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Abstract 

Chronic kidney disease (CKD) is often characterized by a progressive loss in renal function over 

a period of months or years and by the accumulation of uremic retention solutes in the body. 

Current biomarkers, such as serum creatinine or urinary albumin, lack the sensitivity for early 

detection of CKD, which is primordial towards disease management. In the search for new 

uremic retention solutes and/or biomarkers of CKD, a hydrophilic interaction liquid 

chromatography time-of-flight mass spectrometric (HILIC-TOF MS) platform was developed. 

Urine and plasma samples from CKD patients at stage 3 (n=20), at stage 5 not yet receiving 

dialysis (n=20) and from healthy controls (n=20) were monitored in both positive and negative 

electrospray ionization mode. The validity of the metabolomics dataset was ensured by quality 

control (QC) samples. Data were treated with XCMS followed by multivariate statistical analysis. 

Differentiation was achieved between the metabolic profile of the CKD patients and healthy 

controls. Moreover, 4 metabolites that showed a significant increase or decrease throughout the 

different stages of CKD, i.e. cinnamoylglycine, glycoursodeoxycholic acid, 2-hydroxyethane 

sulfonate, and pregnenolone sulphate, could be identified by the use of authentic standards, the 

latter three of which are newly detected uremic retention solutes. 

Keywords Chronic kidney disease • hydrophilic interaction liquid chromatography • 

metabolomics • uremic retention solutes • urine and plasma 
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1. Introduction 

Chronic kidney disease (CKD) is a worldwide public health problem often characterized by a 

gradual loss of kidney function over time [1]. A multitude of compounds which are normally 

secreted by the healthy kidneys into the urine, are no more or insufficiently removed and 

accumulate in the body. These substances are called uremic retention solutes. If these 

compounds exert biological or biochemical activities, they are referred to as uremic toxins [2-4]. 

In 2003, the European Uremic Toxin (EUTox) Work Group composed an encyclopedic list of 90 

uremic retention solutes, divided into 3 classes based on their physico-chemical properties [5]. In 

2012, an update of the list provided 56 newly identified solutes. Nevertheless, many uremic 

retention solutes remain unknown. CKD is classified into 5 stages, with stage 1 being the mildest 

and stage 5 (end stage) being a severe illness with poor life expectancy if untreated [6]. 

Monitoring CKD activity requires non-invasive, specific and sensitive biomarkers that provide 

clinicians with information correlating with pathophysiologic processes occurring within the 

kidney. Current biomarkers of CKD and its progression that are in widespread clinical use, such 

as serum creatinine and albuminuria, have limitations in serving these goals and reliance on 

these biomarkers may result in an extensive time lapse between the start of the disease and the 

moment when alarm signs are prominent enough to incite therapeutic interventions [7-12]. 

Hence, the search for new relevant biomarkers should be continued to better stratify patients 

with CKD. 

Metabolomics, a recent systems biology approach, complements the genomic, transcriptomic, 

and proteomic efforts to characterize a biological system and can be regarded as the end point 

of the “-omics”-cascade. Since metabolites represent end products, metabolomics holds the 

promise of providing an integrated physiologic phenotype of a system [13,14]. The main 

analytical techniques in metabolomics studies involve mass spectrometry (MS), usually 

preceded by a chromatographic separation step, and nuclear magnetic resonance spectroscopy 
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(NMR). In the search for novel biomarkers of CKD, NMR [15-17] and hyphenated techniques 

such as gas chromatography-mass spectrometry (GC-MS) [18-20], liquid chromatography-mass 

spectrometry (LC-MS) [21-23] and capillary electrophoresis-mass spectrometry (CE-MS) [24-27] 

have been applied. As no single analytical technique is entirely competent in covering the broad 

metabolic picture, combining multiparallel technologies, has become indispensable, aiming at a 

comprehensive metabolome coverage. Recently, several studies on CKD have combined LC-

MS and GC-MS to enlarge this coverage [28,29]. Within LC-MS-based metabolomics studies the 

metabolome coverage can be extended by combining multiple LC separation modes. The 

majority of the LC-MS-based studies employ reversed phase liquid chromatography (RPLC). 

