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Nederlandstalige
samenvatting

Dit doctoraatsproefschrift is een verzameling van vijf essays die bijdragen
leveren tot de literatuur rond alternatieve beleggingen. Hoewel elk van de
hoofdstukken grotendeels op zichzelf staat, is er desondanks een duidelijke
rode draad doorheen de verschillende hoofdstukken. Het is namelijk zo dat
elk van de hoofdstukken verband houdt met specifieke beleggingsstrate-
gieén en een fondsenindustrie (‘Managed Futures’ of ‘Commodity Trading
Advisors’) die dit soort strategieén in de praktijk toepast.

In het eerste hoofdstuk onderzoeken we de kostenstructuur van Man-
aged Futures fondsen en hefboomfondsen in het algemeen. We bekijken
de typische kostenstructuur van hefboomfondsen, welke inhoudt dat de
fondsbeheerder 2% beheerskosten per jaar aanrekent en een prestatiever-
goeding gelijk aan 20% van de gerealiseerde meerwaarde. In dit hoofd-
stuk onderzoeken we een andere dimensie van deze kostenstructuur. Er
is namelijk ook een belangrijke tijdsdimensie verbonden met het aanreke-
nen van de prestatievergoeding, welke varieert over verschillende fondsen.
Deze verborgen dimensie van de kostenstructuur, genaamd de ‘crystalliza-
tion frequency’, heeft een economisch significante invloed op de kosten die
beleggers betalen.

In hoofdstuk twee onderzoeken we de implicaties van lage maar per-
sistente autocorrelatie in de maandelijkse rendementen van Managed Fu-
tures fondsen voor portefeuillebeheer. We argumenteren dat de geob-
serveerde autocorrelatie wellicht niet het resultaat is van illiquiditeit in de
onderliggende posities, gezien de liquiditeit van de effecten die Managed
Futures fondsen verhandelen. In de plaats daarvan hypothetiseren we dat
deze autocorrelatie consistent is met een strategie die vaak kleine verliezen
incasseert en occasioneel grote winsten genereert. We bevestigen deze hy-



pothese empirisch en tonen aan dat de positieve autocorrelatie consistent
is met het divergent risicogedrag van trendvolgende strategieén. We to-
nen verder ook aan dat Managed Futures fondsen die positieve autocorre-
latie vertonen beter presteren dan fondsen met negatieve autocorrelatie.
Het geobserveerd rendement kan wellicht niet verklaard worden door een
concentratie in bepaalde strategieén, grootte en leeftijd van de fondsen,
en vertekeningen in de dataset. Bovendien heeft positieve autocorrelatie
geen negatieve impact op de diversificatievoordelen van Managed Futures
fondsen.

Het derde hoofdstuk focust op een trendvolgende strategie in de con-
text van high-frequency data. We onderzoeken met name de mogelijke
oorzaken van een fenomeen dat bekend staat als ‘intraday momentum’,
welke gedefinieerd wordt als een significant positief verband tussen het
rendement in het eerste half uur van de handelsdag en rendement in het
laatste half uur van de handelsdag. Met behulp van transactie-level data
van de Moscow Interbank Currency Exchange (MICEX) voor het Russis-
che Roebel-Amerikaanse Dollar over de periode 2005-2014 analyseren we
de door de literatuur voorgestelde mogelijke oorzaken. Onze resultaten
suggereren dat, voor de periode 2005-2014, intraday momentum in de
Roebelmarket wellicht het gevolg is van risicoaversie onder marktmakers
voor het aanhouden van posities buiten de handelsuren. Onze resultaten
bevestigen verder ook eerdere bevindingen die suggereren dat expliciete
handelsuren van belang zijn voor intraday momentum en dat het effect
sterker is tijdens crisissen.

In het vierde hoofdstuk dragen we bij tot de literatuur rond de market
timing. We onderzoeken, aan de hand van vertrouwelijke data voorzien
door RPM Risk & Portfolio Management, of Managed Futures fondsen
in staat zijn trends in financiéle markten te anticiperen. We verbeteren
de bestaande methodologie en gebruiken data van een hogere frequentie
om de analyse uit te voeren, en vinden dat Managed Futures fondsen
inderdaad een significant market timing talent hebben.

In hoofdstuk vijf proberen we de strategieén die Managed Futures
fondsen gebruiken, te ontrafelen. Aan de hand van data met betrekking
tot de financiéle derivaten die deze fondsen verhandelen, implementeren
we een trendvolgende strategie. In dit hoofdstuk proberen we dus de
vertrouwelijke modellen gebruikt door deze fondsen zo nauw mogelijk te
repliceren. Hierbij combineren we handelssignalen over een groot aantal
tijdsbestekken om op die manier de sterkte van een trend te incorporeren
in het beleggingsproces. We tonen aan dat de voorgestelde strategie de



kenmerken van Managed Futures fondsen goed repliceert. De door ons
voorgestelde strategie is bijgevolg een goede maatstaf voor het analyseren
van kandidaat-fondsen.






Chapter 1

Crystallization — the
Hidden Dimension of
CTAs’ Fee Structure!

Financial Analysts Journal
July/August 2015, Vol. 71, No. 4: 51-62.

1.1 Introduction

The impact of the two components of hedge funds’ and Commodity Trad-
ing Advisors’ (CTAs) fee structure, the incentive fee and the high-water
mark clause, on hedge fund behavior has been discussed extensively in the
academic literature. Especially their effect on fund managers’ risk-taking
behavior has received considerable attention.? However, the fee structure
also has more direct consequences for investors, apart from changing the
risk profile of the investment. Fees impact long-term wealth and investors
are more and more starting to realize this, not in the least because of the
current low yield environment. Consequently, hedge funds’ fees are now
subject to closer scrutiny and are negotiated more often than in the past.

IThis chapter is based on joint work with John Sjédin (RPM Risk & Portfolio
Management and Ghent University) and Michael Frommel (Ghent University).

2Studies include Goetzmann, Ingersoll, and Ross (2003), Hodder and Jackwerth
(2007), Kouwenberg and Ziemba (2007), Panageas and Westerfield (2009), and Agar-
wal, Daniel, and Naik (2009).



To illustrate the downward pressure on hedge funds’ headline fee lev-
els, we report in Table 1 the management fee and incentive fee of newly
launched CTAs reporting to BarclayHedge. The Table illustrates that,
while there has been no significant change in incentive fee levels, average
management fee levels have been decreasing steadily over time.

A 2/20-fee structure, i.e. a management fee of 2% of assets under
management combined with an incentive fee of 20% of gains, is and has
been the standard cost for allocations in the hedge fund industry. It is
generally supplemented with a high-water mark, such that investors only
pay the incentive fee once any previous underperformance has been made
up for.

However, headline fee levels are only one aspect of the fee structure
that should be considered. Another element usually not taken into con-
sideration when discussing hedge funds’ fees, is the frequency at which
a fund charges the incentive fee and updates its high-water mark. This
feature is commonly referred to as the crystallization frequency or the
incentive fee payment schedule.

The crystallization frequency differs from the accrual schedule, which
is the schedule used to calculate and charge the fee to the fund’s profit and
loss account. Whereas the process of fee accrual does not impact investor
returns, the same is not true for the fee crystallization. As the incentive
fee crystallization frequency increases, the expected total fee load charged
by the hedge fund manager increases as well.

To illustrate the above concepts, we provide a brief numerical example
in Table 1.2. For simplicity, we consider a fee structure that consists of a
20% performance fee but no management fee.

This example shows how an identical gross performance leads to widely
different performance fee loads when we vary the crystallization frequency.
From the example the reader can easily infer the source of this difference
in fee load; under quarterly crystallization, some of the fund’s interim
highs are allowed to materialize into performance fees. In the case of
annual crystallization however, only the asset value at the end of the year
matters.

In this article, we contribute to the understanding of hedge funds’ fee
structure in that we highlight and analyse the impact of the crystallization
frequency on hedge funds’ fee load. To the authors’ best knowledge, no
study has yet investigated this aspect to hedge funds’ fee structure. This
finding is compelling. The crystallization frequency forms the basis for
the incentive fee calculation and the way hedge funds update their high-
water mark. Consequently, it has a material effect on the fees investors



Table 1.1: Evolution in CTA Headline Fee Levels

Number of Management Bootstrapped Incentive  Bootstrapped

Funds Fee 95% CI Fee 95% CI
Prior to 1994 387 2.25% [2.14%;2.36%)] 20.38% [20.09%;20.66%|
1994-1998 295 1.97% [1.88%;2.06%] 20.63% [20.29%;20.97%]
1999-2004 394 1.71% [1.65%;1.78%] 20.51% [20.24%;20.81%]
2005-2008 377 1.67% [1.6%;1.73%)] 20.71% [20.3%;21.16%)]
2009-2012 163 1.62% [1.51%;1.72%)] 20.64% [19.9%;21.43%]|
1994-2012 1616 1.87% [1.83%;1.91%)] 20.56% [20.39%;20.74%|

This table reports summary statistics on the evolution of headline fee levels. In particular,
we report the number of newly launched funds and the average incentive- and management
fee for CTAs in BarclayHedge for the different sub-periods.



Table 1.2: Tllustration Effect of Crystallization

Annual Crystallization Quarterly Crystallization

G Incentive Incentive Incentive Incentive
Time ross HWM  Fee Fee  NAV ~ HWM  Fee Fee  NAV

eturn Accrued Paid Accrued Paid
Jan 1.3% 100 0.26 101.30 100 0.26 101.30
Feb 0.3% 100 0.32 101.60 100 0.32 101.60
Mar  3.2% 100 0.97 104.86 100 0.97 0.97 103.88
Apr  3.6% 100 1.73 108.63 103.88 0.75 107.62
May -0.9% 100 1.53 107.65 103.88 0.55 106.66
Jun 3.0% 100 2.18 110.88 103.88 1.19 1.19 108.66
Jul -2.2% 100 1.69 108.44 108.66 0.00 106.27
Aug  -1.5% 100 1.36 106.82 108.66 0.00 104.68
Sep 0.0% 100 1.36 106.82 108.66 0.00 0.00 104.68
Oct -0.9% 100 1.17 105.85 108.66 0.00 103.73
Nov -2.3% 100 0.68 103.42 108.66 0.00 101.35
Dec 1.8% 100 1.06 1.06 104.23 108.66 0.00 0.00 103.17

This table reports the fees paid by an investor under annual and quarterly crystallization,
respectively. The initial HWM and NAV equal 100. The fee structure in this example equals
0/20%, i.e. no management fee and a performance fee of 20% of realized gains.



pay and could also influence hedge funds’ risk-taking behavior.

Our findings have several implications, both for researchers and prac-
tioners. First, we show that the choice of the crystallization frequency has
both a statistically and economically significant impact on fees paid by
investors. In the case of CTAs, and assuming a 2/20-fee structure, shifting
from annual to quarterly crystallization leads to a 49 basis points increase
in the annual fee load (as a percentage of assets under management).
In addition, an incentive fee of 15% combined with monthly crystalliza-
tion leads to the same total fee load as an incentive fee of 20% under
annual crystallization. Both results imply that the effect of the crystal-
lization frequency is important for allocators evaluating and comparing
different fund investments. We stress that, while we focus on just one
hedge fund category, CTAs, the crystallization frequency is an important
consideration in any investment vehicle whose fee structure depends on
a high-water mark provision. Moreover, in an environment where espe-
cially hedge funds’ management fee levels are under pressure, the relative
importance of the incentive fee and, thus, crystallization in the total fee
load increases.

Second, our study also has implications for academic literature that
estimates hedge funds’ gross returns and fee loads as well as research
on hedge funds’ risk-taking behavior. To construct gross returns, previ-
ous studies in most cases assume that incentive fees are paid at year-end
(e.g. Brooks, Clare, and Motson (2007), French (2008) and Agarwal,
Daniel, and Naik (2009)), although some authors assume quarterly pay-
ment (see Bollen and Whaley (2009) and Jorion and Schwarz (2014)).
Certain authors also calculate hedge funds’ historical fee load in their
analysis. French (2008) estimates that the typical investor in U.S. equity-
related hedge funds has paid an annual combined fee or total expense
ratio of 3.69% p.a. over the period 2000-2007. Brooks, Clare, and Motson
(2007) find that between 1994 and 2006 hedge fund fees averaged 5.15%
annually. Ibbotson, Chen, and Zhu (2011) suggest a lower estimate of
3.43% p.a. for the period 1995 to 2009. Similarly, Feng, Getmansky, and
Kapadia (2011) report total fees over the period 1994-2010 to be on av-
erage 3.36% of gross asset value. However, these studies do not consider
the impact of the crystallization frequency on these figures. With regard
to hedge funds’ risk-taking behavior, our analysis has implications for the
time frame over which previous results on hedge funds’ risk-taking behav-
ior might apply. If fund managers update their high-water mark more
than once a year, their trading horizon is shortened accordingly.

Finally, crystallization frequencies of hedge funds have not been docu-
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mented previously. To shed light on crystallization practices, we perform
a survey among the constituents of the Newedge CTA Index as well as an
analysis of the fee notes of CTAs in the Tremont Advisory Shareholder
Services (TASS) database. We find that, at least in the case of CTAs,
high-water marks are most often updated quarterly, rather than annually.
These findings for the CTA hedge fund category contrast the view com-
monly held in the academic literature that the high-water marks in hedge
funds are commonly set at the end of the year.

For completeness, we focus on the impact of the crystallization fre-
quency of the incentive fee, and we do not go into the payment frequency
of the management fee. We do this mainly because the payment of the
management fee does not depend on a fund’s high-water mark.?

1.2 Data

We analyse the impact of the crystallization frequency on fees paid by
investors by using monthly net-of-fee returns of live and dead funds la-
belled CTA in the BarclayHedge Database. We use a sample that covers
the period January 1994 to December 2012 to mitigate a potential sur-
vivorship bias, since most databases only started collecting information
on defunct programs from 1994 onwards.* As BarclayHedge does not re-
port a first reporting date, we cannot eliminate the backfill bias entirely.
We therefore opt for an alternative approach and remove the first twelve
observations of a fund’s return history, following Teo (2009).5-°

We further require at least twelve return observations for a fund to be
included, and only include funds whose monthly returns are denominated
in USD or EUR.” The EUR-denominated returns are converted to USD-

3In addition, the vast majority of the funds charge the management fee monthly.
For the Tremont Advisory Shareholder Services (TASS) database, we find that 78% of
the CTAs in the database charge the management fee on a monthly basis. 13% charges
the management fee quarterly and 8% charges the management fee annually.

4Gross returns are first calculated using the funds’ entire return history, after which
the pre-1994 period is dropped.

5We first calculate gross returns (see Section 1.4.1) using the fund’s entire track
record, and afterwards drop the first twelve observations of the fund’s net-of-fee and
gross returns.

6By keeping track of the amount of months that are backfilled when a fund is
first included to BarclayHedge database, we tracked backfill bias for the period 2005-
2010. For that sample period, the median (average) backfill bias was twelve (fourteen)
months.

"Programs denominated in currencies other than USD and EUR are in most in-
stances duplicate share classes of larger programs and would therefore be dropped in

6



denominated returns, using the end-of-month spot USD/EUR exchange
rate. As the analysis also requires information on the funds’ manage-
ment fee and incentive fee, we remove cases where at least one of the two
variables is unreported.®

We then filter the resulting sample of funds by looking at their self-
declared strategy description and remove funds whose description is not
consistent with the definition of CTAs. In the process, we also determine
whether the program under consideration is the fund’s flagship program
and discard duplicates. To ensure that our results apply to funds that can
be considered part of the investable universe for most CTA investors, we
remove funds whose net-of-fee returns exhibit unusually low- or high levels
of variation. To this end, we discard funds when the standard deviation
of the observed net-of-fee returns is lower than 2% or exceeds 60% p.a.
After applying these restrictions, our sample consists of 1,616 unique CTA
programs. Table 1.3 reports summary statistics for the final set of funds.

