
1Chapter 7

2Neuromyths for Educational Research

3and the Educational Field?

4Paul Smeyers

57.1 Neuroscience

6 AU1There is a new hype in educational research: it is called educational neuroscience or

7even neuroeducation (and neuroethics)—there are numerous publications, special

8journals, and an abundance of research projects together with the advertisement of

9many positions at renown research centres worldwide. An interesting starting point

10to see the gist of what is argued for is offered by a number of position papers

11published in a special issue1 of one of the philosophy of education journals

To identify relevant publications I started from a bibliographical search in the Philosopher’s Index

and the Social Sciences Citation Index (July 2014) and used as keywords neuroscience and

education.

1The special issue (Patten and Campbell 2011) contains the following contributions: Introduction:

Educational Neuroscience (pages 1–6), by Kathryn E. Patten and Stephen R. Campbell; Educa

tional Neuroscience: Motivations, methodology, and implications (pages 7–16) by Stephen

R. Campbell; Can Cognitive Neuroscience Ground a Science of Learning? (pages 17–23) by

Anthony E. Kelly; A Multiperspective Approach to Neuroeducational Research (pages 24–30) by

Paul A. Howard-Jones; What Can Neuroscience Bring to Education? (pages 31–36) by Michel

Ferrari; Connecting Education and Cognitive Neuroscience: Where will the journey take us?

(pages 37–42) by Daniel Ansari, Donna Coch and Bert De Smedt; Position Statement on Motiva

tions, Methodologies, and Practical Implications of Educational Neuroscience Research: fMRI

studies of the neural correlates of creative intelligence (pages 43–47) by John Geake; Brain-

Science Based Cohort Studies (pages 48–55) by Hideaki Koizumi; Directions for Mind, Brain, and

Education: Methods, Models, and Morality (pages 56–66) by Zachary Stein and Kurt W. Fischer;

The Birth of a Field and the Rebirth of the Laboratory School by Marc Schwartz and Jeanne

Gerlach; Mathematics Education and Neurosciences: Towards interdisciplinary insights into the
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12 (Educational Philosophy and Theory). Incidentally, the contributors are not phi-

13 losophers of education, but researchers working in the area of neuroscience. The

14 guest editors identify as a common aim of educational neuroscience “to produce

15 results that ultimately improve teaching and learning, in theory and in practice”

16 (Patten and Campbell 2011, p. 6). I hasten to add that the articles are full of

17 warnings, for example not to misapply science to education, that filling the gulf

18 between current science and direct classroom application is premature, and insist

19 not to exaggerate what this area could mean for education, thus to work in close

20 collaboration with . . .. Yet almost all are also expressing the hope (and the

21 confidence) that a lot may be expected from this, called by some, an emerging

22 subdiscipline. Here are some typical quotes from these papers.

23 The ‘holy grail’, for a transdisciplinary educational neuroscience as I see it, would be to

24 empower learners through the volitional application of minds to consciously perceive and

25 alter their own brain processes into states more conducive to various aspects of learning.

26 (Campbell in Patten and Campbell 2011, pp. 8–9).

27 The question is not whether there are connections between minds and brains. There

28 clearly are. The evidence is insurmountable and growing. The question then is to what

29 extent, subject to intrinsic theoretical and practical limits of measurement and analysis, can

30 we identify changes in mental states as changes in brain and brain behaviour, and vice

31 versa. (Campbell in Patten and Campbell 2011, p. 11)

32 Working in the area of mathematics education Stephen Campbell, who has a

33 particular interest in the nature of mathematics anxiety and mathematical concept

34 formation (for example in ways in which the former impedes the latter), outlines

35 that he has in his educational neuroscience laboratory (the ENGRAMMETRON,2

36 Faculty of Education at Simon Fraser University) equipment to record

37 electroencephalograms (EEG), electrocardiograms (EKG), electro-oculograms (EOG), and

38 electromylograms (EMG), which pertain to brain activity, heart rate, eye movement and

39 muscle movement. . . . All these psychophysiological metrics are augmented with

40 eye-tracking technology, screen capture, keyboard and mouse capture, and multiple video

41 recordings of participants from various perspectives. These data sets can then be integrated

42 and synchronized for coding, analysis, and interpretation, thereby affording comprehensive

43 observations and insights into the learning process. (Campbell in Patten and Campbell

44 2011, p. 13)

development of young children’s mathematical abilities (pages 75–80) by Fenna Van Nes;

Neuroscience and the Teaching by Kerry Lee and Swee Fong Ng; The Somatic Appraisal

Model of Affect by Kathryn E. Patten; Implications of Affective and Social Neuroscience by

Mary Helen Immordino-Yang.
2 See http://www.engrammetron.net/about.html (retrieved October 22 2013)

“ENGRAMMETRON facilities enable simultaneous observation and acquisition of audio data

from talking-aloud reflective protocols; video data of facial and bodily expression; and real-time

screen capture. Instrumentation most notably supports: multi-channel electroencephalography

(EEG); electrocardiography (EKG); electromyography (EMG); and eye-tracking

(ET) capability. Orbiting this constellation of observational methods around computer enhanced

learning platforms allows for unprecedented flexibility of educational research experimental

design and delivery, and for subsequent data integration and analyses.”
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45According to Campbell:

46The main challenge has been to muster evidence and rationale to justify this initiative to

47funding agencies traditionally supporting educational research. (Campbell in Patten and

48Campbell 2011, p. 14)

49In the same issue Howard-Jones refers to an OECD Brain and Learning project

50and to the UK’s NeuroEducational research network at the University of Bristol

51(NEnet, www.neuroeducational.net). He argues in favour of a multiperspective

52approach (from neuroscience and education) and refers for instance to work within

53NEnet, i.e., an fMRI study of creativity fostering strategies:

54This imaging study, which included a focus on the biological correlates of creativity, was

55useful in revealing how those parts of the brain associated with creative effort in a story

56telling task were further activated when unrelated stimulus words had to be included.

