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Abstract

n [15], Shult introduced a class of parapolar spaces, the so-called near-polar
spaces. We introduce here the notion of a polarized non-abelian representation of a
slim near-polar space, that is, a near-polar space in which every line is incident with
precisely three points. For such a polarized non-abelian representation, we study
the structure of the corresponding representation group, enabling us to generalize
several of the results obtained in [14] for non-abelian representations of slim dense
near hexagons. We show that with every polarized non-abelian representation of a
slim near-polar space, there is an associated polarized projective embedding.
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1 Introduction

Projective embeddings of point-line geometries have been widely studied. A projective
embedding is a map from the point set of a point-line geometry S to the point set of
a projective space PG(V') mapping lines of S to full lines of PG(V). In case S has
three points per line, the underlying field of V' is Fy. For such a geometry, a projective
embedding can alternatively be viewed as a map p — @, from the point set of S to the
nontrivial elements of the additive group of V' such that if {p;, p2, ps} is a line of S, then
Upy = Up, +Up,. This alternative point of view allows to generalize the notion of projective
embeddings to so-called representations, where points of the slim geometry are no longer
mapped to points of a projective space or to nonzero vectors of a vector space, but to
involutions of a group R, the so-called representation group. If R is a non-abelian group,
then the representation itself is also called non-abelian.

Non-abelian representations have been studied for a variety of geometries, including
polar spaces and dense near polygons. In this paper, we study non-abelian representations
for a class of parapolar spaces that includes both the polar spaces and the dense near
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polygons. This class of parapolar spaces was introduced by Shult in [15] and called near-
polar spaces in [2].

In this paper, we restrict to those near-polar spaces that are slim and to a particular
family of non-abelian representations, the so-called polarized ones. For polarized non-
abelian representations of slim near-polar spaces, we derive quite some information about
the representation groups. We show that these representation groups are closely related
to extraspecial 2-groups, and obtain information about the centers of these groups. We
also show that with every polarized non-abelian representation of a slim near-polar space,
there is an associated polarized projective embedding (by taking a suitable quotient).

2 Preliminaries

2.1 Partial linear spaces and their projective embeddings

Let § = (P, L,]I) be a point-line geometry with nonempty point set P, line set £ and
incidence relation I C P x L.

We call § a partial linear space if every two distinct points of S are incident with at
most one line. We call § slim if every line of § is incident with precisely three points.
In the sequel, all considered point-line geometries will be partial linear spaces. We will
often identify a line with the set of points incident with it. The incidence relation then
corresponds to “containment”.

A subspace of S is a set X of points with the property that if a line L has at least
two of its points in X then all the points of L are in X. A hyperplane of S is a subspace,
distinct from P, meeting each line of S.

The distance d(z1,z5) between two points z; and xs of S will be measured in the
collinearity graph of S. A path of minimal length between two points of § is called a
geodesic. A subspace X of § is called conver if every point on a geodesic between two
points of X is also contained in X. If z; and x5 are two points of §, then the intersection
of all convex subspaces containing {x1, 25} is denoted by (z1,x9). (This is well-defined
since P is a convex subspace.) The set (x,xs) itself is a convex subspace and hence it
is the smallest convex subspace of S containing {x,z2}. The subspace (z1,zs) is called
the convex closure of z; and 5.

A full projective embedding of S is a map e from P to the point set of a projective
space X satisfying: (i) (e(P))s = %; and (ii) e(L) := {e(x) | x € L} is a full line of ¥ for
every line L of §. If e is moreover injective, then the full projective embedding e is called
faithful. A full projective embedding e from &S into a projective space ¥ will shortly be
denoted by e : § — X.

If N is the maximum dimension of a projective space into which S is fully embeddable,
then the number N + 1 is called the embedding rank of S and is denoted by er(S). The
number er(S) is only defined when S is fully embeddable.

Two full projective embeddings e; : S — ¥y and ey : § — X5 of S are called isomorphic
(denoted by e; = eg) if there exists an isomorphism 6 from 3; to ¥ such that e; = foe;.

Let e : § — X be a full projective embedding of S and suppose « is a subspace of ¥
satisfying the following two properties:



(Q1) e(p) & « for every point p of S;
(Q2) (a,e(p1)) # (o, e(p2)) for any two distinct points p; and py of S.

We denote by 3 /a the quotient projective space whose points are those subspaces of ¥
that contain « as a hyperplane. Since « satisfies properties (Q1) and (Q2), it is easily
verified that the map which associates with each point = of S the point (o, e(z)) of ¥/«
defines a full projective embedding of S into ¥/a. We call this embedding a quotient of
e and denote it by e/a.

If § is a fully embeddable slim partial linear space, then by Ronan [12], S admits up to
isomorphism a unique full projective embedding € : S — 3 such that every full projective
embedding e of § is isomorphic to a quotient of e. The full projective embedding e is
called the universal embedding of S. We have er(S) = dim(X) + 1. If S admits a faithful
full projective embedding, then the universal embedding e of S is also faithful.

2.2 Near polygons

A partial linear space S = (P, £,1) is called a near polygon if for every point p and every
line L, there exists a unique point on L nearest to p. If d € N is the maximal distance
between two points of S (= the diameter of S), then the near polygon is also called a
near 2d-gon. A near 0-gon is a point, a near 2-gon is a line. Near quadrangles are usually
called generalized quadrangles. A near polygon is called dense if every line is incident
with at least three points and if every two points at distance 2 have at least two common
neighbors.

2.3 Polar and dual polar spaces

A partial linear space S = (P, L, 1) is called a polar space if for every point p and every line
L, either one or all points of L are collinear with p. The radical of a polar space is the set of
all points x which are collinear with any other point. A polar space is called nondegenerate
if its radical is empty. A subspace of a polar space is said to be singular if any two of
its points are collinear. The rank r of a nondegenerate polar space is the maximal length
r of a chain Sp C S; C --- C S, of singular subspaces where Sy = () and S; # S;; for
all i € {0,...,7 — 1}. A nondegenerate polar space of rank 2 is just a nondegenerate
generalized quadrangle. The rank of a singular subspace S of a nondegenerate polar space
is the maximal length k of a chain Sy C S C --- C S of singular subspaces such that
So =0, Sy = S and S; # S;q for all i € {0,...,k — 1}. Singular subspaces of rank r
are also called maximal singular subspaces, those of rank r — 1 are called next-to-mazimal
singular subspaces. A nondegenerate polar space is called thick if every line is incident
with at least three points and if every next-to-maximal singular subspace is contained in
at least three maximal singular subspaces.

With every (thick) polar space S of rank r > 1, there is associated a partial linear space
A, which is called a (thick) dual polar space of rank r. The points of A are the maximal
singular subspaces of S, the lines of A are the next-to-maximal singular subspaces of S,



and incidence is reverse containment. Every thick dual polar space of rank r is a dense
near 2r-gon.

2.4 Near-polar spaces

In [15], Shult introduced a class of point-line geometries. These point-line geometries were
called near-polar spaces in [2]. Near-polar spaces of diameter n are inductively defined as
follows.