Table 1.3: Summary Statistics CTAs

Mean Min P25 P50 P75 Max

Monthly net-of-fee return 057% -6.47% 0.06% 0.50% 0.99%  9.52%
Monthly standard deviation  5.08%  0.61%  2.75% 4.27% 6.59% 17.17%
Age (years) 5.4 1 2.1 3.8 7 19
Management fee 1.87% 0% 2% 2% 2% 5%
Incentive fee 20.56% 5% 20% 20% 20% 50%

This table reports summary statistics for the sample of 1616 CTAs from the Barclay-
Hedge database.

In this paper, we focus on one hedge fund category and CTAs in partic-
ular because industry standards on crystallization for different hedge fund
categories might differ. It is possible that the crystallization frequency of
hedge funds is to some extent related to differences in the ability of funds
to value their underlying positions. Unlike some other hedge fund cate-
gories, CTAs trade almost exclusively highly liquid instruments and, thus,
do not have any practical limitations regarding the calculation of NAVs.
As such, CTAs provide a fruitful ground for analysing the impact of crys-
tallization.

any case.

8 Additionally, we also exclude cases where both types of fee are zero or and cases
where the fee levels are deemed unreasonable low or high (management fee in excess
of 5% p.a., incentive fees below 5% or above 50% p.a.).



1.3 Crystallization and Industry Practices

Since public hedge fund databases do not keep track of funds’ incentive fee
crystallization frequency®, we perform a survey among the constituents of
the Newedge CTA index (as of May 2013). The Newedge CTA index is
designed to track the largest CTAs and aims to be representative of the
Managed Futures space. The index is comprised of the 20 largest man-
agers (based on AUM) who are open to new investment and that report
performance on a daily basis to Newedge. Where possible, we complete
the results of the survey with information available on the website of the
U.S. Securities and Exchange Commission (SEC).10

The results of the survey are reported in Figure 1.1. The bar chart
indicates that, in the case of CTAs, the most commonly used crystalliza-
tion frequency is quarterly. In those instances where the crystallization
frequency is not quarterly, we find that the frequency generally tends to
be higher, rather than lower. In unreported results, we weigh the crys-
tallization frequency by the assets under management (AUM) of every
manager. While quarterly crystallization remains the most commonly
applied crystallization frequency (55% of AUM), monthly crystallization
increases in importance as it applies to 28.3% of AUM covered by the
survey. Finally, to gauge the scope of our survey vis-a-vis total AUM by
the CTA industry, the results of our survey cover 57% of assets managed
in the CTA space that report to BarclayHedge.

As mentioned above, public databases do not keep track of the crys-
tallization frequency in a systematic way. However, the fee notes in the
Tremont Advisory Shareholder Services (TASS) database in a number of
cases do provide a sufficient amount of information to pinpoint the crys-
tallization frequency. Therefore, and in addition to the above survey, we
also examine the fee notes of defunct and live CTAs reported in the TASS
database. The results are also reported in Figure 1.1. Comparing these
results with those of our own survey suggests that the sample of funds
from TASS is characterised by higher crystallization frequencies. These
differences could be due to survivorship bias as well as differences in fund
size. Nevertheless, the results for the TASS sample corroborate our ear-

9TASS’s questionnaire only inquires about the management fee’s payment fre-
quency; the other widely used databases’ questionnaires and manuals (Hedge Fund
Research (HFR), CISDM, and BarclayHedge) indicate that the databases do not keep
track of the fee payment frequencies.

10In particular, we make use of the SEC’s Investment Adviser Public Disclo-
sure (IAPD) and the Electronic Data-Gathering, Analysis, and Retrieval (EDGAR)
database.



Figure 1.1: Distribution of the Crystallization Frequencies of the Incentive
Fee
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lier finding that quarterly is the most common crystallization frequency.
When funds use a crystallization frequency other than quarterly crystal-
lization, the frequency tends to be higher rather than lower.

For completeness, we also look at the relationship between the reported
fee levels and the crystallization frequency of the funds. It could be that
funds with lower crystallization frequencies have higher incentive fee lev-
els, such that the total fee load is comparable. To verify that this is not the
case, we group the sample of funds in TASS based on their reported crys-
tallization frequency and analyse the average incentive and management
fee of the different groups. The results, reported in Table 1.4, indicate that
funds with a higher crystallization frequency tend to have higher headline
incentive fee levels. For example, the average incentive fee level for funds
with monthly crystallization (22.38%) is significantly higher than that of
funds that employ a quarterly crystallization frequency (21.05%), with a
p-value of 0.0775. In addition, we also find that the headline management
fee level tends to increase as the crystallization frequency increases. These
results suggest that funds that apply higher a crystallization frequency on
average also charge higher headline fee levels.



Table 1.4: Relationship between Crystallization Frequency and Fee Levels

Incentive Bootstrapped Management Bootstrapped
Fee 95% CI Fee 95% CI
Monthly 22.38%  [20.72%;24.23%)] 1.63% [1.36%;1.91%]
Quarterly 21.05% [20.35%;21.8%| 1.64% [1.48%;1.79%]
Semi-annual 20.00% [20%;20%)] 1.93% [1.79%;2%)]
Annual 19.62%  [17.69%;21.15%] 1.47% [1.17%:;1.81%]

This table reports the average incentive fee level and management fee level under
different crystallization frequencies for sample of CTAs in TASS.

1.4 Incentive Fee Crystallization and Fee Load

1.4.1 Construction of Gross Returns

As mentioned in the introduction, analysing the impact of the crystalliza-
tion frequency on hedge funds’ fee load requires calculating hedge funds’
gross returns and charging fees to investors under various crystallization
frequencies. To this end, we develop an algorithm that achieves this objec-
tive. We provide a thorough description of the algorithm in the Appendix.

To calculate gross returns for the sample of CTAs, we assume that
CTAs apply quarterly crystallization to charge incentive fees. Our sur-
vey results and the results from TASS’s fee notes suggest that this is the
most commonly used crystallization frequency. In addition, when CTAs
apply another crystallization frequency, they generally tend to use higher
crystallization frequencies. As such, the assumption of quarterly fee crys-
tallization should lead to fairly conservative estimates of the funds’ gross
returns.

In Table 1.5 we compare the observed net-of-fee CTA returns with the
obtained gross CTA returns. Funds appear to earn significantly higher
risk-adjusted returns — measured by the annualized Sharpe ratio — based
on gross returns, as compared to net-of-fee returns. Also, both skewness
and kurtosis are significantly higher for the gross returns. Consequently,
we find a higher proportion of cases in which the Jarque-Bera test for
normality rejects the null hypothesis of normality. Finally, we find that
both net-of-fee returns and gross returns of CTAs exhibit negative first
order serial correlation.

10



Table 1.5: Comparison of Net-of-fee Returns and Gross Returns

Net-of-fee Gross p-

Returns Returns value
Average return 0.57% 0.77% 0
Standard deviation of monthly returns 5.08% 4.68% 0
Annualized Sharpe Ratio 0.48 0.69 0
Skewness 0.31 0.45 0
Kurtosis 4.82 5.13 0.013
First order serial autocorrelation -0.011 -0.004 0.138
JB-Statistic (Percentage of rejections) 47.22% 52.23%

This table compares net-of-fee returns with the estimated gross returns
based on the algorithm described above for the set of 1616 CTAs.

The reported p-values test the difference in means using the empirical
t-distribution (bootstrap).

1.4.2 Analysis of the Historical Effect

As an introduction to our main analysis, we first estimate the crystalliza-
tion frequency’s potential historical effect on investor wealth. This way,
we can get a feel of the economic significance of the effect of crystalliza-
tion. Using the data set of gross returns obtained in Section 1.4.1, we
re-apply the fund’s reported headline fee levels under different crystalliza-
tion frequencies. This way we obtain net-of-fee returns under different
crystallization frequencies as well as the corresponding fee load.

In Table 1.6 we report the average gross return, average net-of-fee
return, and the average fee load under the different fee crystallization
schemes. The reported average net-of-fee returns are all statistically dif-
ferent from each other at the 1% level of significance (p-values unreported
for conciseness). Furthermore, the results suggest that investors whose in-
vestment is subject to quarterly (monthly) crystallization, will earn net-
of-fee returns which are on average 25 (42) basis points per year lower
than in the case of annual crystallization. To put these figures into per-
spective, an annual difference of 42 basis points over a 10-year period will
compound to a difference of 9.32% in the expected capital gain. For a
MUSD 1 initial investment, this difference equals USD 63,303.

Even more important than these absolute numbers, is the impact on
the risk-adjusted performance. Our results suggest that when investors
move from annual to monthly crystallization, the Sharpe ratio deteriorates
from 0.4 to 0.34, a 15.65% decrease.

We also observe from Table 1.6 that management fees are slightly
lower than 2% p.a., despite the positive drift in CTAs their returns. This
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Table 1.6: Summary Statistics Historical Fee-loads

Average Standard Sharpe
Deviation Ratio
Gross Return 8.65% 16.22% 0.61
Net-of-fee Standard Sharpe  Management Incentive

Return Deviation Ratio Fee Fee
Monthly 4.90% 16.75% 0.34 1.93% 2.41%
Quarterly 5.07% 16.33% 0.37 1.93% 2.26%
Semi-annual 5.20% 16.05% 0.38 1.93% 2.16%
Annual 5.32% 15.75% 0.40 1.94% 2.14%

This table reports the average annual gross return, average standard deviation and
average Sharpe ratio for the set of 1616 CTAs. The second part of the table reports the
corresponding statistics for the net-of-fee returns, as well as the average management
fee and incentive fee.

is consistent with our finding that management fees, at least for newly
launched funds, tend to be below 2% p.a. on average (see Table 1).

1.4.3 Block Bootstrap Analysis

To study the effect of the crystallization frequency on the level of fees
investors pay, we analyse the effect of crystallization by applying a block
bootstrap. In particular, we randomly sample gross return histories and
calculate the fee load under different crystallization regimes. The advan-
tage of this approach is that we do not have to make any distribution
assumptions with regard to the return generating process. A block boot-
strap allows us to account for higher moments in monthly returns (e.g.
CTAS’ returns exhibit positive skewness) and to preserve any autocorre-
lation present in the gross return data. These properties of the return
generating process can have a material impact on the results of the anal-
ysis and investors’ total fee load.

In performing the block bootstrap, we consider all the potential 12/36/60-
month samples in the data set of gross returns and pick 10,000 12-months,
36-month and 60-month samples. To avoid a potential look-ahead bias,
we allow the sampling procedure to select incomplete samples occurring
at the end of a fund’s track record. In those cases where a fund terminates
before the end of the sample period, we assume that investors redeem.!?

1'While most of these occurrences will correspond to fund terminations due to bad
performance, we nevertheless treat the fund’s exit as full redemption. If there is a
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Table 1.7: Impact of Crystallization on Fee Load

Crystallization Incentive Management Total Fee
Frequency Fee Fee Load
1-year horizon ~ Monthly 2.76%*F* 2.07%** 4.84%%F*
Quarterly 2.42%%** 2.07% 4.50%***
Semi-annual 2.19%*** 2.08% 4.27%H*
Annual 1.93% 2.08% 4.01%
3-year horizon Monthly 2.06%*** 2.06% 4.13%***
Quarterly 1.86%*** 2.06% 3.93%*H*
Semi-annual 1.73%*** 2.06% 3.79%*H*
Annual 1.61% 2.06% 3.67%
5-year horizon Monthly 1.84%FF* 2.05% 3.89%F**
Quarterly 1.67%*** 2.05% 3.72%%H*
Semi-annual 1.55%*** 2.05% 3.61%***
Annual 1.44% 2.05% 3.50%

This table reports the average incentive fee, average management fee, and av-
erage total fee from performing a block bootstrap where 12, 36, or 60 month
blocks of gross returns are drawn from the obtained sample of CTAs. Fee
load equals the average annual fee load over the investment horizon, as a per-
centage of initial NAV/NAV at the end of the previous year.

Asterisks report statistically significance of the difference between of the ob-
tained fee levels and the benchmark category (annual crystallization) at the
10% (*), 5% (**) and 1% (***) level of significance. Significance tests based
on the empirical ¢-distribution (bootstrap).

We also assume that every draw starts the beginning of a calendar year
(i.e. from January onwards). Having selected a random sample path of
gross returns, we apply a standard 2/20-fee structure under different crys-
tallization frequencies. This framework allows us to examine the impact
of the crystallization frequency on investors’ total fee load.

Table 1.7 reports the results for one-year, three-year, and five-year
investment horizons. We consider periods of up to five years as this cor-
responds to the average age of the CTAs in the sample (see Table 1.3).
As such, our analysis covers the relevant horizon over which the effect of
crystallization applies for the majority of hedge fund investors. To gauge
the significance of the results, we indicate whether the obtained fee level
differs significantly from the fee load under annual crystallization. We

positive accrued interest fee at the time of the last observation, it will be charged to
the investor’s account.
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Figure 1.2: Comparing the Total Fee Load with Annual Crystallization
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set annual crystallization as the benchmark since most previous research
made the assumption that the incentive fee is paid at the end of the year.

Our results illustrate that a higher crystallization frequency always
leads to a higher average fee load.!? Management fees are slightly higher
than 2% and increasing in time due to the positive drift in the CTAs’
returns. We find significantly higher fee loads as the crystallization fre-
quency increases. The effect is also economically significant. For the
one-year investment horizon, the total fee load is 49 (82) basis points p.a.
higher in the case of quarterly (monthly) crystallization when compared
to annual crystallization. This suggests that, under a 2/20-fee structure,
the fee load is expected to be 12.2% (20.5%) higher if a manager charges
the incentive fee quarterly (monthly), rather than annually. If the invest-
ment horizon is extended to five years, the difference decreases 23 (40)
basis points p.a., a difference of 6.5% (11.4%). For ease of comparison
and Figure 1.2 provides a graphical representation of the difference in fee
load, with annual crystallization serving as the baseline.

12 An alternative way to illustrate this finding, is by using option pricing. Indeed,
the performance fee earned by the manager over any subperiod is a fraction (20%) of
the value of a European call option with a strike price equal to the investor’s HWM.
Using Monte-Carlo simulation, it is easy to show that an exotic option, consisting of
a sequence of European call options with path-dependent strike prices equal to the
relevant HWM, is more valuable than a single European call option over the same
period.
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In addition to the increase in fee load as we increase the crystallization
frequency, several other observations are evident from the results in Table
1.7. First, increasing the investment horizon dampens the impact of a
higher crystallization frequency on fee load. We can explain this finding by
the fact that the fee loads reported for the three- and five-year investment
horizons are an average across the individual years. In years where a
fund is not able to charge incentive fees, the total fee is the same under
different crystallization frequencies. Despite this downward drag on the
total fee load, caused by years in which only a management fee is paid, the
difference in fee load for the different crystallization frequencies remains
significant.

Second, for the one-year investment horizon, the management fee in
the case of monthly crystallization is significantly lower than that under
annual crystallization. This illustrates the fact that a higher crystalliza-
tion frequency lowers the NAV on which funds can charge the management
fee, since an incentive fee payment lower the investor’s NAV. However, the
effect is small in economic terms and more than offset by the higher fee
load that results from the higher incentive fees paid.

