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Abstract

In [15], Shult introduced a class of parapolar spaces, the so-called near-polar
spaces. We introduce here the notion of a polarized non-abelian representation of a
slim near-polar space, that is, a near-polar space in which every line is incident with
precisely three points. For such a polarized non-abelian representation, we study
the structure of the corresponding representation group, enabling us to generalize
several of the results obtained in [14] for non-abelian representations of slim dense
near hexagons. We show that with every polarized non-abelian representation of a
slim near-polar space, there is an associated polarized projective embedding.
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1 Introduction

Projective embeddings of point-line geometries have been widely studied. A projective
embedding is a map from the point set of a point-line geometry S to the point set of
a projective space PG(V ) mapping lines of S to full lines of PG(V ). In case S has
three points per line, the underlying field of V is F2. For such a geometry, a projective
embedding can alternatively be viewed as a map p 7→ v̄p from the point set of S to the
nontrivial elements of the additive group of V such that if {p1, p2, p3} is a line of S, then
v̄p3 = v̄p1 + v̄p2 . This alternative point of view allows to generalize the notion of projective
embeddings to so-called representations, where points of the slim geometry are no longer
mapped to points of a projective space or to nonzero vectors of a vector space, but to
involutions of a group R, the so-called representation group. If R is a non-abelian group,
then the representation itself is also called non-abelian.

Non-abelian representations have been studied for a variety of geometries, including
polar spaces and dense near polygons. In this paper, we study non-abelian representations
for a class of parapolar spaces that includes both the polar spaces and the dense near
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polygons. This class of parapolar spaces was introduced by Shult in [15] and called near-
polar spaces in [2].

In this paper, we restrict to those near-polar spaces that are slim and to a particular
family of non-abelian representations, the so-called polarized ones. For polarized non-
abelian representations of slim near-polar spaces, we derive quite some information about
the representation groups. We show that these representation groups are closely related
to extraspecial 2-groups, and obtain information about the centers of these groups. We
also show that with every polarized non-abelian representation of a slim near-polar space,
there is an associated polarized projective embedding (by taking a suitable quotient).

2 Preliminaries

2.1 Partial linear spaces and their projective embeddings

Let S = (P ,L, I) be a point-line geometry with nonempty point set P , line set L and
incidence relation I ⊆ P × L.

We call S a partial linear space if every two distinct points of S are incident with at
most one line. We call S slim if every line of S is incident with precisely three points.
In the sequel, all considered point-line geometries will be partial linear spaces. We will
often identify a line with the set of points incident with it. The incidence relation then
corresponds to “containment”.

A subspace of S is a set X of points with the property that if a line L has at least
two of its points in X then all the points of L are in X. A hyperplane of S is a subspace,
distinct from P , meeting each line of S.

The distance d(x1, x2) between two points x1 and x2 of S will be measured in the
collinearity graph of S. A path of minimal length between two points of S is called a
geodesic. A subspace X of S is called convex if every point on a geodesic between two
points of X is also contained in X. If x1 and x2 are two points of S, then the intersection
of all convex subspaces containing {x1, x2} is denoted by 〈x1, x2〉. (This is well-defined
since P is a convex subspace.) The set 〈x1, x2〉 itself is a convex subspace and hence it
is the smallest convex subspace of S containing {x1, x2}. The subspace 〈x1, x2〉 is called
the convex closure of x1 and x2.

A full projective embedding of S is a map e from P to the point set of a projective
space Σ satisfying: (i) 〈e(P)〉Σ = Σ; and (ii) e(L) := {e(x) | x ∈ L} is a full line of Σ for
every line L of S. If e is moreover injective, then the full projective embedding e is called
faithful. A full projective embedding e from S into a projective space Σ will shortly be
denoted by e : S → Σ.

If N is the maximum dimension of a projective space into which S is fully embeddable,
then the number N + 1 is called the embedding rank of S and is denoted by er(S). The
number er(S) is only defined when S is fully embeddable.

Two full projective embeddings e1 : S → Σ1 and e2 : S → Σ2 of S are called isomorphic
(denoted by e1

∼= e2) if there exists an isomorphism θ from Σ1 to Σ2 such that e2 = θ ◦ e1.
Let e : S → Σ be a full projective embedding of S and suppose α is a subspace of Σ

satisfying the following two properties:
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(Q1) e(p) 6∈ α for every point p of S;

(Q2) 〈α, e(p1)〉 6= 〈α, e(p2)〉 for any two distinct points p1 and p2 of S.

We denote by Σ/α the quotient projective space whose points are those subspaces of Σ
that contain α as a hyperplane. Since α satisfies properties (Q1) and (Q2), it is easily
verified that the map which associates with each point x of S the point 〈α, e(x)〉 of Σ/α
defines a full projective embedding of S into Σ/α. We call this embedding a quotient of
e and denote it by e/α.

If S is a fully embeddable slim partial linear space, then by Ronan [12], S admits up to

isomorphism a unique full projective embedding ẽ : S → Σ̃ such that every full projective
embedding e of S is isomorphic to a quotient of ẽ. The full projective embedding ẽ is
called the universal embedding of S. We have er(S) = dim(Σ̃) + 1. If S admits a faithful
full projective embedding, then the universal embedding ẽ of S is also faithful.

2.2 Near polygons

A partial linear space S = (P ,L, I) is called a near polygon if for every point p and every
line L, there exists a unique point on L nearest to p. If d ∈ N is the maximal distance
between two points of S (= the diameter of S), then the near polygon is also called a
near 2d-gon. A near 0-gon is a point, a near 2-gon is a line. Near quadrangles are usually
called generalized quadrangles. A near polygon is called dense if every line is incident
with at least three points and if every two points at distance 2 have at least two common
neighbors.

2.3 Polar and dual polar spaces

A partial linear space S = (P ,L, I) is called a polar space if for every point p and every line
L, either one or all points of L are collinear with p. The radical of a polar space is the set of
all points x which are collinear with any other point. A polar space is called nondegenerate
if its radical is empty. A subspace of a polar space is said to be singular if any two of
its points are collinear. The rank r of a nondegenerate polar space is the maximal length
r of a chain S0 ⊂ S1 ⊂ · · · ⊂ Sr of singular subspaces where S0 = ∅ and Si 6= Si+1 for
all i ∈ {0, . . . , r − 1}. A nondegenerate polar space of rank 2 is just a nondegenerate
generalized quadrangle. The rank of a singular subspace S of a nondegenerate polar space
is the maximal length k of a chain S0 ⊂ S1 ⊂ · · · ⊂ Sk of singular subspaces such that
S0 = ∅, Sk = S and Si 6= Si+1 for all i ∈ {0, . . . , k − 1}. Singular subspaces of rank r
are also called maximal singular subspaces, those of rank r− 1 are called next-to-maximal
singular subspaces. A nondegenerate polar space is called thick if every line is incident
with at least three points and if every next-to-maximal singular subspace is contained in
at least three maximal singular subspaces.

With every (thick) polar space S of rank r ≥ 1, there is associated a partial linear space
∆, which is called a (thick) dual polar space of rank r. The points of ∆ are the maximal
singular subspaces of S, the lines of ∆ are the next-to-maximal singular subspaces of S,
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and incidence is reverse containment. Every thick dual polar space of rank r is a dense
near 2r-gon.

2.4 Near-polar spaces

In [15], Shult introduced a class of point-line geometries. These point-line geometries were
called near-polar spaces in [2]. Near-polar spaces of diameter n are inductively defined as
follows.

A near-polar space of diameter 0 is just a point and a near-polar space of diameter 1
is a line having at least three points. A near-polar space of diameter n ≥ 2 is a point-line
geometry S satisfying the following five axioms:

(E1) S is connected and its diameter is equal to n;

(E2) Every line of S is incident with at least three points;

(E3) Every geodesic x0, x1, . . . , xk in S can be completed to a geodesic x0, x1, . . . , xk, xk+1,
. . . , xn of length n;

(E4) For every point x of S, the set Hx of points of S at distance at most n− 1 from x
is a hyperplane of S;

(E5) If x1 and x2 are two points of S with k := d(x1, x2) < n, then the subgeometry of
S induced on the convex closure 〈x1, x2〉 is a near-polar space of diameter k.