57Results provided some helpful indication, at the biological level of action, of the likely

58effectiveness of such strategies in the longer term. (Howard-Jones in Patten and Campbell

592011, p. 26)

60Similarly Ferrari (in Patten and Campbell 2011) argues:

61. . . unlike cognitive neuroscience—which aims to explain how the mind is embodied—

62educational neuroscience necessarily incorporates values that reflect the kind of citizen and

63the kind of society we aspire to create (p. 31) . . . What are the biological foundations of

64authentic and deep understanding? Of an appreciation of art and beauty? Or of compassion

65for those in need at home and around the world? All these concerns reflect different values

66that matter to particular communities and neuroscience could inform us about all of them.

67(Ferrari in Patten and Campbell 2011, p. 35)

68As I said, the papers are full of warnings, for example Ansari, Coch & De Smedt

69(in Patten and Campbell 2011, p. 41) write:

70. . . close inspection of these claims for a direct connection between particular ‘brain-based’

71tools and teaching approaches reveals very loose and often factually incorrect links . . . the

72direct application of neuroscience findings to the classroom has not been particularly

73fruitful (Ansari, Coch, & De Smedt in Patten and Campbell 2011, p. 41)

74Nevertheless, they too remain ‘believers’ when they identify for example as a

75topic for research:

76How might non-invasive neuroimaging methods be used to measure the relative success of

77educational approaches? (Ansari, Coch & De Smedt in Patten and Campbell 2011, p. 42)
78

79Let me offer a few characterizations of what is envisaged:

80Offering support (a neuronal ‘explanation’) for what is ‘known’:

81In a second study we compared activations associated with fluid and non-fluid analogizing

82with letters, numbers and geometric shapes. We found overlapping patterns of neuronal

83activation between fluid and non-fluid analogizing in all formats. These results suggest that

84analogizing is a basic cognitive process and therefore critical for successful school perfor-

85mance. We also found in frontal cortical working memory areas modest correlations

86between non-fluid analogizing, but not fluid analogizing, and general IQ test scores,

87suggesting that conventional IQ tests, not to mention school assessments, might not capture

88abilities of fluid analogizing which underpin creative thinking. Teachers have long

89suspected that IQ tests, although predictive of academic success, do not reveal all there is
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90 about a child’s cognitive potential. Our findings, in supporting conjectures that the brain

91 might develop separate working memory systems for general intelligence and fluid cogni-

92 tion offer an explanation of such skepticism. (Geake in Patten and Campbell 2011, p. 46)
93

94 7.2 Use a Way to Identify Brain Activity

95 Lee & NG (in Patten and Campbell 2011) report on investigations in their labora-

96 tory concerning heuristics commonly used for example to teach algebraic word

97 problems (respectively the model method and symbolic algebra).

98 In our laboratory, we conducted two studies using functional magnetic resonance imaging

99 (fMRI) and focused on the cognitive underpinnings of the two methods. . . . All participants

100 in our study were pretested for competency in the two methods: we selected only those who

101 were highly and similarly competent. Ensuring behavioural equivalence allowed us to infer

102 differences in neural activation in terms of processes involved in executing the two methods

103 rather than differences in task difficulty. Despite the lack of behavioural differences, we

104 found difference in the degree to which the two methods activated areas associated with

105 attentional and working memory processes. In particular, transforming word problems into

106 algebraic representation required greater access to attentional processes than did transfor-

107 mation into models. Furthermore, symbolic algebra activated the caudate, which has been

108 associated with activation of proceduralised information. . . . Findings . . . suggest that . . .

109 Both methods activate similar brain areas, but symbolic algebra imposes more demands on

110 attentional resources. . . . If symbolic algebra is indeed more demanding on attentional

111 resources, one curricular implication is that it is best to teach the model method at the

112 primary level and leave symbolic algebra until students are more cognitively matured. (Lee

113 & Ng in Patten and Campbell 2011, pp. 83–84)

114 Another example is the research by Koizumi:

115 Although acquisition of a second language from early childhood is not undesirable, our

116 main concern is whether it has negative effects on the normal course of language develop-

117 ment in one’s native tongue. At present, there is no scientific data available on the

118 relationship between language acquisition (both the first and second) and brain maturation.

119 (Koizumi in Patten and Campbell 2011, p. 51)

120 7.3 Labelling ‘Standard’ Educational Research

121 as ‘Neuroscience’ or ‘Bolster Your Case’ by Invoking

122 ‘Science’

123 There are for example the cohort studies on language acquisition, brain develop-

124 ment and language education (Hagiwara, Tokyo Metropolitan University).

