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Abstract

A hyperplane of the symplectic dual polar space DW (2n—1,F), n > 2, is said to
be of subspace-type if it consists of all maximal singular subspaces of W (2n — 1, F)
meeting a given (n — 1)-dimensional subspace of PG(2n — 1,F). We show that
a hyperplane of DW (2n — 1,F) is of subspace-type if and only if every hex F of
DW (2n —1,TF) intersects it in either F', a singular hyperplane of F' or the extension
of a full subgrid of a quad. In the case F is a perfect field of characteristic 2,
a stronger result can be proved, namely a hyperplane H of DW(2n — 1,F) is of
subspace-type or arises from the spin-embedding of DW (2n — 1,F) = DQ(2n,F)
if and only if every hex F' intersects it in either F', a singular hyperplane of F, a
hexagonal hyperplane of F' or the extension of a full subgrid of a quad.
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1 Introduction

Hyperplanes have been investigated for several classes of point-line geometries. In par-
ticular, many constructions and classification results have been obtained, and the close
relationship between hyperplanes and projective embeddings has been studied. This rela-
tionship originates from the fact that with every full embedding e of a point-line geometry
S there are associated hyperplanes, the so-called hyperplanes of § arising from e. The
connection between hyperplanes and projective embeddings has played a crucial role in
Tits’ classification of polar spaces [21]. The question which hyperplanes of a given point-
line geometry arise from a full projective embedding has been widely investigated (see
e.g. Cohen and Shult [4, Theorem 5.12] for the case of polar spaces). Sometimes hyper-
planes tell you whether a point-line geometry can admit a full projective embedding (see
e.g. Ronan [16, Corollary 2, p. 183]) or whether a given full projective embeddings is
absolutely universal (see e.g. Shult [18]).



This note is concerned with characterizing certain hyperplanes of dual polar spaces.
Hyperplanes of dual polar spaces are usually characterized in terms of their possible
intersections with convex subspaces. The initial characterization results used the possible
intersections with quads' as basis for the characterizations. In this regard, it is worth
mentioning the work of Shult & Thas [20], Pasini & Shpectorov [12], Cooperstein &
Pasini [5], Cardinali, De Bruyn & Pasini [3] and De Bruyn [7] on locally singular, locally
subquadrangular and locally ovoidal hyperplanes. Pralle [14] investigated hyperplanes in
dual polar spaces of rank 3 that do not admit subquadrangular quads and those without
singular quads (for arbitrary ranks) were studied in [13]. In joint work with the author
[10], he also investigated hyperplanes of symplectic dual polar spaces of rank 3 without
ovoidal quads. This classification was later extended by the author to arbitrary ranks [6].

There are also a number of characterizations in terms of the possible intersections with
hexes. In this regard, it is worth mentioning the result of Cardinali, De Bruyn and Pasini
[3, Lemma 3.4] who showed that the singular hyperplanes of thick dual polar spaces are
precisely the hyperplanes intersecting each hex F in either F' or a singular hyperplane of
F. Pralle and Shpectorov [15] studied hyperplanes in thick dual polar spaces of rank 3
intersecting each hex in the extension of an ovoid of a quad. In [8], the author extended
this study to hyperplanes in dual polar spaces of arbitrary rank that intersect each hex
F in either F', a singular hyperplane of F' or the extension of an ovoid of a quad. It
was shown there that these hyperplanes are precisely the possible trivial extensions of the
SDPS-hyperplanes, a class of hyperplanes introduced in [11].

In this note, we consider a problem that is similar to the one studied in [8]. We
take a look at hyperplanes of dual polar spaces that intersect each hex F in either F', a
singular hyperplane of F' or the extension of a subquadrangle of a quad. As we will see, it is
possible to classify all these hyperplanes in the case of symplectic dual polar spaces. They
are precisely the hyperplanes of subspace-type, a class of hyperplanes under investigation
in [9]. In the case where the field ' is perfect of characteristic 2, it is even possible to
classify all hyperplanes if one allows an additional possibility for the intersection with
hexes. The following two results are the main results of this note.