The hyperplane Hx mentioned in Axiom (E4) is called the singular hyperplane of S with
deepest point x.

The near-polar spaces of diameter 2 are precisely the nondegenerate polar spaces in
which each line is incident with at least three points. Every near-polar space of diameter
n ≥ 2 is a strong parapolar space in the sense of Cohen and Cooperstein [4]. The convex
closures of the pairs of points at distance 2 from each other are also called symplecta.

Every thick dual polar space and more generally every dense near polygon is a near-
polar space. The class of near-polar spaces also includes some half-spin geometries, some
Grassmann spaces and some exceptional geometries, see Shult [15, Section 6].

We will now discuss full projective embeddings of near-polar spaces. Most of what we say
here is based on De Bruyn [5].

Suppose e : S → Σ is a full projective embedding of a near-polar space S = (P ,L, I).
By Shult [15, Lemma 6.1(ii)], every singular hyperplane Hx, x ∈ P , of S is a maximal
(proper) subspace. This implies that Πx := 〈e(Hx)〉Σ is either Σ or a hyperplane of Σ.
The embedding e is called polarized if Πx is a hyperplane of Σ for every point x of S. If e
is polarized, then the subspace Ne :=

⋂
x∈P

Πx is called the nucleus of e. By De Bruyn [5,

Proposition 3.4], the nucleus Ne satisfies the conditions (Q1) and (Q2) of Section 2.1 and
the embedding ē := e/Ne is polarized.

Suppose now that S is a slim near-polar space. Then S admits a faithful full polarized
embedding, see Brouwer & Shpectorov [3] or De Bruyn [5, Proposition 3.11(i)]. So, S also
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has a universal embedding ẽ : S → Σ̃. This universal embedding necessarily is polarized
and faithful. The embedding ẽ/Nẽ is called the minimal full polarized embedding of S.
For every full polarized embedding e of S, the embedding ē = e/Ne is isomorphic to

ẽ/Nẽ. Every full embedding of S is isomorphic to ẽ/α for some subspace α of Σ̃ satisfying

Properties (Q1) and (Q2). If α1 and α2 are two subspaces of Σ̃ satisfying (Q1) and (Q2),
then e/α1

∼= e/α2 if and only if α1 = α2.
Suppose again that S is a slim near-polar space and that e : S → Σ is a full polarized

embedding of S. This means that for every point x of S, the subspace 〈e(Hx)〉Σ is a
hyperplane Πx of Σ. By De Bruyn [5, Propositions 3.5 and 3.11(ii)], the map x 7→ Πx

defines a polarized full embedding e∗ of S into a subspace of the dual Σ∗ of Σ. The
embedding e∗ is called the dual embedding of e. The nucleus of e∗ is empty. So, the dual
embedding e∗ is isomorphic to the minimal full polarized embedding of S.

2.5 Extraspecial 2-groups

In the sequel, we will adopt the following conventions when dealing with groups. For
elements a, b of a group G, we write [a, b] = a−1b−1ab and ab = b−1ab. For elements x, y, z
of G, we have [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z. We denote by Cn the cyclic
group of order n.

A finite 2-group G is called extraspecial if its Frattini subgroup Φ(G), commutator
subgroup G′ = [G,G] and center Z(G) coincide and have order 2. We refer to [7, Section
20, pp.78–79] or [8, Chapter 5, Section 5] for the properties of finite extraspecial 2-groups
which we will mention now.

An extraspecial 2-group is of order 21+2n for some integer n ≥ 1. Let D8 and Q8,
respectively, denote the dihedral and the quaternion groups of order 8. A non-abelian
2-group of order 8 is extraspecial and is isomorphic to either D8 or Q8. If G is an
extraspecial 2-group of order 21+2n, n ≥ 1, then the exponent of G is 4 and G is either
a central product of n copies of D8, or a central product of n − 1 copies of D8 and one
copy of Q8. If the former (respectively, latter) case occurs, then the extraspecial 2-group
is denoted by 21+2n

+ (respectively, 21+2n
− ).

Suppose G is an extraspecial 2-group of order 22n+1, n ≥ 1, and set G′ = {1, λ}. Then
V = G/G′ is an elementary abelian 2-group and hence can be regarded as a 2n-dimensional
vector space over F2. For all x, y ∈ G, we define

f(xG′, yG′) =

{
0 ∈ F2 if [x, y] = 1,
1 ∈ F2 if [x, y] = λ.

Then f is a nondegenerate alternating bilinear form on V . For all x ∈ G, x2 ∈ G′ = {1, λ}
as G/G′ is elementary abelian. We define

q(xG′) =

{
0 ∈ F2 if x2 = 1,
1 ∈ F2 if x2 = λ.

Then q is a nondegenerate quadratic form on V . The bilinear form associated with q is
precisely f , that is,

q(xG′yG′) = q(xG′) + q(yG′) + f(xG′, yG′)
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for all x, y ∈ G. The nondegenerate quadratic form q defines a nonsingular quadric of
PG(V ), which is of hyperbolic type if G = 21+2n

+ or of elliptic type if G = 21+2n
− .

2.6 Representations of slim partial linear spaces

Let S = (P ,L, I) be a slim partial linear space. A representation [10, p.525] of S is a
pair (R,ψ), where R is a group and ψ is a mapping from P to the set of involutions in
R, satisfying:

(i) R is generated by the image of ψ;

(ii) ψ(x)ψ(y) = ψ(z) for every line {x, y, z} of S.

If {x, y, z} is a line of S, then condition (ii) implies that ψ(x), ψ(y), ψ(z) are mutually
distinct and [ψ(x), ψ(y)] = [ψ(x), ψ(z)] = [ψ(y), ψ(z)] = 1. The group R is called a
representation group of S. The representation (R,ψ) of S is called faithful if ψ is injective.
Depending on whether R is abelian or not, the representation (R,ψ) itself will be called
abelian or non-abelian. For an abelian representation, the representation group is an
elementary abelian 2-group and hence can be considered as a vector space over the field
F2 with two elements. In this case, the representation thus corresponds to a full projective
embedding of S.

We refer to [9] and [13, Sections 1 and 2] for representations of partial linear spaces
with p+ 1 points per line, where p is a prime.

Suppose S1 and S2 are two slim partial linear spaces. Let (Ri, ψi), i ∈ {1, 2}, be a
representation of Si. The representations (R1, ψ1) and (R2, ψ2) are called equivalent if
there exists an isomorphism θ1 from S1 to S2 and a group isomorphism θ2 from R1 to R2

such that ψ2 ◦ θ1(x) = θ2 ◦ ψ1(x) for every point x of S1. If S1 = S2, then (R1, ψ1) and
(R2, ψ2) are called isomorphic if there exists a group isomorphism θ from R1 to R2 such
that ψ2(x) = θ ◦ ψ1(x) for every point x of S1.

Suppose (R,ψ) is a representation of a slim partial linear space S. Let N be a normal
subgroup of R such that ψ(x) 6∈ N for every point x of S. For every point x of S,
let ψN(x) denote the element ψ(x)N of the quotient group R/N . Then (R/N,ψN) is a
representation of S which is called a quotient of (R,ψ). If (R1, ψ1) and (R2, ψ2) are two
representations of S, then (R2, ψ2) is isomorphic to a quotient of (R1, ψ1) if and only if
there exists a group epimorphism θ from R1 to R2 such that ψ2(x) = θ ◦ ψ1(x). If this is
the case, then (R2, ψ2) is isomorphic to (R1/N, (ψ1)N), where N = ker(θ).

2.7 Polarized and universal representations of slim near-polar
spaces

Let S = (P ,L, I) be a slim near-polar space of diameter n ≥ 2.

• A representation (R,ψ) of S is called quasi-polarized if [ψ(x), ψ(y)] = 1 for every
two points x and y of S at distance at most n− 1 from each other.
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• An abelian representation (R,ψ) of S is called polarized if the corresponding full
projective embedding (in the sense of Section 2.6) is polarized.

• A non-abelian representation (R,ψ) of S is called polarized if [ψ(x), ψ(y)] = 1 for
every two points x and y of S at distance at most n− 1 from each other, that is, if
the representation is quasi-polarized.