125 Although their objectives to propose a guideline for second language learning and

126 education, especially for English, including the optimal ages and conditions sur-

127 rounding it, is very interesting, they phrase this as ‘a cognitive neuroscience-based

128 guideline’.
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1297.4 Bring Frameworks Together

130In most of these papers it is argued that bringing together frameworks respectively

131from educational research and from neuroscience will offer opportunities to deepen

132our understanding:

133The driving force behind bridging mathematics education and neuro-sciences in this project

134is the prospect of combining knowledge from both research trajectories to contribute to

135early diagnostic practice and prevention. If we succeed in developing and comparing two

136valid measures for the development of kindergartner’s mathematical ability, we may help to

137foster young children’s early mathematical insights and to stimulate those children who

138could be prone to experiencing difficulties in their mathematical development. The earlier

139we may grasp children’s mathematical learning trajectories, the more we can anticipate and

140furnish a supportive instructional setting, and the more we may be able to support the

141children in the development of their mathematical thinking and learning. (Van Nes in

142Patten and Campbell, p. 79).

143In a similar voice Tommerdahl (2010), writes:

144The paper supports the idea that the neurosciences have a role to play in education, but

145emphasises the distance and the complex relationships that exist between the brain sciences

146and proven teaching methods ready for the classroom. It is highly doubtful that any single

147given study in neurology will have a direct application to the classroom but, on a more

148hopeful note, it is almost certain that aggregations of findings from several studies,

149mediated through higher levels culminating in the behavioural and educational levels will

150indeed provide new teaching methodologies. (Tommerdahl 2010, p. 98).

151She presents a model:

152Five basic levels are offered in the model, the levels of neuroscience, cognitive neurosci-

153ence, psychological mechanisms, educational theory, and finally the classroom. For effec-

154tive teaching methods which are based on neuroscientific findings and which are supported

155by a scientific evidence base, most or all of these levels of work, and possibly more in some

156cases, are necessary to their development. (Tommerdahl 2010, p. 99).

157further she argues that:

158. . . the separation between the terms brain and mind could perhaps more appropriately be

159seen as different perspectives of the same thing, much like the famous figure/ground images

160where a viewer can see either an old lady with a large nose or a young women’s profile.

161(Tommerdahl 2010, p. 101)

162Examples of this are:

163In the field of bilingualism, brain scanning has shown there is a difference between

164bilinguals who learn a second language before age five and those who learn a second

165language at a later age. The first group processes their two languages in overlapping left

166hemisphere language centres while the second group calls more upon right hemisphere

167zones, working memory and inhibition areas when using their second language . . . In

168mathematics fMRI [is used] to distinguish whether precise mathematical calculations and

169numerical estimations used identical or distinct brain areas. A dissociation was shown to

170exist which also allowed the researchers to postulate that linguistic systems were likely to

171be mediating the precise calculations while visual centres were implicated in the approx-

172imations. (Tommerdahl 2010, p. 106)
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173 Similarly, Hardiman e.a. claim that

174 Although applying research from the neuro- and cognitive sciences to classroom practice

175 certainly remains a challenge, interdisciplinary collaboration has yielded considerable

176 educationally-relevant information about learning mechanisms that could not have been

177 acquired solely through behavioural methods. (Hardiman e.a., 2012, p. 137)

178 7.5 Finally, “The Sky Is the Limit”

179 Since the emergence of dispositions and basic emotions are to a large degree autonomic and

180 unconscious, they cannot be recognized nor stopped until they become conscious feelings.

181 However, they can be attenuated and avoided in the future through emotion regulation by

182 recognizing their emergence triggers and enacting preventive measured related to specific

183 object and situations. . . . This model [Somatic Appraisal Model of Affect] identifies

184 quintessential functions, components, and facets of affect necessary to provide a new

185 research domain, namely educational neuroscience, with a basis on which to build a

186 dynamic model of affect serving to challenge current pedagogy and inform and build a

187 new praxis, called neuropedagogy. (Patten in Patten and Campbell 2011, p. 94)

188 Thus far some aspects of the ‘emerging field’. It is time to make a few observa-

189 tions and comments.

190 1. Tools that are used:

191 PET scan (Positron Emission Tomography): a radioactive isotope is injected which allows

192 the amount of glucose being metabolised in the brain to become visible (indicative of the

193 amount of blood in each part of the brain which in turn represents brain activity); provides

194 an image of the working brain; disadvantages: the need for radioactive material, the high

195 cost of use;

196 fMRI (functional Magnetic Resonance Imaging): measures blood flow in the brain;

197 provides an image of the working brain;

198 EEG (electroencephalogram) shows cortical activity of the cortex in the form of

199 electrical signals directly harvested from groups of thousands of neurons through electrodes

200 placed on the scalp; no images of the brain, but instead detailed information about the time

201 course of neural activity and indications of where brain activity is being carried out;

202 MEG (magnetoencephalogram) measures the magnetic field outside the brain caused by

203 electrical activity; no images of the brain, but instead detailed information about the time

204 course of neural activity and indications of where brain activity is being carried out.

205 2. The studies are correlational. It is often assumed that for instance fMRI tech-

206 niques offer ‘visual proof’ of brain activity. However, as Narvaez and Vaydich

207 argue, few studies test theories and most are primarily correlational.

