the channel, which runs at 166 MHz, and
the maximum transfer length limited to 1KB. Fig. 4 shows the
architecture involved in data transfer from DMA to AHB bus.

IV. RAYTRACER APPLICATION

The raytracing algorithm has been widely studied over the
recent years due to its great interest in computer graphics;
this technique can be, indeed, used in rendering of images
for movies or computer games. Different implementations of
the algorithm have been thus proposed over the recent years.
Most of the proposed approaches focus on implementing this
algorithm on GPUs due to the possibility of programming them

��������

	�
��	�	�� ����

�����

�����

�	
�������

Fig. 4. The figure shows the main buses involved in data transmission between
main memory and computing cores.

with frameworks such as CUDA [12] and OpenCL [16]. For
example, [15] proposes a technique to implement a parallel
version of the algorithm on GPUs, overcoming the limitation
posed by the recursive structures of the algorithm which cannot
be implemented in GPUs. Other works instead focused in
creating customized computing platforms using FPGAs as
prototyping devices [8, 14, 17].

This section introduces the version algorithm used in the
work, its potential limitations for hardware accelerator and the
solutions adopted to solve them.

General Characteristics

The raytracing algorithm provided by STM starts from a
description of the scene as a composition of 2D/3D geometric
primitives. The basic primitives that are supported by the al-
gorithm are the following: triangles, spheres, cylinders, cones,
toruses, and polygons. Each of these primitives is described by
a set of geometric properties such as, for example, the position
in the scene, the height of the primitive or the rays of the
circles composing the primitive. The algorithm then performs
the following steps:

1) the scene is divided in blocks, called voxels, and the
number of these voxels is one of the contributors to
determine the complexity of the algorithm; the more
the voxels there are, the more intersections between
rays and primitives have to be computed;

2) the algorithm generates a certain amount of rays
from the current rendering point of the image and
it computes the set of voxels traversed for each of
these rays;

3) it then iterates all over these voxels and computes the
intersection between the primitives in the voxel and
the current ray;

4) assuming all the objects are opaque, the nearest
intersection, if any, is considered and the algorithm
computes the reflection and refraction of the light ray
on the surface of the object;

5) the rays generated by this physic simulation continue
to be propagated into the image until a maximum
number of intersection (an input parameter of the
application) is reached or no intersection is found at
all;

Analyzing the application, we found two major roadblocks
that may prevent us from efficiently porting the application into

136

hardware. First, the memory accesses to the objects stored in
the main memory do not follow a regular pattern, but instead
they depend on the path followed by the light ray in the
scene and its subsequent reflections which cannot be predicted
in advance. Accessing random memory locations may cause
slowdowns in the hardware implementation; the hardware
cores can be efficiently exploited when data is accessed with a
fixed pattern, since data transfers between the memory and the
accelerator can be carried out through a Direct Memory Access
(DMA) mechanism. This exploits the principles of locality by
moving an entire block of data.

Second, one of the primitives, the polygon, is characterized
by a variable number of parameters, such as the number
of vertexes. For its hardware implementation we need to
determine in advance the amount of vertexes supported. On
the other hand, each computation performed by this accelerator
will require an amount of time which will be proportional to
the number of vertexes.

To approach the first problem the flow of the application
has to be restructured as described in the following paragraph,
while for the second problem we left the computation of the
intersections with polygon primitives to be computed only in
software so that we do not have to constrain the core.

Data Access Pattern: To achieve the best performance in
terms of memory accesses, the access pattern of the raytracing
algorithm must be restructured. The original code computed
the least amount of intersections needed to determine if a
ray intersects any objects in the scene. It computes all the
intersections until one intersection is found. In this case, it
stops searching in the next voxels. This behavior has to be
changed by precomputing all the intersections that has to be
computed along the path of one light ray and we organized
them in queues. These queues are then sent to the hardware
cores and this requires only a linear memory access, since they
can be moved from main memory to cores by using the DMA.
After the intersections are computed by the hardware cores,
the results are collected by the SW that merges the results
and determines which is the nearest intersection found. Note
that, since the intersections are computed in order, there is
no need to perform any computation to determine the nearest
one. Indeed, only the the first intersection found has to be
considered, while the following ones can be safely discarded.

V. IMPLEMENTATION

This section reports the details of the implementation of
a prototype of the Raytracer application for the STM Spear
Development board. The first section shows the details of the
DMA module that has been realized to interface the FPGA
with the AHB bus, then the details about the realized HW
cores by means of High Level Synthesis (HLS) are reported.