We will later show that with every polarized non-abelian representation of S, there is an
associated full polarized embedding of S (which is obtained by taking a suitable quotient).

(1) Let R̃u be the group defined by the generators rx, x ∈ P , and the following relations:

• r2
x = 1, where x ∈ P ;

• rxryrz = 1, where x, y, z ∈ P such that {x, y, z} ∈ L.

For every point x of S, we define ψ̃u(x) := rx ∈ R̃u.

(2) Let R̃p be the group defined by the generators rx, x ∈ P , and the following relations:

• r2
x = 1, where x ∈ P ;

• [rx, ry] = 1, where x, y ∈ P such that d(x, y) < n;

• rxryrz = 1, where x, y, z ∈ P such that {x, y, z} ∈ L.

For every point x of S, we define ψ̃p(x) := rx ∈ R̃p.

(3) As mentioned before, S has faithful full projective embeddings. The universal projec-
tive embedding of S can be constructed as follows. Let V be a vector space over F2 with
a basis B whose elements are indexed by the points of P , say B = {v̄x |x ∈ P}. Let W
be the subspace of V generated by all vectors v̄x1 + v̄x2 + v̄x3 where {x1, x2, x3} is some

line of S. Let Ṽ be the quotient vector space V/W and for every point x of S, let ṽx be

the vector v̄x + W of Ṽ . The map x 7→ 〈ṽx〉 defines a full projective embedding ẽ of S
into PG(Ṽ ) which is isomorphic to the universal embedding of S.

Proposition 2.1. (1) (R̃u, ψ̃u) is a faithful representation of S.

(2) (R̃p, ψ̃p) is a faithful polarized representation of S.

(3) If (R,ψ) is a representation of S, then (R,ψ) is isomorphic to a quotient of (R̃u, ψ̃u).

(4) If (R,ψ) is a quasi-polarized representation of S, then (R,ψ) is isomorphic to a

quotient of (R̃p, ψ̃p).

Proof. We show that (R̃p, ψ̃p) is a faithful representation. Since ṽx + ṽx = W for every
x ∈ P , (−ṽx) + (−ṽy) + ṽx + ṽy = W for all x, y ∈ P and ṽx + ṽy + ṽz = W for every
line {x, y, z} of S, we know from von Dyck’s theorem that there exists an epimorphism

from R̃p to the additive group of Ṽ mapping rx to ṽx for every point x of S. Since ẽ is a
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full projective embedding, ṽx 6= W and hence rx 6=R̃p
1 for every x ∈ P . The latter fact

implies that (R̃p, ψ̃p) is a representation. Since ẽ is a faithful projective embedding, we
have ṽx 6= ṽy for any two distinct points x, y ∈ P . This implies that also rx 6=R̃p

ry. So,

(R̃p, ψ̃p) is a faithful representation.

In a completely similar way, one can show that (R̃u, ψ̃u) is a faithful representation.
Claims (3) and (4) are straightforward consequences of von Dyck’s theorem.

By construction, the representation (R̃p, ψ̃p) is quasi-polarized and hence polarized if

R̃p is non-abelian. Suppose R̃p is abelian. Then let ep denote the full projective embedding

of S corresponding to (R̃p, ψ̃p). Let (R̃, ψ̃) denote the abelian representation corresponding

to the universal projective embedding ẽ of S. By Claim (4), (R̃, ψ̃) is isomorphic to a

quotient of (R̃p, ψ̃p), and hence ẽ is isomorphic to a quotient of ep. As ẽ cannot be a proper
quotient of some full embedding of S, the projective embeddings ẽ and ep are isomorphic.

So, ep is polarized, or equivalently, (R̃p, ψ̃p) is polarized.

The representation (R̃u, ψ̃u) is called the universal representation of S. The representation

(R̃p, ψ̃p) is called the universal polarized representation of S.

From Section 5 (see Lemma 5.3) it will follow that there exists a λ̃ ∈ R̃p such that

[ψ̃p(x), ψ̃p(y)] = λ̃ for every two points x and y at distance n from each other. If λ̃ = 1,
then the universal polarized representation is abelian and hence corresponds to the uni-
versal projective embedding of S (which is always polarized). If λ̃ 6= 1, then the universal
polarized representation of S is non-abelian. Both instances can occur. Indeed, the
slim dual polar space DW (2n − 1, 2) and the slim dense near hexagons Q(5, 2) × L3,
Q(5, 2) ⊗ Q(5, 2) have non-abelian polarized representations [6, 11], while no finite slim
nondegenerate polar space has non-abelian representations [13, Theorem 1.5(i)]. Com-
puter computations showed that other dense near polygons (like the dual polar space
DH(5, 4)) also have non-abelian polarized representations (in extraspecial 2-groups), but
the authors are still looking for computer free descriptions of these representations.

3 Main results

For a finite slim near-polar space S, we denote the embedding rank er(S) also by er+(S).
The vector space dimension of the minimal full polarized embedding of S will be denoted
by er−(S). We will see in Proposition 4.2 that the number er−(S) is even. By [14],
every non-abelian representation of a slim dense near hexagon is polarized. The following
theorem is the first main theorem of this paper. It generalizes some results regarding slim
dense near hexagons obtained in [14]. We will prove it in Section 5.

Theorem 3.1. Suppose S is a finite slim near-polar space of diameter n ≥ 2 having
some polarized non-abelian representation (R,ψ). Then n ≥ 3 and the universal polarized

representation (R̃p, ψ̃p) of S is also non-abelian. Moreover,

(i) ψ is faithful and ψ(x) /∈ Z(R) for every point x of S.
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(ii) R is a 2-group of exponent 4, |R′| = 2 and R′ = Φ(R) ⊆ Z(R).

(iii) If |Z(R)| = 2l+1, then Z(R) is isomorphic1 to either (C2)l+1 or (C2)l−1 × C4.

(iv) R is of order 2β for some integer β satisfying 1+er−(S) ≤ β ≤ 1+er+(S). We have
β = 1 + er−(S) if and only if R is an extraspecial 2-group. We have β = 1 + er+(S)

if and only if (R,ψ) is isomorphic to (R̃p, ψ̃p).

(v) If l = er+(S) − er−(S), then Z(R̃p) has order 2l+1 and so is isomorphic to either
(C2)l+1 or (C2)l−1 × C4.

In Section 6, we prove the following results.

Theorem 3.2. Suppose S is a finite slim near-polar space of diameter n ≥ 3 having
polarized non-abelian representations. Then the following hold:

(i) The polarized representations of S are precisely the representations of the form

(R̃p/N, (ψ̃p)N), where N is a subgroup of R̃p contained in Z(R̃p).

(ii) If N1 and N2 are two subgroups of Z(R̃p), then the representations (R̃p/N1, (ψ̃p)N1)

and (R̃p/N2, (ψ̃p)N2) of S are isomorphic if and only if N1 = N2.

Remark. If l = er+(S)− er−(S), then we will see in Section 6 that Theorems 3.1(v) and
3.2 imply that the number of nonisomorphic polarized non-abelian representations of S is

equal to the sum2
l+1∑
i=0

[
l+1
i

]
2
−

l∑
i=0

[
l
i

]
2

if Z(R̃p) ∼= (C2)l+1, and equal to
l∑

i=0

[
l
i

]
2
−

l−1∑
i=0

[
l−1
i

]
2

if Z(R̃p) ∼= (C2)l−1 × C4.

Theorem 3.3. Suppose S is a finite slim near-polar space of diameter n ≥ 3 having
polarized non-abelian representations. Set l := er+(S)− er−(S). Then S has a polarized

non-abelian representation (R,ψ) with |R| = 21+er−(S) if and only if Z(R̃p) ∼= (C2)l+1. If
this is the case then there are up to isomorphism 2l such representations. Moreover, the

representation groups of any two of them are isomorphic (to either 2
1+er−(S)
+ or 2

1+er−(S)
− ).