A near-polar space of diameter 0 is just a point and a near-polar space of diameter 1
is a line having at least three points. A near-polar space of diameter n > 2 is a point-line
geometry S satisfying the following five axioms:

(E1) S is connected and its diameter is equal to n;
(E2) Every line of S is incident with at least three points;

(E3) Every geodesic g, x1, ...,z in S can be completed to a geodesic zg, x1, . . . , Tk, Tpi1,
..., T, of length n;

(E4) For every point z of S, the set H, of points of S at distance at most n — 1 from x
is a hyperplane of §;

(E5) If 21 and x5 are two points of S with k := d(x,z3) < n, then the subgeometry of
S induced on the convex closure (xy,z5) is a near-polar space of diameter k.

The hyperplane H, mentioned in Axiom (E4) is called the singular hyperplane of S with
deepest point x.

The near-polar spaces of diameter 2 are precisely the nondegenerate polar spaces in
which each line is incident with at least three points. Every near-polar space of diameter
n > 2 is a strong parapolar space in the sense of Cohen and Cooperstein [4]. The convex
closures of the pairs of points at distance 2 from each other are also called symplecta.

Every thick dual polar space and more generally every dense near polygon is a near-
polar space. The class of near-polar spaces also includes some half-spin geometries, some
Grassmann spaces and some exceptional geometries, see Shult [15, Section 6.

We will now discuss full projective embeddings of near-polar spaces. Most of what we say
here is based on De Bruyn [5].

Suppose e : § — ¥ is a full projective embedding of a near-polar space S = (P, L, I).
By Shult [15, Lemma 6.1(ii)], every singular hyperplane H,, z € P, of S is a maximal
(proper) subspace. This implies that II, := (e(H,))y is either X or a hyperplane of ¥.
The embedding e is called polarized if 11, is a hyperplane of ¥ for every point x of S. If e

is polarized, then the subspace N, := [ 11, is called the nucleus of e. By De Bruyn 5,
zeP
Proposition 3.4], the nucleus N, satisfies the conditions (Q1) and (Q2) of Section 2.1 and

the embedding € := e /N, is polarized.
Suppose now that S is a slim near-polar space. Then S admits a faithful full polarized
embedding, see Brouwer & Shpectorov [3] or De Bruyn [5, Proposition 3.11(7)]. So, S also
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has a universal embedding ¢ : § — 3. This universal embedding necessarily is polarized
and faithful. The embedding €/Nz is called the minimal full polarized embedding of S.
For every full polarized embedding e of S, the embedding € = ¢/N, is isomorphic to
€/Nz. Every full embedding of S is isomorphic to €/« for some subspace « of 5 satisfying
Properties (Q1) and (Q2). If a; and as are two subspaces of & satisfying (Q1) and (Q2),
then e/a; = e/ay if and only if o = as.

Suppose again that S is a slim near-polar space and that e : § — X is a full polarized
embedding of S. This means that for every point = of S, the subspace (e¢(H,))s is a
hyperplane II, of ¥. By De Bruyn [5, Propositions 3.5 and 3.11(ii)], the map z +— II,
defines a polarized full embedding e* of S into a subspace of the dual ¥* of ¥. The
embedding e* is called the dual embedding of e. The nucleus of e* is empty. So, the dual
embedding e* is isomorphic to the minimal full polarized embedding of S.

2.5 Extraspecial 2-groups

In the sequel, we will adopt the following conventions when dealing with groups. For
elements a, b of a group G, we write [a,b] = a~'b~tab and a® = b~ 'ab. For elements x,y, 2
of G, we have [zy, z| = [z, ][y, 2] and [z, yz] = [z, z|[z,y]?. We denote by C,, the cyclic
group of order n.

A finite 2-group G is called extraspecial if its Frattini subgroup ®(G), commutator
subgroup G’ = [G, G| and center Z(G) coincide and have order 2. We refer to [7, Section
20, pp.78-79] or [8, Chapter 5, Section 5] for the properties of finite extraspecial 2-groups
which we will mention now.

An extraspecial 2-group is of order 2'*2" for some integer n > 1. Let Dg and Qs,
respectively, denote the dihedral and the quaternion groups of order 8. A non-abelian
2-group of order 8 is extraspecial and is isomorphic to either Dg or Q). If G is an
extraspecial 2-group of order 272" n > 1, then the exponent of G is 4 and G is either
a central product of n copies of Dg, or a central product of n — 1 copies of Dg and one
copy of Qs. If the former (respectively, latter) case occurs, then the extraspecial 2-group
is denoted by 21t%" (respectively, 2172").

Suppose G is an extraspecial 2-group of order 2" n > 1, and set G’ = {1,A}. Then
V = G/G' is an elementary abelian 2-group and hence can be regarded as a 2n-dimensional
vector space over [Fy. For all z,y € G, we define

/ n OGFQ if I:(L‘,y:l:l,
Then f is a nondegenerate alternating bilinear form on V. For all z € G, 2? € G' = {1, \}
as G/G' is elementary abelian. We define
N [ O0eF, ifz*=1,
un)_{leﬁgih?:A

Then ¢ is a nondegenerate quadratic form on V. The bilinear form associated with ¢ is
precisely f, that is,

q(2G'yG") = q(2G") + q(yG') + f(2G', yG")
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for all x,y € G. The nondegenerate quadratic form ¢ defines a nonsingular quadric of
PG(V), which is of hyperbolic type if G = 217" or of elliptic type if G = 217"

2.6 Representations of slim partial linear spaces

Let S = (P, L,I) be a slim partial linear space. A representation [10, p.525] of S is a
pair (R,), where R is a group and % is a mapping from P to the set of involutions in
R, satisfying:

(i) R is generated by the image of v;

(i) Y(x)Y(y) = ¥(z) for every line {z,y, z} of S.

If {z,y,2} is a line of S, then condition (ii) implies that ¢ (x), ¥ (y), ¥ (z) are mutually
distinct and [¢(z),¥(y)] = [¢(z),¥(2)] = [¥(y),¥(z)] = 1. The group R is called a
representation group of S. The representation (R, 1) of S is called faithful if 1 is injective.
Depending on whether R is abelian or not, the representation (R, ) itself will be called
abelian or non-abelian. For an abelian representation, the representation group is an
elementary abelian 2-group and hence can be considered as a vector space over the field
Fy with two elements. In this case, the representation thus corresponds to a full projective
embedding of S.

We refer to [9] and [13, Sections 1 and 2] for representations of partial linear spaces
with p + 1 points per line, where p is a prime.

Suppose S; and S, are two slim partial linear spaces. Let (R;, 1), i € {1,2}, be a
representation of S;. The representations (Ry,v1) and (Rg, 1) are called equivalent if
there exists an isomorphism 6; from §; to S; and a group isomorphism 6y from R; to Ry
such that 1 0 01(x) = 63 o 11(x) for every point x of §;. If §; = Sy, then (Ry,1;) and
(Rs, 1) are called isomorphic if there exists a group isomorphism 6 from R; to Ry such
that ¢y () = 6 o ¢y (x) for every point z of S;.