208 Far too often readers assume that fMRI techniques enable researchers to capture ‘visual

209 proof’ of brain activity, without taking into account the complexities of acquiring the data

210 and processing the images. To ease the task of interpreting and reporting results, neuroim-

211 aging studies often highlight responses in specific brain regions; however, these regions are

212 rarely the only ones that produced activity. Moreover, every human brain is distinctive, so

213 the fMRI studies look at areas of agreement across brains, which often vary greatly. In fact,

214 laboratories often use their own techniques to test and analyse the messy and inconsistent

215 data across participants and trials. Due to limited knowledge, few studies test theories and

216 most are primarily correlational. Moreover, correlative approaches, such as human brain
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217imaging and psychophysiology, are not sufficiently robust to adjudicate what is ‘basic

218about basic emotions’ because ‘autonomic physiology is regulated by generalized sympa-

219thetic and parasympathetic controls’ which are not measurable through fMRI. Activation

220can vary for a range of reasons. (Narvaez and Vaydich 2008, p. 291)

221Though aware of this, often nevertheless a particular conclusion is drawn in

222terms of the kind of research we need (granted, it comes with a warning as well):

223Given the current state-of-the-art in brain imaging, most neuroimaging data are correla-

224tional and do not provide information about causation. As in all scientific enquiry, there-

225fore, experimental design is crucial to how useful the data will be for contributing to

226research questions. For example, it is important to control for other factors that might be

227important for any correlations that are found, and to use control groups. . . . When

228evaluating neuroscience research, it is important to be vigilant: correlations are still

229correlations, even when they involve physiological measures. Yet many correlational

230findings that reach the popular media are given causal interpretations. (Goswami 2008,

231p. 386)

2323. Several philosophers have pointed to problems with the nature of the concepts

233that are used: for example they speak of a reductionism, or of a confusion of

234‘activity’ and ‘content’. Reference is made to Wittgenstein’s position concerning

235the ‘inner’, and to Ryle’s notion of ‘category mistake’, moreover to the issue of

236‘underdetermination’.

237Purdy & Morrison refer to a remark from Ter Hark “measuring pain with a

238thermometer is to change the very concept of pain, since the uncertainty of the

239psychological attribute of pain cannot be reduced (Purdy and Morrison 2009,

240p. 104).

241They also refer to Bennett and Hacker (2003) who, following the work of the

242later Wittgenstein, have asked whether we know ‘what it is for a brain to see or

243hear, for a brain to have experiences, to know or to believe something’. That the

244brain thinks, believes, etc. is for them the result of a conceptual confusion. Thus

245they point to the separation of the inner and the outer

246a ‘mutant form of Cartesianism’ where psychological attributes once ascribed to the mind,

247Descartes’ immaterial res cogitans, are now ascribed unreflectively to the material brain

248instead (Purdy and Morrison 2009, pp. 105–106).

249For them, the brain is not a logically appropriate subject for psychological

250attributes (the expression ‘the brain sees’ lacks sense, Bennett and Hacker

251refer to this as a case of explanatory reductivism).

252Bennett and Hacker (2003) conclude by maintaining that it makes no sense to attribute

253psychological attributes to either the mind (Cartesianism) or to the brain (cognitive

254neuroscience). Instead psychological attributes must be ascribed to the whole person

255‘who is a psychophysical unity, not a duality of two conjoined substances, a mind and a

256body’ (p. 106). Far from discrediting neuroscientific research, Bennett and Hacker simply

257argue that neuroscientists are often guilty of conceptual confusion in ascribing psycholog-

258ical attributes to the physical organ of the brain. (Purdy and Morrison 2009, pp. 105–106).

259Purdy and Morrison (2009, p. 108) conclude therefore:

260While neuroscience can reveal what is happening in the brain . . . the imagery is never more

261than a neural concomitant of that thinking. . .
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262 Obviously, though nothing prevents scientists from using psychological

263 expressions metaphorically, neuroscientists and cognitive scientists typically

264 presuppose that they are using psychological expressions literally.

265 A corollary to this is the dependence of technical concepts on ordinary

266 psychological concepts (which are not concepts of theoretical entities). Here

267 the argument runs as follows: without our ordinary concepts the technical

268 concepts from neuroscience would lack meaning. Moreover, though our ordi-

269 nary concepts are interrelated by way of implication, compatibility and incom-

270 patibility this does not imply that these are theoretical (see Chap. 13, Bennett and

271 Hacker 2003). For Bennett and Hacker therefore, neuroscience though it can

272 contribute to the explanation of irrational action and forms of incapacitation, it

273 cannot explain normal human behaviour (Bennett and Hacker 2003, p. 365).

274 A further step is the use of neuroscience concepts in the area of learning and

275 education. Davis (2004)) discusses brain-based learning and points to articles

276 presenting attempts to run together ideas about connectionism in the brain with

277 ‘connectionism’ at the level of knowledge and learning. There, two types of

278 connections are systematically conflated he argues: connections of a neurophys-

279 iological character that obtain in the brain during learning one the one hand, and

280 connections made by learners between ‘new’ knowledge and resident knowledge

281 on the other hand (Davis 2004, p. 25).

282 4. Unless the neurological mechanism that lies behind (and which is made

283 explicit) could be directly influenced, it is not clear what the educational

284 implications are which surpass those already available on the basis of relevant

285 research in for example educational psychology. That neuroscience offers a

286 description (or even explanation) in terms of neurological concepts and theo-

287 ries does not in itself warrant an educational surplus value. This remains to be

288 argued and established. It is possible that the techniques, methods, concepts

289 and theories of psychology will be replaced by those of neuroscience, in which

290 case there could be some gain in our understanding of learning. This pre-

291 supposes, however, accepting that the object of study of psychology coincides

292 with that studied by neuroscience. And as dealt with in the previous point, this

293 is doubtful.

