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Nederlandstalige

samenvatting

Dit doctoraatsproefschrift is een verzameling van vijf essays die bijdragen
leveren tot de literatuur rond alternatieve beleggingen. Hoewel elk van de
hoofdstukken grotendeels op zichzelf staat, is er desondanks een duidelijke
rode draad doorheen de verschillende hoofdstukken. Het is namelijk zo dat
elk van de hoofdstukken verband houdt met speci�eke beleggingsstrate-
gieën en een fondsenindustrie (`Managed Futures' of `Commodity Trading
Advisors') die dit soort strategieën in de praktijk toepast.

In het eerste hoofdstuk onderzoeken we de kostenstructuur van Man-
aged Futures fondsen en hefboomfondsen in het algemeen. We bekijken
de typische kostenstructuur van hefboomfondsen, welke inhoudt dat de
fondsbeheerder 2% beheerskosten per jaar aanrekent en een prestatiever-
goeding gelijk aan 20% van de gerealiseerde meerwaarde. In dit hoofd-
stuk onderzoeken we een andere dimensie van deze kostenstructuur. Er
is namelijk ook een belangrijke tijdsdimensie verbonden met het aanreke-
nen van de prestatievergoeding, welke varieert over verschillende fondsen.
Deze verborgen dimensie van de kostenstructuur, genaamd de `crystalliza-
tion frequency', heeft een economisch signi�cante invloed op de kosten die
beleggers betalen.

In hoofdstuk twee onderzoeken we de implicaties van lage maar per-
sistente autocorrelatie in de maandelijkse rendementen van Managed Fu-
tures fondsen voor portefeuillebeheer. We argumenteren dat de geob-
serveerde autocorrelatie wellicht niet het resultaat is van illiquiditeit in de
onderliggende posities, gezien de liquiditeit van de e�ecten die Managed
Futures fondsen verhandelen. In de plaats daarvan hypothetiseren we dat
deze autocorrelatie consistent is met een strategie die vaak kleine verliezen
incasseert en occasioneel grote winsten genereert. We bevestigen deze hy-



pothese empirisch en tonen aan dat de positieve autocorrelatie consistent
is met het divergent risicogedrag van trendvolgende strategieën. We to-
nen verder ook aan dat Managed Futures fondsen die positieve autocorre-
latie vertonen beter presteren dan fondsen met negatieve autocorrelatie.
Het geobserveerd rendement kan wellicht niet verklaard worden door een
concentratie in bepaalde strategieën, grootte en leeftijd van de fondsen,
en vertekeningen in de dataset. Bovendien heeft positieve autocorrelatie
geen negatieve impact op de diversi�catievoordelen van Managed Futures
fondsen.

Het derde hoofdstuk focust op een trendvolgende strategie in de con-
text van high-frequency data. We onderzoeken met name de mogelijke
oorzaken van een fenomeen dat bekend staat als `intraday momentum',
welke gede�nieerd wordt als een signi�cant positief verband tussen het
rendement in het eerste half uur van de handelsdag en rendement in het
laatste half uur van de handelsdag. Met behulp van transactie-level data
van de Moscow Interbank Currency Exchange (MICEX) voor het Russis-
che Roebel-Amerikaanse Dollar over de periode 2005-2014 analyseren we
de door de literatuur voorgestelde mogelijke oorzaken. Onze resultaten
suggereren dat, voor de periode 2005-2014, intraday momentum in de
Roebelmarket wellicht het gevolg is van risicoaversie onder marktmakers
voor het aanhouden van posities buiten de handelsuren. Onze resultaten
bevestigen verder ook eerdere bevindingen die suggereren dat expliciete
handelsuren van belang zijn voor intraday momentum en dat het e�ect
sterker is tijdens crisissen.

In het vierde hoofdstuk dragen we bij tot de literatuur rond de market
timing. We onderzoeken, aan de hand van vertrouwelijke data voorzien
door RPM Risk & Portfolio Management, of Managed Futures fondsen
in staat zijn trends in �nanciële markten te anticiperen. We verbeteren
de bestaande methodologie en gebruiken data van een hogere frequentie
om de analyse uit te voeren, en vinden dat Managed Futures fondsen
inderdaad een signi�cant market timing talent hebben.

In hoofdstuk vijf proberen we de strategieën die Managed Futures
fondsen gebruiken, te ontrafelen. Aan de hand van data met betrekking
tot de �nanciële derivaten die deze fondsen verhandelen, implementeren
we een trendvolgende strategie. In dit hoofdstuk proberen we dus de
vertrouwelijke modellen gebruikt door deze fondsen zo nauw mogelijk te
repliceren. Hierbij combineren we handelssignalen over een groot aantal
tijdsbestekken om op die manier de sterkte van een trend te incorporeren
in het beleggingsproces. We tonen aan dat de voorgestelde strategie de



kenmerken van Managed Futures fondsen goed repliceert. De door ons
voorgestelde strategie is bijgevolg een goede maatstaf voor het analyseren
van kandidaat-fondsen.





Chapter 1

Crystallization � the

Hidden Dimension of

CTAs' Fee Stru
ture

1

Finan
ial Analysts Journal

July/August 2015, Vol. 71, No. 4: 51�62.

1.1 Introdu
tion

The impa
t of the two 
omponents of hedge funds' and Commodity Trad-

ing Advisors' (CTAs) fee stru
ture, the in
entive fee and the high-water

mark 
lause, on hedge fund behavior has been dis
ussed extensively in the

a
ademi
 literature. Espe
ially their e�e
t on fund managers' risk-taking

behavior has re
eived 
onsiderable attention.

2

However, the fee stru
ture

also has more dire
t 
onsequen
es for investors, apart from 
hanging the

risk pro�le of the investment. Fees impa
t long-term wealth and investors

are more and more starting to realize this, not in the least be
ause of the


urrent low yield environment. Consequently, hedge funds' fees are now

subje
t to 
loser s
rutiny and are negotiated more often than in the past.

1

This 
hapter is based on joint work with John Sjödin (RPM Risk & Portfolio

Management and Ghent University) and Mi
hael Frömmel (Ghent University).

2

Studies in
lude Goetzmann, Ingersoll, and Ross (2003), Hodder and Ja
kwerth

(2007), Kouwenberg and Ziemba (2007), Panageas and Wester�eld (2009), and Agar-

wal, Daniel, and Naik (2009).

1



To illustrate the downward pressure on hedge funds' headline fee lev-

els, we report in Table 1 the management fee and in
entive fee of newly

laun
hed CTAs reporting to Bar
layHedge. The Table illustrates that,

while there has been no signi�
ant 
hange in in
entive fee levels, average

management fee levels have been de
reasing steadily over time.

A 2/20-fee stru
ture, i.e. a management fee of 2% of assets under

management 
ombined with an in
entive fee of 20% of gains, is and has

been the standard 
ost for allo
ations in the hedge fund industry. It is

generally supplemented with a high-water mark, su
h that investors only

pay the in
entive fee on
e any previous underperforman
e has been made

up for.

However, headline fee levels are only one aspe
t of the fee stru
ture

that should be 
onsidered. Another element usually not taken into 
on-

sideration when dis
ussing hedge funds' fees, is the frequen
y at whi
h

a fund 
harges the in
entive fee and updates its high-water mark. This

feature is 
ommonly referred to as the 
rystallization frequen
y or the

in
entive fee payment s
hedule.

The 
rystallization frequen
y di�ers from the a

rual s
hedule, whi
h

is the s
hedule used to 
al
ulate and 
harge the fee to the fund's pro�t and

loss a

ount. Whereas the pro
ess of fee a

rual does not impa
t investor

returns, the same is not true for the fee 
rystallization. As the in
entive

fee 
rystallization frequen
y in
reases, the expe
ted total fee load 
harged

by the hedge fund manager in
reases as well.

To illustrate the above 
on
epts, we provide a brief numeri
al example

in Table 1.2. For simpli
ity, we 
onsider a fee stru
ture that 
onsists of a

20% performan
e fee but no management fee.

This example shows how an identi
al gross performan
e leads to widely

di�erent performan
e fee loads when we vary the 
rystallization frequen
y.

From the example the reader 
an easily infer the sour
e of this di�eren
e

in fee load; under quarterly 
rystallization, some of the fund's interim

highs are allowed to materialize into performan
e fees. In the 
ase of

annual 
rystallization however, only the asset value at the end of the year

matters.

In this arti
le, we 
ontribute to the understanding of hedge funds' fee

stru
ture in that we highlight and analyse the impa
t of the 
rystallization

frequen
y on hedge funds' fee load. To the authors' best knowledge, no

study has yet investigated this aspe
t to hedge funds' fee stru
ture. This

�nding is 
ompelling. The 
rystallization frequen
y forms the basis for

the in
entive fee 
al
ulation and the way hedge funds update their high-

water mark. Consequently, it has a material e�e
t on the fees investors

2



Table 1.1: Evolution in CTA Headline Fee Levels

Number of

Funds

Management

Fee

Bootstrapped

95% CI

In
entive

Fee

Bootstrapped

95% CI

Prior to 1994 387 2.25% [2.14%;2.36%℄ 20.38% [20.09%;20.66%℄

1994-1998 295 1.97% [1.88%;2.06%℄ 20.63% [20.29%;20.97%℄

1999-2004 394 1.71% [1.65%;1.78%℄ 20.51% [20.24%;20.81%℄

2005-2008 377 1.67% [1.6%;1.73%℄ 20.71% [20.3%;21.16%℄

2009-2012 163 1.62% [1.51%;1.72%℄ 20.64% [19.9%;21.43%℄

1994-2012 1616 1.87% [1.83%;1.91%℄ 20.56% [20.39%;20.74%℄

This table reports summary statisti
s on the evolution of headline fee levels. In parti
ular,

we report the number of newly laun
hed funds and the average in
entive- and management

fee for CTAs in Bar
layHedge for the di�erent sub-periods.

3



Table 1.2: Illustration E�e
t of Crystallization

Annual Crystallization Quarterly Crystallization

Time

Gross

Return

HWM

In
entive

Fee

A

rued

In
entive

Fee

Paid

NAV HWM

In
entive

Fee

A

rued

In
entive

Fee

Paid

NAV

Jan 1.3% 100 0.26 101.30 100 0.26 101.30

Feb 0.3% 100 0.32 101.60 100 0.32 101.60

Mar 3.2% 100 0.97 104.86 100 0.97 0.97 103.88

Apr 3.6% 100 1.73 108.63 103.88 0.75 107.62

May -0.9% 100 1.53 107.65 103.88 0.55 106.66

Jun 3.0% 100 2.18 110.88 103.88 1.19 1.19 108.66

Jul -2.2% 100 1.69 108.44 108.66 0.00 106.27

Aug -1.5% 100 1.36 106.82 108.66 0.00 104.68

Sep 0.0% 100 1.36 106.82 108.66 0.00 0.00 104.68

O
t -0.9% 100 1.17 105.85 108.66 0.00 103.73

Nov -2.3% 100 0.68 103.42 108.66 0.00 101.35

De
 1.8% 100 1.06 1.06 104.23 108.66 0.00 0.00 103.17

This table reports the fees paid by an investor under annual and quarterly 
rystallization,

respe
tively. The initial HWM and NAV equal 100. The fee stru
ture in this example equals

0/20%, i.e. no management fee and a performan
e fee of 20% of realized gains.

4



pay and 
ould also in�uen
e hedge funds' risk-taking behavior.

Our �ndings have several impli
ations, both for resear
hers and pra
-

tioners. First, we show that the 
hoi
e of the 
rystallization frequen
y has

both a statisti
ally and e
onomi
ally signi�
ant impa
t on fees paid by

investors. In the 
ase of CTAs, and assuming a 2/20-fee stru
ture, shifting

from annual to quarterly 
rystallization leads to a 49 basis points in
rease

in the annual fee load (as a per
entage of assets under management).

In addition, an in
entive fee of 15% 
ombined with monthly 
rystalliza-

tion leads to the same total fee load as an in
entive fee of 20% under

annual 
rystallization. Both results imply that the e�e
t of the 
rystal-

lization frequen
y is important for allo
ators evaluating and 
omparing

di�erent fund investments. We stress that, while we fo
us on just one

hedge fund 
ategory, CTAs, the 
rystallization frequen
y is an important


onsideration in any investment vehi
le whose fee stru
ture depends on

a high-water mark provision. Moreover, in an environment where espe-


ially hedge funds' management fee levels are under pressure, the relative

importan
e of the in
entive fee and, thus, 
rystallization in the total fee

load in
reases.

Se
ond, our study also has impli
ations for a
ademi
 literature that

estimates hedge funds' gross returns and fee loads as well as resear
h

on hedge funds' risk-taking behavior. To 
onstru
t gross returns, previ-

ous studies in most 
ases assume that in
entive fees are paid at year-end

(e.g. Brooks, Clare, and Motson (2007), Fren
h (2008) and Agarwal,

Daniel, and Naik (2009)), although some authors assume quarterly pay-

ment (see Bollen and Whaley (2009) and Jorion and S
hwarz (2014)).

Certain authors also 
al
ulate hedge funds' histori
al fee load in their

analysis. Fren
h (2008) estimates that the typi
al investor in U.S. equity-

related hedge funds has paid an annual 
ombined fee or total expense

ratio of 3.69% p.a. over the period 2000-2007. Brooks, Clare, and Motson

(2007) �nd that between 1994 and 2006 hedge fund fees averaged 5.15%

annually. Ibbotson, Chen, and Zhu (2011) suggest a lower estimate of

3.43% p.a. for the period 1995 to 2009. Similarly, Feng, Getmansky, and

Kapadia (2011) report total fees over the period 1994-2010 to be on av-

erage 3.36% of gross asset value. However, these studies do not 
onsider

the impa
t of the 
rystallization frequen
y on these �gures. With regard

to hedge funds' risk-taking behavior, our analysis has impli
ations for the

time frame over whi
h previous results on hedge funds' risk-taking behav-

ior might apply. If fund managers update their high-water mark more

than on
e a year, their trading horizon is shortened a

ordingly.

Finally, 
rystallization frequen
ies of hedge funds have not been do
u-

5



mented previously. To shed light on 
rystallization pra
ti
es, we perform

a survey among the 
onstituents of the Newedge CTA Index as well as an

analysis of the fee notes of CTAs in the Tremont Advisory Shareholder

Servi
es (TASS) database. We �nd that, at least in the 
ase of CTAs,

high-water marks are most often updated quarterly, rather than annually.

These �ndings for the CTA hedge fund 
ategory 
ontrast the view 
om-

monly held in the a
ademi
 literature that the high-water marks in hedge

funds are 
ommonly set at the end of the year.

For 
ompleteness, we fo
us on the impa
t of the 
rystallization fre-

quen
y of the in
entive fee, and we do not go into the payment frequen
y

of the management fee. We do this mainly be
ause the payment of the

management fee does not depend on a fund's high-water mark.

3

1.2 Data

We analyse the impa
t of the 
rystallization frequen
y on fees paid by

investors by using monthly net-of-fee returns of live and dead funds la-

belled CTA in the Bar
layHedge Database. We use a sample that 
overs

the period January 1994 to De
ember 2012 to mitigate a potential sur-

vivorship bias, sin
e most databases only started 
olle
ting information

on defun
t programs from 1994 onwards.

4

As Bar
layHedge does not re-

port a �rst reporting date, we 
annot eliminate the ba
k�ll bias entirely.

We therefore opt for an alternative approa
h and remove the �rst twelve

observations of a fund's return history, following Teo (2009).

5,6

We further require at least twelve return observations for a fund to be

in
luded, and only in
lude funds whose monthly returns are denominated

in USD or EUR.

7

The EUR-denominated returns are 
onverted to USD-

3

In addition, the vast majority of the funds 
harge the management fee monthly.

For the Tremont Advisory Shareholder Servi
es (TASS) database, we �nd that 78% of

the CTAs in the database 
harge the management fee on a monthly basis. 13% 
harges

the management fee quarterly and 8% 
harges the management fee annually.

4

Gross returns are �rst 
al
ulated using the funds' entire return history, after whi
h

the pre-1994 period is dropped.

5

We �rst 
al
ulate gross returns (see Se
tion 1.4.1) using the fund's entire tra
k

re
ord, and afterwards drop the �rst twelve observations of the fund's net-of-fee and

gross returns.

6

By keeping tra
k of the amount of months that are ba
k�lled when a fund is

�rst in
luded to Bar
layHedge database, we tra
ked ba
k�ll bias for the period 2005-

2010. For that sample period, the median (average) ba
k�ll bias was twelve (fourteen)

months.

7

Programs denominated in 
urren
ies other than USD and EUR are in most in-

stan
es dupli
ate share 
lasses of larger programs and would therefore be dropped in

6



denominated returns, using the end-of-month spot USD/EUR ex
hange

rate. As the analysis also requires information on the funds' manage-

ment fee and in
entive fee, we remove 
ases where at least one of the two

variables is unreported.

8

We then �lter the resulting sample of funds by looking at their self-

de
lared strategy des
ription and remove funds whose des
ription is not


onsistent with the de�nition of CTAs. In the pro
ess, we also determine

whether the program under 
onsideration is the fund's �agship program

and dis
ard dupli
ates. To ensure that our results apply to funds that 
an

be 
onsidered part of the investable universe for most CTA investors, we

remove funds whose net-of-fee returns exhibit unusually low- or high levels

of variation. To this end, we dis
ard funds when the standard deviation

of the observed net-of-fee returns is lower than 2% or ex
eeds 60% p.a.

After applying these restri
tions, our sample 
onsists of 1,616 unique CTA

programs. Table 1.3 reports summary statisti
s for the �nal set of funds.

Table 1.3: Summary Statisti
s CTAs

Mean Min P25 P50 P75 Max

Monthly net-of-fee return 0.57% -6.47% 0.06% 0.50% 0.99% 9.52%

Monthly standard deviation 5.08% 0.61% 2.75% 4.27% 6.59% 17.17%

Age (years) 5.4 1 2.1 3.8 7 19

Management fee 1.87% 0% 2% 2% 2% 5%

In
entive fee 20.56% 5% 20% 20% 20% 50%

This table reports summary statisti
s for the sample of 1616 CTAs from the Bar
lay-

Hedge database.

In this paper, we fo
us on one hedge fund 
ategory and CTAs in parti
-

ular be
ause industry standards on 
rystallization for di�erent hedge fund


ategories might di�er. It is possible that the 
rystallization frequen
y of

hedge funds is to some extent related to di�eren
es in the ability of funds

to value their underlying positions. Unlike some other hedge fund 
ate-

gories, CTAs trade almost ex
lusively highly liquid instruments and, thus,

do not have any pra
ti
al limitations regarding the 
al
ulation of NAVs.

As su
h, CTAs provide a fruitful ground for analysing the impa
t of 
rys-

tallization.

any 
ase.

8

Additionally, we also ex
lude 
ases where both types of fee are zero or and 
ases

where the fee levels are deemed unreasonable low or high (management fee in ex
ess

of 5% p.a., in
entive fees below 5% or above 50% p.a.).

7



1.3 Crystallization and Industry Pra
ti
es

Sin
e publi
 hedge fund databases do not keep tra
k of funds' in
entive fee


rystallization frequen
y

9

, we perform a survey among the 
onstituents of

the Newedge CTA index (as of May 2013). The Newedge CTA index is

designed to tra
k the largest CTAs and aims to be representative of the

Managed Futures spa
e. The index is 
omprised of the 20 largest man-

agers (based on AUM) who are open to new investment and that report

performan
e on a daily basis to Newedge. Where possible, we 
omplete

the results of the survey with information available on the website of the

U.S. Se
urities and Ex
hange Commission (SEC).

10

The results of the survey are reported in Figure 1.1. The bar 
hart

indi
ates that, in the 
ase of CTAs, the most 
ommonly used 
rystalliza-

tion frequen
y is quarterly. In those instan
es where the 
rystallization

frequen
y is not quarterly, we �nd that the frequen
y generally tends to

be higher, rather than lower. In unreported results, we weigh the 
rys-

tallization frequen
y by the assets under management (AUM) of every

manager. While quarterly 
rystallization remains the most 
ommonly

applied 
rystallization frequen
y (55% of AUM), monthly 
rystallization

in
reases in importan
e as it applies to 28.3% of AUM 
overed by the

survey. Finally, to gauge the s
ope of our survey vis-à-vis total AUM by

the CTA industry, the results of our survey 
over 57% of assets managed

in the CTA spa
e that report to Bar
layHedge.

As mentioned above, publi
 databases do not keep tra
k of the 
rys-

tallization frequen
y in a systemati
 way. However, the fee notes in the

Tremont Advisory Shareholder Servi
es (TASS) database in a number of


ases do provide a su�
ient amount of information to pinpoint the 
rys-

tallization frequen
y. Therefore, and in addition to the above survey, we

also examine the fee notes of defun
t and live CTAs reported in the TASS

database. The results are also reported in Figure 1.1. Comparing these

results with those of our own survey suggests that the sample of funds

from TASS is 
hara
terised by higher 
rystallization frequen
ies. These

di�eren
es 
ould be due to survivorship bias as well as di�eren
es in fund

size. Nevertheless, the results for the TASS sample 
orroborate our ear-

9

TASS's questionnaire only inquires about the management fee's payment fre-

quen
y; the other widely used databases' questionnaires and manuals (Hedge Fund

Resear
h (HFR), CISDM, and Bar
layHedge) indi
ate that the databases do not keep

tra
k of the fee payment frequen
ies.

10

In parti
ular, we make use of the SEC's Investment Adviser Publi
 Dis
lo-

sure (IAPD) and the Ele
troni
 Data-Gathering, Analysis, and Retrieval (EDGAR)

database.

8



Figure 1.1: Distribution of the Crystallization Frequen
ies of the In
entive

Fee
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lier �nding that quarterly is the most 
ommon 
rystallization frequen
y.

When funds use a 
rystallization frequen
y other than quarterly 
rystal-

lization, the frequen
y tends to be higher rather than lower.

For 
ompleteness, we also look at the relationship between the reported

fee levels and the 
rystallization frequen
y of the funds. It 
ould be that

funds with lower 
rystallization frequen
ies have higher in
entive fee lev-

els, su
h that the total fee load is 
omparable. To verify that this is not the


ase, we group the sample of funds in TASS based on their reported 
rys-

tallization frequen
y and analyse the average in
entive and management

fee of the di�erent groups. The results, reported in Table 1.4, indi
ate that

funds with a higher 
rystallization frequen
y tend to have higher headline

in
entive fee levels. For example, the average in
entive fee level for funds

with monthly 
rystallization (22.38%) is signi�
antly higher than that of

funds that employ a quarterly 
rystallization frequen
y (21.05%), with a

p-value of 0.0775. In addition, we also �nd that the headline management

fee level tends to in
rease as the 
rystallization frequen
y in
reases. These

results suggest that funds that apply higher a 
rystallization frequen
y on

average also 
harge higher headline fee levels.

9



Table 1.4: Relationship between Crystallization Frequen
y and Fee Levels

In
entive

Fee

Bootstrapped

95% CI

Management

Fee

Bootstrapped

95% CI

Monthly 22.38% [20.72%;24.23%℄ 1.63% [1.36%;1.91%℄

Quarterly 21.05% [20.35%;21.8%℄ 1.64% [1.48%;1.79%℄

Semi-annual 20.00% [20%;20%℄ 1.93% [1.79%;2%℄

Annual 19.62% [17.69%;21.15%℄ 1.47% [1.17%;1.81%℄

This table reports the average in
entive fee level and management fee level under

di�erent 
rystallization frequen
ies for sample of CTAs in TASS.

1.4 In
entive Fee Crystallization and Fee Load

1.4.1 Constru
tion of Gross Returns

As mentioned in the introdu
tion, analysing the impa
t of the 
rystalliza-

tion frequen
y on hedge funds' fee load requires 
al
ulating hedge funds'

gross returns and 
harging fees to investors under various 
rystallization

frequen
ies. To this end, we develop an algorithm that a
hieves this obje
-

tive. We provide a thorough des
ription of the algorithm in the Appendix.

To 
al
ulate gross returns for the sample of CTAs, we assume that

CTAs apply quarterly 
rystallization to 
harge in
entive fees. Our sur-

vey results and the results from TASS's fee notes suggest that this is the

most 
ommonly used 
rystallization frequen
y. In addition, when CTAs

apply another 
rystallization frequen
y, they generally tend to use higher


rystallization frequen
ies. As su
h, the assumption of quarterly fee 
rys-

tallization should lead to fairly 
onservative estimates of the funds' gross

returns.

In Table 1.5 we 
ompare the observed net-of-fee CTA returns with the

obtained gross CTA returns. Funds appear to earn signi�
antly higher

risk-adjusted returns � measured by the annualized Sharpe ratio � based

on gross returns, as 
ompared to net-of-fee returns. Also, both skewness

and kurtosis are signi�
antly higher for the gross returns. Consequently,

we �nd a higher proportion of 
ases in whi
h the Jarque-Bera test for

normality reje
ts the null hypothesis of normality. Finally, we �nd that

both net-of-fee returns and gross returns of CTAs exhibit negative �rst

order serial 
orrelation.

10



Table 1.5: Comparison of Net-of-fee Returns and Gross Returns

Net-of-fee

Returns

Gross

Returns

p-

value

Average return 0.57% 0.77% 0

Standard deviation of monthly returns 5.08% 4.68% 0

Annualized Sharpe Ratio 0.48 0.69 0

Skewness 0.31 0.45 0

Kurtosis 4.82 5.13 0.013

First order serial auto
orrelation -0.011 -0.004 0.138

JB-Statisti
 (Per
entage of reje
tions) 47.22% 52.23%

This table 
ompares net-of-fee returns with the estimated gross returns

based on the algorithm des
ribed above for the set of 1616 CTAs.

The reported p-values test the di�eren
e in means using the empiri
al

t-distribution (bootstrap).

1.4.2 Analysis of the Histori
al E�e
t

As an introdu
tion to our main analysis, we �rst estimate the 
rystalliza-

tion frequen
y's potential histori
al e�e
t on investor wealth. This way,

we 
an get a feel of the e
onomi
 signi�
an
e of the e�e
t of 
rystalliza-

tion. Using the data set of gross returns obtained in Se
tion 1.4.1, we

re-apply the fund's reported headline fee levels under di�erent 
rystalliza-

tion frequen
ies. This way we obtain net-of-fee returns under di�erent


rystallization frequen
ies as well as the 
orresponding fee load.

In Table 1.6 we report the average gross return, average net-of-fee

return, and the average fee load under the di�erent fee 
rystallization

s
hemes. The reported average net-of-fee returns are all statisti
ally dif-

ferent from ea
h other at the 1% level of signi�
an
e (p-values unreported

for 
on
iseness). Furthermore, the results suggest that investors whose in-

vestment is subje
t to quarterly (monthly) 
rystallization, will earn net-

of-fee returns whi
h are on average 25 (42) basis points per year lower

than in the 
ase of annual 
rystallization. To put these �gures into per-

spe
tive, an annual di�eren
e of 42 basis points over a 10-year period will


ompound to a di�eren
e of 9.32% in the expe
ted 
apital gain. For a

MUSD 1 initial investment, this di�eren
e equals USD 63,303.

Even more important than these absolute numbers, is the impa
t on

the risk-adjusted performan
e. Our results suggest that when investors

move from annual to monthly 
rystallization, the Sharpe ratio deteriorates

from 0.4 to 0.34, a 15.65% de
rease.

We also observe from Table 1.6 that management fees are slightly

lower than 2% p.a., despite the positive drift in CTAs their returns. This

11



Table 1.6: Summary Statisti
s Histori
al Fee-loads

Average Standard

Deviation

Sharpe

Ratio

Gross Return 8.65% 16.22% 0.61

Net-of-fee

Return

Standard

Deviation

Sharpe

Ratio

Management

Fee

In
entive

Fee

Monthly 4.90% 16.75% 0.34 1.93% 2.41%

Quarterly 5.07% 16.33% 0.37 1.93% 2.26%

Semi-annual 5.20% 16.05% 0.38 1.93% 2.16%

Annual 5.32% 15.75% 0.40 1.94% 2.14%

This table reports the average annual gross return, average standard deviation and

average Sharpe ratio for the set of 1616 CTAs. The se
ond part of the table reports the


orresponding statisti
s for the net-of-fee returns, as well as the average management

fee and in
entive fee.

is 
onsistent with our �nding that management fees, at least for newly

laun
hed funds, tend to be below 2% p.a. on average (see Table 1).

1.4.3 Blo
k Bootstrap Analysis

To study the e�e
t of the 
rystallization frequen
y on the level of fees

investors pay, we analyse the e�e
t of 
rystallization by applying a blo
k

bootstrap. In parti
ular, we randomly sample gross return histories and


al
ulate the fee load under di�erent 
rystallization regimes. The advan-

tage of this approa
h is that we do not have to make any distribution

assumptions with regard to the return generating pro
ess. A blo
k boot-

strap allows us to a

ount for higher moments in monthly returns (e.g.

CTAs' returns exhibit positive skewness) and to preserve any auto
orre-

lation present in the gross return data. These properties of the return

generating pro
ess 
an have a material impa
t on the results of the anal-

ysis and investors' total fee load.

In performing the blo
k bootstrap, we 
onsider all the potential 12/36/60-

month samples in the data set of gross returns and pi
k 10,000 12-months,

36-month and 60-month samples. To avoid a potential look-ahead bias,

we allow the sampling pro
edure to sele
t in
omplete samples o

urring

at the end of a fund's tra
k re
ord. In those 
ases where a fund terminates

before the end of the sample period, we assume that investors redeem.

11

11

While most of these o

urren
es will 
orrespond to fund terminations due to bad

performan
e, we nevertheless treat the fund's exit as full redemption. If there is a

12



Table 1.7: Impa
t of Crystallization on Fee Load

Crystallization

Frequen
y

In
entive

Fee

Management

Fee

Total Fee

Load

1-year horizon Monthly 2.76%*** 2.07%** 4.84%***

Quarterly 2.42%*** 2.07% 4.50%***

Semi-annual 2.19%*** 2.08% 4.27%***

Annual 1.93% 2.08% 4.01%

3-year horizon Monthly 2.06%*** 2.06% 4.13%***

Quarterly 1.86%*** 2.06% 3.93%***

Semi-annual 1.73%*** 2.06% 3.79%***

Annual 1.61% 2.06% 3.67%

5-year horizon Monthly 1.84%*** 2.05% 3.89%***

Quarterly 1.67%*** 2.05% 3.72%***

Semi-annual 1.55%*** 2.05% 3.61%***

Annual 1.44% 2.05% 3.50%

This table reports the average in
entive fee, average management fee, and av-

erage total fee from performing a blo
k bootstrap where 12, 36, or 60 month

blo
ks of gross returns are drawn from the obtained sample of CTAs. Fee

load equals the average annual fee load over the investment horizon, as a per-


entage of initial NAV/NAV at the end of the previous year.

Asterisks report statisti
ally signi�
an
e of the di�eren
e between of the ob-

tained fee levels and the ben
hmark 
ategory (annual 
rystallization) at the

10% (*), 5% (**) and 1% (***) level of signi�
an
e. Signi�
an
e tests based

on the empiri
al t-distribution (bootstrap).

We also assume that every draw starts the beginning of a 
alendar year

(i.e. from January onwards). Having sele
ted a random sample path of

gross returns, we apply a standard 2/20-fee stru
ture under di�erent 
rys-

tallization frequen
ies. This framework allows us to examine the impa
t

of the 
rystallization frequen
y on investors' total fee load.

Table 1.7 reports the results for one-year, three-year, and �ve-year

investment horizons. We 
onsider periods of up to �ve years as this 
or-

responds to the average age of the CTAs in the sample (see Table 1.3).

As su
h, our analysis 
overs the relevant horizon over whi
h the e�e
t of


rystallization applies for the majority of hedge fund investors. To gauge

the signi�
an
e of the results, we indi
ate whether the obtained fee level

di�ers signi�
antly from the fee load under annual 
rystallization. We

positive a

rued interest fee at the time of the last observation, it will be 
harged to

the investor's a

ount.
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Figure 1.2: Comparing the Total Fee Load with Annual Crystallization
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set annual 
rystallization as the ben
hmark sin
e most previous resear
h

made the assumption that the in
entive fee is paid at the end of the year.

Our results illustrate that a higher 
rystallization frequen
y always

leads to a higher average fee load.

12

Management fees are slightly higher

than 2% and in
reasing in time due to the positive drift in the CTAs'

returns. We �nd signi�
antly higher fee loads as the 
rystallization fre-

quen
y in
reases. The e�e
t is also e
onomi
ally signi�
ant. For the

one-year investment horizon, the total fee load is 49 (82) basis points p.a.

higher in the 
ase of quarterly (monthly) 
rystallization when 
ompared

to annual 
rystallization. This suggests that, under a 2/20-fee stru
ture,

the fee load is expe
ted to be 12.2% (20.5%) higher if a manager 
harges

the in
entive fee quarterly (monthly), rather than annually. If the invest-

ment horizon is extended to �ve years, the di�eren
e de
reases 23 (40)

basis points p.a., a di�eren
e of 6.5% (11.4%). For ease of 
omparison

and Figure 1.2 provides a graphi
al representation of the di�eren
e in fee

load, with annual 
rystallization serving as the baseline.

12

An alternative way to illustrate this �nding, is by using option pri
ing. Indeed,

the performan
e fee earned by the manager over any subperiod is a fra
tion (20%) of

the value of a European 
all option with a strike pri
e equal to the investor's HWM.

Using Monte-Carlo simulation, it is easy to show that an exoti
 option, 
onsisting of

a sequen
e of European 
all options with path-dependent strike pri
es equal to the

relevant HWM, is more valuable than a single European 
all option over the same

period.
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In addition to the in
rease in fee load as we in
rease the 
rystallization

frequen
y, several other observations are evident from the results in Table

1.7. First, in
reasing the investment horizon dampens the impa
t of a

higher 
rystallization frequen
y on fee load. We 
an explain this �nding by

the fa
t that the fee loads reported for the three- and �ve-year investment

horizons are an average a
ross the individual years. In years where a

fund is not able to 
harge in
entive fees, the total fee is the same under

di�erent 
rystallization frequen
ies. Despite this downward drag on the

total fee load, 
aused by years in whi
h only a management fee is paid, the

di�eren
e in fee load for the di�erent 
rystallization frequen
ies remains

signi�
ant.

Se
ond, for the one-year investment horizon, the management fee in

the 
ase of monthly 
rystallization is signi�
antly lower than that under

annual 
rystallization. This illustrates the fa
t that a higher 
rystalliza-

tion frequen
y lowers the NAV on whi
h funds 
an 
harge the management

fee, sin
e an in
entive fee payment lower the investor's NAV. However, the

e�e
t is small in e
onomi
 terms and more than o�set by the higher fee

load that results from the higher in
entive fees paid.

Next, we have a look at the distribution of the di�eren
e in fee loads.

From the above analysis, we 
olle
t the set of di�eren
es in in
entive

fee under annual and quarterly 
rystallization. The results, reported in

Figure 1.3, illustrate how the distribution of di�eren
es is highly skewed

to the right.

13

The Figure also shows that in approximately 41.77% of

the 
ases, the two 
rystallization frequen
ies do not show any di�eren
e in

fee load. This is the 
ase whenever (a) a fund does not get over its initial

high-water mark, (b) when new highs are rea
hed but not 
rystallized and

(
) when the fund sets new high-water marks at every 
rystallization date.

In the �rst two instan
es, investors only pay the management fee,

whi
h is the same for both 
rystallization frequen
ies. Of 
ourse, investors

invest with a positive view on the investment's future performan
e. An

unintended 
onsequen
e of a higher 
rystallization frequen
y is therefore

that the investors will pay more (i.e. there will be a positive di�eren
e in

the fee load) at times when investors are generally less satis�ed with the

fund's performan
e.

To see this, 
onsider the following 
ase. When a fund manager, during

a parti
ular year, performs very well and 
ontinuously sets new highs

13

This parti
ular distribution is also the reason is why all tests of statisti
al signi�-


an
e are done using an empiri
al t-distribution (bootstrap).
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Figure 1.3: Distribution of Di�eren
e in In
entive Fee Load
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until the end of the 
alendar year, it does not matter what 
rystallization

frequen
y is applied. However, in 
ases where the fund's NAV at year-

end drops below a high-water mark set during the year �the di�eren
e

in fee load under di�erent 
rystallization frequen
ies will be positive. In

those 
ases, investors will be paying higher fees while at the same time the

fund's newly 
rystallized high-water mark will a
tually be above the NAV

at the end of the year (i.e. a drop in NAV). This makes it 
lear that a

higher 
rystallization frequen
y will tend to de
rease the fund manager's

investment horizon and lower the in
entive to perform subsequent to the


rystallization.