Suppose (R, 1) is a representation of a slim partial linear space S. Let N be a normal
subgroup of R such that ¢(x) ¢ N for every point x of S. For every point = of S,
let ¢y (z) denote the element ¢ (x)N of the quotient group R/N. Then (R/N,vy) is a
representation of S which is called a quotient of (R, ). If (R1,v1) and (R, ) are two
representations of S, then (Ra, 1) is isomorphic to a quotient of (Ry,1;) if and only if
there exists a group epimorphism 6 from R; to Ry such that is(x) = 6 o ¢y (). If this is
the case, then (Rs,15) is isomorphic to (R;/N, (¢1)y), where N = ker ().

2.7 Polarized and universal representations of slim near-polar
spaces

Let § = (P, L,1) be a slim near-polar space of diameter n > 2.

e A representation (R,1) of S is called quasi-polarized if [1p(z),1(y)] = 1 for every
two points x and y of S at distance at most n — 1 from each other.



e An abelian representation (R,v) of S is called polarized if the corresponding full
projective embedding (in the sense of Section 2.6) is polarized.

e A non-abelian representation (R,1) of S is called polarized if [1p(x),1(y)] = 1 for
every two points z and y of S at distance at most n — 1 from each other, that is, if
the representation is quasi-polarized.

We will later show that with every polarized non-abelian representation of S, there is an
associated full polarized embedding of S (which is obtained by taking a suitable quotient).

(1) Let R, be the group defined by the generators r,, x € P, and the following relations:
e 2 =1, where z € P;
o r,1,r, =1, where z,y, 2 € P such that {z,y,2} € L.

For every point x of S, we define ibvu(ac) =1, € R,.

(2) Let }N%p be the group defined by the generators r,, x € P, and the following relations:
e 12 =1, where z € P;
o [ry,7,] =1, where z,y € P such that d(z,y) <n

o r,r,r, = 1, where z,y, 2z € P such that {z,y, 2} € L.

For every point z of S, we define ¢,(z) := r, € R,.

(3) As mentioned before, S has faithful full projective embeddings. The universal projec-
tive embedding of § can be constructed as follows. Let V' be a vector space over Fy with
a basis B whose elements are indexed by the points of P, say B = {v, |z € P}. Let W
be the subspace of V' generated by all vectors 0., + U, + U., where {x1, 25, 23} is some
line of S. Let V be the quotient vector space V/W and for every point x of S, let v, be
the vector o, + W of V. The map z — (0,) defines a full projective embedding & of S
into PG (V) which is isomorphic to the universal embedding of S.

Proposition 2.1. (1) (ﬁu,zf/)vu) is a faithful representation of S.
(2) (Ep,qu) is a faithful polarized representation of S.
(3) If (R,v) is a representation of S, then (R,) is isomorphic to a quotient of(ﬁu, Ju)

(4) If (R,%) is a quasi-polarized representation of S, then (R,v) is isomorphic to a
quotient of (Ry,y).

Proof. We show that (ép, Jp) is a faithful representation. Since v, + v, = W for every
r e P, (=) + (—vy) + 0, +v, =W for all z,y € P and v, + v, + v, = W for every
line {z,y,z} of S, we know from von Dyck’s theorem that there exists an epimorphism
from R to the additive group of 1% mapping r, to v, for every point z of S. Since € is a



full projective embedding, v, # W and hence 7, # i, 1 for every x € P. The latter fact

implies that (Ep,zzp) is a representation. Since € is a faithful projective embedding, we
have v, # v, for any two distinct points =,y € P. This implies that also r, # B Tv So,

(Ep, {D/p) is a faithful representation.

In a completely similar way, one can show that (Eu, Ju) is a faithful representation.

Claims (3) and (4) are straightforward consequences of von Dyck’s theorem.

By construction, the representation (ép, @Zp) is quasi-polarized and hence polarized if
}N%p is non-abelian. Suppose Ep is abelian. Then let e, denote the full projective embedding
of § corresponding to (Ep, Jp). Let (E, @Z) denote the abelian representation corresponding
to the universal projective embedding € of §. By Claim (4), (E, 1;) is isomorphic to a
quotient of (ﬁp, Jp), and hence ¢ is isomorphic to a quotient of e,,. As e cannot be a proper
quotient of some full embedding of S, the projective embeddings € and e, are isomorphic.

So, e, is polarized, or equivalently, (R,,,) is polarized. ]

The representation (Eu, {ﬁvu) is called the universal representation of S. The representation
(Ry, 1) is called the universal polarized representation of S.

From Section 5 (see Lemma 5.3) it will follow that there exists a X e ﬁp such that

[ip(x), Jp(y)] = X for every two points z and y at distance n from each other. If A = 1,
then the universal polarized representation is abelian and hence corresponds to the uni-
versal projective embedding of S (which is always polarized). If A # 1, then the universal
polarized representation of S is non-abelian. Both instances can occur. Indeed, the
slim dual polar space DW(2n — 1,2) and the slim dense near hexagons Q(5,2) x Lg,
Q(5,2) ® Q(5,2) have non-abelian polarized representations [6, 11], while no finite slim
nondegenerate polar space has non-abelian representations [13, Theorem 1.5(i)]. Com-
puter computations showed that other dense near polygons (like the dual polar space
DH(5,4)) also have non-abelian polarized representations (in extraspecial 2-groups), but
the authors are still looking for computer free descriptions of these representations.

3 Main results

For a finite slim near-polar space S, we denote the embedding rank er(S) also by ert(S).
The vector space dimension of the minimal full polarized embedding of § will be denoted
by er~(S). We will see in Proposition 4.2 that the number er~(S) is even. By [14],
every non-abelian representation of a slim dense near hexagon is polarized. The following
theorem is the first main theorem of this paper. It generalizes some results regarding slim
dense near hexagons obtained in [14]. We will prove it in Section 5.

Theorem 3.1. Suppose S is a finite slim near-polar space of diameter n > 2 having
some polarized non-abelian representation (R,1)). Then n > 3 and the universal polarized

representation (R,,1,) of S is also non-abelian. Moreover,

(1) v is faithful and (x) ¢ Z(R) for every point x of S.
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(i7) R is a 2-group of exponent 4, |R'| =2 and R' = ®(R) C Z(R).
(iii) If |Z(R)| = 2!*1, then Z(R) is isomorphict to either (Cy)!1 or (Cy)!1 x C.

(iv) R is of order 2° for some integer (3 satisfying 1+er=(S) < 8 < 1+er*(S). We have
B =1+er™(S) if and only if R is an extraspecial 2-group. We have 8 = 1+er™(S)
if and only if (R, ) is isomorphic to (R,,1,).

(v) If Il = er™(S) — er=(S), then Z(R,) has order 27! and so is isomorphic to either
(CQ)Z+1 or (sz)l—l X C4.

In Section 6, we prove the following results.

Theorem 3.2. Suppose S s a finite slim near-polar space of diameter n > 3 having
polarized non-abelian representations. Then the following hold:

(1) The polarized representations of S are precisely the representations of the form
(R,/N, (¢¥p)n), where N is a subgroup of R, contained in Z(R,).

(#3) If Ny and Ny are two subgroups of Z(ﬁp), then the representations (Ep/Nl, (Jp)Nl)
and (R,/Na, (V¥p)n,) of S are isomorphic if and only if Ny = Ns.