Theorem 1.1 The following are equivalent for a hyperplane H of DW (2n—1,F), n > 3:
(1) H is a hyperplane of subspace-type;

(2) for every hex F of DW(2n — 1,F), F N H is either F, a singular hyperplane of F
or the extension of a full subgrid of a quad of F.

Theorem 1.2 Letn > 3 and F a perfect field of characteristic 2. Then the following are
equivalent for a hyperplane H of DW (2n — 1,F):

(1) H 1is either a hyperplane of subspace-type or arises from the spin-embedding of
DW(2n —1,F) = DQ(2n,F);

'Many notions used in this introductory section will be explicitly defined in Section 2.



(2) for every hex F of DW (2n — 1,F), F N H is either F, a singular hyperplane of F,
a hexagonal hyperplane of F' or the extension of a full subgrid of a quad of F.

It is somewhat unfortunate that the proofs of Theorems 1.1 and 1.2 are for a large extend
already contained in [6]. This note could therefore also be seen as an addendum to [6].
The main purpose of [6] was to extend the classification result of [10] to arbitrary ranks.
By focussing on this particular goal, we overlooked? then that the proof can be modified
to a proof of our main results. We fear that this fact might remain unnoticed by a future
reader, as this modification still requires some work. Indeed, certain arguments in [6]
are not relevant for the current treatment and other arguments do not work when the
underlying field is infinite (due to the use of counting arguments) or of order 2. These
problems will be by-passed here by means of alternative arguments and a change of
the order of the intermediate lemmas that will moreover lead to a simplification. For
convenience to the reader, we still mention the whole chain of lemmas leading to the
proofs of Theorems 1.1 and 1.2. The proofs of those lemmas that are basically contained
in [6] will be omitted and instead an explicit reference to [6] will be given.

2 Preliminaries

With every polar space IT of rank n > 2 (in the sense of Tits [21, Chapter 7]) there is
associated a dual polar space A of rank n. This is the point-line geometry whose points
and lines are the maximal and next-to-maximal singular subspaces of II, with incidence
being reverse containment. Distances d(-, -) between points of A will always be measured
in the collinearity graph which has diameter n.

There exists a bijective correspondence between the nonempty convex subspaces of A
and the singular subspaces of II: if « is a singular subspace of II, then the set F, consisting
of all maximal singular subspaces containing « is a convex subspace of A. The convex
subspaces of diameter 2, 3 and n — 1 are called the quads, heres and mazes, respectively.
If F'is a convex subspace of diameter 6 > 2 of A, then the point-line geometry F' induced
on F'is a dual polar space of rank §. In particular, if () is a quad, then @ is a dual polar
space of rank 2, i.e. a generalized quadrangle. Two points x and y of A at distance
from each other are contained in a unique convex subspace (z,y) of diameter 0.

If F'is a convex subspace of A and x is a point, then there exists a (necessarily unique)
point 7p(z) € F such that d(z,y) = d(z, 7p(z)) + d(7p(z), y) for every point y € F. In
particular, for every point-line pair (z, L), there is a unique point on L nearest to x. The
convex subspaces through a given point x, ordered by inclusion, define a projective space
Res(x) of dimension n — 1.

Suppose H is a hyperplane of A, i.e. a proper subspace meeting each line. If = is a
point of H, then Ay (z) denotes the set of lines through x contained in H. We will often

2The classification result obtained in [6], namely those of hyperplanes of DW (2n—1,F) without ovoidal
quads, is only valid when F = F, for a certain prime power g # 2. For infinite fields or the smallest field
Fy, other examples of such hyperplanes exist and a complete classification was and is still missing. As
such, there was no need in [6] to let intermediate results work for any field.



regard Ay (z) as a set of points of Res(z). If F' is a convex subspace of A, then either
F C H (in which case F is called deep with respect to H) or FNH is a hyperplane of F. As
there are three types of hyperplanes in generalized quadrangles (ovoids, subquadrangles
and perps of points), we see that for every quad @ of A, one of the following cases occurs:

(1) @ is deep, i.e. contained in H;

(2) QN H = 2+ NQ for a certain point z € Q;

(3) @ N H is a full subquadrangle of @;

(4) QN H is an ovoid of Q, i.e. a set of points meeting each line of Q in a singleton.
The quad ) will be called deep, singular, subquadrangular or ovoidal with respect to H
depending on whether case (1), (2), (3) or (4) occurs. A hyperplane is called locally
singular, locally subquadrangular or locally ovoidal if every non-deep quad is singular,
subquadrangular or ovoidal with respect to H.