Next, we have a look at the distribution of the difference in fee loads.
From the above analysis, we collect the set of differences in incentive
fee under annual and quarterly crystallization. The results, reported in
Figure 1.3, illustrate how the distribution of differences is highly skewed
to the right.!> The Figure also shows that in approximately 41.77% of
the cases, the two crystallization frequencies do not show any difference in
fee load. This is the case whenever (a) a fund does not get over its initial
high-water mark, (b) when new highs are reached but not crystallized and
(c) when the fund sets new high-water marks at every crystallization date.

In the first two instances, investors only pay the management fee,
which is the same for both crystallization frequencies. Of course, investors
invest with a positive view on the investment’s future performance. An
unintended consequence of a higher crystallization frequency is therefore
that the investors will pay more (i.e. there will be a positive difference in
the fee load) at times when investors are generally less satisfied with the
fund’s performance.

To see this, consider the following case. When a fund manager, during
a particular year, performs very well and continuously sets new highs

13This particular distribution is also the reason is why all tests of statistical signifi-
cance are done using an empirical ¢-distribution (bootstrap).
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Figure 1.3: Distribution of Difference in Incentive Fee Load
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until the end of the calendar year, it does not matter what crystallization
frequency is applied. However, in cases where the fund’s NAV at year-
end drops below a high-water mark set during the year —the difference
in fee load under different crystallization frequencies will be positive. In
those cases, investors will be paying higher fees while at the same time the
fund’s newly crystallized high-water mark will actually be above the NAV
at the end of the year (i.e. a drop in NAV). This makes it clear that a
higher crystallization frequency will tend to decrease the fund manager’s
investment horizon and lower the incentive to perform subsequent to the
crystallization.

When we condition on those bootstrapped cases where an incentive
fee is actually payable, the difference in incentive fee load is 78 basis
points higher under quarterly crystallization, as compared to annual crys-
tallization. Comparing this result to the unconditional average, a 49 basis
points difference, suggests that in those cases that investors actually pay
an incentive fee, the fee load will be higher than our main results would
suggest.
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Table 1.8: Trade-off between Crystallization Frequency and Incentive Fee

Incentive Fee (%)
Crystallization 5 10 15 20 25 30

Frequency

Monthly 2.57% 3.07% 3.60% 4.08% 4.61% 5.24%
Quarterly 2.53% 2.97% 3.46% 3.88% 4.36% 4.94%
Semi-annual 2.50% 291% 3.36% 3.75%  4.20% 4.73%
Annual 2.46% 2.84%  3.26% 3.62%  4.03% 4.53%

This table reports the total fee load under different combinations of the both nego-
tiable factors, the incentive fee level and the crystallization frequency. The manage-
ment fee is paid monthly and fixed at 2% p.a. The fee load is estimated by drawing
random three-year sample paths from the gross CTA return data and calculating the
fee load, varying the crystallization frequency and the level of the incentive fee.

1.4.4 Trade-off between Incentive Fee and Payment
Frequency

So far, we have assumed a standard 2/20-fee structure to analyse the
impact of different payment frequencies. The analysis has shown that,
when investors want to compare the (expected) fee load between differ-
ent funds, such a comparison will be inaccurate if funds differ in terms
of the incentive fee payment frequency. In this subsection, we quantify
the trade-off that exists between the incentive fee and the crystallization
frequency, keeping fixed the level and payment frequency of the manage-
ment fee. This trade-off might be relevant if the crystallization frequency
and incentive fee level are considered negotiable factors.

To ensure that our obtained estimates of the fee load are close to what
an investor can expect in reality, the figures are also based on the block
bootstrap outlined above. In particular, we calculate the fee load for
10,000 randomly drawn three-year sample paths of gross returns and vary
the crystallization frequency and the incentive fee level.

Table 1.8 reports the size of the effect for different combinations of
both negotiable factors. Unlike what incentive fee headline levels would
suggest, the table illustrates that changes in the crystallization frequency
lead to considerable differences in total fee load. For example, the results
suggest that a 15% incentive fee with monthly crystallization leads to a
similar total fee load as a 20% incentive fee with annual crystallization
(not significantly different).
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1.5 Robustness Checks

We now perform a number of robustness checks with regard to the level
of the effect. Relaxing or imposing additional restrictions on the dataset
used in the analysis will not change our finding that higher crystallization
frequencies increase investors’ fee load. However, it might have an influ-
ence on level of the fee loads and the economic significance of the effect
of crystallization.

1.5.1 Impact of Backfill Bias

In our baseline analysis we account for backfill bias by discarding the
first twelve observations of a fund’s track record. Here we investigate the
importance of this assumption for our baseline results.

To this end, we perform the following analysis. We redo the bootstrap
analysis used in section 1.4.3 a 100 times, both for the baseline gross return
data set and the newly obtained gross return data that does not correct
for backfill bias. Then, we test whether the results in both cases differ
significantly. Panel A of Table 1.9 reports the result. In line with our
expectations, we find that a potential backfill bias tends to upward bias
the obtained incentive fee loads. Nevertheless, the size of the difference in
fee loads remains similar in both instances, both in terms of magnitude
and statistical significance.

1.5.2 Impact of Fund Size

Another possible concern, raised by Kosowski, Naik, and Teo (2007), is
that funds with assets under management below MUSD 20 might be too
small for many institutional investors. To ensure that the magnitude of
fee load differences is representative and do not deviate too much from
the fee load institutional investors can expect, we perform the following
robustness check.

Similar to the previous robustness check, we redo the bootstrap anal-
ysis a 100 times, but impose an additional restriction when selecting a
sample path. In particular, we only select a sample path if —at the start—
the corresponding fund’s assets under management are above MUSD 20.
To avoid look-ahead bias, the fund’s size is allowed to drop below MUSD
20 in subsequent months. Results are reported in panel B of Table 1.9.
Consistent with the finding that small funds tend to outperform more
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Table 1.9: Results Robustness Checks

Robustness check Baseline Result under p-
Result Robustness Check value
Backfill Bias  Monthly 4.11% 4.38% 0
Quarterly 3.91% 4.17% 0
Semi-Annual 3.78% 4.03% 0
Annual 3.66% 3.89% 0
Fund Size  Monthly 3.65% 0
Quarterly 3.49% 0
Semi-Annual 3.37% 0
Annual 3.26% 0
Risk-taking Behavior ~ Monthly 4.11% 0.48
Quarterly 3.92% 0.07
Semi-Annual 3.79% 0.04
Annual 3.71% 0

This table reports the total fee load for a three-year investment horizon for the base-
line case, and a set of three robustness checks.

The reported p-values test the difference in means using the empirical ¢-distribution
(bootstrap).

mature funds, we find that the fee load is lower when we omit smaller
funds.

1.5.3 Impact of Risk-taking Behavior

To perform the bootstrap in the baseline case, we assume that every sam-
ple path drawn from the gross return dataset starts in January. However,
Nanda and Aragon (2012) show that hedge funds take part in tournament
behavior. Hedge funds tend to increase their risk-profile in the second
half of the year when they are underperforming, relative to their peers.
As such, the funds’ risk-profile could differ throughout the calendar-year,
and thus have an impact on our reported fee loads. To check whether this
is the case, we redo the bootstrap and select sample paths that correspond
to actual calendar-years.

The results are reported in panel C of Table 1.9. The p-values in Panel
C indicate that in most cases, the total fee load is somewhat higher if we
use actual calendar-years. We interpret this finding as being in line with
the results by Aragon and Nanda (2012) on risk-taking behavior among
hedge funds. Our results indicate that, taking into account intra-year
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patterns in the funds’ returns, we find higher total fee loads. This result
therefore suggests that funds actively change their exposure to safeguard
accrued incentive fees, causing our results to exhibit slightly higher fee
loads if we take these intra-year patterns into account.

1.6 Conclusion

The fee load of investors does not depend on the headline fee levels
alone. Other aspects of the fee structure should also be considered when
analysing fee structures that include incentive fees and a high-water mark
provision. One such factor is the frequency with which hedge funds update
their high-water mark.

To the best of our knowledge we are the first to document the im-
pact of the crystallization frequency on hedge funds’ fee loads. Using a
bootstrap based on a comprehensive data set of CTAs, our main finding
is that, under a 2/20-fee structure, quarterly crystallization leads to a
fee load which is on average 49 basis points p.a. higher than under an-
nual crystallization. This difference is economically large and should be
a relevant consideration when discussing the fee structure. Our results
are relevant for allocators who want to assess the fee load of fee schemes
which differ in terms of crystallization frequency. Moreover, we find that
different headline fee levels can lead to similar total fee loads, once the
crystallization frequency is taken into consideration.

A failure to take into account the frequency with which the high-water
mark is updated leads to erroneous estimates of funds’ gross returns. In
particular, assuming an annual payment of the incentive fee when the in-
dustry standard of a number of hedge fund categories is akin to quarterly
crystallization, will lead to the underestimation of the gross returns of
those hedge fund categories. As such, while annual crystallization might
be common among some hedge fund categories, we document that quar-
terly crystallization is the most common crystallization frequency among
CTAs.

Our analysis of the crystallization frequency suggests several avenues
for future research. First, we did not go into the implications of the pay-
ment frequency on the risk-taking behavior of hedge funds and CTAs.
Changes in the crystallization frequency alter the horizon over which the
implications of the high-water mark on risk-taking behavior should be
evaluated. As such, it can be expected that a higher crystallization fre-
quency leads to a shorter trading horizon, and thus might conflict with
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a fund’s stated strategy horizon. Second, we only cover one hedge fund
category. As such, there might be considerable differences in the crys-
tallization frequencies applied by different hedge fund categories. These
differences might be related to hedge fund characteristics such as the lig-
uidity of the strategy.
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Appendix: Description Algorithm for Gross
Returns

Here we describe the algorithm we use to compute monthly gross re-
turns from reported monthly net-of-fee returns. Our approach allows for a
monthly estimation of gross returns under different crystallization regimes
(monthly or lower frequency).

The algorithm is based on the following set of assumptions:

1. The Gross Asset Value at the fund’s inception (GAV}) is equal to
100.

2. The algorithm is based on a single-investor assumption.
3. The management fee is paid monthly'*.

We start by defining the unoberved Gross Return at the end of month ¢
(GrossRet;):

GAV;
GAVy

where GAV; and GAV;_; are the unobserved Gross Asset Value at the
end of month ¢ and ¢ — 1, respectively.

GrossRet; = -1 (1)

The amount of Management Fee (M gtFee;) paid in month ¢ equals:

MF
MgtFee; = NAVi_y - (1 + GrossRety) - 12% (2)

where M F% is the management fee (p.a.). The Total Management
Fee Paid up to month ¢ (Total M gt FeePaid,) is then:

t
Total M gt FeePaid, = Z MgtFee; (3)
i=1
In addition to the management fee, we also calculate the amount of
Interest Earned (InterestFarned;) by the fund manager on excess cash
and cash deposited in the margin account:

14This assumption can easily be relaxed to a different payment frequency by handling
the payment of the management fee in the same way as the incentive fee. We never-
theless fix the payment frequency to monthly because an analysis of the managment
fee is not the thrust of the analysis.
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InterestEarned; = NAV,_1 - Rf: (4)

where Rf; is the risk-free rate in month ¢t. We take Interest Earned
into account because CTAs typically hold up to 80% of the money in a
cash account and earn interest on this cash. In the case of most other
hedge fund strategies, this adjustment for Interest Earned is not required
and can easily be omitted. Total Interest Earned on cash deposited
(TotalInterest Earned;) is the sum of all interest earned up to month
t:

t
TotalInterestEarned; = Z InterestEarned; (5)
i=1
Using the above definitions, we define the Preliminary Net Asset Value
at time ¢t (PrelN AV}) as:

PrelNAV, = NAV,_1-(1+GrossRet,)—Total M gt Fee Paid;—T otal Int Earned;
(6)
As such, we subtract the management fee and the interest earned from
the gross increase in N AV;_1. Using PrelN AV, for the calculation of the
incentive fee ensures that the manager only charges an incentive fee on
performance in excess of any management fee charged and any risk-free
return earned on cash. For the next set of equations, we introduce an in-
dicator (Cryst;) that takes on the value 1 in months where crystallization
occurs, and zero otherwise.
The Accrued Incentive Fee (AcerincFee;) is a fraction of the perfor-

mance — the incentive fee I F'% — in excess of the current High-Water Mark
(HWM,;_1):

(7)

maz(0, PrelNAV, — HWM,;_1) - IF% if Cryst; =0
0 if Cryst; =1

This means that, when no crystallization occurs, we only accrue the
incentive fee. However, when crystallization does take place, the accrued
incentive fee is paid to the fund manager. In that case we add any accrued
incentive fee over the period since the last crystallization to the Incentive
Fee Paid variable (IncFeePaidy):
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IncFeePaid;_1 if Cryst; =0
IncFeePaid;—1 + max(0, PrelNAV, — HWM;_1) - IF% if Cryst; =1
(8)

At this point in time, the High-Water Mark (HW M,) is also updated

to the current Preliminary Net Asset Value if it exceeds the previous
High-Water Mark:

{HWMt_l if Crysty =0 )

max(PrelNAVy, HW M;_1) if Cryst; =1
The Net Asset Value at time ¢ (NAV;) equals:

NAV;, = PrelN AV; + TotalInterest Earned; — IncFeePaid; (10)

Since no closed-form solution is available, we solve for the unobserved
G AV; numerically. In particular, we determine the value of GAV; that
equates the NAV, computed in equation (10) — based on GAV; — to the
observed NAV at time t. We then store the obtained value of GAV; and
move to the next month, solving for GAV; in an iterative way. When we
charge fees in the main analysis, we also use the above equations to go
from GAV; to NAV,.
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Chapter 2

An Analysis of the
Risk-Return Characteristics
of Serially Correlated
Managed Futures!

The Journal of Futures Markets
Vol. 36, No. 10, 992-1013 (2016)

2.1 Introduction

The historical track-record remains the most important piece of information in
the evaluation of potential hedge fund managers. This is the case as information
on the alpha-models used by the managers can only be inferred from their track-
record. The models themselves remain strictly proprietary. As a consequence,
past returns will remain a key element in manager selection. An important
consideration in this regard, is the degree of persistence in managers’ reported
returns. If fund managers’ returns exhibit persistence at certain frequencies,
then manager selection based on past performance can potentially add value
along this time series dimension.

In this article we provide empirical evidence that value can potentially be
added through incorporating serial correlation patterns in Managed Futures’
self-reported returns in the investment process. In particular, we find that
Managed Futures funds that exhibit higher degrees of positive serial correlation
— based on the unweighted sum of autocorrelations — exhibit distinctly different
risk-return profiles and outperform funds that exhibit lower degrees of serial

I This chapter is based on joint work with Péter Erdés (RPM Risk & Portfolio Management)
and John Sjodin (RPM Risk & Portfolio Management and Ghent University).
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correlation. A portfolio of more positively autocorrelated Managed Futures
funds displays higher risk-adjusted performance and lower drawdowns.

Application of multifactor models, including models using the recently pro-
posed risk factors suggested by Baltas and Kosowski (2012) as well as the more
commonly used hedge fund risk factors of Fung and Hsieh (2004), indicate a
significantly positive risk-adjusted excess return (‘alpha’) of approximately 6
percent p.a. Interestingly, the models univocally suggest a lower explanatory
power in the case of the more positively serially correlated Managed Futures
funds. This finding of a low explanatory power of multifactor models coupled
with risk-adjusted outperformance corroborates some recent findings in the lit-
erature on performance persistence in both the hedge fund and mutual fund
performance literature.?

