Polarized non-abelian representations of slim near-polar spaces

Bart De Bruyn Binod Kumar Sahoo*

Abstract

In [15], Shult introduced a class of parapolar spaces, the so-called *near-polar spaces*. We introduce here the notion of a polarized non-abelian representation of a slim near-polar space, that is, a near-polar space in which every line is incident with precisely three points. For such a polarized non-abelian representation, we study the structure of the corresponding representation group, enabling us to generalize several of the results obtained in [14] for non-abelian representations of slim dense near hexagons. We show that with every polarized non-abelian representation of a slim near-polar space, there is an associated polarized projective embedding.

Keywords. Near-polar space, (universal, polarized) non-abelian representation, (universal) projective embedding, (minimal) polarized embedding, extraspecial 2-group, combinatorial group theory

MSC2010: 05B25, 51A45, 51A50, 20F05

1 Introduction

Projective embeddings of point-line geometries have been widely studied. A projective embedding is a map from the point set of a point-line geometry \mathcal{S} to the point set of a projective space $\operatorname{PG}(V)$ mapping lines of \mathcal{S} to full lines of $\operatorname{PG}(V)$. In case \mathcal{S} has three points per line, the underlying field of V is \mathbb{F}_2 . For such a geometry, a projective embedding can alternatively be viewed as a map $p \mapsto \bar{v}_p$ from the point set of \mathcal{S} to the nontrivial elements of the additive group of V such that if $\{p_1, p_2, p_3\}$ is a line of \mathcal{S} , then $\bar{v}_{p_3} = \bar{v}_{p_1} + \bar{v}_{p_2}$. This alternative point of view allows to generalize the notion of projective embeddings to so-called representations, where points of the slim geometry are no longer mapped to points of a projective space or to nonzero vectors of a vector space, but to involutions of a group R, the so-called representation group. If R is a non-abelian group, then the representation itself is also called non-abelian.

Non-abelian representations have been studied for a variety of geometries, including polar spaces and dense near polygons. In this paper, we study non-abelian representations for a class of parapolar spaces that includes both the polar spaces and the dense near

^{*}Supported by DST/SERB (SR/FTP/MS-001/2010), Government of India

polygons. This class of parapolar spaces was introduced by Shult in [15] and called near-polar spaces in [2].

In this paper, we restrict to those near-polar spaces that are slim and to a particular family of non-abelian representations, the so-called polarized ones. For polarized non-abelian representations of slim near-polar spaces, we derive quite some information about the representation groups. We show that these representation groups are closely related to extraspecial 2-groups, and obtain information about the centers of these groups. We also show that with every polarized non-abelian representation of a slim near-polar space, there is an associated polarized projective embedding (by taking a suitable quotient).

2 Preliminaries

2.1 Partial linear spaces and their projective embeddings

Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ be a point-line geometry with nonempty point set \mathcal{P} , line set \mathcal{L} and incidence relation $I \subset \mathcal{P} \times \mathcal{L}$.

We call \mathcal{S} a partial linear space if every two distinct points of \mathcal{S} are incident with at most one line. We call \mathcal{S} slim if every line of \mathcal{S} is incident with precisely three points. In the sequel, all considered point-line geometries will be partial linear spaces. We will often identify a line with the set of points incident with it. The incidence relation then corresponds to "containment".

A subspace of S is a set X of points with the property that if a line L has at least two of its points in X then all the points of L are in X. A hyperplane of S is a subspace, distinct from P, meeting each line of S.

The distance $d(x_1, x_2)$ between two points x_1 and x_2 of \mathcal{S} will be measured in the collinearity graph of \mathcal{S} . A path of minimal length between two points of \mathcal{S} is called a geodesic. A subspace X of \mathcal{S} is called convex if every point on a geodesic between two points of X is also contained in X. If x_1 and x_2 are two points of \mathcal{S} , then the intersection of all convex subspaces containing $\{x_1, x_2\}$ is denoted by $\langle x_1, x_2 \rangle$. (This is well-defined since \mathcal{P} is a convex subspace.) The set $\langle x_1, x_2 \rangle$ itself is a convex subspace and hence it is the smallest convex subspace of \mathcal{S} containing $\{x_1, x_2\}$. The subspace $\langle x_1, x_2 \rangle$ is called the convex closure of x_1 and x_2 .

A full projective embedding of S is a map e from P to the point set of a projective space Σ satisfying: (i) $\langle e(P) \rangle_{\Sigma} = \Sigma$; and (ii) $e(L) := \{e(x) \mid x \in L\}$ is a full line of Σ for every line L of S. If e is moreover injective, then the full projective embedding e is called faithful. A full projective embedding e from S into a projective space Σ will shortly be denoted by $e: S \to \Sigma$.

If N is the maximum dimension of a projective space into which S is fully embeddable, then the number N+1 is called the *embedding rank* of S and is denoted by er(S). The number er(S) is only defined when S is fully embeddable.

Two full projective embeddings $e_1 : \mathcal{S} \to \Sigma_1$ and $e_2 : \mathcal{S} \to \Sigma_2$ of \mathcal{S} are called *isomorphic* (denoted by $e_1 \cong e_2$) if there exists an isomorphism θ from Σ_1 to Σ_2 such that $e_2 = \theta \circ e_1$.

Let $e: \mathcal{S} \to \Sigma$ be a full projective embedding of \mathcal{S} and suppose α is a subspace of Σ satisfying the following two properties:

- (Q1) $e(p) \notin \alpha$ for every point p of S;
- (Q2) $\langle \alpha, e(p_1) \rangle \neq \langle \alpha, e(p_2) \rangle$ for any two distinct points p_1 and p_2 of S.

We denote by Σ/α the quotient projective space whose points are those subspaces of Σ that contain α as a hyperplane. Since α satisfies properties (Q1) and (Q2), it is easily verified that the map which associates with each point x of S the point $\langle \alpha, e(x) \rangle$ of Σ/α defines a full projective embedding of S into Σ/α . We call this embedding a quotient of e and denote it by e/α .

If \mathcal{S} is a fully embeddable slim partial linear space, then by Ronan [12], \mathcal{S} admits up to isomorphism a unique full projective embedding $\widetilde{e}: \mathcal{S} \to \widetilde{\Sigma}$ such that every full projective embedding e of \mathcal{S} is isomorphic to a quotient of \widetilde{e} . The full projective embedding \widetilde{e} is called the *universal embedding* of \mathcal{S} . We have $er(\mathcal{S}) = \dim(\widetilde{\Sigma}) + 1$. If \mathcal{S} admits a faithful full projective embedding, then the universal embedding \widetilde{e} of \mathcal{S} is also faithful.

2.2 Near polygons

A partial linear space $S = (\mathcal{P}, \mathcal{L}, I)$ is called a *near polygon* if for every point p and every line L, there exists a unique point on L nearest to p. If $d \in \mathbb{N}$ is the maximal distance between two points of S (= the *diameter* of S), then the near polygon is also called a *near 2d-gon*. A near 0-gon is a point, a near 2-gon is a line. Near quadrangles are usually called *generalized quadrangles*. A near polygon is called *dense* if every line is incident with at least three points and if every two points at distance 2 have at least two common neighbors.

2.3 Polar and dual polar spaces

A partial linear space $S = (\mathcal{P}, \mathcal{L}, I)$ is called a polar space if for every point p and every line L, either one or all points of L are collinear with p. The radical of a polar space is the set of all points x which are collinear with any other point. A polar space is called nondegenerate if its radical is empty. A subspace of a polar space is said to be singular if any two of its points are collinear. The rank r of a nondegenerate polar space is the maximal length r of a chain $S_0 \subset S_1 \subset \cdots \subset S_r$ of singular subspaces where $S_0 = \emptyset$ and $S_i \neq S_{i+1}$ for all $i \in \{0, \ldots, r-1\}$. A nondegenerate polar space of rank 2 is just a nondegenerate generalized quadrangle. The rank of a singular subspace S of a nondegenerate polar space is the maximal length k of a chain $S_0 \subset S_1 \subset \cdots \subset S_k$ of singular subspaces such that $S_0 = \emptyset$, $S_k = S$ and $S_i \neq S_{i+1}$ for all $i \in \{0, \ldots, k-1\}$. Singular subspaces of rank r are also called maximal singular subspaces, those of rank r-1 are called next-to-maximal singular subspaces. A nondegenerate polar space is called thick if every line is incident with at least three points and if every next-to-maximal singular subspace is contained in at least three maximal singular subspaces.

With every (thick) polar space S of rank $r \geq 1$, there is associated a partial linear space Δ , which is called a *(thick) dual polar space of rank r*. The points of Δ are the maximal singular subspaces of S, the lines of Δ are the next-to-maximal singular subspaces of S,

and incidence is reverse containment. Every thick dual polar space of rank r is a dense near 2r-gon.

2.4 Near-polar spaces

In [15], Shult introduced a class of point-line geometries. These point-line geometries were called *near-polar spaces* in [2]. Near-polar spaces of diameter n are inductively defined as follows.

A near-polar space of diameter 0 is just a point and a near-polar space of diameter 1 is a line having at least three points. A near-polar space of diameter $n \ge 2$ is a point-line geometry \mathcal{S} satisfying the following five axioms:

- (E1) S is connected and its diameter is equal to n;
- (E2) Every line of S is incident with at least three points;
- (E3) Every geodesic x_0, x_1, \ldots, x_k in S can be completed to a geodesic $x_0, x_1, \ldots, x_k, x_{k+1}, \ldots, x_n$ of length n;
- (E4) For every point x of S, the set H_x of points of S at distance at most n-1 from x is a hyperplane of S;
- (E5) If x_1 and x_2 are two points of S with $k := d(x_1, x_2) < n$, then the subgeometry of S induced on the convex closure $\langle x_1, x_2 \rangle$ is a near-polar space of diameter k.

The hyperplane H_x mentioned in Axiom (E4) is called the singular hyperplane of S with deepest point x.

The near-polar spaces of diameter 2 are precisely the nondegenerate polar spaces in which each line is incident with at least three points. Every near-polar space of diameter $n \geq 2$ is a strong parapolar space in the sense of Cohen and Cooperstein [4]. The convex closures of the pairs of points at distance 2 from each other are also called *symplecta*.

Every thick dual polar space and more generally every dense near polygon is a near-polar space. The class of near-polar spaces also includes some half-spin geometries, some Grassmann spaces and some exceptional geometries, see Shult [15, Section 6].

We will now discuss full projective embeddings of near-polar spaces. Most of what we say here is based on De Bruyn [5].