The use of reversed phase columns provides efficient separation and retention of relatively 

nonpolar metabolites across a large molecular weight range. Polar metabolites, being mainly 

primary metabolites, elute in the column void or early in the chromatographic run. The latter 

species represent metabolite classes of high significance, such as amino acids and organic 

acids, which are directly involved in the normal growth, development, or reproduction of an 

organism and are thus important for the diagnosis of diseases. Hydrophilic interaction 

chromatography (HILIC) has become increasingly popular for the analysis of polar metabolites 

and several metabolomics studies have confirmed that the addition of HILIC is a useful tool to 

increase the metabolome coverage [30-34]. However, no HILIC-based metabolomics studies 

have been reported in the search for novel uremic retention solutes or potential biomarkers of 

CKD. Therefore, the goal of this study is to develop and apply a HILIC-time-of-flight (TOF) MS 

metabolic platform in the search for novel uremic retention solutes/potential biomarkers by 

comparing urine and plasma from a healthy control group and two patient groups suffering from 

different stages of CKD, i.e. CKD stage 3 (CKD3) and CKD stage 5 (CKD5). 

2. Materials and methods  

2.1.  Chemicals 
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Water (LC-MS grade), methanol (LC-MS grade), ammonium acetate (ULC-MS grade) and formic 

acid (ULC-MS grade) were purchased from Biosolve (Valkenswaard, The Netherlands). 

Acetonitrile (HPLC grade) was purchased from Sigma-Aldrich (Schnelldorf, Germany). 

Metabolite standards were obtained from The Metabolomics Innovation Centre (TMIC, 

Edmonton, Canada). 

2.2.  Study samples 

Urine samples were obtained by centrifugation of fresh urine from 40 patients diagnozed with 

CKD and 20 healthy controls at 1800 rpm for 10 min at room temperature. Aliquots of 1000 µl 

were stored at -80°C until analysis. Blood was sampled by venipuncture from the same study 

group using K2EDTA Vacutainer™ tubes (Becton Dickinson, San Jose, CA, USA) after  

informed consent. Plasma was obtained by centrifugation, immediately after sampling, at 3,000 

rpm for 10 min at room temperature. Aliquots of 500 µl plasma were stored at -80°C until 

analysis. The clinical characteristics of the included patients are tabulated in Table 1. From the 

40 patients included, 20 were classified in CKD stage 3 (CKD3) (estimated glomerular filtration 

rate - eGFR - 30-60 mL/min/1.73 m2 body surface) and 20 in CKD stage 5 not receiving dialysis 

(CKD5) (eGFR < 15 mL/min/1.73 m2), based on their glomerular filtration rate estimated from 

the serum creatinine values as prescribed by the KDOQI guidelines. The underlying etiology of 

CKD was of vascular (n=8), glomerular (n=5) or interstitial (n=5) origin, polycystic kidney disease 

(n=5), nephrectomy (n=8), transplant failure (n=4), other (n=4) or unknown (n=1). 

2.3. Sample preparation  

2.3.1. Sample preparation: urine 

The frozen urine samples were thawed, and were prepared by adding 180 µL of water to 60 µL 

of urine in Eppendorf tubes, briefly vortexing, and centrifuging at 13,000 rpm for 10 min. 

Subsequently, 180 µL was dried under nitrogen at room temperature and re-dissolved in 120 µL 

of the initial mobile phase (see 2.4). 
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2.3.2. Sample preparation: plasma 

The frozen plasma samples were thawed. Subsequently, 150 µL of plasma was transferred to 

Eppendorf tubes and 300 µL of ice-cold methanol (-20°C) was added. After vortex mixing during 

10 seconds, samples were placed at -20°C for 20 minutes. Afterwards, the samples were 

centrifuged for 10 minutes at 13,000 rpm and 300 µL of the supernatant was dried under 

nitrogen at room temperature. The dried extracts were re-dissolved in 150 µL of the initial mobile 

phase (see 2.4) and transferred to a new Eppendorf tube. The samples were centrifuged for 10 

min at 13,000 rpm, after which 150 µL of supernatant was transferred to a vial with glass insert 

for LC-MS analysis.  