Remark. If [ = er®(S) —er~(S), then we will see in Section 6 that Theorems 3.1(v) and

3.2 imply that the number of nonisomorphic polarized non-abelian representations of § is
-1

141 I _ I
equal to the sum? [ltl} -3 m if Z(R,) = (Cy)"!, and equal to Y m - [121}
i=0 2 i=obt J2 =0t -2 =0 2

if Z(R,) = (Cy)= x Cy.

Theorem 3.3. Suppose S is a finite slim near-polar space of diameter n > 3 having
polarized non-abelian representations. Set | := er™(S) — er™(S). Then S has a polarized
non-abelian representation (R,v) with |R| = 214" ) if and only if Z(}N%p) >~ (Cy)L If
this is the case then there are up to isomorphism 2! such representations. Moreover, the
representation groups of any two of them are isomorphic (to either 21+6T7(S) or 21_+6T7(8)).
Theorem 3.4. Suppose S is a finite slim near-polar space of diameter n > 3 having
polarized non-abelian representations. Suppose Z(R,) = Oy x Cy, where | = ert(S) —
er~(S) > 1. Then |R| > 2% ) for every polarized non-abelian representation (R, 1))
of S. Moreover, there are up to isomorphism 2= polarized non-abelian representations
(R,v) with |R| = 2%T¢ ) If (R,) is such a representation, then Z(R) = Cy.

f I = 0, then (C3)~! is not defined. In this case, this sentence should be understood as “Z(R) is
isomorphic to Cy”.
2The terms occurring in this sum are Gaussian binomial coefficients.



4 Some properties of near-polar spaces

Let S be a near-polar space of diameter n > 1. Two points x and y of S are called
opposite if they are at a maximum distance from each other, that is, d(z,y) = n. For two
distinct points z,y of S, we write x ~ y if they are collinear.

Proposition 4.1. Let S be a near-polar space of diameter n > 1. Let T be the graph
whose vertices are the ordered pairs of opposite points of S, with two distinct vertices
(x1,y1) and (x9,ys) being adjacent whenever either x1 = xo and yy ~ ya; or T1 ~ Ty and
y1 =1vy2. Then I' is connected.

Proof. Let (x1,y1) and (za,y2) be two arbitrary vertices of I'. We prove that (z1,y;) and
(x2,y2) are contained in the same connected component of T'.

For every point x of S, the subgraph of the collinearity graph of & induced on the set
of points at distance n from z is connected by Shult [15, Lemma 6.1(ii)]. So, if z; = x5
or y; = ys, then (x1,y1) and (x2,y,) belong to the same connected component of T'.

Assume that x; # x9 and y; # yo. We prove that there exists a point y3 at distance n
from x; and 5. If y3 is such a point, then (aq, by) and (asq, b2) belong to the same connected
component of I' for every (alab17a2>b2) S {(3517?/1,96171%)» (fl,yg,fﬁz,yza)a (5172,y3,$2,?/2)}7
proving that (x1,7;) and (z2,y2) also belong to the same connected component of T

The point y3 alluded to in the previous paragraph is defined as a point of S at distance
n from z; which lies as far away from x5 as possible. Suppose d(y3,x2) < n — 1 for such
a point y3. Then by Axiom (E3), there exists a point y, collinear with ys which lies at
distance k := d(y3,x2) + 1 from z5. By Axiom (E5), a near-polar space of diameter k
can be defined on the convex closure (z3,v4). By applying Axiom (E4) to this near-polar
space of diameter k, we see that the points of the line y3y, distinct from ys lie at distance
k = d(ys,z2)+1 from 9. By Axioms (E2) and (E4) applied to S, at least one of the points
of y3ys \ {ys} lies at distance n from z;. This contradicts the maximality of d(ys, z2). So,
d(z1,y3) = d(ze,y3) = n as we needed to prove. O

Proposition 4.2. Let S = (P, L,1) be a finite slim near-polar space of diameter n > 1,
let V' be a finite-dimensional vector space over Fy and lete : S — PG(V') be a full polarized
embedding of S into PG(V'). Then there exists a unique alternating bilinear form f on 'V
for which the following holds:

If x is a point of S and v is the unique vector of V' for which e(x) = (v), then
PG(v14) is a hyperplane of PG(V) which contains all the points e(y), where
y € P and d(z,y) < n — 1, and none of the points e(z), where z € P and
d(x,z) = n.

If e is isomorphic to the minimal full polarized embedding of S, then the alternating
bilinear form f is nondegenerate and hence er~(S) = dim(V) is even.

Proof. For every point x of S, let II, denote the unique hyperplane of PG(V') which
contains all the points e(y), where y € P and d(x,y) < n—1, and none of the points e(z),
where z € P and d(z, 2) = n.
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(1) We first prove the existence of the alternating bilinear form in the case e is isomorphic
to the minimal full polarized embedding of S. Then (I, = 0.

z€P
Recall that the map z + I, defines a full projective embedding e* of § into the dual

PG(V)* of PG(V). This embedding e* is called the dual embedding of e and is isomorphic
to the minimal full polarized embedding of S. So, there exists an isomorphism ¢ from
PG(V) to PG(V)* mapping e(z) to I, for every point = of S.

We prove that ¢ is a polarity of PG(V), or equivalently that ¢? = 1. Since ¢? defines
a collineation of PG(V), it suffices to prove that ¢*(p) = p for every point p belonging to
a generating set of PG(V). So, it suffices to prove that ¢(IL,) = ¢*(e(x)) = e(x) for every
point z of P. If y is a point at distance at most n — 1 from z, then e(y) € IL, implies that
¢(11,) € II,. Hence, ¢(IL,) is contained in the intersection I of all hyperplanes II,, where
y € P and d(z,y) < n — 1. Since e* is polarized, the hyperplanes II,, where y € P and
d(z,y) < n —1, generate a hyperplane of PG(V)*. So, I is a singleton. Since e(x) € II,
for every y € P satisfying d(x,y) < n — 1, we also have e(z) € I. Hence, ¢(I1,) = e(x) as
we needed to prove.

We now prove that ¢ is a symplectic polarity of PG(V). To that end, it suffices to
prove that p € p? for every point p of PG(V). Since PG(V) = (I'm(e)), it suffices to prove
the following;:

(a) e(x) € e(x)? for every x € P;

(b) if L = {p1,p2,ps3} is a line of PG(V) such that p; € p? and py € pg, then also
(]
p3 € p3.

Since e(z)? = II, and e(z) € II,, Property (a) clearly holds. If p, € p?, then {ps} C L C
ptNpy = L° C pf. 1f py & pf, then pf = (L?,p1), p§ = (L?,pa) and pj is the unique
hyperplane through L¢ distinct from p‘f and pg, implying that p? = (L?, p3). So, Property
(b) also holds in that case.

If f is the nondegenerate alternating bilinear form of V' corresponding to the symplectic
polarity ¢ of PG(V), then f satisfies the required conditions.