When we 
ondition on those bootstrapped 
ases where an in
entive

fee is a
tually payable, the di�eren
e in in
entive fee load is 78 basis

points higher under quarterly 
rystallization, as 
ompared to annual 
rys-

tallization. Comparing this result to the un
onditional average, a 49 basis

points di�eren
e, suggests that in those 
ases that investors a
tually pay

an in
entive fee, the fee load will be higher than our main results would

suggest.
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Table 1.8: Trade-o� between Crystallization Frequen
y and In
entive Fee

In
entive Fee (%)

Crystallization

Frequen
y

5

10 15 20 25

30

Monthly

2.57%

3.07% 3.60% 4.08% 4.61%

5.24%

Quarterly

2.53%

2.97% 3.46% 3.88% 4.36%

4.94%

Semi-annual

2.50%

2.91% 3.36% 3.75% 4.20%

4.73%

Annual

2.46%

2.84% 3.26% 3.62% 4.03%

4.53%

This table reports the total fee load under di�erent 
ombinations of the both nego-

tiable fa
tors, the in
entive fee level and the 
rystallization frequen
y. The manage-

ment fee is paid monthly and �xed at 2% p.a. The fee load is estimated by drawing

random three-year sample paths from the gross CTA return data and 
al
ulating the

fee load, varying the 
rystallization frequen
y and the level of the in
entive fee.

1.4.4 Trade-o� between In
entive Fee and Payment

Frequen
y

So far, we have assumed a standard 2/20-fee stru
ture to analyse the

impa
t of di�erent payment frequen
ies. The analysis has shown that,

when investors want to 
ompare the (expe
ted) fee load between di�er-

ent funds, su
h a 
omparison will be ina

urate if funds di�er in terms

of the in
entive fee payment frequen
y. In this subse
tion, we quantify

the trade-o� that exists between the in
entive fee and the 
rystallization

frequen
y, keeping �xed the level and payment frequen
y of the manage-

ment fee. This trade-o� might be relevant if the 
rystallization frequen
y

and in
entive fee level are 
onsidered negotiable fa
tors.

To ensure that our obtained estimates of the fee load are 
lose to what

an investor 
an expe
t in reality, the �gures are also based on the blo
k

bootstrap outlined above. In parti
ular, we 
al
ulate the fee load for

10,000 randomly drawn three-year sample paths of gross returns and vary

the 
rystallization frequen
y and the in
entive fee level.

Table 1.8 reports the size of the e�e
t for di�erent 
ombinations of

both negotiable fa
tors. Unlike what in
entive fee headline levels would

suggest, the table illustrates that 
hanges in the 
rystallization frequen
y

lead to 
onsiderable di�eren
es in total fee load. For example, the results

suggest that a 15% in
entive fee with monthly 
rystallization leads to a

similar total fee load as a 20% in
entive fee with annual 
rystallization

(not signi�
antly di�erent).
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1.5 Robustness Che
ks

We now perform a number of robustness 
he
ks with regard to the level

of the e�e
t. Relaxing or imposing additional restri
tions on the dataset

used in the analysis will not 
hange our �nding that higher 
rystallization

frequen
ies in
rease investors' fee load. However, it might have an in�u-

en
e on level of the fee loads and the e
onomi
 signi�
an
e of the e�e
t

of 
rystallization.

1.5.1 Impa
t of Ba
k�ll Bias

In our baseline analysis we a

ount for ba
k�ll bias by dis
arding the

�rst twelve observations of a fund's tra
k re
ord. Here we investigate the

importan
e of this assumption for our baseline results.

To this end, we perform the following analysis. We redo the bootstrap

analysis used in se
tion 1.4.3 a 100 times, both for the baseline gross return

data set and the newly obtained gross return data that does not 
orre
t

for ba
k�ll bias. Then, we test whether the results in both 
ases di�er

signi�
antly. Panel A of Table 1.9 reports the result. In line with our

expe
tations, we �nd that a potential ba
k�ll bias tends to upward bias

the obtained in
entive fee loads. Nevertheless, the size of the di�eren
e in

fee loads remains similar in both instan
es, both in terms of magnitude

and statisti
al signi�
an
e.

1.5.2 Impa
t of Fund Size

Another possible 
on
ern, raised by Kosowski, Naik, and Teo (2007), is

that funds with assets under management below MUSD 20 might be too

small for many institutional investors. To ensure that the magnitude of

fee load di�eren
es is representative and do not deviate too mu
h from

the fee load institutional investors 
an expe
t, we perform the following

robustness 
he
k.

Similar to the previous robustness 
he
k, we redo the bootstrap anal-

ysis a 100 times, but impose an additional restri
tion when sele
ting a

sample path. In parti
ular, we only sele
t a sample path if �at the start�

the 
orresponding fund's assets under management are above MUSD 20.

To avoid look-ahead bias, the fund's size is allowed to drop below MUSD

20 in subsequent months. Results are reported in panel B of Table 1.9.

Consistent with the �nding that small funds tend to outperform more
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Table 1.9: Results Robustness Che
ks

Robustness 
he
k Baseline

Result

Result under

Robustness Che
k

p-

value

Ba
k�ll Bias Monthly 4.11% 4.38% 0

Quarterly 3.91% 4.17% 0

Semi-Annual 3.78% 4.03% 0

Annual 3.66% 3.89% 0

Fund Size Monthly 3.65% 0

Quarterly 3.49% 0

Semi-Annual 3.37% 0

Annual 3.26% 0

Risk-taking Behavior Monthly 4.11% 0.48

Quarterly 3.92% 0.07

Semi-Annual 3.79% 0.04

Annual 3.71% 0

This table reports the total fee load for a three-year investment horizon for the base-

line 
ase, and a set of three robustness 
he
ks.

The reported p-values test the di�eren
e in means using the empiri
al t-distribution

(bootstrap).

mature funds, we �nd that the fee load is lower when we omit smaller

funds.

1.5.3 Impa
t of Risk-taking Behavior

To perform the bootstrap in the baseline 
ase, we assume that every sam-

ple path drawn from the gross return dataset starts in January. However,

Nanda and Aragon (2012) show that hedge funds take part in tournament

behavior. Hedge funds tend to in
rease their risk-pro�le in the se
ond

half of the year when they are underperforming, relative to their peers.

As su
h, the funds' risk-pro�le 
ould di�er throughout the 
alendar-year,

and thus have an impa
t on our reported fee loads. To 
he
k whether this

is the 
ase, we redo the bootstrap and sele
t sample paths that 
orrespond

to a
tual 
alendar-years.

The results are reported in panel C of Table 1.9. The p-values in Panel

C indi
ate that in most 
ases, the total fee load is somewhat higher if we

use a
tual 
alendar-years. We interpret this �nding as being in line with

the results by Aragon and Nanda (2012) on risk-taking behavior among

hedge funds. Our results indi
ate that, taking into a

ount intra-year
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patterns in the funds' returns, we �nd higher total fee loads. This result

therefore suggests that funds a
tively 
hange their exposure to safeguard

a

rued in
entive fees, 
ausing our results to exhibit slightly higher fee

loads if we take these intra-year patterns into a

ount.

1.6 Con
lusion

The fee load of investors does not depend on the headline fee levels

alone. Other aspe
ts of the fee stru
ture should also be 
onsidered when

analysing fee stru
tures that in
lude in
entive fees and a high-water mark

provision. One su
h fa
tor is the frequen
y with whi
h hedge funds update

their high-water mark.

To the best of our knowledge we are the �rst to do
ument the im-

pa
t of the 
rystallization frequen
y on hedge funds' fee loads. Using a

bootstrap based on a 
omprehensive data set of CTAs, our main �nding

is that, under a 2/20-fee stru
ture, quarterly 
rystallization leads to a

fee load whi
h is on average 49 basis points p.a. higher than under an-

nual 
rystallization. This di�eren
e is e
onomi
ally large and should be

a relevant 
onsideration when dis
ussing the fee stru
ture. Our results

are relevant for allo
ators who want to assess the fee load of fee s
hemes

whi
h di�er in terms of 
rystallization frequen
y. Moreover, we �nd that

di�erent headline fee levels 
an lead to similar total fee loads, on
e the


rystallization frequen
y is taken into 
onsideration.

A failure to take into a

ount the frequen
y with whi
h the high-water

mark is updated leads to erroneous estimates of funds' gross returns. In

parti
ular, assuming an annual payment of the in
entive fee when the in-

dustry standard of a number of hedge fund 
ategories is akin to quarterly


rystallization, will lead to the underestimation of the gross returns of

those hedge fund 
ategories. As su
h, while annual 
rystallization might

be 
ommon among some hedge fund 
ategories, we do
ument that quar-

terly 
rystallization is the most 
ommon 
rystallization frequen
y among

CTAs.

Our analysis of the 
rystallization frequen
y suggests several avenues

for future resear
h. First, we did not go into the impli
ations of the pay-

ment frequen
y on the risk-taking behavior of hedge funds and CTAs.

Changes in the 
rystallization frequen
y alter the horizon over whi
h the

impli
ations of the high-water mark on risk-taking behavior should be

evaluated. As su
h, it 
an be expe
ted that a higher 
rystallization fre-

quen
y leads to a shorter trading horizon, and thus might 
on�i
t with
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a fund's stated strategy horizon. Se
ond, we only 
over one hedge fund


ategory. As su
h, there might be 
onsiderable di�eren
es in the 
rys-

tallization frequen
ies applied by di�erent hedge fund 
ategories. These

di�eren
es might be related to hedge fund 
hara
teristi
s su
h as the liq-

uidity of the strategy.
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Appendix: Des
ription Algorithm for Gross

Returns

Here we des
ribe the algorithm we use to 
ompute monthly gross re-

turns from reported monthly net-of-fee returns. Our approa
h allows for a

monthly estimation of gross returns under di�erent 
rystallization regimes

(monthly or lower frequen
y).

The algorithm is based on the following set of assumptions:

1. The Gross Asset Value at the fund's in
eption (GAV0) is equal to
100.

2. The algorithm is based on a single-investor assumption.

3. The management fee is paid monthly

14

.

We start by de�ning the unoberved Gross Return at the end of month t

(GrossRett):

GrossRett =
GAVt

GAVt−1

− 1 (1)

where GAVt and GAVt−1 are the unobserved Gross Asset Value at the

end of month t and t− 1, respe
tively.

The amount of Management Fee (MgtFeet) paid in month t equals:

MgtFeet = NAVt−1 · (1 +GrossRett) ·
MF%

12
(2)

where MF% is the management fee (p.a.). The Total Management

Fee Paid up to month t (TotalMgtFeePaidt) is then:

TotalMgtFeePaidt =
t

∑

i=1

MgtFeei (3)

In addition to the management fee, we also 
al
ulate the amount of

Interest Earned (InterestEarnedt) by the fund manager on ex
ess 
ash

and 
ash deposited in the margin a

ount:

14

This assumption 
an easily be relaxed to a di�erent payment frequen
y by handling

the payment of the management fee in the same way as the in
entive fee. We never-

theless �x the payment frequen
y to monthly be
ause an analysis of the managment

fee is not the thrust of the analysis.
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InterestEarnedt = NAVt−1 ·Rft (4)

where Rft is the risk-free rate in month t. We take Interest Earned

into a

ount be
ause CTAs typi
ally hold up to 80% of the money in a


ash a

ount and earn interest on this 
ash. In the 
ase of most other

hedge fund strategies, this adjustment for Interest Earned is not required

and 
an easily be omitted. Total Interest Earned on 
ash deposited

(TotalInterestEarnedt) is the sum of all interest earned up to month

t:

TotalInterestEarnedt =

t
∑

i=1

InterestEarnedi (5)

Using the above de�nitions, we de�ne the Preliminary Net Asset Value

at time t (PrelNAVt) as:

PrelNAVt = NAVt−1·(1+GrossRett)−TotalMgtFeePaidt−TotalIntEarnedt
(6)

As su
h, we subtra
t the management fee and the interest earned from

the gross in
rease in NAVt−1. Using PrelNAVt for the 
al
ulation of the

in
entive fee ensures that the manager only 
harges an in
entive fee on

performan
e in ex
ess of any management fee 
harged and any risk-free

return earned on 
ash. For the next set of equations, we introdu
e an in-

di
ator (Crystt) that takes on the value 1 in months where 
rystallization
o

urs, and zero otherwise.

The A

rued In
entive Fee (AccrIncFeet) is a fra
tion of the perfor-

man
e � the in
entive fee IF% � in ex
ess of the 
urrent High-Water Mark

(HWMt−1):

{

max(0, P relNAVt −HWMt−1) · IF% if Crystt = 0

0 if Crystt = 1
(7)

This means that, when no 
rystallization o

urs, we only a

rue the

in
entive fee. However, when 
rystallization does take pla
e, the a

rued

in
entive fee is paid to the fund manager. In that 
ase we add any a

rued

in
entive fee over the period sin
e the last 
rystallization to the In
entive

Fee Paid variable (IncFeePaidt):
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{

IncFeePaidt−1 if Crystt = 0

IncFeePaidt−1 +max(0, P relNAVt −HWMt−1) · IF% if Crystt = 1

(8)

At this point in time, the High-Water Mark (HWMt) is also updated
to the 
urrent Preliminary Net Asset Value if it ex
eeds the previous

High-Water Mark:

{

HWMt−1 if Crystt = 0

max(PrelNAVt, HWMt−1) if Crystt = 1
(9)

The Net Asset Value at time t (NAVt) equals:

NAVt = PrelNAVt + TotalInterestEarnedt − IncFeePaidt (10)

Sin
e no 
losed-form solution is available, we solve for the unobserved

GAVt numeri
ally. In parti
ular, we determine the value of GAVt that

equates the NAVt 
omputed in equation (10) � based on GAVt � to the

observed NAV at time t. We then store the obtained value of GAVt and

move to the next month, solving for GAVt in an iterative way. When we


harge fees in the main analysis, we also use the above equations to go

from GAVt to NAVt.
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Chapter 2

An Analysis of the

Risk-Return Chara
teristi
s

of Serially Correlated

Managed Futures

1

The Journal of Futures Markets

Vol. 36, No. 10, 992�1013 (2016)

2.1 Introdu
tion

The histori
al tra
k-re
ord remains the most important pie
e of information in

the evaluation of potential hedge fund managers. This is the 
ase as information

on the alpha-models used by the managers 
an only be inferred from their tra
k-

re
ord. The models themselves remain stri
tly proprietary. As a 
onsequen
e,

past returns will remain a key element in manager sele
tion. An important


onsideration in this regard, is the degree of persisten
e in managers' reported

returns. If fund managers' returns exhibit persisten
e at 
ertain frequen
ies,

then manager sele
tion based on past performan
e 
an potentially add value

along this time series dimension.

In this arti
le we provide empiri
al eviden
e that value 
an potentially be

added through in
orporating serial 
orrelation patterns in Managed Futures'

self-reported returns in the investment pro
ess. In parti
ular, we �nd that

Managed Futures funds that exhibit higher degrees of positive serial 
orrelation

� based on the unweighted sum of auto
orrelations � exhibit distin
tly di�erent

risk-return pro�les and outperform funds that exhibit lower degrees of serial

1

This 
hapter is based on joint work with Péter Erd®s (RPM Risk & Portfolio Management)

and John Sjödin (RPM Risk & Portfolio Management and Ghent University).
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orrelation. A portfolio of more positively auto
orrelated Managed Futures

funds displays higher risk-adjusted performan
e and lower drawdowns.

Appli
ation of multifa
tor models, in
luding models using the re
ently pro-

posed risk fa
tors suggested by Baltas and Kosowski (2012) as well as the more


ommonly used hedge fund risk fa
tors of Fung and Hsieh (2004), indi
ate a

signi�
antly positive risk-adjusted ex
ess return (`alpha') of approximately 6

per
ent p.a. Interestingly, the models univo
ally suggest a lower explanatory

power in the 
ase of the more positively serially 
orrelated Managed Futures

funds. This �nding of a low explanatory power of multifa
tor models 
oupled

with risk-adjusted outperforman
e 
orroborates some re
ent �ndings in the lit-

erature on performan
e persisten
e in both the hedge fund and mutual fund

performan
e literature.

2

In parti
ular, Sun, Wang, and Zheng (2012) propose a �Strategy Distin
-

tiveness Index� (SDI) 
onstru
ted as 1 minus the 
orrelation between a hedge

fund's histori
al returns and the returns of its peers. The obje
tive of Sun,

Wang, and Zheng their measure is to 
apture the degree to whi
h hedge fund

managers follow unique investment strategies. The authors �nd that higher

strategy distin
tiveness is asso
iated with better future fund performan
e. Sim-

ilarly, Titman and Tiu (2011) show that that hedge funds with lower R2s with

regard to systemati
 fa
tors have higher Sharpe ratios, higher information ra-

tios, and higher alphas. They 
onje
ture that funds that have more 
on�den
e

in their abilities will expose their investors less to fa
tor risk.

Our results are 
onsistent with the above �ndings. Sorting Managed Fu-

tures funds on the degree of serial 
orrelation results in a subset of funds that

outperform peers exhibiting lower degrees of serial 
orrelation. Coin
identally,

these more positively serially 
orrelated funds' returns are found to be less well

explained by existing multifa
tor models. This seems to suggest that the se-

rial 
orrelation we observe is a 
onsequen
e of the unique investment strategies

followed by these managers.

However, self-reported returns do not ne
essarily re�e
t all risks inherent to

investing in hedge funds and thus might overstate the a
tual return experien
e

of investors. Therefore, we explore several alternative explanations for the ob-

served premium. Amongst others, we 
onsider attrition rates and the asso
iated

delisting bias as well as exposure to tail risk as potential explanations for the

observed outperforman
e. Despite slightly higher attrition rates among more

positively serially 
orrelated managers, we �nd that a potential delisting bias is

unable to fully explain the observed outperforman
e.

The rest of this paper is stru
tured as follows. The relevant literature is

summarized and dis
ussed in se
tion 2.2. Se
tion 2.3 des
ribes the Managed

Futures spa
e 
onsidered for the analysis. In se
tion 2.4 we outline the method-

ology used to determine the degree of persisten
e in Managed Futures funds'

self-reported returns. We analyze the risk-return 
hara
teristi
s and potential

drivers for the observed premium in se
tion 2.5. Se
tion 2.6 
on
ludes.

2

We thank an anonymous referee for 
alling attention to this 
onne
tion with the re
ent

literature.
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2.2 Related Literature

Eviden
e of performan
e persisten
e among hedge funds is, of 
ourse, not new.

Although early hedge fund literature gravitates towards a la
k of performan
e

persisten
e in hedge funds' self-reported returns (see inter alia ?Brown and

Goetzmann, 2003; Capo

i and Hübner, 2004; Malkiel and Saha, 2005), more

re
ent 
ontributions present eviden
e of performan
e persisten
e.

In parti
ular, Agarwal and Naik (2000) �nd persisten
e at the monthly fre-

quen
y,Baquero, ter Horst, and Verbeek (2005) �nd persisten
e at the quar-

terly level, and Agarwal, Daniel, and Naik (2009) and Kosowski, Naik, and Teo

(2007) �nd eviden
e of persisten
e among funds at annual horizons. Regarding

Managed Futures, S
hneeweis, Spurgin, and M
Carthy (1997) �nd, based on a

limited set of CTAs, that there is some performan
e persisten
e and that multi-

advisor Managed Futures funds display more persisten
e than single advisor

CTAs. More re
ently, Gregoriou, Hübner, and Kooli (2010) �nd performan
e

persisten
e over horizons of at least one quarter. A the same time, they note

that most of this persisten
e disappears when evaluating managers' ability to

remain within the top quartile of top performing funds.

There is, however, one potential 
ompli
ation that a

ompanies mu
h of

the observed performan
e persisten
e in hedge funds' returns. The observed

predi
tability may, to a large extent, be driven by illiquidity in the funds' un-

derlying positions. Getmansky, Lo, and Makarov (2004) show that illiquidity,


aused by stale pri
es, 
an lead to spurious serial 
orrelation in hedge funds'

self-reported returns. The authors 
on
lude that the performan
e persisten
e

do
umented by Agarwal and Naik (2000) and others 
an be tra
ed down to

spurious serial 
orrelation. These results are 
orroborated by Eling (2009) who,

based on a review of the existing literature as well as new eviden
e, shows that

illiquid hedge fund 
ategories su
h as Arbitrage and Emerging Markets exhibit

very high levels of performan
e persisten
e, while more liquid hedge fund strate-

gies have low levels of persisten
e. Still, Kosowski, Naik, and Teo (2007) argue

that some hedge funds in their sample 
ontinue to exhibit performan
e persis-

ten
e at annual horizons, even after 
ontrolling for the impa
t of spurious serial


orrelation as detailed above.

Managed Futures funds' self-reported monthly returns, however, are a no-

table ex
eption. Unlike most other hedge fund 
ategories, Managed Futures

funds' returns do not exhibit auto
orrelation, on average.

3

This empiri
al �nd-

ing is 
onsistent with the parti
ular nature of Managed Futures funds' strategies.

These funds only trade highly liquid se
urities and are therefore very unlikely

to exhibit positive auto
orrelation due to illiquidity and smoothing.

4

3

In the 
ase of Managed Futures and Dedi
ated Short Bias hedge funds, Getmansky, Lo,

and Makarov (2004) obtain smoothing-parameter estimates that suggest that no unsmoothing

of the returns is needed.

4

This point is worth stressing, espe
ially in light of re
ent eviden
e that performan
e

predi
tability in equity hedge funds tends to weaken when taking into a

ount liquidity risk

(Brandon and Wang, 2013). Sadka (2010) �nds that sorting Managed Futures into de
iles

based on their exposure to an (equity) liquidity risk fa
tor does not yield a signi�
ant (Fung-

Hsieh 7-fa
tor) alpha. However, as Managed Futures do not trade individual equities, existing
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In spite of the liquid nature of Managed Futures funds' strategies and the

absen
e of high levels of serial 
orrelation, Khandani and Lo (2011) neverthe-

less �nd eviden
e that, among the di�erent hedge fund 
ategories they 
onsider,

Managed Futures exhibit the largest `illiquidity' premium. More spe
i�
ally,

the authors 
on
lude that Managed Futures funds that exhibit higher degrees

of positive auto
orrelation outperform funds that exhibit lower degrees of pos-

itive auto
orrelation. This �nding is intriguing as this hedge fund 
ategory

provides a spe
ial 
ase where positive auto
orrelation is unlikely to be driven

by illiquidity. This suggests that there is 
ross-se
tional variation in the degree

of serial 
orrelation in Managed Futures funds' returns that 
onveys information

on future performan
e.

Two apparent hedge fund return pro�les 
an be expe
ted to yield persis-

ten
e. First, we 
an imagine funds that exhibit highly persistent small positive

returns. While su
h a return pro�le 
an be the result of 
onsistently exploit-

ing a mispri
ing, it 
an also be the result of a manager's de
ision to adopt a

`short-option' or `short-volatility' pro�le. If the latter proves to be the 
ase, one

should see a breakdown in the pro�tability of these funds in periods of market

stress. Se
ond, we would also observe persisten
e in returns among managers

that report return pro�les that show o

asional high positive return months,

but many small negative months in between. In that 
ase, the return behavior

resembles a `long-option' or `long-volatility' pro�le. Su
h a pro�le 
arries a num-

ber of 
hara
teristi
s of CTAs' trend-following nature. For example, Fung and

Hsieh (2001) make use of long-option strategies (lookba
k-straddles) to model

the performan
e of trend following funds.

Furthermore, trend-following is a divergent risk-taking strategy (see Rzep
zyn-

ski, 1999; Chung, Rosenberg, and Tomeo, 2004; Greyserman and Kaminski,

2014). That is, unlike 
onvergent strategies where a manager will 
onsider

adding to an existing position when a per
eived mispri
ing in
reases, trend-

following approa
hes generally di
tate 
losing positions when trends fail to ma-

terialize. This suggests that trend-followers 
an be expe
ted to in
ur a lot of

small losses, perhaps for extended periods of time, until market 
onditions allow


lear trends to emerge. We attempt to determine the extent to whi
h Managed

Futures funds sorted on serial 
orrelation exhibit one of the above-mentioned

return pro�les similar to being short- or long volatility and whether their per-

forman
e breaks down in periods of market stress.

Our work is similar in spirit to the work of De Souza and Gok
an (2004), who

propose using a measure of pure persisten
e, the Hurst exponent, to aid in hedge

fund manager sele
tion. The authors �nd that portfolios of hedge funds with

a high Hurst exponent exhibit higher returns, lower standard deviations, and

lower drawdowns. Unfortunately, their work does not 
over Managed Futures.

Auto
orrelation in Managed Futures funds' returns has been a topi
 of in-

terest in re
ent empiri
al work. Burghardt and Liu (2013) demonstrate that

trend-following Managed Futures exhibit negative auto
orrelation over short

liquidity measures based on (individual) equities might prove unsatisfa
tory in analyzing a

potential liquidity risk to whi
h Managed Futures are exposed.
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horizons of up to six months. The authors note that failing to a

ount for

negative auto
orrelation in returns might yield biased performan
e statisti
s

when s
aling estimates of volatility. Another important question, whi
h has not

been addressed to the authors best knowledge, is the relationship between auto-


orrelation patterns in Managed Futures' returns and subsequent performan
e.

Khandani and Lo (2011) their �nding of a positive `illiquidity' premium in Man-

aged Futures seems to suggest a positive relationship. However, a more in-depth

analysis is needed, as the auto
orrelation patterns might in fa
t be indi
ative

of spe
i�
 risks taken by these managers. In what follows, we attempt to shed

light on this matter.

2.3 Data

The data 
ome from Bar
layHedge. We rely on Bar
layHedge as this is the most


omprehensive database on Managed Futures that is available to resear
hers and

pra
titioners. In addition, Joenväärä, Kosowski, and Tolonen (2012), in their


omparison of �ve major publi
ly available hedge fund databases, �nd that

Bar
layHedge has the largest per
entage of defun
t funds (65%), thus making

it least likely to su�er from survivorship bias. Following related literature,

we only in
lude the post-1994 period to avoid potential survivorship bias, as

most databases only started 
olle
ting information on defun
t funds from 1994

onwards.

We �lter the dataset in several respe
ts. First, we 
lassify the Managed

Futures programs in di�erent 
ategories based on the funds' self-reported strat-

egy des
ription.

5

In the pro
ess, we remove funds whose des
ription indi
ates

that they invest ex
lusively in options. If a fund reports multiple share 
lasses

for the same program, we only in
orporate the fund's �agship program, whi
h

we identify as the share 
lass with the longest tra
k-re
ord and highest assets-

under-management (AUM). Se
ond, we only in
lude programs denominated in

USD and EUR, and 
onvert the EUR-denominated returns and AUM to USD

using the end-of-month spot USD/EUR ex
hange rate. We remove funds with

missing observations as well as zero-return observations at the start and end of

a fund's tra
k-re
ord. To a

ount for ba
k�ll bias, we also remove the �rst 12

observations of a fund's tra
k-re
ord (see, for example, Kosowski, Naik, and Teo

(2007)). To ensure that our results apply to funds that 
an be 
onsidered part

of the investable universe for investors, we remove funds whose returns exhibit

unusually low levels of variation. To this end, we dis
ard funds for whi
h the

standard deviation of the observed returns is lower than 2% p.a.

Similarly to Getmansky, Lo, and Makarov (2004) and Khandani and Lo

(2011) we require a tra
k-re
ord of at least 5 years for a fund to be in
luded.

This minimum requirement on the tra
k-re
ord is needed to ensure a su�
ient

number of observations to be able to properly estimate the auto
orrelation pat-

tern in a fund's self-reported returns. Imposing this additional requirement,

5

Despite the possibility of strategi
 self-mis
lassi�
ation, Brown and Goetzmann (2001)

�nd that self-reported des
riptions do almost as well as return-based pro
edures.
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we obtain a dataset of 677 Managed Futures programs, 207 
urrently live and

470 that have stopped reporting (`defun
t') as of the end of 2013. Summary

statisti
s for the funds are reported in Table 2.1.

The statisti
s on the standard �rst order auto
orrelation 
oe�
ient (ρ1) 
or-
roborate the �nding of no auto
orrelation, on average, among Managed Futures

(see Getmansky, Lo, and Makarov, 2004). Finally, the reported AUM indi
ate

that our dataset 
overs US$ 157.2bn, as of the end of 2013.

2.4 Methodology

To measure the degree of auto
orrelation in Managed Futures funds' returns,

we 
al
ulate a fund's auto
orrelation fun
tion based on the past �ve years of

return data. Given the generally low levels of serial 
orrelation in Managed

Futures, we opt for an approa
h where we sum up the auto
orrelation fun
tion

up to lag 12, rather than fo
using on the �rst order auto
orrelation.

6

As su
h,

our measure of serial 
orrelation be
omes,

P̂ =

12
∑

i=1

(

ρ̂t−i +
1

T − i

)

(2.1)

where ρ̂t−i is the estimated auto
orrelation at lag i and T is the sample

size. Kendall and Stuart (1976) show that under the null hypothesis of serial

independen
e, the i− th sample auto
orrelation is biased in small samples and

has an expe
ted value of

−1

T−i
. Therefore, our measure in
ludes a small sample

bias-
orre
tion whose importan
e is meaningful in this 
ase as we have only 60

observations (T = 60).
Levi
h and Rizzo (1999)show that, in the 
ase of small but persistent auto-


orrelation, the unweighted sum of auto
orrelations has higher power in dete
t-

ing persisten
e 
ompared to 
onventional tests for auto
orrelation su
h as the

Durbin-Watson h and m tests, Bartlett-test, Box-Pier
e Q-test, the LM test of

Breus
h (1978) and Godfrey (1978), and the varian
e ratio test. The environ-

ment for whi
h these authors have developed their measures of persisten
e is

very similar to the 
ase of Managed Futures. Managed Futures, on average, do

not exhibit signi�
ant auto
orrelation, at least, based on 
onventional measures

(see Table 2.1, panel A). However, this observation does not rule out very small,

but persistent auto
orrelation, whi
h 
annot be dete
ted using 
onventional

tests. Su
h a return 
hara
teristi
 
an be an indi
ation of superior managerial

skills, in whi
h 
ase it is of 
onsiderable importan
e in portfolio sele
tion.

Therefore, to be able to dete
t small, but persistent auto
orrelation, our

ranking relies on a measure that is almost identi
al to the one proposed by Levi
h

and Rizzo (1999). The only di�eren
e is that we a

ount for small sample bias.

It is important to note that this way, we retain important information 
ontained

6

12 months is 
onsistent with the 
onvention in the momentum literature and the presen
e

of time-series momentum in futures markets (see Moskowitz, Ooi, and Pedersen, 2012).
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Table 2.1: Managed Futures Data

Panel A: Summary Statisti
s

Mean Median

Standard

deviation

Mean return 0.81% 0.61% 0.96%

Minimum return -13.74% -10.79% 11.38%

Maximum return 21.21% 15.32% 21.42%

Standard deviation 5.53% 4.41% 4.44%

Skewness 0.544 0.436 0.894

Kurtosis 5.778 4.357 4.401

Size ($US m) 208.43 24.39 1057.78

Age (Years) 9.8 8.3 4.3

ρ1 0.02 0.01 0.13

Panel B: Evolution Data Set

Year

Live

funds

Defun
t AUM ($US bn)

1999 308 24 28.93

2000 312 48 27.12

2001 317 71 33.57

2002 332 84 40.23

2003 346 103 68.58

2004 366 123 106.69

2005 395 144 96.77

2006 422 176 132.67

2007 448 194 161.59

2008 452 222 175.89

2009 426 251 180.60

2010 404 273 215.09

2011 367 310 217.75

2012 315 362 176.95

2013 207 470 157.23

Notes: this table reports summary statisti
s for the data

set of Managed Futures. Panel A reports statisti
s on the

monthly returns. Panel B reports end-of-year �gures.
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in the sign of ρt−i and do not downweight auto
orrelation at higher lags whi
h


ould result to miss out information related to performan
e persisten
e.

To provide some rationale how this measure works for dete
ting performan
e

persisten
e, 
onsider a white noise pro
ess. In this 
ase, the probability that

the �rst N auto
orrelation 
oe�
ients are all positive is 
onsiderably lower than

the probability that half the 
oe�
ients are positive and half are negative.

7

In

su
h 
ases, the sum of auto
orrelations might be more informative.

On a statisti
al ground, our measure is 
losely related to spe
tral measures.

For example, let f(0) denote the zero frequen
y spe
trum of the returns. The

spe
tral density of interest 
an then be given by

f(0) = ωt−0 + 2

∞

∑

i=1

ωt−i (2.2)

where ω stands for the auto
ovarian
e fun
tion. If we divide both sides of

the equation by the varian
e of the returns,

f∗(0) = 1 + 2

∞

∑

i=1

ρt−i (2.3)

that is, the normalized spe
trum at frequen
y zero is the sum of auto
orre-

lations (see among others Co
hrane, 1988; Lo and Ma
Kinlay, 1988). In appli-


ations the in�nite sum on the right-hand side must be trun
ated. Indeed, we

trun
ate the estimation and sum the unweighted auto
orrelations up to lag 12.

In this sense Eq. (2.1) is 
losely related to zero frequen
y spe
trum estimators.

8

It is quite straightforward that after 
orre
ting for the small-sample bias,

if Managed Futures funds' returns are un
orrelated, Eq. (2.3) is equal to one

and our measure (Eq. (2.1) equals to approximately zero. Under performan
e

persisten
e, returns exhibit positive auto
orrelation and Eq. (2.1) is above

0. Under long-term mean-reversion in Managed Futures funds' performan
e,

returns are negatively serially 
orrelated and P is negative.

7

Assuming a white noise pro
ess and after 
orre
ting for small sample bias, the 
han
e

that half of the auto
orrelations is positive is exa
tly 50%. As the number of positive auto
or-

relation is binomially distributed in the 
ase of white noise, if 9 out of the 12 auto
orrelation


oe�
ients estimated to be positive, the null hypothesis of white noise 
an be reje
ted at 
on-

ventional levels of signi�
an
e, independently of the magnitude of auto
orrelation 
oe�
ients.

8P̂ =
f̂∗(0)−1

2
. Our estimation of P̂ is mat
hing the trun
ated uniform kernel-based

estimation in Andrews (1991). If the trun
ated kernel is x(i/k), P =
∑

∞

i=1 x(i/k)ρt−i, where

x =

{

1 if i/k ≤ 1

0 otherwise

. Moreover, White (1980) and Hansen (1982) also apply trun
ated and

unweighted estimators to Eq. (2.3).
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2.5 Results

2.5.1 Risk-Return Chara
teristi
s of Sorted Portfolios

Using our measure of return persisten
e, we rank our sample of Managed Futures

funds and divide them into quintile portfolios, with the highest (lowest) quintile

portfolio 
onsisting of those funds with the highest (lowest) degree of persisten
e

measured by the unweighted sum of the �rst 12 auto
orrelation 
oe�
ients, as

in Levi
h and Rizzo (1999). We update the ranking of the funds at the end

of every month, e�e
tively rebalan
ing the portfolio on a monthly basis. For

the purpose of the analysis, we 
onstru
t quintile portfolios both on an equal-

weighted and asset-weighted basis (using the funds' reported AUM at t − 1.9

To avoid the portfolio 
onstru
tion su�ering from look-ahead bias, we insert a

zero-return the �rst month after a fund stops reporting.

10

We report results in Table 2.2 for the quintiles of interest. The in
eption date

of the portfolios is 1999, as we require a 5-year burn-in period to estimate the

auto
orrelation stru
ture for the set of funds. Absolute performan
e, measured

using the 
ompound annual growth rate (CAGR), suggests that more positively

auto
orrelated Managed Futures funds' (Q5) outperformed their less positively

auto
orrelated peers (Q1) on an absolute return basis over the 1999-2013 period.