In particular, Sun, Wang, and Zheng (2012) propose a “Strategy Distinc-
tiveness Index” (SDI) constructed as 1 minus the correlation between a hedge
fund’s historical returns and the returns of its peers. The objective of Sun,
Wang, and Zheng their measure is to capture the degree to which hedge fund
managers follow unique investment strategies. The authors find that higher
strategy distinctiveness is associated with better future fund performance. Sim-
ilarly, Titman and Tiu (2011) show that that hedge funds with lower R%s with
regard to systematic factors have higher Sharpe ratios, higher information ra-
tios, and higher alphas. They conjecture that funds that have more confidence
in their abilities will expose their investors less to factor risk.

Our results are consistent with the above findings. Sorting Managed Fu-
tures funds on the degree of serial correlation results in a subset of funds that
outperform peers exhibiting lower degrees of serial correlation. Coincidentally,
these more positively serially correlated funds’ returns are found to be less well
explained by existing multifactor models. This seems to suggest that the se-
rial correlation we observe is a consequence of the unique investment strategies
followed by these managers.

However, self-reported returns do not necessarily reflect all risks inherent to
investing in hedge funds and thus might overstate the actual return experience
of investors. Therefore, we explore several alternative explanations for the ob-
served premium. Amongst others, we consider attrition rates and the associated
delisting bias as well as exposure to tail risk as potential explanations for the
observed outperformance. Despite slightly higher attrition rates among more
positively serially correlated managers, we find that a potential delisting bias is
unable to fully explain the observed outperformance.

The rest of this paper is structured as follows. The relevant literature is
summarized and discussed in section 2.2. Section 2.3 describes the Managed
Futures space considered for the analysis. In section 2.4 we outline the method-
ology used to determine the degree of persistence in Managed Futures funds’
self-reported returns. We analyze the risk-return characteristics and potential
drivers for the observed premium in section 2.5. Section 2.6 concludes.

2We thank an anonymous referee for calling attention to this connection with the recent
literature.
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2.2 Related Literature

Evidence of performance persistence among hedge funds is, of course, not new.
Although early hedge fund literature gravitates towards a lack of performance
persistence in hedge funds’ self-reported returns (see inter alia ?Brown and
Goetzmann, 2003; Capocci and Hiibner, 2004; Malkiel and Saha, 2005), more
recent contributions present evidence of performance persistence.

In particular, Agarwal and Naik (2000) find persistence at the monthly fre-
quency,Baquero, ter Horst, and Verbeek (2005) find persistence at the quar-
terly level, and Agarwal, Daniel, and Naik (2009) and Kosowski, Naik, and Teo
(2007) find evidence of persistence among funds at annual horizons. Regarding
Managed Futures, Schneeweis, Spurgin, and McCarthy (1997) find, based on a
limited set of CTAs, that there is some performance persistence and that multi-
advisor Managed Futures funds display more persistence than single advisor
CTAs. More recently, Gregoriou, Hiibner, and Kooli (2010) find performance
persistence over horizons of at least one quarter. A the same time, they note
that most of this persistence disappears when evaluating managers’ ability to
remain within the top quartile of top performing funds.

There is, however, one potential complication that accompanies much of
the observed performance persistence in hedge funds’ returns. The observed
predictability may, to a large extent, be driven by illiquidity in the funds’ un-
derlying positions. Getmansky, Lo, and Makarov (2004) show that illiquidity,
caused by stale prices, can lead to spurious serial correlation in hedge funds’
self-reported returns. The authors conclude that the performance persistence
documented by Agarwal and Naik (2000) and others can be traced down to
spurious serial correlation. These results are corroborated by Eling (2009) who,
based on a review of the existing literature as well as new evidence, shows that
illiquid hedge fund categories such as Arbitrage and Emerging Markets exhibit
very high levels of performance persistence, while more liquid hedge fund strate-
gies have low levels of persistence. Still, Kosowski, Naik, and Teo (2007) argue
that some hedge funds in their sample continue to exhibit performance persis-
tence at annual horizons, even after controlling for the impact of spurious serial
correlation as detailed above.

Managed Futures funds’ self-reported monthly returns, however, are a no-
table exception. Unlike most other hedge fund categories, Managed Futures
funds’ returns do not exhibit autocorrelation, on average.®> This empirical find-
ing is consistent with the particular nature of Managed Futures funds’ strategies.
These funds only trade highly liquid securities and are therefore very unlikely
to exhibit positive autocorrelation due to illiquidity and smoothing.*

3In the case of Managed Futures and Dedicated Short Bias hedge funds, Getmansky, Lo,
and Makarov (2004) obtain smoothing-parameter estimates that suggest that no unsmoothing
of the returns is needed.

4This point is worth stressing, especially in light of recent evidence that performance
predictability in equity hedge funds tends to weaken when taking into account liquidity risk
(Brandon and Wang, 2013). Sadka (2010) finds that sorting Managed Futures into deciles
based on their exposure to an (equity) liquidity risk factor does not yield a significant (Fung-
Hsieh 7-factor) alpha. However, as Managed Futures do not trade individual equities, existing
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In spite of the liquid nature of Managed Futures funds’ strategies and the
absence of high levels of serial correlation, Khandani and Lo (2011) neverthe-
less find evidence that, among the different hedge fund categories they consider,
Managed Futures exhibit the largest ‘illiquidity’ premium. More specifically,
the authors conclude that Managed Futures funds that exhibit higher degrees
of positive autocorrelation outperform funds that exhibit lower degrees of pos-
itive autocorrelation. This finding is intriguing as this hedge fund category
provides a special case where positive autocorrelation is unlikely to be driven
by illiquidity. This suggests that there is cross-sectional variation in the degree
of serial correlation in Managed Futures funds’ returns that conveys information
on future performance.

Two apparent hedge fund return profiles can be expected to yield persis-
tence. First, we can imagine funds that exhibit highly persistent small positive
returns. While such a return profile can be the result of consistently exploit-
ing a mispricing, it can also be the result of a manager’s decision to adopt a
‘short-option’ or ‘short-volatility’ profile. If the latter proves to be the case, one
should see a breakdown in the profitability of these funds in periods of market
stress. Second, we would also observe persistence in returns among managers
that report return profiles that show occasional high positive return months,
but many small negative months in between. In that case, the return behavior
resembles a ‘long-option’ or ‘long-volatility’ profile. Such a profile carries a num-
ber of characteristics of CTAs’ trend-following nature. For example, Fung and
Hsieh (2001) make use of long-option strategies (lookback-straddles) to model
the performance of trend following funds.

Furthermore, trend-following is a divergent risk-taking strategy (see Rzepczyn-
ski, 1999; Chung, Rosenberg, and Tomeo, 2004; Greyserman and Kaminski,
2014). That is, unlike convergent strategies where a manager will consider
adding to an existing position when a perceived mispricing increases, trend-
following approaches generally dictate closing positions when trends fail to ma-
terialize. This suggests that trend-followers can be expected to incur a lot of
small losses, perhaps for extended periods of time, until market conditions allow
clear trends to emerge. We attempt to determine the extent to which Managed
Futures funds sorted on serial correlation exhibit one of the above-mentioned
return profiles similar to being short- or long volatility and whether their per-
formance breaks down in periods of market stress.

Our work is similar in spirit to the work of De Souza and Gokcan (2004), who
propose using a measure of pure persistence, the Hurst exponent, to aid in hedge
fund manager selection. The authors find that portfolios of hedge funds with
a high Hurst exponent exhibit higher returns, lower standard deviations, and
lower drawdowns. Unfortunately, their work does not cover Managed Futures.

Autocorrelation in Managed Futures funds’ returns has been a topic of in-
terest in recent empirical work. Burghardt and Liu (2013) demonstrate that
trend-following Managed Futures exhibit negative autocorrelation over short

liquidity measures based on (individual) equities might prove unsatisfactory in analyzing a
potential liquidity risk to which Managed Futures are exposed.
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horizons of up to six months. The authors note that failing to account for
negative autocorrelation in returns might yield biased performance statistics
when scaling estimates of volatility. Another important question, which has not
been addressed to the authors best knowledge, is the relationship between auto-
correlation patterns in Managed Futures’ returns and subsequent performance.
Khandani and Lo (2011) their finding of a positive ‘illiquidity’ premium in Man-
aged Futures seems to suggest a positive relationship. However, a more in-depth
analysis is needed, as the autocorrelation patterns might in fact be indicative
of specific risks taken by these managers. In what follows, we attempt to shed
light on this matter.

2.3 Data

The data come from BarclayHedge. We rely on BarclayHedge as this is the most
comprehensive database on Managed Futures that is available to researchers and
practitioners. In addition, Joenvéérd, Kosowski, and Tolonen (2012), in their
comparison of five major publicly available hedge fund databases, find that
BarclayHedge has the largest percentage of defunct funds (65%), thus making
it least likely to suffer from survivorship bias. Following related literature,
we only include the post-1994 period to avoid potential survivorship bias, as
most databases only started collecting information on defunct funds from 1994
onwards.

We filter the dataset in several respects. First, we classify the Managed
Futures programs in different categories based on the funds’ self-reported strat-
egy description.® In the process, we remove funds whose description indicates
that they invest exclusively in options. If a fund reports multiple share classes
for the same program, we only incorporate the fund’s flagship program, which
we identify as the share class with the longest track-record and highest assets-
under-management (AUM). Second, we only include programs denominated in
USD and EUR, and convert the EUR-denominated returns and AUM to USD
using the end-of-month spot USD/EUR exchange rate. We remove funds with
missing observations as well as zero-return observations at the start and end of
a fund’s track-record. To account for backfill bias, we also remove the first 12
observations of a fund’s track-record (see, for example, Kosowski, Naik, and Teo
(2007)). To ensure that our results apply to funds that can be considered part
of the investable universe for investors, we remove funds whose returns exhibit
unusually low levels of variation. To this end, we discard funds for which the
standard deviation of the observed returns is lower than 2% p.a.

Similarly to Getmansky, Lo, and Makarov (2004) and Khandani and Lo
(2011) we require a track-record of at least 5 years for a fund to be included.
This minimum requirement on the track-record is needed to ensure a sufficient
number of observations to be able to properly estimate the autocorrelation pat-
tern in a fund’s self-reported returns. Imposing this additional requirement,

5Despite the possibility of strategic self-misclassification, Brown and Goetzmann (2001)
find that self-reported descriptions do almost as well as return-based procedures.
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we obtain a dataset of 677 Managed Futures programs, 207 currently live and
470 that have stopped reporting (‘defunct’) as of the end of 2013. Summary
statistics for the funds are reported in Table 2.1.

The statistics on the standard first order autocorrelation coefficient (p;) cor-
roborate the finding of no autocorrelation, on average, among Managed Futures
(see Getmansky, Lo, and Makarov, 2004). Finally, the reported AUM indicate
that our dataset covers US$ 157.2bn, as of the end of 2013.

2.4 Methodology

To measure the degree of autocorrelation in Managed Futures funds’ returns,
we calculate a fund’s autocorrelation function based on the past five years of
return data. Given the generally low levels of serial correlation in Managed
Futures, we opt for an approach where we sum up the autocorrelation function
up to lag 12, rather than focusing on the first order autocorrelation.® As such,
our measure of serial correlation becomes,

P= i <p}_i + %) (2.1)

i=1

where p;—; is the estimated autocorrelation at lag i and 7T is the sample
size. Kendall and Stuart (1976) show that under the null hypothesis of serial
independence, the ¢ — th sample autocorrelation is biased in small samples and
has an expected value of {—_ﬂ Therefore, our measure includes a small sample
bias-correction whose importance is meaningful in this case as we have only 60
observations (T = 60).

Levich and Rizzo (1999)show that, in the case of small but persistent auto-
correlation, the unweighted sum of autocorrelations has higher power in detect-
ing persistence compared to conventional tests for autocorrelation such as the
Durbin-Watson h and m tests, Bartlett-test, Box-Pierce Q-test, the LM test of
Breusch (1978) and Godfrey (1978), and the variance ratio test. The environ-
ment for which these authors have developed their measures of persistence is
very similar to the case of Managed Futures. Managed Futures, on average, do
not exhibit significant autocorrelation, at least, based on conventional measures
(see Table 2.1, panel A). However, this observation does not rule out very small,
but persistent autocorrelation, which cannot be detected using conventional
tests. Such a return characteristic can be an indication of superior managerial
skills, in which case it is of considerable importance in portfolio selection.

Therefore, to be able to detect small, but persistent autocorrelation, our
ranking relies on a measure that is almost identical to the one proposed by Levich
and Rizzo (1999). The only difference is that we account for small sample bias.
It is important to note that this way, we retain important information contained

612 months is consistent with the convention in the momentum literature and the presence
of time-series momentum in futures markets (see Moskowitz, Ooi, and Pedersen, 2012).
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Table 2.1: Managed Futures Data

Panel A: Summary Statistics

i Standard
Mean Median
deviation
Mean return 0.81% 0.61% 0.96%
Minimum return -13.74% -10.79% 11.38%
Maximum return 21.21% 15.32% 21.42%
Standard deviation 5.53% 4.41% 4.44%
Skewness 0.544 0.436 0.894
Kurtosis 5.778 4.357 4.401
Size ($US m) 208.43 24.39 1057.78
Age (Years) 9.8 8.3 4.3
p1 0.02 0.01 0.13
Panel B: Evolution Data Set
Live
Year Defunct ~ AUM ($US bn)
funds
1999 308 24 28.93
2000 312 48 27.12
2001 317 71 33.57
2002 332 84 40.23
2003 346 103 68.58
2004 366 123 106.69
2005 395 144 96.77
2006 422 176 132.67
2007 448 194 161.59
2008 452 222 175.89
2009 426 251 180.60
2010 404 273 215.09
2011 367 310 217.75
2012 315 362 176.95
2013 207 470 157.23

Notes: this table reports summary statistics for the data
set of Managed Futures. Panel A reports statistics on the
monthly returns. Panel B reports end-of-year figures.
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in the sign of p;—; and do not downweight autocorrelation at higher lags which
could result to miss out information related to performance persistence.

To provide some rationale how this measure works for detecting performance
persistence, consider a white noise process. In this case, the probability that
the first N autocorrelation coefficients are all positive is considerably lower than
the probability that half the coefficients are positive and half are negative.” In
such cases, the sum of autocorrelations might be more informative.

On a statistical ground, our measure is closely related to spectral measures.
For example, let f(0) denote the zero frequency spectrum of the returns. The
spectral density of interest can then be given by

FO) =w0+2) wis (2.2)
=1

where w stands for the autocovariance function. If we divide both sides of
the equation by the variance of the returns,

fr)=1 +22Pt—i (2.3)
i=1

that is, the normalized spectrum at frequency zero is the sum of autocorre-
lations (see among others Cochrane, 1988; Lo and MacKinlay, 1988). In appli-
cations the infinite sum on the right-hand side must be truncated. Indeed, we
truncate the estimation and sum the unweighted autocorrelations up to lag 12.
In this sense Eq. (2.1) is closely related to zero frequency spectrum estimators.®

It is quite straightforward that after correcting for the small-sample bias,
if Managed Futures funds’ returns are uncorrelated, Eq. (2.3) is equal to one
and our measure (Eq. (2.1) equals to approximately zero. Under performance
persistence, returns exhibit positive autocorrelation and Eq. (2.1) is above
0. Under long-term mean-reversion in Managed Futures funds’ performance,
returns are negatively serially correlated and P is negative.