2.3.3. Preparation of QC samples 

A quality control (QC) pool was constructed by collecting 100 µL of all the study samples. 

Subsequently, this QC pool was divided into aliquots to acquire representative QC samples. QC 

samples were prepared simultaneously along with study samples and were analyzed throughout 

the LC-MS analysis every 5 study samples. Since these samples do not contain any biological 

variability, they can be considered as technical replicates. For both plasma and urine, study and 

QC samples were prepared in random order.    

2.4. Liquid chromatography-mass spectrometry conditions 

All samples were analyzed on a 1290 Infinity LC coupled to a 6230 TOF MS (Agilent 

Technologies), equipped with a Jetstream electrospray ionization (ESI) source as interface. 

Separation was performed on an Acquity UPLC BEH HILIC column (1.7 µm, 2.1 mm x 150 mm) 

with an Acquity UPLC BEH HILIC VanGuard precolumn (1.7 µm, 2.1 mm x 5 mm). The mobile 

phase consisted of (A) 0.1% formic acid in 50 mM ammonium acetate and (B) 0.1% formic acid 

in acetonitrile. Elution was carried out with a gradient starting from 2% A to 20% A in 30 min, 

followed by an increase to 100% A and re-equilibration. The flow rate was 0.3 mL/min and the 

injection volume 10 μL. The column temperature and the autosampler temperature were kept at 
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40°C and 4° C, respectively. The MS instrument was operated in both positive and negative ESI 

modes. Needle voltage was optimized to 4 kV in positive ESI mode and -3.5 kV in negative ESI 

mode. The drying and sheath gas temperatures were set to 325°C and the drying and sheath 

gas flow rates were set to 8 and 7 L/min, respectively. Data were collected in centroid mode 

from m/z 50–1,200 at an acquisition rate of 1 spectrum/sec in the extended dynamic range mode 

(2 GHz). To maintain mass accuracy during the analysis sequence, a reference mass solution 

was used containing reference ions (121.0508 and 922.0097 for positive ESI mode, and 

112.9856 and 1033.9881 for negative ESI mode). The TOF instrument was tuned using the ESI-

L low concentration tuning mix (Agilent Technologies) prior to the analysis sequence. The LC-

MS analysis was performed in one batch, separately for positive ESI and negative ESI 

measurement. Each analysis sequence started with 2 blank runs and 6 conditioning samples 

(QC samples). All study samples were analyzed in randomized order in both ionization modes, 

with QC samples (n=12) analyzed every 5 study samples. All instruments were controlled by 

MassHunter Workstation Acquisition 4.0 (Agilent Technologies). Fig. 1 displays representative 

chromatograms (positive ESI mode) of plasma obtained from (a) a healthy control and (b) a 

CKD5 patient. 

2.5. Data Analysis 

The LC-MS total ion chromatogram (TIC) data were exported to mzData format data files by 

MassHunter Qualitative Analysis B.04.00 (Agilent Technologies) and pairs of sample groups 

were subsequently processed by XCMS software using default parameters [35]. XCMS software 