The upper quintile portfolio of most positively auto
orrelated Managed Futures

posted a CAGR of 7.38% p.a., 
ompared to 4.52% p.a. for the lower quintile

portfolio. This result is in line with Khandani and Lo (2011) their earlier �nding

of the presen
e of an illiquidity premium in Managed Futures.

Sorting managers based on serial 
orrelation thus appears to yield portfolios

with higher raw performan
e. p-values for a standard di�eren
e in means test,

based on a bootstrap with a 1000 repli
ations, however, suggests that the mean

average returns are not signi�
antly di�erent at 
onventional levels, with a p-

value of 0.16. Average monthly performan
e, of 
ourse, does not 
onsider the

level of risk taken.

Higher average returns are 
onsistent with the argument that, as positive

serial 
orrelation is 
ommonly 
onsidered a measure of illiquidity (see Getman-

sky, Lo, and Makarov, 2004) and, thus, illiquidity risk, positively auto
orrelated

returns may indi
ate higher risk. The general absen
e of illiquidity in Managed

Futures funds' underlying positions makes this �nding unexpe
ted. Still, the

higher expe
ted returns may be a 
ompensation for higher risk of some sort. If

this is the 
ase, we expe
t the top quintile portfolio (Q5) to exhibit higher levels

of riskiness than the bottom quintile portfolio (Q1).

9

Sin
e small funds are generally not 
onsidered for investment, we perform a robustness


he
k where we impose the additional requirement that the fund should have at least US$10

million AUM at rebalan
ing. Results are robust to su
h an AUM-based �lter. Results available

upon request.

10

In this 
ase, the information that a fund has stopped reporting in the following month is

not available to an allo
ator at the time of rebalan
ing. As su
h, to avoid look-ahead bias, we

should assume a 
ertain allo
ation to that fund, even though the a
tual return is not observed.

Later on we relax this arbitrary zero return assumption further, to a

ount for the bias that

voluntary reporting might indu
e.
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To analyze is 
onje
ture, we also report several measures of risk and risk-

adjusted performan
e in Table 2.2. In parti
ular, we report the monthly stan-

dard deviation, the (auto
orrelation-adjusted) Sharpe ratio

11

, maximum draw-

down, and the Sortino ratio. Sin
e 
ontrolling downside risk plays an important

role in hedge funds and Managed Futures funds in parti
ular, measures based

on Lower Partial Moments (see Harlow and Rao, 1989) are also 
onsidered. The

Sortino ratio (Sortino and Van Der Meer, 1991) is one 
ommonly used measure

of downside risk. We report this metri
 with a target return of zero. Finally,

Maximum drawdown (MDD) is reported as this is a metri
 of parti
ular rele-

van
e for pra
titioners in the Managed Futures industry.

The risk-adjusted performan
e measures indi
ate that the upper quintile

portfolio outperforms the lower quintile, regardless of the parti
ular risk measure

used. Interestingly, the outperforman
e of the top quintile portfolio (Q5) seems

to be mainly driven by lower volatility. As su
h, the Sharpe- and Sortino ratio

are 
onsiderably higher

12

for the top quintile portfolio. Using the hypothesis

testing methodology suggested by Ledoit and Wolf (2008) (hen
eforth, LW )

we test whether the di�eren
e in Sharpe ratios for the top and bottom quintile

is a
tually signi�
antly di�erent or not. We �nd this to be the 
ase, as the

di�eren
e is signi�
ant at 
onventional levels (p-value of 0.0062 and 0.08 for the

AUM-weighted and equal-weighted portfolios, respe
tively).

This better risk-adjusted performan
e in terms of reward-to-variability is

parti
ularly important in Managed Futures spa
e, as funds' programs are typ-

i
ally leveraged multiple times to obtain a 
ertain target-level volatility. Maxi-

mum drawdown statisti
s indi
ate that a portfolio 
onsisting of the most pos-

itively serially 
orrelated funds exhibits drawdowns notably lower than that of

the other portfolio. This �nding suggests that the positive auto
orrelation in

Managed Futures, at least at �rst sight, does not lead to deeper drawdowns. The

analysis so far yields a set of Managed Futures managers that outperform their

peers. We should nevertheless �rst 
onsider real-life limitations to investing in

hedge funds before we 
an pro
eed.

Share restri
tions su
h as the lo
kup period, advan
e noti
e period and the

redemption frequen
y 
an limit an allo
ator's ability to exploit short-term per-

sisten
e present in hedge funds

13

. However, 
ompared to other hedge fund

11

Annualized Sharpe ratios are adjusted for auto
orrelation as suggested by Lo (2002). In

parti
ular, the reported Sharpe ratios are 
al
ulated as SR(q) = η(q) · SR with

η(q) ≡ q
√

q+2·
∑q−1

k=1
(q−k)·ρk

,

Where SR is the regular Sharpe ratio on a monthly basis, is ρk is the k − th order au-

to
orrelation. SR · η(q) is then the annualized auto
orrelation adjusted Sharpe ratio with

q = 12.
12

In unreported results, we �nd that failing to adjust the Sharpe ratio has a material impa
t

as it in
reases (lowers) the ratio for the top (bottom) quintile portfolios, when 
ompared to the

adjusted Sharpe ratio. This is be
ause the quintile portfolios themselves also exhibit positive

(resp. negative) auto
orrelation.

13

Lo
kup refers to the initial amount of time investors are prohibited from withdrawing

their investment. On
e this lo
kup period is over, investors are allowed to withdraw their
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ategories, share restri
tions are less stringent in the 
ase of Managed Futures.

One likely explanation for the lower restri
tions is that redemptions are less


ostly for Managed Futures, as liquidity in futures markets makes these funds

better able to s
ale down positions to meet redemptions. To illustrate this fea-

ture of Managed Futures, we report summary statisti
s on share restri
tions

for both Managed Futures and a 
omposite of the other hedge fund 
ategories

that report to Bar
layHedge. As lo
k-ups are un
ommon for most hedge fund


ategories, with 70% of the funds having no lo
k-up restri
tion in pla
e, we

fo
us on advan
e-noti
e periods and redemption frequen
ies. In order to draw


on
lusions from the advan
e-noti
e period and redemption frequen
y, we need

to analyze both in 
onjun
tion. Consider for example a fund that imposes for a

one-day advan
e-noti
e period but nevertheless allows redemptions only quar-

terly. In that 
ase, although the advan
e-noti
e is one day, redemption 
an take

up to three months.

While a wide range of 
ombinations is possible, the a
tual number of 
om-

binations is more limited in pra
ti
e. For parsimony, we report in Table 2.3

the frequen
ies with whi
h di�erent 
ombinations of share restri
tions prevail,


onsidering 40 
ombinations (based on 5 advan
e-noti
e bins and 8 redemption

frequen
y bins).

Results in Table 2.3 illustrate that share restri
tions are mu
h less 
ommon

for Managed Futures than for the other hedge fund 
ategories. In parti
ular,

the vast majority of Managed Futures allow investors to redeem 
onsiderably

more easily. Managed Futures generally allow redemption within the month,

whereas far less the 
ase for hedge funds.

But even if share restri
tions are unrestri
tive, 
onsiderable turnover re-

quired in maintaining the portfolios might still make implementation unrealisti
.

To investigate the turnover required, we report the 
hange in the 
omposition

of the portfolios from month-to-month. We �nd that, while turnover is non-

negligible, it is lowest for the upper quintile portfolio, at 12.7% per month. The

lower quintile suggests a slightly higher turnover rate of 16.2%. The low turnover

for both portfolios is to some extent the result of the fairly long tra
k-re
ord

used in estimating the auto
orrelation fun
tion, 
ausing the resulting levels of

auto
orrelation to be fairly persistent. This suggests that this approa
h that

relies on auto
orrelation might have value in pra
ti
e, espe
ially in manager

sele
tion.

2.5.2 Performan
e Evaluation

The results above indi
ate that portfolios of Managed Futures funds based on

serial 
orrelation exhibit distin
tly di�erent risk-return 
hara
teristi
s. Now

make use of a multifa
tor approa
h to try and identify the potential drivers

of the observed outperforman
e. In parti
ular, the standard approa
h in this


ontext 
onsists of assessing whether parti
ular fa
tors explain the performan
e

of the di�erent quintile portfolios.


apital only at pre-spe
i�ed times of the year (di
tated by the redemption frequen
y), and an

advan
e noti
e is required for withdrawal.
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Table 2.2: Summary Statisti
s Sorted Portfolios

Value-weighted Portfolios

Mean Monthly

Return

Standard

Deviation

Sortino Ratio Sharpe

Ratio

MDD CAGR

Q1 (low) 0.41% 2.83% 0.84 0.55 -16.88% 4.52%

Q5 (high) 0.61% 1.56% 2.88 1.19 -5.90% 7.38%

di�eren
e in means (p-val) 0.16 LW -statisti
 3.298***

Bar
layHedge 0.55% 2.28% 1.53 0.98 -7.77% 6.40%

Equal-weighted Portfolios

Mean Monthly

Return

Standard

Deviation

Sortino Ratio Sharpe

Ratio

MDD CAGR

Q1 (low) 0.55% 2.67% 1.32 0.86 -10.69% 6.32%

Q5 (high) 0.49% 1.61% 2.25 1.15 -5.75% 5.88%

di�eren
e in means (p-val) 0.36 LW -statisti
 1.694*

Bar
layHedge 0.49% 2.42% 1.31 0.81 -9.27% 5.69%

Notes: this table reports summary statisti
s on portfolios sorted portfolio exhibiting the highest degree of positive (negative)

auto
orrelation. The table reports the mean monthly return, the standard deviation of mean monthly returns, the annual Sortino

ratio, the annual Sharpe ratio, maximum drawdown (MDD), and the 
ompound annual growth rate (CAGR). A di�eren
e in

means test, using a bootstrap with a 1000 repli
ations is used to test the di�eren
e in average returns. The Ledoit-Wolf (LW)

statisti
 tests the statisti
al signi�
an
e of the di�eren
e in Sharpe ratios. *** p<0.01, ** p<0.05, * p<0.1

3
8



T
a
b
l
e
2
.
3
:
S
h
a
r
e
R
e
s
t
r
i


t
i
o
n
s
i
n
H
e
d
g
e
F
u
n
d
s
a
n
d
M
a
n
a
g
e
d
F
u
t
u
r
e
s

Panel A: Hedge Funds

Redemption Frequen
y

Daily Weekly Bi-weekly Monthly Bi-monthly Quarterly Semi-annual Annual

Advan
e

Noti
e Period

(days)

0 2.33% 1.04% 0.01% 1.30% 0.01% 0.78% 0.11% 0.09%

1-31 2.62% 2.23% 0.20% 26.28% 0.30% 8.49% 0.56% 0.46%

32-91 0.10% 0.09% 0.00% 13.33% 0.01% 19.91% 1.46% 1.76%

92-180 0.00% 0.03% 0.01% 5.08% 0.00% 8.44% 1.00% 1.76%

> 180 0.00% 0.00% 0.00% 0.01% 0.00% 0.08% 0.03% 0.08%

Panel B: Managed Futures

Redemption Frequen
y

Daily Weekly Bi-weekly Monthly Bi-monthly Quarterly Semi-annual Annual

Advan
e

Noti
e Period

(days)

0 11.72% 1.56% 0.00% 14.84% 0.00% 0.00% 0.00% 0.00%

1-31 7.03% 7.03% 0.78% 44.53% 1.56% 0.78% 0.00% 0.00%

32-91 0.00% 0.00% 0.00% 5.47% 0.00% 1.56% 0.00% 0.00%

92-180 0.00% 0.00% 0.00% 3.13% 0.00% 0.00% 0.00% 0.00%

> 180 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Notes: this table reports summary statisti
s on the share restri
tions for Managed Futures and hedge funds. Results indi
ate

the frequen
y with di�erent 
ombinations of advan
e noti
e and redemption frequen
y are employed.
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While Managed Futures' dynami
 nature of their strategies makes it di�
ult

to model their returns, re
ent advan
es on (time-series) momentum in futures

markets by Moskowitz, Ooi, and Pedersen (2012) and Baltas and Kosowski

(2012) have led to an improved understanding of Managed Futures. Moskowitz,

Ooi, and Pedersen (2012) present eviden
e that futures 
ontra
ts' own past

returns predi
t future returns. To exploit this predi
tability, the authors im-

plement syntheti
 trading strategies that take both long- and short positions in

a wide set of futures 
ontra
ts, using information inferred from the 
ontra
ts'

(12-month) past returns. Their results also suggest these momentum fa
tors


apture the performan
e of Managed Futures returns and perform better than

of the primitive trend-following strategy metri
s (PTFS), suggested by Fung and

Hsieh (2001). Baltas and Kosowski (2012) extend Moskowitz, Ooi, and Pedersen

(2012) their approa
h and 
onstru
t time-series momentum fa
tors over di�er-

ent trading horizons. They show that a 
ombination of these fa
tors and the

seven fa
tors of Fung and Hsieh (2004) 
onsiderably improves the explanatory

power of the model applied to Managed Futures' returns.

We in
orporate these re
ent advan
es on performan
e evaluation to analyse

the di�erent quintile portfolios. In parti
ular, we retrieve the data for Fung

and Hsieh's 7-fa
tor model and Baltas and Kosowski (2012) their momentum

fa
tors.

14

We then estimate multifa
tor models for the relevant value-weighted

quintile portfolios for the 1999-2013 period for whi
h all data is available. Re-

sults are reported in Table 2.4.

Examining the observed varian
e explained a
ross models, using the adjusted-

R2
, we �nd that more positively auto
orrelated Managed Futures' returns are

less well explained, both in the 
ase of the momentum fa
tors and a 
ombina-

tion of the momentum fa
tors and Fung and Hsieh's 7-fa
tor model. The upper

quintile portfolio displays 
onsiderably lower loadings on the di�erent momen-

tum fa
tors, although the momentum fa
tors remain signi�
ant at 
onventional

levels. Looking at the upper quintile's risk-adjusted performan
e, we �nd that

it is the only portfolio that exhibits a statisti
ally and e
onomi
ally signi�
ant

positive alpha (approximately 0.49% per month, or 6% p.a.). Nevertheless, the

models' low explanatory power suggest that these programs are employing truly

di�erent strategies than most Managed Futures.

15

The la
k of statisti
al signif-

i
an
e of the fa
tors proposed by Fung and Hsieh (2004) further suggest that

these funds are not loading on any of the other risk-fa
tors 
ommonly asso
iated

with other hedge fund 
ategories. This result is in a

ordan
e of the �ndings of

Sun, Wang, and Zheng (2012) who show that hedge fund managers who produ
e

14

The momentum fa
tors are made available by Baltas and Kosowski (2012)

at http://www3.imperial.a
.uk/riskmanagementlaboratory/risklabse
tions/


entreforhedgefundsresear
h/baltas_kosowski_fa
tors. Data for the PTFS-fa
tors

are retrieved from the David Hsieh`s home page http://fa
ulty.fuqua.duke.edu/~dah7/

DataLibrary/TF-FAC.xls.

15

In unreported tests, we also analyse whether liquidity risk, proxied using a tradable (eq-

uity) liquidity fa
tor of Pastor and Stambaugh (2003) their measure of illiquidity (available on

Robert F. Stambaugh's home page http://finan
e.wharton.upenn.edu/~stambaugh/) sheds

additional light on the outperforman
e. However, the risk-fa
tor is not statisti
ally signi�
ant

at 
onventional levels. Results available upon request.
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Table 2.4: Multifa
tor Model - Momentum Fa
tors and Fung and Hsieh (2004) Fa
tors

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Q1 Q5 Q5-Q1 Bar
layHedge Q1 Q5 Q5-Q1 Bar
layHedge

MOMM 0.288*** 0.0669** -0.221*** 0.239*** 0.305*** 0.0697** -0.235*** 0.249***

(0.0599) (0.0333) (0.0621) (0.0373) (0.0673) (0.0314) (0.0693) (0.0393)

MOMW 0.179** 0.0909** -0.0885 0.195*** 0.167** 0.0816* -0.0851 0.180***

(0.0750) (0.0445) (0.0739) (0.0521) (0.0808) (0.0458) (0.0800) (0.0564)

MOMD 0.0539 0.0378 -0.0161 0.0984** 0.0171 0.0117 -0.00543 0.0606

(0.0610) (0.0430) (0.0606) (0.0449) (0.0631) (0.0423) (0.0699) (0.0460)

S&P 500 0.0364 0.0399 0.00358 0.0169

(0.0508) (0.0295) (0.0540) (0.0379)

SCMLC 0.0276 0.0379 0.0103 0.0456

(0.0997) (0.0331) (0.0956) (0.0582)

10Y -0.143** -0.0447 0.0980 -0.122***

(0.0578) (0.0315) (0.0671) (0.0379)

CREDITSPR 0.163** 0.0426 -0.121 0.121**

(0.0776) (0.0428) (0.0908) (0.0531)

PTFSCOM 0.00195 -0.00292 -0.00487 -0.000548

(0.0158) (0.0106) (0.0163) (0.00970)

PTFSFX 0.0235* 0.0188** -0.00477 0.0190*

(0.0133) (0.00828) (0.0130) (0.00995)

PTFSBD 0.0295** 0.0131 -0.0164 0.0275***

(0.0135) (0.00923) (0.0142) (0.0105)

Constant -0.00133 0.00485*** 0.00617*** 0.000332 -0.000951 0.00499*** 0.00594*** 0.000758

(0.00211) (0.00126) (0.00202) (0.00157) (0.00225) (0.00134) (0.00220) (0.00163)

Observations 157 157 157 157 157 157 157 157

Adj. R² 0.285 0.130 0.157 0.416 0.355 0.210 0.183 0.505

Notes: the table analyzes the monthly returns of the di�erent quintile portfolios using Baltas and Kosowski (2012) their momentum

fa
tors and a 
ombination of Baltas and Kosowski (2012) their fa
tors and Fung and Hsieh (2004) their 7-fa
tor model. The Fung

and Hsieh (2004) fa
tors are the Standard & Poors 500 index monthly total return (S&P 500); the spread return between Russell

2000 index monthly total return and Standard & Poors 500 monthly total return (SCMLC); The monthly 
hange in the 10-year

treasury (
onstant maturity) yield (10Y); the monthly 
hange in the Moody's Baa yield less 10-year treasury 
onstant maturity

yield (CREDIT SPR); Fung and Hsieh (2001) their Bond Trend-Following Fa
tor (PTFSBD), Curren
y Trend-Following Fa
tor

(PTFSPX), and Commodity Trend-Following Fa
tor (PTFSCOM).

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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returns less explainable by fa
tors are more likely to possess managerial skills

as they pursue more distin
t strategies.

2.5.3 Alternative Explanations for the Premium

While so far our analysis yields notable results with regard to the risk-adjusted

performan
e of more positively auto
orrelated Managed Futures funds, it is

instru
tive to explore alternative explanations that might explain the observed

premium. To this end, we examine whether relian
e on parti
ular strategies,

possible di�erential performan
e during adverse market states, attrition rates,

and ba
k�ll bias might explain the performan
e.

2.5.3.1 Relationship with Managed Futures' Strategies and Funds'

Traits

The portfolios' 
omposition 
ould be 
on
entrated in Managed Futures 
ate-

gories that exe
ute distin
tly di�erent strategies. In parti
ular, funds 
ould en-

gage in trading strategies su
h as option writing, whi
h might lead to di�erent

risk/return-pro�les 
ompared to the more dominant trend-following strategy.

Non-trend-following strategies might therefore generate steady positive returns

that indu
e positive serial 
orrelation, but whi
h might be followed by large

losses. As mentioned in the data des
ription, we have removed funds that indi-


ate that they rely ex
lusively on option strategies.

Nevertheless, it is instru
tive to report the 
omposition of the quintiles of

interest in terms of the strategies employed by the 
onstituents. To this end,

we employ the 
lassi�
ation performed during the data handling. The results

are reported in Figure 2.1.

The bar 
harts indi
ate that, while a portfolio 
onsisting of positively au-

to
orrelated Managed Futures seems to 
ontain somewhat fewer (systemati
)

trend-followers, there are nevertheless no pronoun
ed di�eren
es in the strate-

gies employed by the managers in
luded within every quintile portfolio. This

suggests that the positive auto
orrelation is not a feature of a parti
ular strat-

egy, but rather a feature of 
ertain funds a
ross di�erent strategies.

There is a se
ond dimension along whi
h the strategies the funds follow

might lead to a stronger performan
e of the upper quintile portfolio, 
ompared

to the other quintiles. In parti
ular, di�eren
es in risk-adjusted performan
e

might to some extent be driven by diversi�
ation gains. To analyze whether

the potential for diversi�
ation gains di�ers a
ross the di�erent quintiles, we

report the average pairwise 
orrelation among the 
onstituents prior to portfolio

formation. We estimate pairwise 
orrelations using the 5-year lookba
k window

used to estimate the auto
orrelation stru
ture.

The results indi
ate that average pairwise 
orrelation between any two funds

is indeed lower in the 
ase of the upper quintile portfolio. In parti
ular, the

pairwise 
orrelation equals 0.11 for the upper quintile 
ompared to 0.2 for the

lowest quintile. This �nding indi
ates that part of the strong performan
e is

due to diversi�
ation gains. However, it also 
orroborates our earlier 
onje
ture
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Figure 2.1: Strategy Composition Quintile Portfolios
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Notes: the sta
ked-bars report the 
omposition of the di�erent

quintile portfolios over the sample period.

that these managers do not 
luster around a parti
ular investment approa
h.

Instead, managerial skills might explain the good performan
e and low pairwise


orrelation with other Managed Futures.

Next to the strategies, we also analyse the average size and age of the funds

in
luded within every quintile. Given re
ent eviden
e that hedge fund perfor-

man
e is related to age and size (see Boyson (2008)), it is possible that the

upper quintile 
onsists of smaller or younger funds. The results for the average

fund size suggest no di�eren
es in average fund size. The average fund size

is USD 361m and USD 325m for the lower and upper quintile, respe
tively. A


onventional t-test allows us to 
on
lude that there are indeed no signi�
ant dif-

feren
es in the average size of funds in the extreme quintiles (p-value of 0.3265).

In unreported results, we also observe that there are no signi�
ant di�eren
es

in the age of the funds a
ross quintiles.

2.5.3.2 Tail Risk

Of 
ourse, it is possible that there is a di�eren
e between what fund managers

say they do, and what they a
tually do. Therefore we also 
onsider an alter-

native approa
h to determine whether more positively auto
orrelated Managed

Futures take on tail risk. One manifestation of di�erential risk-taking should

be evident when 
omparing performan
e during adverse market states. Fung

and Hsieh (1997) are the �rst to use su
h an approa
h and show that Man-

aged Futures exhibit a straddle-like pay-o�. This feature of Managed Futures

has been 
oined `
risis alpha' by Kaminski and Mende (2011). Good overall

performan
e of a portfolio investing in more positively auto
orrelated Managed

Futures might 
ome at the expense of 
risis alpha, i.e. strong performan
e dur-
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ing 
risis times. Positively 
orrelated funds' performan
e might break down

during adverse market states and thus hamper their diversi�
ation bene�t in a

portfolio 
ontext.

We investigate the portfolios' performan
e during di�erent market states, fol-

lowing the approa
h of Fung and Hsieh (1997). In parti
ular, we group monthly

returns of MSCI World Gross Total Return into �ve market states, ranging from

sharp sello�s to rallies, by ranking the monthly gross returns. We then report

the average performan
e of both the equity index and the portfolios of Managed

Futures in the same period. For 
omparison, we perform a volatility adjustment

su
h that the Managed Futures portfolios, ex-post, exhibit the same degree of

volatility as the equity index. We do the adjustment in the following way

Radj
p =

σ̂(Rworld −Rf )

σ̂(Rp −Rf )
· (Rp −Rf ) +Rf (2.4)

where σ̂() stands for the estimated standard deviation. Rworld is the monthly

gross return on the MSCI World Index, Rf is the monthly risk-free rate and

Rp is the monthly return of the portfolio whose volatility we wish to s
ale.

Sin
e it is not possible to lever the interest rate 
omponent (proxied here by the

risk-free rate) inherent in Managed Futures' returns, we subtra
t the risk-free

rate from Rp when performing the volatility adjustment and then add it again

afterwards.

16

The results are reported in Figure 2.2.

The results suggest that the higher performan
e of more positively auto
or-

related Managed Futures does not lead to a deterioration of performan
e during

adverse market states.

Another approa
h to analyzing whether Managed Futures funds in the top or

bottom quintile are exposed to tail risk 
an be done using a regression approa
h.

As des
ribed in the introdu
tion, a likely explanation as to why we might expe
t

persisten
e in the returns of Managed Futures has to do with the observation

that their payo� resembles long volatility. To analyze whether the quintile

portfolios of interest exhibit behavior similar to that of a put-option writing

strategy, we proxy the performan
e of su
h a strategy using monthly returns

on the CBOE S&P 500 PutWrite Index. Table 2.5 reports the results when we

in
lude this additional risk fa
tor.

The outperforman
e of the upper quintile does not seem to be the result

of taking on tail risk by engaging in (short) put-option writing on the S&P

500. In addition, the results on the long/short portfolio indi
ate that the upper

and bottom quintiles' exposure with regard to this risk fa
tor does not di�er

signi�
antly. Interestingly, the Bar
layHedge index appears to load positively

on this risk fa
tor, even after in
lusion of the Fung and Hsieh (2004) fa
tors.

16

While a Managed Futures program 
an be levered several times by 
hanging the amount

of margin held, this is not the 
ase for the return earned on the 
ash held (i.e. risk-free rate).

One should therefore subtra
t this return imbedded in a Managed Futures program's reported

return when adjusting the volatility of a program.
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Table 2.5: Multifa
tor Model - Portfolio Returns and Option Writing

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Q1 Q5 Q5-Q1 Bar
layHedge Q1 Q5 Q5-Q1 Bar
layHedge

MOMM 0.290*** 0.0688** -0.222*** 0.240*** 0.305*** 0.0704** -0.235*** 0.250***

(0.0606) (0.0322) (0.0625) (0.0374) (0.0681) (0.0315) (0.0694) (0.0382)

MOMW 0.209*** 0.116*** -0.0928 0.218*** 0.183** 0.0982** -0.0848 0.205***

(0.0721) (0.0411) (0.0740) (0.0498) (0.0866) (0.0477) (0.0842) (0.0597)

MOMD 0.0800 0.0600 -0.0200 0.119** 0.0455 0.0405 -0.00496 0.105**

(0.0623) (0.0441) (0.0625) (0.0477) (0.0648) (0.0434) (0.0705) (0.0484)

S&P 500 -0.0314 -0.0290 0.00247 -0.0891

(0.0938) (0.0544) (0.0873) (0.0695)

SCMLC 0.0159 0.0259 0.0101 0.0273

(0.0989) (0.0342) (0.0956) (0.0562)

10Y -0.137** -0.0391 0.0981 -0.113***

(0.0583) (0.0326) (0.0679) (0.0397)

CREDITSPR 0.150* 0.0289 -0.121 0.0997*

(0.0793) (0.0463) (0.0942) (0.0557)

PTFSCOM -8.74e-05 -0.00499 -0.00490 -0.00373

(0.0158) (0.0109) (0.0162) (0.00999)

PTFSFX 0.0220 0.0172** -0.00480 0.0166*

(0.0133) (0.00838) (0.0130) (0.00984)

PTFSBD 0.0282** 0.0118 -0.0164 0.0255**

(0.0137) (0.00939) (0.0145) (0.0102)

PUTWRITE 0.0987* 0.0840** -0.0146 0.0793* 0.126 0.128 0.00206 0.198**

(0.0584) (0.0365) (0.0600) (0.0446) (0.125) (0.0780) (0.122) (0.0924)

Constant -0.00240 0.00393*** 0.00633*** -0.000533 -0.00183 0.00409*** 0.00593*** -0.000624

(0.00223) (0.00128) (0.00219) (0.00160) (0.00230) (0.00131) (0.00222) (0.00172)

Observations 157 157 157 157 157 157 157 157

Adj. R² 0.295 0.155 0.157 0.426 0.359 0.225 0.183 0.520

Notes: the table analyzes the monthly returns of the di�erent quintile portfolios using Baltas and Kosowski (2012) their momentum

fa
tors and a 
ombination of Baltas and Kosowski (2012) their fa
tors and Fung and Hsieh (2004) their 7-fa
tor model. The Fung

and Hsieh (2004) fa
tors are the Standard & Poors 500 index monthly total return (S&P 500); the spread return between Russell

2000 index monthly total return and Standard & Poors 500 monthly total return (SCMLC); The monthly 
hange in the 10-year

treasury (
onstant maturity) yield (10Y); the monthly 
hange in the Moody's Baa yield less 10-year treasury 
onstant maturity

yield (CREDIT SPR); Fung and Hsieh (2001) their Bond Trend-Following Fa
tor (PTFSBD), Curren
y Trend-Following Fa
tor

(PTFSPX), and Commodity Trend-Following Fa
tor (PTFSCOM). Finally, an option strategy involving writing out-of-the-money

put options on the S&P 500 is 
aptured using CBOE PutWrite index (PUTWRITE).

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Figure 2.2: Performan
e During Di�erent Market States
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Notes: the bar 
hart reports the average monthly return during dif-

ferent market states. Market states are identi�ed by ranking monthly

gross returns of the MSCI World into 5 di�erent quintiles. Average

(volatility-adjusted) monthly returns for the quintile portfolios during

the 
orresponding months are reported.

2.5.3.3 Attrition and Delisting Bias

While di�eren
es in risk-taking might not be evident from the trading strate-

gies employed or performan
e during adverse market states, su
h di�eren
es

may nevertheless show up when examining the funds' attrition rates. Attrition

rates allow us to quantify potential risks not 
aptured by the funds' self-reported

returns. hedge funds in general and Managed Futures in parti
ular have high

attrition rates, as is evident from Table 2.1. Arnold (2013) notes that while attri-

tion of Managed Futures is high, real failures are 
onsiderably lower, suggesting

that many liquidations may not be damaging to investors. Nevertheless, given

the voluntary nature of hedge fund databases, managers might fail to report

further losses to the investors by not reporting last months' performan
e. Con-

sequently, returns might not re�e
t the a
tual losses of investors. The delisting

bias that su
h behaviour indu
es, has been analysed in 
ontext of hedge fund

databases. Edelman, Fung, and Hsieh (2013) 
on
lude that missing returns

of su

essful funds tend to o�set the delisting bias in the missing returns of

liquidating funds.

Nevertheless, we analyse attrition rates and the possible impa
t of ba
k�ll

bias on our results. We start by 
ounting the number of fund delistings that

o

ur for every quintile portfolio in the period immediately after rebalan
ing. In

parti
ular, we 
ount the number of instan
es where our portfolio 
onstru
tion

would have invested in funds that no longer report in the subsequent period.

This provides a �rst useful proxy of risks that do not show up in the funds'

self-reported returns.
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We �nd that the fra
tion of delistings is slightly higher in the 
ase of the

upper quintile portfolio with an attrition rate of 26% (108 delistings), 
ompared

to 22% (88 delistings) in the 
ase of the lower quintile. These results suggest

that there are more fund failures among positively auto
orrelated Managed

Futures, although subdued. Nevertheless, this result does suggest that perhaps

the outperforman
e is be driven by delisting bias.

Therefore, we attempt to expli
itly 
orre
t for the delisting bias. In parti
u-

lar, we repeat the portfolio approa
h outlined above, but assume a -4.5% return

in the �rst month that the fund fails to report to the database. This -4.5%

return 
orresponds to the average 
ompounded omitted return for the Lipper

TASS and HFR database found by Jorion and S
hwarz (2013). Corre
ting for

delisting bias in this way takes into a

ount the higher in
iden
e of fund delist-

ings in 
ertain quintile portfolios. This is ne
essary as the likelihood of a fund

be
oming delisted seems to be positively 
orrelated to higher degrees of positive

auto
orrelation in the programs' returns. The results for the value-weighted

quintile portfolios are reported in Table 2.6.

We �nd that the performan
e of positively auto
orrelated Managed Futures

seems to persist, even when we 
orre
t for delisting bias using a 
onservative

-4.5% return. This is parti
ularly the 
ase for the AUM-weighted portfolios, but

appears to be the less the 
ase for the equal-weighted portfolios.

2.6 Con
lusion

In this paper, we developed and applied a measure for dete
ting low but per-

sistent levels of performan
e persisten
e in hedge funds' self-reported returns.

We applied this measure to Managed Futures, a hedge fund 
ategory that is

unlikely to exhibit spurious serial 
orrelation due to smoothing and illiquidity

in underlying positions.

We make several 
ontributions to the existing literature on auto
orrelation

patterns in hedge funds and Managed Futures in parti
ular. First, we 
orrob-

orate earlier �ndings in that we provide additional eviden
e of the existen
e

of a premium in Managed Futures, using an alternative hedge fund database.

Se
ond, using a multifa
tor analysis, we �nd that the observed outperforman
e

of funds sorted on the degree of persisten
e in their returns 
annot be explained

using existing models. This suggests that the returns generated by these funds

are distin
tly di�erent. Third, we show that the premium is unlikely to be

explained by a relian
e on parti
ular strategies, fund size, a 
ompensation for

tail risk, attrition rates, and delisting bias. Given 
onsiderably lower share

restri
tions for Managed Futures, our results suggest that in
orporating serial


orrelation may improve the manager sele
tion and allo
ation pro
ess.

The above results suggest that the observed persisten
e might be a proxy

of fund skills. If a fund manager has a good trading approa
h that �ts the

prevailing market environment at a given period in time, that fund is expe
ted

to persistently generate gains. Of 
ourse, a parti
ular trading approa
h should

not be expe
ted to work inde�nitely sin
e the market environment regularly

47



Table 2.6: Results Corre
tion for Delisting Bias

Value-weighted Portfolios

Mean Monthly

Return

Standard

Deviation

Sortino Ratio Sharpe

Ratio

MDD CAGR

Q1 (low) 0.40% 2.83% 0.81 0.53 -17.14% 4.39%

Q5 (high) 0.57% 1.59% 2.56 1.12 -6.61% 6.91%

Di�eren
e in means (p-val) 0.19 LW -statisti
 2.94**

Bar
layHedge 0.55% 2.28% 1.53 0.98 -7.77% 6.40%

Equal-weighted Portfolios

Mean Monthly

Return

Standard

Deviation

Sortino Ratio Sharpe

Ratio

MDD CAGR

Q1 (low) 0.50% 2.68% 1.18 0.78 -10.93% 5.71%

Q5 (high) 0.43% 1.62% 1.88 0.96 -8.22% 5.09%

Di�eren
e in means (p-val) 0.38 LW -statisti
 1.34

Bar
layHedge 0.43% 1.62% 1.53 0.98 -7.77% 6.40%

Notes: this table reports the results for a robustness 
he
k where we repeat the portfolio 
onstru
tion, but at the same

time impose a hypotheti
al -4.5% return in the �rst month a fund stops reporting to Bar
layhedge. The table reports the

mean monthly return, the standard deviation of mean monthly returns, the annual Sortino ratio, the annual Sharpe ratio,

maximum drawdown (MDD), and the 
ompound annual growth rate (CAGR).A di�eren
e in means test, using a bootstrap

with a 1000 repli
ations is used to test the di�eren
e in average returns. The Ledoit-Wolf (LW) statisti
 tests the statisti
al

signi�
an
e of the di�eren
e in Sharpe ratios. *** p<0.01, ** p<0.05, * p<0.1

4
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hanges. As su
h, rebalan
ing the portfolio is required. Finally, we note that

our results suggest that, while it is unlikely that the outperforman
e of more

positively auto
orrelated Managed Futures funds is driven by delisting bias,

slightly higher attrition rates require 
lose monitoring and risk management.
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Chapter 3

Intraday momentum in FX

markets: disentangling

informed trading from

liquidity provision

1

Journal of Finan
ial Markets

In Press

3.1 Introdu
tion

Market parti
ipants need time to interpret and rea
t to new information.

Consequently, the dissemination of news potentially leaves room for pre-

di
tability over short horizons of time. Theoreti
ally, parti
ipants' trades

are likely to be informative of future returns, given that they 
ontain

private information (Lyons, 1995).