Suppose $e: \mathcal{S} \to \Sigma$ is a full projective embedding of a near-polar space $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$. By Shult [15, Lemma 6.1(ii)], every singular hyperplane H_x , $x \in \mathcal{P}$, of \mathcal{S} is a maximal (proper) subspace. This implies that $\Pi_x := \langle e(H_x) \rangle_{\Sigma}$ is either Σ or a hyperplane of Σ . The embedding e is called *polarized* if Π_x is a hyperplane of Σ for every point x of \mathcal{S} . If e is polarized, then the subspace $\mathcal{N}_e := \bigcap_{x \in \mathcal{P}} \Pi_x$ is called the *nucleus* of e. By De Bruyn [5,

Proposition 3.4], the nucleus \mathcal{N}_e satisfies the conditions (Q1) and (Q2) of Section 2.1 and the embedding $\bar{e} := e/\mathcal{N}_e$ is polarized.

Suppose now that S is a slim near-polar space. Then S admits a faithful full polarized embedding, see Brouwer & Shpectorov [3] or De Bruyn [5, Proposition 3.11(i)]. So, S also

has a universal embedding $\tilde{e}: \mathcal{S} \to \widetilde{\Sigma}$. This universal embedding necessarily is polarized and faithful. The embedding $\tilde{e}/N_{\tilde{e}}$ is called the minimal full polarized embedding of \mathcal{S} . For every full polarized embedding e of \mathcal{S} , the embedding $\bar{e} = e/N_e$ is isomorphic to $\tilde{e}/N_{\tilde{e}}$. Every full embedding of \mathcal{S} is isomorphic to \tilde{e}/α for some subspace α of $\widetilde{\Sigma}$ satisfying Properties (Q1) and (Q2). If α_1 and α_2 are two subspaces of $\widetilde{\Sigma}$ satisfying (Q1) and (Q2), then $e/\alpha_1 \cong e/\alpha_2$ if and only if $\alpha_1 = \alpha_2$.

Suppose again that S is a slim near-polar space and that $e: S \to \Sigma$ is a full polarized embedding of S. This means that for every point x of S, the subspace $\langle e(H_x) \rangle_{\Sigma}$ is a hyperplane Π_x of Σ . By De Bruyn [5, Propositions 3.5 and 3.11(ii)], the map $x \mapsto \Pi_x$ defines a polarized full embedding e^* of S into a subspace of the dual Σ^* of Σ . The embedding e^* is called the *dual embedding* of e. The nucleus of e^* is empty. So, the dual embedding e^* is isomorphic to the minimal full polarized embedding of S.

2.5 Extraspecial 2-groups

In the sequel, we will adopt the following conventions when dealing with groups. For elements a, b of a group G, we write $[a, b] = a^{-1}b^{-1}ab$ and $a^b = b^{-1}ab$. For elements x, y, z of G, we have $[xy, z] = [x, z]^y[y, z]$ and $[x, yz] = [x, z][x, y]^z$. We denote by C_n the cyclic group of order n.

A finite 2-group G is called *extraspecial* if its Frattini subgroup $\Phi(G)$, commutator subgroup G' = [G, G] and center Z(G) coincide and have order 2. We refer to [7, Section 20, pp.78–79] or [8, Chapter 5, Section 5] for the properties of finite extraspecial 2-groups which we will mention now.

An extraspecial 2-group is of order 2^{1+2n} for some integer $n \geq 1$. Let D_8 and Q_8 , respectively, denote the dihedral and the quaternion groups of order 8. A non-abelian 2-group of order 8 is extraspecial and is isomorphic to either D_8 or Q_8 . If G is an extraspecial 2-group of order 2^{1+2n} , $n \geq 1$, then the exponent of G is 4 and G is either a central product of n copies of D_8 , or a central product of n - 1 copies of D_8 and one copy of Q_8 . If the former (respectively, latter) case occurs, then the extraspecial 2-group is denoted by 2^{1+2n}_+ (respectively, 2^{1+2n}_-).

Suppose G is an extraspecial 2-group of order 2^{2n+1} , $n \ge 1$, and set $G' = \{1, \lambda\}$. Then V = G/G' is an elementary abelian 2-group and hence can be regarded as a 2n-dimensional vector space over \mathbb{F}_2 . For all $x, y \in G$, we define

$$f(xG', yG') = \begin{cases} 0 \in \mathbb{F}_2 & \text{if } [x, y] = 1, \\ 1 \in \mathbb{F}_2 & \text{if } [x, y] = \lambda. \end{cases}$$

Then f is a nondegenerate alternating bilinear form on V. For all $x \in G$, $x^2 \in G' = \{1, \lambda\}$ as G/G' is elementary abelian. We define

$$q(xG') = \begin{cases} 0 \in \mathbb{F}_2 & \text{if } x^2 = 1, \\ 1 \in \mathbb{F}_2 & \text{if } x^2 = \lambda. \end{cases}$$

Then q is a nondegenerate quadratic form on V. The bilinear form associated with q is precisely f, that is,

$$q(xG'yG') = q(xG') + q(yG') + f(xG', yG')$$

for all $x, y \in G$. The nondegenerate quadratic form q defines a nonsingular quadric of PG(V), which is of hyperbolic type if $G = 2^{1+2n}_+$ or of elliptic type if $G = 2^{1+2n}_-$.

2.6 Representations of slim partial linear spaces

Let $S = (\mathcal{P}, \mathcal{L}, I)$ be a slim partial linear space. A representation [10, p.525] of S is a pair (R, ψ) , where R is a group and ψ is a mapping from \mathcal{P} to the set of involutions in R, satisfying:

- (i) R is generated by the image of ψ ;
- (ii) $\psi(x)\psi(y) = \psi(z)$ for every line $\{x, y, z\}$ of \mathcal{S} .

If $\{x,y,z\}$ is a line of \mathcal{S} , then condition (ii) implies that $\psi(x), \psi(y), \psi(z)$ are mutually distinct and $[\psi(x), \psi(y)] = [\psi(x), \psi(z)] = [\psi(y), \psi(z)] = 1$. The group R is called a representation group of \mathcal{S} . The representation (R,ψ) of \mathcal{S} is called faithful if ψ is injective. Depending on whether R is abelian or not, the representation (R,ψ) itself will be called abelian or non-abelian. For an abelian representation, the representation group is an elementary abelian 2-group and hence can be considered as a vector space over the field \mathbb{F}_2 with two elements. In this case, the representation thus corresponds to a full projective embedding of \mathcal{S} .

We refer to [9] and [13, Sections 1 and 2] for representations of partial linear spaces with p+1 points per line, where p is a prime.

Suppose S_1 and S_2 are two slim partial linear spaces. Let (R_i, ψ_i) , $i \in \{1, 2\}$, be a representation of S_i . The representations (R_1, ψ_1) and (R_2, ψ_2) are called *equivalent* if there exists an isomorphism θ_1 from S_1 to S_2 and a group isomorphism θ_2 from R_1 to R_2 such that $\psi_2 \circ \theta_1(x) = \theta_2 \circ \psi_1(x)$ for every point x of S_1 . If $S_1 = S_2$, then (R_1, ψ_1) and (R_2, ψ_2) are called *isomorphic* if there exists a group isomorphism θ from R_1 to R_2 such that $\psi_2(x) = \theta \circ \psi_1(x)$ for every point x of S_1 .

Suppose (R, ψ) is a representation of a slim partial linear space \mathcal{S} . Let N be a normal subgroup of R such that $\psi(x) \notin N$ for every point x of \mathcal{S} . For every point x of \mathcal{S} , let $\psi_N(x)$ denote the element $\psi(x)N$ of the quotient group R/N. Then $(R/N, \psi_N)$ is a representation of \mathcal{S} which is called a *quotient* of (R, ψ) . If (R_1, ψ_1) and (R_2, ψ_2) are two representations of \mathcal{S} , then (R_2, ψ_2) is isomorphic to a quotient of (R_1, ψ_1) if and only if there exists a group epimorphism θ from R_1 to R_2 such that $\psi_2(x) = \theta \circ \psi_1(x)$. If this is the case, then (R_2, ψ_2) is isomorphic to $(R_1/N, (\psi_1)_N)$, where $N = \ker(\theta)$.

2.7 Polarized and universal representations of slim near-polar spaces

Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ be a slim near-polar space of diameter $n \geq 2$.

• A representation (R, ψ) of S is called *quasi-polarized* if $[\psi(x), \psi(y)] = 1$ for every two points x and y of S at distance at most n-1 from each other.

- An abelian representation (R, ψ) of \mathcal{S} is called *polarized* if the corresponding full projective embedding (in the sense of Section 2.6) is polarized.
- A non-abelian representation (R, ψ) of S is called *polarized* if $[\psi(x), \psi(y)] = 1$ for every two points x and y of S at distance at most n-1 from each other, that is, if the representation is quasi-polarized.

We will later show that with every polarized non-abelian representation of \mathcal{S} , there is an associated full polarized embedding of \mathcal{S} (which is obtained by taking a suitable quotient).

- (1) Let \widetilde{R}_u be the group defined by the generators r_x , $x \in \mathcal{P}$, and the following relations:
 - $r_x^2 = 1$, where $x \in \mathcal{P}$;
 - $r_x r_y r_z = 1$, where $x, y, z \in \mathcal{P}$ such that $\{x, y, z\} \in \mathcal{L}$.

For every point x of S, we define $\widetilde{\psi}_u(x) := r_x \in \widetilde{R}_u$.

- (2) Let \widetilde{R}_p be the group defined by the generators r_x , $x \in \mathcal{P}$, and the following relations:
 - $r_x^2 = 1$, where $x \in \mathcal{P}$;
 - $[r_x, r_y] = 1$, where $x, y \in \mathcal{P}$ such that d(x, y) < n;
 - $r_x r_y r_z = 1$, where $x, y, z \in \mathcal{P}$ such that $\{x, y, z\} \in \mathcal{L}$.

For every point x of S, we define $\widetilde{\psi}_p(x) := r_x \in \widetilde{R}_p$.

(3) As mentioned before, \mathcal{S} has faithful full projective embeddings. The universal projective embedding of \mathcal{S} can be constructed as follows. Let V be a vector space over \mathbb{F}_2 with a basis B whose elements are indexed by the points of \mathcal{P} , say $B = \{\bar{v}_x \mid x \in \mathcal{P}\}$. Let W be the subspace of V generated by all vectors $\bar{v}_{x_1} + \bar{v}_{x_2} + \bar{v}_{x_3}$ where $\{x_1, x_2, x_3\}$ is some line of \mathcal{S} . Let \widetilde{V} be the quotient vector space V/W and for every point x of \mathcal{S} , let \widetilde{v}_x be the vector $\bar{v}_x + W$ of \widetilde{V} . The map $x \mapsto \langle \widetilde{v}_x \rangle$ defines a full projective embedding \widetilde{e} of \mathcal{S} into $PG(\widetilde{V})$ which is isomorphic to the universal embedding of \mathcal{S} .