(version 1.34.0) running under the R package (version 2.15.3), incorporates nonlinear retention 

time alignment, matched filtration, automatic peak detection and peak matching and is freely 

available under an open-source license. Subsequently, all sample groups were analyzed 

pairwise (healthy versus CKD3, healthy versus CKD5, CKD3 versus CKD5) in R, using 

univariate statistics based on unpaired Mann-Whitney testing with Benjamini-Hochberg 
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corrected p-values to control the false discovery rate (FDR). Next, the data were normalized to 

the total intensity of components that are common to all samples, which is also called MS “total 

useful signal” (MSTUS) [36]. A second order analysis was performed to identify metabolites that 

are up- or downregulated across the different CKD stages. Therefore, the processed XCMS 

output files were used as input for metaXCMS (version 0.1.20), where they were realigned, 

statistically evaluated and compared for shared differences. MetaXCMS is freely available as an 

open-source R-package that includes a graphical user interface [37]. Feature lists were filtered 

by a fold change (FC) ≥ 1.5 and corrected p-value (q) ≤ 0.05 (see 3.3). The second-order 

comparison was applied using a tolerance of 0.01 m/z and 60 s retention time. Results were 

visualized as a Venn diagram with the number of common features to all sample groups 

contained within the intersection. Since this study focused on identifying small molecules that 

showed an evolution related to the disease progression (healthy > CKD3 > CKD5 or healthy < 

CKD3 < CKD5), only features were retained that were upregulated or downregulated from 

healthy to CKD5. The number of features was further reduced by removing features that were 

not present in at least 75 % of one of the sample groups. The XCMS algorithm does not classify 

spectral ions originating from the same compound. Hence, the resulting feature list encloses 

multiple ions for each individual metabolite detected. Therefore, the CAMERA package, which is 

freely available from the Bioconductor repository, was used for grouping related features and for 

the annotation of ion species [38]. Data were processed with CAMERA functions in the following 

order xsAnnotate, groupFWHM, groupCorr, findIsotopes, and findAdducts using default 

parameters. Data were uploaded into freely available MetaboAnalyst software to construct PCA 

plots. Molecular formulas were generated by Find by Molecular Feature and Generate Formulas 

in the MassHunter Qualitative Analysis B.04.00 software. The accurate mass and molecular 

formula were then matched to metabolites via searching of the on-line Metlin database. Finally, 

identification was confirmed with commercially available authentic standards. 
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3. Results and discussion 

3.1. Quality of analysis 

In order to allow retention and satisfactory chromatography of as much polar solutes a possible 

in HILIC a gradient method was developed allowing both retention of the less polar solutes (at 2% 

aqueous phase) and also elution of the most polar ones (at 20% aqueous phase) within a 

reasonable analysis time on the used stationary phase. The separations were performed on a 

long (15 cm) sub-2 micron type of column to allow reaching high peak capacities for both the 

urine and plasma samples. The QC data, obtained on the developed methodology, were 

subsequently examined post-run in both a targeted and a non-targeted way for evidence of 

changes during sequences. Targeted monitoring was performed by determining the error of the 

measurement on signal intensity (peak area), retention time and mass accuracy for a list of 

randomly selected metabolites. Table 2 summarizes the results of this targeted validity 

verification. Peak area fluctuations, originating from both the sample preparation step and the 

LC-MS analysis, are typically below 15% relative standard deviation (RSD, n=12) and are 

generally better for urine than for plasma. Chromatographic retention time reproducibility is in 

general satisfactory and limited to a few RSD%. Representative total ion chromatograms by 

HILIC-MS are shown in Fig. 1. High mass accuracy is expected for the TOF instrument (< 5 

ppm), which is advantageous for identification purposes since the greater the accuracy the lower 

the number of molecular formula matches. We only found one out of twelve mass accuracies 

exceeding 5 ppm for the list of randomly selected metabolites, which indicates overall 

acceptable accuracies. Apart from this targeted approach, the reproducibility of the applied 

metabolomics analysis was examined in a more comprehensive way by calculating the error on 

all detected features in the QC samples and representing the acquired RSD distribution as 

depicted in Fig. 2. For urine in positive mode 71.12% of all features show RSD values below 15% 

and  89.29% of all features had an RSD below 30%, which can be defined as the upper limit for 

untargeted or discovery metabolomics analysis [32]. Urine analysis in negative ESI mode 
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displayed 70.43% of all features with a RSD value below 15%, while 92.52% of the features had 

an RSD value below 30%. For plasma in positive ESI mode 36.35% of all features showed RSD 

values below 15% and 73.91% of all features had an RSD below 30%. Plasma analysis in 

negative mode displayed 46.62% of all features with RSD values below 15%, while 73.91% of 

the features had a RSD below 30%. Hence, the reproducibility of the urine analyses is better 

than the reproducibility of the plasma analyses. 