294 Incidentally, responding to Schrag (2013), who asserts confidently that talk of

295 brain lesions being mere concomitants of an inability to recognize faces, Davis

296 (2013)) claims that this is too modest, i.e., the relevant neural states of affairs

297 play a causal role in causing the inability (Davis 2013, p. 35). However, and

298 interestingly, he draws attention to the direction of causality: “the very fact that

299 certain patients stopped recognizing faces set in motion events that had specific

300 effects on their brains . . . Such effects might have included the consequence that

301 parts of the brain became ‘atrophied’ because they were not being used” (Davis

302 2013, p. 35) This matter is certainly along the lines of something Aldrich draws

303 attention to:

304 brain structures are changed and adapted with each human activity. For example, in 2000

305 Eleanor Maguire examined the brains of 16 London taxi drivers via an fMRI scanner and
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306found that the part of the brain responsible for spatial navigation, the right posterior

307hippocampus, was 7% larger than normal, a significant difference. (Aldrich 2013, p. 397)

3085. Concerning what is frequently argued for, i.e. ‘bringing frameworks together’, if

309this is supposed to be more than the expression of what is always true, it needs to

310be shown in what way this is helpful. What is argued for is only true if one of

311these provides information for example at an earlier time than the other one.

312There are examples of this, but they are scarce. Goswani argues along these lines

313and provides such an example: neural variables can be used to identify those who

314might be at educational risk. (“. . . a child may be at risk because aspects of

315sensory processing are impaired, and biomarkers could show the presence of the

316processing impairment before any behavioural symptoms have appeared.”,

317Goswami 2008, pp. 394–395).

318That complementary information is gathered and the outcomes interpreted

319against two different backgrounds (one predominantly using a quantitative

320approach and an experimental setting,3 the other qualitative data from a

321classroom-based ‘design research’) is not enough. Except for very specific

322cases, the gains of such an approach, i.e., ‘bringing frameworks together’

323therefore remains doubtful.4

3246. And then there is the further step to ‘education’, as implicit in for instance the

325idea that improved knowledge about how the brain learns should assist educators

326in creating optimal learning conditions—not to mention issues concerning

327desirable outcomes, in general educational content and processes. Some scholars

328realise that the possible contribution is limited:

329In relation to education the indeterminacy of psychological attributes (such as under-

330standing) is not removed by a computer-generated print-out of neural processing, because

331this form of measurement creates a quite different concept. . . . Cognitive neuroscience

332may offer detailed pictures of neural networks, but, just as a thermometer fails to measure

333pain, so a brain scan fails logically to measure understanding: the concepts involved are

334simply different and the indeterminacy remains. Cognitive neuroscience therefore at best

335offers insights into the neural concomitants of thinking, but it offers no privileged access

336into the hidden world of the inner, that inner world being already manifest in external

337behaviour. Rather than representing a panacea to education, the cognitive neuroscientific

3 “Before the trials begin, the researcher fits a cap on the child’s head with electrodes that register

brain activity. This non-invasive EEG technique informs the researcher about the onset and

duration of brain signals for particular stimuli and motor and perceptual responses. ANOVAs

help determine differences in the brain activation and in the reaction times and additional analyses

give more insight into the nature of interference and facilitation effects in the different experi-

mental conditions.” (Van Nes in Patten and Campbell 2011, p. 78)
4 Some authors remain nevertheless confident of such an approach: “With one research discipline

set in a classroom environment and another that is based on a laboratory setting, the collaboration

between the ME [Mathematics education component] and NS [Neurosciences component]

research rests on studying the same children. The children who participate in the ME research

are part of the larger pool of children who will also participate in the NAS research. In this way we

hope to be able to compare children’s phase of spatial structuring with the degree to which they

automatically process quantities.” (Van Nes in Patten and Campbell 2011, p. 78)
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338 enterprise in relation to education is therefore necessarily limited. (Purdy and Morrison

339 2009, p. 105)

340 Others seem to be inclined to forget, and proclaim the need for such an approach:

341 Cognitive neuroscience is important for education because it enables a principled under-

342 standing of the mechanisms of learning and of the basic components of human perfor-

343 mance. It also enables componential understanding of the complex cognitive skills taught

344 by education. Many of the principles of leaning uncovered by cognitive neuroscience might

345 appear to support what teachers knew already. For example, aspects of pedagogy such as

346 the value of multi-sensory teaching approaches or of crating safe and secure environments

347 for learning are highly familiar. Nevertheless, cognitive neuroscience offers an empirical

348 foundation for supporting certain insights already present in pedagogy and disputing others.

349 The evidence from neuroscience is not just interesting scientifically. It enables an evidence

350 base for education in which mechanisms of learning can be precisely understood.

351 (Goswami 2008, p. 396)

352 7.6 Some Conclusions

353 For various reasons educational research has been eager to adopt psychology’s

354 methodology (paradigm and methods) and has embraced causality/probability with

355 the predictability and the possible elements of manipulation that go with it (see

356 Smeyers and Depaepe 2013). What has been argued for in general for psychology is

357 no less true for the attraction of neuroscience. But before saying more about that, I

358 will first deal with the crucial issue of what it is exactly that concepts of neurosci-

359 ence can refer to.