DMA Module and driver

No DMA controller IP was provided with the FPGA.
Hence, a custom DMA controller has been designed from
scratch according to the AHBLite protocol. This controller
implements one master and one slave interface. Because of the
limitations of the protocol, it is fundamental to add a queuing
mechanism to keep the inputs and the outputs of the computing
cores. With this mechanism, the software can send multiple

����

�����	
�

������������
�

������������

�����	
�

�����
�

���������� ������������������

��������������������

������
�

� �����

������������
�

������������

Fig. 5. Sequence of calls to send data to the cores by writing the device
file: after the context switch, the control is passed to the driver, which copies
data from the user buffer to the DMA buffer and starts the transfer. Then the
cores on the FPGA compute the result and the driver copies than back to the
application.

inputs to a core, that computes the results and stores them in
an exit queue. During the core computation, its data (inputs and
outputs) are managed by the queues, so that the bus is available
to support other transfers and the software must not wait for
the results but can perform other tasks, like computation or
data transfer management.

The master interface, whose registers are chosen by the
designer, is mapped into main memory starting from address
0xD0000000. This allows designers to write a Linux driver
in order to manage the communication, for example by rep-
resenting the FPGA device as a file inside the /dev/ directory.
Thus, the driver can explicitly handle any operation performed
on this file, and translate user-space calls with a well-known
syntax (open, read, write, etc.) to bus communications.

Moreover, the Linux file interface allows designers to
give complete control of the device to user-space by the
mmap() system call. Through this call, the device driver
can map the DMA interface into the virtual memory of the
application that performed the call. Thus, this application can
take the control of the communication by directly handling
the DMA interface, handling its specific syntax. This opti-
mization slightly increases the complexity of the application,
but potentially increases the overall performance as it avoids
expensive context-switches from user-space to kernel-space
(as from Fig. 6), which often require copying data from
user-space to kernel buffers. Several aspects must be taken
into account to achieve user-space control (virtual memory
permissions, memory-cache coherency, etc.), but this is a
worthwhile optimization, as visible when comparing the initial
results of Fig. 10 with Fig. 11.

HW Cores

The hardware cores have been realized using Vivado HLS,
which permits to generate an accelerator, along with its inter-
faces, that can be directly integrated in the development board
architecture. However, the C code that can be synthesized using
HLS presents some restrictions. As an example, pointers or
any pointer logic cannot be generally used. Since pointers are
generally used in function interfaces, in order to realize the ac-
celerators required in this work, C functions implementing the

137

�������

���	
�����

��	�	�����	��

	�����	
���� ������

��	�	�����	��

	�����	
����

Fig. 6. Sequence of calls in case of user-space DMA handling, provided that
the user data structure are memory-coherent. No context switch happens, and
no data copying happens.

HW
Intersection

SW Driver HW

D
D

R

Linearize Memory
Access

Post Process
Results and Write

Back

Fig. 7. Template of HW core generated with High Level Synthesis for
compute intersection functions.

intersections with each of the primitives have been rewritten
in order to remove the input pointers and substitute them with
explicit variables. The interfaces of the cores have been then
instructed to read data from an input FIFO queue and feed the
variables with the input data. On the software side, a similar
change has been made. Before executing a hardware function,
the raytracer needs to dereference the involved pointers and
organize them in a proper way in the main memory (in the
same order which is expected to be read from the input FIFO).
Once completed, the core can start the execution and fetch
a region of memory to process. The core generated through
HLS have been synthesized to meet the reference clock of
100 MHz, which is the one used in the programmable logic.
The core ported to HW are the intersections functions that
intersect a light ray with a given primitive. In particular
the functions implemented in HW compute the intersection
with the following primitives: cones, cylinders, spheres, and
triangles. The structure of the the HW cores alongside with
the SW interface/drivers can be summarized by Figure 7, while
Table I reports the results of the HLS on the three functions
when targeting a 100MHz reference clock.

TABLE I. SUMMARY OF HLS RESULTS OF THE HW CORES. ALL THE

CORES MEET THE TARGET FREQUENCY OF 100MHZ.

Core LUT FF DSP BRAM
Sphere 7051 4763 15 2

Ring 5466 3372 18 2

Triangle 6168 3432 32 4

Spear
MPSoC

Interconnection
Layers

DMA
Engine

DeMux

MasterSlave

AHB

AHB

AXIStream

AXIStream

MM2SS2MM

Control

AXI

Intersect
Sphere

Intersect
Ring

Intersect
Triangle

A
X

IS
tr

ea
m

Mux

A
X

IS
tream

In Out

In Out

In Out

Fig. 8. Architecture used to port the Raytracer application on the STM Spear
Evaluation Board.