Theorem 3.4. Suppose S is a finite slim near-polar space of diameter n ≥ 3 having
polarized non-abelian representations. Suppose Z(R̃p) ∼= C l−1

2 × C4, where l = er+(S) −
er−(S) ≥ 1. Then |R| ≥ 22+er−(S) for every polarized non-abelian representation (R,ψ)
of S. Moreover, there are up to isomorphism 2l−1 polarized non-abelian representations
(R,ψ) with |R| = 22+er−(S). If (R,ψ) is such a representation, then Z(R) ∼= C4.

1If l = 0, then (C2)−1 is not defined. In this case, this sentence should be understood as “Z(R) is
isomorphic to C2”.

2The terms occurring in this sum are Gaussian binomial coefficients.
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4 Some properties of near-polar spaces

Let S be a near-polar space of diameter n ≥ 1. Two points x and y of S are called
opposite if they are at a maximum distance from each other, that is, d(x, y) = n. For two
distinct points x, y of S, we write x ∼ y if they are collinear.

Proposition 4.1. Let S be a near-polar space of diameter n ≥ 1. Let Γ be the graph
whose vertices are the ordered pairs of opposite points of S, with two distinct vertices
(x1, y1) and (x2, y2) being adjacent whenever either x1 = x2 and y1 ∼ y2; or x1 ∼ x2 and
y1 = y2. Then Γ is connected.

Proof. Let (x1, y1) and (x2, y2) be two arbitrary vertices of Γ. We prove that (x1, y1) and
(x2, y2) are contained in the same connected component of Γ.

For every point x of S, the subgraph of the collinearity graph of S induced on the set
of points at distance n from x is connected by Shult [15, Lemma 6.1(ii)]. So, if x1 = x2

or y1 = y2, then (x1, y1) and (x2, y2) belong to the same connected component of Γ.
Assume that x1 6= x2 and y1 6= y2. We prove that there exists a point y3 at distance n

from x1 and x2. If y3 is such a point, then (a1, b1) and (a2, b2) belong to the same connected
component of Γ for every (a1, b1, a2, b2) ∈ {(x1, y1, x1, y3), (x1, y3, x2, y3), (x2, y3, x2, y2)},
proving that (x1, y1) and (x2, y2) also belong to the same connected component of Γ.

The point y3 alluded to in the previous paragraph is defined as a point of S at distance
n from x1 which lies as far away from x2 as possible. Suppose d(y3, x2) ≤ n− 1 for such
a point y3. Then by Axiom (E3), there exists a point y4 collinear with y3 which lies at
distance k := d(y3, x2) + 1 from x2. By Axiom (E5), a near-polar space of diameter k
can be defined on the convex closure 〈x2, y4〉. By applying Axiom (E4) to this near-polar
space of diameter k, we see that the points of the line y3y4 distinct from y3 lie at distance
k = d(y3, x2)+1 from x2. By Axioms (E2) and (E4) applied to S, at least one of the points
of y3y4 \ {y3} lies at distance n from x1. This contradicts the maximality of d(y3, x2). So,
d(x1, y3) = d(x2, y3) = n as we needed to prove.

Proposition 4.2. Let S = (P ,L, I) be a finite slim near-polar space of diameter n ≥ 1,
let V be a finite-dimensional vector space over F2 and let e : S → PG(V ) be a full polarized
embedding of S into PG(V ). Then there exists a unique alternating bilinear form f on V
for which the following holds:

If x is a point of S and v̄ is the unique vector of V for which e(x) = 〈v̄〉, then
PG(v̄⊥f ) is a hyperplane of PG(V ) which contains all the points e(y), where
y ∈ P and d(x, y) ≤ n − 1, and none of the points e(z), where z ∈ P and
d(x, z) = n.

If e is isomorphic to the minimal full polarized embedding of S, then the alternating
bilinear form f is nondegenerate and hence er−(S) = dim(V ) is even.

Proof. For every point x of S, let Πx denote the unique hyperplane of PG(V ) which
contains all the points e(y), where y ∈ P and d(x, y) ≤ n−1, and none of the points e(z),
where z ∈ P and d(x, z) = n.
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(1) We first prove the existence of the alternating bilinear form in the case e is isomorphic
to the minimal full polarized embedding of S. Then

⋂
x∈P

Πx = ∅.

Recall that the map x 7→ Πx defines a full projective embedding e∗ of S into the dual
PG(V )∗ of PG(V ). This embedding e∗ is called the dual embedding of e and is isomorphic
to the minimal full polarized embedding of S. So, there exists an isomorphism φ from
PG(V ) to PG(V )∗ mapping e(x) to Πx for every point x of S.

We prove that φ is a polarity of PG(V ), or equivalently that φ2 = 1. Since φ2 defines
a collineation of PG(V ), it suffices to prove that φ2(p) = p for every point p belonging to
a generating set of PG(V ). So, it suffices to prove that φ(Πx) = φ2(e(x)) = e(x) for every
point x of P . If y is a point at distance at most n− 1 from x, then e(y) ∈ Πx implies that
φ(Πx) ∈ Πy. Hence, φ(Πx) is contained in the intersection I of all hyperplanes Πy, where
y ∈ P and d(x, y) ≤ n − 1. Since e∗ is polarized, the hyperplanes Πy, where y ∈ P and
d(x, y) ≤ n − 1, generate a hyperplane of PG(V )∗. So, I is a singleton. Since e(x) ∈ Πy

for every y ∈ P satisfying d(x, y) ≤ n− 1, we also have e(x) ∈ I. Hence, φ(Πx) = e(x) as
we needed to prove.

We now prove that φ is a symplectic polarity of PG(V ). To that end, it suffices to
prove that p ∈ pφ for every point p of PG(V ). Since PG(V ) = 〈Im(e)〉, it suffices to prove
the following:

(a) e(x) ∈ e(x)φ for every x ∈ P ;

(b) if L = {p1, p2, p3} is a line of PG(V ) such that p1 ∈ pφ1 and p2 ∈ pφ2 , then also
p3 ∈ pφ3 .

Since e(x)φ = Πx and e(x) ∈ Πx, Property (a) clearly holds. If p2 ∈ pφ1 , then {p3} ⊆ L ⊆
pφ1 ∩ p

φ
2 = Lφ ⊆ pφ3 . If p2 6∈ pφ1 , then pφ1 = 〈Lφ, p1〉, pφ2 = 〈Lφ, p2〉 and pφ3 is the unique

hyperplane through Lφ distinct from pφ1 and pφ2 , implying that pφ3 = 〈Lφ, p3〉. So, Property
(b) also holds in that case.

If f is the nondegenerate alternating bilinear form of V corresponding to the symplectic
polarity φ of PG(V ), then f satisfies the required conditions.

(2) Suppose e is not isomorphic to the minimal full polarized embedding of S. Let α be
the intersection of all subspaces Πx, x ∈ P , let U be the subspace of V corresponding to
α and let W be a subspace of V such that V = U ⊕W . For every point x of S, let e′(x)
denote the unique point of PG(W ) contained in 〈α, e(x)〉. Then e′ is isomorphic to the
minimal full polarized embedding of S. By part (1) above, we know that there exists a
nondegenerate alternating bilinear form fW on W such that if x is a point of S and w̄ is
the unique vector of W for which e′(x) = 〈w̄〉, then the hyperplane PG(w̄⊥fW ) of PG(W )
contains all points e′(y), where y ∈ P and d(x, y) ≤ n − 1, and none of the points e(z),
where z ∈ P and d(x, z) = n. Now, for all ū1, ū2 ∈ U and all w̄1, w̄2 ∈ W , we define

f(ū1 + w̄1, ū2 + w̄2) := fW (w̄1, w̄2).

Then f is an alternating bilinear form on V .
Suppose x is a point of S. Let v̄ be the unique vector of V for which e(x) = 〈v̄〉 and

let w̄ be the unique vector of W for which e′(x) = 〈w̄〉. Then 〈w̄〉 = 〈U, v̄〉 ∩W . We
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also have 〈v̄⊥f 〉 = 〈U, w̄⊥fW 〉. Since PG(w̄⊥fW ) contains all points e′(y), where y ∈ P and
d(x, y) ≤ n − 1, and none of the points e′(z), where z ∈ P and d(x, z) = n, we have
that PG(v̄⊥f ) contains all points e(y), where y ∈ P and d(x, y) ≤ n− 1, and none of the
points e(z), where z ∈ P and d(x, z) = n. So, the alternating bilinear form f satisfies the
required conditions.