A number of papers show that interdealer order �ow in foreign ex-


hange (FX) markets is indeed predi
tive of future returns. Payne (2003)

shows that trades 
arry information and have a substantial permanent

impa
t on pri
es. Similarly, Chordia et al. (2005) show that order �ow

1

This 
hapter is based on joint work with Kevin Lampaert (Ghent University) and

Mi
hael Frömmel (Ghent University).
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is predi
tive of future returns over the very short horizon. More re
ently,

Chordia et al. (2008) �nd that very short-term predi
tability is dimin-

ished when bid-ask spreads are narrower, indi
ating that liquidity en-

han
es market e�
ien
y through in
reased arbitrage a
tivity. This �nd-

ing suggests that liquidity also plays a role in the short-term predi
tability

of returns.

Although most of the above studies fo
us on very short horizons, Gao

et al. (2015) take a 
onsiderably longer perspe
tive while staying in the

�eld of intraday high-frequen
y data. In parti
ular, they investigate the

predi
tability of a se
urity's �rst half-hour return on its last half-hour

return and �nd that the former is positively predi
tive of the latter. This

�nding suggests that, in addition to predi
tability over very short periods

of time, there also appears to be predi
tability over 
onsiderably longer

periods of time during the trading day. To date, however, no resear
hers

have empiri
ally tested the likely drivers of this �intraday momentum�.

Our 
ontribution to the literature on FX mi
rostru
ture is twofold.

First, by using a long sample of transa
tion-level FX market data at ti
k

frequen
y, we 
onstru
t high-frequen
y measures of the likely drivers of

intraday momentum in the ruble market. Using these measures, we ana-

lyze whether intraday momentum is stronger on days with more informed

trading or when demand for liquidity is higher. These hypotheses 
apture

the likely explanations of how market parti
ipants' behavior may generate

the observed intraday momentum e�e
t.

For the RUB-USD FX market, and 
ontrary to the results of Gao et al.

(2015) for the equity market, we do not �nd any eviden
e supporting the

idea that intraday momentum is the result of strategi
 informed trading

during the opening and 
losing of the trading session. This �nding is


onsistent with the earlier �nding that informed traders in the RUB-USD

FX market mainly trade during the opening of the trading sessions in the

Mos
ow Interbank Curren
y Ex
hange (MICEX) (Menkho� and S
hmel-

ing, 2010). Instead, our results for the ruble market indi
ate that opening

half-hour returns are positively predi
tive of 
losing half-hour returns on

days when bid-ask spreads are high during the opening half-hour. We hy-

pothesize that high spreads are 
onsistent with higher levels of liquidity

provision by some market parti
ipants following heavy trading early in

the morning. Taken together, our results lend support to the argument

that risk aversion to overnight holdings and a potential disposition e�e
t

among liquidity-providing market parti
ipants drive intraday momentum

in the ruble market.

Se
ond, our �ndings also 
ontribute to a better understanding of in-
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traday momentum along several other dimensions. In parti
ular, we 
or-

roborate the �nding of Gao et al. (2015) that the trading hours of the

non-major 
urren
y's domesti
 market matter for intraday momentum.

Although these authors observe a general la
k of intraday momentum in

major 
urren
ies vis-à-vis the U.S. dollar when 
onsidering U.S. trading

hours, they �nd some weak eviden
e of intraday momentum when they

determine impli
it trading hours, based on in
reases in volume in inter-

national equity index futures. Our results for the RUB-USD 
urren
y

pair show that, by 
onsidering the expli
it trading hours of the MICEX,

signi�
ant levels of intraday momentum are present. Clearly, the expli
it

nature of the trading hours helps to identify the relevant periods over

whi
h intraday momentum o

urs in this FX market. Finally, our results

also support the earlier observation that intraday momentum is more pro-

noun
ed during �nan
ial 
risis periods.

The remainder of this paper is stru
tured as follows. In Se
tion 3.2,

we provide an overview of the related literature and formulate the dif-

ferent me
hanisms that may drive intraday momentum. In Se
tion 3.3,

we des
ribe the data used for our empiri
al analysis. In se
tion 3.4, we

outline the 
on
ept of intraday momentum and present the methodology

used to measure the degree of informed trading and liquidity demand. In

se
tion 3.5, we dis
uss the results. In se
tion 3.6, we assess the robustness

of the results. We 
on
lude in Se
tion 3.7.

3.2 Motivation and related literature

Gao et al. (2015) suggest two potential me
hanisms that may drive in-

traday momentum in �nan
ial markets. First, the intraday pattern 
an

be the result of liquidity provision by some market parti
ipants (e.g., day

traders, market makers, et
.). With pri
e dissemination being the highest

at the beginning of a trading session (Bloom�eld et al., 2005) when market

parti
ipants rea
t to ma
roe
onomi
 news released overnight before the

start of the trading session, temporary imbalan
es may arise when mar-

ket parti
ipants rea
t similarly to news. Day traders and market makers

may be motivated to take opposite positions to provide liquidity to the

market. However, although these traders may qui
kly 
lose out winning

positions throughout the day, they may be more relu
tant to rapidly 
lose

out losing positions. However, the prospe
t of having to hold positions

overnight may 
onvin
e traders and market makers to 
lose out the po-

sitions nonetheless. Gao et al. (2015) point to a disposition e�e
t among
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(day) traders (Odean, 1998; Lo
ke and Mann, 2005) to motivate su
h

asymmetri
 behavior. The risk management pra
ti
es of �nan
ial insti-

tutions, however, may similarly for
e traders to 
lose out positions before

the end of the day. This behavior of (foreign ex
hange) dealers' o�oading

undesired inventory has been widely do
umented in the literature (Lyons,

1995; Bjønnes and Rime, 2005).

Se
ond, intraday momentum is also theoreti
ally 
onsistent with the

strategi
 behavior of informed traders. Theoreti
ally, Kyle (1985) and

Admati and P�eiderer (1988) argue that informed traders will time their

trades during high-volume periods to hide their informational advantage

and to limit the pri
e impa
t. Doing so will for
e informed traders to

trade during high-volume periods (see Bloom�eld et al., 2005). Given the

well-known U-shape in intraday trading volume, the impli
ation is that

they will trade at the beginning and near the end of the trading day. If

informed traders indeed pla
e their trades during periods of heavy trading

and if their trading has a (permanent) pri
e impa
t, then this may also

drive the observed predi
tability in intraday returns.

Both explanations are 
losely related to the existing FX mi
rostru
-

ture literature on the predi
tability of returns in FX markets. Resear
h

indi
ates that fundamentals, proxied with ma
roe
onomi
 variables, per-

form poorly in fore
asting future ex
hange rate movements (e.g., Evans

and Lyons, 1999); however, this is not the 
ase for order �ow and liquid-

ity. In parti
ular, it is well founded that order �ow is predi
tive of returns

over the very short term. For example, Payne (2003) shows that market

parti
ipants' trades 
arry information and have a substantial permanent

impa
t on pri
es. Similarly, Chordia et al. (2005) show that order �ow is

predi
tive of future returns over the very short horizon.

Theoreti
ally, the predi
tability of future returns based on order �ow

is 
onsistent with strategi
 order splitting among informed traders. Given

that information among market parti
ipants is heterogeneous, some par-

ti
ipants are likely to parti
ipate in strategi
 trading to disguise their

superior information. One way to lower the impa
t of their trades is

through order splitting (Chakravarty, 2001), whi
h results in 
orrelated

trades.

Love and Payne (2008) show that there is short-term predi
tability

through order �ow when publi
 information is released, whi
h suggests

that the predi
tability is driven by information pro
essing. Simultane-

ously, Evans and Lyons (2005) show that FX markets in
orporate news

only gradually, over the matter of a few days, rather than instantaneously.

Similarly, Rime et al. (2010) 
on�rm gradual learning and show that order
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�ow is a strong predi
tor for daily returns. The above literature indi
ates

that both transitory and permanent pri
e impa
ts seem to be predi
table

from past order �ow, at least over short horizons.

There are re
ent reports that liquidity is also an important explana-

tory variable in the pri
e dis
overy pro
ess. Chordia et al. (2008) �nd

that very short-term predi
tability is diminished when bid-ask spreads

are narrower, indi
ating that liquidity enhan
es market e�
ien
y through

in
reased arbitrage a
tivity. More re
ently, Boudt and Petitjean (2014)

show that 
hanges in order imbalan
es are informative of pri
e dis
overy.

This �nding suggests that liquidity also plays a role in the short-term

predi
tability of returns.

3.3 Data des
ription and institutional features

3.3.1 Data

We use a parti
ularly long-time span of intraday transa
tion-level data

at ti
k frequen
y on the Russian ruble-United States dollar. We obtain

the data from the MICEX, the largest 
urren
y ex
hange in Russia and

Eastern Europe. Spot trading in the RUB-USD 
urren
y pair equals

1.66% of total FX spot trading volume in 2013, meaning that the 
urren
y

pair ranks as the 12th mostly heavily traded globally.

We obtain data for the January 12, 2005 to De
ember 30, 2014 pe-

riod. Although 
onstrained to one parti
ular 
urren
y pair, the data set

o�ers several advantages. First, a long data span avoids a number of short

sample problems that resear
hers often en
ounter in the mi
rostru
ture

literature, su
h as possible stru
tural breaks or biases in the estimated pa-

rameters. Se
ond, the sample period features both the 2007-2009 Global

Finan
ial Crisis and the more re
ent 2014 Russian 
urren
y 
risis, during

whi
h the ruble was the obje
t of the 
risis. Figure 3.1 illustrates the

evolution of the RUB-USD ex
hange rate over the sample period.

Both the 2007-2009 Global Finan
ial Crisis and the 2014 Russian 
ur-

ren
y 
risis are 
learly dis
ernible in Figure 1, with both instan
es leading

to a meaningful depre
iation in the value of the ruble versus the dollar.

The �gure also suggests somewhat higher volatility post-2008 
ompared

to the �rst 
ouple of years of the sample period.

The MICEX trading platform was jointly developed with Reuters and

has features similar to the platform of Reuters or Ele
troni
 Brokerage

Servi
es (EBS). Parti
ipants 
an observe the pri
e, the trading volume,
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Figure 3.1: Evolution U.S. dollar - Russian ruble (2005-2014)
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and the bid and ask pri
es with standing volumes. In 
ontrast to most

other FX markets, it is only possible to submit limit orders to the plat-

form. However, market orders 
an be syntheti
ally 
reated by submitting

marketable limit orders. The MICEX 
overs all domesti
 spot trading

in Russia. O�shore trading in the RUB-USD is performed through and

limited to non-deliverable forward 
ontra
ts. To illustrate the fa
t that

both platforms are very similar and that the MICEX is the main ex
hange

for spot trading in RUB-USD worldwide, we note that trading on Thom-

son Reuters is transmitted to the MICEX during trading hours when the

MICEX is open. Refer to Menkho� and S
hmeling (2010) for further

details on ruble trading on the MICEX.

The data set 
ontains the following information for every trade exe-


uted on the MICEX; a time-of-day time stamp (to the millise
ond), the

pri
e at whi
h the order is exe
uted, and the size of the trade. Simultane-

ously, we also have information on the best bid- and ask pri
e at the time

every order is exe
uted. From the transa
tion-level data, we 
al
ulate

half-hour (30 minutes) log returns for ea
h trading day t as follows:

rj,t = log

(

pj,t

pj−1,t

)

, (3.1)

where rj,t represents the half-hour return at day t for intraday interval

j and pj,t represents the ex
hange rate at day t (the value of one dollar

quoted in rubles) at the end of intraday interval j. The �rst half-hour
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Table 3.1: Summary statisti
s RUB-USD ex
hange rate

Panel A: Full Sample

Period (2005-2014)

Panel B: Finan
ial Crises

(2007-2009 & 2014)

First

Half-hour

Returns

Last

Half-hour

Returns

First

Half-hour

Returns

Last

Half-hour

Returns

Mean

-0.001% 0.004% 0.004% 0.004%

St. Dev.

0.589% 0.124% 0.798% 0.159%

Skewness

-1.842 -5.204 -2.278 -7.060

Kurtosis

56.896 138.337 45.945 132.897

Min

-8.932% -2.943% -8.932% -2.943%

Max

6.265% 1.218% 6.265% 0.735%

# of Obs.

2,342 2,342 922 922

This table reports summary statisti
s for the RUB-USD ex
hange rate. We report

statisti
s for both the �rst and the last half-hour return. Panel A 
ontains the

statisti
s for the full sample period 2005-2014, while Panel B 
ontains the statisti
s

for the 
risis periods (2007-2009 & 2014).

return of ea
h day is 
al
ulated based on the previous day's 
losing pri
e.

This way we also 
apture the overnight return 
omponent, whi
h might

drive the informed trading and liquidity demand we wish to analyze. At

the same time, by using the previous day's 
losing pri
e we avoid relying on

the opening pri
e. This is an important 
onsideration, sin
e the opening

pri
e is prone to pri
ing errors that may bias opening returns (see Amihud

and Mendelson, 1987). Table 3.1 reports the summary statisti
s for the

�rst and last half-hour returns we use. We report statisti
s both for the

full sample period and for the 
risis periods separately.

We observe that opening half-hour returns are 
onsiderably more vari-

able than 
losing half-hour returns, whi
h re�e
ts information pro
essing

at the start of the trading session. In addition, both return series are neg-

atively skewed, suggesting that large negative returns are 
onsiderably

more prevalent than large positive returns.

3.3.2 Institutional features

The data set we 
onsider has several features. First, and spe
i�
 to the

MICEX, the ex
hange 
hanged the opening and 
losing hour on several

o

asions over the sample period. In all instan
es, the 
hange in trading

hours led to an in
rease in the number of hours that the MICEX is open.
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Table 3.2: Overview trading sessions on the MICEX ex
hange for the

RUB-USD

Period Opening Closing

01/01/2005 - 11/11/2008 10:00 14:00

12/11/2008 - 12/04/2013 10:00 15:00

13/04/2013 - 31/12/2014 10:00 17:00

Trading hours in Mos
ow lo
al time (GMT+3).

Table 3.2 provides an overview of the 
hanges in trading hours.

The 
hanges in the number of trading hours imply that the amount

of time between the �rst half-hour return and the last half-hour return,

the returns of interest, is not 
onstant throughout the sample period.

Be
ause intraday momentum is expe
ted to o

ur mainly during the start

and the end of the trading day, however, we expe
t that the phenomenon

is una�e
ted by the parti
ular time of day with whi
h the trading half-

hours 
orrespond.

Se
ond, we note that foreign ex
hange markets are generally 
onsid-

ered to be open virtually around the 
lo
k, with at least one major ex-


hange trading the major 
urren
y pairs virtually at any point in time

during the week. As su
h, the notion of �rst half-hour and last half-

hour returns in the 
ase of foreign ex
hange markets may seem inap-

propriate. Although this is true, trading intensi�es 
onsiderably when

a 
urren
y's domesti
 �nan
ial market 
ommen
es trading. Furthermore,

returns, spreads, and volatility are impa
ted by the market a
tivity of var-

ious �nan
ial 
enters (Andersen and Bollerslev, 1997). Therefore, it 
an

be argued that foreign ex
hange markets generally have impli
it opening

and 
losing trading hours. In the 
ase of our data set, trading in the 
ur-

ren
y pair is organized during a �xed trading session, providing us with

expli
it opening and 
losing hours.

Nonetheless, to the extent that market parti
ipants trade outside the

trading hours of the MICEX, this parti
ular feature of the FX market may

work against �nding intraday momentum. Simultaneously, both explana-

tions for intraday momentum 
ru
ially depend on liquidity 
onsiderations.

Thus, if the observed intraday momentum des
ribed above is driven by

the parti
ular behavior of traders suggested by both explanations, then

they will likely trade during the trading hours of the MICEX.

Finally, we also brie�y 
onsider the parti
ular institutional 
ir
um-

stan
es implied by FX markets. It is well known that trading on these
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markets is reserved to major banks and large institutions. This dire
t

trading between major dealers 
overs the vast majority of foreign ex-


hange traded volume and is often referred to as the �rst tier or wholesale

tier. Our data set 
overs the trades exe
uted on this wholesale tier mar-

ket. Retail investors, mutual funds, and large non-�nan
ial �rms are,

however, not dire
tly a
tive on this tier. Instead, these investors transa
t

bilaterally with banks or brokers who provide quotes. Depending on the

inventories of the banks and brokers with whi
h these investors transa
t,

these investors' orders may or may not be passed on to the wholesale

tier. This parti
ular market stru
ture means that retail investors, mutual

funds, and large non-�nan
ial �rms will only indire
tly impa
t the foreign

ex
hange market. As su
h, it is ultimately the manner in whi
h market

makers pass the resulting inventory 
hanges to the wholesale tier that

matters. We suggest that, if the liquidity needs of investors in the retail

tier are large enough to materially impa
t the inventories of the market

makers, then the e�e
t will propagate to the trading on the wholesale tier.

Despite the trading that follows from the two-tier stru
ture of foreign ex-


hange markets, trading on the wholesale tier strongly outweighs trading

on the retail tier. The for
es driving intraday momentum 
an be at play

between parti
ipants in the wholesale tier, and we dire
tly observe (the

pri
e impa
t of) this trading in our sample.

We 
on
lude that the parti
ular stru
ture of FX markets does not, a

priori, rule out the possibility of intraday momentum in foreign ex
hange

markets, although some features likely work against observing an intraday

momentum e�e
t.

3.4 Methodology

To determine the existen
e of intraday momentum, we 
losely follow the

approa
h used by Gao et al. (2015) and estimate predi
tive regressions.

These authors note that the predi
tive regressions 
orrespond to autore-

gressive (AR) models. Although this is true, 
hanges to the trading hours

by the MICEX over the sample period imply that, in our 
ase, the ex-

a
t lag length of the AR model varies over time (see Se
tion 3.3). We

therefore express the predi
tive regression as follows:

rl,t = α+ βrf,t + ǫt, (3.2)

where rf,t is the �rst half-hour return, rl,t is the last half-hour return

and ǫt is the error term. We also 
onsider the predi
tive value of the
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penultimate return, whi
h we denote as rsl,t. The in
lusion of this term

allows us to 
ontrol for any short-term persisten
e in the ex
hange rate

during the day and to isolate the predi
tive value of the last half-hour

return.

To investigate the relation between informed trading and intraday

momentum, we 
onstru
t the dynami
 probability of informed trading

(DPIN) measure suggested by Chang et al. (2014). This measure builds

on the empiri
al work of Campbell et al. (1992) and Avramov et al. (2006)

and allows us to measure the degree of informed versus uniformed trad-

ing based on high-frequen
y transa
tion-level data. More spe
i�
ally, this

approa
h allows us to measure and tra
k the presen
e of informed trades

throughout the trading day based on a high frequen
y. The fa
t that �-

nan
ial markets are be
oming in
reasingly 
omputer-driven � potentially

making private information in
reasingly short-lived � makes measuring

informed trading at the intraday level in
reasingly important. The ap-

proa
h of Chang et al. (2014) allows us to avoid a degradation to lower

frequen
ies of the PIN measure originally proposed by Easley et al. (1997).

Following Chang et al. (2014), we �rst perform a regression to isolate

the unexpe
ted half-hour return 
omponent (ǫt) from the return series

while 
ontrolling for day-of-the-week e�e
ts (using dummy variables de-

noted D
day
j ), time-of-day-e�e
ts (using dummy variables denoted Dint

j ),

and lagged half-hour returns (rt−k)
2

:

rt = α0 +

4
∑

i=1

α1i ·D
day
i +

J
∑

j=1

α2j ·D
int
j +

12
∑

k=1

α3k · rt−k + ǫt. (3.3)

Auto
orrelation patterns in unexpe
ted returns (or a la
k thereof)

indi
ate the presen
e of uninformed (informed) trading. In parti
ular,

Avramov et al. (2006) note that trades that take liquidity generate (fu-

ture) pri
e reversals. At the same time, sell trades in the presen
e of

positive unexpe
ted returns do not exhibit any auto
orrelation and there-

fore indi
ate informed trading. Chang et al. (2014) argue that this 
an be

extended to buy-side trades. The authors point out that buy-side trades

in the presen
e of negative unexpe
ted returns do not exhibit any auto-


orrelation, whi
h again implies informed trading. Following Chang et al.

(2014) our measure of informed trading is 
al
ulated as follows:

2

Where J equals the number of intraday half-hour intervals in the spe
i�
 period.
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DPINt =
NBt

NTt

· (ǫt < 0) +
NSt

NTt

· (ǫt > 0), (3.4)

where NBt, NSt, and NTt are the number of buy, sell, and total trades,

respe
tively, made during the half-hour interval from t to t−1 and (ǫt < 0)
and (ǫt > 0) are sign indi
ators that equal one when the unexpe
ted return
is smaller and larger than zero, respe
tively, and zero otherwise.

To analyze the alternative explanation, i.e., whether liquidity provision

to some extent drives intraday momentum, we require a measure that

identi�es the trading days in whi
h market parti
ipants 
an be expe
ted

to provide liquidity to the market. For purposes of analysis, we fo
us

on the tightness dimension of liquidity (Kyle, 1985). This is the main

dimension of liquidity and is measured using the equal-weighted quoted

spread (EWQS). This metri
 measures the average bid-ask spread over a

given period of time. We hypothesize that, on days where the EWQS was

higher during the �rst half-hour, more liquidity was demanded by market

parti
ipants (e.g., as a 
onsequen
e of e
onomi
 news that was released

overnight), meaning that some day traders or market makers are more

likely to have provided the required liquidity.

3.5 Results

In this se
tion, we �rst establish the presen
e of intraday momentum and

assess the e
onomi
 signi�
an
e of the e�e
t. Then we explore the relation

between intraday momentum, informed trading, and liquidity demand.

3.5.1 Intraday momentum in RUB-USD

We start by running a set of predi
tive regressions in the spirit of Gao

et al. (2015). In parti
ular, we explore whether the �rst half-hour return,

the penultimate half-hour return, and a 
ombination of both indepen-

dent variables are predi
tive of the last half-hour return. The results are

reported in Table 3.3.

The results for the entire sample, reported in Panel A of Table 3.3,

indi
ate that there is no signi�
ant relation between the last half-hour

return and the �rst half-hour return. Although the 
oe�
ient has the

expe
ted sign, it is not signi�
ant at 
onventional levels, with a p-value

of 0.12. The results for the penultimate half-hour return are similar,

although the relation appears to be even weaker. When we in
lude both
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Table 3.3: Predi
tability of last half-hour return

Panel A: Full Sample Panel B: Crises

(2007-2009 & 2014)

Panel C: Ex
luding Crises

Variables rl rl rl rl rl rl rl rl rl

rf 0.0428 0.0412* 0.0698* 0.0656** -0.0097 -0.0097

(0.028) (0.025) (0.038) (0.031) (0.011) (0.011)

rsl -0.1642 -0.1493 -0.2716 -0.2271 0.0020 0.0033

(0.148) (0.124) (0.234) (0.178) (0.054) (0.053)

Inter
ept 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 2,342 2,342 2,342 922 922 922 1,420 1,420 1,420

R² (%) 4.3 1.9 5.9 12.2 5.1 15.7 0.2 0.0 0.2

This table reports the results for the sample period from January 12, 2005 to De
ember 30, 2014 by regressing the


losing half-hour return (rl) on the �rst half-hour return (rf ) and the se
ond last half-hour return (rsl). Panel A


ontains the results for the full sample period, whereas Panel B reports the results for the 
risis periods. Panel

C 
ontains the results for the non-
risis periods. Newey and West (1987) robust standard errors in parentheses.

Signi�
an
e at the 1%, 5%, and 10% levels indi
ated by ***, **, and *, respe
tively.

6
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intraday returns in the predi
tive regression, however, the 
oe�
ient on

the �rst half-hour return be
omes signi�
ant at 
onventional levels, albeit

only at the 10% level. One potential reason 
ould be mi
rostru
tural issues

su
h as bid-ask boun
es, whi
h 
ause intraday returns to exhibit mean-

reverting behavior over short intervals. These results, although suggestive,

are somewhat thin.

Se
ond, we examine whether the relation di�ers during periods of �-

nan
ial stress. We 
lassify the 2007-2009 Global Finan
ial Crisis and the

2014 Russian 
urren
y 
risis as periods of �nan
ial distress. The results,

reported in Panels B and C of Table 3.3, indi
ate that intraday momen-

tum is 
onsiderably more pronoun
ed during periods of �nan
ial stress.

During non-
risis periods, however, the relation does not appear signi�-


ant. This �nding is 
onsistent with the �ndings of Gao et al. (2015), who

�nd that intraday momentum is more pronoun
ed during the 2007-2009

Global Finan
ial Crisis.

Third, to test the predi
tive ability of intraday momentum out-of-

sample (OOS), we also perform OOS fore
asts. In parti
ular, we run

the above predi
tive regression with expanding windows, adding one day

at a time. Using the estimated 
oe�
ients of the predi
tive regression

(denoted using hats) and the value of the predi
tive variable at time s,

we 
an generate a fore
ast of the return at time s+ 1:

r̂l,s+1 = α̂+ β̂rf,s. (3.5)

We perform these estimations for s = s0, ..., t − 1, thus generating a

time series of OOS return fore
asts. s0 is the initial sample size used to

estimate the model (in our appli
ation, four years). We then estimate the

OOS R² to measure OOS fore
astability:

OOS R2 = 1−
1

T−s0

∑T−1

s=s0
(rl,s+1 − r̂l,s)

2

1

T−s0

∑T−1

s=s0
(rl,s+1 − r̄l,s) 2

, (3.6)

where r̄l,s is the histori
al mean of the last half-hour return, 
al
ulated

from the expanding window of last half-hour returns. To test the signi�-


an
e of the OOS R², we employ the F -statisti
 of M
Cra
ken (2007). In

Table 3.4, we report the results for the OOS R².

Similarly to Gao et al. (2015), we obtain a signi�
ant OOS R² of

approximately 1.6%. This level of OOS R² is very substantial 
ompared

to other works (e.g., Campbell and Thompson, 2008; Ferreira and Santa-

Clara, 2011). Simultaneously, the penultimate return does not seem to

have any OOS predi
tive power.
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Table 3.4: OOS predi
tability

OOS R² MSE-F
rf 1.609% 21.948***

rsl -0.086% -1.151

rf and rsl 1.640% 22.371***

This table reports the out-of-sample predi
tability results of the last half-

hour by the �rst half hour return and the se
ond-to-last half-hour return,

using a set of re
ursive regressions. The initial sample period (s0) is four
years (2005-2008). Asterisks indi
ate statisti
al signi�
an
e of the OOS R²

using the MSE-F test

MSE − F = (T − s0)

(

MSEm −MSEp

MSEp

)

.

Asymptoti
 
riti
al values for the MSE test provided by M
Cra
ken (2007)

used to test signi�
an
e. Signi�
an
e at the 10%, 5%, and 1% levels given by

*, **, and ***, respe
tively.

A se
ond method of testing the e
onomi
 signi�
an
e of the results

is by analyzing the returns a

ruing to a simple market timing strategy

that uses signals based on the �rst half-hour return. In parti
ular, every

trading day we take a long or short position at the beginning of the �nal

half-hour period, depending on the return of the opening half-hour, and


lose out the position at the end of the trading day. We ben
hmark the

performan
e of this parti
ular strategy to a 
onstant long strategy that

always goes long at the beginning of every �nal half-hour and that 
loses

out the position at the end of every trading day.

3

The results in Table 3.5 indi
ate that, at least for the full sample pe-

riod, the market timing strategy does not outperform the always long

strategy. Interestingly, however, the returns to the intraday momentum

strategy are positively skewed. This �nding is in 
ontrast to the always

long series whi
h, similar to the original �rst and last half-hour returns, is

strongly negatively skewed. The disappointing performan
e of the strat-

egy over the full sample mat
hes the earlier observation that intraday

momentum appears to be more pronoun
ed during �nan
ial 
rises.

When we restri
t the sample to the two 
risis periods de�ned above,

the market timing strategy performs parti
ularly well. The strategy posts

a higher return, a higher Sharpe ratio, and a higher su

ess rate than the

always long strategy. Interestingly, the returns to the intraday momentum

3

We note that the returns to both strategies are 
omparable be
ause both strategies

have identi
al turnover and thus in
ur similar levels of transa
tions 
osts.
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Table 3.5: Performan
e intraday momentum market timing strategy

Panel A: Intraday

Momentum

Strategy

Panel B: Always

Long Strategy

Full Sample Crises Full sample Crises

Mean return 0.001% 0.009% 0.004% 0.004%

Sharpe 0.426 2.637 1.261 1.124

Skewness 5.196 7.279 -5.413 -7.060

Kurtosis 137.582 131.327 138.342 132.897

Su

ess rate 49.530% 51.410% 52.135% 51.193%

This table reports summary statisti
s on the performan
e of a market tim-

ing strategy based on intraday momentum and an always-long trading strat-

egy. The market timing strategy goes long when the �rst half-hour return

is positive, and short otherwise. The always-long strategy always goes long

the last half-hour of the trading day. The results are reported for the full

sample and for the 
risis periods.

strategy are again positively skewed, whereas the always long strategy

exhibits negative skewness. As su
h, the intraday momentum trading

strategy appears to limit downside risk.

Overall, these �ndings suggest that, although this fairly naïve market

timing strategy does not generate attra
tive returns overall, the market

timing strategy does appear to generate attra
tive returns in bad market

states.

3.5.2 Informed trading versus liquidity provision

Having established the presen
e of intraday momentum in the RUB-USD

market, we explore the likely drivers of intraday momentum outlined in

the introdu
tion. We �rst analyze how volume is distributed over the

trading day. In Figure 3.2 we report the average half-hour trading volume

(in USD) for the di�erent trading hour regimes.

4

Figure 3.2 shows that volume, on average, does not exhibit a U-shape,

as is typi
al in equity markets (e.g., Jain and Joh, 1988). The box plots

indi
ate that there is nevertheless 
onsiderable time series variation in

the volume traded during every half-hour of trading. The fa
t that the

4

For 
ompleteness, we report similar �gures for DPIN and EWQS in the Appendix.
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Figure 3.2: Distribution of volume (in U.S. dollars) over the trading day
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RUB-USD market does not exhibit a U-shaped distribution in volume over

the trading day has an important impli
ation for the �informed trading

hypothesis�. This suggests that, although we �nd intraday momentum,

informed trading may not be the main driver be
ause there is generally no

reason for informed traders to postpone their trading to the last half-hour

of the trading day. This idea is 
onsistent with the �nding of Menkho�

and S
hmeling (2010), who, using a short sample of data on the MICEX

that in
ludes anonymized trader identi�ers, �nd that informed traders

mainly trade during the opening of the trading sessions in the MICEX.

Naturally, informed traders may have other 
onsiderations in addition to

the trading volume for spreading trades over the trading day.

To formally analyze the relation between intraday momentum, in-

formed trading, and liquidity demand, we estimate several model spe
-

i�
ations. To be 
on
ise, we fo
us on the two 
risis periods, for whi
h

we �nd intraday momentum to be most pronoun
ed.

5

For purposes of


omparison, we �rst repeat the baseline predi
tive regression of interest.

The results are reported in 
olumn (1) of Table 3.6.

In Table A.2 of the Appendix, we observe that intraday momentum is

related to the realized volatility and trading volume over the �rst half-hour

of trading.

6

To 
ontrol for both e�e
ts, we in
lude the realized volatility

during the �rst half-hour and the (
ommon log of) volume as 
ontrols in

the regression and report the results in 
olumn (2). Controlling for volume

and realized volatility, we observe no 
hange in the sign, magnitude, or

signi�
an
e of the estimated 
oe�
ients. For 
ompleteness, we report the

pairwise 
orrelations between the variables of interest in Table A.3. of the

Appendix.

7

Turning to the other spe
i�
ations, 
olumn (3) of Table 3.6 reports

the results for the spe
i�
ation examining the relation between intraday

momentum and periods of low and high levels of informed trading. In

parti
ular, we 
onstru
t a set of dummy variables that equal 1 depend-

ing on whether the level of informed trading during the �rst half-hour is

in the top (DH), middle, or bottom (DL) ter
ile, respe
tively. We then

5

The results for the full sample, reported in Table A.1 of the Appendix, remain

qualitatively the same.

6

Gao et al. (2015) show that intraday momentum is positively asso
iated with

volume and volatility. We repeat their analysis and �nd that intraday momentum is

positively asso
iated with volume and volatility (see Table A.2 of the Appendix).

7

The pairwise 
orrelation between the EWQS and DPIN is high (0.69). However,

the 
oe�
ients for the spe
i�
ations in whi
h we omit one of the two variables (
fr.

infra) do not 
hange meaningfully (see Table A.3), suggesting that multi
ollinearity is

not an issue.
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Table 3.6: Disentangling liquidity and informed trading during 
rises

(1) (2) (3) (4) (5)

Variables rl rl rl rl rl

rf 0.0656** 0.0608** 0.0954* 0.0071 0.0368

(0.031) (0.025) (0.051) (0.017) (0.037)

rsl -0.2271 -0.2467 -0.2299 -0.2458 -0.2338

(0.178) (0.168) (0.144) (0.162) (0.142)

DL(DPIN) · rf -0.0447 -0.0354

(0.059) (0.056)

DH(DPIN) · rf -0.0756 -0.0765

(0.056) (0.054)

DL(EWQS) · rf 0.0136 0.0214

(0.027) (0.027)

DH(EWQS) · rf 0.0642* 0.0671**

(0.036) (0.031)

Opening σ2

RV
-0.0955 -0.0941 -0.0925 -0.0902

(0.078) (0.070) (0.075) (0.067)

Opening log(V olume) -0.0000 -0.0000 -0.0000 -0.0000

(0.000) (0.000) (0.000) (0.000)

Inter
ept 0.0000 0.0002 0.0002 0.0002 0.0002

(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 922 922 922 922 922

R² (%) 15.7 19.0 21.7 20.2 23.0

This table presents regression results for the sub-sample that 
overs the 2007-

2009 Global Finan
ial Crisis and the 2014 Russian 
urren
y 
risis. In the

regression for the results in 
olumn (1), we regress the 
losing half-hour return

(rl) on the �rst half-hour return (rf ) and the se
ond last half-hour return

(rsl). In the regression for the results in 
olumn (2), we 
ontrol for volume

and realized volatility during the �rst half-hour of trading. Column (3) reports

the results for an evaluation of the impa
t of informed trading on the 
losing

half-hour return. In 
olumn (4), we measure the impa
t of liquidity on the


losing half-hour return. Finally, in the regression for the results in 
olumn

(5) we 
ombine both spe
i�
ations. Newey and West (1987) robust standard

errors in parentheses. Signi�
an
e at the 1%, 5%, and 10% levels indi
ated

by ***, **, and *, respe
tively.
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intera
t these dummy variables with the observed return during the �rst

half-hour of trading, omitting the middle ter
ile to serve as the baseline.

The results in 
olumn (3) suggest that the predi
tive relation is not signif-

i
antly stronger during periods of above-average or below-average levels

of informed trading in the �rst half-hour of the trading day.

We also analyze the alternative hypothesis, whi
h relates intraday mo-

mentum to liquidity provision by day traders during the start of the trad-

ing session. Similar to the 
ase of informed trading, we divide all trading

days into three di�erent ter
iles, depending on the value of the EWQS

over the opening half-hour interval. We report the results in 
olumn (4)

of Table 3.6.

All else being equal, higher quoted spreads 
an also be the result of

high volatility. However, be
ause we in
lude the realized volatility over

the �rst half-hour of trading as a 
ontrol variable, the regression spe
i�-


ation in 
olumn (4) of Table 3.6 should 
ontrol for this e�e
t and allow

us to better isolate the impa
t of liquidity provision following strong liq-

uidity demand. In this regression, we also intera
t the resulting dummy

variables with the �rst half-hour return. Interestingly, we �nd that the

�rst half-hour return in 
olumn (4) be
omes insigni�
ant. Instead, the

intera
tion term that intera
ts the �rst half-hour return with the dummy

in periods of high quoted spreads be
omes positive and signi�
antly so.

This �nding suggests that intraday momentum is the result of high liq-

uidity demand by market parti
ipants during the opening 
ombined with

dealers' risk aversion to overnight inventory. Finally, we 
ontrol for the

level of informed trading; see 
olumn (5). Menkho� and S
hmeling (2010)

�nd that informed traders in the MICEX tend to trade when spreads are

higher, implying that we need to 
ontrol for the level of informed trading.