HW prototype application

As from the previous section, a preliminary evaluation
required the synthesis, by means of HLS solutions, of the cores
that compute the intersections for spheres, rings and triangles
primitives; those cores were deployed on the Spear platform
with the described DMA interface. The resulting architecture
is represented in Fig. 8. To evaluate the performance of the
platform, no change was made to the application to optimize
the DMA transfers. Therefore, the execution model of the
application is unchanged, the software computationbeing re-
placed with the hardware counterpart. The application, thus,
for each ray writes the input data to the DMA buffer, triggering
the transfer to the needed FPGA core, and then reads the output
data. Hence, the sequence of operations is the one shown in
Fig. 5, with memory copies of inputs and outputs that are on
the critical path.

GUI prototype

In order to test the hardware-ported application, show
the hardware functionalities and check the correctness of the
hardware rendering, a demo application was developed that
shows a GUI displaying the images rendered on the Spear

Fig. 9. The GUI prototype application to test the hardware port.

138

board, as visible in Fig. 9.
In particular, the main steps to use the application are:

1) the application connects to the Spear platform
through an SSH interface

2) the application downloads the cross compiled binary
application and the related configuration files on the
Spear file system

3) the user selects on the GUI which primitive to render
(sphere, ring or triangle) and how to render it (in
hardware or in software)

4) the application runs the raytracing algorithm based
on the choices made by the user and waits for the
completion

5) the application loads the result image from the board
to the host PC, automatically showing it on the screen

VI. RESULTS

This section reports the performance analysis on DMA
data transfer for the STM Spear Board used to implement the
RayTracer algorithm and the details on the HW Cores realized
using High Level Synthesis tools along with the results of
executing the HW version of the raytracer.

DMA Performance Evaluation

In order to analyze overall performance of the system, some
metrics should considered:

• CPU Speed

• AHB Bus Speed

• Bandwidth between main memory and FPGA

Since the frequency of CPU is 600 Mhz and the one of
AHB bus is 166 Mhz, the calculation of bandwidth between
central memory and FPGA requires a test bench. The way
implemented to transmit data from memory to external board
is through DMA core, and the test consists in an application
that does a copy of data from one location of memory to
another. These memory copies are performed with the use of
the DMA core so data go to FPGA and then come back to
memory, measuring the t time required to transmit d bytes
and obtaining a bandwidth b=d/t. From the point of view of
the operating system the DMA is an external peripheral and
an application need a presence of driver in order to use this
peripheral. Currently there are two ways of implementing the
driver, the first one is let the driver totally in kernel space and
export some interfaces into user space, for example with the
use of device interfaces. The second one is move the logic as
much as possible into user space and let in kernel space only
the strict necessary to build infrastructure of communication.
We calculated bandwidth with both solutions, the following
figures represent the results obtained with this architecture.
The blue line of Fig. 10 indicates the bandwidth with the first
solution above (driver totally in kernel space), in this case
the data must be copied from user buffer into kernel buffer
and this impacts enormously on bandwidth. The green line
of Fig. 11 indicates the second solution where the copies are
eliminated and there is not context switch, the bandwidth here
is the maximum theoretically achievable with this connections
between SOC and FPGA. This two graphs should be compared

Fig. 10. Transfer speed of data copy between memory and hardware cores
with driver.

Fig. 11. Transfer speed of data copy between memory and hardware cores
with user-space memory mapping.

with the same test bench executed purely in software by the
ARM processor, looking at the orange line in Fig. 12.

Fig. 12 shows the performance of the memory hierarchy,
which consists in 2 levels of cache connected to a main
memory via an AXI 64 bus at 533MHz. The test shows
that the memory bandwidth stabilizes around 28 MB/s, for
large amounts of data moved. This measure serves as a
baseline for following measures, to foresee the possibility of
any performance bottleneck that might occurr when using the
FPGA acceleration.

Fig. 10, instead, shows the performance obtained with the
usual Linux driver interface, that consists in a sequence of
write() and read() calls. These calls, according to Fig. 5, need

Fig. 12. Transfer speed of data copy inside main memory.

139

Fig. 13. Execution time of the software and hardware implementations of
the Raytracing algorithm.

heavy context switch and data copy operations between user-
space and kernel buffers that impact the final performance
negatively. This, in our opinion, explains the performance loss
with respect to Fig. 11. Nonetheless, even in the best case
of Fig. 11 the performance is constantly below that achieved
in Fig. 12; this definitely indicates the bus transfer as an
unavoidable bottleneck when using hardware acceleration.