If z is a point of A, then the points of A at distance at most n — 1 from = is a
hyperplane H, of A, the singular hyperplane with deepest point x. Suppose F' is a convex
subspace of diameter § of A and Hp is a hyperplane of F'. The maximal distance from a
point of A to F'is equal to n — 9. Denote by H the set consisting of those points of A at
distance at most n —9 — 1 from F' together with those points x of A at distance n — ¢ from
F for which 7r(z) € Hr. By [11, Proposition 1], H is a hyperplane of A, the so-called
extension of Hp. This extension is called trivial if 6 = n (in which case, H = Hp).

If ¢ is a symplectic polarity of PG(2n —1,F), then the subspaces of PG(2n — 1, F) that
are totally isotropic with respect to ¢ define a symplectic polar space W (2n — 1,F). The
corresponding dual polar space will be denoted by DW (2n — 1,F). The dual polar space
DW (3, F) is isomorphic to the generalized quadrangle Q(4,F). The only subquadrangles
of this generalized quadrangle that are also hyperplanes are the full subgrids. If 7 is an
(n — 1)-dimensional subspace of PG(2n — 1,F), then the set H, of all maximal singular
subspaces of W (2n — 1, F) meeting 7 is a hyperplane of DW (2n —1,F), see De Bruyn [9].
We call any such hyperplane a hyperplane of subspace-type.

If F is perfect field of characteristic 2, then (D)W (2n — 1,FF) is isomorphic to the
orthogonal (dual) polar space (D)Q(2n,F) arising from a nonsingular quadric Q(2n,TF)
of Witt index n in PG(2n,F). The dual polar space DQ(2n,F) has a full projective
embedding ey, in PG(2" — 1,F) which is called the spin-embedding of DQ(2n,F) (see
Buekenhout and Cameron [2, §7]). If P denotes the point set of DQ(2n,F) and 7 is a
hyperplane of PG(2" —1,F), then e (e, (P)N7) is a hyperplane of DQ(2n, F). By results
of Shult & Thas [20] and De Bruyn [7, Theorem 1.3], we know that the locally singular
hyperplanes of DQ(2n,F) are precisely the hyperplanes of DQ(2n,F) arising from eg,.
By Shult [17] (finite case) and Pralle [13] (general case), the dual polar space DQ(6,F)
has two types of locally singular hyperplanes, the singular hyperplanes and the hexagonal
hyperplanes. If H is a hexagonal hyperplane of DQ(6,F), then every quad is singular
with respect to H, and Ag(z) is a line of Res(z) = PG(2,F) for every point z € H.



3 Three types of points in certain hyperplanes

In this section, we suppose that H is a hyperplane of the symplectic dual polar space
DW(2n — 1,F), n > 3, such that for every hex F of DW(2n — 1,FF), the intersection
HNF is either F, a singular hyperplane of F , the extension of a full subgrid of a quad of
F', or a hexagonal hyperplane of F'. Observe that the latter type of hyperplane can only
occur when F is a perfect field of characteristic 2.

Lemma 3.1 There are no quads that are ovoidal with respect to H.

Proof. Let @ be an arbitrary quad of DW (2n —1,F) and let F' denote a hex through Q.
If HNF = F, then @ is deep with respect is H. If H N F' is a singular hyperplane of ]5,
then @ is deep or singular with respect to H. If H N F' is the extension of a full subgrid
of a quad of F, then @ is deep, singular or subquadrangular with respect to H. If H N F
is a hexagonal hyperplane of F', then () is singular with respect to H. "

A proof of the following lemma is also contained in [6, Lemma 4.1], but that proof makes
use of counting arguments, and is therefore not valid in the infinite case.