Interestingly, 
ontrolling for informed trading in 
olumn (5) of Table

3.6, we �nd that the relation be
omes even more pronoun
ed from a sta-

tisti
al perspe
tive. This result suggests that intraday momentum tends

to o

ur during trading days when quoted spreads are high, even when


ontrolling for the potential e�e
t of informed trading on spreads. We

interpret this �nding as supportive of the hypothesis that intraday mo-

mentum is to a 
ertain extent driven by a high liquidity demand during

the morning, 
ombined with a strong risk aversion to overnight holdings

potentially driven by risk management poli
ies, the disposition e�e
t or

habits among market makers.

Are there institutional 
ir
umstan
es that may inform why intraday

momentum in the ruble market appears to be the result of liquidity provi-

sion, rather than informed trading? The main di�eren
es between foreign
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ex
hanges and other �nan
ial markets are the sheer size of FX markets

and the fa
t that these markets are only a

essible by major dealers. We

suggest that, be
ause the FX market is 
onsiderably larger in terms of

notional value, informed trading is less likely to impa
t pri
es. Simultane-

ously, however, if a su�
iently large fra
tion of the market's parti
ipants

rea
ts similarly to a news announ
ement, then liquidity demand 
an be

expe
ted to meaningfully impa
t pri
es (albeit temporarily).

8

Se
ond, the results suggest that the traders who provide liquidity to

these early trades 
lose their positions and thus take exa
tly the same

dire
tion as the information-driven trades at the start of the day. Be
ause

these traders mirror the information-based trades in the morning, what

is their motivation and why do they not adjust their behavior?

We note that in the mi
rostru
ture theory, the bid-ask spread 
onsists

of three 
omponents: an order pro
essing 
omponent, an adverse sele
tion


omponent, and an inventory holding 
omponent (Huang and Stoll, 1997).

Changes in the bid-ask spread, in this 
ase, are likely to be driven by


hanges in the latter two 
omponents.

9

One reason why the intraday pattern, if it is indeed driven by liquidity

provision during the opening session, may 
ontinue to exist is the follow-

ing. We 
an assume that, when market makers set their pri
es, they will

most likely take into 
onsideration the ease with whi
h they will be able

to eliminate the position. As su
h, a market maker will be willing to

8

A se
ond reason why liquidity may be the prime driver of intraday momentum

is the following. Informed traders attempt to hide their informational advantage by

splitting large orders (Chordia and Subrahmanyam, 2004) into several smaller, medium-

sized transa
tions (Chakravarty, 2001). Thus, their trading will be geared towards

avoiding a meaningful pri
e impa
t. To the extent that traders are su

essful at hiding

their informational advantage, we will not observe any intraday momentum. Moreover,

although ex
ess inventories require trading near the end of the trading day, the informed

trading hypothesis provides no rationale for informed traders to always trade in both

the morning and the afternoon. Be
ause informed traders want to monetize their

informational advantage as qui
kly as possible (Bloom�eld et al., 2005), it is less likely

that they will want to wait until the end of the trading day, espe
ially, in markets

as deep as the FX markets. Moreover, earlier work using the same data on the same

market 
on
ludes that FX traders on the MICEX mainly trade during the opening

session through medium-sized orders (Menkho� and S
hmeling, 2010).

9

The order pro
essing 
omponent refers to market makers' �xed 
osts. The adverse

sele
tion 
omponent 
ompensates the market maker in 
ases when he or she is trading

against a 
ounterparty who may have superior information. For example, aggressive

(market) orders may indi
ate that the 
ounterparty has private information and thus

may motivate the market maker to in
rease the spread. Finally, the inventory holding


omponent refers to a premium that the market maker requires for providing liquidity

during periods of unbalan
ed �ows.
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provide liquidity provided that the premium (i.e., the inventory holding


omponent) re
eived is higher than the likely 
ost of having to liquidate

the position later that day. In other words, the pro�t from providing

liquidity during the �rst half-hour should o�set the expe
ted loss from

for
ed liquidation later that trading day. This may provide explanatory

power for why the e�e
t persists and why traders who generate the e�e
t


ontinue to survive.

3.6 Robustness 
he
ks

We now present the results of additional regressions to test the robustness

of the intraday momentum e�e
t on several dimensions. In parti
ular, we

analyze whether the e�e
t is robust a
ross di�erent subsamples, di�er-

ent return sampling frequen
ies, alternative de�nitions of liquidity, and


hanges in the estimation method.

3.6.1 Subsample analysis

We repeat the analysis for both 
risis periods separately. If intraday

momentum in the RUB-USD market is indeed primarily a 
risis-based

phenomenon, we should observe a signi�
ant relation during both 
risis

periods. We report the results for the 2007-2009 Global Finan
ial Crisis

and the 2014 Russian 
urren
y 
risis in Panels A and B of Table 3.7,

respe
tively.

Although the relation is signi�
ant in both instan
es, the results in

Table 3.7 show that intraday momentum is espe
ially pronoun
ed during

the 2014 Russian 
urren
y 
risis. This �nding should not 
ome as a sur-

prise, given that the ruble was to a large extent the obje
t of the 
risis.

This was not the 
ase during the 2007-2009 Global Finan
ial Crisis, where

equity and 
redit markets played the leading part.

3.6.2 Choi
e of the return frequen
y

The use of half-hour returns stri
tly follows earlier work on intraday mo-

mentum in �nan
ial markets. However, this usage leaves unanswered the

question of whether the peak of momentum predi
tability indeed is sit-

uated around this parti
ular frequen
y. A natural question that arises

is whether the observed intraday momentum is robust to the use of dif-
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Table 3.7: Robustness 
he
k - 2007-2009 Global Finan
ial Crisis & 2014 Russian 
urren
y 
risis

Panel A: 2007-2009 Global

Finan
ial Crisis

Panel B: 2014 Russian


urren
y 
risis

Variables rl rl rl rl rl rl

rf 0.0214* 0.0214* 0.0926* 0.0820**

(0.012) (0.012) (0.051) (0.039)

rsl 0.0053 0.0045 -0.4832 -0.3836

(0.066) (0.066) (0.376) (0.271)

Inter
ept 0.0001** 0.0001** 0.0001** -0.0001 -0.0001 -0.0002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 686 686 686 236 236 236

R² (%) 1.4 0.0 1.4 19.7 12.3 27.2

This table presents the results for the sample periods of January 10, 2007 to De
ember

30, 2009 and January 10, 2014 to De
ember 30, 2014 regressing the 
losing half-hour

return (rl) on the �rst half-hour return (rf ) and the se
ond last half-hour return

(rsl). Newey and West (1987) robust standard errors in parentheses. Signi�
an
e at

the 1%, 5%, and 10% levels indi
ated by ***, **, and *, respe
tively.
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Table 3.8: Robustness 
he
k - sensitivity of intraday momentum to the

return frequen
y

rf/rl 60 Minutes 30 Minutes 15 Minutes

60 Minutes 0.0457** 0.0667* 0.0245*

30 Minutes 0.0513** 0.0698* 0.0269**

15 Minutes 0.0214 0.0330* 0.0273**

This table presents regression results for the return frequen
y sensitiv-

ity analysis. The 
oe�
ients for the spe
i�
ation under equation (2)

for alternative opening and 
losing return frequen
ies are displayed.

Signi�
an
e using Newey and West (1987) standard errors at the 1%,

5%, and 10% levels are indi
ated by ***, **, and *, respe
tively.

ferent frequen
ies.

10

To test whether intraday momentum is sensitive to

the frequen
y and whether half-hour returns are the peak of the observed

predi
tability, we re-run the regression in equation (1) for di�erent 
ombi-

nations of return frequen
ies. In parti
ular, we perform K×K regressions

to analyze all potential 
ombinations of the �rst and �nal 15-minute, half-

hour, and one-hour returns. We report the 
oe�
ients of interest in Table

3.8.

In Table 3.8, we �nd that intraday momentum is robust to the fre-

quen
y employed. In parti
ular, the pri
e a
tion at the start of the trading

day is predi
tive of the pri
e evolution near the end of the trading day, and

the relation is robust to the parti
ular interval 
hosen. In e
onomi
 terms,

the e�e
t is strongest for opening half-hour returns on 
losing half-hour

returns.

Next, we analyze the robustness of the main results to a 
hange in

frequen
y. Be
ause both proposed me
hanisms that may drive intraday

momentum 
an be expe
ted to be at play espe
ially during the very start

and end of the trading session, we re-run the main analysis, 
al
ulating

all variables of interest over the �rst 15 minutes of trading, and try to

predi
t the return during last 15 minutes of the trading session. The �rst


olumn of Table 3.9 reports the results. Our �ndings 
ontinue to hold,

indi
ating that the me
hanism that drives intraday momentum is at play

at the very start of the trading session.

10

We thank an anonymous referee for 
alling attention to this point.
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Table 3.9: Robustness 
he
k - alternative de�nitions and estimation

method

(1) (2) (3) (4)

Variables rl rl rl rl

rf 0.0031 0.0507 0.0418 0.0368

(0.019) (0.036) (0.038) (0.036)

rsl -0.0826 -0.2285 -0.2312 -0.2338*

(0.088) (0.143) (0.142) (0.141)

DL(DPIN) · rf 0.0035 -0.0413 -0.0346 -0.0354

(0.020) (0.058) (0.055) (0.055)

DH(DPIN) · rf -0.0307 -0.0743 -0.0763 -0.0765

(0.027) (0.055) (0.054) (0.054)

DL(EWQS) · rf 0.0193 0.0214

(0.019) (0.027)

DH(EWQS) · rf 0.0398** 0.0671**

(0.018) (0.031)

DL(ES) · rf 0.0165

(0.037)

DH(ES) · rf 0.0491*

(0.027)

DL(VWQS) · rf 0.0049

(0.027)

DH(V WQS) · rf 0.0623**

(0.030)

Opening σ2

RV
-0.0827* -0.0919 -0.0902 -0.0902

(0.047) (0.069) (0.067) (0.067)

Opening log(V olume) -0.0000 0.0000 0.0000 0.0000

(0.000) (0.000) (0.000) (0.000)

Inter
ept 0.0003 0.0002 0.0002 0.0000

(0.000) (0.000) (0.000) (0.000)

Observations 922 922 922 922

R² (%) 11.3 22.2 23.0

This table reports the results for the robustness 
he
ks. Column (1)

reports the results of the main spe
i�
ation using an alternative return

frequen
y of 15-minutes for the �rst- and last half-hour return. Col-

umn (2) presents the results using the e�e
tive spread as a measure of

liquidity. Column (3) similarly presents the results using the volume-

weighted quoted spread as a liquidity measure. Finally, 
olumn (4)

reports the results obtained from estimation of the main spe
i�
ation

using a two-step GMM.Newey and West (1987) robust standard er-

rors in parentheses in 
olumn (1), (2), and (3). Signi�
an
e at the

1%, 5%, and 10% levels indi
ated by ***, **, and *, respe
tively.
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3.6.3 Alternative liquidity measures

Next, we assess the robustness of our main results to di�erent measures

of liquidity. To that end, we repeat the spe
i�
ations for Table 3.6 using

several alternative measures of liquidity that we 
an 
onstru
t from our

data. First, we employ e�e
tive spread (ES) as the liquidity metri
. The

result is shown in 
olumn (2) of Table 3.9 and 
on�rms our baseline results

and the results des
ribed above. In parti
ular, we 
ontinue to �nd that

liquidity appears to be the main driver of intraday momentum in the

RUB-USD FX market.

Se
ond, we repla
e the EWQS variable from our baseline analysis with

the volume-weighted quoted spread (VWQS). This measure weights the

bid-ask spreads by the volume of trades, and therefore, it takes into 
on-

sideration the size of the trade mat
hing the observed bid and ask pri
es.

We report the results in 
olumn (3) of Table 3.9. Here too, we �nd that

the intraday momentum e�e
t is stronger when bid-ask spreads are high

during the opening half-hour.

3.6.4 Estimation method

The estimations we have performed so far are based on OLS. Return se-

ries, however, tend to exhibit volatility 
lustering, whi
h, from a statisti
al

perspe
tive, indu
es heteros
edasti
ity. In addition, high-frequen
y data

often exhibit signi�
ant levels of negative auto
orrelation over very short

intervals (Roll, 1984) and positive auto
orrelation over slightly longer in-

tervals. Some of these patterns are the result of mi
rostru
ture-related

issues su
h as the bid-ask boun
e, whereas others follow from the fa
t that

information pro
essing takes time (Chordia et al., 2005). Using Newey

and West (1987) robust standard errors, we have so far a

ounted for

su
h e�e
ts on the estimation results.

Nonetheless, be
ause we do not know the full shape of the distribution

of the data, we re-estimate the main results using generalized method of

moments (GMM). Although the moments we impose are identi
al to the

moments under OLS, a two-step GMM allows us to e�
iently estimate the

model when we fa
e heteros
edasti
ity and auto
orrelation of an unknown

form. We report the result in the �nal 
olumn of Table 3.9. The results

indi
ate that our �ndings are robust to the parti
ular estimation method

employed.
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3.7 Con
lusion

In this paper, we use a long sample of transa
tion-level data at ti
k fre-

quen
y on the Russian ruble-U.S. dollar 
urren
y pair from the MICEX

to investigate the likely drivers of intraday momentum in this FX market.

We 
ontribute to the emerging literature of momentum at the intraday

level in several ways. First, we �nd no eviden
e that intraday momentum

in the ruble market is the result of market parti
ipants' strategi
 trading

during high-volume periods. Two observations motivate this 
onje
ture.

First, there is no reason for informed traders in the ruble market to post-

pone trading until the last half-hour of trading, given that volume in the

market does not exhibit a U-shape intraday pattern. This is 
onsistent

with work by Menkho� and S
hmeling (2010), who �nd that informed

traders in this parti
ular market mainly trade during the opening of the

trading session. Se
ond, we do not �nd a stronger intraday momentum

pattern on days with more informed trading in the �rst half-hour of trad-

ing.

Instead, we �nd eviden
e that 
losing half-hour returns are positively

related to opening half-hour returns on days when spreads in the ruble

market are high during the opening half-hour. These high spreads are


onsistent with a strong liquidity demand by market parti
ipants in the

�rst half-hour of trading. This �nding lends support to the argument that

dealers and other liquidity providers in the ruble market are trying to of-

�oad unwanted inventories (Lyons, 1995; Bjønnes and Rime, 2005) due

to their risk aversion to overnight holdings. This interpretation is 
onsis-

tent with the empiri
al �ndings of Bjønnes et al. (2005), who show that

non-�nan
ial 
ustomers are the main liquidity providers in the overnight

foreign ex
hange market.

Se
ond, we provide additional eviden
e that 
orroborates the �nding of

Gao et al. (2015) that expli
it trading hours matter for intraday momen-

tum. The parti
ular nature of the RUB-USD FX market, a 
urren
y pair

for whi
h spot trading is only possible on the MICEX, provides a unique


ase where FX trading is subje
t to expli
it trading hours. Finally, our

results lend further support to the �nding that intraday momentum is

more pronoun
ed during �nan
ial 
rises.
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Chapter 4

Duration Dependen
e,

Behavioral Restri
tions,

and the Market Timing

Ability of Commodity

Trading Advisors

1

International Review of Finan
e

In Press

4.1 Introdu
tion

In general, the value potentially added through a
tive management 
an

stem from one or two sour
es. First, there is the traditional se
urity sele
-

tion, i.e. the ability to add value by sele
ting se
urities that subsequently

outperform. Se
ond, managers 
ould also add value by su

essfully anti
-

ipating market trends and rea
ting to these trends by entering or exiting

the market a

ordingly. This is referred to as market timing ability and

has re
eived 
onsiderable attention over the last two de
ades.

1

This 
hapter is based on joint work with Mi
hael Frömmel (Ghent University) and

Alexander Mende (RPM Risk & Portfolio Management AB).
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However, empiri
al eviden
e on whether managers do in fa
t add value

through one or both approa
hes is mixed. One of the �rst prominent stud-

ies on mutual fund performan
e is Sharpe (1966). He �nds no eviden
e of

ex
ess performan
e for funds 
ompared to the DJIA over the period 1954-

1965. This result is 
on�rmed by Jensen (1968), who shows that the aver-

age `alpha' of mutual funds in his dataset is not signi�
antly di�erent from

zero. Subsequent eviden
e is more mixed, but seems to gravitate to the

null hypothesis of no signi�
ant outperforman
e by mutual funds. While

`alpha' 
aptures se
urity sele
tion, other studies fo
us on fund managers'

market timing ability, i.e. the ability to adjust ones market exposure in

anti
ipation of future (sto
k) market movements. The majority of these

studies �nds no (or sometimes even negative) market timing ability for

mutual funds (see e.g. Admati et al., 1986; Be
ker et al., 1999; Ferson

and S
hadt, 1996; Henriksson and Merton, 1981; Jensen, 1972; Lehmann

and Modest, 1987; Merton, 1981, Kao et al., 1998).

As su
h, the 
onsensus for mutual funds seems to emerge that mutual

fund managers, on average, add little value for investors. To some extent,

fees 
harged by these funds seem to explain most of the la
k of perfor-

man
e: Many studies, most re
ently Fama and Fren
h (2010), �nd that

funds' gross returns outperform the market, while the net-of-fee returns do

not. This suggests that fund managers are 
apturing the outperforman
e

through fees.

Eviden
e for market timing among hedge funds is also mixed, although

more re
ent work indi
ates some market timing skill for these managers.

Whereas Fung et al. (2002) do not �nd eviden
e for market timing ability

among hedge funds Chen et al. (2010) study a sample of self-de
lared

market timing hedge funds and �nd eviden
e of market timing ability.

Chen (2007), who examines the timing ability of hedge funds with regard

to their fo
us markets, also �nds eviden
e that a number of 
ategories of

hedge funds (CTAs and Global Ma
ro) 
an su

essfully time 
ertain asset

markets. Finally, Kazemi and Li's (2009) �ndings suggest that CTAs

generate their returns mostly from su

essful market timing.

However, whereas early studies use monthly returns to test for timing

ability, more re
ent studies su
h as Bollen and Busse (2001) and Jiang

et al. (2007) who use daily data 
ome to more en
ouraging 
on
lusions

about managers' market timing abilities. These results provide eviden
e

that 
on�rm the �ndings by Goetzmann et al. (2000) that the use of daily

data appears to in
rease the power of the market timing models to dete
t

market timing ability. Chan
e and Hemler (2001) analyze daily expli
it

re
ommendations by market parti
ipants and also �nd eviden
e of market
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timing ability. Results in both papers further suggest that, when monthly

data is used, the eviden
e of positive market timing ability disappears.

One major drawba
k in applying existing market timing models to

monthly data is that the resear
her impli
itly assumes that the trading

frequen
y is also monthly. Goetzmann et al. (2000) are the �rst to point

out this behavioral restri
tion. The authors propose an adjustment that

assumes daily timing but that does not require 
olle
ting daily returns.

Nevertheless, they note that applying market timing models dire
tly to

daily data is preferable. However, the appli
ation to daily data 
reates a

potential 
on�i
t: Standard tests for market timing (Treynor and Mazuy,

1966; Henriksson and Merton, 1981) use the market's ex
ess return as

ben
hmark for market timing. While this might be a reasonable assump-

tion at lower frequen
ies, for daily observations it is probably in
onsistent

with managers' a
tual timing pra
ti
es. Both a la
k of predi
tability in

daily returns and high transa
tion 
osts make su
h an approa
h improb-

able for most funds. Instead, portfolio managers rather think in trends

(Menkho�, 2010). We therefore relax this somewhat restri
tive behavioral

assumption that is impli
it in the appli
ation of market timing models on

daily data. Instead we use ex-post 
lassi�ed trends as ben
hmarks.

2

As-

suming trend following behavior is parti
ularly justi�ed for CTAs (Fung

and Hsieh, 2001). CTAs manage 
lient assets and take long or short posi-

tions in highly liquid equity, �xed-in
ome, foreign ex
hange, metals, and


ommodity futures markets. Thus, CTAs follow dire
tional strategies and

are often des
ribed as trend following. Be
ause of CTAs' similarities to

hedge funds, they are usually 
onsidered a hedge fund 
ategory.

Our 
ontribution to the existing literature is twofold. First, we adapt

the original Henriksson and Merton market timing model in a way that

makes it more realisti
 and avoids imposing a parti
ular timing frequen
y.

In parti
ular, we repla
e the `periodi
' timing de
ision based on monthly

or daily ex
ess returns with a de�nition of timing that depends on (
u-

mulative) past pri
e 
hanges. Obviously, our adjustment also 
onstitutes

a re-spe
i�
ation of the market timing de�nition. Chen and Knez (1996)

note, that any performan
e evaluation is generally arbitrary, a notion that

is strongly related to ben
hmark sele
tion. This also applies to the 
hoi
e

of the ben
hmark for market timing tests. Our de�nition of market tim-

2

The fa
t that we use an ex-post trend de
omposition model does not 
ause method-

ologi
al problems, sin
e we do not model managers' de
ision pro
ess. Insofar we are

in line with standard market timing models whi
h also rely on ex-post realized market

returns. Furthermore, and again in analogy with standard market timing tests, it does

not matter whether the dete
ted trends are deterministi
 or sto
hasti
.
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ing di�ers from the existing ex
ess return-based de�nition and will lead

to di�erent 
on
lusions as to whether CTAs have timing ability. Our al-

ternative de�nition strongly follows a strand of literature that fo
uses on

formalizing `bull' and `bear' states in �nan
ial markets using peaks and

troughs (see Lunde and Timmermann, 2004; Harding and Pagan, 2002;

Pagan and Sossounov, 2003). If su

essful market timing means su

ess-

fully timing bull and bear market states, using su
h a de�nition provides

a natural and meaningful extension of existing market timing models.

Se
ond, we extend the literature on market timing abilities of CTAs

using a proprietary dataset of realized audited daily returns of CTAs be-

tween 1994 and 2012. Sin
e we use realized instead of reported returns

our dataset does not su�er from survivorship bias, ba
k�ll bias, or sele
-

tion bias. Su
h biases 
an be meaningful. For example, Bhardwaj et al.

(2014) report that the 
ombined ba
k�ll and survivorship bias in publi


hedge fund databases sum up to approximately 7.8% annualized. Further-

more, sin
e the returns we employ are not manipulated, they 
annot be a

smoothed version of the true realized returns. Spurious serial 
orrelation

that results from su
h smoothing 
an yield misleading performan
e statis-

ti
s (see Getmansky et al., 2004; Agarwal et al., 2011). As the dataset


overs the period 1994-2012, it in
ludes the re
ent �nan
ial 
risis as well.

The paper pro
eeds as follows. Se
tion 4.2 des
ribes the methodology

in
luding the ben
hmark model by Henriksson and Merton (1981) and

our adaption of the model. Se
tion 4.3 presents the dataset. Se
tion

4.4 dis
usses our empiri
al results and 
ondu
ts a number of robustness


he
ks. Finally, in Se
tion 4.5, we summarize and 
on
lude.

4.2 Methodology

Starting point is the model proposed by Henriksson and Merton (1981)

(hen
eforth HM model). This model assumes that the fund manager

allo
ates 
apital between a risk-free asset and equities based on a fore
ast

of the market ex
ess return in the next period. To test a manager's market

timing ability, the model tests whether the fund's market beta is higher

during up-markets than down-markets. To apply the model to data on

hedge funds a
tive in multiple markets, we need to extend the approa
h to

a multifa
tor version of the HM model (see Aragon, 2005; Chen (2007)):
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rp,t = α+
M
∑

m=1

βmrm,t +
M
∑

m=1

γmDm,t · rm,t + λp + µp,t (4.1)

where λp is the time-invariant �rm e�e
t of fund p,rp,t is the ex
ess

return of fund p at time t,rm,t is the ex
ess return in market m, and µp,t

is the error term. In the original HM model Dm,t is an indi
ator variable

that takes the value 1 if rm,t > 0 and zero otherwise. The 
oe�
ient

γm measures the di�eren
e in betas in down- vs. up-markets. γm will

be signi�
antly positive for a manager who su

essfully times market m.

The HM model does not allow the manager to vary her exposure in any

but the most restri
tive way. In parti
ular, depending on her fore
ast, the

manager 
hooses two levels of β. While this assumption 
an be 
onsid-

ered restri
tive or inappropriate in the 
ase of mutual funds, the model

adequately des
ribes the trading strategy of 
ertain types of hedge funds

and CTAs in parti
ular. CTAs either buy or sell futures 
ontra
ts in a

parti
ular market, whi
h is arguably the type of systemati
 risk variation

assumed under the HM model.

Previous resear
h on the timing ability of hedge funds relied on 
on-

stru
ting equal-weighted portfolios (see Chen, 2007; Kazemi and Li, 2009)

to test for market timing ability among hedge funds. However, sin
e we

have a panel of daily CTA observations, we have 
onsiderably more de-

grees of freedom than previous work whi
h 
ommonly employed monthly

data. Therefore, a panel approa
h is more appropriate as it allows more

a

urate inferen
e of the model parameters.

We estimate the model using �xed e�e
ts for ea
h fund. This esti-

mation approa
h allows us to a

ount for managers' �xed e�e
ts that are

unrelated to market timing ability. For example, some funds in the sample


ould be persistently more pro�table for reasons that we do not observe.

At the same time, we also 
luster the standard errors by manager be
ause,

although the �xed e�e
t dummies handle the fund e�e
ts, the dummies

will not handle some other relevant forms of 
orrelated errors (Thompson,

2011).

In addition to manager �xed e�e
ts, time �xed e�e
ts might also be

present. Given that the managers are a
tively trading the same futures

markets, it is unlikely that the observations on the di�erent managers

within every time period are not 
orrelated. As su
h, the dataset 
an

be expe
ted to 
ontain time e�e
ts beyond those we are interested in.

Moreover, these time e�e
ts are probably not �xed. We 
an imagine that
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some CTAs perform better than others, depending on the parti
ular mar-

ket environment. However, while our panel is extremely unbalan
ed, any

bias present in the standard errors due to time e�e
ts is likely to disap-

pear sin
e we have a lot of observations along this dimension. This also

explains why we 
luster on the less numerous (i.e. manager) dimension.

The 
onstru
tion of the dummy Dm,t is a key 
omponent of the HM

model. The HM model, however, imposes a timing frequen
y that mat
hes

the return frequen
y used to estimate the model. As we have already dis-


ussed in the introdu
tion, performan
e evaluation is generally arbitrary

(Chen and Knez, 1996). This observation also applies to the ben
hmark of

what 
onstitutes proper market timing. Consequently, the alternative def-

inition of market timing we put forth below di�ers from the above ex
ess

return-based de�nition and might therefore lead to di�erent 
on
lusions as

to whether CTAs have timing ability under either de�nition. Our de�ni-

tion borrows extensively from re
ent literature that fo
uses on formalizing

bull and bear market states in �nan
ial markets using peaks and troughs

(see Lunde and Timmermann, 2004; Harding and Pagan, 2002; Pagan and

Sossounov, 2003). If by su

essful market timing investors mean su

ess-

fully timing bull and bear states, then our de�nition provides a natural

extension of existing market timing models. In addition, su
h a de�nition

is in line with the observation that market professionals think in terms of

trends, rather than in terms of ex
ess returns (Menkho�, 2010).

Therefore, a dummy variable based on a trend identi�
ation s
heme

seems to be a reasonable alternative to assuming that funds in general,

and CTAs in parti
ular, make predi
tions only about the next period's

ex
ess return. This might be espe
ially relevant when evaluating funds'

performan
e over very short time horizons. However, an appli
ation of

existing market timing models on daily data implies exa
tly that. Tem-

porary drops or in
reases in asset pri
es over several days 
an be expe
ted

to be short-lived and might only indu
e partial adjustments or no adjust-

ment at all. This is espe
ially the 
ase if we 
onsider transa
tion 
osts,

whi
h 
an make daily adjustments based on daily fore
asts of ex
ess re-

turns 
ostly.

We identify trends in asset markets by drawing on the a
ademi
 liter-

ature that proposes methods to determine bull and bear states in sto
k

markets. This literature o�ers both parametri
 and nonparametri
 ap-

proa
hes.

3

We rely on a threshold �lter re
ently suggested by Lunde

3

The most popular parametri
 approa
h imposes a Markov-swit
hing model (Hamil-

ton, 1990) that allows for two regimes, booms and busts. Examples of appli
ations of
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and Timmermann (2004), whi
h is des
ribed in the Appendix. This �l-

ter has the advantage that it allows for duration dependen
e and does

not impose a phase length.

4

The threshold �lter proposed by Lunde and

Timmermann identi�es bull and bear markets based on a minimum pri
e


hange (`threshold') sin
e the last peak or trough. Whereas an ex
ess

return-based measure will 
lassify a given period of negative pri
e move-

ments as a bear market, the Lunde and Timmermann �lter will not as

long as the drop does not ex
eed a 
ertain threshold.

The drawba
k of this rules-based method is that we need to spe
ify

the thresholds that de�ne bull and bear markets.

5

Lunde and Timmer-

mann (2004) suggest su
h thresholds only for equity markets, based on

�gures for bull and bear markets 
ommonly reported in the �nan
ial press.

However, sin
e we also want to explore CTAs' market timing ability in

other asset markets, we �rst have to derive additional thresholds. Sin
e

previous literature has not yet proposed a method to 
ome up with su
h

thresholds, we employ an approa
h inspired by the work of Wegs
heider

(1994). This method aims to identify trends, store their magnitude, and

subsequently remove them in an iterative way until all trends are identi-

�ed. The advantage of this algorithm is that, rather than imposing some

arbitrary stru
ture on the data, it fo
uses on the spe
i�
 features of the

original data series to 
ome up with thresholds. What we obtain is a set

of trends, starting from very small trends that last just one day to trends

that last several months. This makes it an ideal tool to derive appropri-

ate thresholds for the Lunde and Timmermann �lter. We des
ribe the

algorithm in detail in the Appendix.

this approa
h in the 
ontext of sto
k markets are Maheu and M
Curdy (2000) and

Chen (2009). Nonparametri
 approa
hes rely on �lters or dating algorithms that lo-


ate turning points (peaks and troughs) 
orresponding to lo
al maxima and minima

of the �nan
ial series. Pagan and Sossounov (2003) modify the algorithm developed

by Bry and Bos
han (1971) using de�nitions on the duration of bull and bear markets

found in �nan
ial press. Lunde and Timmermann (2004) 
onstru
t a �lter that iden-

ti�es bull and bear markets based on a minimum pri
e 
hange sin
e the most re
ent

peak or trough.

4

Duration dependen
e means that �bull and bear hazard rates � that is, the proba-

bility that a bull or bear market terminates in the next period � depend on the age of

the market� (Lunde and Timmermann, 2004, p253).

5

We want to avoid mis
lassi�
ation through imposing restri
tions on the timing

frequen
y. Therefore, we 
annot make use of the algorithm of Bry and Bos
han (1971),

sin
e this approa
h requires 
hoosing the phase length.
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Figure 4.1: Evolution CTA Index

4.3 Data

We 
arry out the empiri
al analysis using a proprietary dataset of daily

returns on 33 CTAs for the period January 1994 to May 2012. The data

is provided by a Swedish CTA spe
ialist and fund of funds manager.

6

We

fo
us on CTAs be
ause CTAs 
an be 
onsidered a hedge fund 
ategory

that a
tively attempts to perform market timing. Returns are raw returns

in that they ex
lude manager fees and trading 
ommissions and, thus,

provide an unbiased a

ount of realized returns. The dataset does not

su�er from most of 
onventional biases found in publi
 data bases due to

voluntarily reporting by funds. In parti
ular, the data base does not su�er

from survivorship bias, ba
k�ll bias, or sele
tion bias. Furthermore, sin
e

the returns are not reported returns, they 
annot be a smoothed version

of the true realized returns. This is important, sin
e the spurious serial


orrelation resulting from su
h smoothing yields misleading performan
e

statisti
s (see Getmansky et al., 2004).

In the sample of CTA funds, 26 are a
tive a
ross di�erent asset markets

(`diversi�ed'), four funds trade ex
lusively in �nan
ials, and three funds

invest only in 
ommodity futures. The time frame 
overs a variety of

market 
onditions in
luding several �nan
ial 
rises. During 1994-2012,

markets have experien
ed pronoun
ed dire
tional moves. This makes the

sample period ideal to test for market timing ability. In Figure 4.1, we

plot the performan
e of an equally-weighted index of the CTAs' returns

and 
ompare it to the Russell 3000 Total Return Index. Shaded areas


orrespond to bull market phases (as de�ned below).

To test for market timing ability for the main asset 
lasses CTAs invest

6

We do not identify the names of the CTAs in the dataset.
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in, we use daily observations for the following market indi
es: the Russell

3000 for equities, Bar
lays US Aggregate Bond Index, the S&P GSCI

Agri
ultural Commodities Spot Index, the S&P GSCI Energy Spot Index,

the S&P GSCI All Metals Spot Index and the Fed's trade-weighted US

Dollar Index.

7

These market indi
es en
ompass the di�erent asset 
lasses

managed futures managers are a
tive in.

In parti
ular, we follow Fung and Hsieh (1997) and Agarwal and Naik

(2000; 2004). With some variation regarding parti
ular indi
es used, these

authors 
onsider a broad US sto
k market index, a US bond index, the

Fed's trade-weighted US Dollar index, and the Goldman Sa
hs Commod-

ity Index (GSCI) as proxy for markets that hedge funds have exposure

to. We deviate from the above studies in that we break down the Gold-

man Sa
hs Commodity Index in its various 
omponents. We do this be-


ause CTAs have histori
ally been a
tive mostly in 
ommodity markets

for whi
h futures were �rst available. They might therefore have skills

parti
ularly in these markets. The pairwise 
orrelations between the in-

di
es, reported in Panel C of Table 4.1, are relatively low. This indi
ates

that the 
o-movement on a daily basis between the di�erent markets is

generally limited. The pairwise 
orrelation is highest among 
ommodity

indi
es but it is still su�
iently low to justify a separate treatment.

4.4 Results

We start by applying the algorithm proposed by Wegs
heider (1994) to the

various markets. On
e we have identi�ed the trends in di�erent markets,

we sele
t the 99 per
entile of trends found. In Table 4.2 we report the

results of the approa
h. Following Lunde and Timmermann (2004) we

allow for di�erent 
ut-o� values in the 
ase of upward and downward

trends. This allows us to a

ount for a positive drift in 
ertain asset


lasses and potential asymmetries in up and down trends.