(3) We now prove the uniqueness of the alternating bilinear form. Suppose f1 and f2 are
two alternating bilinear forms on V satisfying the required conditions. Then g := f1 − f2

is also an alternating bilinear form on V .
Suppose x1 and x2 are two points of S and let v̄i, i ∈ {1, 2}, be the unique vector of

V for which e(x) = 〈v̄i〉. If d(x1, x2) ≤ n − 1, then f1(v̄1, v̄2) = 0 = f2(v̄1, v̄2) and hence
g(v̄1, v̄2) = 0. If d(x1, x2) = n, then f1(v̄1, v̄2) = 1 = f2(v̄1, v̄2) and hence g(v̄1, v̄2) = 0.
Since PG(V ) = 〈e(x) |x ∈ P〉, we get g = 0. Hence f1 = f2.

5 Structure of the representation groups

Let S = (P ,L, I) be a finite slim near-polar space of diameter n ≥ 2 and suppose (R,ψ)
is a polarized non-abelian representation of S. In this section, we will prove all the claims
mentioned in Theorem 3.1.

Lemma 5.1. We have n ≥ 3.

Proof. By [13, Theorem 1.5(i)], every representation of a finite slim nondegenerate polar
space is abelian. So, S is not a polar space and hence n ≥ 3.

Lemma 5.2. The universal polarized representation (R̃p, ψ̃p) is non-abelian. Moreover,

|R̃p| ≥ 21+er+(S).

Proof. As (R,ψ) is a quotient of (R̃p, ψ̃p), the universal polarized representation (R̃p, ψ̃p)
itself should also be non-abelian. Since the abelian representation corresponding to the
universal projective embedding of S is quasi-polarized, it should be a quotient of (R̃p, ψ̃p)

by Proposition 2.1(4). This implies that |R̃p| ≥ 21+er+(S).

Later (Lemma 5.12) we will show that |R̃p| = 21+er+(S).

Lemma 5.3. Let Γ be the graph as defined in Proposition 4.1. Then there exists an
involution λ ∈ R such that λ = [ψ(x), ψ(y)] for every vertex (x, y) of Γ.

Proof. We first show that [ψ(x1), ψ(y1)] = [ψ(x2), ψ(y2)] for any two adjacent vertices
(x1, y1) and (x2, y2) of Γ. Suppose x1 = x2 and y1 ∼ y2. Let y3 be the unique third point
of the line y1y2. Then d(x1, y3) = n− 1. Since ψ(y3) commutes with ψ(x1) and ψ(y2), we
have [ψ(x1), ψ(y1)] = [ψ(x1), ψ(y2)ψ(y3)] = [ψ(x1), ψ(y2)]. The case where x1 ∼ x2 and
y1 = y2 is treated in a similar way.

Now let x and y be two opposite points of S and set λ = [ψ(x), ψ(y)]. By Proposition
4.1, Γ is connected. So, by the first paragraph, λ is independent of the opposite points x
and y. Also λ 6= 1 since (R,ψ) is polarized and non-abelian. Since λ−1 = [ψ(x), ψ(y)]−1 =
[ψ(y), ψ(x)] = λ, we get λ2 = 1.
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Corollary 5.4. 〈ψ(x), ψ(y)〉 ∼= D8 for every two opposite points x and y of S.

Proof. Since x and y are opposite points, (ψ(x)ψ(y))2 = [ψ(x), ψ(y)] = λ by Lemma 5.3
and so ψ(x)ψ(y) is of order 4. Hence 〈ψ(x), ψ(y)〉 ∼= D8 [1, 45.1].

Lemma 5.5. ψ is faithful and ψ(x) /∈ Z(R) for every point x of S.

Proof. Let x and y be two distinct points of S and let z be a point that is opposite
to x, but not to y (such a point exists by Axiom (E3)). Then [ψ(y), ψ(z)] = 1 and
[ψ(x), ψ(z)] = λ 6= 1 by Lemma 5.3. Hence, ψ(x) 6= ψ(y).

For a given point x, choose a point w opposite to x. Then [ψ(x), ψ(w)] = λ 6= 1. So
ψ(x) /∈ Z(R).

Lemma 5.6. R′ = {1, λ} ⊆ Z(R).

Proof. Set T = 〈λ〉 = {1, λ}. Then T ⊆ R′ by Lemma 5.3. We first show that T ⊆ Z(R).
Since R = 〈ψ(x) | x ∈ P〉, it is sufficient to prove that [ψ(x), λ] = 1 for every point x of S.
Let y be a point of S opposite to x. Since ψ(x), ψ(y), λ = [ψ(x), ψ(y)] all are involutions,
a direct calculation shows that [ψ(x), λ] = 1.

Being a central subgroup, T is normal in R. In the quotient group R/T , the generators
ψ(x)T , x ∈ P , commute pairwise. So R/T is abelian and hence R′ ⊆ T .

Corollary 5.7. For a, b, c ∈ R, [ab, c] = [a, c][b, c] and [a, bc] = [a, b][a, c].

Proof. By Lemma 5.6, we have [ab, c] = [a, c]b[b, c] = [a, c]·[b, c] and [a, bc] = [a, c]·[a, b]c =
[a, b] · [a, c].

Lemma 5.8. (1) For every r ∈ R, we have r2 ∈ {1, λ}.

(2) R is a finite 2-group of exponent 4 and R′ = Φ(R).

Proof. We show that r2 ∈ {1, λ} for every r ∈ R\{1}. Set r = ψ(x1)ψ(x2) · · ·ψ(xn), where
x1, x2, . . . , xn are points of S. Since λ2 = 1, ψ(xi)

2 = 1 and [ψ(xi), ψ(xj)] ∈ {1, λ} ⊆ Z(R)
for all i, j ∈ {1, . . . , n}, we have r2 ∈ {1, λ}. It follows that r4 = 1. Since R is non-abelian,
the exponent of R cannot be 2 and hence equals 4.

Since R = 〈ψ(x) |x ∈ P〉 and S is finite, the quotient group R/R′ = 〈ψ(x)R′ |x ∈ P〉
is a finite elementary abelian 2-group. Since |R′| = 2 by Lemma 5.6, we get that R is
also a finite 2-group. Then the two facts that R′ is the smallest normal subgroup K of
R such that R/K is abelian and that Φ(R) is the smallest normal subgroup H of R such
that R/H is elementary abelian [1, 23.2, p.105] imply R′ = Φ(R).

Since the quotient group R/R′ is an elementary abelian 2-group, we can consider
V = R/R′ as a vector space over F2. For every point x of S, let e(x) be the projective
point 〈ψ(x)R′〉 of PG(V ). Notice that, by Lemmas 5.5 and 5.6, ψ(x)R′ is indeed a nonzero
vector of V .

Lemma 5.9. The map e defines a faithful full projective embedding of S into PG(V ).
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Proof. Since R/R′ = 〈ψ(x)R′ | x ∈ P〉, the image of e generates PG(V ).
We prove that ψ(x1)R′ 6= ψ(x2)R′ for every two distinct points x1 and x2 of S. Suppose

to the contrary that ψ(x1)R′ = ψ(x2)R′. Since ψ is faithful by Lemma 5.5, we have
ψ(x1) 6= ψ(x2). So, ψ(x1) = ψ(x2)λ. By Axiom (E3), there exists a point x3 opposite
to x1, but not to x2. Then λ = [ψ(x1), ψ(x3)] = [ψ(x2)λ, ψ(x3)] = [ψ(x2), ψ(x3)] = 1, a
contradiction.

Let L = {x1, x2, x3} be a line of S. We have e(xi) = 〈ψ(xi)R
′〉, for i ∈ {1, 2, 3}. Since

ψ(x1)ψ(x2) = ψ(x3), we have ψ(x3)R′ = ψ(x1)R′ψ(x2)R′. Hence {e(x1), e(x2), e(x3)} is a
line of PG(V ).

Definition. For all a, b ∈ R, we define

f(aR′, bR′) =

{
1 if [a, b] = λ,
0 if [a, b] = 1.