(2) Suppose e is not isomorphic to the minimal full polarized embedding of S. Let « be
the intersection of all subspaces II,, x € P, let U be the subspace of V' corresponding to
a and let W be a subspace of V' such that V = U @ W. For every point = of S, let €'(x)
denote the unique point of PG(W) contained in (o, e(x)). Then €’ is isomorphic to the
minimal full polarized embedding of S. By part (1) above, we know that there exists a
nondegenerate alternating bilinear form fy, on W such that if x is a point of S and w is
the unique vector of W for which ¢'(z) = (), then the hyperplane PG(w'/w ) of PG(W)
contains all points €'(y), where y € P and d(z,y) < n — 1, and none of the points e(z),
where z € P and d(z, z) = n. Now, for all 4y, us € U and all wy,wy € W, we define

f(uy + Wy, Uy + W2) = fw (w1, wa).

Then f is an alternating bilinear form on V.
Suppose z is a point of S. Let ¥ be the unique vector of V for which e(z) = (v) and
let w be the unique vector of W for which €¢'(z) = (w). Then (w) = (U,v) N W. We

11



also have (v4/) = (U, w*/w). Since PG(w'/w) contains all points €/(y), where y € P and
d(z,y) < n — 1, and none of the points €'(z), where z € P and d(z,z) = n, we have
that PG(91/) contains all points e(y), where y € P and d(x,y) < n — 1, and none of the
points e(z), where z € P and d(z, z) = n. So, the alternating bilinear form f satisfies the
required conditions.

(3) We now prove the uniqueness of the alternating bilinear form. Suppose f; and f, are
two alternating bilinear forms on V' satisfying the required conditions. Then g := f; — fo
is also an alternating bilinear form on V.

Suppose z1 and x5 are two points of S and let v;, ¢ € {1,2}, be the unique vector of
V for which e(z) = (v;). If d(z1,22) < n — 1, then fi(v1,02) = 0 = fo(01,02) and hence
g(v1,79) = 0. If d(x1,22) = n, then fi(v1,05) = 1 = fo(v1,0) and hence g(v1,72) = 0.
Since PG(V) = (e(z) |z € P), we get g = 0. Hence f; = fo. O

5 Structure of the representation groups

Let S = (P, L,1) be a finite slim near-polar space of diameter n > 2 and suppose (R, 1))
is a polarized non-abelian representation of S. In this section, we will prove all the claims
mentioned in Theorem 3.1.

Lemma 5.1. We have n > 3.

Proof. By [13, Theorem 1.5(i)], every representation of a finite slim nondegenerate polar
space is abelian. So, S is not a polar space and hence n > 3. O

Lemma 5.2. The universal polarized representation (Rp,@zp) s non-abelian. Moreover,
|§p| > 21+er+(8)'

Proof. As (R,) is a quotient of (ﬁp, ip), the universal polarized representation (ép, lzp)
itself should also be non-abelian. Since the abelian representation corresponding to the
universal projective embedding of S is quasi-polarized, it should be a quotient of (R,, )

by Proposition 2.1(4). This implies that |R,| > 21t (5), O
Later (Lemma 5.12) we will show that |R,| = 21+ (),

Lemma 5.3. Let ' be the graph as defined in Proposition 4.1. Then there exists an
involution A\ € R such that A\ = [(z),v(y)] for every vertex (z,y) of I'.

Proof. We first show that [¢(x1),1¥(y1)] = [¥(x2),¥(y2)] for any two adjacent vertices
(x1,11) and (x2,y9) of T'. Suppose 21 = x5 and y; ~ yo. Let y3 be the unique third point
of the line y;y. Then d(z1,y3) = n — 1. Since 1(y3) commutes with ¢(z1) and ¥ (ys), we
have [(z1), #(91)] = [$(21), $(92)6(s)] = [0(z1), H(3m)]. The case where ) ~ z, and
Y1 = Yo is treated in a similar way.

Now let = and y be two opposite points of S and set A = [¢(x), ¥ (y)]. By Proposition
4.1, I is connected. So, by the first paragraph, X is independent of the opposite points x
and y. Also A # 1 since (R, ) is polarized and non-abelian. Since A™' = [¢)(z), ¥ (y)] ™' =

[h(y), ¥ (x)] = A, we get \* = 1. 0

12



Corollary 5.4. (¢(z),v¥(y)) = Dg for every two opposite points x and y of S.

Proof. Since x and y are opposite points, (¢(x)¢(y))? = [ (z),¥(y)] = A by Lemma 5.3
and so ¥ (x)1(y) is of order 4. Hence (¢(x),¥(y)) = Ds [1, 45.1]. O

Lemma 5.5. ¢ is faithful and ¢(z) ¢ Z(R) for every point x of S.

Proof. Let z and y be two distinct points of & and let z be a point that is opposite
to z, but not to y (such a point exists by Axiom (E3)). Then [¢(y),¢(z)] = 1 and

[Y(x),¥(2)] = A # 1 by Lemma 5.3. Hence, ¥(x) # ¥ (y).
For a given point x, choose a point w opposite to z. Then [¢(x),¥(w)] = X # 1. So

U(x) ¢ Z(R). O
Lemma 5.6. R = {1,\} C Z(R).

Proof. Set T'= (\) = {1,A\}. Then T'C R’ by Lemma 5.3. We first show that 7" C Z(R).
Since R = (¢(z) | © € P), it is sufficient to prove that [¢)(x), \] = 1 for every point x of S.
Let y be a point of S opposite to x. Since ¥ (x), ¥ (y), A = [ (z),1(y)] all are involutions,
a direct calculation shows that [¢(z), A] = 1.

Being a central subgroup, 7" is normal in R. In the quotient group R/T, the generators
Y(x)T, x € P, commute pairwise. So R/T is abelian and hence R' C T. ]

Corollary 5.7. For a,b,c € R, |ab,c] = [a, c|[b, c] and [a, bc] = |a, b][a, c].

Proof. By Lemma 5.6, we have [ab, | = [a, c|’[b, c] = [a, c]-[b, c] and [a, bc] = [a, c]-[a, b]* =
[a,b] - [a, c]. O

Lemma 5.8. (1) For every r € R, we have r* € {1, \}.
(2) R is a finite 2-group of exponent 4 and R' = ®(R).

Proof. We show that 72 € {1, \} for every r € R\{1}. Set r = ¢ (z1)(x3) - - - ¥(x,,), where
Ty, Tg, ..., Ty, are points of S. Since \? = 1, ¢(x;)?* = 1 and [¢(x;),¥(x;)] € {1,A\} C Z(R)
forall 4,7 € {1,...,n}, we have r* € {1, A\}. It follows that r* = 1. Since R is non-abelian,
the exponent of R cannot be 2 and hence equals 4.

Since R = (¢(z) | x € P) and S is finite, the quotient group R/R' = (¢Y(z)R' | x € P)
is a finite elementary abelian 2-group. Since |R'| = 2 by Lemma 5.6, we get that R is
also a finite 2-group. Then the two facts that R’ is the smallest normal subgroup K of
R such that R/K is abelian and that ®(R) is the smallest normal subgroup H of R such
that R/H is elementary abelian [1, 23.2, p.105] imply R’ = ®(R). O

Since the quotient group R/R’ is an elementary abelian 2-group, we can consider
V = R/R' as a vector space over Fy. For every point x of S, let e(x) be the projective
point (¢(z)R’) of PG(V'). Notice that, by Lemmas 5.5 and 5.6, () R’ is indeed a nonzero
vector of V.