7Assuming a white noise process and after correcting for small sample bias, the chance
that half of the autocorrelations is positive is exactly 50%. As the number of positive autocor-
relation is binomially distributed in the case of white noise, if 9 out of the 12 autocorrelation
coefficients estimated to be positive, the null hypothesis of white noise can be rejected at con-
ventional levels of significance, independently of the magnitude of autocorrelation coefficients.
8p = %. Our estimation of P is matching the truncated uniform kernel-based
estimation in Andrews (1991). If the truncated kernel is z(i/k), P = Y i2; #(i/k)pt—s, where
1 ifi/k<1 .
x = . . Moreover, White (1980) and Hansen (1982) also apply truncated and
0 otherwise

unweighted estimators to Eq. (2.3).
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2.5 Results

2.5.1 Risk-Return Characteristics of Sorted Portfolios

Using our measure of return persistence, we rank our sample of Managed Futures
funds and divide them into quintile portfolios, with the highest (lowest) quintile
portfolio consisting of those funds with the highest (lowest) degree of persistence
measured by the unweighted sum of the first 12 autocorrelation coeflicients, as
in Levich and Rizzo (1999). We update the ranking of the funds at the end
of every month, effectively rebalancing the portfolio on a monthly basis. For
the purpose of the analysis, we construct quintile portfolios both on an equal-
weighted and asset-weighted basis (using the funds’ reported AUM at t — 1.9
To avoid the portfolio construction suffering from look-ahead bias, we insert a
zero-return the first month after a fund stops reporting.®

We report results in Table 2.2 for the quintiles of interest. The inception date
of the portfolios is 1999, as we require a 5-year burn-in period to estimate the
autocorrelation structure for the set of funds. Absolute performance, measured
using the compound annual growth rate (CAGR), suggests that more positively
autocorrelated Managed Futures funds’ (Q5) outperformed their less positively
autocorrelated peers (Q1) on an absolute return basis over the 1999-2013 period.
The upper quintile portfolio of most positively autocorrelated Managed Futures
posted a CAGR, of 7.38% p.a., compared to 4.52% p.a. for the lower quintile
portfolio. This result is in line with Khandani and Lo (2011) their earlier finding
of the presence of an illiquidity premium in Managed Futures.

Sorting managers based on serial correlation thus appears to yield portfolios
with higher raw performance. p-values for a standard difference in means test,
based on a bootstrap with a 1000 replications, however, suggests that the mean
average returns are not significantly different at conventional levels, with a p-
value of 0.16. Average monthly performance, of course, does not consider the
level of risk taken.

Higher average returns are consistent with the argument that, as positive
serial correlation is commonly considered a measure of illiquidity (see Getman-
sky, Lo, and Makarov, 2004) and, thus, illiquidity risk, positively autocorrelated
returns may indicate higher risk. The general absence of illiquidity in Managed
Futures funds’ underlying positions makes this finding unexpected. Still, the
higher expected returns may be a compensation for higher risk of some sort. If
this is the case, we expect the top quintile portfolio (Q5) to exhibit higher levels
of riskiness than the bottom quintile portfolio (Q1).

9Since small funds are generally not considered for investment, we perform a robustness
check where we impose the additional requirement that the fund should have at least US$10
million AUM at rebalancing. Results are robust to such an AUM-based filter. Results available
upon request.

101n this case, the information that a fund has stopped reporting in the following month is
not available to an allocator at the time of rebalancing. As such, to avoid look-ahead bias, we
should assume a certain allocation to that fund, even though the actual return is not observed.
Later on we relax this arbitrary zero return assumption further, to account for the bias that
voluntary reporting might induce.
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To analyze is conjecture, we also report several measures of risk and risk-
adjusted performance in Table 2.2. In particular, we report the monthly stan-
dard deviation, the (autocorrelation-adjusted) Sharpe ratio'!, maximum draw-
down, and the Sortino ratio. Since controlling downside risk plays an important
role in hedge funds and Managed Futures funds in particular, measures based
on Lower Partial Moments (see Harlow and Rao, 1989) are also considered. The
Sortino ratio (Sortino and Van Der Meer, 1991) is one commonly used measure
of downside risk. We report this metric with a target return of zero. Finally,
Maximum drawdown (MDD) is reported as this is a metric of particular rele-
vance for practitioners in the Managed Futures industry.

The risk-adjusted performance measures indicate that the upper quintile
portfolio outperforms the lower quintile, regardless of the particular risk measure
used. Interestingly, the outperformance of the top quintile portfolio (Q5) seems
to be mainly driven by lower volatility. As such, the Sharpe- and Sortino ratio
are considerably higher!2 for the top quintile portfolio. Using the hypothesis
testing methodology suggested by Ledoit and Wolf (2008) (henceforth, LW)
we test whether the difference in Sharpe ratios for the top and bottom quintile
is actually significantly different or not. We find this to be the case, as the
difference is significant at conventional levels (p-value of 0.0062 and 0.08 for the
AUM-weighted and equal-weighted portfolios, respectively).

This better risk-adjusted performance in terms of reward-to-variability is
particularly important in Managed Futures space, as funds’ programs are typ-
ically leveraged multiple times to obtain a certain target-level volatility. Maxi-
mum drawdown statistics indicate that a portfolio consisting of the most pos-
itively serially correlated funds exhibits drawdowns notably lower than that of
the other portfolio. This finding suggests that the positive autocorrelation in
Managed Futures, at least at first sight, does not lead to deeper drawdowns. The
analysis so far yields a set of Managed Futures managers that outperform their
peers. We should nevertheless first consider real-life limitations to investing in
hedge funds before we can proceed.

Share restrictions such as the lockup period, advance notice period and the
redemption frequency can limit an allocator’s ability to exploit short-term per-
sistence present in hedge funds'®. However, compared to other hedge fund

11 Annualized Sharpe ratios are adjusted for autocorrelation as suggested by Lo (2002). In
particular, the reported Sharpe ratios are calculated as SR(q) = n(q) - SR with

g

n(q) = ————,
Va2 1] (a—k) pr,

Where SR is the regular Sharpe ratio on a monthly basis, is py is the k& — th order au-
tocorrelation. SR - n(q) is then the annualized autocorrelation adjusted Sharpe ratio with
q=12.

1211 unreported results, we find that failing to adjust the Sharpe ratio has a material impact
as it increases (lowers) the ratio for the top (bottom) quintile portfolios, when compared to the
adjusted Sharpe ratio. This is because the quintile portfolios themselves also exhibit positive
(resp. negative) autocorrelation.

130ckup refers to the initial amount of time investors are prohibited from withdrawing
their investment. Omnce this lockup period is over, investors are allowed to withdraw their

36



categories, share restrictions are less stringent in the case of Managed Futures.
One likely explanation for the lower restrictions is that redemptions are less
costly for Managed Futures, as liquidity in futures markets makes these funds
better able to scale down positions to meet redemptions. To illustrate this fea-
ture of Managed Futures, we report summary statistics on share restrictions
for both Managed Futures and a composite of the other hedge fund categories
that report to BarclayHedge. As lock-ups are uncommon for most hedge fund
categories, with 70% of the funds having no lock-up restriction in place, we
focus on advance-notice periods and redemption frequencies. In order to draw
conclusions from the advance-notice period and redemption frequency, we need
to analyze both in conjunction. Consider for example a fund that imposes for a
one-day advance-notice period but nevertheless allows redemptions only quar-
terly. In that case, although the advance-notice is one day, redemption can take
up to three months.

While a wide range of combinations is possible, the actual number of com-
binations is more limited in practice. For parsimony, we report in Table 2.3
the frequencies with which different combinations of share restrictions prevail,
considering 40 combinations (based on 5 advance-notice bins and 8 redemption
frequency bins).

Results in Table 2.3 illustrate that share restrictions are much less common
for Managed Futures than for the other hedge fund categories. In particular,
the vast majority of Managed Futures allow investors to redeem considerably
more easily. Managed Futures generally allow redemption within the month,
whereas far less the case for hedge funds.

But even if share restrictions are unrestrictive, considerable turnover re-
quired in maintaining the portfolios might still make implementation unrealistic.
To investigate the turnover required, we report the change in the composition
of the portfolios from month-to-month. We find that, while turnover is non-
negligible, it is lowest for the upper quintile portfolio, at 12.7% per month. The
lower quintile suggests a slightly higher turnover rate of 16.2%. The low turnover
for both portfolios is to some extent the result of the fairly long track-record
used in estimating the autocorrelation function, causing the resulting levels of
autocorrelation to be fairly persistent. This suggests that this approach that
relies on autocorrelation might have value in practice, especially in manager
selection.

2.5.2 Performance Evaluation

The results above indicate that portfolios of Managed Futures funds based on
serial correlation exhibit distinctly different risk-return characteristics. Now
make use of a multifactor approach to try and identify the potential drivers
of the observed outperformance. In particular, the standard approach in this
context consists of assessing whether particular factors explain the performance
of the different quintile portfolios.

capital only at pre-specified times of the year (dictated by the redemption frequency), and an
advance notice is required for withdrawal.
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Table 2.2: Summary Statistics Sorted Portfolios

Value-weighted Portfolios

8¢

Mean Monthly Standard Sortino Ratio Sharpe MDD CAGR
Return Deviation Ratio
Q1 (low) 0.41% 2.83% 0.84 0.55 -16.88% 4.52%
Q5 (high) 0.61% 1.56% 2.88 1.19 -5.90% 7.38%
difference in means (p-val) 0.16 LW -statistic 3.298%%*
BarclayHedge 0.55% 2.28% 1.53 0.98 -1.77% 6.40%
Equal-weighted Portfolios
Mean Monthly Standard Sortino Ratio Sharpe MDD CAGR
Return Deviation Ratio
Q1 (low) 0.55% 2.67% 1.32 0.86 -10.69% 6.32%
Q5 (high) 0.49% 1.61% 2.25 1.15 -5.75% 5.88%
difference in means (p-val) 0.36 LW -statistic 1.694*
BarclayHedge 0.49% 2.42% 1.31 0.81 -9.27% 5.69%

Notes: this table reports summary statistics on portfolios sorted portfolio exhibiting the highest degree of positive (negative)
autocorrelation. The table reports the mean monthly return, the standard deviation of mean monthly returns, the annual Sortino
ratio, the annual Sharpe ratio, maximum drawdown (MDD), and the compound annual growth rate (CAGR). A difference in
means test, using a bootstrap with a 1000 replications is used to test the difference in average returns. The Ledoit-Wolf (LW)
statistic tests the statistical significance of the difference in Sharpe ratios. *** p<0.01, ** p<0.05, * p<0.1
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Panel A: Hedge Funds

Redemption Frequency

Daily Weekly  Bi-weekly Monthly Bi-monthly Quarterly Semi-annual Annual
0 2.33% 1.04% 0.01% 1.30% 0.01% 0.78% 0.11% 0.09%
Advance 1-31 2.62% 2.23% 0.20% 26.28% 0.30% 8.49% 0.56% 0.46%
Notice Period 32-91 0.10% 0.09% 0.00% 13.33% 0.01% 19.91% 1.46% 1.76%
(days) 92-180  0.00% 0.03% 0.01% 5.08% 0.00% 8.44% 1.00% 1.76%
> 180 0.00% 0.00% 0.00% 0.01% 0.00% 0.08% 0.03% 0.08%

Panel B: Managed Futures

Redemption Frequency

Daily Weekly  Bi-weekly Monthly Bi-monthly Quarterly Semi-annual Annual
0 11.72% 1.56% 0.00% 14.84% 0.00% 0.00% 0.00% 0.00%
Advance 1-31 7.03% 7.03% 0.78% 44.53% 1.56% 0.78% 0.00% 0.00%
Notice Period 32-91 0.00% 0.00% 0.00% 5.47% 0.00% 1.56% 0.00% 0.00%
(days) 92-180  0.00% 0.00% 0.00% 3.13% 0.00% 0.00% 0.00% 0.00%
> 180 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Notes: this table reports summary statistics on the share restrictions for Managed Futures and hedge funds. Results indicate

the frequency with different combinations of advance notice and redemption frequency are employed.
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While Managed Futures’ dynamic nature of their strategies makes it difficult
to model their returns, recent advances on (time-series) momentum in futures
markets by Moskowitz, Ooi, and Pedersen (2012) and Baltas and Kosowski
(2012) have led to an improved understanding of Managed Futures. Moskowitz,
Ooi, and Pedersen (2012) present evidence that futures contracts’ own past
returns predict future returns. To exploit this predictability, the authors im-
plement synthetic trading strategies that take both long- and short positions in
a wide set of futures contracts, using information inferred from the contracts’
(12-month) past returns. Their results also suggest these momentum factors
capture the performance of Managed Futures returns and perform better than
of the primitive trend-following strategy metrics (PTFS), suggested by Fung and
Hsieh (2001). Baltas and Kosowski (2012) extend Moskowitz, Ooi, and Pedersen
(2012) their approach and construct time-series momentum factors over differ-
ent trading horizons. They show that a combination of these factors and the
seven factors of Fung and Hsieh (2004) considerably improves the explanatory
power of the model applied to Managed Futures’ returns.

We incorporate these recent advances on performance evaluation to analyse
the different quintile portfolios. In particular, we retrieve the data for Fung
and Hsieh’s 7-factor model and Baltas and Kosowski (2012) their momentum
factors.!* We then estimate multifactor models for the relevant value-weighted
quintile portfolios for the 1999-2013 period for which all data is available. Re-
sults are reported in Table 2.4.

Examining the observed variance explained across models, using the adjusted-
R?, we find that more positively autocorrelated Managed Futures’ returns are
less well explained, both in the case of the momentum factors and a combina-
tion of the momentum factors and Fung and Hsieh’s 7-factor model. The upper
quintile portfolio displays considerably lower loadings on the different momen-
tum factors, although the momentum factors remain significant at conventional
levels. Looking at the upper quintile’s risk-adjusted performance, we find that
it is the only portfolio that exhibits a statistically and economically significant
positive alpha (approximately 0.49% per month, or 6% p.a.). Nevertheless, the
models’ low explanatory power suggest that these programs are employing truly
different strategies than most Managed Futures.'® The lack of statistical signif-
icance of the factors proposed by Fung and Hsieh (2004) further suggest that
these funds are not loading on any of the other risk-factors commonly associated
with other hedge fund categories. This result is in accordance of the findings of
Sun, Wang, and Zheng (2012) who show that hedge fund managers who produce

14The momentum factors are made available by Baltas and Kosowski (2012)
at http://www3.imperial.ac.uk/riskmanagementlaboratory/risklabsections/
centreforhedgefundsresearch/baltas_kosowski_factors. Data for the PTFS-factors
are retrieved from the David Hsieh‘s home page http://faculty.fuqua.duke.edu/~dah7/
DataLibrary/TF-FAC.x1s.