HW Raytracer Implementation

Fig. 13 shows the execution time of the software and
hardware implementations, where the software one has unitary
execution time. We immediately notice that the overall perfor-
mance decreases, the hardware-application being effectively
slowed-down by a 1.4 factor. This slowdown is due to the per-
formance of the communication along the AHBLite channel:
since only few data are sent on each call, the DMA transfer is
done in small bursts with low throughput (as from Fig. 10) and
synchronously with respect to the application execution, thus
maximizing the impact of the communication and limiting the
final performance.

Raytracer design with FASTER Toolchain

The FASTER toolchain has been used in the analysis and
implementation of the application. In particular the mapper,
scheduler and floorplan tools have been used to help in the
realization of the HW architecture. The application task graph
for relevant functions has been created manually and the
SW and HW implementations of the functions computing the
intersections have been profiled with tools or using profiling
information provided by Xilinx Vivado HLS, which was used
to create VHDL starting from original C code. At this point
the task graph of the original application provided by STM
with the related profiling information has been encoded in
the XML format using the GUI developed in the FASTER
project and the mapper and scheduler tool determined that with
the original implementation the best architecture implementing
the application is the one using only SW functions. This can
be easily explain by the fact that the original code computes
one intersection at the time and in this case the HW cores
experience a slow down due to the continuous overhead of
DMA transfer.

VII. FUTURE WORK

This section identifies the main changes the hard-
ware/software components need to better leverage the capabili-
ties of the FPGA chip employed. To foresee a feasible scenario,
we devised these changes with respect to the current features of
the platform. However, also modifications to the platform are
required, in order to alleviate the bottleneck effects we found
in previous sections, which hinder the attempts to obtain a real
acceleration.

Platform modifications

The results show the impact of the communication channel,
that heavily affects the transmission and also the software
design. In our opinion, the main limitation is the AHBLite
protocol, which imposes a half-duplex communication pattern
and provides a single channel. The presence of only one
channel, for example, prevents the application from sending
data to multiple accelerators, thus impeding full parallelism
among multiple cores. Focusing on the single computational
core, we envision the need of a full-duplex communication
pattern, to allow a continuous stream of data that would
increase the usage of each core (that now pauses waiting for
new inputs) and would remove the need of long input/output
queues, thus with area saving. A solution to some of these
issues would be the adoption of the AHB full protocol, which
is a ”superset“ of the current AHBLite protocol and, thus,
should not require excessive changes to the existing design.
But this protocol, albeit contemplating the presence of multiple
channels, does not allow a full-duplex communication, thus
with a potentially low gain in terms of exploitable parallelism
and of benefits. Therefore, we finally envision the adoption of
the AXI protocol, which, among other features, allows a high
performance full-duplex communication. The adoption of this
well-known protocol (for which many IPs already exist, easing
the development) would introduce slight modifications to the
architecture of the platform, but would definitely remove the
main bottleneck found.

Hardware modifications

The current implementation of the transmission capabilities
requires the software to specify to which core the data are
directed by writing a register of the DMA memory interface. In
case it is not possible to send large amounts of data to a single
core, many small data amount are sent to various cores, re-
programming the DMA interface on every transfer. This splits
the data stream into multiple short bursts, thus penalizing the
transfer rate (in Fig. 10, the rate increases with the burst size).
To avoid this bottleneck, a component should be placed in
front of the core that routes the data to the proper core, for
example based on the value at the head of the queue.

Another optimization involves the output handling: in the
current implementation, all the results are gathered back to
the software component, which inspects them and discovers
whether an intersection is present. Hence, output bundles
containing no intersection, and thus useless for the following of
the computation, are sent over the bus, wasting bandwidth. A
component that performs this inspection directly on the FPGA
would, on the contrary, save this bandwidth. Its main drawback
is the increasing complexity of the transmission for output

140

collection: since it is not possible to predict how many outputs
correspond to a real intersection, the amount of data to be sent
back would become unpredictable, thus preventing software
from specifying its measure to trigger the DMA transfer. A
possible solution to this issue would be to expose the amount
of the output data to software, for example through the memory
mapped registers.

Software modifications

With the previous hardware modifications in mind, the
software component must be tailored in order to leverage the
new, proposed hardware capabilities.

First of all, the computation part should be separated
from the transmission, making the two parts working asyn-
chronously in order to send over the bus large amount of data
without stopping the software computation. To this aim, we
envision a solution with two threads, exploiting the dual core
CPU available. The first thread continuously computes input
data and serializes them inside a single buffer, from which they
are sent to the accelerators for the computation of intersections.
This thread also receives the results inside another buffer, from
which it computes the color contribution of each intersection
on the final image. The second thread, instead, is in charge of
managing the communication, sending data to the core when
the input buffer is full enough and gathering results from the
output queue when this is full.