Lemma 5.9. The map e defines a faithful full projective embedding of S into PG(V).
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Proof. Since R/R' = (¢(x)R' | x € P), the image of e generates PG(V).

We prove that ¢ (zq1) R’ # 1 (x9) R’ for every two distinct points x; and x5 of S. Suppose
to the contrary that ¢ (z1)R' = ¢(x2)R. Since 1 is faithful by Lemma 5.5, we have
W(xq) # P(x2). So, ¥(x1) = Y(xa)\. By Axiom (E3), there exists a point z3 opposite
to x1, but not to xo. Then A\ = [¢(x1), ¥(x3)] = [(x2), Y(x3)] = [Y(z2),¢(z3)] = 1, a
contradiction.

Let L = {x1, 29,23} be a line of S. We have e(z;) = (¢(z;)R'), for i € {1,2,3}. Since
(x1)Y(z2) = Y(x3), we have ¥(x3) R = (x1) R/ (x2)R'. Hence {e(x1),e(xs),e(x3)} is a
line of PG(V). O

Definition. For all a,b € R, we define

f(alt, bR) :{ 0 it 0t -1

Since R’ = {1,A\} C Z(R), the map f:V x V — [y is well-defined.
Lemma 5.10. The map f:V xV — Fy is an alternating bilinear form of V.

Proof. The claim that f is an alternating bilinear form follows from the following facts.

e Since [a,a] = [1,a] = [a,1] = 1, we have f(aR',aR') = f(R,aR') = f(aR,R') =0
for all @« € R.

o Let xy,x9,51 € R. Since [z129,11] = [21, y1][z2, 1], we have f(z1R'zoR 1 R') =
f(le/, le,) + f(ﬂ?QR,, le/).

o Let x1,y1,y2 € R. Since [x1,11y2] = [z1,y1][71, 2], we have f(x1 R, y1 Ry R) =
f(l’lR/, le/) + f(lElR/, ng/). ]

Lemma 5.11. The embedding e of S into PG(V') is polarized.

Proof. For every point x of S, we define a certain subspace II, of PG(V'). Let v be the
unique vector of V for which e(x) = (). Then II,, is the subspace of PG(V) corresponding?
to the subspace v/ of V.

Let x; and 2 be two points of S and let v; = (x;)R', i € {1,2}. So e(x;) = (v;).
Then the following holds:

d(zi,29) <n—1 & [(z1),¥(22)] =1
& f(Y() R, ¢(2a)R) =0
& f(U1,72) =0
1y
< U2 €1y
& e(xg) € 1.

Now from the above it follows that II, = (e(H,))pc(v) is a hyperplane of PG(V) for every
point z of S, where H, is the singular hyperplane of § with deepest point x. So e is
polarized. O

3The map ¢, : R — R’ defined by ¢,(r) = [(z),7] is a homomorphism (see Corollary 5.7) which is
surjective. The kernel of ¢, is Cr(1(x)) which has index 2 in R by the first isomorphism theorem. Then
vL1 is precisely the image of Cr(1(z)) in V under the canonical homomorphism R — V;7 ~ rR’.
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Definition. We call e the full polarized embedding of S associated with the non-abelian
representation (R, ).

Lemma 5.12. (1) R is of order 2° for some 3 satisfying 1 +er=(S) < B < 1+ert(S).
(2) The following are equivalent:

e (R,%) is isomorphic to (]T?up,zf/;p);
o f=1+ert(S);

e ¢ is isomorphic to the universal embedding of S.
(3) The following are equivalent:
e f=1+er (S);

e R is an extraspecial 2-group;

e ¢ is isomorphic to the minimal full polarized embedding of S.

Proof. By Lemmas 5.9 and 5.11, e defines a full polarized embedding of S into PG(V).
So, er=(S) < dim(V) < ert(S). Since |R/R'| = 2°~!, we have dim(V) = 8 — 1 and hence
I1+er (S) < B <1+ ert(S). The lower bound occurs if and only if e is isomorphic to
the minimal full polarized embedding of S. The upper bound occurs if and only if e is
isomorphic to the universal embedding of S. From Lemma 5.2, the upper bound and the
fact that (R,) is isomorphic to a quotient of (R,,,), it follows that § = 1+ er*(S) if
and only if (R, ) is isomorphic to (}Nﬁp, QZp).

Now, R is extraspecial if and only if R’ = Z(R), that is, if and only if the alternating
bilinear form f is nondegenerate. For every point x of S, let v, be the unique vector of
V for which e(x) = (v,). Then (e(H,)) = PG((t,)1/) (see the proof of Lemma 5.11) is
a hyperplane of PG(V') for every point = of S. It follows that f is nondegenerate if and
only if the nucleus N, of e is empty, that is, if and only if e is a minimal full polarized
embedding of S. Thus R is extraspecial if and only if er(S) = dim(V) = g — 1. O

For every r € R, we set §(r) := rR' € V. Observe that if r1,75 € R, then f(0(r1),0(r2)) =
0if [r1,re] = 1 and f(0(r1),0(r2)) = 1 if [r1,72] = A. We denote by R, the radical of the
alternating bilinear form f. The subspace of PG(V') corresponding to R is precisely N.

Lemma 5.13. If N is a subgroup of R contained in Z(R), then §(N) C Ry.

Proof. Let ¢ € N and h € R. Then [g,h] = 1 implies that f(6(g),0(h)) = 0. Since
6(R) =V, it follows that 6(g) € Rs. Hence, 6(N) C Ry. O

Lemma 5.14. If U is a subspace of Ry, then 071(U) is a subgroup of R contained in
Z(R). If &im(U) = 1, then 0=*(U) is an abelian subgroup isomorphic to either C4™ or
Céfl X 04.
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Proof. Clearly, 6~'(U) is a subgroup of R. If ¢ € §7'(U) and h € R, then we have
f(6(g),0(h)) =0 since O(g) € U C Ry. This implies that [g,h] = 1. So, 6~1(U) C Z(R).
In particular, §=1(U) is abelian. By the classification of finite abelian groups, =!(U) is
isomorphic to the direct product of a number of cyclic groups. Since the exponent of R is
equal to 4, each of these cyclic groups has order 2 or 4. Lemma 5.8(1) then implies that
there is at most one cyclic group of order 4 in this direct product. If dim(U) = [, then
0~1(U)| = 2! and hence 1 (U) must be isomorphic to either (Cy)! or (Cy) "t xCy. [

Corollary 5.15. (1) We have Ry = 0(Z(R)).
(2) We have |Z(R)| = |R| - 27 ).

(3) If Il = er™(S) — er~(S), then the center Z(ép) of ép is isomorphic to either C5™
or Ci1 x Cy.

Proof. (1) By Lemmas 5.13 and 5.14, we have 6(Z(R)) C Ry and 0~ (R;) C Z(R),
implying that Ry = 0(Z(R)).

(2) Since A € Z(R), we have |Z(R)| = 2 |0(Z(R))| =2 |R¢| =2 |V]| - 27 ) =
|R| . 2761”7(8)‘

(3) This follows from Lemma 5.14 and Claim (2). O

We will now study the quotient representations of (R,1). For such quotient repre-
sentations, we need normal subgroups N of R such that ¢)(x) &€ N for every point x of

S.
Lemma 5.16. The normal subgroups of R are the following:
(1) the subgroups of R containing \;
(2) the subgroups of R not containing X that are contained in Z(R).