15In unreported tests, we also analyse whether liquidity risk, proxied using a tradable (eq-
uity) liquidity factor of Pastor and Stambaugh (2003) their measure of illiquidity (available on
Robert F. Stambaugh’s home page http://finance.wharton.upenn.edu/"stambaugh/) sheds
additional light on the outperformance. However, the risk-factor is not statistically significant
at conventional levels. Results available upon request.
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Table 2.4: Multifactor Model - Momentum Factors and Fung and Hsieh (2004) Factors

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Q1 Q5 Q5-Q1 BarclayHedge Q1 Q5 Q5-Q1 BarclayHedge
MOMM 0.288%** 0.0669** -0.221%** 0.239%** 0.305%** 0.0697** -0.235%** 0.249%**
(0.0599) (0.0333) (0.0621) (0.0373) (0.0673) (0.0314) (0.0693) (0.0393)
MOMW 0.179** 0.0909** -0.0885 0.195%** 0.167** 0.0816* -0.0851 0.180%**
(0.0750) (0.0445) (0.0739) (0.0521) (0.0808) (0.0458) (0.0800) (0.0564)
MOMD 0.0539 0.0378 -0.0161 0.0984** 0.0171 0.0117 -0.00543 0.0606
(0.0610) (0.0430) (0.0606) (0.0449) (0.0631) (0.0423) (0.0699) (0.0460)
S&P 500 0.0364 0.0399 0.00358 0.0169
(0.0508) (0.0295) (0.0540) (0.0379)
SCMLC 0.0276 0.0379 0.0103 0.0456
(0.0997) (0.0331) (0.0956) (0.0582)
10Y -0.143%* -0.0447 0.0980 -0.122%**
(0.0578) (0.0315) (0.0671) (0.0379)
CREDITSPR 0.163%* 0.0426 -0.121 0.121%*
(0.0776) (0.0428) (0.0908) (0.0531)
PTFSCOM 0.00195 -0.00292 -0.00487 -0.000548
(0.0158) (0.0106) (0.0163) (0.00970)
PTFSFX 0.0235%* 0.0188** -0.00477 0.0190*
(0.0133) (0.00828) (0.0130) (0.00995)
PTFSBD 0.0295%* 0.0131 -0.0164 0.0275%**
(0.0135) (0.00923) (0.0142) (0.0105)
Constant -0.00133 0.00485%** 0.00617*** 0.000332 -0.000951 0.00499*** 0.00594*** 0.000758
(0.00211) (0.00126) (0.00202) (0.00157) (0.00225) (0.00134) (0.00220) (0.00163)
Observations 157 157 157 157 157 157 157 157
Adj. R? 0.285 0.130 0.157 0.416 0.355 0.210 0.183 0.505

Notes: the table analyzes the monthly returns of the different quintile portfolios using Baltas and Kosowski (2012) their momentum
factors and a combination of Baltas and Kosowski (2012) their factors and Fung and Hsieh (2004) their 7-factor model. The Fung
and Hsieh (2004) factors are the Standard & Poors 500 index monthly total return (S&P 500); the spread return between Russell
2000 index monthly total return and Standard & Poors 500 monthly total return (SCMLC); The monthly change in the 10-year
treasury (constant maturity) yield (10Y); the monthly change in the Moody’s Baa yield less 10-year treasury constant maturity
vield (CREDIT SPR); Fung and Hsieh (2001) their Bond Trend-Following Factor (PTFSBD), Currency Trend-Following Factor
(PTFSPX), and Commodity Trend-Following Factor (PTFSCOM).

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1



returns less explainable by factors are more likely to possess managerial skills
as they pursue more distinct strategies.

2.5.3 Alternative Explanations for the Premium

While so far our analysis yields notable results with regard to the risk-adjusted
performance of more positively autocorrelated Managed Futures funds, it is
instructive to explore alternative explanations that might explain the observed
premium. To this end, we examine whether reliance on particular strategies,
possible differential performance during adverse market states, attrition rates,
and backfill bias might explain the performance.

2.5.3.1 Relationship with Managed Futures’ Strategies and Funds’
Traits

The portfolios’ composition could be concentrated in Managed Futures cate-
gories that execute distinctly different strategies. In particular, funds could en-
gage in trading strategies such as option writing, which might lead to different
risk /return-profiles compared to the more dominant trend-following strategy.
Non-trend-following strategies might therefore generate steady positive returns
that induce positive serial correlation, but which might be followed by large
losses. As mentioned in the data description, we have removed funds that indi-
cate that they rely exclusively on option strategies.

Nevertheless, it is instructive to report the composition of the quintiles of
interest in terms of the strategies employed by the constituents. To this end,
we employ the classification performed during the data handling. The results
are reported in Figure 2.1.

The bar charts indicate that, while a portfolio consisting of positively au-
tocorrelated Managed Futures seems to contain somewhat fewer (systematic)
trend-followers, there are nevertheless no pronounced differences in the strate-
gies employed by the managers included within every quintile portfolio. This
suggests that the positive autocorrelation is not a feature of a particular strat-
egy, but rather a feature of certain funds across different strategies.

There is a second dimension along which the strategies the funds follow
might lead to a stronger performance of the upper quintile portfolio, compared
to the other quintiles. In particular, differences in risk-adjusted performance
might to some extent be driven by diversification gains. To analyze whether
the potential for diversification gains differs across the different quintiles, we
report the average pairwise correlation among the constituents prior to portfolio
formation. We estimate pairwise correlations using the 5-year lookback window
used to estimate the autocorrelation structure.

The results indicate that average pairwise correlation between any two funds
is indeed lower in the case of the upper quintile portfolio. In particular, the
pairwise correlation equals 0.11 for the upper quintile compared to 0.2 for the
lowest quintile. This finding indicates that part of the strong performance is
due to diversification gains. However, it also corroborates our earlier conjecture
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Figure 2.1: Strategy Composition Quintile Portfolios

1

I Trend-followers
[ Fundamental Traders
09F [ short-term Traders
[ other Strategies

08 B

o
>
T

Fraction of Funds
o ° ° o
N @ = o
T T T

o
e

Q1 Q5
Quintile Portfolios

Notes: the stacked-bars report the composition of the different
quintile portfolios over the sample period.

that these managers do not cluster around a particular investment approach.
Instead, managerial skills might explain the good performance and low pairwise
correlation with other Managed Futures.

Next to the strategies, we also analyse the average size and age of the funds
included within every quintile. Given recent evidence that hedge fund perfor-
mance is related to age and size (see Boyson (2008)), it is possible that the
upper quintile consists of smaller or younger funds. The results for the average
fund size suggest no differences in average fund size. The average fund size
is USD 361m and USD 325m for the lower and upper quintile, respectively. A
conventional ¢-test allows us to conclude that there are indeed no significant dif-
ferences in the average size of funds in the extreme quintiles (p-value of 0.3265).
In unreported results, we also observe that there are no significant differences
in the age of the funds across quintiles.

2.5.3.2 Tail Risk

Of course, it is possible that there is a difference between what fund managers
say they do, and what they actually do. Therefore we also consider an alter-
native approach to determine whether more positively autocorrelated Managed
Futures take on tail risk. One manifestation of differential risk-taking should
be evident when comparing performance during adverse market states. Fung
and Hsieh (1997) are the first to use such an approach and show that Man-
aged Futures exhibit a straddle-like pay-off. This feature of Managed Futures
has been coined ‘crisis alpha’ by Kaminski and Mende (2011). Good overall
performance of a portfolio investing in more positively autocorrelated Managed
Futures might come at the expense of crisis alpha, i.e. strong performance dur-
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ing crisis times. Positively correlated funds’ performance might break down
during adverse market states and thus hamper their diversification benefit in a
portfolio context.

We investigate the portfolios’ performance during different market states, fol-
lowing the approach of Fung and Hsieh (1997). In particular, we group monthly
returns of MSCI World Gross Total Return into five market states, ranging from
sharp selloffs to rallies, by ranking the monthly gross returns. We then report
the average performance of both the equity index and the portfolios of Managed
Futures in the same period. For comparison, we perform a volatility adjustment
such that the Managed Futures portfolios, ex-post, exhibit the same degree of
volatility as the equity index. We do the adjustment in the following way

&(Rworld - Rj)

Radj — -
: (R, — Ry)

- (Rp — Ry) + Ry (2.4)

where 6() stands for the estimated standard deviation. R,oriq is the monthly
gross return on the MSCI World Index, Ry is the monthly risk-free rate and
R, is the monthly return of the portfolio whose volatility we wish to scale.
Since it is not possible to lever the interest rate component (proxied here by the
risk-free rate) inherent in Managed Futures’ returns, we subtract the risk-free
rate from R, when performing the volatility adjustment and then add it again
afterwards.!® The results are reported in Figure 2.2.

The results suggest that the higher performance of more positively autocor-
related Managed Futures does not lead to a deterioration of performance during
adverse market states.

Another approach to analyzing whether Managed Futures funds in the top or
bottom quintile are exposed to tail risk can be done using a regression approach.
As described in the introduction, a likely explanation as to why we might expect
persistence in the returns of Managed Futures has to do with the observation
that their payoff resembles long volatility. To analyze whether the quintile
portfolios of interest exhibit behavior similar to that of a put-option writing
strategy, we proxy the performance of such a strategy using monthly returns
on the CBOE S&P 500 PutWrite Index. Table 2.5 reports the results when we
include this additional risk factor.

The outperformance of the upper quintile does not seem to be the result
of taking on tail risk by engaging in (short) put-option writing on the S&P
500. In addition, the results on the long/short portfolio indicate that the upper
and bottom quintiles’ exposure with regard to this risk factor does not differ
significantly. Interestingly, the BarclayHedge index appears to load positively
on this risk factor, even after inclusion of the Fung and Hsieh (2004) factors.

16While a Managed Futures program can be levered several times by changing the amount
of margin held, this is not the case for the return earned on the cash held (i.e. risk-free rate).
One should therefore subtract this return imbedded in a Managed Futures program’s reported
return when adjusting the volatility of a program.
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Table 2.5: Multifactor Model - Portfolio Returns and Option Writing

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Q1 Q5 Q5-Q1 BarclayHedge Q1 Q5 Q5-Q1 BarclayHedge
MOMM 0.290*** 0.0688** -0.222%** 0.240%** 0.305%** 0.0704** -0.235%** 0.250%**
(0.0606) (0.0322) (0.0625) (0.0374) (0.0681) (0.0315) (0.0694) (0.0382)
MOMW 0.209%** 0.116%** -0.0928 0.218%** 0.183** 0.0982%** -0.0848 0.205***
(0.0721) (0.0411) (0.0740) (0.0498) (0.0866) (0.0477) (0.0842) (0.0597)
MOMD 0.0800 0.0600 -0.0200 0.119%* 0.0455 0.0405 -0.00496 0.105**
(0.0623) (0.0441) (0.0625) (0.0477) (0.0648) (0.0434) (0.0705) (0.0484)
S&P 500 -0.0314 -0.0290 0.00247 -0.0891
(0.0938) (0.0544) (0.0873) (0.0695)
SCMLC 0.0159 0.0259 0.0101 0.0273
(0.0989) (0.0342) (0.0956) (0.0562)
10Y -0.137%* -0.0391 0.0981 -0.113***
(0.0583) (0.0326) (0.0679) (0.0397)
CREDITSPR 0.150%* 0.0289 -0.121 0.0997*
(0.0793) (0.0463) (0.0942) (0.0557)
PTFSCOM -8.74e-05 -0.00499 -0.00490 -0.00373
(0.0158) (0.0109) (0.0162) (0.00999)
PTFSFX 0.0220 0.0172%* -0.00480 0.0166*
(0.0133) (0.00838) (0.0130) (0.00984)
PTFSBD 0.0282%* 0.0118 -0.0164 0.0255**
(0.0137) (0.00939) (0.0145) (0.0102)
PUTWRITE 0.0987* 0.0840** -0.0146 0.0793* 0.126 0.128 0.00206 0.198**
(0.0584) (0.0365) (0.0600) (0.0446) (0.125) (0.0780) (0.122) (0.0924)
Constant -0.00240 0.00393***  0.00633%** -0.000533 -0.00183 0.00409***  0.00593%** -0.000624
(0.00223) (0.00128) (0.00219) (0.00160) (0.00230) (0.00131) (0.00222) (0.00172)
Observations 157 157 157 157 157 157 157 157
Adj. R? 0.295 0.155 0.157 0.426 0.359 0.225 0.183 0.520

Notes: the table analyzes the monthly returns of the different quintile portfolios using Baltas and Kosowski (2012) their momentum
factors and a combination of Baltas and Kosowski (2012) their factors and Fung and Hsieh (2004) their 7-factor model. The Fung
and Hsieh (2004) factors are the Standard & Poors 500 index monthly total return (S&P 500); the spread return between Russell
2000 index monthly total return and Standard & Poors 500 monthly total return (SCMLC); The monthly change in the 10-year
treasury (constant maturity) yield (10Y); the monthly change in the Moody’s Baa yield less 10-year treasury constant maturity
yield (CREDIT SPR); Fung and Hsieh (2001) their Bond Trend-Following Factor (PTFSBD), Currency Trend-Following Factor
(PTFSPX), and Commodity Trend-Following Factor (PTFSCOM). Finally, an option strategy involving writing out-of-the-money
put options on the S&P 500 is captured using CBOE PutWrite index (PUTWRITE).

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1



Figure 2.2: Performance During Different Market States
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Notes: the bar chart reports the average monthly return during dif-
ferent market states. Market states are identified by ranking monthly
gross returns of the MSCI World into 5 different quintiles. Average
(volatility-adjusted) monthly returns for the quintile portfolios during
the corresponding months are reported.

2.5.3.3 Attrition and Delisting Bias

While differences in risk-taking might not be evident from the trading strate-
gies employed or performance during adverse market states, such differences
may nevertheless show up when examining the funds’ attrition rates. Attrition
rates allow us to quantify potential risks not captured by the funds’ self-reported
returns. hedge funds in general and Managed Futures in particular have high
attrition rates, as is evident from Table 2.1. Arnold (2013) notes that while attri-
tion of Managed Futures is high, real failures are considerably lower, suggesting
that many liquidations may not be damaging to investors. Nevertheless, given
the voluntary nature of hedge fund databases, managers might fail to report
further losses to the investors by not reporting last months’ performance. Con-
sequently, returns might not reflect the actual losses of investors. The delisting
bias that such behaviour induces, has been analysed in context of hedge fund
databases. Edelman, Fung, and Hsieh (2013) conclude that missing returns
of successful funds tend to offset the delisting bias in the missing returns of
liquidating funds.

Nevertheless, we analyse attrition rates and the possible impact of backfill
bias on our results. We start by counting the number of fund delistings that
occur for every quintile portfolio in the period immediately after rebalancing. In
particular, we count the number of instances where our portfolio construction
would have invested in funds that no longer report in the subsequent period.
This provides a first useful proxy of risks that do not show up in the funds’
self-reported returns.
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We find that the fraction of delistings is slightly higher in the case of the
upper quintile portfolio with an attrition rate of 26% (108 delistings), compared
to 22% (88 delistings) in the case of the lower quintile. These results suggest
that there are more fund failures among positively autocorrelated Managed
Futures, although subdued. Nevertheless, this result does suggest that perhaps
the outperformance is be driven by delisting bias.

Therefore, we attempt to explicitly correct for the delisting bias. In particu-
lar, we repeat the portfolio approach outlined above, but assume a -4.5% return
in the first month that the fund fails to report to the database. This -4.5%
return corresponds to the average compounded omitted return for the Lipper
TASS and HFR database found by Jorion and Schwarz (2013). Correcting for
delisting bias in this way takes into account the higher incidence of fund delist-
ings in certain quintile portfolios. This is necessary as the likelihood of a fund
becoming delisted seems to be positively correlated to higher degrees of positive
autocorrelation in the programs’ returns. The results for the value-weighted
quintile portfolios are reported in Table 2.6.