Proposition 2.1. (1) $(\widetilde{R}_u, \widetilde{\psi}_u)$ is a faithful representation of S.

- (2) $(\widetilde{R}_p, \widetilde{\psi}_p)$ is a faithful polarized representation of S.
- (3) If (R, ψ) is a representation of S, then (R, ψ) is isomorphic to a quotient of $(\widetilde{R}_u, \widetilde{\psi}_u)$.
- (4) If (R, ψ) is a quasi-polarized representation of S, then (R, ψ) is isomorphic to a quotient of $(\widetilde{R}_p, \widetilde{\psi}_p)$.

Proof. We show that $(\widetilde{R}_p, \widetilde{\psi}_p)$ is a faithful representation. Since $\widetilde{v_x} + \widetilde{v_x} = W$ for every $x \in \mathcal{P}$, $(-\widetilde{v_x}) + (-\widetilde{v_y}) + \widetilde{v_x} + \widetilde{v_y} = W$ for all $x, y \in \mathcal{P}$ and $\widetilde{v_x} + \widetilde{v_y} + \widetilde{v_z} = W$ for every line $\{x, y, z\}$ of \mathcal{S} , we know from von Dyck's theorem that there exists an epimorphism from \widetilde{R}_p to the additive group of \widetilde{V} mapping r_x to $\widetilde{v_x}$ for every point x of \mathcal{S} . Since \widetilde{e} is a

full projective embedding, $\widetilde{v_x} \neq W$ and hence $r_x \neq_{\widetilde{R}_p} 1$ for every $x \in \mathcal{P}$. The latter fact implies that $(\widetilde{R}_p, \widetilde{\psi}_p)$ is a representation. Since \widetilde{e} is a faithful projective embedding, we have $\widetilde{v_x} \neq \widetilde{v_y}$ for any two distinct points $x, y \in \mathcal{P}$. This implies that also $r_x \neq_{\widetilde{R}_p} r_y$. So, $(\widetilde{R}_p, \widetilde{\psi}_p)$ is a faithful representation.

In a completely similar way, one can show that $(\widetilde{R}_u, \widetilde{\psi}_u)$ is a faithful representation. Claims (3) and (4) are straightforward consequences of von Dyck's theorem.

By construction, the representation $(\widetilde{R}_p, \widetilde{\psi}_p)$ is quasi-polarized and hence polarized if \widetilde{R}_p is non-abelian. Suppose \widetilde{R}_p is abelian. Then let e_p denote the full projective embedding of \mathcal{S} corresponding to $(\widetilde{R}_p, \widetilde{\psi}_p)$. Let $(\widetilde{R}, \widetilde{\psi})$ denote the abelian representation corresponding to the universal projective embedding \widetilde{e} of \mathcal{S} . By Claim (4), $(\widetilde{R}, \widetilde{\psi})$ is isomorphic to a quotient of $(\widetilde{R}_p, \widetilde{\psi}_p)$, and hence \widetilde{e} is isomorphic to a quotient of e_p . As \widetilde{e} cannot be a proper quotient of some full embedding of \mathcal{S} , the projective embeddings \widetilde{e} and e_p are isomorphic. So, e_p is polarized, or equivalently, $(\widetilde{R}_p, \widetilde{\psi}_p)$ is polarized.

The representation $(\widetilde{R}_u, \widetilde{\psi}_u)$ is called the *universal representation* of \mathcal{S} . The representation $(\widetilde{R}_p, \widetilde{\psi}_p)$ is called the *universal polarized representation* of \mathcal{S} .

From Section 5 (see Lemma 5.3) it will follow that there exists a $\widetilde{\lambda} \in \widetilde{R}_p$ such that $[\widetilde{\psi}_p(x), \widetilde{\psi}_p(y)] = \widetilde{\lambda}$ for every two points x and y at distance n from each other. If $\widetilde{\lambda} = 1$, then the universal polarized representation is abelian and hence corresponds to the universal projective embedding of \mathcal{S} (which is always polarized). If $\widetilde{\lambda} \neq 1$, then the universal polarized representation of \mathcal{S} is non-abelian. Both instances can occur. Indeed, the slim dual polar space DW(2n-1,2) and the slim dense near hexagons $Q(5,2) \times \mathbb{L}_3$, $Q(5,2) \otimes Q(5,2)$ have non-abelian polarized representations [6, 11], while no finite slim nondegenerate polar space has non-abelian representations [13, Theorem 1.5(i)]. Computer computations showed that other dense near polygons (like the dual polar space DH(5,4)) also have non-abelian polarized representations (in extraspecial 2-groups), but the authors are still looking for computer free descriptions of these representations.

3 Main results

For a finite slim near-polar space \mathcal{S} , we denote the embedding rank $er(\mathcal{S})$ also by $er^+(\mathcal{S})$. The vector space dimension of the minimal full polarized embedding of \mathcal{S} will be denoted by $er^-(\mathcal{S})$. We will see in Proposition 4.2 that the number $er^-(\mathcal{S})$ is even. By [14], every non-abelian representation of a slim dense near hexagon is polarized. The following theorem is the first main theorem of this paper. It generalizes some results regarding slim dense near hexagons obtained in [14]. We will prove it in Section 5.

Theorem 3.1. Suppose S is a finite slim near-polar space of diameter $n \geq 2$ having some polarized non-abelian representation (R, ψ) . Then $n \geq 3$ and the universal polarized representation $(\widetilde{R}_n, \widetilde{\psi}_n)$ of S is also non-abelian. Moreover,

(i) ψ is faithful and $\psi(x) \notin Z(R)$ for every point x of S.

- (ii) R is a 2-group of exponent 4, |R'| = 2 and $R' = \Phi(R) \subseteq Z(R)$.
- (iii) If $|Z(R)| = 2^{l+1}$, then Z(R) is isomorphic to either $(C_2)^{l+1}$ or $(C_2)^{l-1} \times C_4$.
- (iv) R is of order 2^{β} for some integer β satisfying $1 + er^{-}(S) \leq \beta \leq 1 + er^{+}(S)$. We have $\beta = 1 + er^{-}(S)$ if and only if R is an extraspecial 2-group. We have $\beta = 1 + er^{+}(S)$ if and only if (R, ψ) is isomorphic to $(\widetilde{R}_{p}, \widetilde{\psi}_{p})$.
- (v) If $l = er^+(S) er^-(S)$, then $Z(\widetilde{R}_p)$ has order 2^{l+1} and so is isomorphic to either $(C_2)^{l+1}$ or $(C_2)^{l-1} \times C_4$.

In Section 6, we prove the following results.

Theorem 3.2. Suppose S is a finite slim near-polar space of diameter $n \geq 3$ having polarized non-abelian representations. Then the following hold:

- (i) The polarized representations of S are precisely the representations of the form $(\widetilde{R}_p/N, (\widetilde{\psi}_p)_N)$, where N is a subgroup of \widetilde{R}_p contained in $Z(\widetilde{R}_p)$.
- (ii) If N_1 and N_2 are two subgroups of $Z(\widetilde{R}_p)$, then the representations $(\widetilde{R}_p/N_1, (\widetilde{\psi}_p)_{N_1})$ and $(\widetilde{R}_p/N_2, (\widetilde{\psi}_p)_{N_2})$ of S are isomorphic if and only if $N_1 = N_2$.

Remark. If $l = er^+(\mathcal{S}) - er^-(\mathcal{S})$, then we will see in Section 6 that Theorems 3.1(v) and 3.2 imply that the number of nonisomorphic polarized non-abelian representations of \mathcal{S} is equal to the sum² $\sum_{i=0}^{l+1} {l+1 \brack i}_2 - \sum_{i=0}^l {l \brack i}_2$ if $Z(\widetilde{R}_p) \cong (C_2)^{l+1}$, and equal to $\sum_{i=0}^l {l \brack i}_2 - \sum_{i=0}^{l-1} {l-1 \brack i}_2$ if $Z(\widetilde{R}_p) \cong (C_2)^{l-1} \times C_4$.

Theorem 3.3. Suppose S is a finite slim near-polar space of diameter $n \geq 3$ having polarized non-abelian representations. Set $l := er^+(S) - er^-(S)$. Then S has a polarized non-abelian representation (R, ψ) with $|R| = 2^{1+er^-(S)}$ if and only if $Z(\widetilde{R}_p) \cong (C_2)^{l+1}$. If this is the case then there are up to isomorphism 2^l such representations. Moreover, the representation groups of any two of them are isomorphic (to either $2^{1+er^-(S)}_+$ or $2^{1+er^-(S)}_-$).

Theorem 3.4. Suppose S is a finite slim near-polar space of diameter $n \geq 3$ having polarized non-abelian representations. Suppose $Z(\widetilde{R}_p) \cong C_2^{l-1} \times C_4$, where $l = er^+(S) - er^-(S) \geq 1$. Then $|R| \geq 2^{2+er^-(S)}$ for every polarized non-abelian representation (R, ψ) of S. Moreover, there are up to isomorphism 2^{l-1} polarized non-abelian representations (R, ψ) with $|R| = 2^{2+er^-(S)}$. If (R, ψ) is such a representation, then $Z(R) \cong C_4$.

If l = 0, then $(C_2)^{-1}$ is not defined. In this case, this sentence should be understood as "Z(R) is isomorphic to C_2 ".

²The terms occurring in this sum are Gaussian binomial coefficients.

4 Some properties of near-polar spaces

Let S be a near-polar space of diameter $n \geq 1$. Two points x and y of S are called *opposite* if they are at a maximum distance from each other, that is, d(x, y) = n. For two distinct points x, y of S, we write $x \sim y$ if they are collinear.

Proposition 4.1. Let S be a near-polar space of diameter $n \geq 1$. Let Γ be the graph whose vertices are the ordered pairs of opposite points of S, with two distinct vertices (x_1, y_1) and (x_2, y_2) being adjacent whenever either $x_1 = x_2$ and $y_1 \sim y_2$; or $x_1 \sim x_2$ and $y_1 = y_2$. Then Γ is connected.

Proof. Let (x_1, y_1) and (x_2, y_2) be two arbitrary vertices of Γ . We prove that (x_1, y_1) and (x_2, y_2) are contained in the same connected component of Γ .