Since R′ = {1, λ} ⊆ Z(R), the map f : V × V → F2 is well-defined.

Lemma 5.10. The map f : V × V → F2 is an alternating bilinear form of V .

Proof. The claim that f is an alternating bilinear form follows from the following facts.
• Since [a, a] = [1, a] = [a, 1] = 1, we have f(aR′, aR′) = f(R′, aR′) = f(aR′, R′) = 0

for all a ∈ R.
• Let x1, x2, y1 ∈ R. Since [x1x2, y1] = [x1, y1][x2, y1], we have f(x1R

′x2R
′, y1R

′) =
f(x1R

′, y1R
′) + f(x2R

′, y1R
′).

• Let x1, y1, y2 ∈ R. Since [x1, y1y2] = [x1, y1][x1, y2], we have f(x1R
′, y1R

′y2R
′) =

f(x1R
′, y1R

′) + f(x1R
′, y2R

′).

Lemma 5.11. The embedding e of S into PG(V ) is polarized.

Proof. For every point x of S, we define a certain subspace Πx of PG(V ). Let v̄ be the
unique vector of V for which e(x) = 〈v̄〉. Then Πx is the subspace of PG(V ) corresponding3

to the subspace v̄⊥f of V .
Let x1 and x2 be two points of S and let v̄i = ψ(xi)R

′, i ∈ {1, 2}. So e(xi) = 〈v̄i〉.
Then the following holds:

d(x1, x2) ≤ n− 1 ⇔ [ψ(x1), ψ(x2)] = 1

⇔ f(ψ(x1)R′, ψ(x2)R′) = 0

⇔ f(v̄1, v̄2) = 0

⇔ v̄2 ∈ v̄
⊥f

1

⇔ e(x2) ∈ Πx1 .

Now from the above it follows that Πx = 〈e(Hx)〉PG(V ) is a hyperplane of PG(V ) for every
point x of S, where Hx is the singular hyperplane of S with deepest point x. So e is
polarized.

3The map φx : R 7→ R′ defined by φx(r) = [ψ(x), r] is a homomorphism (see Corollary 5.7) which is
surjective. The kernel of φx is CR(ψ(x)) which has index 2 in R by the first isomorphism theorem. Then
v̄⊥f is precisely the image of CR(ψ(x)) in V under the canonical homomorphism R→ V ; r 7→ rR′.
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Definition. We call e the full polarized embedding of S associated with the non-abelian
representation (R,ψ).

Lemma 5.12. (1) R is of order 2β for some β satisfying 1 + er−(S) ≤ β ≤ 1 + er+(S).

(2) The following are equivalent:

• (R,ψ) is isomorphic to (R̃p, ψ̃p);

• β = 1 + er+(S);

• e is isomorphic to the universal embedding of S.

(3) The following are equivalent:

• β = 1 + er−(S);

• R is an extraspecial 2-group;

• e is isomorphic to the minimal full polarized embedding of S.

Proof. By Lemmas 5.9 and 5.11, e defines a full polarized embedding of S into PG(V ).
So, er−(S) ≤ dim(V ) ≤ er+(S). Since |R/R′| = 2β−1, we have dim(V ) = β−1 and hence
1 + er−(S) ≤ β ≤ 1 + er+(S). The lower bound occurs if and only if e is isomorphic to
the minimal full polarized embedding of S. The upper bound occurs if and only if e is
isomorphic to the universal embedding of S. From Lemma 5.2, the upper bound and the
fact that (R,ψ) is isomorphic to a quotient of (R̃p, ψ̃p), it follows that β = 1 + er+(S) if

and only if (R,ψ) is isomorphic to (R̃p, ψ̃p).
Now, R is extraspecial if and only if R′ = Z(R), that is, if and only if the alternating

bilinear form f is nondegenerate. For every point x of S, let v̄x be the unique vector of
V for which e(x) = 〈v̄x〉. Then 〈e(Hx)〉 = PG(〈v̄x〉⊥f ) (see the proof of Lemma 5.11) is
a hyperplane of PG(V ) for every point x of S. It follows that f is nondegenerate if and
only if the nucleus Ne of e is empty, that is, if and only if e is a minimal full polarized
embedding of S. Thus R is extraspecial if and only if er−(S) = dim(V ) = β − 1.

For every r ∈ R, we set θ(r) := rR′ ∈ V . Observe that if r1, r2 ∈ R, then f(θ(r1), θ(r2)) =
0 if [r1, r2] = 1 and f(θ(r1), θ(r2)) = 1 if [r1, r2] = λ. We denote by Rf the radical of the
alternating bilinear form f . The subspace of PG(V ) corresponding to Rf is precisely Ne.

Lemma 5.13. If N is a subgroup of R contained in Z(R), then θ(N) ⊆ Rf .

Proof. Let g ∈ N and h ∈ R. Then [g, h] = 1 implies that f(θ(g), θ(h)) = 0. Since
θ(R) = V , it follows that θ(g) ∈ Rf . Hence, θ(N) ⊆ Rf .

Lemma 5.14. If U is a subspace of Rf , then θ−1(U) is a subgroup of R contained in
Z(R). If dim(U) = l, then θ−1(U) is an abelian subgroup isomorphic to either C l+1

2 or
C l−1

2 × C4.
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Proof. Clearly, θ−1(U) is a subgroup of R. If g ∈ θ−1(U) and h ∈ R, then we have
f(θ(g), θ(h)) = 0 since θ(g) ∈ U ⊆ Rf . This implies that [g, h] = 1. So, θ−1(U) ⊆ Z(R).
In particular, θ−1(U) is abelian. By the classification of finite abelian groups, θ−1(U) is
isomorphic to the direct product of a number of cyclic groups. Since the exponent of R is
equal to 4, each of these cyclic groups has order 2 or 4. Lemma 5.8(1) then implies that
there is at most one cyclic group of order 4 in this direct product. If dim(U) = l, then
|θ−1(U)| = 2l+1 and hence θ−1(U) must be isomorphic to either (C2)l+1 or (C2)l−1×C4.

Corollary 5.15. (1) We have Rf = θ(Z(R)).

(2) We have |Z(R)| = |R| · 2−er−(S).

(3) If l = er+(S) − er−(S), then the center Z(R̃p) of R̃p is isomorphic to either C l+1
2

or C l−1
2 × C4.

Proof. (1) By Lemmas 5.13 and 5.14, we have θ(Z(R)) ⊆ Rf and θ−1(Rf ) ⊆ Z(R),
implying that Rf = θ(Z(R)).

(2) Since λ ∈ Z(R), we have |Z(R)| = 2 · |θ(Z(R))| = 2 · |Rf | = 2 · |V | · 2−er−(S) =
|R| · 2−er−(S).

(3) This follows from Lemma 5.14 and Claim (2).

We will now study the quotient representations of (R,ψ). For such quotient repre-
sentations, we need normal subgroups N of R such that ψ(x) 6∈ N for every point x of
S.

Lemma 5.16. The normal subgroups of R are the following:

(1) the subgroups of R containing λ;

(2) the subgroups of R not containing λ that are contained in Z(R).

Proof. Clearly, the subgroups in (1) and (2) above are normal in R. Suppose N is a
normal subgroup of R not containing λ. For all n ∈ N and all r ∈ R, we then have
[n, r] ∈ N ∩R′ = N ∩ {1, λ} = {1}, implying that N ⊆ Z(R).

Remark. If N is a (normal) subgroup of R contained in Z(R), then the condition that
ψ(x) 6∈ N for every point x of S is automatically satisfied by Lemma 5.5.

Lemma 5.17. Let N be a normal subgroup of R such that ψ(x) 6∈ N for every point x of
S. Then the quotient representation (R/N,ψN) is abelian if and only if λ ∈ N .

Proof. The representation (R/N,ψN) is abelian if and only if [ψ(x)N,ψ(y)N ] = [ψ(x), ψ(y)]·
N = N for every two points x and y of S, that is, if and only if λ ∈ N .