Lemma 3.2 Let x € H. Then Ag(z) is one of the following sets of points of Res(x):
(I) a hyperplane;
(II) the union of two distinct hyperplanes;
(I1I) the whole space.

Proof. Put A(z) := Ag(z). For a subspace a of Res(z) of dimension at least 1, we show
the following by induction on dim(«):

(%) the intersection a N A(x) is equal to either «, a hyperplane of o or the union of two
distinct hyperplanes of «.

The lemma then follows by applying Property () to the subspace o« = Res(x).

Suppose dim(a) = 1. Let @ denote the quad through x corresponding to «. By Lemma
3.1, Q is deep, singular or subquadrangular with respect to H. If @) is deep, then aNA(z) =
a. If @ is singular, then N A(z) is either v or a hyperplane of « (i.e. a singleton). If @
is subquadrangular, then ov N A(z) is the union of two hyperplanes of « (i.e. a pair).
Suppose dim(«) = 2. Let F' denote the hex through x corresponding to or. We verify
Property (%) for each of the four possible intersections of F' with H. If F' C H, then
aNA(x) is equal to a. If F'N H is a singular hyperplane of F', then o N A(z) is either
a or a hyperplane of a. If F'N H is the extension of a full subgrid of a quad of F', then
a N A(x) is either «, a singular hyperplane of a or the union of two distinct hyperplanes
of a. If F'N H is a hexagonal hyperplane of F', then a N A(x) is a hyperplane of «.
Suppose dim(a) = 3. By the induction hypothesis, property (x) holds for any line
or plane of a. If every line of « intersects A(x) in the whole line or a singleton, then
a N A(z) is either @ or a hyperplane of a. So, we may suppose that there exists a line L
in « that intersects A(x) in two points 27 and z5. Every plane of o through L intersects



A(x) in the union of a line through z; and a line through x5. Now, let 1, 82, f5 be three
distinct planes of a through L. For every i € {1,2,3}, let L;, respectively M;, denote
the unique line through x;, respectively xo, contained in 8; N A(x). Put v, := (L1, La),
v = (My, Ms), {u1} =y N Mz and {v;} = 2 N L3. Since Ly U Ly U {u;} € A(z) and
u; ¢ L1 U Ly, we have v; C A(x) by the induction hypothesis applied to the plane ;.
In a similar way, one shows that v5 C A(x). Now, every plane of a through L intersects
71 U2 in the union of a line through x; and a line through z,. This forces A(z) N« to
be equal to v U 7s.

Suppose that dim(«) > 4 and that property (%) holds for any subspace of dimension
less than dim(«). If every line of « intersects A(x) in the whole line or a singleton, then
a N A(z) is either @ or a hyperplane of a. So, we may suppose that there exists a line L
in « that intersects A(z) in two points z; and z5. For every plane § C a through L, let
k(B) denote the unique point of # such that 5N A(x) is the union of the two lines k()
and k(fB)xs. The set K consisting of all these k(5)’s completely determines ao N A(x). It
suffices to show that K is a subspace of dimension dim(a)) — 2 disjoint from 125, as this
would imply that o N A(z) = (K, z1) U (K, z2).

Let 8, and (35 be two distinct planes of o through L. By the induction hypothesis, the
three-space (1, f2) intersects A(z) in the union of two planes ¢; and dy. The line §; N &y
coincides with the line through k(1) and k(/2), and every point of §; N ds is of the form
k(B) for some plane § of (S, B2) through L. This proves that K is a subspace. Since L
is disjoint from K, dim(K) < dim(«) — 2. Since every plane of « through L meets K,
dim(K) = dim(«) — 2. n

A point x € H is said to be of type X € {I,II,11I} if Case (X) of Lemma 3.2 occurs.
A point € H is of type II if and only if there is a line of Res(x) intersecting Ay (z) in
precisely two points. This implies the following.