For every point x of S, the subgraph of the collinearity graph of S induced on the set of points at distance n from x is connected by Shult [15, Lemma 6.1(ii)]. So, if $x_1 = x_2$ or $y_1 = y_2$, then (x_1, y_1) and (x_2, y_2) belong to the same connected component of Γ .

Assume that $x_1 \neq x_2$ and $y_1 \neq y_2$. We prove that there exists a point y_3 at distance n from x_1 and x_2 . If y_3 is such a point, then (a_1, b_1) and (a_2, b_2) belong to the same connected component of Γ for every $(a_1, b_1, a_2, b_2) \in \{(x_1, y_1, x_1, y_3), (x_1, y_3, x_2, y_3), (x_2, y_3, x_2, y_2)\}$, proving that (x_1, y_1) and (x_2, y_2) also belong to the same connected component of Γ .

The point y_3 alluded to in the previous paragraph is defined as a point of S at distance n from x_1 which lies as far away from x_2 as possible. Suppose $d(y_3, x_2) \leq n - 1$ for such a point y_3 . Then by Axiom (E3), there exists a point y_4 collinear with y_3 which lies at distance $k := d(y_3, x_2) + 1$ from x_2 . By Axiom (E5), a near-polar space of diameter k can be defined on the convex closure $\langle x_2, y_4 \rangle$. By applying Axiom (E4) to this near-polar space of diameter k, we see that the points of the line y_3y_4 distinct from y_3 lie at distance $k = d(y_3, x_2) + 1$ from x_2 . By Axioms (E2) and (E4) applied to S, at least one of the points of $y_3y_4 \setminus \{y_3\}$ lies at distance n from x_1 . This contradicts the maximality of $d(y_3, x_2)$. So, $d(x_1, y_3) = d(x_2, y_3) = n$ as we needed to prove.

Proposition 4.2. Let $S = (P, \mathcal{L}, I)$ be a finite slim near-polar space of diameter $n \geq 1$, let V be a finite-dimensional vector space over \mathbb{F}_2 and let $e : S \to PG(V)$ be a full polarized embedding of S into PG(V). Then there exists a unique alternating bilinear form f on V for which the following holds:

If x is a point of S and \bar{v} is the unique vector of V for which $e(x) = \langle \bar{v} \rangle$, then $PG(\bar{v}^{\perp_f})$ is a hyperplane of PG(V) which contains all the points e(y), where $y \in \mathcal{P}$ and $d(x,y) \leq n-1$, and none of the points e(z), where $z \in \mathcal{P}$ and d(x,z) = n.

If e is isomorphic to the minimal full polarized embedding of S, then the alternating bilinear form f is nondegenerate and hence $er^-(S) = \dim(V)$ is even.

Proof. For every point x of S, let Π_x denote the unique hyperplane of $\operatorname{PG}(V)$ which contains all the points e(y), where $y \in \mathcal{P}$ and $d(x,y) \leq n-1$, and none of the points e(z), where $z \in \mathcal{P}$ and d(x,z) = n.

(1) We first prove the existence of the alternating bilinear form in the case e is isomorphic to the minimal full polarized embedding of S. Then $\bigcap \Pi_x = \emptyset$.

Recall that the map $x \mapsto \Pi_x$ defines a full projective embedding e^* of \mathcal{S} into the dual $\operatorname{PG}(V)^*$ of $\operatorname{PG}(V)$. This embedding e^* is called the dual embedding of e and is isomorphic to the minimal full polarized embedding of \mathcal{S} . So, there exists an isomorphism ϕ from $\operatorname{PG}(V)$ to $\operatorname{PG}(V)^*$ mapping e(x) to Π_x for every point x of \mathcal{S} .

We prove that ϕ is a polarity of $\operatorname{PG}(V)$, or equivalently that $\phi^2=1$. Since ϕ^2 defines a collineation of $\operatorname{PG}(V)$, it suffices to prove that $\phi^2(p)=p$ for every point p belonging to a generating set of $\operatorname{PG}(V)$. So, it suffices to prove that $\phi(\Pi_x)=\phi^2(e(x))=e(x)$ for every point x of \mathcal{P} . If y is a point at distance at most n-1 from x, then $e(y)\in\Pi_x$ implies that $\phi(\Pi_x)\in\Pi_y$. Hence, $\phi(\Pi_x)$ is contained in the intersection I of all hyperplanes Π_y , where $y\in\mathcal{P}$ and $\operatorname{d}(x,y)\leq n-1$. Since e^* is polarized, the hyperplanes Π_y , where $y\in\mathcal{P}$ and $\operatorname{d}(x,y)\leq n-1$, generate a hyperplane of $\operatorname{PG}(V)^*$. So, I is a singleton. Since $e(x)\in\Pi_y$ for every $y\in\mathcal{P}$ satisfying $\operatorname{d}(x,y)\leq n-1$, we also have $e(x)\in I$. Hence, $\phi(\Pi_x)=e(x)$ as we needed to prove.

We now prove that ϕ is a symplectic polarity of $\operatorname{PG}(V)$. To that end, it suffices to prove that $p \in p^{\phi}$ for every point p of $\operatorname{PG}(V)$. Since $\operatorname{PG}(V) = \langle Im(e) \rangle$, it suffices to prove the following:

- (a) $e(x) \in e(x)^{\phi}$ for every $x \in \mathcal{P}$;
- (b) if $L = \{p_1, p_2, p_3\}$ is a line of PG(V) such that $p_1 \in p_1^{\phi}$ and $p_2 \in p_2^{\phi}$, then also $p_3 \in p_3^{\phi}$.

Since $e(x)^{\phi} = \Pi_x$ and $e(x) \in \Pi_x$, Property (a) clearly holds. If $p_2 \in p_1^{\phi}$, then $\{p_3\} \subseteq L \subseteq p_1^{\phi} \cap p_2^{\phi} = L^{\phi} \subseteq p_3^{\phi}$. If $p_2 \notin p_1^{\phi}$, then $p_1^{\phi} = \langle L^{\phi}, p_1 \rangle$, $p_2^{\phi} = \langle L^{\phi}, p_2 \rangle$ and p_3^{ϕ} is the unique hyperplane through L^{ϕ} distinct from p_1^{ϕ} and p_2^{ϕ} , implying that $p_3^{\phi} = \langle L^{\phi}, p_3 \rangle$. So, Property (b) also holds in that case.

If f is the nondegenerate alternating bilinear form of V corresponding to the symplectic polarity ϕ of PG(V), then f satisfies the required conditions.

(2) Suppose e is not isomorphic to the minimal full polarized embedding of \mathcal{S} . Let α be the intersection of all subspaces Π_x , $x \in \mathcal{P}$, let U be the subspace of V corresponding to α and let W be a subspace of V such that $V = U \oplus W$. For every point x of \mathcal{S} , let e'(x) denote the unique point of $\mathrm{PG}(W)$ contained in $\langle \alpha, e(x) \rangle$. Then e' is isomorphic to the minimal full polarized embedding of \mathcal{S} . By part (1) above, we know that there exists a nondegenerate alternating bilinear form f_W on W such that if x is a point of \mathcal{S} and \bar{w} is the unique vector of W for which $e'(x) = \langle \bar{w} \rangle$, then the hyperplane $\mathrm{PG}(\bar{w}^{\perp f_W})$ of $\mathrm{PG}(W)$ contains all points e'(y), where $y \in \mathcal{P}$ and $\mathrm{d}(x,y) \leq n-1$, and none of the points e(z), where $z \in \mathcal{P}$ and $\mathrm{d}(x,z) = n$. Now, for all $\bar{u}_1, \bar{u}_2 \in U$ and all $\bar{w}_1, \bar{w}_2 \in W$, we define

$$f(\bar{u}_1 + \bar{w}_1, \bar{u}_2 + \bar{w}_2) := f_W(\bar{w}_1, \bar{w}_2).$$

Then f is an alternating bilinear form on V.

Suppose x is a point of S. Let \bar{v} be the unique vector of V for which $e(x) = \langle \bar{v} \rangle$ and let \bar{w} be the unique vector of W for which $e'(x) = \langle \bar{w} \rangle$. Then $\langle \bar{w} \rangle = \langle U, \bar{v} \rangle \cap W$. We

also have $\langle \bar{v}^{\perp_f} \rangle = \langle U, \bar{w}^{\perp_{f_W}} \rangle$. Since $\operatorname{PG}(\bar{w}^{\perp_{f_W}})$ contains all points e'(y), where $y \in \mathcal{P}$ and $\operatorname{d}(x,y) \leq n-1$, and none of the points e'(z), where $z \in \mathcal{P}$ and $\operatorname{d}(x,z) = n$, we have that $\operatorname{PG}(\bar{v}^{\perp_f})$ contains all points e(y), where $y \in \mathcal{P}$ and $\operatorname{d}(x,y) \leq n-1$, and none of the points e(z), where $z \in \mathcal{P}$ and $\operatorname{d}(x,z) = n$. So, the alternating bilinear form f satisfies the required conditions.

(3) We now prove the uniqueness of the alternating bilinear form. Suppose f_1 and f_2 are two alternating bilinear forms on V satisfying the required conditions. Then $g := f_1 - f_2$ is also an alternating bilinear form on V.

Suppose x_1 and x_2 are two points of \mathcal{S} and let \bar{v}_i , $i \in \{1, 2\}$, be the unique vector of V for which $e(x) = \langle \bar{v}_i \rangle$. If $d(x_1, x_2) \leq n - 1$, then $f_1(\bar{v}_1, \bar{v}_2) = 0 = f_2(\bar{v}_1, \bar{v}_2)$ and hence $g(\bar{v}_1, \bar{v}_2) = 0$. If $d(x_1, x_2) = n$, then $f_1(\bar{v}_1, \bar{v}_2) = 1 = f_2(\bar{v}_1, \bar{v}_2)$ and hence $g(\bar{v}_1, \bar{v}_2) = 0$. Since $PG(V) = \langle e(x) | x \in \mathcal{P} \rangle$, we get g = 0. Hence $f_1 = f_2$.

5 Structure of the representation groups

Let $S = (\mathcal{P}, \mathcal{L}, I)$ be a finite slim near-polar space of diameter $n \geq 2$ and suppose (R, ψ) is a polarized non-abelian representation of S. In this section, we will prove all the claims mentioned in Theorem 3.1.

Lemma 5.1. We have $n \geq 3$.

Proof. By [13, Theorem 1.5(i)], every representation of a finite slim nondegenerate polar space is abelian. So, \mathcal{S} is not a polar space and hence $n \geq 3$.