We find that the performance of positively autocorrelated Managed Futures
seems to persist, even when we correct for delisting bias using a conservative
-4.5% return. This is particularly the case for the AUM-weighted portfolios, but
appears to be the less the case for the equal-weighted portfolios.

2.6 Conclusion

In this paper, we developed and applied a measure for detecting low but per-
sistent levels of performance persistence in hedge funds’ self-reported returns.
We applied this measure to Managed Futures, a hedge fund category that is
unlikely to exhibit spurious serial correlation due to smoothing and illiquidity
in underlying positions.

We make several contributions to the existing literature on autocorrelation
patterns in hedge funds and Managed Futures in particular. First, we corrob-
orate earlier findings in that we provide additional evidence of the existence
of a premium in Managed Futures, using an alternative hedge fund database.
Second, using a multifactor analysis, we find that the observed outperformance
of funds sorted on the degree of persistence in their returns cannot be explained
using existing models. This suggests that the returns generated by these funds
are distinctly different. Third, we show that the premium is unlikely to be
explained by a reliance on particular strategies, fund size, a compensation for
tail risk, attrition rates, and delisting bias. Given considerably lower share
restrictions for Managed Futures, our results suggest that incorporating serial
correlation may improve the manager selection and allocation process.

The above results suggest that the observed persistence might be a proxy
of fund skills. If a fund manager has a good trading approach that fits the
prevailing market environment at a given period in time, that fund is expected
to persistently generate gains. Of course, a particular trading approach should
not be expected to work indefinitely since the market environment regularly
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Table 2.6: Results Correction for Delisting Bias

Value-weighted Portfolios

Mean Monthly Standard Sortino Ratio Sharpe MDD CAGR
Return Deviation Ratio
Q1 (low) 0.40% 2.83% 0.81 0.53 -17.14%  4.39%
Q5 (high) 0.57% 1.59% 2.56 1.12 -6.61% 6.91%
Difference in means (p-val) 0.19 LW -statistic 2.94%*
BarclayHedge 0.55% 2.28% 1.53 0.98 -7.77% 6.40%
Equal-weighted Portfolios
Mean Monthly Standard Sortino Ratio Sharpe MDD CAGR
Return Deviation Ratio
Q1 (low) 0.50% 2.68% 1.18 0.78 -10.93%  5.71%
Q5 (high) 0.43% 1.62% 1.88 0.96 -8.22% 5.09%
Difference in means (p-val) 0.38 LW -statistic 1.34
BarclayHedge 0.43% 1.62% 1.53 0.98 “7.7T%  6.40%

Notes: this table reports the results for a robustness check where we repeat the portfolio construction, but at the same
time impose a hypothetical -4.5% return in the first month a fund stops reporting to Barclayhedge. The table reports the
mean monthly return, the standard deviation of mean monthly returns, the annual Sortino ratio, the annual Sharpe ratio,
maximum drawdown (MDD), and the compound annual growth rate (CAGR).A difference in means test, using a bootstrap
with a 1000 replications is used to test the difference in average returns. The Ledoit-Wolf (LW) statistic tests the statistical

significance of the difference in Sharpe ratios. *** p<0.01, ** p<0.05, * p<0.1



changes. As such, rebalancing the portfolio is required. Finally, we note that
our results suggest that, while it is unlikely that the outperformance of more
positively autocorrelated Managed Futures funds is driven by delisting bias,
slightly higher attrition rates require close monitoring and risk management.
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Chapter 3

Intraday momentum in FX
markets: disentangling
informed trading from
liquidity provision?

Journal of Financial Markets
In Press

3.1 Introduction

Market participants need time to interpret and react to new information.
Consequently, the dissemination of news potentially leaves room for pre-
dictability over short horizons of time. Theoretically, participants’ trades
are likely to be informative of future returns, given that they contain
private information (Lyons, 1995).

A number of papers show that interdealer order flow in foreign ex-
change (FX) markets is indeed predictive of future returns. Payne (2003)
shows that trades carry information and have a substantial permanent
impact on prices. Similarly, Chordia et al. (2005) show that order flow

I This chapter is based on joint work with Kevin Lampaert (Ghent University) and
Michael Frommel (Ghent University).
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is predictive of future returns over the very short horizon. More recently,
Chordia et al. (2008) find that very short-term predictability is dimin-
ished when bid-ask spreads are narrower, indicating that liquidity en-
hances market efficiency through increased arbitrage activity. This find-
ing suggests that liquidity also plays a role in the short-term predictability
of returns.

Although most of the above studies focus on very short horizons, Gao
et al. (2015) take a considerably longer perspective while staying in the
field of intraday high-frequency data. In particular, they investigate the
predictability of a security’s first half-hour return on its last half-hour
return and find that the former is positively predictive of the latter. This
finding suggests that, in addition to predictability over very short periods
of time, there also appears to be predictability over considerably longer
periods of time during the trading day. To date, however, no researchers
have empirically tested the likely drivers of this “intraday momentum?”.

Our contribution to the literature on FX microstructure is twofold.
First, by using a long sample of transaction-level FX market data at tick
frequency, we construct high-frequency measures of the likely drivers of
intraday momentum in the ruble market. Using these measures, we ana-
lyze whether intraday momentum is stronger on days with more informed
trading or when demand for liquidity is higher. These hypotheses capture
the likely explanations of how market participants’ behavior may generate
the observed intraday momentum effect.

For the RUB-USD FX market, and contrary to the results of Gao et al.
(2015) for the equity market, we do not find any evidence supporting the
idea that intraday momentum is the result of strategic informed trading
during the opening and closing of the trading session. This finding is
consistent with the earlier finding that informed traders in the RUB-USD
FX market mainly trade during the opening of the trading sessions in the
Moscow Interbank Currency Exchange (MICEX) (Menkhoff and Schmel-
ing, 2010). Instead, our results for the ruble market indicate that opening
half-hour returns are positively predictive of closing half-hour returns on
days when bid-ask spreads are high during the opening half-hour. We hy-
pothesize that high spreads are consistent with higher levels of liquidity
provision by some market participants following heavy trading early in
the morning. Taken together, our results lend support to the argument
that risk aversion to overnight holdings and a potential disposition effect
among liquidity-providing market participants drive intraday momentum
in the ruble market.

Second, our findings also contribute to a better understanding of in-
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traday momentum along several other dimensions. In particular, we cor-
roborate the finding of Gao et al. (2015) that the trading hours of the
non-major currency’s domestic market matter for intraday momentum.
Although these authors observe a general lack of intraday momentum in
major currencies vis-a-vis the U.S. dollar when considering U.S. trading
hours, they find some weak evidence of intraday momentum when they
determine implicit trading hours, based on increases in volume in inter-
national equity index futures. Our results for the RUB-USD currency
pair show that, by considering the explicit trading hours of the MICEX,
significant levels of intraday momentum are present. Clearly, the explicit
nature of the trading hours helps to identify the relevant periods over
which intraday momentum occurs in this FX market. Finally, our results
also support the earlier observation that intraday momentum is more pro-
nounced during financial crisis periods.

The remainder of this paper is structured as follows. In Section 3.2,
we provide an overview of the related literature and formulate the dif-
ferent mechanisms that may drive intraday momentum. In Section 3.3,
we describe the data used for our empirical analysis. In section 3.4, we
outline the concept of intraday momentum and present the methodology
used to measure the degree of informed trading and liquidity demand. In
section 3.5, we discuss the results. In section 3.6, we assess the robustness
of the results. We conclude in Section 3.7.

3.2 Motivation and related literature

Gao et al. (2015) suggest two potential mechanisms that may drive in-
traday momentum in financial markets. First, the intraday pattern can
be the result of liquidity provision by some market participants (e.g., day
traders, market makers, etc.). With price dissemination being the highest
at the beginning of a trading session (Bloomfield et al., 2005) when market
participants react to macroeconomic news released overnight before the
start of the trading session, temporary imbalances may arise when mar-
ket participants react similarly to news. Day traders and market makers
may be motivated to take opposite positions to provide liquidity to the
market. However, although these traders may quickly close out winning
positions throughout the day, they may be more reluctant to rapidly close
out losing positions. However, the prospect of having to hold positions
overnight may convince traders and market makers to close out the po-
sitions nonetheless. Gao et al. (2015) point to a disposition effect among
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(day) traders (Odean, 1998; Locke and Mann, 2005) to motivate such
asymmetric behavior. The risk management practices of financial insti-
tutions, however, may similarly force traders to close out positions before
the end of the day. This behavior of (foreign exchange) dealers’ offloading
undesired inventory has been widely documented in the literature (Lyons,
1995; Bjgnnes and Rime, 2005).

Second, intraday momentum is also theoretically consistent with the
strategic behavior of informed traders. Theoretically, Kyle (1985) and
Admati and Pfleiderer (1988) argue that informed traders will time their
trades during high-volume periods to hide their informational advantage
and to limit the price impact. Doing so will force informed traders to
trade during high-volume periods (see Bloomfield et al., 2005). Given the
well-known U-shape in intraday trading volume, the implication is that
they will trade at the beginning and near the end of the trading day. If
informed traders indeed place their trades during periods of heavy trading
and if their trading has a (permanent) price impact, then this may also
drive the observed predictability in intraday returns.

Both explanations are closely related to the existing FX microstruc-
ture literature on the predictability of returns in FX markets. Research
indicates that fundamentals, proxied with macroeconomic variables, per-
form poorly in forecasting future exchange rate movements (e.g., Evans
and Lyons, 1999); however, this is not the case for order flow and liquid-
ity. In particular, it is well founded that order flow is predictive of returns
over the very short term. For example, Payne (2003) shows that market
participants’ trades carry information and have a substantial permanent
impact on prices. Similarly, Chordia et al. (2005) show that order flow is
predictive of future returns over the very short horizon.

Theoretically, the predictability of future returns based on order flow
is consistent with strategic order splitting among informed traders. Given
that information among market participants is heterogeneous, some par-
ticipants are likely to participate in strategic trading to disguise their
superior information. One way to lower the impact of their trades is
through order splitting (Chakravarty, 2001), which results in correlated
trades.

Love and Payne (2008) show that there is short-term predictability
through order flow when public information is released, which suggests
that the predictability is driven by information processing. Simultane-
ously, Evans and Lyons (2005) show that FX markets incorporate news
only gradually, over the matter of a few days, rather than instantaneously.
Similarly, Rime et al. (2010) confirm gradual learning and show that order
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flow is a strong predictor for daily returns. The above literature indicates
that both transitory and permanent price impacts seem to be predictable
from past order flow, at least over short horizons.

There are recent reports that liquidity is also an important explana-
tory variable in the price discovery process. Chordia et al. (2008) find
that very short-term predictability is diminished when bid-ask spreads
are narrower, indicating that liquidity enhances market efficiency through
increased arbitrage activity. More recently, Boudt and Petitjean (2014)
show that changes in order imbalances are informative of price discovery.
This finding suggests that liquidity also plays a role in the short-term
predictability of returns.

3.3 Data description and institutional features

3.3.1 Data

We use a particularly long-time span of intraday transaction-level data
at tick frequency on the Russian ruble-United States dollar. We obtain
the data from the MICEX, the largest currency exchange in Russia and
Eastern Europe. Spot trading in the RUB-USD currency pair equals
1.66% of total FX spot trading volume in 2013, meaning that the currency
pair ranks as the 12th mostly heavily traded globally.

We obtain data for the January 12, 2005 to December 30, 2014 pe-
riod. Although constrained to one particular currency pair, the data set
offers several advantages. First, a long data span avoids a number of short
sample problems that researchers often encounter in the microstructure
literature, such as possible structural breaks or biases in the estimated pa-
rameters. Second, the sample period features both the 2007-2009 Global
Financial Crisis and the more recent 2014 Russian currency crisis, during
which the ruble was the object of the crisis. Figure 3.1 illustrates the
evolution of the RUB-USD exchange rate over the sample period.

Both the 2007-2009 Global Financial Crisis and the 2014 Russian cur-
rency crisis are clearly discernible in Figure 1, with both instances leading
to a meaningful depreciation in the value of the ruble versus the dollar.
The figure also suggests somewhat higher volatility post-2008 compared
to the first couple of years of the sample period.

The MICEX trading platform was jointly developed with Reuters and
has features similar to the platform of Reuters or Electronic Brokerage
Services (EBS). Participants can observe the price, the trading volume,
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Figure 3.1: Evolution U.S. dollar - Russian ruble (2005-2014)
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and the bid and ask prices with standing volumes. In contrast to most
other FX markets, it is only possible to submit limit orders to the plat-
form. However, market orders can be synthetically created by submitting
marketable limit orders. The MICEX covers all domestic spot trading
in Russia. Offshore trading in the RUB-USD is performed through and
limited to non-deliverable forward contracts. To illustrate the fact that
both platforms are very similar and that the MICEX is the main exchange
for spot trading in RUB-USD worldwide, we note that trading on Thom-
son Reuters is transmitted to the MICEX during trading hours when the
MICEX is open. Refer to Menkhoff and Schmeling (2010) for further
details on ruble trading on the MICEX.

The data set contains the following information for every trade exe-
cuted on the MICEX; a time-of-day time stamp (to the millisecond), the
price at which the order is executed, and the size of the trade. Simultane-
ously, we also have information on the best bid- and ask price at the time
every order is executed. From the transaction-level data, we calculate
half-hour (30 minutes) log returns for each trading day ¢ as follows:

rje = log <—pj’t ) : (3.1)

Pj-1t
where r;; represents the half-hour return at day t for intraday interval
j and p;; represents the exchange rate at day t (the value of one dollar
quoted in rubles) at the end of intraday interval j. The first half-hour
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Table 3.1: Summary statistics RUB-USD exchange rate

Panel A: Full Sample Panel B: Financial Crises
Period (2005-2014) (2007-2009 & 2014)
First Last First Last
Half-hour Half-hour Half-hour Half-hour
Returns Returns Returns Returns
Mean -0.001% 0.004% 0.004% 0.004%
St. Dev. 0.589% 0.124% 0.798% 0.159%
Skewness -1.842 -5.204 -2.278 -7.060
Kurtosis 56.896 138.337 45.945 132.897
Min -8.932% -2.943% -8.932% -2.943%
Max 6.265% 1.218% 6.265% 0.735%
# of Obs. 2,342 2,342 922 922

This table reports summary statistics for the RUB-USD exchange rate. We report
statistics for both the first and the last half-hour return. Panel A contains the
statistics for the full sample period 2005-2014, while Panel B contains the statistics
for the crisis periods (2007-2009 & 2014).

return of each day is calculated based on the previous day’s closing price.
This way we also capture the overnight return component, which might
drive the informed trading and liquidity demand we wish to analyze. At
the same time, by using the previous day’s closing price we avoid relying on
the opening price. This is an important consideration, since the opening
price is prone to pricing errors that may bias opening returns (see Amihud
and Mendelson, 1987). Table 3.1 reports the summary statistics for the
first and last half-hour returns we use. We report statistics both for the
full sample period and for the crisis periods separately.

We observe that opening half-hour returns are considerably more vari-
able than closing half-hour returns, which reflects information processing
at the start of the trading session. In addition, both return series are neg-
atively skewed, suggesting that large negative returns are considerably
more prevalent than large positive returns.