Lemma 5.18. Let N be a (necessarily normal) subgroup of R containing λ such that
ψ(x) 6∈ N for every point x of S. Set U := θ(N), and let α denote the subspace of
PG(V ) corresponding to U . Then e(x) 6∈ α for every point x of S, and the full projective
embedding of S corresponding to the abelian representation (R/N,ψN) is isomorphic to
e/α.
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Proof. If x ∈ P , then the facts that ψ(x) 6∈ N , λ ∈ N and R′ = {1, λ} imply that ψ(x)R′

does not belong to the set {nR′ |n ∈ N}, that is, e(x) 6∈ α. So, e/α is well-defined as a
projective embedding.

Consider the quotient vector space V/U and the associated projective space PG(V/U).
The map which sends each point x of S to the point 〈(ψ(x)R′) · U〉 of PG(V/U) is then
a full projective embedding isomorphic to e/α. The map

φ : R/N → V/U ; rN 7→ θ(r) · U (r ∈ R),

which is well-defined as U = θ(N), is an isomorphism of groups. (The injectivity of
the map follows from the fact that θ−1(U) = N which is a consequence of the fact that
λ ∈ N .) The fact that φ ◦ ψN(x) = φ(ψ(x) · N) = θ(ψ(x)) · U = (ψ(x)R′) · U for every
point x of S implies that the full projective embedding of S corresponding to the abelian
representation (R/N,ψN) is isomorphic to e/α.

Lemma 5.19. Let N be a subgroup of R contained in Z(R). Set U := θ(N) ⊆ Rf , and
let α ⊆ Ne denote the subspace of PG(V ) corresponding to U . Then:

(1) If λ 6∈ N , then the projective embedding associated with the non-abelian representa-
tion (R/N,ψN) is isomorphic to e/α.

(2) The representation (R/N,ψN) is polarized.

Proof. (1) Consider the normal subgroup N := 〈N, λ〉 ⊆ Z(R) of R. By Lemma 5.5, this
group does not contain any element ψ(x) where x ∈ P . We have θ(N) = θ(N) = U . So,
by Lemma 5.18, the projective embedding corresponding to the abelian representation
(R/N,ψN) is isomorphic to eα where α is the subspace of PG(V ) corresponding to U . It
is straightforward to verify that the projective embedding associated with the non-abelian
representation (R/N,ψN) is isomorphic to the projective embedding corresponding to the
abelian representation (R/N,ψN). (Observe that R/N ∼= (R/N)/(N/N) and (R/N)′ =
N/N .)

(2) If (R/N,ψN) is non-abelian, then the fact that [ψ(x)N,ψ(y)N ] = [ψ(x), ψ(y)] ·N = N
for any two non-opposite points x and y implies that (R/N,ψN) is polarized. If (R/N,ψN)
is abelian, then the fact that α ⊆ Ne implies that e/α is polarized and hence that
(R/N,ψN) is polarized by Lemma 5.18.

Lemma 5.20. Let N be a normal subgroup of R such that ψ(x) 6∈ N for every point x of
S. Then the representation (R/N,ψN) is polarized if and only if N ⊆ Z(R).

Proof. If N ⊆ Z(R), then (R/N,ψN) is polarized by Lemma 5.19. Conversely, suppose
that (R/N,ψN) is polarized. If λ 6∈ N , then N ⊆ Z(R) by Lemma 5.16. So, we may
suppose that {1, λ} ⊆ N . Then (R/N,ψN) is an abelian representation of S. Now,
R/N ∼= (R/R′)/(N/R′), where R′ = {1, λ}. The embedding e has PG(V ) as target
projective space, where V = R/R′ is regarded as an F2-vector space. The full projective
embedding e′ corresponding to (R/N,ψN) has PG(R/N) as target projective space, where
the elementary abelian 2-group R/N is again regarded as an F2-vector space. Since e′ is
polarized, we should have θ(N) = N/R′ ⊆ Rf , that is, N ⊆ Z(R).
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6 Classification of the polarized non-abelian repre-

sentations

In this section, we shall prove all the claims mentioned in Theorems 3.2, 3.3 and 3.4.
Let S = (P ,L, I) be a finite slim near-polar space of diameter n ≥ 3 that has polarized

non-abelian representations. We set (R̃, ψ̃) equal to (R̃p, ψ̃p), the universal polarized

representation of S. There then exists an element λ̃ ∈ R̃ \ {1} such that [ψ̃(x), ψ̃(y)] = λ̃

for every two opposite points x and y of S. Recall also that R̃′ = {1, λ̃} and that the

quotient group R̃/R̃′ is an elementary abelian 2-group which can be regarded as a vector

space Ṽ over F2. Let f̃ denote the alternating bilinear form on Ṽ associated with (R̃, ψ̃)

as described in Section 5 (see Lemma 5.10). The radical of f̃ is denoted by Rf̃ . For every

r ∈ R̃, we put θ̃(r) := rR̃′ ∈ Ṽ and for every point x of S, we put ẽ(x) equal to the point

〈ψ̃(x)R̃′〉 of PG(Ṽ ). Then ẽ is isomorphic to the universal embedding of S. By Section
5, we also know the following.

Proposition 6.1. The polarized representations of S are precisely the representations of
the form (R̃/N, ψ̃N), where N is a subgroup contained in Z(R̃).

Recall that if N is a subgroup contained in Z(R̃), then N necessarily is normal and

ψ̃(x) 6∈ Z(R̃) for every point x of S, implying that the quotient representation (R̃/N, ψ̃N)
is well-defined.

Proposition 6.2. If N1 and N2 are two subgroups of R̃ contained in Z(R̃), then the

quotient representations (R̃/N1, ψ̃N1) and (R̃/N2, ψ̃N2) of S are isomorphic if and only if
N1 = N2.

Proof. We prove that if the representations (R̃/N1, ψ̃N1) and (R̃/N2, ψ̃N2) are isomorphic,
then N1 ⊆ N2. By symmetry, we then also have that N2 ⊆ N1.

Let φ be a group isomorphism from R̃/N1 to R̃/N2 such that φ(ψ̃(x)N1) = ψ̃(x)N2

for every point x of S.
Let g ∈ N1. Since R̃ = 〈ψ̃(x) |x ∈ P〉, there exist (not necessarily distinct) points

x1, x2, . . . , xk such that g = ψ̃(x1)ψ̃(x2) · · · ψ̃(xk). Then N2 = φ(N1) = φ(gN1) =

φ(ψ̃(x1)N1 · · · ψ̃(xk)N1) = φ(ψ̃(x1)N1) · · ·φ(ψ̃(xk)N1) = ψ̃(x1)N2 · · · ψ̃(xk)N2 = gN2.
Hence, g ∈ N2. Since g is an arbitrary element of N1, we have N1 ⊆ N2.

By Corollary 5.15(3), we know that Z(R̃) is isomorphic to either (C2)l+1 or (C2)l−1×C4,
where l := er+(S)− er−(S).

Proposition 6.3. (i) The number of nonisomorphic polarized representations of S is

equal to the sum
l+1∑
i=0

[
l+1
i

]
2

if Z(R̃) ∼= (C2)l+1, and equal to 2 ·
l∑

i=0

[
l
i

]
2
−

l−1∑
i=0

[
l−1
i

]
2

if

l ≥ 1 and Z(R̃) ∼= (C2)l−1 × C4.
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(ii) The number of nonisomorphic polarized non-abelian representations of S is equal to
l+1∑
i=0

[
l+1
i

]
2
−

l∑
i=0

[
l
i

]
2

if Z(R̃) ∼= (C2)l+1, and equal to
l∑

i=0

[
l
i

]
2
−

l−1∑
i=0

[
l−1
i

]
2

if l ≥ 1 and

Z(R̃) ∼= (C2)l−1 × C4.

Proof. By Lemma 5.17 and Propositions 6.1 and 6.2, the number of nonisomorphic po-
larized (non-abelian) representations of S is equal to the number of subgroups of Z(R̃)

(not containing λ̃).

If Z(R̃) ∼= (C2)l+1, then Z(R̃) is an elementary abelian 2-group and so the number of

subgroups of Z(R̃) (containing λ̃) is equal to
l+1∑
i=0

[
l+1
i

]
2

(
l∑

i=0

[
l
i

]
2

)
.