Lemma 3.3 A point x € H has type II if and only if there exists a subquadrangular quad
containing .

4 Some properties of hyperplanes of subspace-type

In this section, we suppose again that DWW (2n — 1,F), n > 2, is the symplectic dual polar
space arising from a symplectic polarity ¢ of PG(2n — 1, F). Consider a hyperplane H, of
subspace-type associated with an (n — 1)-dimensional subspace 7 of PG(2n — 1, ).

Lemma 4.1 Ifn > 3 and F is a hex of DW(2n — 1,F), then F intersects H, in either
F, a singular hyperplane of ' or the extension of a full subgrid of a quad of F.

Proof. By Proposition 2.12 of [9], we know that every hyperplane of subspace-type of
DW (5,TF) is either a singular hyperplane or the extension of a full subgrid of a quad.
By Proposition 2.9 of [9], we know that if F' is a convex subspace of diameter § > 2
of DW(2n — 1,F), then either FF C H, or F'N H, is a hyperplane of subspace-type of



= DW (26 — 1,F). In particular, every hex F' will intersect H, in either F', a singular
hyperplane of F' or the extension of a full subgrid of F. "

By Lemmas 3.2 and 4.1, we thus know that there are three possible types of points in H
(types I, IT and III). By [6, Lemma 3.3] and [9, Proposition 2.5] we know the following.

Lemma 4.2 ([6, 9]) e The points of type I of H, correspond to those mazimal sin-
gular subspaces o of W(2n — 1,F) for which a N7 = a N7 is a point. If x is a
point of type I of H,, then there exists a unique deep max A(x) through x such that
A(z) consists of those lines through x that are contained in A(x).

o The points of type Il of H, correspond to those maximal singular subspaces o of
W(2n — 1,F) for which dim(r N «a) = dim(7* Na) = 0 and aNm # annas. If
x s a point of type Il of H,, then there exist two distinct deep maxes Ai(x) and
Ay (z) through x such that A(x) consists of those lines through x that are contained
in either Ai(x) or As(z).

e The points of type III of H, correspond to those maximal singular subspaces a of
W(2n — 1,F) for which dim(r N «) = dim(7° Na) > 1. If x is a point of type III,
then A(z) consists of all lines through x.

Lemma 4.3 Let x be a point of DW (2n — 1,F), n > 3, and let M be a max through x.
If every maz through x distinct from M is contained in H, then also M is contained in
H, and H, is the singular hyperplane of DW (2n — 1,TF) with deepest point x.

Proof. Let o be the maximal singular subspace of W(2n — 1,F) corresponding to z. By
Proposition 2.6 of [9], we know that a max of DW(2n — 1,F) is contained in H, if and
only if the point of W (2n — 1,F) corresponding to M belongs to m U ¢. So, we see that
there is at most 1 point in o which is not covered by mUx¢. It follows that every point of
a is covered by mU7¢. Hence, also M is contained in H,. So, the singular hyperplane H,
of DW(2n — 1,F) with deepest point x is contained in H,. This implies that H, = H,
since H, is a maximal proper subspace of DW (2n—1,F) (Blok & Brouwer [1, Proposition
7.3], Shult [19, Lemma 6.1]). .

5 Proofs of Theorems 1.1 and 1.2

The following lemma and Lemma 4.1 show that certain classes of hyperplanes of DW (2n—
1,TF) satisfy the intersection properties stated in Theorems 1.1 and 1.2.

Lemma 5.1 Suppose F is a perfect field of characteristic 2 and H is a hyperplane of
DW(2n — 1,F) = DQ(2n,F) arising from its spin-embedding. Then for every hex F
of DW (2n — 1,F), the intersection H N F is either I, a singular hyperplane of Fora
hexagonal hyperplane of F.