3.2.  Revealing differential metabolites 

PCA was used as a first exploratory step in the data-processing pipeline. Grouping of the 

samples originating from the different CKD stages and controls can be seen from the score plots 

in Fig. 3. Healthy controls are clearly separated from CKD5 samples. Nevertheless, there is 

overlap between CKD3 samples and the other sample groups, for both urine and plasma. 

Data analysis in metabolomics experiments boils down to reducing complex data matrices to a 

list of biologically relevant metabolites. Table 3 summarizes the feature reduction throughout the 

successive data-processing steps.  

Creatinine, a clinically widespread biomarker of CKD, was well retained in the HILIC mode and 

was confirmed as an uremic metabolite. The fold changes of creatinine and several well-known 

uremic toxins are listed in the upper part of Table 4. In general, fold changes were more 

substantial for protein bound solutes, such as indoxylsulfate or p-cresylsulfate, compared to the 

current marker serum creatinine, especially during the early stages of CKD (CKD3 vs H). As 

expected fold changes of creatinine were more prominent in plasma than in urine, where they 

are a reflection of daily generation. In an attempt to discover early markers for CKD or new 

uremic retention solutes, restrictions were set on the fold changes based on the relative 

difference in creatinine between CKD3 patients and healthy controls in plasma. Only features 

with fold changes ≥ 1.5 that showed a significant increase or decrease throughout the different 

stages of CKD were withdrawn. Several features were found to be significant with the required 
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increasing or decreasing trend throughout CKD as demonstrated in Table 3. In urine analyzed in 

positive ESI, 15 features were going up, while 59 features were decreasing with CKD 

progression. Negative ESI unraveled 5 features that were upregulated and 31 features that were 

downregulated with CKD progression in urine. In plasma analyzed in positive ESI, 17 features 

were increasing, while 1 feature was decreasing with CKD progression. Negative ESI unraveled 

40 features that were upregulated in plasma, next to 11 features that were downregulated with 

CKD progression.    

3.3. Uremic retention solutes in CKD 

Currently, the process of metabolite identification in non-targeted metabolomic studies is a 

significant bottleneck in deriving biological knowledge from metabolomic studies. The Chemical 

Analysis Working Group of the Metabolomics Standards Initiative (MSI) [39] has defined four 

different levels of metabolites identification confidence, with level 1 being the highest confidence 

level corresponding to confidently identified compounds by comparison of two or more 

orthogonal properties with an authentic chemical standard analyzed under identical analytical 

conditions; level 4 on the other hand is the lowest confidence level corresponding to unknown 

compounds. In the present study, metabolites were identified by commercially available 

authentic standards, based on retention time and accurate mass, which is in accordance with 

confidence level 1 defined by the MSI. Confidently identified metabolites are presented in the 

lower part of Table 4. Glycoursodeoxycholic acid (GUDCA) and 2-hydroxyethane sulfonate, 

which have not been reported in the context of CKD yet, were downregulated in urine. 

Glycoursodeoxycholic acid is an acyl glycine and a secondary bile acid (BA)-glycine conjugate. 