360 What goes missing in any third-personal, physical description of brain states is,

361 Bakhurst (2008) argues, the subjective dimension: “. . .all that is observable are the

362 neural correlates of mental activity, not mental activity itself” (p. 422). To this he

363 adds that from a personalist position, beginning from the premise that the human

364 mind is a psychological unity, a person’s mental states are not just a rag-bag

365 collection of representations. “One way to put this argument about psychological

366 unity is to say that brainism [the view (a) that an individual’s mental life is

367 constituted by states, events and processes in her brain, and (b) that psychological

368 attributes may legitimately be ascribed to the brain, p. 415] struggles to make sense

369 of the first-person perspective. A person does not typically stand to her own mental

370 states as to objects of observation” (p. 422). Our observing is always charged with

371 agency: “But although a person does not relate to the contents of her mind as to

372 objects of observation, her relation to her own brain states, as revealed, say, by MRI

373 imaging, is one of observation. Thus what she observes when she observes events in

374 her own brain can only be brain events correlated with, and enabling of, her mental

375 life, not her mental life itself” (p. 423) To this personalism and following McDow-

376 ell, he adds a distinctive view of human development: “As the child matures,

377 however, she undergoes a qualitative transformation. She enters a distinctively

378 human, essentially social form of life and acquires distinctively human
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379psychological capacities that enable her to transcend existence in the narrow

380confines of a biological environment and to hold the world in view. With this,

381natural-scientific modes of explanation are no longer adequate to explain the

382character of the child’s mindedness” (Bakhurst 2008, p. 423). And he continues:

383“The human mind constantly transcends its own limits; it does not simply apply old

384techniques to new problems. On the contrary, we set ourselves problems precisely

385to develop the methods to address them, a process that in turn uncovers new

386questions, creating new problem-spaces demanding further innovation and so

387on. To understand this dialectical process, we cannot represent the mind as deter-

388mined by antecedent conditions” (Bakhurst 2008, pp. 423–424). Instead, as

389McDowell argues, human beings think and act, Bakhurst argues, in the light of

390reasons: “The relations in which rational explanation deals are normative in char-

391acter. When I decide that Jack must believe that q because he believes (a) that p and

392(b) that p entails q, I am not making a causal claim. I am assuming that Jack believes

393what he ought to believe if he is rational” (Bakhurst 2008, p. 424). These sort of

394relations are not the sort of relations that are characterised by natural-scientific

395theories, they are different from what goes on in the brain which is exhaustively

396open to scientific explanation; mental states and processes occupy a different

397logical space—the space of reasons. Human beings inhabit a social world because

398their world is full of objects created by human beings for human purposes. For him

399psychological talk represents a fundamentally different discourse from talk of the

400brain. Obviously, brain science can illuminate learning in the explanation of

401dysfunction, deficit and disorder, he argues (a matter often referred to in the

402literature, see for example, Davis 2004, p. 22): “Once we adopt the causal perspec-

403tive on the child’s problems, we cease to see her as a rational agent, at least in this

404respect, and absolve her from responsibility, and hence blame, for her failings”

405(Bakhurst 2008, p. 426). According to Bakhurst brain science can moreover

406illuminate why someone is especially good at some practice (he refers to speed of

407thought as an example of causal preconditions of rational powers). Thus he con-

408cludes that as there is as much reason to avoid crass biological determinism as there

409is to eschew a priori nurturism, there “are no a priori grounds to declare brain

410science irrelevant to educational issues, or relevant only in ‘deficit’ cases”

411(Bakhurst 2008, p. 428); “What is critical, however, is that interest in the brain

412should not distract attention from the fact that education is a communicative

413endeavour, not an engineering problem. Education is not about getting information

414into students’ heads or of implanting skills in them” . . . Once again, information

415and skills are not all that is at issue. Machines may possess those, or close

416surrogates, but machines have no practices and crafts (Bakhurst 2008, p. 428).

417If Bakhurst’s position carries weight, it is doubtful that a lot may be expected

418from what is frequently argued for in the neuroscience subdiscipline, i.e., ‘combin-

419ing frameworks’. Do they make a mountain out of a molehill? The so-called

420frameworks that have to be brought together are fundamentally different. More-

421over, there is something strange going on in the debate about neuroscience and
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422 education: the methods that are used are correlational, i.e. the tools measure

423 indirectly brain activity, there is conceptual confusion in more than one sense,5

424 and yet the proponents do not stop to argue that a lot can be expected from such an

425 approach.

426 This is not to say that in some cases indeed relevant insights for education can be

427 offered. Here are two examples given in a study by Sigman, Pe~na, Goldin, Riberio:

428 Neuroscience research has developed signatures that may serve to diagnose cognitive

429 impairments potentially earlier than would be conceivable by behavioural or psychological

430 inspection. A paradigmatic example is the detection of otoacoustic emissions in neonates, a

431 tool that helps identify congenital deafness. Traditional detection by psychological tests can

432 only be made months after birth, missing a window of opportunity for early interventions.