Lemma 5.2. The universal polarized representation $(\widetilde{R}_p, \widetilde{\psi}_p)$ is non-abelian. Moreover, $|\widetilde{R}_p| \geq 2^{1+er^+(S)}$.

Proof. As (R, ψ) is a quotient of $(\widetilde{R}_p, \widetilde{\psi}_p)$, the universal polarized representation $(\widetilde{R}_p, \widetilde{\psi}_p)$ itself should also be non-abelian. Since the abelian representation corresponding to the universal projective embedding of \mathcal{S} is quasi-polarized, it should be a quotient of $(\widetilde{R}_p, \widetilde{\psi}_p)$ by Proposition 2.1(4). This implies that $|\widetilde{R}_p| \geq 2^{1+er^+(\mathcal{S})}$.

Later (Lemma 5.12) we will show that $|\widetilde{R}_p| = 2^{1+er^+(S)}$.

Lemma 5.3. Let Γ be the graph as defined in Proposition 4.1. Then there exists an involution $\lambda \in R$ such that $\lambda = [\psi(x), \psi(y)]$ for every vertex (x, y) of Γ .

Proof. We first show that $[\psi(x_1), \psi(y_1)] = [\psi(x_2), \psi(y_2)]$ for any two adjacent vertices (x_1, y_1) and (x_2, y_2) of Γ . Suppose $x_1 = x_2$ and $y_1 \sim y_2$. Let y_3 be the unique third point of the line y_1y_2 . Then $d(x_1, y_3) = n - 1$. Since $\psi(y_3)$ commutes with $\psi(x_1)$ and $\psi(y_2)$, we have $[\psi(x_1), \psi(y_1)] = [\psi(x_1), \psi(y_2)\psi(y_3)] = [\psi(x_1), \psi(y_2)]$. The case where $x_1 \sim x_2$ and $y_1 = y_2$ is treated in a similar way.

Now let x and y be two opposite points of S and set $\lambda = [\psi(x), \psi(y)]$. By Proposition 4.1, Γ is connected. So, by the first paragraph, λ is independent of the opposite points x and y. Also $\lambda \neq 1$ since (R, ψ) is polarized and non-abelian. Since $\lambda^{-1} = [\psi(x), \psi(y)]^{-1} = [\psi(y), \psi(x)] = \lambda$, we get $\lambda^2 = 1$.

Corollary 5.4. $\langle \psi(x), \psi(y) \rangle \cong D_8$ for every two opposite points x and y of S.

Proof. Since x and y are opposite points, $(\psi(x)\psi(y))^2 = [\psi(x), \psi(y)] = \lambda$ by Lemma 5.3 and so $\psi(x)\psi(y)$ is of order 4. Hence $\langle \psi(x), \psi(y) \rangle \cong D_8$ [1, 45.1].

Lemma 5.5. ψ is faithful and $\psi(x) \notin Z(R)$ for every point x of S.

Proof. Let x and y be two distinct points of S and let z be a point that is opposite to x, but not to y (such a point exists by Axiom (E3)). Then $[\psi(y), \psi(z)] = 1$ and $[\psi(x), \psi(z)] = \lambda \neq 1$ by Lemma 5.3. Hence, $\psi(x) \neq \psi(y)$.

For a given point x, choose a point w opposite to x. Then $[\psi(x), \psi(w)] = \lambda \neq 1$. So $\psi(x) \notin Z(R)$.

Lemma 5.6. $R' = \{1, \lambda\} \subseteq Z(R)$.

Proof. Set $T = \langle \lambda \rangle = \{1, \lambda\}$. Then $T \subseteq R'$ by Lemma 5.3. We first show that $T \subseteq Z(R)$. Since $R = \langle \psi(x) \mid x \in \mathcal{P} \rangle$, it is sufficient to prove that $[\psi(x), \lambda] = 1$ for every point x of \mathcal{S} . Let y be a point of \mathcal{S} opposite to x. Since $\psi(x), \psi(y), \lambda = [\psi(x), \psi(y)]$ all are involutions, a direct calculation shows that $[\psi(x), \lambda] = 1$.

Being a central subgroup, T is normal in R. In the quotient group R/T, the generators $\psi(x)T$, $x \in \mathcal{P}$, commute pairwise. So R/T is abelian and hence $R' \subseteq T$.

Corollary 5.7. For $a, b, c \in R$, [ab, c] = [a, c][b, c] and [a, bc] = [a, b][a, c].

Proof. By Lemma 5.6, we have $[ab, c] = [a, c]^b[b, c] = [a, c] \cdot [b, c]$ and $[a, bc] = [a, c] \cdot [a, b]^c = [a, b] \cdot [a, c]$.

Lemma 5.8. (1) For every $r \in R$, we have $r^2 \in \{1, \lambda\}$.

(2) R is a finite 2-group of exponent 4 and $R' = \Phi(R)$.

Proof. We show that $r^2 \in \{1, \lambda\}$ for every $r \in R \setminus \{1\}$. Set $r = \psi(x_1)\psi(x_2)\cdots\psi(x_n)$, where x_1, x_2, \ldots, x_n are points of S. Since $\lambda^2 = 1$, $\psi(x_i)^2 = 1$ and $[\psi(x_i), \psi(x_j)] \in \{1, \lambda\} \subseteq Z(R)$ for all $i, j \in \{1, \ldots, n\}$, we have $r^2 \in \{1, \lambda\}$. It follows that $r^4 = 1$. Since R is non-abelian, the exponent of R cannot be 2 and hence equals 4.

Since $R = \langle \psi(x) | x \in \mathcal{P} \rangle$ and \mathcal{S} is finite, the quotient group $R/R' = \langle \psi(x)R' | x \in \mathcal{P} \rangle$ is a finite elementary abelian 2-group. Since |R'| = 2 by Lemma 5.6, we get that R is also a finite 2-group. Then the two facts that R' is the smallest normal subgroup K of R such that R/K is abelian and that $\Phi(R)$ is the smallest normal subgroup H of R such that R/H is elementary abelian [1, 23.2, p.105] imply $R' = \Phi(R)$.

Since the quotient group R/R' is an elementary abelian 2-group, we can consider V = R/R' as a vector space over \mathbb{F}_2 . For every point x of \mathcal{S} , let e(x) be the projective point $\langle \psi(x)R' \rangle$ of PG(V). Notice that, by Lemmas 5.5 and 5.6, $\psi(x)R'$ is indeed a nonzero vector of V.

Lemma 5.9. The map e defines a faithful full projective embedding of S into PG(V).

Proof. Since $R/R' = \langle \psi(x)R' \mid x \in \mathcal{P} \rangle$, the image of e generates PG(V).

We prove that $\psi(x_1)R' \neq \psi(x_2)R'$ for every two distinct points x_1 and x_2 of \mathcal{S} . Suppose to the contrary that $\psi(x_1)R' = \psi(x_2)R'$. Since ψ is faithful by Lemma 5.5, we have $\psi(x_1) \neq \psi(x_2)$. So, $\psi(x_1) = \psi(x_2)\lambda$. By Axiom (E3), there exists a point x_3 opposite to x_1 , but not to x_2 . Then $\lambda = [\psi(x_1), \psi(x_3)] = [\psi(x_2)\lambda, \psi(x_3)] = [\psi(x_2), \psi(x_3)] = 1$, a contradiction.

Let $L = \{x_1, x_2, x_3\}$ be a line of S. We have $e(x_i) = \langle \psi(x_i)R' \rangle$, for $i \in \{1, 2, 3\}$. Since $\psi(x_1)\psi(x_2) = \psi(x_3)$, we have $\psi(x_3)R' = \psi(x_1)R'\psi(x_2)R'$. Hence $\{e(x_1), e(x_2), e(x_3)\}$ is a line of PG(V).

Definition. For all $a, b \in R$, we define

$$f(aR', bR') = \begin{cases} 1 & \text{if } [a, b] = \lambda, \\ 0 & \text{if } [a, b] = 1. \end{cases}$$

Since $R' = \{1, \lambda\} \subseteq Z(R)$, the map $f: V \times V \to \mathbb{F}_2$ is well-defined.

Lemma 5.10. The map $f: V \times V \to \mathbb{F}_2$ is an alternating bilinear form of V.

Proof. The claim that f is an alternating bilinear form follows from the following facts.

- Since [a, a] = [1, a] = [a, 1] = 1, we have f(aR', aR') = f(R', aR') = f(aR', R') = 0 for all $a \in R$.
- Let $x_1, x_2, y_1 \in R$. Since $[x_1x_2, y_1] = [x_1, y_1][x_2, y_1]$, we have $f(x_1R'x_2R', y_1R') = f(x_1R', y_1R') + f(x_2R', y_1R')$.
- Let $x_1, y_1, y_2 \in R$. Since $[x_1, y_1y_2] = [x_1, y_1][x_1, y_2]$, we have $f(x_1R', y_1R'y_2R') = f(x_1R', y_1R') + f(x_1R', y_2R')$.

Lemma 5.11. The embedding e of S into PG(V) is polarized.

Proof. For every point x of S, we define a certain subspace Π_x of PG(V). Let \bar{v} be the unique vector of V for which $e(x) = \langle \bar{v} \rangle$. Then Π_x is the subspace of PG(V) corresponding³ to the subspace \bar{v}^{\perp_f} of V.

Let x_1 and x_2 be two points of S and let $\bar{v}_i = \psi(x_i)R'$, $i \in \{1, 2\}$. So $e(x_i) = \langle \bar{v}_i \rangle$. Then the following holds:

$$d(x_1, x_2) \le n - 1 \Leftrightarrow [\psi(x_1), \psi(x_2)] = 1$$

$$\Leftrightarrow f(\psi(x_1)R', \psi(x_2)R') = 0$$

$$\Leftrightarrow f(\bar{v}_1, \bar{v}_2) = 0$$

$$\Leftrightarrow \bar{v}_2 \in \bar{v}_1^{\perp_f}$$

$$\Leftrightarrow e(x_2) \in \Pi_{x_1}.$$

Now from the above it follows that $\Pi_x = \langle e(H_x) \rangle_{PG(V)}$ is a hyperplane of PG(V) for every point x of S, where H_x is the singular hyperplane of S with deepest point x. So e is polarized.

³The map $\phi_x: R \mapsto R'$ defined by $\phi_x(r) = [\psi(x), r]$ is a homomorphism (see Corollary 5.7) which is surjective. The kernel of ϕ_x is $C_R(\psi(x))$ which has index 2 in R by the first isomorphism theorem. Then \bar{v}^{\perp_f} is precisely the image of $C_R(\psi(x))$ in V under the canonical homomorphism $R \to V; r \mapsto rR'$.