For the equity market index, our results indi
ate that the top 1 per-


entile of upward trends ex
eeds 19.04% while the 
orresponding value for

downward trends is only -10.22%. These values are 
lose to the ones re-

ported in the �nan
ial press and the ones Lunde and Timmermann (2004)

use (20% and 10% for bull and bear markets, respe
tively). Cut-o� val-

ues for the other asset 
lasses di�er 
onsiderably from the values for sto
k

markets. For example, large trends in the bond market that are similar in

7

In line with Lunde and Timmermann we use daily pri
e indi
es to identify trends

in the di�erent markets.
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Table 4.1: Des
riptive Statisti
s of the Dataset

Panel A: Summary Statisti
s CTAs

Mean Min P25 P50 P75 Max

Return 0.0150% -0.0743% 0.0001% 0.0161% 0.0360% 0.0703%

Standard deviation 0.72% 0.21% 0.54% 0.79% 0.89% 1.19%

Age 3.9 0.3 1.5 2.7 4.9 13.9

Skewness -0.152 -2.006 -0.468 -0.221 0.154 3.523

Kurtosis 9.058 3.258 5.582 6.798 9.259 66.580

Panel B: Summary Statisti
s Fa
tors

Market Index Mean return Standard deviation Min Max

EQUIT Russell 3000 TR 0.01% 0.54% -4.23% 4.72%

BOND Bar
lays US Aggr. Bond 0.00% 0.11% -0.77% 0.59%

AGRI S&P GSCI Agri. Commodity 0.00% 0.52% -3.32% 3.11%

ENER S&P GSCI Energy Spot 0.02% 0.84% -6.25% 4.26%

METAL S&P GSCI All Metals Spot 0.01% 0.50% -3.11% 2.90%

CUR Fed's Trade-Weighted USD 0.00% 0.14% -1.25% 1.24%

Panel C: Correlation Market Indi
es

Market EQUIT BOND AGRI ENERGY METAL CUR

EQUIT 1.00

BOND -0.12 1.00

AGRI 0.15 -0.09 1.00

ENERGY 0.15 -0.07 0.28 1.00

METAL 0.21 -0.09 0.31 0.30 1.00

CUR -0.13 -0.02 -0.23 -0.21 -0.39 1.00

This table reports summary statisti
s for the set of CTAs and the fa
tors used in the multifa
tor approa
h.
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Table 4.2: Results Identi�
ation Bull and Bear Markets

Cut-o� values

Upward trends Standard deviation Downward trends Standard deviation

Russell 3000 TR Index 19.04% 6.08% -10.22% 2.81%

Bar
lays US Aggregate Bond Index 2.56% 0.58% -4.63% 0.99%

GSCI Agri
ultural Commodities Index 13.85% 2.68% -19.58% 4.23%

GSCI Energy Spot Index 23.90% 9.18% -19.71% 4.62%

GSCI All Metals Spot Index 10.61% 2.36% -16.01% 3.60%

Fed's Trade-weighted USD Index 4.07% 1.23% -4.59% 4.44%

Panel B: Con
ordan
e Index

Market EQUIT BOND AGRI ENER

EQUIT 1

BOND 0.576 1.000

AGRI 0.644 0.649 1.000

ENER 0.676 0.640 0.663 1.000

METAL 0.560 0.570 0.468 0.555

CUR 0.474 0.386 0.242 0.421

The 
on
ordan
e index measures the fra
tion of the time the 
y
les are in the same state. If the index is unity, trends

in both markets are exa
tly pro-
y
li
al, while a value of zero indi
ates that they are perfe
tly 
ounter
y
li
al. For

two series yt and xt and a sample size of T , the index 
an be 
al
ulated as:

Î = 1

T

[

∑T
t=1

Sx,tSy,t +
∑T

t=1
(1− Sx,t) · (1 − Sy,t)

]

where Sx,t and Sy,t are dummies that equal 1 in the 
ase of an upward trends and zero otherwise.
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Figure 4.2: Bull and Bear Markets Identi�ed

frequen
y only ex
eed 2.56% for up markets and -4.63% for down markets.

The largest trends are reported for the S&P GSCI energy market, with

upward trends of over 23.90% and downward trends ex
eeding -19.71%.

8

The results support our view that a separate trend 
lassi�
ation for ev-

ery asset 
lass is ne
essary. It would prove unrealisti
 to generalize the

equity-based thresholds from the �nan
ial press to other asset 
lasses.

Based on the thresholds derived above we 
an employ the �lter sug-

gested by Lunde and Timmermann to obtain a 
lassi�
ation of the mar-

kets into bull and bear market periods. The results are reported in Figure

4.2 with bull markets periods shaded grey. Obviously, the �lter iden-

ti�es major market events su
h as the dot
om bubble, the bull market

between 2003 and 2006 for sto
ks. It also 
aptures major surges in agri-


ultural 
ommodity, energy, and metal pri
es. To measure the degree of


o-movement between the trends, we employ the 
on
ordan
e index, pro-

posed by Harding and Pagan (2002). The results, reported in Table 4.2,

show that markets are in the same market state about half to two-thirds

of the time, depending on the markets under 
onsideration. Of 
ourse,

this does not ne
essarily mean that they start and end at the same time.

Two markets might be trending upwards two-thirds of the time, but both

market might nevertheless experien
e bear markets at di�erent points in

time.

8

A similar analysis was performed using the S&P 500 as the equity index, yielding

19.00% and -10.80%, respe
tively.
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In unreported tests, we test for the presen
e of duration dependen
e

given our 
lassi�
ation. In parti
ular, we apply the tests by Shapiro and

Wilk (1972), Brain and Shapiro (1983), and Ohn et al. (2004) for du-

ration dependen
e. All tests indi
ate statisti
ally signi�
ant duration

dependen
e in both the equity and 
urren
y market. For agri
ultural


ommodities, only the result from the Shapiro and Wilk (1972) test is

signi�
ant at the 10% level. These results 
on�rm our view that duration

dependen
e plays a role in an number of markets under 
onsideration and

that the threshold �lter of Lunde and Timmermann should be preferred.

4.4.1 Market Timing Ability

We now turn to our main analysis, testing whether CTAs are able to

su

essfully time the bull and bear markets identi�ed above. We report

the results for the main regressions in Table 4.3.

The �rst set of regression results, 
orresponding to our baseline model

outlined in Se
tion 4.2, suggests that CTAs exhibit market timing abil-

ity in all of the markets 
onsidered. All the intera
tion terms measuring

timing ability are highly signi�
ant and show the expe
ted sign.

9

The

inter
ept, whi
h is the average value of the manager �xed e�e
ts, is sig-

ni�
antly negative. Although returns of the funds are before fees and

transa
tion 
osts, nevertheless, they re�e
t impli
it transa
tion 
osts. In

parti
ular, the negative 
oe�
ient on the inter
ept likely re�e
ts bid-ask

spreads.

Turning to the e
onomi
 signi�
an
e of the timing 
oe�
ients reported

in Table 4.3, we see that the magnitude of the observed market timing

is meaningful. For example, a 1% in
rease in bond markets when bond

markets exhibit a positive trend is asso
iated, on average, with a 1.28%

(0.313% + 0.967%) return to the fund. When bond markets are de
lining,

however, the funds' returns are only asso
iated with a de
rease by 0.313%

on average for every 1% de
rease in bonds. In other words, funds tend to

exhibit a signi�
antly positive beta to bond markets during up-markets,

but an insigni�
ant beta during down-markets. Similarly, all else equal,

a 1% in
rease in the trade-weighted US dollar index during up-trends is

9

We note that these results do not allow us to infer the extent to whi
h a manager

anti
ipates trends in a parti
ular asset 
lass on a stand-alone basis. In parti
ular,

managers' timing ability in one market 
an be the result of su

essfully anti
ipating the

trends in other markets. The high degree of overlapping in market states, as eviden
ed

by the 
on
ordan
e index 
al
ulated in Table 4.2, makes this a likely possibility. For

example, we 
an imagine that if a manager expe
ts a strong reversal in the sto
k

market, she will use that information to adjust her exposure to, say, energy markets.
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Figure 4.3: (Monthly) Ex
ess Return-based Classi�
ation

asso
iated to a 0.389% (0.938%-0.549%) in
rease in the funds' returns,

whereas the funds seem to gain 0.549% for every 1% de
rease in the index

during down-markets.

Next, we 
ontrast these �ndings with the results obtained for two

existing models. First, we apply the HM model to daily data, where the

dummy variable is one when the ex
ess return for the month is positive

and zero otherwise. A visual illustration of the 
lassi�
ation that results

from the HM model is shown in Figure 4.3.Clearly, this 
lassi�
ation leads

to a more dispersed set of up- and down market periods.

Column (2) of Table 4.3 reports the results when we employ this def-

inition of bull and bear markets. The 
oe�
ients of the timing variables

suggest that in this 
ase, too, i.e. CTAs exhibit timing ability in four out

of six markets 
onsidered. This result reveals that also under the tradi-

tional de�nition of market timing ability, CTAs show 
lear eviden
e of

market timing skill.

Finally, we also 
onsider the daily version of the HM model suggested

by Bollen and Busse (2001), where instead of using monthly ex
ess re-

turns, we look at dailies. In days where the ex
ess return is positive, the

dummy is one, while it is zero otherwise. This approa
h is 
ommonly fol-

lowed when resear
hers have a

ess to daily data. The results, reported

in 
olumn (3) of Table 4.3, are striking. The estimates suggest that when

using this de�nition of market timing, CTAs do not exhibit any timing

skill. On the 
ontrary, we �nd eviden
e of signi�
antly negative timing
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Table 4.3: Market Timing Ability of CTAs

(1) (2) (3)

Equities -0.161*** -0.121*** -0.145***

(0.0388) (0.0316) (0.0227)

Equities ·D1,t 0.158*** 0.0454 0.0649

(0.0411) (0.0311) (0.0522)

Bonds 0.313 0.700*** 1.188***

(0.190) (0.167) (0.183)

Bonds ·D2,t 0.967*** 0.563*** -0.527***

(0.245) (0.164) (0.127)

Agri. Commodities -0.0237 -0.0480** -0.00113

(0.0223) (0.0181) (0.0223)

Agri. Commodities ·D3,t 0.0714** 0.114*** 0.0277

(0.0278) (0.0232) (0.0266)

Energy -0.0284 0.0304* 0.0635***

(0.0194) (0.0178) (0.0188)

Energy ·D4,t 0.157*** 0.0682*** -0.0134

(0.0276) (0.0220) (0.0169)

Metals 0.0349 0.156*** 0.214***

(0.0392) (0.0279) (0.0358)

Metals ·D5,t 0.146*** -0.0115 -0.144***

(0.0415) (0.0234) (0.0320)

Curren
ies -0.549*** -0.204* -0.119

(0.104) (0.120) (0.120)

Curren
ies ·D6,t 0.938*** 0.209* -0.00406

(0.132) (0.118) (0.108)

Constant -0.000169*** 3.36e-05 0.000578***

(6.04e-05) (4.27e-05) (0.000146)

Observations 32,450 32,450 32,450

Adj. R-squared 0.070 0.044 0.040

Number of funds 33 33 33

This Table reports the results for Eq (1), using di�erent de�nitions for the

market timing dummies. Column (1) reports the results for the spe
i�
a-

tion that employs a bull- and bear market de�nition using the approa
h

of Lunde and Timmermann (2004). Column (2) reports the results using

the de�nition proposed by Henriksson and Merton (1981). Finally, 
ol-

umn (3) reports the results using the spe
i�
ation of Bollen and Busse

(2001).

Cluster-robust standard errors in parentheses. Signi�
an
e at 1%, 5%,

and 10% level indi
ated by ***, **, and *, respe
tively.
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skill. The reason for this result might relate to the behavioral restri
tion

that is impli
it in a dire
t appli
ation of the HM model to daily data.

Su
h an appli
ation of the model impli
itly assumes that market timing

is exe
uted on a daily basis, but as mentioned above this restri
tion seems

too binding for the funds under 
onsideration.

4.4.2 Robustness Che
ks

To verify whether our proposed approa
h, i.e. analyzing funds' market

timing ability in terms of trends rather than in terms of ex
ess returns,

indeed adds value, we perform a number of robustness 
he
ks.

4.4.2.1 Correlation a
ross Time

To test the signi�
an
e of the results, we have ignored the potential impa
t

of 
orrelation a
ross time. We 
luster on the less numerous (i.e. by �rm)

dimension following the suggestions of Petersen (2008) and Thompson

(2011). In parti
ular, if the time dimension is 
onsiderably larger than the

�rm dimension, the bias due to 
orrelation 
an be expe
ted to disappear

as long as one (single)-
lusters on the less numerous dimension. It may

nevertheless be instru
tive to 
luster by time as well, sin
e the regressors

vary by time but not by �rm.

To this end, we perform a number of robustness 
he
ks to test whether

our results are robust to 
orrelation a
ross time. First, we in
lude the

regression results where we in
lude time �xed e�e
ts. At the same time, we

still 
luster the standard errors by fund. This is one way of simultaneously

handling �rm and time �xed e�e
ts, although there are also limitations

to su
h an approa
h (see Thompson, 2011). The �rst 
olumn of Table

4.4 reports the results, where we omit the dummy for 1994 to serve as

referen
e 
ategory. We �nd that our results are robust to time �xed

e�e
ts.

Next, we also report the results where standard errors are 
lustered

by time and 
lustered both by time and by �rm (two-way 
lustering).

Clustering simultaneously by time and �rm follows the work of Thompson

(2011) and Petersen (2009). Column (2) and (3) of Table 4.4 report the

results for 
lustering by time and two-way 
lustering, respe
tively. We

�nd that our results are robust to 
lustering along both dimensions.
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Table 4.4: Robustness to Correlation a
ross Time

(1) (2) (3)

Equities -0.1603*** -0.1589*** -0.1589***

(0.041) (0.034) (0.047)

Equities ·D1,t 0.1669*** 0.1630*** 0.1630***

(0.045) (0.046) (0.057)

Bonds 0.3102 0.3041* 0.3041

(0.190) (0.171) (0.234)

Bonds ·D2,t 0.9702*** 0.9789*** 0.9789***

(0.248) (0.222) (0.307)

Agri. Commodities -0.0276 -0.0256 -0.0256

(0.024) (0.038) (0.040)

Agri. Commodities ·D3,t 0.0777** 0.0760* 0.0760

(0.029) (0.045) (0.048)

Energy -0.0265 -0.0257 -0.0257

(0.020) (0.025) (0.030)

Energy ·D4,t 0.1565*** 0.1538*** 0.1538***

(0.029) (0.030) (0.039)

Metals 0.0451 0.0438 0.0438

(0.042) (0.044) (0.055)

Metals ·D5,t 0.1553*** 0.1551*** 0.1551***

(0.044) (0.049) (0.060)

Curren
ies -0.5649*** -0.5456*** -0.5456***

(0.111) (0.119) (0.153)

Curren
ies ·D6,t 1.0043*** 0.9638*** 0.9638***

(0.145) (0.166) (0.200)

Constant -0.000295 -0.000275*** -0.000275***

(0.001) (0.000) (0.000)

Time Fixed E�e
ts Yes

Observations 32,450 32,450 32,450

Adj. R-squared 0.069 0.067 0.067

This Table reports the results for a robustness 
he
ks where we test the

robustness of the spe
i�
ation in the �rst 
olumn of Table 4.3 for 
orrela-

tion a
ross time. Column (1) reports the results for a spe
i�
ation where

we in
lude time �xed e�e
ts. Column (2) reports the results when we


luster by time. In 
olumn (3), we report the results from 
lustering both

by time and by �rm (two-way 
lustering). Standard errors in parentheses.

Signi�
an
e at 1%, 5%, and 10% level indi
ated by ***, **, and *, respe
-

tively.
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4.4.2.2 Thresholds

We also test whether the baseline result in Se
tion 4.4 is robust to the

thresholds used. While the thresholds for the sto
k market are 
lose to the

ones proposed by Lunde and Timmermann (2004), the other thresholds

are not well-established yet. Therefore, we redo the analysis with bigger

(smaller) thresholds. In parti
ular, we in
rease (de
rease) the absolute

value of the thresholds by one standard deviation to look at whether our

results still hold for somewhat higher (smaller) trends. The results, re-

ported in 
olumn (1) and (2) Table 4.5, suggest that our baseline results

are only to a minor extent driven by the parti
ular set of thresholds ob-

tained in Se
tion 4.4. Espe
ially, CTAs seem to be su

essful at timing the

larger trends in 
urren
ies, sin
e for the smaller trends the managers show

negative timing ability. Similarly, the funds do not show timing ability

for the very large trends in agri
ultural 
ommodities. Nevertheless, the

explanatory power of our model seems to be in
reasing with the size of

the trend. This suggests that CTAs' market timing ability takes the form

of su

essfully timing the larger trends in the di�erent markets.

4.4.2.3 Mi
rostru
ture issues

The use of daily fund data might lead to mi
rostru
ture related issues su
h

as possible thin or nonsyn
hronous trading and stale pri
ing (S
holes and

Williams, 1977). It is unlikely that our results are driven by su
h issues,

given the nature of the futures markets CTAs trade in. Nevertheless, we

re-estimate our baseline model but in
lude lagged values for the market

fa
tors (Dimson, 1979). In that 
ase, the model 
hanges to:

rp,t = α+

M
∑

m=1

β1,mrm,t +

M
∑

m=1

β2,mrm,t−1 +

M
∑

m=1

γmDm,t · rm,t + λp + µp,t

(4.2)

The results, reported in 
olumn (3) of Table 4.5, show that these


on
erns are unwarranted. In
luding lagged market fa
tors does not ma-

terially impa
t results for the variables of interest.

4.4.2.4 Conditional Performan
e

To ensure that funds indeed add value in su

essfully timing markets, we

also investigate the performan
e 
onditional on publi
 information. This

approa
h, suggested by Ferson and S
hadt (1996), is motivated from the
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Table 4.5: Robustness Che
ks

(1) (2) (3) (4) (5) (6)

Equities -0.162*** -0.173*** -0.173*** -0.120*** -0.230*** -0.199***

(0.0356) (0.0397) (0.0402) (0.0393) (0.0363) (0.0456)

Equities ·D1,t 0.187*** 0.196*** 0.165*** 0.191*** 0.206*** 0.135**

(0.0421) (0.0434) (0.0413) (0.0375) (0.0685) (0.0643)

Bonds 0.109 0.269 0.317 0.0506 0.110 0.260

(0.220) (0.175) (0.192) (0.219) (0.184) (0.216)

Bonds ·D2,t 1.204*** 1.102*** 0.984*** 0.747*** 0.241 0.0474

(0.289) (0.186) (0.251) (0.262) (0.228) (0.302)

Agri. Com 0.0237 -0.0975*** -0.0181 -0.00107 0.0692 0.00185

(0.0236) (0.0212) (0.0219) (0.0272) (0.0438) (0.0296)

Agri. Com ·D3,t -0.00011 0.200*** 0.0640** 0.0769** -0.0372 0.0673

(0.0267) (0.0263) (0.0273) (0.0302) (0.0458) (0.0442)

Energy -0.0166 0.00772 -0.0239 0.0332** 0.0348 0.0215

(0.0184) (0.0150) (0.0185) (0.0147) (0.0317) (0.0234)

Energy ·D4,t 0.151*** 0.105*** 0.153*** 0.109*** 0.0186 0.0356

(0.0280) (0.0205) (0.0267) (0.0208) (0.0377) (0.0342)

Metals 0.0113 0.0454 0.0472 0.0942** -0.135 -0.0706

(0.0459) (0.0390) (0.0391) (0.0436) (0.0813) (0.0445)

Metals ·D5,t 0.175*** 0.148*** 0.137*** 0.0921** 0.164** 0.126*

(0.0510) (0.0433) (0.0412) (0.0407) (0.0800) (0.0706)

Curren
ies -0.809*** 0.00974 -0.580*** -0.451*** -0.411*** -0.395**

(0.118) (0.115) (0.110) (0.134) (0.134) (0.148)

Curren
ies ·D6,t 1.277*** -0.334** 0.912*** 0.860*** 0.472*** 0.427**

(0.144) (0.123) (0.130) (0.138) (0.134) (0.166)

Constant -0.0001** -0.0001** -0.0002** -0.00014** -0.0014 -0.0060*

(5.57e-05) (5.91e-05) (6.13e-05) (5.33e-05) (0.0019) (0.0034)

Time Fixed

E�e
ts

Yes

Controls for

ma
ro-e
onomi


information

Yes

32,450 32,450 32,449 32,449 1,486 1,486

Observations 0.079 0.062 0.073 0.106 0.088 0.064

Adj. R-squared 33 33 33 33 33 33

This Table reports the results for a number of robustness 
he
ks. In 
olumn (1) and (2) we test

the robustness of the results to higher and lower thresholds, respe
tively. In 
olumn (3) we in
lude

lagged market fa
tors to a

ount for potential mi
rostru
ture issues. In 
olumn (4) we 
ontrol for

publi
ly available information, following Ferson and S
hadt (1996). Column (5) and (6) report

the results from estimating the bull and bear market and the Henriksson-Merton spe
i�
ation the

using monthly data.

Cluster-robust standard errors in parentheses. Signi�
an
e at 1%, 5%, and 10% level indi
ated by

***, **, and *, respe
tively.
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idea that pro�table trading strategies relying on publi
 information should

not yield superior performan
e. To estimate this model, we make use of

four di�erent ma
roe
onomi
 variables to 
ontrol for publi
ly available in-

formation: a dividend yield, a liquidity premium, a default risk premium,

and the risk-free rate.

10

All four variables are 
onstru
ted using daily

data. Following Ferson and S
hadt (1996), the variables are demeaned

and their lagged values are intera
ted with the market fa
tors.

The model takes the following form:

rp,t = α+
∑M

m=1
β1,mrm,t +

∑M

m=1
β2,mrm,t−1 +

∑M

m=1
γmDm,t · rm,t

+
∑M

m=1

∑

4

n=1
∅m,nrm,t · cn,t−1 + λp + µp,t

(4.3)

where cn,t−1 represent the lagged and demeaned ma
roe
onomi
 vari-

ables. These intera
tion terms pi
k up the movements through time of

the 
onditional betas as they relate to the market indi
ators. Column

(4) of Table 4.5 reports the 
onditional market timing performan
e of the

CTAs, whi
h suggests that the CTAs' su

essful time-varying exposure

to the di�erent fa
tors 
annot be explained by publi
ly available infor-

mation. In
identally, the in
lusion of these ma
ro-e
onomi
 variables also


ontrols for potential 
ommon sho
ks. This spe
i�
ation therefore pro-

vides 
omplementary eviden
e that our results are robust to time �xed

e�e
ts.

4.4.2.5 Return Frequen
y

Next, we test the impa
t of the frequen
y of the return data on our results.

Previous literature 
ommonly relied on monthly data, mainly due to data

availability issues. Bollen and Busse (2001) show that eviden
e of monthly

timing ability tends to disappear when daily data is employed. To ver-

ify whether our results are also sensitive to the data frequen
y, we redo

the analysis using monthly data. In parti
ular, we redo both the spe
-

i�
ation bull and bear market spe
i�
ation and the ex
ess return-based

spe
i�
ation.

10

The term spread, whi
h proxies for the liquidity premium, is 
al
ulated as the

di�eren
e between the US Treasury 10 year yield and the (annualised) three-month

US T-Bill yield. The latter also serves as the risk-free rate. The quality spread is

the di�eren
e between the US Corporate Bonds Moody's Seasoned AAA and the US

Corporate Bonds Moody's Seasoned BAA rate. The dividend yield is the daily dividend

yield of the S&P 500.
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Results are shown in 
olumns (5) and (6) of Table 4.5. When employ-

ing our baseline model to monthly data, we �nd the eviden
e of positive

timing ability disappearing for half of the markets under 
onsideration.

The results for the original HM model using monthly data yield identi
al

results. The eviden
e of positive timing ability reported in 
olumn (2) of

Table 4.3 is no longer present in 
olumn (6) of Table 4.5. These results

are in line with previous literature and illustrate the importan
e of using

daily data for testing market timing ability.

4.4.2.6 Impa
t of fees

An analysis of alpha after fees provides another dimension along whi
h

we 
an evaluate the robustness of our results. Su
h an analysis is relevant

sin
e hedge funds' fee stru
ture impa
ts net-of-fee returns in a non-linear

way. This is the 
ase sin
e part of hedge fund managers' 
ompensation

is based on performan
e relative to a high-water mark. To assess the

impa
t of fees, we re-estimate the main spe
i�
ations in the paper (Table

4.3) using after fee returns. The results are reported in Table 4.6.

We �nd that our results are robust to the use of net-of-fee returns.

The only 
hange that we observe, is a slight drop in the 
onstant. This is


onsistent with the �ndings of Kazemi and Li (2009) who note that, sin
e

CTAs do not engage in se
urity sele
tions, the slightly negative 
onstants

may be the result of fees and transa
tion 
osts.

4.4.2.7 Subsample Analysis

Finally, we perform a subsample analysis to investigate how CTAs' market

timing ability has evolved over time. We use subsamples de�ned by events.

In parti
ular, we look at the period up to the dot
om 
rash (1994-1999),

the period of the 
rash and subsequent bull market (2000-2007) and �nally

the re
ent �nan
ial 
risis (2008-2012). We report the results for the three

sample periods in Table 4.7.

In general, we �nd that there has been some time variation in CTAs'

timing ability of trends in the di�erent markets under 
onsideration. For

the period 1994-1999, CTAs exhibit positive timing ability in markets,

although only signi�
antly so in half of the 
ases. In 
ontrast, while

timing ability with regard to equity markets improves 
onsiderably during

the se
ond sub-period, the results suggest a 
lear absen
e of timing ability

in agri
ultural markets. Finally, the period 2008-2012 suggests an overall

improvement in the timing ability of CTAs, 
ompared to the previous two
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Table 4.6: Market Timing and Net-of-fee Returns

(1) (2) (3)

Equities -0.1593*** -0.1157*** -0.1388***

(0.041) (0.033) (0.022)

Equities ·D1,t 0.1637*** 0.0418 0.0600

(0.044) (0.034) (0.053)

Bonds 0.3055 0.7086*** 1.2023***

(0.188) (0.169) (0.185)

Bonds ·D2,t 0.9771*** 0.5416*** -0.5560***

(0.244) (0.174) (0.129)

Agri. Commodities -0.0275 -0.0487** -0.0007

(0.024) (0.019) (0.024)

Agri. Commodities ·D3,t 0.0795*** 0.1173*** 0.0291

(0.029) (0.025) (0.028)

Energy -0.0261 0.0305* 0.0639***

(0.020) (0.018) (0.019)

Energy ·D4,t 0.1540*** 0.0678*** -0.0143

(0.029) (0.021) (0.017)

Metals 0.0420 0.1714*** 0.2344***

(0.042) (0.030) (0.041)

Metals ·D5,t 0.1578*** -0.0117 -0.1545***

(0.044) (0.024) (0.037)

Curren
ies -0.5523*** -0.1877 -0.1015

(0.111) (0.125) (0.127)

Curren
ies ·D6,t 0.9762*** 0.2033 -0.0093

(0.141) (0.123) (0.114)

Constant -0.000279*** -6.30e-05 0.000524***

(0.000) (0.000) (0.000)

Observations 32,450 32,450 32,450

Adj. R-squared 0.067 0.042 0.038

Number of funds 33 33 33

This Table reports the results for a robustness 
he
ks where we re-estimate

the spe
i�
ations in Table 3 using net-of-fee returns, rather than gross returns.

Column (1) reports the results based on a bull- and bear markets using the

algorithm of Lunde and Timmermann (2004). Column (2) reports the results

for the spe
i�
ation that uses the 
lassi�
ation of Henriksson and Merton

(1981). Finally, 
olumn (3) reports the results using the approa
h of Bollen

and Busse (2001).

Standard errors, 
lustered by fund, in parentheses.

Signi�
an
e at 1%, 5%, and 10% level indi
ated by ***, **, and *, respe
tively
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Table 4.7: Subsample Analysis

1994-1999 2000-2007 2008-2012

Equities -0.182 -0.286*** -0.0800*

(0.141) (0.0418) (0.0455)

Equities ·D1,t 0.190 0.334*** 0.0670

(0.143) (0.0413) (0.0460)

Bonds -1.183** 0.198 1.176***

(0.239) (0.261) (0.159)

Bonds ·D2,t 3.101** 1.004*** -0.0800

(0.614) (0.232) (0.222)

Agri. Commodities -0.120* 0.116** 0.00374

(0.0391) (0.0421) (0.0217)

Agri. Commodities ·D3,t 0.412 -0.110** 0.0879***

(0.227) (0.0390) (0.0259)

Energy -0.0849* 0.0104 -0.0886**

(0.0295) (0.0168) (0.0314)

Energy ·D4,t 0.316*** 0.124*** 0.174***

(0.0339) (0.0242) (0.0503)

Metals -0.206** 0.143** 0.0134

(0.0388) (0.0682) (0.0377)

Metals ·D5,t 0.331*** 0.0459 0.178***

(0.0504) (0.0713) (0.0462)

Curren
ies 0.0676 -1.004*** -0.213**

(0.214) (0.146) (0.0773)

Curren
ies ·D6,t 0.986 1.407*** 0.508***

(0.480) (0.250) (0.169)

Constant -0.000194 -7.47e-05 -0.000337***

(0.000155) (4.79e-05) (0.000112)

Observations 2,724 17,857 11,846

Adj. R-squared 0.119 0.090 0.070

Number of funds 33 33 33

This Table reports the results for a subsample analysis. Cluster-robust stan-

dard errors in parentheses. Signi�
an
e at 1%, 5%, and 10% level indi
ated

by ***, **, and *, respe
tively.
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sub-periods. With the ex
eption of bonds and equities, CTAs seem to have

su

essfully timed the other markets under 
onsideration. This �nding is


onsistent with the 
lear trends that emerged during the �nan
ial 
risis.

The absen
e of timing ability in sto
k and bond markets is 
onsistent with

ane
dotal eviden
e that CTAs got whipsawed in these markets following

the risk-on/risk-o� environment after 2009.

4.5 Con
luding Remarks

In this paper we extend the well-established Henriksson-Merton model

for market timing by using a less restri
tive assumption on managers'

obje
tives. In parti
ular, we assume that the manager attempts to time

bull and bear markets, rather than expe
ted ex
ess returns over the next

period (i.e. next month or next day). As su
h, our analysis bridges the lit-

erature on bull and bear market identi�
ation and tests for market timing

ability. Our approa
h builds on the observation that market professionals

think in trends rather than in terms of ex
ess returns.

Sin
e any performan
e evaluation is generally arbitrary, we test whether

market parti
ipants su

eed in timing the trends we identify using our

proposed de�nition. In parti
ular, we test whether CTAs, a hedge fund


ategory that attempts to pro�t from trends, are able to su

essfully time

bull and bear periods in the asset 
lasses they are generally a
tive in. Our

results suggest that CTAs exhibit market timing ability and are generally

able to su

essfully time trends in �nan
ial markets.
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Appendix

Threshold Filter by Lunde and Timmermann (2004)

Let It be an indi
ator that takes on the value 1 if the sto
k market is in a

bull state and 0 otherwise. The sto
k pri
e at the end of period t is xt. Let

λ1 be a s
alar fra
tion de�ning the threshold of the movement required

to go from a bear to a bull market. Similarly, let λ2 be the fra
tion for

shifts from a bull market to a bear market. Suppose that at t0, the sto
k

market is at a lo
al maximum, i.e. It0 = 1. Set xmax = xt0 where xt0 is

the value of the sto
k pri
e at time t0. We 
an then apply the following

�lter to 
lassify sto
k markets:

Step 1: If It−1 at time t equals 1:

1. In the 
ase where xt > xmax
, the peak is updated so that xmax = xt.

It is set equal to 1.

2. If xt < (1−λ1) ·x
max

, there is a swit
h from a bull to a bear market.

Retroa
tively apply It = 0 sin
e last peak up to time point t.

3. If xt > (1− λ1) · x
max

and xt < xmax
, it is set equal to 1.

If It−1 at time t equals 0:

1. In the 
ase where xt < xmin
, the trough is updated so that xmin =

xt. It is set equal to 0.

2. If xt > (1+λ2) ·x
min

, there is a swit
h from a bear to a bull market.

Retroa
tively apply It = 1 sin
e last trough up to time point t.

3. If xt < (1 + λ2) · x
min

and xt > xmin
, it is set equal to 0.

Step 2:

Go ba
k to step 1 until the end of the time series is rea
hed. �
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Trend Identi�
ation Algorithm by Wegs
heider (1994)

Let T ⊆ {1, 2, . . . , N} be a nonlinear subset of observations. The left


orner point tmin of T being the smallest value, the right 
ornerpoint tmax

being the largest value of T . All other points are 
alled inner observations

of T . We write T<
for T {tmax}. For t ∈ T with t > tmin, tL is the

pre
eding observation of t in T . Formally:

tL = max{t′ : t′ ∈ T, t′ < t}

Similarly, tR is the subsequent observation of t in T for t < tmax �.

Let (xt)t∈T with T0 ⊆ {1, 2, . . . , N} be a time series of at least two

values. The size of a parti
ular trend is denoted as γp and determined as

follows:

Step 1: For all t < tmax with xtR − xt = 0, observation t is removed.

Let T1 be the set of remaining observations.

Step 2: If T1 
ontains only one element, there is no trend and the

iteration is 
an
elled. All inner points t of T1 with xtL < xt < xtR

and xtL > xt > xtR respe
tively, share the same trend and are therefore

removed. Let T2 be the set of remaining observations.

Step 3: Let t′ be the �rst observation, at whi
h the smallest di�eren
e

between two 
onse
utive observations in T2 starts:

t′ = min{t : t ∈ T<
2
, | xtR − xt |= min{| xsR − xs |: s ∈ T<

2
}

Trend γp is de�ned by the following arithmeti
 return:

γp =
x
t
′

R

−x
t
′

x
t
′

When t′ and tR′
are both inner observations or both 
orner observa-

tions of T2, the size of the trend is saved and both t′ and t′R are removed.

For t′ = tmin and t
′

R < tmax, the size of the trend is saved and t′ is

removed.

For t
′

R = tmax and t′ > tmin, the size of the trend is saved and tmax is

removed.

Let T3 be the set of remaining observations.

Step 4: Set T2 = T3 and go ba
k to step 3 until T2 is empty. �
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Chapter 5

Adaptive Time Series

Momentum: Incorporating

Trend Signal Strength and

the Performance of

Managed Futures1

5.1 Introduction

According to BarclayHedge, a public hedge fund database with an exten-
sive coverage of Managed Futures funds, total assets under management
(AUM) in the Managed Futures or Commodity Trading Advisors (CTAs)
industry stood at 333 billion USD at the end of the third quarter of 2015.
This makes the Managed Futures industry the second biggest hedge fund
category after Fixed Income Arbitrage.

Until recently, no commonly accepted asset-based benchmarks were
available for the CTA industry. Instead, practitioners commonly bench-
marked CTAs' performance against manager-based indices. To some ex-
tent, the reliance on manager-based benchmarks is related to the challenge
with constructing appropriate benchmarks for CTAs, as there is generally

1This chapter is based on joint work with Péter Erd®s.
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no long bias in CTAs' trading strategies. While a manager will generally
disclose the markets he or she is active in, the actual position at any point
in time will be long or short, depending on the manager's assessment of
the prevailing trend in the underlying market.

Benchmarking against peers has its limitations, however. Manager-
based benchmarks re�ect both the returns to potential market ine�cien-
cies that the constituents in the index attempt to exploit as well as indi-
vidual managers' skill. Moreover, Fung and Hsieh (2004) point out that
hedge fund indices can be expected to inherit some of the biases that are
inherent in hedge fund databases. As a consequence, the alpha estimated
from such models for any individual manager may not accurately re�ect
managerial skill.

Instead of benchmarking against peers, an alternative approach that
consists of benchmarking managers against a naïve trend-following strat-
egy which is completely asset-based may be more valuable. Moskowitz,
Ooi, and Pedersen (2012) are the �rst to propose a futures-based trading
strategy that captures the returns to systematic trend-following in futures
markets.2 The authors coin the observed trend e�ect time series momen-
tum, and show that time series momentum cannot be explained by the risk
factors proposed by Fama and French (1993) and Carhart (1997). Baltas
and Kosowski (2013) build on the work of Moskowitz, Ooi, and Pedersen
(2012) to suggest a set of the Futures-Based Trend-Following Strategies.
Considering weekly and daily strategies in addition to monthly strategies,
the authors show that their proposed TSMOM factors signi�cantly im-
prove the explanatory power of multifactor models applied to Managed
Futures funds' returns.

In this paper, we contribute to the literature on the performance eval-
uation of Managed Futures funds in two ways. First, we evaluate the
performance of a trend-following strategy that combines short-term time
series momentum signals with longer-term time series momentum signals.
Whereas a standard time-series momentum approach relying on binary
signals does not capture trend strength, aggregating time series momen-
tum signals of di�erent lookback horizons results in a signal that measures
the strength of a trend in a particular market. This allows us to allocate
to a position in proportion to the signal strength.

We hypothesize that incorporating signal strength may yield a more

2For completeness, we note that Fung and Hsieh (2001) propose so-called Primitive
Trend-following Factors (PTFS) for trend-following funds. These factors capture the
returns to market timing using constructed lookback-straddle prices. To the best of
our knowledge, these factors have not gained industrywide traction.
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robust time series momentum factor that better anticipates reversals. In
addition, incorporating signal strength can be expected to be closer to
the actual practices of trend-following asset managers. Coincidentally,
the aggregation over a wide range of potential parametrizations avoids
an arbitrary choice of certain parametrizations and considerably reduces
data mining and calibration concerns. Diversi�cation considerations more
generally may be another reason for combining signals over di�erent hori-
zons. Baltas and Kosowski (2013), for example, show that time series
strategies over di�erent lookback horizons have low correlations, implying
considerable diversi�cation bene�ts.

To provide some intuition on why diversifying among or combining
di�erent trend-following signals may add value and improve the overall
performance of a strategy, consider the following hypothetical example.
Suppose we have two securities, whose price paths are reported in Table
5.1.