Proof. Clearly, the subgroups in (1) and (2) above are normal in R. Suppose N is a
normal subgroup of R not containing A. For all n € N and all » € R, we then have
n,r] € NN R = NN {1,\} = {1}, implying that N C Z(R). O

Remark. If NV is a (normal) subgroup of R contained in Z(R), then the condition that
(x) & N for every point x of S is automatically satisfied by Lemma 5.5.

Lemma 5.17. Let N be a normal subgroup of R such that ¢(x) & N for every point x of
S. Then the quotient representation (R/N,y) is abelian if and only if A € N.

Proof. The representation (R/N, 1y) is abelian if and only if [ (x) N, ¥ (y)N| = [ (z), ¥ (y)]-
N = N for every two points x and y of S, that is, if and only if A € N. O]

Lemma 5.18. Let N be a (necessarily normal) subgroup of R containing A\ such that
v(x) € N for every point x of S. Set U := O(N), and let o denote the subspace of
PG(V) corresponding to U. Then e(x) & « for every point x of S, and the full projective
embedding of S corresponding to the abelian representation (R/N,y) is isomorphic to
e/a.
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Proof. If x € P, then the facts that ¢(z) € N, A € N and R’ = {1, A} imply that ¢(z)R’
does not belong to the set {nR'|n € N}, that is, e(x) € a. So, e/a is well-defined as a
projective embedding.

Consider the quotient vector space V/U and the associated projective space PG(V/U).
The map which sends each point = of S to the point ((¢¥(z)R’) - U) of PG(V/U) is then

a full projective embedding isomorphic to e/a. The map
¢:R/IN - V/U; rN w—0(r)-U (r € R),

which is well-defined as U = 6(N), is an isomorphism of groups. (The injectivity of
the map follows from the fact that 6=1(U) = N which is a consequence of the fact that
A € N.) The fact that ¢ o ¥Yn(z) = ¢p(¢(z) - N) = 0(¢(x)) - U = (¢Y(x)R') - U for every
point x of & implies that the full projective embedding of S corresponding to the abelian
representation (R/N,y) is isomorphic to e/a. O

Lemma 5.19. Let N be a subgroup of R contained in Z(R). Set U :=0(N) C Ry, and
let &« C N, denote the subspace of PG(V') corresponding to U. Then:

(1) If X & N, then the projective embedding associated with the non-abelian representa-
tion (R/N,1y) is isomorphic to e/a.

(2) The representation (R/N,vy) is polarized.

Proof. (1) Consider the normal subgroup N := (N, \) C Z(R) of R. By Lemma 5.5, this
group does not contain any element (x) where x € P. We have §(N) = 6(N) = U. So,
by Lemma 5.18, the projective embedding corresponding to the abelian representation
(R/N, ) is isomorphic to e, where « is the subspace of PG(V) corresponding to U. It
is straightforward to verify that the projective embedding associated with the non-abelian
representation (R/N, 1) is isomorphic to the projective embedding corresponding to the
abelian representation (R/N, ). (Observe that R/N = (R/N)/(N/N) and (R/N)' =
N/N.)

(2) If (R/N,vn) is non-abelian, then the fact that [¢(x)N, ¥ (y)N| = [ (z),¢(y)]- N = N
for any two non-opposite points « and y implies that (R/N, 1) is polarized. If (R/N, )
is abelian, then the fact that a C N, implies that e/« is polarized and hence that
(R/N,vn) is polarized by Lemma 5.18. O

Lemma 5.20. Let N be a normal subgroup of R such that ¥(x) & N for every point x of
S. Then the representation (R/N,1N) is polarized if and only if N C Z(R).

Proof. It N C Z(R), then (R/N,vy) is polarized by Lemma 5.19. Conversely, suppose
that (R/N,vy) is polarized. If A & N, then N C Z(R) by Lemma 5.16. So, we may
suppose that {1,A} € N. Then (R/N,%y) is an abelian representation of S. Now,
R/N = (R/R")/(N/R'), where R = {1,\}. The embedding e has PG(V) as target
projective space, where V' = R/R’ is regarded as an Fo-vector space. The full projective
embedding ¢’ corresponding to (R/N,¥y) has PG(R/N) as target projective space, where
the elementary abelian 2-group R/N is again regarded as an Fy-vector space. Since €' is
polarized, we should have (N) = N/R' C Ry, that is, N C Z(R). O
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6 Classification of the polarized non-abelian repre-
sentations

In this section, we shall prove all the claims mentioned in Theorems 3.2, 3.3 and 3.4.
Let S = (P, L,1) be a finite slim near—polar space of diameter n > 3 that has polarized

non-abelian representations. We set (R, 1)) equal to (R p,ip) the universal polarized
representation of S. There then exists an element A € R\ {1} such that [@D( ), (y)] = X
for every two opposite points and y of §. Recall also that R = {1, /\} and that the
quotient group R/ R'is an elementary abelian 2-group which can be regarded as a vector
space V over Fy. Let f denote the alternating bilinear form on V associated with (R w)
as described in Section 5 (see Lemma 5.10). The radical of f is denoted by R+ 7 For every

r € R, we put 6( ) = rR €V and for every point = of S, we put €(z) equal to the point
((z)R') of PG(V). Then € is isomorphic to the universal embedding of S. By Section
5, we also know the following.

Proposition 6.1. The polarized representations of S are precisely the representations of
the form (R/N,vy), where N is a subgroup contained in Z(R).

Recall that if N is a subgroup contained in Z (ﬁ), then N necessarily is normal and
¥(z) ¢ Z(R) for every point z of S, implying that the quotient representation (R/N, ¢y )
is well-defined.

Proposition 6.2. If Ny and N2 are two subgroups of R contained in Z(R), then the

quotient representations (R/N1 le) and (R/Ng,wNQ) of S are isomorphic if and only if
Ni = Ns.

Proof. We prove that if the representations (R/Ni, ¢y, ) and (R/Na, ¥y, ) are isomorphic,
then Ny C Ny. By symmetry, we then also have that Ny C NVy. B B

Let ¢ be a group isomorphism from R/N; to R/Ns such that ¢(¢(z)Ny) = ¢(x)Ny
for every point x of S. _

Let g € Ny. Since R = (¢(z) |z € P), there exist (not necessarily distinct) points

T1,Ta, ..., 25 such that g = ibv(xl)zz(xg)lj/;(xk) Then Ny = ¢(N1) = ¢(gN1) =
SNy - P N1) = G((x1)N1) -+ () N1) = (1) Ny (i) Ny = gNs.

Hence, g € Ny. Since g is an arbitrary element of Ny, we have N; C Nj. O

By Corollary 5.15(3), we know that Z(R) is isomorphic to either (C5) or (Cy) 1 x Cy,
where [ := er™(S) — er=(S).