Primary BAs are synthesized and conjugated in hepatocytes, followed by excretion into bile and 

the intestinal tract. Gut microorganisms generate secondary BAs by deconjugation and 

dehydroxylation. Upon reuptake by intestinal transporters, BAs are re-conjugated in the liver to 

complete the enterohepatic cycle. BAs can also be filtered in the kidney through the glomerulus, 
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followed by urinary excretion. The solute carrier (SLC) family 10 (SLC10A1 and SLC10A2) is 

involved in the influx transport of bile acids [40]. It was demonstrated that GUDCA suppresses 

the production of the proinflammatory cytokines TNF-α and interleukin (IL)-1β and prevents 

nerve cell death induced by unconjugated bilirubin (UCB) [41,42]. Moreover, GUDCA was shown 

to have antioxidant properties [43]. Unlike the other metabolites, glycoursodeoxycholic acid was 

not detected in all subjects, but its fold changes were the highest of the identified metabolites. 2-

Hydroxyethane sulfonate (isethionic acid) is a short chain alkane sulfonate involved in the 

taurine and hypotaurine metabolism [44]. Cinnamoylglycine was upregulated in plasma. 

Cinnamoylglycine is known as an N-acyl glycine metabolite of cinnamic acid [45]. It allows the 

transport and elimination of phenylpropanoic acids, a pathway probably similar to the elimination 

of toluene or benzoic acid as hippuric acid. The accumulation of cinnamoylglycine in CKD has 

recently been reported in literature [23,29,46]. In a study on colon-derived uremic solutes 

cinnamoylglycine was shown to be less prominent in patients without a colon than in patients 

with a colon [23]. Finally, pregnenolone sulfate, which elutes quite early in the chromatographic 

run, was found to decrease in plasma throughout CKD. Pregnenolone sulfate is a steroid sulfate 

with a plethora of actions and functions [47], but has not yet been linked to CKD in literature. It is 

not the final product of pregnenolone being sulfated, but it is also the starting point for 

subsequent steroid synthesis pathways. For this subsequent synthesis it is indispensible that the 

substrate enters the cytosol to come into contact with the cytosolic localized sulfohydrolases. As 

it is unlikely that pregnenolone sulfate is capable of easily crossing the plasma membrane with 

its hydrophilic sulfate moiety, transmembrane transport is facilitated by a variety of transporter 

proteins, such as the organic anion-transporting polypeptide (OATP-B), nowadays classified as 

solute carrier organic anion transporter (SLCO2B1) [48,49], and the sodium-dependent organic 

anion transport (SOAT), a member of solute carrier family 10 (SLC10A6), which belongs to the 

same family as the influx transporters of bile acids [50-52]. As a neurosteroid, pregnenolone 

sulfate modulates a variety of ion channels, transporters, and enzymes. The negative 



13 
 

modulation of GABAA chloride channels [53,54], the positive modulation of glutamate response 

by NMDA receptors [55] and the activation of TRPM1 as well as TRPM3 channels are well 

established [56,57]. It is interesting to remark that dehydroisoandrosterone sulfate, which was 

earlier found to decrease in CKD [28,29], is a substrate of the same transporter proteins as 

pregnenolone sulfate [52,58] and also acts as an inhibitor of the GABAA receptor [59] and a 

positive NMDA modulator [60]. Both NMDA activation and GABAergic inhibition have been 

linked to uremic encephalopathy [61,62].  

This study involves the screening of the metabolites present in urine and in the methanolic 

supernatant of protein precipitated plasma samples. Note that it cannot be excluded that the 

latter procedure could in principle still include some losses due to residual protein-binding effects 

requiring the development of alternative sample manipulation procedures [63].  

 

Conclusion 

A quality controlled hydrophilic interaction liquid chromatography time-of-flight mass 

spectrometric (HILIC-TOF MS) platform was developed and applied to discover uremic retention 

solutes and/or potential biomarkers of CKD in urine and serum. Several metabolites could be 

identified that showed a significant increase or decrease throughout the different stages of CKD 

and fold changes of these especially in early CKD were markedly more prominent than those for 

serum creatinine, a current marker of kidney failure. One of the known problems with serum 

creatinine as a renal marker is its moderate changes during the early stages of the disease. This 

handicap could be overcome by using markers found by this study, alone, or even better in 

combination. The data currently reported should be validated in larger populations. 
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This discovery study also shows the potential of HILIC-based metabolomics in the study of CKD. 

More research is needed to definitely label these solutes as uremic toxins and/or biomarkers of 

CKD. 