Proof. By De Bruyn [7, Proposition 1.2], the hyperplane H is locally singular. So,
for every hex F, the intersection H N F is either I or a locally singular hyperplane of
F = DW(5,F) = DQ(6,F). By results of Shult [17] (finite case) and Pralle [14] (general
case), every locally singular hyperplane of DQ(6,F) is singular or hexagonal. n

In the sequel, we suppose that H is a hyperplane of DW (2n — 1,F), n > 3, such that for
every hex F' of DW(2n — 1,F), the intersection H N F' a either F a singular hyperplane
of F the extension of a full subgrid of a quad of Fora hexagonal hyperplane of F (the
latter possibility can only occur when F is a perfect field of characteristic 2). By Lemma
3.2, we then know that there are three possible types of points (types I, I and III).

Lemma 5.2 Suppose there are no points of type Il in H. Then the following hold:

o [fF is perfect field of characteristic 2, then H arises from the spin-embedding of
DW(2n —1,F) = DQ(2n,F).

o [fTF is not a perfect field of characteristic 2, then H is a singular hyperplane.

Proof. The fact that there are no points of type II implies by Lemma 3.3 that there are
no subquadrangular quads. As there are also no ovoidal quads by Lemma 3.1, we know
that the hyperplane H is locally singular. We distinguish two cases.

Suppose F is a perfect field of characteristic 2. Then DW (2n —1,F) = DQ(2n,F) and
H must arise from the spin-embedding. Indeed, as already mentioned, the locally singular
hyperplanes of DQ(2n,F) are precisely the hyperplanes arising from its spin-embedding,.

Suppose F is not a perfect field of characteristic 2. Then DW(2n — 1,F) is non-
isomorphic to DQ(2n,F). Theorem 3.5 of Cardinali, De Bruyn and Pasini [3] then implies
that every locally singular hyperplane of DW (2n—1,F) is singular. In particular, H must
be singular. "

Notice that every singular hyperplane of DW (2n — 1, F) is also a hyperplane of subspace-
type. Lemmas 4.1, 5.1 and 5.2 already prove certain parts of Theorems 1.1 and 1.2. To
complete the proofs of these theorems, it suffices to show that if there are points of type
ITin H, then H must be a hyperplane of subspace-type. The remainder of this section is
devoted to the proof of that claim. The proof will be by induction on n > 3.

Suppose first that n = 3. Then the dual polar space itself is a hex, and the hyperplane
H is either a singular hyperplane, the extension of a full subgrid of a quad or a hexagonal
hyperplane. The existence of points of type II implies that H is the extension of a full
subgrid. Such a hyperplane is of subspace-type by [9, Proposition 2.12]. In the sequel,
we will therefore suppose that n > 4 and that the claim is valid for symplectic dual polar
spaces of smaller rank (induction hypothesis).

Let P, P, and P; denote the set of those points of H that have type I, II and III,
respectively. For every x € P, let A;(z) and As(z) denote the two maxes through x
such that x* N H = (A;(x) Nxt) U (Az(z) Nzt). Let I(x) denote the convex subspace
Aq(z) N Ay(x) of diameter n — 2. If x and y are two distinct collinear points of Pj, then
every quad @ through zy is deep, since Q N H contains both 2+ N Q and y* N Q. Hence:
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Lemma 5.3 P5 is a subspace of DW (2n — 1,F).

A proof of the following lemma will be omitted since it is essentially contained in [6,
Lemma 4.5]. Its proof relies on Lemma 4.2 and a use of the induction hypothesis.

Lemma 5.4 The following holds for every point x € Ps.
(1) If y € I(x) with d(y,z) <n—3, theny € H.
(i7) If v € (Ai(z) U Ag(2)) \ I(z) with d(y',x) <n—2, theny' € H.

The following lemma was proved in [9, Lemma 4.6] using an argument that required the
field F to have at least three elements. We replace it with a different argument which
works for any field.

Lemma 5.5 For every point x € P, I(z) C H.

Proof. By the induction hypothesis, either A;(x) C H, A;(x) N H is a hyperplane
of subspace-type of A;(z) or Aj(z) N H is a locally singular hyperplane of A;(z). If
Ai(z) C H, then also I(z) C H.