If Z(R̃) ∼= (C2)l−1 × C4, then Z(R̃)/〈λ̃〉 ∼= (C2)l and hence the total number of sub-

groups of Z(R̃) containing λ̃ is equal to
l∑

i=0

[
l
i

]
2
. If G is a subgroup of Z(R̃) not containing

λ̃, then G only has elements of order 1 and 2. The subgroup of Z(R̃) consisting of all
elements of order 1 and 2 is isomorphic to (C2)l and hence the number of subgroups of

Z(R̃) not containing λ̃ is is equal to
l∑

i=0

[
l
i

]
2
−

l−1∑
i=0

[
l−1
i

]
2
.

Lemma 6.4. The following are equivalent:

(1) Z(R̃) is elementary abelian, that is, isomorphic to C l+1
2 ;

(2) S has a non-abelian representation (R,ψ), where R is some extraspecial group;

(3) S has a non-abelian representation (R,ψ), where |R| = 21+er−(S).

If one of these conditions hold, then the number of nonisomorphic polarized non-abelian
representations (R,ψ) with |R| = 21+er−(S) is equal to 2l.

Proof. In Lemma 5.12(3), we already showed that (2) and (3) are equivalent. By Lemma
5.17 and Proposition 6.1,S has polarized non-abelian representations (R,ψ) where |R| =
21+er−(S) if and only if Z(R̃) has subgroups of order 2l not containing λ̃. Such subgroups

do not exist if l ≥ 1 and Z(R̃) ∼= (C2)l−1 × C4. If Z(R̃) ∼= (C2)l+1, then the number of

such subgroups is equal to
[
l+1
l

]
2
−
[

l
l−1

]
2

= 2l.

Lemma 6.5. If l ≥ 1 and Z(R̃) ∼= (C2)l−1 × C4, then |R| ≥ 22+er−(S) for every polar-
ized non-abelian representation (R,ψ) of S. The number of such polarized non-abelian
representations (up to isomorphism) is equal to 2l−1. If (R,ψ) is a polarized non-abelian
representation of S for which |R| = 22+er−(S), then Z(R) ∼= C4.

Proof. By Lemmas 5.12 and 6.4, we know that |R| ≥ 22+er−(S) for every polarized non-
abelian representation (R,ψ) of S. The number of such polarized non-abelian representa-

tions (up to isomorphism) is equal to the number of subgroups of order 2l−1 of Z(R̃) that

do not contain λ̃, that is, equal to
[

l
l−1

]
2
−
[
l−1
l−2

]
2

= 2l−1. Suppose (R,ψ) is a polarized
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non-abelian representation of S with |R| = 22+er−(S). Then Z(R) is isomorphic to either
C4 or C2×C2 by Lemma 5.14 and Corollary 5.15(2). If Z(R) ∼= C2×C2, then Z(R) con-
tains subgroups of order 2 not containing R′ and so (R,ψ) has a proper quotient which is
a polarized non-abelian representation. This is impossible as the size of the representation
group R is already as small as possible.

Lemma 6.6. If N1 and N2 are two subgroups of R̃ contained in Z(R̃) such that λ̃ 6∈ N1∪N2

and θ̃(N1) = θ̃(N2), then there exists an automorphism of R̃ mapping N1 to N2. As a

consequence, the quotient groups R̃/N1 and R̃/N2 are isomorphic.

Proof. Set U := θ̃(N1) = θ̃(N2) = 〈v̄1, v̄2, . . . , v̄k〉 for some vectors v̄1, v̄2, . . . , v̄k of Ṽ

where k = dim(U). Put d := dim(Ṽ ) and extend {v̄1, v̄2, . . . , v̄k} to a basis {v̄1, v̄2, . . . , v̄d}
of Ṽ . For every i ∈ {1, 2, . . . , d}, let gi be an arbitrary element of θ̃−1(v̄i). For all

i, j ∈ {1, 2, . . . , d}, put aij := 1 if f̃(v̄i, v̄j) = 1 and aij := 0 otherwise. The group R̃ has
order 2d+1 and consists of all elements of the form

λ̃ε0gε11 g
ε2
2 · · · g

εd
d ,

where ε0, ε1, . . . , εd ∈ {0, 1}. If i, j ∈ {1, 2, . . . , d}, we have [gi, gj] = 1 if f̃(v̄i, v̄j) = 0 and

[gi, gj] = λ̃ if f̃(v̄i, v̄j) = 1. So, the multiplication inside the group R̃ should be as follows.
If ε0, ε1, . . . , εd, ε

′
0, ε
′
1, . . . , ε

′
d ∈ {0, 1}, then

(λ̃ε0gε11 g
ε2
2 · · · g

εd
d ) · (λ̃ε′0gε

′
1

1 g
ε′2
2 · · · g

ε′d
d ) = λ̃ε0+ε′0+ε′′0 g

ε1+ε′1
1 g

ε2+ε′2
2 · · · gεd+ε′d

d ,

where ε′′0 :=
∑d

i=1

∑d
j=i+1 aijε

′
iεj. Recall that λ̃ 6∈ N1 ∪N2. So, for every i ∈ {1, 2, . . . , k},

there exists a unique element g
(1)
i ∈ {gi, giλ̃} belonging to N1 and a unique element g

(2)
i ∈

{gi, giλ̃} belonging to N2. Then N1 = 〈g(1)
1 , g

(1)
2 , . . . , g

(1)
k 〉 and N2 = 〈g(2)

1 , g
(2)
2 , . . . , g

(2)
k 〉.

Now, let I denote the subset of {1, 2, . . . , k} consisting of all i ∈ {1, 2, . . . , k} for which

g
(1)
i 6= g

(2)
i , or equivalently, for which g

(2)
i = g

(1)
i λ̃. Then the permutation of R̃ defined by

λ̃ε0gε11 g
ε2
2 · · · g

εd
d 7→ λ̃ε0+ε′0gε11 g

ε2
2 · · · g

εd
d ,

where ε′0 :=
∑

i∈I εi, is an automorphism φ of R. Since φ(g
(1)
i ) = g

(2)
i for every i ∈

{1, 2, . . . , k}, we have φ(N1) = N2.

Corollary 6.7. If (R1, ψ1) and (R2, ψ2) are two polarized non-abelian representations
of S for which the associated full polarized embeddings are isomorphic, then also the
representation groups R1 and R2 are isomorphic.

Proof. Let N1 and N2 be the subgroups of R̃ contained in Z(R̃) such that (R1, ψ1) ∼=
(R̃/N1, ψ̃N1) and (R2, ψ2) ∼= (R̃/N2, ψ̃N2). Then λ̃ 6∈ N1 ∪ N2. Let α1 and α2 be the

subspaces of Nẽ corresponding to, respectively, U1 := θ̃(N1) ⊆ Rf̃ and U2 := θ̃(N2) ⊆ Rf̃ .
By Lemma 5.19(1), the projective embeddings e/α1 and e/α2 are isomorphic. This implies

that α1 = α2. Hence, θ̃(N1) = θ̃(N2). By Lemma 6.6, R1
∼= R2.
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Proposition 6.8. If (R1, ψ1) and (R2, ψ2) are two polarized non-abelian representations
of S such that |R1| = |R2| = 2β, where β = 1 + er−(S), then R1 and R2 are isomorphic
(to either 2β+ or 2β−).

Proof. Let N1 and N2 be the unique normal subgroups of R̃ contained in Z(R̃) such that

λ̃ 6∈ N1∪N2 and (R̃/N1, ψ̃N1)
∼= (R1, ψ1) and (R̃/N2, ψ̃N2)

∼= (R2, ψ2). Then |N1| = |N2| =
|R̃|
|R1| = 2l, where l = er+(S) − er−(S). Since λ̃ 6∈ N1 ∪ N2 and |Z(R̃)| = 2l+1, we have

Z(R̃) = 〈N1, λ̃〉 = 〈N2, λ̃〉. Hence, Rf̃ = θ(Z(R̃)) = θ(〈N1, λ̃〉) = θ(N1) = θ(〈N2, λ̃〉) =

θ(N2). By Lemma 6.6, R1
∼= R̃/N1

∼= R̃/N2
∼= R2.
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