These modifications heavily impacts on the raytracing
algorithm, changing its design. Indeed, while the current im-
plementation generates reflected rays starting from the original
ones in a depth-first manner, the need of producing input
data for the hardware cores without waiting for intersections
requires a breadth-first approach in the rays generation. By
shooting long sequences of independent rays, it is possible
to rapidly fill the input buffer, allowing the transmission of
many data in a single burst while the software continues
to compute inputs. But, allowing long input sequences to
be buffered for transmission requires the two threads to be
carefully coordinated, to avoid, e.g., buffer overflows or not-
yet-used output data to be overwritten by newer outputs,
loosing data.

VIII. CONCLUSION

This paper reports the work done in the EU FASTER
Project; in particular it reports a case study involving the
use of the toolchain developed during the project in order to
assist the designer in port an application on a HW device.
The case study discussed in this work use the raytracer
algorithm as target application and the STM Spear Evaluation
Board as target device. The raytracer algorithm is a state
of the art solution for high quality scene rendering which
exploits physics simulation of ray lights and their reflections
on object surfaces to obtain realistic images. The STM SPEAR
evaluation board is a development board that is intended to be
used for rapid prototyping, in particular to evaluate software
systems developed for embedded platforms and how they could
benefit from external hardware acceleration. To this end the
board can be expanded with an external daughter board which
in our case features a Xilinx Virtex5 FPGA that we used to
prototype and investigate a possible HW implementation of
the raytracer application.

The paper reports the steps done for the realization of the
prototype and the results obtained on the target device. Even
though the results are not yet sound we believe that, with few
changes in both HW and SW stack as discussed in Section
VII, the solution proposed in this work might be promising.

ACKNOWLEDGMENTS

This work was partially funded by the European Commis-
sion in the context of the FP7 FASTER project (#287804).

REFERENCES

[1] http://www.hitech-projects.com/euprojects/ACOTES/,
[Online; accessed March 2012].

[2] http://andres.offis.de/, [Online; accessed March 2012].
[3] http://www.fp7-faster.eu/, [Online; accessed May 2012].
[4] http://hartes.org/hArtes/, [Online; accessed March 2012].
[5] http://www.openmp.org/, [Online; accessed May 2012].
[6] http://www.reflect-project.eu/, [Online; accessed March

2012].
[7] K. Bruneel, “Efficient Circuit Specialization for Dynamic

Reconfiguration of FPGAs,” PhD thesis, Ghent Univer-
sity, 2011.

[8] C. B. Cameron, “Using FPGAs to supplement ray-tracing
computations on the Cray XD-1,” in Proc. of the DoD
High Performance Computing Modernization Program
Users Group Conference, Jun. 2007, pp. 359–363.

[9] R. Cattaneo et al., “Smash: A heuristic methodology
for designing partially reconfigurable mpsocs,” in Rapid
System Prototyping (RSP), 2013 International Symposium
on, Oct 2013, pp. 102–108.

[10] R. Cattaneo et al., “Para-sched: a reconfiguration-aware
scheduler for reconfigurable architectures,” in Reconfig-
urable Architecture Workshop (RAW) 2014, May 2014,
pp. 102–108.

[11] P. Lysaght et al., “Enhanced Architectures, Design
Methodologies and CAD Tools for Dynamic Reconfigu-
ration of Xilinx FPGAs (Invited Paper),” in Proceedings
of the IEEE Conference on Field Programmable Logic
and Applications (FPL), August 2006, pp. 1–6.

[12] J. Nickolls et al., “Scalable parallel programming with
CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[13] C. Pilato et al., “A2b: An integrated framework for
designing heterogeneous and reconfigurable systems,” in
Adaptive Hardware and Systems (AHS), 2013 NASA/ESA
Conference on, June 2013, pp. 198–205.

[14] J. Schmittler et al., “Realtime ray tracing of dynamic
scenes on an FPGA chip,” in Proc. of the Conf. on
Graphics hardware, Jul. 2004, pp. 95–106.

[15] A. Segovia et al., “Iterative layer-based raytracing on
cuda,” in Proc. of the Int.l Performance Computing and
Communications Conference (IPCCC), Dec. 2009, pp.
248–255.

[16] J. E. Stone et al., “OpenCL: A parallel programming stan-
dard for heterogeneous computing systems,” Computing
in science & engineering, vol. 12, no. 3, p. 66, 2010.

[17] S. Woop et al., “Rpu: a programmable ray processing
unit for realtime ray tracing,” in ACM Transactions on
Graphics (TOG), vol. 24, no. 3, 2005, pp. 434–444.

141