To reach both aims described above, targeted analytical methods have to be developed, which 

allow quantification of the identified metabolites. Such quantitative methods will provide 

concentration ranges for the targeted compounds rather than fold changes, this will then allow 

the evaluation of the metabolites’ biological activity at relevant concentrations for CKD, and the 

evaluation of their kinetic behaviour in CKD and during renal replacement therapy. Furthermore, 

quantitative data at the different and preferably earlier stages of CKD will enable the evaluation 

of the metabolites’ predictive value for the presence of CKD and its relative sensitivity and 

specificity compared to current markers like creatinine. 
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Table 1 

Clinical characteristics of the included patients 

  Healthy CKD3 CKD5 

Number 20 20 20 

Age 33.8 ± 13.6 61.0 ± 14.4 64.3 ± 20.0 

Male/Female 9/11 12/8 10/10 

BMI
a
 (kg/m²) 22.7 ± 3.9 26.9 ± 4.0 26.2 ± 4.4 

Syst BP
b 

(mm Hg) 125 ± 16 134 ± 24 141 ± 24 

Diast BP (mm Hg) 77 ± 10 82 ± 11 83 ± 11 

Pulse 69 ± 10 68 ± 8 75 ± 15 

CTN
c
 (mg/dL) 0.92 ± 0.19 1.49 ± 0.30 4.28 ± 0.93 

CRP
d
 (mg/L) 0.16 ± 0.17 0.20 ± 0.16 1.44 ± 2.68 

a
BMI: body mass index; 

b
BP blood pressure; 

c
CTN: creatinine; 

d
CRP: C-reactive protein  

 

Table 2 

Relative standard deviation (RSD) of area under the curve (AUC) and retention time (RT), and average 

mass accuracy of randomly selected metabolites measured in QC samples (n=12) 

Analysis Metabolite 
Theoretical 

Mass 
Average mass 
accuracy (ppm) 

RT (min) 
RSD RSD 

tR (%) AUC (%) 

1a Adenosine 180.0634 0.89 7.65 0.17 5.43 

1a Hydroxyindole 267.0968 4.70 7.57 0.56 6.34 

1a Pseudo-uridine 133.0528 1.30 1.03 0.32 2.51 

2a Urea 60.0324 5.47 3.62 0.80 6.18 

2a Creatinine 113.0589 4.77 12.22 0.96 6.88 

2a Panthothenic acid 219.1107 4.50 5.15 1.06 11.74 

1b 2-Furoylglycine 169.0375 0.79 3.73 0.28 5.71 

1b 4-Hydroxyhippuric acid 195.0532 4.94 3.94 0.46 9.7 

1b Phenylacetylglutamine 264.1110 4.68 15.03 0.36 5.66 

2b Pseudo-uridine 244.0695 3.22 2.49 0.31 11.33 

2b Xanthosine 284.0757 3.17 2.82 0.30 13.81 

2b Hypoxanthine 136.0385 2.68 6.03 0.58 10.13 

(1a) urine positive ESI; (1b) urine negative ESI; (2a) plasma positive ESI; (2b) plasma negative ESI 
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Table 3 

Feature reduction throughout data-processing 

Data processing step 

Feature number 

 urine 
positive ESI 

urine  
negative ESI 

plasma 
positive ESI 

plasma 
negative ESI 

XCMS feature detection (CKD3vsH, 
CKD5vsH and CKD5vsCKD3) 

4,442 3,628 3,481 3,508 

Differential features MetaXCMS Filter 
by corrected p-value (q ≤ 0.05) and 
fold change (FC ≥ 1.5) 

1,382 1,126 714 992 

MetaXCMS common features (m/z 
tolerance 0.01 and retention time 
tolerance 60 s)  

94 49 20 76 

(H < CKD3 < CKD5 or H > CKD3 > 
CKD5) and 75% frequency  criterion 

92 47 20 69 

CAMERA 74 36 18 51 
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Table 4 List of most relevant up or down regulated metabolites identified in this study (represented in 

order of retention time). The metabolites highlighted in bold are confidently identified metabolites that 

showed a significant increase or decrease throughout CKD. The other metabolites are creatinine and 

other well-known uremic retention solutes which were also confirmed in this non targeted study as being 

highly significant solutes.  