Suppose A;(z) N H is a locally singular hyperplane of A;(x). Let y be a point of I(x)
at distance at most n — 3 from z. Since there are no subquadrangular quads in A;(x)
through y, Lemma 3.3 implies that y has type I or III with respect to the hyperplane
Ai(x) N H of Ai(z). By Lemma 5.4, every line of A;(z) through y not contained in I(z)
is contained in H. This implies that y must have type III with respect to the hyperplane
Ay(z) N H of Ay(z). Since this holds for every point y of I(x) at distance at most n — 3
from z, we have I(z) C H.

Suppose A;(x) N H is a hyperplane of subspace-type of A;(z). By Lemma 5.4, every
max of A;(x) through x distinct from I(x) is contained in A;(z) N H. Hence, by Lemma
4.3 also I(z) is contained in A;(z) N H. ]

The following is an immediate consequence of Lemmas 5.4 and 5.5.

Corollary 5.6 For every point x € Ps, all points of Ay(x) U As(z) at distance at most
n — 2 from x belong to H. "

A proof of the following lemma is contained in [6, Lemma 4.8 and 4.9] and is based on a
double use of Corollary 5.6.

Lemma 5.7 For every point v € Pa, Ai(z) and As(x) are the only two deep mazes
through x.

By relying on previous lemmas, the following can be proved (see [6, Lemma 4.20]).

Lemma 5.8 No point of type II is collinear with a point of type 1.



The proof of the following lemma is more complicated, but can be found in [6, Lemmas
4.22, 4.23 and 4.24]. Besides previous lemmas, it also relied on a use of the induction
hypothesis.

Lemma 5.9 If there exists a deep max M containing a point of Py, then H is a hyperplane
of subspace-type that extends a hyperplane of M.

In view of Lemma 5.9, we may now suppose that no point of P; is contained in a deep
max. Since H is a proper subspace of DW (2n—1,F), every deep max contains at least one
point of P,. We now define a relation R on the set M of all deep maxes. For M;, My € M,
we say that (M, My) € R if and only if either M; = M, or My N My C Ps. The proof of
the following lemma can be found in [6, Lemma 4.29].

Lemma 5.10 The relation R is an equivalence relation. "

For every point = of P, and every i € {1,2}, let C;(z) denote the equivalence class
of R containing the deep max A;(z). Since A;(z) N As(x) contains x € P,, we have
Ci(z) # Co(x). Similarly as in [6, Lemma 4.31], the following can be proved.

Lemma 5.11 Ifx andy are two collinear points of Py, then {Cy(x),Ca(x)} = {Ci(y),Ca(y)}.

In [6, Lemma 4.30], it was proved that every two points x € H and y € H of type II
are connected by a path that entirely consists of points of H that have type II. This
required an advanced argument that needed a prior treatment of the case n = 4 in the
induction process. By simplifying and rearranging the order of the lemmas, it turns out
that a weaker version of that claim is already sufficient to complete the proofs of our main
results, namely it suffices to prove this claim in the special case where the convex subspace
(x,y) is contained in H. This is realized in the following lemma. Subsequently, the weaker
lemma is used to show that R has precisely two equivalence classes (see Lemma 5.13).

Lemma 5.12 Let x and y be two points of type II of H such that the convex subspace
(x,y) is contained in H. Then there exists a path in DW (2n — 1,FF) connecting x and y
that entirely consists of points of H that have type II.

Proof. We will prove this by induction on d(z,y), the cases d(x,y) = 0 and d(z,y) = 1
being obvious. Suppose therefore that d(z,y) > 2.

Let L, denote an arbitrary line through x contained in (z,y), let z denote the unique
point on L, at distance d(z,y) — 1 from y and let L, be a line of (z,y) through y not
contained in (y, z). Then every point of L, has distance d(z,y) — 1 from a unique point
of L,. By Lemma 5.8, all points of L, U L, belong to P, U P;. Lemma 5.3 implies that
each of |L, N Ps| and |L, N Ps| has size at most 1. Since |L,|, |L,| > 3, we then know that
there exist points 2’ € L, \ Ps and v’ € L, \ P at distance d(z,y) — 1 from each other.
Since 2/, ¢y’ € Py and (2/,y') C (x,y) C H, the induction hypothesis applies: the points
2’ and ¢y’ are connected by a path that entirely consists of points of H that have type II.
Hence, also x and y are connected by such a path. "

10



Lemma 5.13 The equivalence relation R has precisely two classes.