Proposition 6.3. (i) The number of nonisomorphic polarized representations of S is
I+1 _ l -1
equal to the sum Y [ltl} if Z(R) = (Cy)", and equal to 2 -5 m - > [lzl} if
i=0 2 =0 2 1=0 2
[>1 and Z(R) = (Cy)'7! x C.
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(i) The number of nonisomorphic polarized non-abelian representations of S is equal to

izj)[ltlh o z_io[ih of Z(fN?) = (CQ)ZH, and equal to é[ih — g[lilk if L >1 and

Z(R) 2 (Cy)1~! % Cy.

Proof. By Lemma 5.17 and Propositions 6.1 and 6.2, the number of nonisomorphic po-
larized (non-abelian) representations of S is equal to the number of subgroups of Z(R)
(not containing \).

If Z(R) = (Cy)'*L, then Z(R) is an elementary abelian 2-group and so the number of
- - I+1 l
subgroups of Z(R) (containing \) is equal to ) [ltl} (Z [i] )
2 i=0 2

=0

If Z(R) = (Cy)! x Cy, then Z(R)/()\) = (Cy)! and hence the total number of sub-
groups of Z (é) containing \is equal to i [i] ) If G is a subgroup of Z (é) not containing
X, then G only has elements of order {_:Lnd 2. The subgroup of Z (ﬁ) consisting of all
elements of order 1 and 2 is isomorphic to (C5)! and hence the number of subgroups of
Z(R) not containing X is is equal to i m , li [lfl} ) O

)
=0 =0

Lemma 6.4. The following are equivalent:
(1) Z(R) is elementary abelian, that is, isomorphic to C5;
(2) S has a non-abelian representation (R,1), where R is some extraspecial group;

(3) S has a non-abelian representation (R,1)), where |R| = 21+ (5),

If one of these conditions hold, then the number of nonisomorphic polarized non-abelian
representations (R, 1)) with |R| = 2% () is equal to 2.

Proof. In Lemma 5.12(3), we already showed that (2) and (3) are equivalent. By Lemma
5.17 and Proposition 6.1, S has polarized non-abelian representations (R, 1) where |R| =
21+er"(S) if and only if Z(R) has subgroups of order 2! not containing A. Such subgroups

do not exist if I > 1 and Z(R) & (Cy)'"™! x Cy. If Z(R) = (Cy)"™, then the number of

such subgroups is equal to [“{1} , [lfl] = 2L O

Lemma 6.5. If | > 1 and Z(R) = (Cy)'"! x Cy, then |R| > 2% (S for every polar-
ized non-abelian representation (R,v) of S. The number of such polarized non-abelian

representations (up to isomorphism) is equal to 211, If (R, %)) is a polarized non-abelian
representation of S for which |R| = 22t ) then Z(R) = C,.

Proof. By Lemmas 5.12 and 6.4, we know that |R| > 227" (5) for every polarized non-
abelian representation (R, ) of S. The number of such polarized non-abelian representa-

tions (up to isomorphism) is equal to the number of subgroups of order 2/=! of Z(R) that

do not contain X, that is, equal to [Z—lJ — [ﬁ:ﬂ = 2!71. Suppose (R,) is a polarized
2 2
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non-abelian representation of S with |R| = 22+ (5). Then Z(R) is isomorphic to either
Cy or Cy x Cy by Lemma 5.14 and Corollary 5.15(2). If Z(R) = Cy x Cy, then Z(R) con-
tains subgroups of order 2 not containing R’ and so (R, 1) has a proper quotient which is
a polarized non-abelian representation. This is impossible as the size of the representation
group R is already as small as possible. O]

Lemma 6.6. [fN1 and Ny are two subgroups ofR contained in Z(R) such that A ¢ N1UNy
and Q(Nl) = Q(Ng) then there exists an automorphism of R mapping N1 to No. As a
consequence, the quotient groups R/Ny and R/Ny are isomorphic.

Proof. Set U := O(Ny) = 0(Ns) = (vy,s,...,0,) for some vectors o, 0s, ..., 0 of V
where k = dim(U). Put d := dim(V) and extend {0y, 7, . .., 0} to a basis {0y, Ts, . . ., g}
of V. For every i € {1,2,...,d}, let g; be an arbitrary element of 5‘1(@). For all
i,j €4{1,2,...,d}, put a;; :=11if f(@i,z’)j) = 1 and a;; := 0 otherwise. The group R has
order 2%+ and consists of all elements of the form

A0gsgs - g
where €, €1,..., €4 € {0,1}. If 4,5 € {1,2,...,d}, we have [g;, g;] = 1 if f(vz,v]) =0 and
9i, 9;] = Nif f (vl, vj) = 1. So, the multlphcatlon inside the group R should be as follows.
If €0, €1, .., €d, €0, €L, €y € {0 1}, then

€0 €1, €2 €d Yel, €1 € €4\ _ Yeote +e €1ter eate) eqte,
(A0g5lgs? - g5) - (Nogylgs? - - gft) = AoToted gt aghte . glatea

where € : ZZ 1 Z] i1 aweze] Recall that X & Ny U Na. So, for every i € {1,2,... k},

there exists a unique element gZ ) ¢ {gi, gz)\} belonging to N and a umque element gl( )

{g:9:\} belonging to Na. Then Ny = (g1, g3, ... g") and N, = (g{”, ¢’ ),---,gff)%
Now, let I denote the subset of {1,2,...,k} consisting of all 7 € {1,2,...,k} for which
gi(l) #+ gf), or equivalently, for which gi(Z) = gi(l))\. Then the permutation of R defined by

60 61 62 €d Yeotel €1 €2 €d
A c gyt e AT0g gy gy

where €, := > ., €, is an automorphism ¢ of R. Since gzﬁ(gi(l)) = g?) for every ¢ €

{1,2,...,k}, we have ¢(NN;) = Ns. O

Corollary 6.7. If (Ry,v¢1) and (Rg, 1) are two polarized non-abelian representations
of § for which the associated full polarized embeddings are isomorphic, then also the
representation groups Ry and Rs are isomorphic.

Proof. Let Ny and Ny be the subgroups of R contained in Z(R) such that (Ry,) =
(R/Ny,¥y,) and (Ra,1bs) = (R/Na,in,). Then A & Ni U Ny, Let a; and ay be the
subspaces of Nz corresponding to, respectively, U; := 5(]\71) C Ryand U := 5(]\72) C Ry
By Lemma 5.19(1), the projective embeddings e/a; and e/ay are isomorphic. This implies
that oy = an. Hence, 9~(N1) = g(Ng) By Lemma 6.6, R; = R,. O
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Proposition 6.8. If (Ry,11) and (Ry,v9) are two polarized non-abelian representations
of S such that |Ry| = |Ry| = 2%, where B =1+ er~(S), then R, and Ry are isomorphic
(to either 27 or 2°).

Proof. Let Ny and N be the unique normal subgroups of R contained in Z (}N%) such that
)\~¢ N1UN2 and (R/Nl,l/JNl) = (Rladjl) and (RN/N27¢N2) = (R2,1/12).then ’N1| = ’NQ‘ =
% = 2! where | = er*(S) — er=(S). Since A ¢ N; U N, and |Z(R)| = 2'*1, we have

Z(R) = (N1,A) = (N2, A). Hence, Ry = 6(Z(R)) = 6((N1,A)) = 6(N1) = 0((N2, A)) =
0(N,). By Lemma 6.6, Ry = R/N; = R/N, = R,. O
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