Definition. We call e the full polarized embedding of S associated with the non-abelian representation (R, ψ) .

Lemma 5.12. (1) R is of order 2^{β} for some β satisfying $1 + er^{-}(S) \leq \beta \leq 1 + er^{+}(S)$.

- (2) The following are equivalent:
 - (R, ψ) is isomorphic to $(\widetilde{R}_p, \widetilde{\psi}_p)$;
 - $\beta = 1 + er^+(S)$;
 - ullet e is isomorphic to the universal embedding of \mathcal{S} .
- (3) The following are equivalent:
 - $\beta = 1 + er^{-}(S);$
 - R is an extraspecial 2-group;
 - ullet e is isomorphic to the minimal full polarized embedding of \mathcal{S} .

Proof. By Lemmas 5.9 and 5.11, e defines a full polarized embedding of S into PG(V). So, $er^-(S) \leq \dim(V) \leq er^+(S)$. Since $|R/R'| = 2^{\beta-1}$, we have $\dim(V) = \beta - 1$ and hence $1 + er^-(S) \leq \beta \leq 1 + er^+(S)$. The lower bound occurs if and only if e is isomorphic to the minimal full polarized embedding of S. The upper bound occurs if and only if e is isomorphic to the universal embedding of S. From Lemma 5.2, the upper bound and the fact that (R, ψ) is isomorphic to a quotient of $(\widetilde{R}_p, \widetilde{\psi}_p)$, it follows that $\beta = 1 + er^+(S)$ if and only if (R, ψ) is isomorphic to $(\widetilde{R}_p, \widetilde{\psi}_p)$.

Now, R is extraspecial if and only if R' = Z(R), that is, if and only if the alternating bilinear form f is nondegenerate. For every point x of \mathcal{S} , let \bar{v}_x be the unique vector of V for which $e(x) = \langle \bar{v}_x \rangle$. Then $\langle e(H_x) \rangle = \operatorname{PG}(\langle \bar{v}_x \rangle^{\perp_f})$ (see the proof of Lemma 5.11) is a hyperplane of $\operatorname{PG}(V)$ for every point x of \mathcal{S} . It follows that f is nondegenerate if and only if the nucleus \mathcal{N}_e of e is empty, that is, if and only if e is a minimal full polarized embedding of \mathcal{S} . Thus R is extraspecial if and only if $e^{-}(\mathcal{S}) = \dim(V) = \beta - 1$.

For every $r \in R$, we set $\theta(r) := rR' \in V$. Observe that if $r_1, r_2 \in R$, then $f(\theta(r_1), \theta(r_2)) = 0$ if $[r_1, r_2] = 1$ and $f(\theta(r_1), \theta(r_2)) = 1$ if $[r_1, r_2] = \lambda$. We denote by \mathcal{R}_f the radical of the alternating bilinear form f. The subspace of PG(V) corresponding to \mathcal{R}_f is precisely \mathcal{N}_e .

Lemma 5.13. If N is a subgroup of R contained in Z(R), then $\theta(N) \subseteq \mathcal{R}_f$.

Proof. Let $g \in N$ and $h \in R$. Then [g,h] = 1 implies that $f(\theta(g),\theta(h)) = 0$. Since $\theta(R) = V$, it follows that $\theta(g) \in \mathcal{R}_f$. Hence, $\theta(N) \subseteq \mathcal{R}_f$.

Lemma 5.14. If U is a subspace of \mathcal{R}_f , then $\theta^{-1}(U)$ is a subgroup of R contained in Z(R). If $\dim(U) = l$, then $\theta^{-1}(U)$ is an abelian subgroup isomorphic to either C_2^{l+1} or $C_2^{l-1} \times C_4$.

Proof. Clearly, $\theta^{-1}(U)$ is a subgroup of R. If $g \in \theta^{-1}(U)$ and $h \in R$, then we have $f(\theta(g), \theta(h)) = 0$ since $\theta(g) \in U \subseteq \mathcal{R}_f$. This implies that [g, h] = 1. So, $\theta^{-1}(U) \subseteq Z(R)$. In particular, $\theta^{-1}(U)$ is abelian. By the classification of finite abelian groups, $\theta^{-1}(U)$ is isomorphic to the direct product of a number of cyclic groups. Since the exponent of R is equal to 4, each of these cyclic groups has order 2 or 4. Lemma 5.8(1) then implies that there is at most one cyclic group of order 4 in this direct product. If $\dim(U) = l$, then $|\theta^{-1}(U)| = 2^{l+1}$ and hence $\theta^{-1}(U)$ must be isomorphic to either $(C_2)^{l+1}$ or $(C_2)^{l-1} \times C_4$. \square

Corollary 5.15. (1) We have $\mathcal{R}_f = \theta(Z(R))$.

- (2) We have $|Z(R)| = |R| \cdot 2^{-er^{-}(S)}$.
- (3) If $l = er^+(S) er^-(S)$, then the center $Z(\widetilde{R}_p)$ of \widetilde{R}_p is isomorphic to either C_2^{l+1} or $C_2^{l-1} \times C_4$.

Proof. (1) By Lemmas 5.13 and 5.14, we have $\theta(Z(R)) \subseteq \mathcal{R}_f$ and $\theta^{-1}(\mathcal{R}_f) \subseteq Z(R)$, implying that $\mathcal{R}_f = \theta(Z(R))$.

(2) Since $\lambda \in Z(R)$, we have $|Z(R)| = 2 \cdot |\theta(Z(R))| = 2 \cdot |\mathcal{R}_f| = 2 \cdot |V| \cdot 2^{-er^-(S)} = |R| \cdot 2^{-er^-(S)}$.

(3) This follows from Lemma 5.14 and Claim (2).

We will now study the quotient representations of (R, ψ) . For such quotient representations, we need normal subgroups N of R such that $\psi(x) \notin N$ for every point x of S.

Lemma 5.16. The normal subgroups of R are the following:

- (1) the subgroups of R containing λ ;
- (2) the subgroups of R not containing λ that are contained in Z(R).

Proof. Clearly, the subgroups in (1) and (2) above are normal in R. Suppose N is a normal subgroup of R not containing λ . For all $n \in N$ and all $r \in R$, we then have $[n,r] \in N \cap R' = N \cap \{1,\lambda\} = \{1\}$, implying that $N \subseteq Z(R)$.

Remark. If N is a (normal) subgroup of R contained in Z(R), then the condition that $\psi(x) \notin N$ for every point x of S is automatically satisfied by Lemma 5.5.

Lemma 5.17. Let N be a normal subgroup of R such that $\psi(x) \notin N$ for every point x of S. Then the quotient representation $(R/N, \psi_N)$ is abelian if and only if $\lambda \in N$.

Proof. The representation $(R/N, \psi_N)$ is abelian if and only if $[\psi(x)N, \psi(y)N] = [\psi(x), \psi(y)] \cdot N = N$ for every two points x and y of S, that is, if and only if $\lambda \in N$.

Lemma 5.18. Let N be a (necessarily normal) subgroup of R containing λ such that $\psi(x) \notin N$ for every point x of S. Set $U := \theta(N)$, and let α denote the subspace of $\operatorname{PG}(V)$ corresponding to U. Then $e(x) \notin \alpha$ for every point x of S, and the full projective embedding of S corresponding to the abelian representation $(R/N, \psi_N)$ is isomorphic to e/α .

Proof. If $x \in \mathcal{P}$, then the facts that $\psi(x) \notin N$, $\lambda \in N$ and $R' = \{1, \lambda\}$ imply that $\psi(x)R'$ does not belong to the set $\{nR' \mid n \in N\}$, that is, $e(x) \notin \alpha$. So, e/α is well-defined as a projective embedding.

Consider the quotient vector space V/U and the associated projective space $\operatorname{PG}(V/U)$. The map which sends each point x of S to the point $\langle (\psi(x)R') \cdot U \rangle$ of $\operatorname{PG}(V/U)$ is then a full projective embedding isomorphic to e/α . The map

$$\phi: R/N \to V/U; \ rN \mapsto \theta(r) \cdot U \qquad (r \in R),$$

which is well-defined as $U = \theta(N)$, is an isomorphism of groups. (The injectivity of the map follows from the fact that $\theta^{-1}(U) = N$ which is a consequence of the fact that $\lambda \in N$.) The fact that $\phi \circ \psi_N(x) = \phi(\psi(x) \cdot N) = \theta(\psi(x)) \cdot U = (\psi(x)R') \cdot U$ for every point x of S implies that the full projective embedding of S corresponding to the abelian representation $(R/N, \psi_N)$ is isomorphic to e/α .

Lemma 5.19. Let N be a subgroup of R contained in Z(R). Set $U := \theta(N) \subseteq \mathcal{R}_f$, and let $\alpha \subseteq \mathcal{N}_e$ denote the subspace of PG(V) corresponding to U. Then:

- (1) If $\lambda \notin N$, then the projective embedding associated with the non-abelian representation $(R/N, \psi_N)$ is isomorphic to e/α .
- (2) The representation $(R/N, \psi_N)$ is polarized.
- Proof. (1) Consider the normal subgroup $\overline{N} := \langle N, \lambda \rangle \subseteq Z(R)$ of R. By Lemma 5.5, this group does not contain any element $\psi(x)$ where $x \in \mathcal{P}$. We have $\theta(\overline{N}) = \theta(N) = U$. So, by Lemma 5.18, the projective embedding corresponding to the abelian representation $(R/\overline{N}, \psi_{\overline{N}})$ is isomorphic to e_{α} where α is the subspace of PG(V) corresponding to U. It is straightforward to verify that the projective embedding associated with the non-abelian representation $(R/N, \psi_N)$ is isomorphic to the projective embedding corresponding to the abelian representation $(R/\overline{N}, \psi_{\overline{N}})$. (Observe that $R/\overline{N} \cong (R/N)/(\overline{N}/N)$ and $(R/N)' = \overline{N}/N$.)
- (2) If $(R/N, \psi_N)$ is non-abelian, then the fact that $[\psi(x)N, \psi(y)N] = [\psi(x), \psi(y)] \cdot N = N$ for any two non-opposite points x and y implies that $(R/N, \psi_N)$ is polarized. If $(R/N, \psi_N)$ is abelian, then the fact that $\alpha \subseteq \mathcal{N}_e$ implies that e/α is polarized and hence that $(R/N, \psi_N)$ is polarized by Lemma 5.18.

Lemma 5.20. Let N be a normal subgroup of R such that $\psi(x) \notin N$ for every point x of S. Then the representation $(R/N, \psi_N)$ is polarized if and only if $N \subseteq Z(R)$.