433 (Sigman e.a., 2014, p. 498)

434 The diagnosis of dyslexia is typically made in children aged 7–8 years old, when

435 population variability in reading scores becomes evident. However, interventions to reme-

436 diate dyslexia are much more likely to be successful when conducted on children who are

437 beginning to read or even before reading if they are based exclusively on improving

438 auditory processing. As with many other medical conditions, early diagnosis is a funda-

439 mental aspect of remediation. The development of neurophysiological markers of later

440 dyslexic developments are therefore of great practical relevance. . . . the . . . study . . . found

441 that, as early as birth, infants with and without familial risk for dyslexia differ in ERPs

442 [event-related potentials] to linguistic stimuli. . . . Taken together, these studies indicate that

443 ERPs measured during infancy might help to screen for problems in reading-related skills,

444 serving as an indicator or risk of impaired auditory/speech processing. (Sigman, e.a., 2014,

445 p. 500)

446 Francis Schrag (2011)) offers a more subtle position when dealing with the

447 possible contribution of neuroscience. He too starts from the validity neuroscience

448 at first sight may have as it “discovers more and more about the mechanisms of

449 learning and memory” (pp. 222–223) but claims that “From the teachers’ point of

450 view, knowing which brain structures are involved adds nothing to the success of

451 the strategies” (ibid., p. 226). He envisions that the ongoing research which is

452 offered by cognitive neuroscientists is “. . . yielding continued progress in under-

453 standing neural processes at the micro level, an understanding that will be translated

454 into interventions designed to affect micro level processes in order to reduce

455 cognitive deficits and enhance performance at the macro level” (ibid., p. 236).

456 Strangely enough, he is not convinced that we need philosophers “. . .to tamp down

457 the enthusiasm of neuroscientists who may be all too ready to launch bandwagons

5 “Psychological predicates are predicates that apply essentially to the whole living animal, not to

its parts. It is not the eye (let alone the brain) that sees, but we see with our eyes (and we do not see

with our brains, although without a brain functioning normally in respect of the visual system, we

would not see). So, too, it is not the ear that hears, but the animal whose ear it is. The organs of an

animal are part of the animal, and psychological predicates are ascribable to the whole animal, not

its constituent parts. Mereology is the logic of part/whole relations.” (Bennett and Hacker 2003,

pp. 72–73). Bennett & Hacker term the neuroscientist’s ascription of psychological attributes to

the brain ‘the mereological fallacy’ in neuroscience. They also point to what the neuroscientist is

seeing: “What one sees on the scan is not the brain thinking. . . nor the person thinking . . . but the

computer-generated image of the excitement of cells in his brain that occurs when he is thinking.”

(Bennett and Hacker 2003, pp. 83–84)
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458declaring that their research will show the way to the holy grail of educational

459transformation? The answer here is clear: we do not. In fact those at the new frontier

460are very aware of the limitations of their work and of the propensity of less skilled

461disciples to mislead the rust of us” (ibid., p. 228). This may be the case for some, in

462general I do not think that this is a truthful picture of what the educational

463researchers working in this area aspire to. Here are some examples:

464In the introduction to a special issue of the International Journal of Science and

465Mathematics Education (2014, 3) Anderson, Love & Tsai write:

466Perspectives on possible future approaches and challenges in reaching the goals of a

467neuroeducational theory are presented, including applying new techniques such as

468eye-tracking. EEG, and fMRI analyses to further understand individual differences in

469student brain functions while performing some typical cognitive functions in math and

470science learning, such as problem solving, self-directed learning, and interaction with

471digital-based learning environments. (p. 468)

472And introducing the article by Liu Chang in that issue they say that these authors

473“. . .offer science educations some neuroscience-backed information as a founda-

474tion to develop results-oriented curricula and teaching methods” (Anderson

475et al. 2014, p. 471). And his own article in the special issue Anderson writes:

476“The opportunity for merging neurosciences with modern digital technology design

477theory and best delivery practices is clearly significant and likely to be highly

478productive in advancing the efficacy of these learning environments” (Anderson,

4792014, p. 476). Of course, he starts from “There is much to be gained by beginning

480with an assumption that the human brain is a functional systemic unit (though

481modular based) in processing and responding to complex information” (ibid.,

482p. 482)—which embraces precisely what was criticized above (i.e., a confusion at

483the conceptual level). For him it is all very clear: “The more we understand the

484physiological bases for individual differences in learning, the more likely we can

485develop effective ways of maximizing the individual learning potentials of our

486students.” (ibid., p. 488). Others focus on what neuroscience insights can do for

487teachers, thus for example Hook & Farah argue in Neuroethics “Our evidence

488indicates that educators use neuroscience to maintain patience, optimism and

489professionalism with their students, to increase their credibility with colleagues

490and parents, and to reinforce their sense of education as a profession concerned with

491shaping students’ brain development. None of these motivations presupposes an

492unrealistic view of neuroscience or neuroeducation” (Hook and Farah 2013,

493pp. 339–340). And in the Educational Researcher Dubinsky, Roehrig & Varma

494argue that: “. . . teachers benefit from additionally understanding the neuroscience

495of learning and memory. . . .Neuroscience has the unique feature that it provides the

496neurobiological basis for learning, thus allowing discussions about student learning

497to occur within a scientific, psychological, and pedagogical context” (Dubinsky

498et al. 2013, p. 320). For these authors “Knowledge of the biological basis of

499learning and memory and the inherent plasticity of this intricate system gave

500teachers a more positive attitude towards each student’s ability to change and

501learn” (ibid., p. 324) and moreover “. . . teaching neuroscience to students can
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502 increase their self-understanding, self-efficacy, motivation and metacognition”

503 (ibid., p. 327).