Proof. Let x be an arbitrary point of P, and let M be an arbitrary element of M. We
will prove that either M € Cy(x) or M € Co(x).

By our assumption, no point of type I is contained in a deep max. In particular,
every point of A;(x) belongs to P, or Ps. If M N Ay(z) C P, then M € Ci(x) and we
are done. Suppose therefore that there exists a point y € M N A;(z) N P,. By Lemma
5.12, there exists a path in DW(2n — 1,F) connecting = and y that entirely consists of
points of H that have type II. By applying Lemma 5.11 a number of times, we see that
{Ci(2),Ca(x)} = {C1(y),Ca(y)}. Since either M € Cy(y) or M € Cy(y), we have that either
M € Ci(x) or M € Cy(x). .

Let C; and C, denote the two classes of the equivalence relation R, and let m;, i € {1,2},
be the set of points of W (2n — 1,F) corresponding to the maxes of C;.

Lemma 5.14 FEvery mazimal singular subspace o meeting m U mo belongs to H.

Proof. If x is a common point of o and 7; U o, then the max M, corresponding to x is
deep as it belongs to C; or C,. This implies that the point a of M, is contained in H. =

Lemma 5.15 The sets m; and 7o are two disjoint subspaces of PG(2n — 1,TF).

Proof. As C; and Cy are disjoint, also the sets 7; and m, are disjoint. It remains to show
that each 7; is a subspace of PG(2n — 1,FF). Let L be a line of PG(2n — 1,F) containing
two distinct points x and y of m;. For every point z of L, let M, denote the max of
DW (2n — 1,F) consisting of all singular subspaces of W (2n — 1,F) containing z.

Suppose L is a hyperbolic line of W (2n — 1,F). Then the maxes M,, z € L, are
mutually disjoint, and each of them is covered by the lines meeting M, and M,. As H is
a subspace containing M, and M,, the latter implies that each M, is contained in H. If
z € L\{x,y}, then M, N M, = () implies that M, and M, belong to the same equivalence
class, i.e. to C;. So, each point of L belongs to ;.

Suppose L is a line of W(2n—1,F). Then there exists a convex subspace A of diameter
n—2in DW(2n—1,F) which is contained in all maxes M,, z € L. We have A = M,NM, C
Ps. If z € L, then every point of M, has distance at most 1 from a point of A, implying
that M, is contained in H. If z € L\ {z,y}, then M, N M, = M, "M, = A C P,
implying that M, € C;. So, also here every point of L belongs to ;. "

At this stage, the proofs of Theorems 1.1 and 1.2 can be completed as in [6]. The idea is
first to show that dim(my) = n — 1. It is impossible that dim(7y) > n as this would imply
that every maximal singular subspace of W (2n — 1,F) meets 7, and so H would coincide
with the whole point set by Lemma 5.14. If dim(my) < n — 2 and u € 7y, then it can be
shown (see [6, Lemma 4.36]) that there exists a singular subspace through u disjoint from
mo. So, if M € C; denotes the max corresponding to u, then there exists a point in M
that is not contained in an element of C5. Such a point of M cannot exist by [6, Lemma
4.34]. So, dim(me) = n — 1. The following lemma finishes the proofs of Theorems 1.1 and
1.2.
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Lemma 5.16 The hyperplane H is of subspace-type.

Proof. Since dim(my) = n — 1, we can consider the hyperplane H,, of subspace-type.
By Lemma 5.14, H,, C H. But this implies that H,, = H as H, is a maximal proper
subspace of DW (2n — 1,F) by Blok & Brouwer [1, Proposition 7.3] or Shult [19, Lemma

6.1].
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