Proof. If $N \subseteq Z(R)$, then $(R/N, \psi_N)$ is polarized by Lemma 5.19. Conversely, suppose that $(R/N, \psi_N)$ is polarized. If $\lambda \notin N$, then $N \subseteq Z(R)$ by Lemma 5.16. So, we may suppose that $\{1, \lambda\} \subseteq N$. Then $(R/N, \psi_N)$ is an abelian representation of \mathcal{S} . Now, $R/N \cong (R/R')/(N/R')$, where $R' = \{1, \lambda\}$. The embedding e has PG(V) as target projective space, where V = R/R' is regarded as an \mathbb{F}_2 -vector space. The full projective embedding e' corresponding to $(R/N, \psi_N)$ has PG(R/N) as target projective space, where the elementary abelian 2-group R/N is again regarded as an \mathbb{F}_2 -vector space. Since e' is polarized, we should have $\theta(N) = N/R' \subseteq \mathcal{R}_f$, that is, $N \subseteq Z(R)$.

6 Classification of the polarized non-abelian representations

In this section, we shall prove all the claims mentioned in Theorems 3.2, 3.3 and 3.4. Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a finite slim near-polar space of diameter $n \geq 3$ that has polarized non-abelian representations. We set $(\widetilde{R}, \widetilde{\psi})$ equal to $(\widetilde{R}_p, \widetilde{\psi}_p)$, the universal polarized representation of \mathcal{S} . There then exists an element $\widetilde{\lambda} \in \widetilde{R} \setminus \{1\}$ such that $[\widetilde{\psi}(x), \widetilde{\psi}(y)] = \widetilde{\lambda}$ for every two opposite points x and y of \mathcal{S} . Recall also that $\widetilde{R}' = \{1, \widetilde{\lambda}\}$ and that the quotient group $\widetilde{R}/\widetilde{R}'$ is an elementary abelian 2-group which can be regarded as a vector space \widetilde{V} over \mathbb{F}_2 . Let \widetilde{f} denote the alternating bilinear form on \widetilde{V} associated with $(\widetilde{R}, \widetilde{\psi})$ as described in Section 5 (see Lemma 5.10). The radical of \widetilde{f} is denoted by $\mathcal{R}_{\widetilde{f}}$. For every $r \in \widetilde{R}$, we put $\widetilde{\theta}(r) := r\widetilde{R}' \in \widetilde{V}$ and for every point x of \mathcal{S} , we put $\widetilde{e}(x)$ equal to the point $\langle \widetilde{\psi}(x)\widetilde{R}' \rangle$ of $\mathrm{PG}(\widetilde{V})$. Then \widetilde{e} is isomorphic to the universal embedding of \mathcal{S} . By Section 5, we also know the following.

Proposition 6.1. The polarized representations of S are precisely the representations of the form $(\widetilde{R}/N, \widetilde{\psi}_N)$, where N is a subgroup contained in $Z(\widetilde{R})$.

Recall that if N is a subgroup contained in $Z(\widetilde{R})$, then N necessarily is normal and $\widetilde{\psi}(x) \notin Z(\widetilde{R})$ for every point x of S, implying that the quotient representation $(\widetilde{R}/N, \widetilde{\psi}_N)$ is well-defined.

Proposition 6.2. If N_1 and N_2 are two subgroups of \widetilde{R} contained in $Z(\widetilde{R})$, then the quotient representations $(\widetilde{R}/N_1, \widetilde{\psi}_{N_1})$ and $(\widetilde{R}/N_2, \widetilde{\psi}_{N_2})$ of S are isomorphic if and only if $N_1 = N_2$.

Proof. We prove that if the representations $(\widetilde{R}/N_1, \widetilde{\psi}_{N_1})$ and $(\widetilde{R}/N_2, \widetilde{\psi}_{N_2})$ are isomorphic, then $N_1 \subseteq N_2$. By symmetry, we then also have that $N_2 \subseteq N_1$.

Let ϕ be a group isomorphism from \widetilde{R}/N_1 to \widetilde{R}/N_2 such that $\phi(\widetilde{\psi}(x)N_1) = \widetilde{\psi}(x)N_2$ for every point x of \mathcal{S} .

Let $g \in N_1$. Since $\widetilde{R} = \langle \widetilde{\psi}(x) | x \in \mathcal{P} \rangle$, there exist (not necessarily distinct) points x_1, x_2, \ldots, x_k such that $g = \widetilde{\psi}(x_1)\widetilde{\psi}(x_2)\cdots\widetilde{\psi}(x_k)$. Then $N_2 = \phi(N_1) = \phi(gN_1) = \phi(\widetilde{\psi}(x_1)N_1\cdots\widetilde{\psi}(x_k)N_1) = \phi(\widetilde{\psi}(x_1)N_1\cdots\phi(\widetilde{\psi}(x_k)N_1) = \widetilde{\psi}(x_1)N_2\cdots\widetilde{\psi}(x_k)N_2 = gN_2$. Hence, $g \in N_2$. Since g is an arbitrary element of N_1 , we have $N_1 \subseteq N_2$.

By Corollary 5.15(3), we know that $Z(\widetilde{R})$ is isomorphic to either $(C_2)^{l+1}$ or $(C_2)^{l-1} \times C_4$, where $l := er^+(\mathcal{S}) - er^-(\mathcal{S})$.

Proposition 6.3. (i) The number of nonisomorphic polarized representations of S is equal to the sum $\sum_{i=0}^{l+1} {l+1 \brack i}_2$ if $Z(\widetilde{R}) \cong (C_2)^{l+1}$, and equal to $2 \cdot \sum_{i=0}^{l} {l \brack i}_2 - \sum_{i=0}^{l-1} {l-1 \brack i}_2$ if $l \geq 1$ and $Z(\widetilde{R}) \cong (C_2)^{l-1} \times C_4$.

(ii) The number of nonisomorphic polarized non-abelian representations of S is equal to $\sum_{i=0}^{l+1} {l+1 \brack i}_2 - \sum_{i=0}^l {l \brack i}_2 \text{ if } Z(\widetilde{R}) \cong (C_2)^{l+1}, \text{ and equal to } \sum_{i=0}^l {l \brack i}_2 - \sum_{i=0}^{l-1} {l-1 \brack i}_2 \text{ if } l \geq 1 \text{ and } Z(\widetilde{R}) \cong (C_2)^{l-1} \times C_4.$

Proof. By Lemma 5.17 and Propositions 6.1 and 6.2, the number of nonisomorphic polarized (non-abelian) representations of S is equal to the number of subgroups of $Z(\widetilde{R})$ (not containing $\widetilde{\lambda}$).

If $Z(\widetilde{R}) \cong (C_2)^{l+1}$, then $Z(\widetilde{R})$ is an elementary abelian 2-group and so the number of subgroups of $Z(\widetilde{R})$ (containing $\widetilde{\lambda}$) is equal to $\sum_{i=0}^{l+1} {l+1 \brack i}_2 \left(\sum_{i=0}^l {l \brack i}_2\right)$.

If $Z(\widetilde{R}) \cong (C_2)^{l-1} \times C_4$, then $Z(\widetilde{R})/\langle \widetilde{\lambda} \rangle \cong (C_2)^l$ and hence the total number of subgroups of $Z(\widetilde{R})$ containing $\widetilde{\lambda}$ is equal to $\sum_{i=0}^{l} {l \brack i}_2$. If G is a subgroup of $Z(\widetilde{R})$ not containing $\widetilde{\lambda}$, then G only has elements of order 1 and 2. The subgroup of $Z(\widetilde{R})$ consisting of all elements of order 1 and 2 is isomorphic to $(C_2)^l$ and hence the number of subgroups of $Z(\widetilde{R})$ not containing $\widetilde{\lambda}$ is is equal to $\sum_{i=0}^{l} {l \brack i}_2 - \sum_{i=0}^{l-1} {l-1 \brack i}_2$.

Lemma 6.4. The following are equivalent:

- (1) $Z(\widetilde{R})$ is elementary abelian, that is, isomorphic to C_2^{l+1} ;
- (2) S has a non-abelian representation (R, ψ) , where R is some extraspecial group;
- (3) S has a non-abelian representation (R, ψ) , where $|R| = 2^{1+er^{-}(S)}$.

If one of these conditions hold, then the number of nonisomorphic polarized non-abelian representations (R, ψ) with $|R| = 2^{1+er^-(S)}$ is equal to 2^l .

Proof. In Lemma 5.12(3), we already showed that (2) and (3) are equivalent. By Lemma 5.17 and Proposition 6.1, \mathcal{S} has polarized non-abelian representations (R, ψ) where $|R| = 2^{1+er^{-}(\mathcal{S})}$ if and only if $Z(\widetilde{R})$ has subgroups of order 2^{l} not containing $\widetilde{\lambda}$. Such subgroups do not exist if $l \geq 1$ and $Z(\widetilde{R}) \cong (C_2)^{l-1} \times C_4$. If $Z(\widetilde{R}) \cong (C_2)^{l+1}$, then the number of such subgroups is equal to $\begin{bmatrix} l+1 \\ l \end{bmatrix}_2 - \begin{bmatrix} l \\ l-1 \end{bmatrix}_2 = 2^{l}$.

Lemma 6.5. If $l \geq 1$ and $Z(\widetilde{R}) \cong (C_2)^{l-1} \times C_4$, then $|R| \geq 2^{2+er^-(S)}$ for every polarized non-abelian representation (R, ψ) of S. The number of such polarized non-abelian representations (up to isomorphism) is equal to 2^{l-1} . If (R, ψ) is a polarized non-abelian representation of S for which $|R| = 2^{2+er^-(S)}$, then $Z(R) \cong C_4$.

Proof. By Lemmas 5.12 and 6.4, we know that $|R| \geq 2^{2+er^{-}(S)}$ for every polarized non-abelian representation (R, ψ) of S. The number of such polarized non-abelian representations (up to isomorphism) is equal to the number of subgroups of order 2^{l-1} of $Z(\widetilde{R})$ that do not contain $\widetilde{\lambda}$, that is, equal to $\begin{bmatrix} l \\ l-1 \end{bmatrix}_2 - \begin{bmatrix} l-1 \\ l-2 \end{bmatrix}_2 = 2^{l-1}$. Suppose (R, ψ) is a polarized

non-abelian representation of S with $|R| = 2^{2+er^{-}(S)}$. Then Z(R) is isomorphic to either C_4 or $C_2 \times C_2$ by Lemma 5.14 and Corollary 5.15(2). If $Z(R) \cong C_2 \times C_2$, then Z(R) contains subgroups of order 2 not containing R' and so (R, ψ) has a proper quotient which is a polarized non-abelian representation. This is impossible as the size of the representation group R is already as small as possible.