504 Let me summarize: there are many problems with the un-qualified message or

505 promise of neuroscience related to educational research and the educational field,

506 first of all at the level of the concepts that are used (‘brain’ versus ‘mind’). Further,

507 though there may exist a correlation between some mental phenomena and neuro-

508 physiological states, the latter are neither necessary nor sufficient for the phenom-

509 ena, what we need instead if one wants to pursue this line of research is an

510 explanation in terms of the mechanism (or mechanisms) that is/are at stake, in

511 other words a causal explanation. Harré and Tissaw (2005) distinguish first person

512 expressive talk (for example thinking, believing, happiness etc.) from third person

513 descriptive talk (for example brain activity) and label and categorize the distinction

514 between the grammar of first-person expressive talk and third-person descriptive

515 talk as the asymmetry principle. This is ignored when one speaks about and

516 localizes the former (psychological terms, intentional terms and sensations) ‘in

517 the brain’. Another way to identify what is happening may be called the transgres-

518 sion from the mentalist mind-body approach to the materialist brain-body approach.

519 Moreover, according to its own paradigm (means-end) clearly, there are hardly

520 studies which show educationally relevant effects (not to mention the

521 underdetermination problem). And finally, there are quite a few decisions (for

522 example ethical) educators have to take for which neuroscience cannot deliver

523 the necessary insights. All of this may lead to the conclusion that there is not a lot to

524 be expected from the so-called knowledge exchange between the disciplines of

525 education and neuroscience, i.e. if one accepts that there is a difference between on

526 the one hand causality/probability/contingency and freedom/choice/responsibility/

527 regret/remorse on the other hand. We should I think do away with talking about

528 ‘brain behaviour’ or consciously perceive and alter one’s own brain processes to

529 give just two examples; and perhaps also with mustering evidence and rationale of

530 neuroscience research to funding agencies traditionally supporting educational

531 research.

532 Clearly, neuroscientific explanations have a particular seductive character. Evi-

533 dence for this can be found in a 2008 article byWeisberg, Keil, Goodstein, Rawson,

534 and Gray who discuss an experiment they have set up concerning the seductive

535 allure of neuroscience explanations. Explanations with logically irrelevant neuro-

536 science information had a particularly striking effect on non-expert’s judgments of

537 bad explanations. So why is it then that neuroscience is so attractive? Interestingly,

538 one may be tempted to find an answer in the discussion this field offers itself when

539 discussing certain so-called neuromyths of which examples are that one only uses a

540 fraction of one’s brain, namely 10%, or that people are rather right- or left-brained.

541 There is even a specific label coined for this: neurophilia (the appetite for neuro-

542 science). Pasquinelli (2012) discusses several issues of neuromyths (the miscon-

543 ceptions about the mind and brain functioning) such as the origin, persistence and

544 potential side-effects in education. There is according to her in the media “the

545 tendency to offer irrelevant information, sensationalism, and the omission of

546 relevant information” (Pasquinelli 2012, p. 90). She also refers to the biasing effect

84 P. Smeyers



547of images: “because neuroimages appear as compelling as eyewitness, they are

548persuasive” (Pasquinelli 2012, p. 91). Thus she argues: “The ignorance of basic

549facts about the making–of of brain images can mislead the layperson into believing

550that an image of the brain is sufficient to prove the existence of a mental state—an

551attitude described as ‘neurorealism’” (Pasquinelli 2012, p. 91). And she refers to the

552blossoming of projects, reports and studies on the social, political, and educational

553implications of neuroscience, looking in the latter field for guidelines and/or easy

554fixes for education. She talks about the example of Brain Gym (based on the idea

555that when different parts of the brain do not work in coordination learning can be

556impaired), and argues that though there is no evidence that its exercises are

557effective, they are globally well received in the domain of education (Pasquinelli

5582012, p. 92). It is therefore really disappointing to find towards the end of the paper

559as an answer to the question what actions one can take, only that “knowledge must

560be pursued, conveniently disseminated, and taught” (Pasquinelli 2012, p. 93) end-

561ing with the mantra “From this collaboration [an effective interbreed between

562science and applicative domains (such as education)], compelling theories and

563practices can see the light that are at the same time true of science and meaningful

564for educators” (Pasquinelli 2012, p. 94).

565Granted, neuroscientific studies can eradicate mistaken views about how the

566brain works. But that does not go very far to justify a legitimate educational interest

567not to mention what needs to be done in educational contexts. It does not justify the

568direction a lot of educational research has taken, not to mention the amount of

569money that is made available. It may be a field that merits interest on its own

570strengths, surely there are so many areas which are interesting. But it should not be

571‘sold’ as highly relevant for education. Indeed, something very remarkable is going

572on there: never mind the possible problems, we are aware of that, so let’s continue

573‘business as usual’, and therefore the mantra sounds ‘a lot may be expected from

574this field!’ It is easy so see how educators may be tempted to find an easy fix for

575educational problems, overwhelmed by neurorealism and the aura of doing real

576science offering the prestige that goes with it and the so-called expertise demanded

577for by educators and no less by parents. My arguments have been directed against

578such a neuromyth, which I offer as a reminder that education, including educational

579research and the discipline of education, should reclaim its territory.
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