[Table 1 about here.]

We note that both securities have the same initial value and terminal

value, and that the securities' returns exhibit identical levels of volatility
over the period considered. In other words, both securities only di�er in
their interim price path. Application of a simple (long-term) time series
momentum strategy over the period t through t − 3 yields a long signal
in both instances. When we include the intermediate signals, however,
we observe that the trends in both securities are considerably di�erent.
Aggregating all the time series momentum signal suggests that a reversal
may be taking place for security A, whereas at t there is a strong and
persistent trend in security B. This simple example suggests that aggre-
gating signals over di�erent lookback periods may add value as it captures
additional features on the nature of the trend.

Second, in implementing the above approach, we incorporate a number
of market frictions and real-life limitations, such as contract-speci�c trans-
action costs, the impact of exchange rate risk on contracts' pro�t-and-loss,
and delays between signal generation and trade execution. Earlier work
by Hurst, Ooi, and Pedersen (2013) points out the importance of some
of these frictions. Incorporating practical implementation issues ensures
that the factor is both an investable asset-based factor, which allows a
meaningful analysis of stand-alone performance, and that it is investable.
The latter implies that the our factor can be used as a somewhat more
realistic benchmark for the CTA industry. Not taking these frictions into
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consideration may raise the bar for managers too much, hampering a
meaningful interpretation of fund alpha.

We �nd that our strategy, which we coin adaptive time series momen-
tum (ATSMOM), matches the stylized facts of manager-based indices
along a number of dimensions. Moreover, our benchmark signi�cantly
outperforms existing benchmarks in explaining the returns of Managed
Futures funds. Decomposing the ATSMOM factor, we �nd that a second
signi�cant factor, which we coin the �speed factor�, appears to be present
in time series momentum's returns. This speed factor, which we extract
using a principal component analysis (PCA) and which buys longer-term
and sells shorter-term TSMOM strategies, is similar but not identical to
the speed factor proposed by Greyserman and Kaminski (2014). We �nd
that Managed Futures funds tend to load negatively on the speed factor.
Interestingly, however, we �nd that fund alpha is positively related to
speed factor exposure.

Turning to performance evaluation using our new factors, we �nd that
smaller Managed Futures funds exhibit a nearly even exposure to every
asset class under consideration. At the same time, larger funds tend to
overweight more liquid (futures) markets, predominantly Fixed Income.
Although our asset-based factors capture much of the return variation of
CTA managers, we �nd that some CTA managers continue to outperform
on a risk-adjusted basis.

To investigate the drivers of the observed alpha, we analyze the rela-
tionship between risk-adjusted performance and fund characteristics. We
�nd that fund characteristics only account for a small fraction of the cross-
sectional variation in fund alphas, suggesting that the estimated alphas
are indicative of managerial skill. Interestingly, we also document strong
persistence in the estimated alphas, in that good annual performance in
one year tends to repeat in the subsequent year. Finally, we �nd that
contemporaneous fund �ows do not a�ect the risk-adjusted performance
of managers. This suggests capacity constraints are less of an issue for
CTAs. These results echo the �ndings of Baltas and Kosowski (2013), who
rigorously test for capacity constraints in trend-following strategies. Their
results suggest that futures markets are liquid enough to accommodate
the trading activity of the CTA industry.
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5.2 Literature Review

Mutual funds are commonly benchmarked against a combination of mar-
ket indices and risk factors such as the factors suggested by Fama and
French (1993) and Carhart (1997). Similarly, most hedge fund cate-
gories are evaluated against Fung and Hsieh's seven-factor (or eight-factor)
model (Fung and Hsieh, 2004). While these factor models perform well in
explaining the returns of mutual funds and most hedge fund categories,
their performance in explaining Managed Futures funds' return variation
is limited. Instead, the Managed Futures industry still largely relies on
manager-based indices. Such indices re�ect the average performance of
the selected funds and provide a measure of the industry's performance.3

This practice is in stark contrast to the above-described practices for mu-
tual funds and other hedge fund categories and may have a number of
limitations, as pointed out in the introduction.

There have nevertheless been several studies that attempt to model
the returns generated by Managed Futures funds. Fung and Hsieh (2001)
are among the �rst to focus on replicating trend-following hedge funds'
returns. The authors suggest the use of primitive trend-following strate-
gies (PTFS) based on lookback straddles, which capture the returns of a
market timer. While implementing these factors in practice is possible,
Harvey et al. (2016) note that it is neither straightforward nor cheap.

More recently, there has been renewed attention for modelling the re-
turns accruing to Managed Futures funds. Moskowitz, Ooi, and Pedersen
(2012) are the �rst to document, in a systematic manner, the presence of
a �trend� e�ect for a broad range of futures and forward contracts. They
coin this e�ect time series momentum (TSMOM), which relies solely on
the continuation of the price direction of the asset under consideration.
Moskowitz, Ooi, and Pedersen (2012) show that a portfolio of TSMOM
strategies, diversi�ed across di�erent asset classes, consistently delivers
large and signi�cant excess returns. Time series momentum is related,
but not identical to cross-sectional (or Carhart) momentum which relies
on past winners outperforming past losers.

Baltas and Kosowski (2013) build on the work of Moskowitz, Ooi, and
Pedersen (2012) to suggest a set of the Futures-Based Trend-Following
Strategies. The authors extend the existing literature on time series mo-

3For completeness, we note that the Société Générale (formerly Newedge) Trend
Indicator index, which relies on a 20/120 moving average crossover futures-based model,
is also sometimes used by practitioners to capture the returns accruing to Managed
Futures funds.
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mentum by considering weekly and daily strategies. Baltas and Kosowski
(2013) also provide clear evidence that Managed Futures funds attempt to
exploit momentum in the time series domain. In particular, the authors
show that their suggested TSMOM factors signi�cantly improve the ex-
planatory power of multifactor models applied to Managed Futures funds'
returns and outperform the PTFS suggested by Fung and Hsieh (2001).

Our approach borrows from and extends the works of Moskowitz, Ooi,
and Pedersen (2012) and Baltas and Kosowski (2013). In particular, we
investigate the economic gains of using more than one or just a few time
series momentum signals. The use of multiple signals can be motivated
along several lines. First, aggregating a large number of signals results in a
combined signal that captures signal strength. This addresses a limitation
in existing applications of time series momentum strategies where the
binary nature dictates a either a long or short allocation, regardless of the
strength of the trend. As a consequence, risk is allocated across di�erent
securities and sectors without regard to the strength of the trends in
the di�erent markets. It seems reasonable to assume that a reliance on
an aggregate or several signals is closer to the CTA industry's practice.
Second, an investor ex ante does not know the performance of a particular
(e.g. a twelve month) parametrization. From a diversi�cation perspective,
it may be more prudent to combine a considerable number of signals.

The choice of the strategy parameters is also an important consider-
ation from a performance evaluation perspective. One can question the
investabilitity of a benchmark that is based on just one signal, since such
a strategy is underdiversi�ed and su�ers from a hindsight bias. This
hindsight bias is inherent when relying on speci�c parametrizations that
performed well historically and it may raise the bar for managers too
much, as pointed out by Hurst, Ooi, and Pedersen (2012). Combining
di�erent candidate signals, however, we avoid having to select a speci�c
set of parameter speci�cations, thereby reducing model risk while at the
same time enhancing 'signal' diversi�cation.

The idea of combining trend signals from di�erent lookback periods
matches a recent new avenue in academic research. In particular, Han,
Zhou, and Zhu (2016) analyze the economic gains of combining signals
from short-, intermediate, and long-term moving average signals in equi-
ties. They �nd that combining the price trend information outperforms
the price trends separately. Our work is similar in spirit, but it has a
di�erent scope in terms of assets. Additionally, since we focus only on
signals of up to one year we do not have to consider price reversals which,
literature suggests, tend to occur over horizons beyond one year.
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Our adjustment to existing time series momentum strategies implies
that our work is also strongly related to other recent contributions that at-
tempt to improve time series momentum strategies. Baltas and Kosowski
(2015) investigate the impact of di�erent volatility estimators on the strat-
egy's turnover and �nd that more e�cient estimation of volatility can
substantially reduce rebalancing costs. They continue to show that tak-
ing into consideration pairwise correlations among assets further improves
time series momentum's performance by limiting downside risk.

5.3 Data

We employ data from several distinct data sources. To construct the
ATSMOM strategy, we employ daily futures contract data obtained from
CSI Data. We retrieve monthly data on Managed Futures funds from the
BarclayHedge database. In addition, in-house data from RPM Risk &
Portfolio Management AB complements the subsection where we estimate
the transaction costs for CTAs.4

5.3.1 Futures Data

The futures dataset that we use consists of daily Close Price, Open In-
terest, and Volume for 98 futures contracts across four asset classes. In-
dividual futures contract data are obtained from CSI Data and cover the
period from January 1990 to September 2015. We report the list of futures
contracts covered in Table 2. Since some contracts only started trading
or were discontinued during the sample period, we also report the period
over which each contract is actually included in the subsequent analysis.

[Table 2 about here.]

[Table 2 (cont.) about here.]

Since futures contracts are short-lived contracts that expire at a pre-
determined date, we �rst construct a continuous time series of futures
prices for each contract. In the online appendix, we describe the par-
ticular approach used. The daily returns calculated from the continuous

4RPM Risk & Portfolio Management AB, a specialist investment manager based in
Stockholm, Sweden is a fund-of-funds specializing in Managed Futures strategies and
liquid Global Macro managers.

120



futures prices, are equivalent to fully collateralized (unleveraged) returns
in excess of the risk-free rate (for a thorough discussion, refer to Baltas
and Kosowski (2015) and references therein). As such, the daily excess
returns are constructed as

ri,t =
Fi,t − Fi,t−1

Fi,t
(5.1)

where Ft corresponds to the futures price of asset i at time t. The list of
futures contracts that we employ is one of the most comprehensive used
in the literature, as we include a number of metal-related futures and a
number of currency pairs that are commonly traded by CTAs.

5.3.2 Managed Futures Data

To analyze the relationship between our proposed strategy and Managed
Futures funds' performance we collect monthly net-of-fee returns of live
and dead funds labeled CTA in the BarclayHedge Database. Although
reporting to hedge fund databases is voluntary, Joenväärä, Kosowski, and
Tolonen (2012) � in an analysis of the di�erent publicly available hedge
fund databases � conclude that BarclayHedge is the most comprehensive
hedge fund database, especially for Managed Futures funds. We restrict
the data on Managed Futures funds to the period from January 1994 to
September 2015. We employ data from January 1994 to mitigate a poten-
tial survivorship bias, since most databases only started collecting infor-
mation on defunct programs from 1994 onwards (see Joenväärä, Kosowski,
and Tolonen, 2012).

We �lter the sample of funds by looking at their self-declared strategy
description and remove funds whose description is not consistent with the
de�nition of CTAs. In the process, we discard duplicates by excluding
multiple share classes and focus on the fund's �agship program that at-
tracts the largest assets-under-management (AUM). To account for back-
�ll bias, we drop the �rst 12 observations (see Kosowski, Naik, and Teo,
2007).5 We also drop funds with (AUM) below 10 million USD to restrict
the set of funds to the investable universe. Finally, we focus on funds that
report their returns either in USD or EUR. The EUR-denominated re-

5By keeping track of the number of months that are back�lled when a fund is �rst
included in BarclayHedge database, we have tracked back�ll bias for the period 2005-
2010. For that sample period, the median (average) back�ll bias was twelve (fourteen)
months.
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turns and AUM are converted to USD using the end-of-month EUR/USD
spot rate provided by the Bank of England.

We focus on systematic trend-following CTAs, which we select based
on funds' self-declared strategy description as well as an analysis of their
return characteristics. We focus on systematic trend-following managers
as their performance is most clearly related to the concept of time series
momentum. These managers do not make discretionary decisions and
show a high correlation with manager-based benchmark indices such as
the SG Trend Index. These programs are usually diversi�ed and invest
across many liquid futures markets. Applying the above adjustments,
we obtain a sample of 433 systematic trend-following CTA funds. From
this set of funds, we construct both an AUM-weighted and an equal-risk
weighted index. Both portfolios are rebalanced monthly.

5.4 Methodology

We construct a portfolio which follows a strategy that we will refer to
as ATSMOM, and which is diversi�ed both across time and across asset
classes. The aim is to construct a portfolio that is more representative of
systematic trend-following CTAs than a time series momentum approach
based on a single lookback period. We can imagine that diversi�cation
bene�ts across time and assets result in fund performance that is less
sensitive to inevitable trend reversals.

The construction of the ATSMOM builds on the works of Moskowitz,
Ooi, and Pedersen (2012) and Baltas and Kosowski (2013) (hereinafter
MOP and BK, respectively). Analytically, using daily returns, a diversi-
�ed TSMOM strategy can be constructed as follows

rT+1 =
1

L

L∑
t=1

sgn(rT−j,T−1,l) ·
0.4/
√

261

σT−60,T−1,l
· rT+1,l (5.2)

where sgn is the signum function, that is, sgn(rT−j,T−1,l) is the sign of
the return over the lookback horizon [T − j, T − j + 1, . . . , T − 1] lagged
two days, L is the number of assets in the strategy and σT−60,T−1,l is
the two-day lagged RiskMetrics' standard exponentially weighted moving
average (EWMA) estimator of volatility with a 60-day rolling window.6

6We �rst convert the daily returns of futures contracts denoted in a foreign currency
to USD, since the weighting scheme in Eq. 5.1 is aimed at obtaining a (ex post) level
of volatility in USD.
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Algebraically, the EWMA estimator in Eq. 5.2 is calculated as follows

σ2
T = (1− λ) ·

T∑
t=0

λt−1 · (rt − r̄)2 (5.3)

where λ is the decay factor, which we choose such that the center of
mass is at around 60 days. We follow MOP in using this simple model
for estimating volatility. The correction factor of 0.4 to the estimated
volatility in Eq. (2) is suggested by MOP as to achieve an ex ante volatil-
ity of 40% per security. This is motivated from the observation that a
40% scaling factor can be expected to yield risk factors with an ex post
volatility of around 12% per annum, which roughly matches the volatility
of the equity risk factors of Fama and French (1993) (see Moskowitz, Ooi,
and Pedersen, 2012).

The ATSMOM strategy is de�ned as a time series momentum strategy
whereby we average the signal for any given security in the portfolio over
a wide set of lookback horizons. Algebraically7,

rT+1 =
1

L

L∑
t=1

(∑260
j=10 sgn(rT−j,T−1,l)

251

)
· 0.4/

√
261

σT−60,T−1,l
· rT+1,l (5.4)

We do not consider lookback periods of strictly less than 10 trading
days. In the case of such relatively short trading intervals, the high degree
of noise makes the type of signal extraction used here unlikely. Momentum
trading at such short intervals can be expected to be based on additional
information (e.g. order �ow) rather than closing prices alone. Such short-
term strategies likely also employ intraday rebalancing. Results for a
trading strategy that also includes horizons between 1 and 9 days are
qualitatively unchanged and are available up on request. This equivalent
to a strategy where the strategy trades the net position of every futures
contract across the di�erent lookback portfolios.

From eq. (5.4) it is clear that the signal for every futures contract will
vary between minus one and plus one (i.e. St ∈ [−1, 1]) depending on the
strength of the trend. This is a desirable charactistics as a simple TSMOM
strategy based on one lookback period can be criticised on the fact that

7An alternative way to think about the ATSMOM strategy is by viewing it simply
as an equal-weighted portfolio of diversi�ed TSMOM portfolios over di�erent lookback
horizons. The overall strategy only trades the net position of every futures contract
across the di�erent lookback portfolios.
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it is a binary signal. As a result, a standard time-series momentum signal
does not capture signal strength. As we illustrated in the introduction,
our approach will mechanically allocate more to the futures contracts that
exhibit `clearer' trends. When trends start to fade, however, the short-
term signals will force the strategy to lower exposure more quickly than in
the case of a strategy that only considers one long-term signal, and vice
versa. At the portfolio-level, the strategy reduces exposure to markets
where trends become less pronounced and adds to futures contracts where
trends are or become more pronounced, in a more `adaptive' way than a
standard TSMOM strategy based on a single lookback horizon.

In addition to constructing an adaptive TSMOM strategy, we also at-
tempt to improve existing TSMOM strategies or CTA benchmarks along
several other dimensions. First, the available benchmarks imply signal
generation and trade execution on the same day, that is, for example, sig-
nal generation at the close price and entering the market during the same
closing session. When rebalancing frequency is low, such as in the case of
Moskowitz, Ooi, and Pedersen (2012) who employ monthly rebalancing,
the impact of the exact closing price employed may be limited. In our
case, however, the impact may be sizeable as we rebalance and thus may
shift positions daily.

In line with the work of Hurst, Ooi, and Pedersen (2013), we systemat-
ically skip one trading day between signal generation and trade execution.
For example, we only enter a position at Tuesday's closing price if that
decision relies on a signal generated based on Monday's closing price. Sim-
ilarly, the �rst day we can close that same position is during Wednesday's
closing session and the return of such a position will be the percentage
price di�erence between Wednesday's and Tuesday's closing prices.

Another aspect we consider is the impact of contracts that are traded
in a foreign currency, instead of the base currency (USD). We assume that
the collateral or margin is always held in the base currency. Thus, only
the daily pro�t and loss (P&L) generated from positions in the contracts
traded in a foreign currency is exchanged to USD at the daily closing
exchange rate. The margin itself, which is held in domestic currency, is
not exposed to exchange rate risk (see Appendix A in Koijen et al., 2016).
We use the exchange rates provided by the Bank of England or, when
these are not available, the exchange rates of the respective central bank
to convert the daily P&L of the foreign currency denominated contracts.
We can imagine that incorporating trading frictions and exchange rate
�uctuations can improve the explanatory power of industry benchmarks.

We should emphasize that the proposed ATSMOM strategy does not
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trade every diversi�ed TSMOM portfolio (one for each time frame) sep-
arately, but rather trades the netted position after aggregating the sig-
nals for each constituting TSMOM portfolio. As such ATSMOM is an
equally-weighted portfolio of each TSMOM strategy. This way we follow
the industry standard and non-negligibly, we substantially reduce the level
of transaction costs. The resulting strategy is likely to increase/decrease
existing positions only fractionally each day. Only these net changes and
the rollover of positions generate transaction costs.8

5.5 Results

In this section, we start by estimating the transaction costs for the futures
contracts under consideration. Next, we evaluate the performance of the
ATSMOM strategy and compare the approach to the futures-based fac-
tors suggested by MOP and BK, as well as a number of more traditional
risk factors that are used in the context of hedge fund analysis. We also
analyze the relationship between our newly constructed factor and sys-
tematic trend-following CTAs. Finally, we extend our baseline strategy
by decomposing ATSMOM's drivers, which leads to the introduction of a
`speed factor'. We conclude with an analysis of the relationship between
our newly proposed factors and CTAs.

5.5.1 Estimation of Transaction Costs

Existing benchmarks, with the exception of the SG Trend Indicator index,
do not consider transaction costs incurred executing a systematic trend-
following program. To allow for a meaningful performance measurement,
we account for transaction costs. A prerequisite to the formation of a
CTA benchmark that considers costs is, of course, appropriate estimates
of the trading costs typically incurred by CTAs.

8When a futures contract is rolled over to a further-dated contract, the strategy
closes the nearby contract and opens a position in the new contract. The date of the
contract rollover coincides with the rollover used for the construction of the continuous
futures (see the Appendix). On such days, turnover is usually much higher than on
other days. Daily turnover fairly limited, except in the case of short rate futures. These
contracts exhibit very low levels of volatility (0.01% average daily volatility) compared
to other contracts (1.2% average daily volatility) and thus a large notional position
is needed to obtain the same target level of volatility. Omitting the Eurodollar, the
Euribor, and the 90-day bank accepted bill, the turnover equals 29%. Each short rate
futures generates an average daily turnover of around 22-23%, whereas, the average
turnover for the other contracts is just 0.3%.
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To this end, we �rst estimate the explicit trading costs from actual
charges incurred in one of RPM Risk & Portfolio Management's �agship
funds over a one-year period from August 2013 through August 2014.
Explicit trading costs include gross commissions, clearing fees, exchange
fees, NFA (National Futures Association) charges, and brokerage and ex-
ecution charges. Second, we also need to account for implicit transaction
costs arising from the bid-ask spread that traders usually pay market
makers for providing liquidity.9 In line with the standard approach in
the literature, in a round trip, the bid-ask spread can be approximated
by the tick size. This simpli�cation dates back to Demsetz (1968), who
argues that when customers trade through market makers, they will pay
the di�erence between the true price and the bid or ask price on every
trade. We therefore employ the reported tick-size for every contract to
approximate the implicit transaction cost for every contract.10

Ideally, we should re-estimate transaction costs from time to time.
Unfortunately, we only have transaction costs data for a very recent pe-
riod. Following Hurst, Ooi, and Pedersen (2012), we therefore assume
that in the �rst half of the sample period (1991-2002), transaction costs
were twice as high as in the second half of the sample period (2003-2015).
Table 5.3 reports the estimated transaction costs for each asset class.

[Table 3 about here.]

The results in Table 5.3 clearly illustrate that trading costs vary con-
siderably from asset class to asset class; in basis points of traded notional
amount, short-rate futures are the least expensive to trade, though these
contracts are also the least volatile. Trading in VIX and grains futures is
most expensive. This �nding is mainly driven by large tick size indicating

9E�ective spread estimators (Roll, 1984; Smith and Whaley, 1994) and approaches
to estimate bid-ask spread directly from the order book (Locke and Venkatesh, 1997)
have also been proposed. Szakmary, Shen, and Sharma (2010) and Locke and
Venkatesh (1997) point out, however, that these estimates are close to the tick size.
Since estimating the bid-ask spread from the order book is beyond the scope of the
current paper, we stick to the simpli�cation that the tick size is a good proxy for the
bid-ask spread.

10We note that transaction costs are likely to be a nonlinear function of trading
volume. In the absence of transaction-level data, however, it is not possible to quantify
the relationship. In addition, taking into consideration transaction costs and other
frictions such as position limits requires assumptions on the portfolio's size. We refer
to the work of Frazzini, Israel, and Moskowitz (2012) for more details on the impact of
transaction costs on exploiting asset pricing anomalies. In this study, we assume that
transaction costs increase linearly with trading volume.
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lower liquidity in these markets. In all markets, except for energy com-
modities and industrial metals, the half tick size accounts for more than
half of the total estimated trading cost. On average, across all markets
traded, we �nd that the bid-ask spread is responsible for almost three
quarters of the overall transaction costs.

5.5.2 Adaptive TSMOM's Stand-alone Performance

In Table 5.4 we report performance statistics for the adaptive TSMOM
strategy as well as results for the factors suggested by Moskowitz, Ooi,
and Pedersen (2012) and Baltas and Kosowski (2013). The diversi�ed
time series momentum factor (henceforth MOP) is available from Ap-
plied Quantitative Research's (AQR) website. The monthly, weekly, and
daily Futures-based Trend-following Benchmarks (FTB, henceforthBKM ,
BKW , and BKD) are available from Robert Kosowski's website. For the
ATSMOM factor, we report the results both gross and net of transaction
costs in panel A. The existing benchmarks, in panel B, are gross of trans-
action costs. All the factors are scaled to 10% volatility for comparison.

[Table 4 about here.]

We observe that the ATSMOM strategy yields somewhat higher min-
imum and maximum returns than the MOP factor and the BKD and
BKW proposed by Moskowitz, Ooi, and Pedersen (2012) and Baltas and
Kosowski (2013). This suggests that the ATSMOM strategy is success-
ful at limiting downside risk and to allocating more to better performing
assets. The lower downside risk is likely to be the consequence of diversi�-
cation bene�ts as well as the higher rebalancing frequency. In particular,
more frequent rebalancing implies that the strategy will respond more
quickly to changes in trends. In contrast, MOP's factor is rebalanced
monthly. More frequent rebalancing, however, does not guarantee lower
downside risk, as is evident from BKD`s MDD. Taking into account trans-
action costs, the bene�ts resulting from the more pro-active nature of the
adaptive TSMOM strategy clearly come at a cost. The Sharpe ratio net-
of-transaction costs drops to 0.96.

The higher upside of the ATSMOM strategy also translates to a higher
skewness and kurtosis. High skewness is consistent with one of the styl-
ized facts of CTAs in that these funds tend to produce positively skewed
returns (refer to, among others, Fung and Hsieh (2001), Lamm Jr (2005),
and Ding and Shawky (2007)). This feature is also present in the BKW
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and BKD. Before transaction costs, we �nd that the ATSMOM strategy
reports slightly lower average annual returns than the MOP factor, result-
ing in a Sharpe ratio of the ATSMOM that does not di�er signi�cantly
from the Sharpe ratio of MOP (using the approach of Ledoit and Wolf
(2008) to test the statistical signi�cance, we obtain a p-value of 0.288).

The focus of this work is, of course, not on stand-alone performance.
The results so far simply indicate that our newly proposed benchmark
is able to compete with existing benchmarks. Next, we turn to the use
of ATSMOM as a benchmark for the Managed Futures industry. Does
the adaptive nature of our newly proposed factor better capture Managed
Futures funds' performance?

5.5.3 A Benchmark for Managed Futures Funds?

In Panel C of Table 5.4, we report the performance of existing industry
indices. These indices are often used by practitioners to benchmark indi-
vidual managers. The two most commonly used CTA benchmarks are the
BarclayHedge CTA Index and the SG (formerly Newedge) CTA Index.
BarclayHedge also publishes a large cap index called BTOP 50 and SG
a Trend-Following sub-index.11 In addition to these manager-based in-
dices, SG also constructs an asset-based benchmark called the SG Trend
Indicator index which re�ects the returns of a strategy that relies on a
simple 20/120 moving average crossover model. The index is reported net
of transaction costs and a hypothetical 2% management and 20% perfor-
mance fee.

In addition to the above indices, we also construct an AUM weighted
as well as an equal risk-weighted (ERW) index using the systematic trend-
following CTAs selected in Section 5.3. Similarly to the other CTA indices,
these indices are also far from investable as one cannot rebalance a CTA
portfolio on a monthly basis. Lengthy due diligence and legal processes
to opening new managers and closing existing managers makes such an
approach impractical. Nevertheless, the indices are representative of then-
current CTAs. Further, it is reasonable to expect that the TSMOM-
based benchmarks are particularly relevant for systematic trend-followers,

11The BarclayHedge and SG manager-based indices are equal-weighted. This has the
drawback these indices are overweight CTAs that target higher levels of volatility. The
manager-based indices are rebalanced once a year. The BarclayHedge CTA index is a
broad index of CTAs, some of which are not necessarily trend-followers nor systematic.
The SG CTA index includes only the largest 20 CTAs that are open to investment and
report performance and AUM on a daily basis.
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but may be not for other types of CTAs. While time series momentum
benchmarks may also be relevant for discretionary trend-followers, the
data set at our disposal only includes 19 discretionary trend-following
CTAs that meet the selection criteria. For this reason, we do not include
discretionary managers explicitly.

We observe that most of the CTA indices exhibit positive skewness,
drawdowns of approximately 15% at 10% annual volatility (with the ex-
ception of the BTOP 50), and Sharpe ratios of 0.31 to 0.93. The Trend
Indicator strategy reports the highest drawdown, which may be because
of the fact that the index employs just one long-term moving average
crossover. The industry practice, in contrast, may be rather to apply
several di�erent horizons simultaneously, thereby limiting downside risk.

In Figure 1 we plot the 3-year rolling window Sharpe ratio of the
di�erent benchmarks reported in Panel A and B of Table 5.4.

[Figure 1 about here.]

The performance of the proposed ATSMOM strategy is almost always
somewhere between the slower(-to-react) (MOP TSMOM) and faster (BK
Daily) strategies and is less likely to signi�cantly out or underperform the
other benchmarks. This is what one would expect from a strategy that
allocates both to shorter and longer-term strategies. Longer-term strate-
gies usually outperform shorter-term strategies. This was clearly the case
during 2013 through 2015, when the MOP factor clearly outperformed
ATSMOM. However, in periods when shorter-term strategies outperform,
longer-term strategies tend to su�er. Greyserman and Kaminski (2014)
note that it may be di�cult, if not impossible, to determine ex ante the
horizon that will perform best over a given period. In such an environ-
ment, it may be better to trade a wide portfolio of horizons.

To put the performance of the adaptive TSMOM strategy in another
perspective, Figure 2 compares the rolling 3-year Sharpe ratio of the adap-
tive TSMOM strategy, the SG Trend indicator, and the MOP factor, on
the one hand, and peer-based indices, on the other hand. We observe that
the SG Trend indicator performed better in the early period of the sample,
although slightly underperforming the manager-based indices most of the
time. The performance of the adaptive strategy follows the performance
of trend-following managers more closely, especially in recent years. Both
observations are consistent with market participants' sense that the CTA
industry is moving towards increased sophistication and diversi�cation.

[Figure 2 about here.]
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In Table 5.5, we report the correlation of the di�erent futures-based
strategies with the manager indices. With regard to the factors of Baltas
and Kosowski (2013), we include a linear combination of the three separate
factors which we refer to here as `Average BK'.

[Table 5 about here.]

Interestingly, the correlation between the adaptive TSMOM strategy
and the manager-based indices exceeds the correlation of the average of
the BK factors. This suggests that our factor may add value over a com-
bination of the factors of Baltas and Kosowski (2013).

Moving beyond simple summary statistics, we investigate the rela-
tionship between our proposed adaptive TSMOM strategy and exist-
ing (equity-based) risk factors, the primitive trend-following strategies
(PTFS) of Fung and Hsieh (2001) and a number of other recently pro-
posed risk factors in Table 5.6.

[Table 6 about here.]

In column (1) and (2) we report the results for regressions speci�-
cations where we regress the monthly (excess) returns of the adaptive
TSMOM strategy on the excess returns of the Fama and French (1993)
factors and a combination of these and Carhart (1997) cross-sectional mo-
mentum factor. We �nd that the adaptive TSMOM factor produces eco-
nomically large and signi�cant alphas against existing risk factors, both
gross (Panel A) and after transaction costs (panel B). The alphas vary
from 9.5% p.a. to up to 13.2% p.a. These results mimic the �ndings of
Moskowitz, Ooi, and Pedersen (2012) that time series momentum is not
well explained by existing (equity-based) risk factors.

In column (3), we include the tradable (equity-based) liquidity fac-
tor of Pástor and Stambaugh (2003) and �nd that (equity) liquidity is
unrelated to TSMOM. The results in column (4) report the estimates
for a regression where we include the PTFS factors of Fung and Hsieh,
2001. In column (5), we report the results for 8-factor model of Fung
and Hsieh (2004), where we include all �ve PTFS factors rather than just
the commodities, bonds, and foreign exchange PTFS. While the extended
FH model tends to work well for most hedge fund categories (see Fung
and Hsieh, 2004), only the PTFS factors are signi�cant in explaining our
TSMOM factor. The results corroborate earlier �ndings that TSMOM is
generally unrelated to equity risk factors and that it is only partly related
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to existing momentum factors such as Carhart's cross-sectional momen-
tum and the lookback straddle based trend-following factors of Fung and
Hsieh (2001). In the appendix, we follow the work of Moskowitz, Ooi,
and Pedersen (2012), Asness, Moskowitz, and Pedersen (2013), and Koi-
jen et al. (2016) and regress the adaptive TSMOM strategy's returns on
a number of macroeconomic, liquidity, volatility, and sentiment variables.
We �nd that variation in these variables does not explain the observed
excess returns of the adaptive TSMOM strategy.

Finally, we also regress the strategy's returns against the Global Value
and Global (cross-sectional) Momentum factors proposed by Asness, Moskowitz,
and Pedersen (2013), which are arguably more appropriate since these
factors cover multiple asset classes.12 We �nd that both factors perform
somewhat better in explaining the variation in our strategy's returns,
with both coe�cients being signi�cantly positive. The strategy, however,
continues to generate a signi�cant and substantial alpha of 5.64% p.a.
vis-à-vis these factors.

Table 5.7, Panel A, reports the explanatory power of a number of
asset-based style regressions, where we regress the most commonly used
manager-based CTA indices against commonly used asset-style based hedge
fund benchmarks. We consider the period from January 2000 through
January 2012, for which data for all variables is available.

[Table 7 about here.]

Consistent with our earlier �ndings, Fung and Hsieh' PTFS explain
up to 30% of the variation in the manager indices. The 10-factor model,
which considers other hedge fund asset-based style factors in addition
to the PTFS, performs marginally better, although it still only accounts
for 20% to 35% of the variation in CTAs' returns. Turning to the SG
Trend Indicator, an industry benchmark that has gained some traction
among practitioners in the CTA industry, we �nd that this indicator per-
forms surprisingly well over the sample period considered. Moskowitz,
Ooi, and Pedersen (2012) their TSMOM factor also performs consistently
across the CTA benchmarks and produces R²s of around 45%, slightly
lower than that of the Trend Indicator. The three-factor model of Baltas
and Kosowski (2013) yields comparable results, with adjusted R²s rang-
ing from 40% to 50%, in line with the authors' �ndings. The adaptive
TSMOM strategy, however, performs better across the board.

12We thank an anonymous referee for pointing out this additional analysis.
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Next, we also perform 60-month rolling regressions to analyze poten-
tial time-variation in the explanatory power of the di�erent asset-based
style factors. The explanatory power for the di�erent models vis-à-vis the
BarclayHedge index (ERW) is reported in Figure 3.

[Figure 3 about here.]

Two points are worth noting. First, the explanatory power of Fung
and Hsieh's 8-factor model that incorporates the all PTFS factors has im-
proved somewhat the last few years, suggesting that CTAs have behaved
more like other hedge fund categories in recent years. Two, the ATSMOM
factor mimics CTAs' returns more closely in the second half of the sample
period.

These results, while tentative, leave unanswered the question of sta-
tistical signi�cance. To determine whether the observed increase of our
proposed factor in capturing CTAs' returns is meaningful, we compare the
adaptive time-series momentum strategy to the model proposed by Bal-
tas and Kosowski (2013).13 To this end, we �rst estimate the incremental
value added from using the adaptive momentum strategy by calculating
the residuals from a regression that regresses the adaptive time series mo-
mentum strategy against the Futures-based Trend-following Benchmark
(FTB) Strategies. For comparison purposes, we scale all the regressors
including the residuals to 10%. We then rerun the speci�cation of Baltas
and Kosowski, including the obtained residuals. If the coe�cient on the
residuals is statistically signi�cant, then this con�rms that our proposed
factors adds value over and above the FTB. The results are reported in
panel B of table 5.7.

Not only do we �nd that the coe�cient is signi�cant at conventional
levels, and leads to a meaningful increase in the explanatory power of
the models (i.e. a 15 to 20 percentage points increase compared to the
initially reported adjusted R-squared, see Panel A), we also observe that
the relationship is economically signi�cant. In particular, scaled to the
same volatility, we �nd that the coe�cient on the residuals is comparable
in magnitude to Baltas and Kosowski's monthly and weekly factor.

13We refrain from using an incremental F -test because of potential multicollinearity
issues. Table 5.5 indicates that our proposed factor and the average of the FTB exhibit
a 0.8 pairwise Pearson correlation.
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5.5.4 Decomposing Adaptive Time Series Momentum

Our approach uses TSMOM portfolios with lookback horizons from 10
days to 260 days as the building blocks, with the adaptive TSMOM strat-
egy trading the net position. We can look at these 251 portfolios as
separate variables, jointly describing trend-following performance. In an
attempt to better understand CTAs' returns, we try to decompose the
proposed strategy's returns into its constituent (signi�cant) factors. The
question we wish to evaluate here is whether a single factor, which we
call the adaptive TSMOM strategy and which is a simple average of the
TSMOM strategy portfolios, is enough to fully describe time series mo-
mentum strategies in general. The evidence in Greyserman and Kaminski
(2014) suggests that there may be other factors beyond ATSMOM driving
CTA returns.

One way to address this empirical question is to employ a principal
component analysis (PCA) to the constituting TSMOM portfolios. To
analyze the statistical signi�cance of the di�erent principal components
in time series momentum's returns, we draw 10,000 bootstrapped samples
(see Peres-Neto, Jackson, and Somers, 2003) to calculate p-values for the
estimated eigenvalues. The eigenvalues are compared to both the broken-
stick and Marcenko and Pastur distribution (see e.g., Süss, 2012).