 

Italics represent downregulated metabolites.
 a

Measured mass; RT retention time; Freq frequency; FC fold change; 

CMPF 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; q FDR corrected p value  

 

 

 

 

 

 

 

 

 

 

 

 
Sample 

type 
Metabolite Formula 

Mass
a  

(Da) 
RT 

(min) 
Freq 

H 
Freq 

CKD3 
Freq 

CKD5 
q (CKD3 vs 

H) 

FC 
(CKD3 
vs H) 

q (CKD5 
vs CKD3) 

FC (CKD5 
vs CKD3) 

q (CKD5 
vs H) 

FC 
(CKD5 
vs H) 

ESI 
voltage 
mode 

Urine 
2-Hydroxyethane 
sulfonate 

C2H6O4S 125.999 3.92 20 20 20 4.51E-02 -1.51 6.85E-03 -2.34 2.15E-04 -3.49 - 

 Glycoursodeoxycholic 
acid 

C26H43NO5 449.313 10.31 20 15 2 1.36E-03 -3.35 1.39E-03 -8.20 3.52E-05 -26.93 - 

 Creatinine C4H7N3O 113.058 12.11 20 20 20 1.38E+00 1.04 3.24E-01 1.06 3.04E-02 1.10 + 

Plasma 
 

p-Cresylsulfate C7H8O4S 188.015 0.97 20 20 20 1.15E-02 1.58 5.13E-03 1.62 6.71E-06 2.56 - 

 Indoxylsulfate C8H7NO4S 213.010 1.01 20 20 20 4.55E-04 1.72 2.25E-02 1.45 2.13E-05 2.49 - 

 Pregnenolone sulfate C21H32O5S 396.197 1.27 20 20 19 7.36E-03 -1.80 1.90E-02 -1.52 4.53E-04 -2.70 - 

 CMPF C12H16O5 240.100 1.67 20 20 20 2.36E+00 1.14 2.81E-02 1.76 2.30E-02 2.02 - 

 Hippuric acid C9H9NO3 179.060 2.41 20 20 20 1.72E-01 1.39 9.19E-03 2.22 1.67E-03 3.08 - 

 Cinnamoylglycine C11H11NO3 205.074 4.05 20 20 20 1.27E-02 1.50 3.15E-05 1.90 8.54E-08 2.86 - 

 Creatinine C4H7N3O 113.058 12.22 20 20 20 2.15E-03 1.21 4.88E-13 1.59 2.22E-16 1.92 + 
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Figure Captions 

 

Fig. 1 Representative chromatograms of plasma from (a) healthy control and (b) CKD5 patient. Peak 

annotation 1: p-cresylsulphate, 2: Indoxylsulphate, 3: CMPF, 4: Hippuric acid, 5: Creatinine, 6: 

Cinnamoylglycine, 7: Pregnenolone sulfate, *: other up- or down-regulated solutes between both plasma 

sample types.  

Fig. 2 Relative standard deviation (RSD) distribution plot displaying the technical repeatability of the LC-

MS analysis of urine and plasma in both positive and negative ESI mode. The stability of the feature 

signals is expressed as RSD values, calculated for each feature as the standard deviation of the peak 

area in all QC samples divided by the average of the peak area in all QC samples 

Fig. 3 Principal component analysis score plots obtained from the urine and serum data. Samples are 

colour-coded according to their group: healthy (blue); CKD3 (red); CKD5 (green) 
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Fig. 1 
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Fig. 2 
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Fig. 3 

 

 

 

 

 

 

    

    

Urine LC-MS positive ESI  Urine LC-MS negative ESI  

Plasma LC-MS positive ESI  Plasma LC-MS negative ESI  