Lemma 6.6. If N_1 and N_2 are two subgroups of \widetilde{R} contained in $Z(\widetilde{R})$ such that $\widetilde{\lambda} \notin N_1 \cup N_2$ and $\widetilde{\theta}(N_1) = \widetilde{\theta}(N_2)$, then there exists an automorphism of \widetilde{R} mapping N_1 to N_2 . As a consequence, the quotient groups \widetilde{R}/N_1 and \widetilde{R}/N_2 are isomorphic.

Proof. Set $U := \widetilde{\theta}(N_1) = \widetilde{\theta}(N_2) = \langle \overline{v}_1, \overline{v}_2, \dots, \overline{v}_k \rangle$ for some vectors $\overline{v}_1, \overline{v}_2, \dots, \overline{v}_k$ of \widetilde{V} where $k = \dim(U)$. Put $d := \dim(\widetilde{V})$ and extend $\{\overline{v}_1, \overline{v}_2, \dots, \overline{v}_k\}$ to a basis $\{\overline{v}_1, \overline{v}_2, \dots, \overline{v}_d\}$ of \widetilde{V} . For every $i \in \{1, 2, \dots, d\}$, let g_i be an arbitrary element of $\widetilde{\theta}^{-1}(\overline{v}_i)$. For all $i, j \in \{1, 2, \dots, d\}$, put $a_{ij} := 1$ if $\widetilde{f}(\overline{v}_i, \overline{v}_j) = 1$ and $a_{ij} := 0$ otherwise. The group \widetilde{R} has order 2^{d+1} and consists of all elements of the form

$$\widetilde{\lambda}^{\epsilon_0} g_1^{\epsilon_1} g_2^{\epsilon_2} \cdots g_d^{\epsilon_d},$$

where $\epsilon_0, \epsilon_1, \ldots, \epsilon_d \in \{0, 1\}$. If $i, j \in \{1, 2, \ldots, d\}$, we have $[g_i, g_j] = 1$ if $\widetilde{f}(\bar{v}_i, \bar{v}_j) = 0$ and $[g_i, g_j] = \widetilde{\lambda}$ if $\widetilde{f}(\bar{v}_i, \bar{v}_j) = 1$. So, the multiplication inside the group \widetilde{R} should be as follows. If $\epsilon_0, \epsilon_1, \ldots, \epsilon_d, \epsilon'_0, \epsilon'_1, \ldots, \epsilon'_d \in \{0, 1\}$, then

$$(\widetilde{\lambda}^{\epsilon_0}g_1^{\epsilon_1}g_2^{\epsilon_2}\cdots g_d^{\epsilon_d})\cdot (\widetilde{\lambda}^{\epsilon_0'}g_1^{\epsilon_1'}g_2^{\epsilon_2'}\cdots g_d^{\epsilon_d'}) = \widetilde{\lambda}^{\epsilon_0+\epsilon_0'+\epsilon_0''}g_1^{\epsilon_1+\epsilon_1'}g_2^{\epsilon_2+\epsilon_2'}\cdots g_d^{\epsilon_d+\epsilon_d'},$$

where $\epsilon_0'' := \sum_{i=1}^d \sum_{j=i+1}^d a_{ij} \epsilon_i' \epsilon_j$. Recall that $\widetilde{\lambda} \not \in N_1 \cup N_2$. So, for every $i \in \{1, 2, \dots, k\}$, there exists a unique element $g_i^{(1)} \in \{g_i, g_i \widetilde{\lambda}\}$ belonging to N_1 and a unique element $g_i^{(2)} \in \{g_i, g_i \widetilde{\lambda}\}$ belonging to N_2 . Then $N_1 = \langle g_1^{(1)}, g_2^{(1)}, \dots, g_k^{(1)} \rangle$ and $N_2 = \langle g_1^{(2)}, g_2^{(2)}, \dots, g_k^{(2)} \rangle$. Now, let I denote the subset of $\{1, 2, \dots, k\}$ consisting of all $i \in \{1, 2, \dots, k\}$ for which $g_i^{(1)} \neq g_i^{(2)}$, or equivalently, for which $g_i^{(2)} = g_i^{(1)} \widetilde{\lambda}$. Then the permutation of \widetilde{R} defined by

$$\widetilde{\lambda}^{\epsilon_0} g_1^{\epsilon_1} g_2^{\epsilon_2} \cdots g_d^{\epsilon_d} \mapsto \widetilde{\lambda}^{\epsilon_0 + \epsilon'_0} g_1^{\epsilon_1} g_2^{\epsilon_2} \cdots g_d^{\epsilon_d},$$

where $\epsilon_0' := \sum_{i \in I} \epsilon_i$, is an automorphism ϕ of R. Since $\phi(g_i^{(1)}) = g_i^{(2)}$ for every $i \in \{1, 2, \dots, k\}$, we have $\phi(N_1) = N_2$.

Corollary 6.7. If (R_1, ψ_1) and (R_2, ψ_2) are two polarized non-abelian representations of S for which the associated full polarized embeddings are isomorphic, then also the representation groups R_1 and R_2 are isomorphic.

Proof. Let N_1 and N_2 be the subgroups of \widetilde{R} contained in $Z(\widetilde{R})$ such that $(R_1, \psi_1) \cong (\widetilde{R}/N_1, \widetilde{\psi}_{N_1})$ and $(R_2, \psi_2) \cong (\widetilde{R}/N_2, \widetilde{\psi}_{N_2})$. Then $\widetilde{\lambda} \notin N_1 \cup N_2$. Let α_1 and α_2 be the subspaces of $\mathcal{N}_{\widetilde{e}}$ corresponding to, respectively, $U_1 := \widetilde{\theta}(N_1) \subseteq \mathcal{R}_{\widetilde{f}}$ and $U_2 := \widetilde{\theta}(N_2) \subseteq \mathcal{R}_{\widetilde{f}}$. By Lemma 5.19(1), the projective embeddings e/α_1 and e/α_2 are isomorphic. This implies that $\alpha_1 = \alpha_2$. Hence, $\widetilde{\theta}(N_1) = \widetilde{\theta}(N_2)$. By Lemma 6.6, $R_1 \cong R_2$.

Proposition 6.8. If (R_1, ψ_1) and (R_2, ψ_2) are two polarized non-abelian representations of S such that $|R_1| = |R_2| = 2^{\beta}$, where $\beta = 1 + er^-(S)$, then R_1 and R_2 are isomorphic (to either 2^{β}_+ or 2^{β}_-).

Proof. Let N_1 and N_2 be the unique normal subgroups of \widetilde{R} contained in $Z(\widetilde{R})$ such that $\widetilde{\lambda} \not\in N_1 \cup N_2$ and $(\widetilde{R}/N_1, \widetilde{\psi}_{N_1}) \cong (R_1, \psi_1)$ and $(\widetilde{R}/N_2, \widetilde{\psi}_{N_2}) \cong (R_2, \psi_2)$. Then $|N_1| = |N_2| = \frac{|\widetilde{R}|}{|R_1|} = 2^l$, where $l = er^+(\mathcal{S}) - er^-(\mathcal{S})$. Since $\widetilde{\lambda} \not\in N_1 \cup N_2$ and $|Z(\widetilde{R})| = 2^{l+1}$, we have $Z(\widetilde{R}) = \langle N_1, \widetilde{\lambda} \rangle = \langle N_2, \widetilde{\lambda} \rangle$. Hence, $\mathcal{R}_{\widetilde{f}} = \theta(Z(\widetilde{R})) = \theta(\langle N_1, \widetilde{\lambda} \rangle) = \theta(N_1) = \theta(\langle N_2, \widetilde{\lambda} \rangle) = \theta(N_2)$. By Lemma 6.6, $R_1 \cong \widetilde{R}/N_1 \cong \widetilde{R}/N_2 \cong R_2$.

References

- [1] M. Aschbacher. Finite group theory. Cambridge Studies in Advanced Mathematics 10, Cambridge University Press, Cambridge, 2000.
- [2] R. J. Blok, I. Cardinali, B. De Bruyn and A. Pasini. Polarized and homogeneous embeddings of dual polar spaces. *J. Algebraic Combin.* 30 (2009), 381–399.
- [3] A. E. Brouwer and S. V. Shpectorov. Dimensions of embeddings of near polygons. Unpublished manuscript.
- [4] A. M. Cohen and B. N. Cooperstein. A characterization of some geometries of Lie type. *Geom. Dedicata* 15 (1983), 73–105.
- [5] B. De Bruyn. Dual embeddings of dense near polygons. Ars Combin. 103 (2012), 33–54.
- [6] B. De Bruyn, B. K. Sahoo and N. S. N. Sastry. Non-abelian representations of the slim dense near hexagons on 81 and 243 points. *J. Algebraic Combin.* 33 (2011), 127–140.
- [7] K. Doerk and T. Hawkes. *Finite soluble groups*. de Gruyter Expositions in Mathematics 4, Walter de Gruyter & Co., Berlin, 1992.
- [8] D. Gorenstein. Finite groups. Chelsea Publishing Co., New York, 1980.
- [9] A. A. Ivanov. Non-abelian representations of geometries. "Groups and Combinatorics" in memory of Michio Suzuki, 301–314, Adv. Stud. Pure Math. 32, Math. Soc. Japan, Tokyo, 2001.
- [10] A. A. Ivanov, D. V. Pasechnik and S. V. Shpectorov. Non-abelian representations of some sporadic geometries. *J. Algebra* 181 (1996), 523–557.
- [11] K. L. Patra and B. K. Sahoo. A non-abelian representation of the dual polar space DQ(2n, 2). Innov. Incidence Geom. 9 (2009), 177–188.

- [12] M. A. Ronan. Embeddings and hyperplanes of discrete geometries. *European J. Combin.* 8 (1987), 179–185.
- [13] B. K. Sahoo and N. S. N. Sastry. A characterization of finite symplectic polar spaces of odd prime order. *J. Combin. Theory Ser. A* 114 (2007), 52–64.
- [14] B. K. Sahoo and N. S. N. Sastry. On the order of a non-abelian representation group of a slim dense near hexagon. *J. Algebraic Combin.* 29 (2009), 195–213.
- [15] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299–316.

Addresses:

Bart De Bruyn. Department of Mathematics, Ghent University, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Binod Kumar Sahoo. School of Mathematical Sciences, National Institute of Science Education and Research - Bhubaneswar, P.O.: Bhimpur-Padanpur, Via- Jatni, Dist-Khurda, Odisha - 752050, India, E-mail: bksahoo@niser.ac.in