We �nd that, at the 90% con�dence level, both distributions indi-
cate that the �rst three principal components, corresponding to the three
largest eigenvalues, are signi�cant. At the 95% level of signi�cance, the
Marcenko-Pastur critical values still point towards three signi�cant com-
ponents. The broken-stick model, however, suggests that only the �rst two
PCs are signi�cant. Regressing the CTA manager-based indices against
the �rst three PCs, we �nd that only the �rst two are signi�cant.

In Figure 4, we plot the loadings of the �rst two principal components
of the 251 horizon portfolios and the corresponding 95% bootstrapped
con�dence bands applying the bootstrap procedure suggested by Peres-
Neto, Jackson, and Somers (2003). The �rst principal component (PC1)
is similar to an equal-weighted portfolio of horizon portfolios, which is
consistent with the de�nition of the adaptive TSMOM strategy. Indeed,
the �rst PC shows a correlation of 0.99 with the strategy's net returns.14

14

ATSMOM, by design, assigns an equal weight to each TSMOM strategy with a
lookback window between 10 and 260 days. This implies that there is a signi�cant
amount of overlap in the lookback windows. For example, the 10-day window is also
part of the 11-day, the 12-day, up to the 260-day window (though it becomes increas-
ingly less important in determining the trend). To generalise, any N-day window is
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[Figure 4 about here.]

The second principal component (PC2), however, does not load uni-
formly on the di�erent constituent portfolios. Instead, Figure 4 indicates
that PC 2 is equivalent to a strategy that buys shorter horizon (strategies
that react fast to changes in trends) and sells longer horizon momentum
strategies (strategies that react slowly to changes in trends). It can there-
fore be interpreted as a �speed factor�, referring to the trading speed of the
TSMOM strategies. The factor is close to the opposite of the speed factor
in Greyserman and Kaminski (2014), which buys longer (slower) and sells
shorter-horizon (faster) momentum strategies. Nevertheless, without loss
of generality, we take the negative of PC 2 to get a speed factor similar
in Greyserman and Kaminski (2014). Principal components are indi�er-
ent to scaling since they are extracted in a way to show zero pairwise
correlation.

We know that longer-term momentum strategies outperform their shorter-
term counterparts. At the same time, however, longer-term strategies also
generate lower skewness (see Table 5.4). The positive average return of
the speed factor may thus be a compensation for the lower skewness of
longer-term strategies. In that sense, the speed factor can be interpreted
as a risk factor. The reasoning that the lower skewness is compensated
by the speed factor is related to the arguments provided by Greyserman
and Kaminski (2014). They argue that the speed factor is a reward for
higher loss tolerance of longer-term momentum strategies.

In Figure 5 we plot the Sharpe ratio for a portfolio that combines
ATSMOM with the speed factor, net of transaction costs, as a function of
the weight of the speed factor. If the speed factor is scaled to the volatility
of the adaptive TSMOM strategy then, through diversi�cation and lower
trading costs, the factor contributes positively to the overall performance
if its weight is capped at 20% (see Figure 5). Diversi�cation follows from
the fact that, by construction, the speed factor has a correlation of zero
with the adaptive TSMOM strategy (although the sample correlation may
deviate from zero). Thus, calculating the net returns of the speed factor,
we assume that it has a (risk) weight equal to 20% of the overall adaptive
strategy.

part of all longer-term windows. For this reason, the short-term windows are generally
more "over-weight" in the overall strategy. This becomes obvious in Figure 4, where
PC1 and PC2 load collectively more in the shorter-term signals. These dynamics may
explain the large signi�cance of the �rst two eigenvalues. We thank an anonymous
referee for this valuable insight.
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[Figure 5 about here.]

We note that, although the ATSMOM strategy is a tradable momen-
tum trading program, PC2 is not yet a tradable factor. This is because
PC2 is not net of transaction costs and its composition relies on load-
ings that are estimated in-sample. Without accounting for real trading
conditions, the performance measurement vis-à-vis this factor may be mis-
leading. Therefore, we construct a tradable factor which we henceforth
refer to as the speed factor. The weights of the horizon portfolios in the
speed factor at any point in time are proportional to the loadings esti-
mated over the entire past history up to the penultimate day, to avoid a
look-ahead bias. The initial training period is one year.

It is unlikely that a CTA will trade a strategy similar to the speed
factor on a stand-alone basis or separately from a more general TSMOM
strategy. It may instead be the case that the speed factor is used as an
overlay to complement a more general trend-following strategy, and that
only the net positions are traded. From this perspective, only the addi-
tional trading costs related to the speed factor need to deducted. In what
follows, we discuss the speed factor's performance from this perspective.

To further analyze the newly introduced speed factor, we regress the
factor against existing risk factors in Table 5.8.

[Table 8 about here.]

As expected, we �nd that the speed factor is unrelated to the adaptive
TSMOM strategy. At the same time, however, it appears to be related to
BK's factors, the PFTS factors, the Carhart cross-sectional momentum
factor, and the Stambaugh-Pastor liquidity factor. The positive associa-
tion with the liquidity factor may be surprising at �rst sight, especially in
light of the earlier �nding that the adaptive TSMOM strategy is unrelated
to liquidity risk. The speed factor, however, invests in longer-term (slower-
to-react) momentum and sells shorter-term (faster-to-react) momentum
strategies and can thus be expected to be more exposed to liquidity risk
as longer-term systems accommodate slower to a situation when liquid-
ity dries up. On account that the speed factor is an auxiliary factor, we
calculate descriptive statistics for the speed factor's and the combined
portfolio's returns net of transaction costs in Table 5.9.

[Table 9 about here.]

The speed factor itself underperforms the adaptive TSMOM strategy.
Because of its complementary nature, however, stand-alone performance
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is not that meaningful. We therefore focus on the statistics with regard
to the portfolio that allocates 80% to the adaptive TSMOM strategy and
20% to the speed factor. Combining the speed factor with the baseline
ATSMOM strategy, we �nd some improvement for a number of key per-
formance measures compared to the standard adaptive TSMOM strategy.
We can conclude that the speed factor adds some value from a portfolio
management point of view.

5.5.5 The Speed Factor, Asset Class-based Factors

and CTA Performance

With the introduction of the speed factor, we repeat the previous analy-
sis where we regress the various manager-based indices against the newly
introduced factors. We also extend the analysis by considering asset-class
speci�c factors for commodity, equity index, �xed income, and foreign ex-
change futures. The asset class-based factors are scaled to 10% volatility.
The results can be found in Table 5.10.

[Table 10 about here.]

As we have already discussed in the previous section, the ATSMOM
strategy is able to explain a substantial part of the variation in Managed
Futures funds' returns (Table 5.10, Panel A) indicating no abnormal re-
turns among the CTA indices. This suggests that the ATSMOM strategy
captures CTAs' trading behavior fairly accurately.

Extending the model with the speed factor increases the �t of most of
the regressions, with the exception of the SG indices (Table 5.10, Panel
B). The intercepts of the regressions have also increased, but remain sta-
tistically insigni�cant in all but one case. The ERW index generates a
signi�cant alpha of 1.69% p.a.

In Panel C of Table 5.10, we report the results for the asset class-
based adaptive TSMOM strategies. Applying asset class-based adap-
tive TSMOM benchmarks has two apparent advantages over a diversi�ed
adaptive TSMOM strategy. First, the asset class-based benchmarks im-
prove the explanatory power �ve percentage points on average. Second,
asset class benchmarks allow for a style analysis. Since we have scaled
the asset class-based factors to 10% volatility p.a., we can compare the
loadings directly. Looking at Table 5.10, Panel C and Panel D, we �nd
that CTAs allocate most to �xed income futures and least to FX and
commodity futures. However, the weight of each asset class tends to de-
pend on fund size; large capitalization indices, most of all, the BTOP50
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and the AUM-weighted Barclay systematic TF invest more in more liquid
markets, i.e., �xed income and less in commodities. Small capitalization
managers, gauged by the Barclay CTA and equal risk-weighted Barclay
systematic TF indices, invest more evenly across asset classes.

Employing the asset-class based ATSMOM factors and the speed fac-
tor, we turn to individual CTAs. In particular, we apply the model to all
the individual funds included in the BarclayHedge sample that have at
least a one-year track record after inclusion in the database (see Section
5.3). We note that dropping funds that stop reporting before turning two
years (one-year of track record in the database in addition to the earlier
correction for back�ll bias) induces some survivorship bias. Table 5.11 re-
ports the mean and median of the parameter estimates for 335 funds that
have produced jointly signi�cant betas at the 10% level of signi�cance.

[Table 11 about here.]

On average, our model is able to explain 40% of the variation in in-
dividual CTAs' returns. The average (median) alpha is positive at 0.29%
(0.82%) p.a., with 16% of the fund alphas signi�cantly positive and 6%
signi�cantly negative. For the funds for which we obtain a signi�cant al-
pha, we observe considerable variation. Funds with signi�cantly positive
alphas generate mean (median) alphas of 4.77% (3.91%) p.a. Funds with
signi�cantly negative alphas underperform the adaptive TSMOM strate-
gies by an average (median) of 9.55% (6.56%) p.a.

Interestingly, the Fixed Income adaptive TSMOM factor is signi�cant
in 70% of the funds. Thus, CTAs tend to be exposed to �xed income most
frequently and this result corroborates with the fact that manager-based
indices load most heavily on the Fixed Income factor. The commodity
sector is the second most important one, being signi�cant in 64% of the
cases. The equity factor is signi�cant in 53%, whereas the FX factor is
signi�cant for 48% of the funds. The speed factor is also an important
driver of CTA returns being signi�cant in half of the regressions.

Having obtained the alphas versus our proposed factors for the indi-
vidual CTAs, we continue to investigate the role of fund characteristics
in generating alpha. For this particular analysis, we regress the alpha for
each fund for every year on yearly fund characteristics that include lagged
alpha, fund size, fund age, a standard measure of fund �ow, R² and the
relative factor exposures of the performance regressions, the level of man-
agement and incentive fees, margin-to-equity (ME) ratio, and round turns
per million dollars per year.
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The alphas are estimated and therefore subject to measurement error.
If we do not correct for this, the measurement error will generate het-
eroscedasticity in the panel regression residuals and it may cause standard
signi�cance tests to be invalid. To correct for potential heteroscedastic-
ity, we weight each observation by the reciprocal of the standard errors
of the performance regressions, as in Dahlquist, Engström, and Söderlind
(2000).

Table 5.12 reports the results controlling for time-�xed e�ects. In
column (1) we omit the margin-to-equity (ME) ratio and round turns per
million USD per year statistics, as they are only available for a subset of
CTAs. We run a speci�cation that includes the ME ratio and round turns
per million in column (2) and (3) of Table 5.12 , respectively.

[Table 12 about here.]

The results in Table 5.12 suggest strong momentum in Managed Fu-
tures funds' performance. CTAs that outperformed our benchmark port-
folios in the previous year tend to repeat that superior performance the
following year. Fund size appears to negatively a�ect risk-adjusted perfor-
mance. Somewhat surprising though, aging is positively related to better
alphas. However, for instance, the expected risk-adjusted performance of
a �ve year old CTA that has 1 billion USD under management is, ceteris
paribus, 1.7% p.a. less than that of a CTA that manages only 10 million
USD but it is only two years old indicating that interpreting one of the
variables alone can be misleading.

Contemporaneous fund �ows do not a�ect risk-adjusted performance.
This suggests that capacity constraints are less an issue for CTAs. Adding
the R²s of the performance regressions, we test and reject the hypothesis
in Sun, Wang, and Zheng (2012) that hedge funds whose returns are less
explainable by risk factors bear more managerial skills. In contrast, funds
that engage in pure trend-following approaches tend to generate higher
risk-adjusted performance. Thus, alpha does not appear to derive from
being less mainstream, but from other sources. This may include superior
risk management, better trade execution, and lower explicit transaction
costs.

The factor weights are simply calculated from absolute loadings in the
individual performance regressions. All else equal, we �nd that higher
equity momentum exposure is likely to result in higher risk-adjusted per-
formance. In contrast, funds with higher allocations to Fixed Income TF
strategies tend to generate lower alpha. Interestingly, CTAs that have
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higher exposure to the speed factor signi�cantly outperform those who
have less exposure. The speed factor exposure is likely to be a proxy for
the level of sophistication of the manager, since our results suggest that
there is some bene�t from allocating to the speed factor in terms of di-
versi�cation and lower transaction costs. All in all, asset exposure, i.e.,
style is partly accountable for superior risk-adjusted performance.

Higher margin usage over capital invested (ME ratio) appears to be
a sign of better performance, most probably through economies of scale.
This result suggests that higher risk-taking does not, per se, imply inferior
risk management and thus poorer performance. Finally, more trading in
terms of rounds per million USD per year does not a�ect risk-adjusted
performance.

Only a small part of the cross-sectional variation in estimated alphas
is attributable to fund characteristics such as past performance, fund age,
fund size, fees, and style. We conclude that the alphas obtained vis-à-
vis our new risk factors can, to some extent, be interpreted as capturing
managerial skill.

5.6 Conclusion

In this paper we propose a time series momentum strategy that changes
the exposure to futures markets more dynamically by aggregating time se-
ries momentum signals over a wide range of horizons. This way, the model
increases the allocation to the markets where trends are more well-behaved
and decreases exposure to the markets where trends are reversing. We
�nd that our approach better explains Managed Futures funds' reported
returns. As such, our approach can aid practitioners in benchmarking
and manager selection. We also �nd that a subset of funds continues to
exhibit positive alpha vis-à-vis our new risk factors. Moreover, the ab-
normal returns of these funds can only be partly explained by observable
fund characteristics and thus appear indicative of skill.

Importantly, we document strong momentum in CTA risk-adjusted
performance, as stellar performance in one year tends to repeat in the
subsequent year, and �nd evidence that fund size is negatively, whereas
fund age is positively related to risk-adjusted performance. Fund style,
i.e., asset class exposure and the applied trading strategy, also contributes
to CTA alphas. Contemporaneous fund �ows, in contrast, do not a�ect
risk-adjusted performance, suggesting capacity constraints are less an is-
sue for CTAs. Higher management and performance fees do not signal
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prospect for better performance.
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Table 5.1: Example Aggregating Trend-following Signals

Security A Security B rt,A rt,B
t− 3 90 90
t− 2 130 83 44.44% -8.28%
t− 1 140 120 7.69% 45.37%
t 125 125 -10.71% 4.17%

Signal Signal σA σB
Sign(t− 1, t) -1 1 28.08% 28.08%
Sign(t− 2, t) -1 1
Sign(t− 3, t) 1 1
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Table 5.2: Summary Statistics Futures

Start End Cur µ(%) σ(%) Skew. Kurt. MDD (%) SR

Mexican Peso 04-95 09-15 USD 4.82 10.52 -0.97 6.73 -31.20 0.45

Swiss Franc 01-90 09-15 USD 1.11 11.24 0.10 3.92 -49.41 0.10

British Pound 01-90 09-15 USD 1.49 9.19 -0.60 5.41 -29.41 0.16

Canadian Dollar 01-90 09-15 USD 0.40 7.87 -0.34 6.28 -28.21 0.05

Japanese Yen 01-90 09-15 USD -1.01 10.89 0.60 6.03 -61.65 -0.09

Australian Dollar 01-90 09-15 USD 2.57 11.52 -0.33 4.75 -41.30 0.22

US Dollar Index 01-90 09-15 USD -0.71 8.53 0.36 3.78 -44.33 -0.08

Euro FX 05-98 09-15 USD 0.27 10.37 -0.03 3.82 -32.35 0.03

SA Rand 05-97 09-15 USD 1.82 16.42 -0.18 3.73 -46.89 0.11

Brazilian Real 11-95 09-15 USD 4.44 18.42 -1.47 13.38 -53.45 0.24

USD/SEK 05-00 09-15 SEK 0.06 11.85 0.17 3.42 -45.53 0.01

USD/NOK 05-00 09-15 NOK -0.86 11.78 0.49 4.30 -50.80 -0.07

NZ Dollar 05-97 09-15 USD 3.12 13.36 -0.16 4.30 -41.34 0.23

AUD/NZD 05-99 09-15 NZD -0.74 7.74 0.02 2.79 -28.88 -0.10

AUD/Japan Yen 05-02 09-15 JPY 7.35 15.11 -0.88 6.24 -42.61 0.47

Euro FX/ Yen 01-99 09-15 JPY 2.88 12.49 -0.55 5.12 -40.58 0.23

EUR/Nok 09-11 09-15 NOK 3.55 6.80 0.11 2.46 -8.55 0.52

EUR/SEK 06-11 09-15 SEK -0.31 4.68 -0.81 4.05 -11.34 -0.07

EUR/GBP 01-99 09-15 GBP -0.34 8.16 1.63 12.32 -27.73 -0.04

EUR/CHF 01-99 09-15 CHF -0.88 6.58 -2.60 19.03 -34.66 -0.14

CAC-40 Index 01-90 09-15 EUR 4.59 19.29 -0.34 3.20 -62.89 0.23

Nikkei 225 09-90 09-15 USD 0.42 21.60 -0.11 3.37 -77.47 0.02

Russell 2000 02-93 09-15 USD 7.88 19.12 -0.49 4.19 -53.95 0.40

S&P Midcap 400 02-92 09-15 USD 9.40 16.61 -0.66 5.30 -52.79 0.54

Hang Seng 01-90 09-15 HKD 12.24 26.13 0.25 5.34 -58.90 0.44

DAX 11-90 09-15 EUR 7.12 20.74 -0.51 4.88 -71.72 0.33

S&P 500 01-90 09-15 USD 6.67 14.57 -0.62 4.26 -58.65 0.45

Topix Index 04-90 09-15 JPY 0.21 19.93 -0.17 4.07 -73.13 0.01

FTSE 100 Index 01-90 09-15 GBP 3.44 14.52 -0.40 3.45 -52.82 0.23

Swiss Market 11-90 09-15 CHF 9.15 15.80 -0.59 4.44 -52.65 0.56

Ibex 35 Index 04-92 09-15 EUR 7.87 21.77 -0.22 3.62 -59.23 0.35

MIB 30 Stock 11-94 09-15 EUR 4.61 22.50 0.15 3.66 -68.88 0.20

Nasdaq 100 04-96 09-15 USD 11.18 26.73 -0.27 4.09 -83.03 0.40

MSCI Taiwan 01-97 09-15 USD 5.54 26.56 0.13 3.85 -64.71 0.20

DJ Industrial Avg 10-97 09-15 USD 5.01 14.88 -0.63 4.31 -49.75 0.33

KOSPI 200 Index 01-98 09-15 KRW 10.43 28.99 0.43 4.07 -58.55 0.34

DoJStoxx 50 06-98 09-15 EUR 1.45 16.66 -0.52 3.82 -66.68 0.09

DJ Euro Stoxx 06-98 09-15 EUR 2.40 19.68 -0.43 3.80 -64.00 0.12

S&P Canada 60 09-99 09-15 CAD 5.24 14.93 -0.71 4.66 -51.85 0.34

CBOE VIX 03-04 09-15 USD -30.93 62.44 1.95 9.15 -99.89 -0.59

OMX 10-92 09-15 SEK 11.87 21.71 0.04 4.72 -72.40 0.52

US MSCI EAFE 09-10 09-15 USD 4.81 15.64 -0.36 3.16 -24.49 0.30

Amsterdam EOE 10-92 09-15 EUR 7.70 19.62 -0.74 4.81 -68.87 0.38

NYSE Comp 01-90 09-11 USD 5.04 14.70 -0.81 5.11 -57.40 0.34

All Ordinary SPI 01-90 09-01 AUD 2.93 14.26 -0.31 2.83 -28.56 0.20

SPI 200 05-00 09-15 AUD 3.72 13.25 -0.75 3.66 -51.85 0.28
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Table 5.2: Summary Statistics Futures (Cont.)

Start End Cur µ(%) σ(%) Skew. Kurt. MDD (%) SR

Treasury Bonds 01-90 09-15 USD 5.46 9.31 0.10 5.16 -15.83 0.57

Canada 10Y Gov 01-90 09-15 CAD 4.31 6.00 -0.03 3.30 -14.80 0.71

3M-Eurodollar 01-90 09-15 USD 0.19 0.22 0.68 5.77 -0.68 0.87

10-YR Treasury 01-90 09-15 USD 4.47 5.94 0.13 4.73 -11.69 0.74

Japan 10Y Gov 04-90 09-15 JPY 3.76 4.18 -0.58 7.04 -9.59 0.89

Long Gilt 01-90 09-15 GBP 3.64 6.81 0.00 3.44 -15.65 0.53

US 2-YR Treasury 06-90 09-15 USD 1.60 1.64 0.26 3.56 -3.82 0.97

US 10 YR Bonds 01-90 09-15 AUD 4.64 7.87 -0.01 3.26 -23.59 0.58

US 90-Day Bill 01-90 09-15 AUD 0.13 0.25 0.43 6.61 -0.61 0.52

US 3 Year Bonds 01-90 09-15 AUD 2.19 3.41 -0.01 5.05 -8.75 0.64

US 5-YR Treasury 01-90 09-15 USD 3.23 4.02 0.10 3.91 -8.52 0.79

Muni Note Index 01-90 03-06 USD 5.23 6.79 -0.52 3.92 -16.66 0.76

Euro Buxl 10-98 09-15 EUR 6.19 10.73 0.76 5.05 -17.15 0.56

German Bund 10-98 09-15 EUR 4.06 5.27 0.11 2.85 -9.93 0.76

German Bobl 10-98 09-15 EUR 2.60 3.17 -0.02 2.75 -7.42 0.81

German Schatz 10-98 09-15 EUR 0.90 1.31 0.16 4.00 -4.01 0.69

3Y Korean Bond 09-99 09-15 KRW 2.72 3.11 0.39 5.30 -4.86 0.86

PIBOR 01-90 06-99 EUR -0.01 0.35 -1.47 10.81 -1.56 -0.02

3M Euribor 09-98 09-15 EUR 0.08 0.15 2.38 21.61 -0.52 0.53

Gas Oil 01-90 09-15 USD 11.13 32.05 0.48 5.15 -73.39 0.33

Nat Gas 04-90 09-15 USD -11.63 48.05 0.57 4.63 -99.81 -0.26

Brent Crude 01-90 09-15 USD 12.10 33.39 0.60 6.76 -75.63 0.34

Heating Oil 06-06 09-15 USD -4.13 28.23 -0.19 3.94 -70.00 -0.15

Light Crude 01-90 09-15 USD 5.94 33.65 0.44 5.26 -87.15 0.17

Unleaded Gas 01-90 12-06 USD 18.05 36.80 0.84 5.93 -63.18 0.46

Rbob Electronic 10-05 09-15 USD 4.73 33.08 -0.56 5.60 -70.44 0.14

Copper 01-90 09-15 USD 8.19 25.72 -0.03 5.71 -63.90 0.31

Platinum 01-90 09-15 USD 4.40 20.23 -0.55 6.52 -62.28 0.21

Silver 01-90 09-15 USD 4.44 28.45 0.12 3.87 -71.55 0.15

Gold 01-90 09-15 USD 2.05 15.77 0.18 4.25 -61.55 0.13

Palladium 01-90 09-15 USD 10.94 32.68 0.47 6.68 -86.15 0.32

Live Cattle 01-90 09-15 USD 0.43 13.15 -0.69 5.81 -45.11 0.03

Live Hogs 01-90 09-15 USD -5.02 24.49 -0.08 3.63 -94.06 -0.21

Pork Bellies 01-90 07-11 USD 6.58 38.09 0.84 4.61 -80.00 0.17

Feeder Cattle 01-90 09-15 USD 3.16 13.59 -0.47 5.24 -38.61 0.23

Corn 01-90 09-15 USD -2.08 26.16 0.32 3.96 -84.50 -0.08

Oat 01-90 09-15 USD -0.09 29.49 0.65 4.66 -88.85 0.00

Soybeans 01-90 09-15 USD 5.67 23.49 -0.01 3.68 -50.50 0.24

Soybean Meal 01-90 09-15 USD 12.46 25.81 0.46 4.24 -43.72 0.46

Soybean Oil 01-90 09-15 USD -0.48 24.34 0.13 4.64 -72.25 -0.02

Wheat W 01-90 09-15 USD -4.88 27.69 0.46 4.81 -94.44 -0.18

Wheat 01-90 09-15 USD 0.03 27.21 0.51 4.65 -82.15 0.00

Cocoa 01-90 09-15 USD 0.34 29.02 0.49 4.17 -90.23 0.01

Cotton No. 2 01-90 09-15 USD -1.83 26.19 0.26 3.87 -93.14 -0.07

Co�ee 01-90 09-15 USD -1.28 37.88 1.21 6.19 -94.21 -0.03

Orange Juice 01-90 09-15 USD -3.98 30.04 0.48 4.35 -91.99 -0.14

Sugar No. 11 01-90 09-15 USD 2.59 30.71 0.26 3.59 -72.49 0.08

Lumber 01-90 09-15 USD -6.22 31.10 0.45 4.16 -97.52 -0.21

Nickel 01-90 09-15 USD 7.79 33.17 0.24 3.52 -79.39 0.23

Aluminum 10-92 09-15 USD 3.55 18.46 -0.34 7.23 -60.47 0.19

Lead 01-90 09-15 USD 7.23 26.52 -0.01 4.34 -72.70 0.26

Zinc 01-90 09-15 USD 4.21 24.56 -0.03 4.84 -74.94 0.17
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Table 5.6: Adaptive TSMOM strategy against existing risk factors

Panel A: Gross of Transaction Costs

(1) (2) (3) (4) (5) (6)

MKT -0.1344* -0.0605 -0.0565 -0.0691
(0.070) (0.069) (0.066) (0.063)

SMB 0.0218 -0.0083 -0.0045 0.0589
(0.054) (0.055) (0.055) (0.048)

HML -0.0228 0.0473 0.0350
(0.070) (0.067) (0.070)

MOM 0.1943*** 0.1964***
(0.042) (0.043)

Liquidity factor -0.0865
(0.056)

PTFSBD 0.0092 0.0010
(0.015) (0.014)

PTFSFX 0.0334** 0.0288**
(0.014) (0.013)

PTFSCOM 0.0455*** 0.0441***
(0.015) (0.015)

PTFSIR 0.0007 0.0008
(0.012) (0.012)

PTFSSTK 0.0427** 0.0408**
(0.018) (0.018)

EM 0.0495
(0.043)

Bond Factor -0.0157
(0.012)

Credit Spread 1.2142
(1.460)

Global VAL 0.3489**
(0.137)

Global MOM 0.8587***
(0.123)

Constant 0.0104*** 0.0089*** 0.0094*** 0.0121*** 0.0118*** 0.0060***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

R-squared 0.033 0.118 0.129 0.195 0.237 0.239

Panel B: Net of Transaction Costs

(1) (2) (3) (4) (5) (6)

Constant 0.0091*** 0.0076*** 0.0081*** 0.0108*** 0.0105*** 0.0047***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

R-squared 0.032 0.114 0.125 0.193 0.236 0.236

Adaptive TSMOM strategy's returns are regressed against existing risk factors. Panel A reports the
results for strategy gross of transaction costs. Panel B reports the alpha for the same regressions
using the net-of-transaction costs strategy returns. The risk factors for the Fama and French (1993)
and Carhart (1997) models have been downloaded from Kenneth French's website. The Pástor
and Stambaugh (2003) traded liquidity factor has been obtained from Lubos Pastor's website. The
Fung and Hsieh (2001) factors have been taken from David A. Hsieh's Hedge Fund Data Library.
The Global value and Global Momentum Factor have been taken from AQR's website. *, **,
and *** denote signi�cance at the 90, 95, and 99% level, respectively. Robust standard errors in
parentheses.
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Table 5.8: Speed Factor Regressions Against Existing Risk Factors.

(1) (2) (3) (4) (5) (6) (7)

MKT 0.0370
(0.068)

EM -0.0328
(0.052)

SMB 0.0654
(0.062)

PTFSBD -0.0581*** -0.0520***
(0.013) (0.012)

PTFSFX -0.0135 -0.0111
(0.013) (0.013)

PTFSCOM -0.0295** -0.0277**
(0.013) (0.013)

PTFSIR -0.0170*** -0.0165***
(0.006) (0.006)

PTFSSTK -0.0557*** -0.0505***
(0.015) (0.015)

BOND -0.0145
(0.009)

CREDIT 0.5737
(1.010)

BKM 0.5603***
(0.048)

BKW -0.5779***
(0.052)

BKD -0.1927***
(0.056)

LIQ 0.1715***
(0.058)

ATSMOM -0.0310
(0.092)

MOP 0.3122***
(0.083)

GVAL 0.2889*
(0.164)

GMOM 0.6829***
(0.168)

Constant 0.0021 -0.0020 0.0018 -0.0020 -0.0012 0.0004 -0.0012
(0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002)

Observations 215 215 215 215 215 215 215
R-squared 0.001 0.122 0.637 0.296 0.268 0.050 0.173

The tradeable speed factor returns, net of transaction costs, are regressed against existing risk
factors. The adaptive TSMOM returns are net of transaction costs. The risk factors for the
Fama and French (1993) and Carhart (1997) models have been downloaded from Kenneth French's
website. The Pástor and Stambaugh (2003) traded liquidity factor from January 1994 to December
2014 has been obtained from Lubos Pastor's website. The Fung and Hsieh (2001) factors have been
taken from David A. Hsieh's Hedge Fund Data Library. *, **, and *** asterisks denote signi�cance
at 90, 95, and 99% level, respectively. Robust standard errors in parentheses.
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Table 5.9: Summary Statistics for the Speed Factor

ATSMOM (Net of

TCs)

Speed Factor (Net

of TCs)

Portfolio 80/20 (net

of TCs)
Min (%) -5.91 -13.92 -6.17
Max (%) 15.22 8.89 13.17
Ann. Mean (%) 9.62 3.32 10.10
Ann. Median (%) 7.73 7.83 11.58
Ann. St. Dev. (%) 10.00 10.00 10.00
Skewness 0.71 -0.97 0.37
Kurtosis 5.61 5.74 4.21
Sharpe 0.96 0.33 1.01
Sortino 1.93 0.39 1.99
Max DD (%) -14.13 -34.27 -13.08
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Table 5.10: Asset pricing regressions on manager-based indices

Barclay BTOP 50 SG CTA SG Trend BH Syst

Trend

(AUM)

BH Syst

Trend

(ERW)

Panel A
ATSMOM 0.4638*** 0.6541*** 0.6878*** 0.6842*** 0.8258*** 0.4398***

(0.041) (0.051) (0.065) (0.072) (0.074) (0.032)
Constant 0.0001 -0.0024** -0.0018 -0.0021* 0.0002 0.0011

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.483 0.503 0.611 0.605 0.565 0.617

Panel B
ATSMOM 0.4518*** 0.6332*** 0.6881*** 0.6840*** 0.8200*** 0.4361***

(0.047) (0.053) (0.064) (0.071) (0.080) (0.036)
Speed Factor -0.1473*** -0.1219*** 0.0056 -0.0031 -0.1873*** -0.1168***

(0.037) (0.044) (0.052) (0.049) (0.062) (0.027)
Constant 0.0007 -0.0018 -0.0019 -0.0021* 0.0008 0.0014**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.528 0.530 0.611 0.605 0.594 0.660

Panel C
ATSMOMCOM 0.5718*** 0.5444*** 0.6454*** 0.6478*** 0.6947*** 0.5088***

(0.105) (0.111) (0.142) (0.143) (0.147) (0.069
ATSMOMEQ 0.2316*** 0.3742*** 0.4771*** 0.5908*** 0.6726*** 0.2872***

(0.066) (0.081) (0.093) (0.090) (0.093) (0.045)
ATSMOMFI 0.6985*** 1.1444*** 1.2303*** 1.2746*** 1.5401*** 0.7005***

(0.088) (0.125) (0.152) (0.154) (0.149) (0.070)
ATSMOMFX 0.4982** 0.7636** 0.6464** 0.4397 0.6398* 0.3963**

(0.214) (0.307) (0.297) (0.273) (0.349) (0.173)
Constant -0.0001 -0.0027** -0.0021** -0.0023** -0.0000 0.0009

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.529 0.571 0.676 0.667 0.632 0.662

Panel D
ATSMOMCOM 0.5617*** 0.5490*** 0.6454*** 0.6479*** 0.6837*** 0.5016***

(0.109) (0.113) (0.142) (0.144) (0.151) (0.072)
ATSMOMEQ 0.2544*** 0.3936*** 0.4770*** 0.5898*** 0.6848*** 0.2952***

(0.068) (0.081) (0.091) (0.089) (0.095) (0.047)
ATSMOMFI 0.6630*** 1.1086*** 1.2303*** 1.2743*** 1.4943*** 0.6705***

(0.090) (0.126) (0.152) (0.154) (0.140) (0.064)
ATSMOMFX 0.4739** 0.7027** 0.6464** 0.4394 0.6500* 0.4030**

(0.215) (0.292) (0.298) (0.274) (0.360) (0.179)
Speed Factor -0.1370*** -0.1154*** -0.0008 -0.0074 -0.1617*** -0.1062***

(0.036) (0.038) (0.046) (0.045) (0.056) (0.025)
Constant 0.0005 -0.0021** -0.0021* -0.0023** 0.0005 0.0012**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.564 0.591 0.676 0.667 0.653 0.697

This table shows the results of the asset pricing regressions against net returns (net of transaction
costs) of the adaptive TSMOM strategy, the adaptive TSMOM strategy and speed factor, the asset
class based adaptive TSMOM strategies, and the asset class based adaptive TSMOM strategy and
speed factor in Panel A, B, C, and D, respectively. The asset class-based factors are adjusted to 10%
annualized volatility. The dependent variables of the regressions are returns of various manager-
based indices which are net of transaction costs. *, **, and *** asterisks denote signi�cance at 90,
95, and 99% level, respectively. Robust standard errors in parentheses.
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Table 5.12: Panel regressions on alphas

(1) (2) (3)
Alpha (t-1) 0.17*** 0.20*** 0.21***
Log (FuM) -0.07** -0.12*** -0.15***
Age 0.10*** 0.09*** 0.09***
Fund Flow 0.00 0.00 0.00
R² Perfor. Regr. 3.53*** 3.50*** 4.26***
Com. Exp. -1.10 -0.31 -0.17
Eq. Exp. 3.21*** 3.11*** 2.68***
FI Exp. -1.47** -1.46** -1.31*
FX Exp. -1.11 -1.07 -0.15
Speed Exp. 3.57*** 3.69*** 3.47***
Mgmt. Fee -0.25 -0.34* -0.29
Incent. Fee -0.09*** -0.12*** -0.16***
ME Ratio 0.11*** 0.13***
Round Turns / MUSD 0.00

No. of Obs. 2254 2007 1615
Adj. R² 0.30 0.33 0.37

This table shows the cross-sectional analysis of the estimated alphas for
335 individual CTAs. The round turns per million USD per year and
the margin-to-equity (ME ratio) statistics are not available for each CTA,
therefore, in column (2) and (3) we repeat the regressions for the subset
of funds for which data are available. The reported coe�cients rely on
a weighted least squares (WLS) panel regression that accounts for CTA
period speci�c �xed e�ects. The dependent variable which is the alpha
estimates from the performance regressions (see Table 5.11) is subjected
to measurement errors proportional to the standard errors of the perfor-
mance regressions. Therefore, in the estimation the weights are estimated
standard errors of the performance regressions. The standard errors are
clustered on both the speci�c manager and period. *, **, and *** as-
terisks denote signi�cance at 90, 95, and 99% level, respectively. Robust
standard errors in parentheses.
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Figure 1: 3-Year Rolling Sharpe Ratio Of Rival Objective Benchmarks
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Figure 2: 3-Year Rolling Sharpe Ratios Of Manager Indices And The
Benchmarks
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Figure 3: 60-Month Rolling Window Regression BarclayHedge (ERW)
vs.CTA Benchmarks
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Figure 4: The Loadings Of The First Two Principal Components Of Hori-
zon Portfolios
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Figure 5: Portfolio performance as a function of speed factor's weight

Weight speed factor
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ha

rp
e 

R
at

io

-0.2

0

0.2

0.4

0.6

0.8

1

158



159


	Voorblad
	Chapter 1
	Chapter 2
	Chapter 3
	chapter 4