3.3.2 Institutional features

The data set we consider has several features. First, and specific to the
MICEX, the exchange changed the opening and closing hour on several
occasions over the sample period. In all instances, the change in trading
hours led to an increase in the number of hours that the MICEX is open.
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Table 3.2: Overview trading sessions on the MICEX exchange for the
RUB-USD

Period Opening Closing
01/01/2005 - 11/11/2008 10:00 14:00
12/11/2008 - 12/04/2013 10:00 15:00
13/04/2013 - 31/12/2014 10:00 17:00

Trading hours in Moscow local time (GMT+3).

Table 3.2 provides an overview of the changes in trading hours.

The changes in the number of trading hours imply that the amount
of time between the first half-hour return and the last half-hour return,
the returns of interest, is not constant throughout the sample period.
Because intraday momentum is expected to occur mainly during the start
and the end of the trading day, however, we expect that the phenomenon
is unaffected by the particular time of day with which the trading half-
hours correspond.

Second, we note that foreign exchange markets are generally consid-
ered to be open virtually around the clock, with at least one major ex-
change trading the major currency pairs virtually at any point in time
during the week. As such, the notion of first half-hour and last half-
hour returns in the case of foreign exchange markets may seem inap-
propriate. Although this is true, trading intensifies considerably when
a currency’s domestic financial market commences trading. Furthermore,
returns, spreads, and volatility are impacted by the market activity of var-
ious financial centers (Andersen and Bollerslev, 1997). Therefore, it can
be argued that foreign exchange markets generally have implicit opening
and closing trading hours. In the case of our data set, trading in the cur-
rency pair is organized during a fixed trading session, providing us with
explicit opening and closing hours.

Nonetheless, to the extent that market participants trade outside the
trading hours of the MICEX, this particular feature of the FX market may
work against finding intraday momentum. Simultaneously, both explana-
tions for intraday momentum crucially depend on liquidity considerations.
Thus, if the observed intraday momentum described above is driven by
the particular behavior of traders suggested by both explanations, then
they will likely trade during the trading hours of the MICEX.

Finally, we also briefly consider the particular institutional circum-
stances implied by FX markets. It is well known that trading on these
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markets is reserved to major banks and large institutions. This direct
trading between major dealers covers the vast majority of foreign ex-
change traded volume and is often referred to as the first tier or wholesale
tier. Our data set covers the trades executed on this wholesale tier mar-
ket. Retail investors, mutual funds, and large non-financial firms are,
however, not directly active on this tier. Instead, these investors transact
bilaterally with banks or brokers who provide quotes. Depending on the
inventories of the banks and brokers with which these investors transact,
these investors’ orders may or may not be passed on to the wholesale
tier. This particular market structure means that retail investors, mutual
funds, and large non-financial firms will only indirectly impact the foreign
exchange market. As such, it is ultimately the manner in which market
makers pass the resulting inventory changes to the wholesale tier that
matters. We suggest that, if the liquidity needs of investors in the retail
tier are large enough to materially impact the inventories of the market
makers, then the effect will propagate to the trading on the wholesale tier.
Despite the trading that follows from the two-tier structure of foreign ex-
change markets, trading on the wholesale tier strongly outweighs trading
on the retail tier. The forces driving intraday momentum can be at play
between participants in the wholesale tier, and we directly observe (the
price impact of) this trading in our sample.

We conclude that the particular structure of FX markets does not, a
priori, rule out the possibility of intraday momentum in foreign exchange
markets, although some features likely work against observing an intraday
momentum effect.

3.4 Methodology

To determine the existence of intraday momentum, we closely follow the
approach used by Gao et al. (2015) and estimate predictive regressions.
These authors note that the predictive regressions correspond to autore-
gressive (AR) models. Although this is true, changes to the trading hours
by the MICEX over the sample period imply that, in our case, the ex-
act lag length of the AR model varies over time (see Section 3.3). We
therefore express the predictive regression as follows:

Tie =+ PBri+ e, (3.2)

where 77, is the first half-hour return, r;; is the last half-hour return
and €; is the error term. We also consider the predictive value of the
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penultimate return, which we denote as 75 ;. The inclusion of this term
allows us to control for any short-term persistence in the exchange rate
during the day and to isolate the predictive value of the last half-hour
return.

To investigate the relation between informed trading and intraday
momentum, we construct the dynamic probability of informed trading
(DPIN) measure suggested by Chang et al. (2014). This measure builds
on the empirical work of Campbell et al. (1992) and Avramov et al. (2006)
and allows us to measure the degree of informed versus uniformed trad-
ing based on high-frequency transaction-level data. More specifically, this
approach allows us to measure and track the presence of informed trades
throughout the trading day based on a high frequency. The fact that fi-
nancial markets are becoming increasingly computer-driven — potentially
making private information increasingly short-lived — makes measuring
informed trading at the intraday level increasingly important. The ap-
proach of Chang et al. (2014) allows us to avoid a degradation to lower
frequencies of the PIN measure originally proposed by Easley et al. (1997).

Following Chang et al. (2014), we first perform a regression to isolate
the unexpected half-hour return component (e;) from the return series
while controlling for day-of-the-week effects (using dummy variables de-
noted D;iay), time-of-day-effects (using dummy variables denoted D),
and lagged half-hour returns (r;_j)?:

4 J 12

Tt = + ZO&M . D;iay + Zagj . D;nt + Zagk cTi—k + €¢. (3.3)
i=1 Jj=1 k=1

Autocorrelation patterns in unexpected returns (or a lack thereof)
indicate the presence of uninformed (informed) trading. In particular,
Avramov et al. (2006) note that trades that take liquidity generate (fu-
ture) price reversals. At the same time, sell trades in the presence of
positive unexpected returns do not exhibit any autocorrelation and there-
fore indicate informed trading. Chang et al. (2014) argue that this can be
extended to buy-side trades. The authors point out that buy-side trades
in the presence of negative unexpected returns do not exhibit any auto-
correlation, which again implies informed trading. Following Chang et al.
(2014) our measure of informed trading is calculated as follows:

2Where J equals the number of intraday half-hour intervals in the specific period.
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NB S

DPIN, = NT: (e < 0) + NTZ

where N B, NS, and NT; are the number of buy, sell, and total trades,

respectively, made during the half-hour interval from ¢ to t—1 and (e; < 0)

and (e; > 0) are sign indicators that equal one when the unexpected return
is smaller and larger than zero, respectively, and zero otherwise.

To analyze the alternative explanation, i.e., whether liquidity provision
to some extent drives intraday momentum, we require a measure that
identifies the trading days in which market participants can be expected
to provide liquidity to the market. For purposes of analysis, we focus
on the tightness dimension of liquidity (Kyle, 1985). This is the main
dimension of liquidity and is measured using the equal-weighted quoted
spread (EWQS). This metric measures the average bid-ask spread over a
given period of time. We hypothesize that, on days where the EWQS was
higher during the first half-hour, more liquidity was demanded by market
participants (e.g., as a consequence of economic news that was released
overnight), meaning that some day traders or market makers are more
likely to have provided the required liquidity.

(& > 0), (3.4)

3.5 Results

In this section, we first establish the presence of intraday momentum and
assess the economic significance of the effect. Then we explore the relation
between intraday momentum, informed trading, and liquidity demand.

3.5.1 Intraday momentum in RUB-USD

We start by running a set of predictive regressions in the spirit of Gao
et al. (2015). In particular, we explore whether the first half-hour return,
the penultimate half-hour return, and a combination of both indepen-
dent variables are predictive of the last half-hour return. The results are
reported in Table 3.3.

The results for the entire sample, reported in Panel A of Table 3.3,
indicate that there is no significant relation between the last half-hour
return and the first half-hour return. Although the coefficient has the
expected sign, it is not significant at conventional levels, with a p-value
of 0.12. The results for the penultimate half-hour return are similar,
although the relation appears to be even weaker. When we include both
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Table 3.3: Predictability of last half-hour return

Panel A: Full Sample

Panel B: Crises
(2007-2009 & 2014)

Panel C: Excluding Crises

Variables Ty Ty Ty T Ty T T T T
T 0.0428 0.0412%* 0.0698%* 0.0656**  -0.0097 -0.0097
(0.028) (0.025) (0.038) (0.031) (0.011) (0.011)

Tl -0.1642 -0.1493 -0.2716 -0.2271 0.0020 0.0033
(0.148) (0.124) (0.234) (0.178) (0.054) (0.053)

Intercept 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)

Observations 2,342 2,342 2,342 922 922 922 1,420 1,420 1,420

R2 (%) 4.3 1.9 5.9 12.2 5.1 15.7 0.2 0.0 0.2

This table reports the results for the sample period from January 12, 2005 to December 30, 2014 by regressing the
closing half-hour return (r;) on the first half-hour return (ry) and the second last half-hour return (rs). Panel A
contains the results for the full sample period, whereas Panel B reports the results for the crisis periods. Panel
C contains the results for the non-crisis periods. Newey and West (1987) robust standard errors in parentheses.
Significance at the 1%, 5%, and 10% levels indicated by *** ** and *, respectively.



intraday returns in the predictive regression, however, the coefficient on
the first half-hour return becomes significant at conventional levels, albeit
only at the 10% level. One potential reason could be microstructural issues
such as bid-ask bounces, which cause intraday returns to exhibit mean-
reverting behavior over short intervals. These results, although suggestive,
are somewhat thin.

Second, we examine whether the relation differs during periods of fi-
nancial stress. We classify the 2007-2009 Global Financial Crisis and the
2014 Russian currency crisis as periods of financial distress. The results,
reported in Panels B and C of Table 3.3, indicate that intraday momen-
tum is considerably more pronounced during periods of financial stress.
During non-crisis periods, however, the relation does not appear signifi-
cant. This finding is consistent with the findings of Gao et al. (2015), who
find that intraday momentum is more pronounced during the 2007-2009
Global Financial Crisis.

Third, to test the predictive ability of intraday momentum out-of-
sample (0O0S), we also perform OOS forecasts. In particular, we run
the above predictive regression with expanding windows, adding one day
at a time. Using the estimated coeflicients of the predictive regression
(denoted using hats) and the value of the predictive variable at time s,
we can generate a forecast of the return at time s + 1:

"A‘l,s—i-l =&+ ﬁrﬁs' (35)
We perform these estimations for s = sg,...,t — 1, thus generating a
time series of OOS return forecasts. sqg is the initial sample size used to

estimate the model (in our application, four years). We then estimate the
0O0S R2 to measure OOS forecastability:

1 T—1 A2
s=so \T'l,s —Tis
008 R? =1 - T Zsmso (et ~71)

T_lso Z?:_slo (Tl7s+1 - 77l78) 2
where 7 s is the historical mean of the last half-hour return, calculated
from the expanding window of last half-hour returns. To test the signifi-
cance of the OOS R?, we employ the F-statistic of McCracken (2007). In
Table 3.4, we report the results for the OOS R2.

Similarly to Gao et al. (2015), we obtain a significant OOS R? of
approximately 1.6%. This level of OOS R? is very substantial compared
to other works (e.g., Campbell and Thompson, 2008; Ferreira and Santa-
Clara, 2011). Simultaneously, the penultimate return does not seem to
have any OOS predictive power.

, (3.6)
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Table 3.4: OOS predictability

00S R? MSE-F
7 1.609% 21,9487
ol -0.086% -1.151
rs and rg 1.640% 22.371%**

This table reports the out-of-sample predictability results of the last half-
hour by the first half hour return and the second-to-last half-hour return,
using a set of recursive regressions. The initial sample period (so) is four
years (2005-2008). Asterisks indicate statistical significance of the OOS R?
using the MSE-F' test

MSEp, — MSE,
P

Asymptotic critical values for the MSE test provided by McCracken (2007)
used to test significance. Significance at the 10%, 5%, and 1% levels given by
*F* and ***| respectively.

A second method of testing the economic significance of the results
is by analyzing the returns accruing to a simple market timing strategy
that uses signals based on the first half-hour return. In particular, every
trading day we take a long or short position at the beginning of the final
half-hour period, depending on the return of the opening half-hour, and
close out the position at the end of the trading day. We benchmark the
performance of this particular strategy to a constant long strategy that
always goes long at the beginning of every final half-hour and that closes
out the position at the end of every trading day.?

The results in Table 3.5 indicate that, at least for the full sample pe-
riod, the market timing strategy does not outperform the always long
strategy. Interestingly, however, the returns to the intraday momentum
strategy are positively skewed. This finding is in contrast to the always
long series which, similar to the original first and last half-hour returns, is
strongly negatively skewed. The disappointing performance of the strat-
egy over the full sample matches the earlier observation that intraday
momentum appears to be more pronounced during financial crises.

When we restrict the sample to the two crisis periods defined above,
the market timing strategy performs particularly well. The strategy posts
a higher return, a higher Sharpe ratio, and a higher success rate than the
always long strategy. Interestingly, the returns to the intraday momentum

3We note that the returns to both strategies are comparable because both strategies
have identical turnover and thus incur similar levels of transactions costs.
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Table 3.5: Performance intraday momentum market timing strategy

Panel A: Intraday

Panel B: Always

Momentum Long Strategy
Strategy

Full Sample Crises Full sample Crises
Mean return 0.001% 0.009% 0.004% 0.004%
Sharpe 0.426 2.637 1.261 1.124
Skewness 5.196 7.279 -5.413 -7.060
Kurtosis 137.582 131.327 138.342 132.897
Success rate 49.530% 51.410% 52.135% 51.193%

This table reports summary statistics on the performance of a market tim-
ing strategy based on intraday momentum and an always-long trading strat-
egy. The market timing strategy goes long when the first half-hour return
is positive, and short otherwise. The always-long strategy always goes long
the last half-hour of the trading day. The results are reported for the full
sample and for the crisis periods.

strategy are again positively skewed, whereas the always long strategy
exhibits negative skewness. As such, the intraday momentum trading
strategy appears to limit downside risk.

Overall, these findings suggest that, although this fairly naive market
timing strategy does not generate attractive returns overall, the market
timing strategy does appear to generate attractive returns in bad market
states.

3.5.2 Informed trading versus liquidity provision

Having established the presence of intraday momentum in the RUB-USD
market, we explore the likely drivers of intraday momentum outlined in
the introduction. We first analyze how volume is distributed over the
trading day. In Figure 3.2 we report the average half-hour trading volume
(in USD) for the different trading hour regimes.

Figure 3.2 shows that volume, on average, does not exhibit a U-shape,
as is typical in equity markets (e.g., Jain and Joh, 1988). The box plots
indicate that there is nevertheless considerable time series variation in
the volume traded during every half-hour of trading. The fact that the

4For completeness, we report similar figures for DPIN and EWQS in the Appendix.
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Figure 3.2: Distribution of volume (in U.S. dollars) over the trading day
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RUB-USD market does not exhibit a U-shaped distribution in volume over
the trading day has an important implication for the “informed trading
hypothesis”. This suggests that, although we find intraday momentum,
informed trading may not be the main driver because there is generally no
reason for informed traders to postpone their trading to the last half-hour
of the trading day. This idea is consistent with the finding of Menkhoff
and Schmeling (2010), who, using a short sample of data on the MICEX
that includes anonymized trader identifiers, find that informed traders
mainly trade during the opening of the trading sessions in the MICEX.
Naturally, informed traders may have other considerations in addition to
the trading volume for spreading trades over the trading day.

To formally analyze the relation between intraday momentum, in-
formed trading, and liquidity demand, we estimate several model spec-
ifications. To be concise, we focus on the two crisis periods, for which
we find intraday momentum to be most pronounced.® For purposes of
comparison, we first repeat the baseline predictive regression of interest.
The results are reported in column (1) of Table 3.6.

In Table A.2 of the Appendix, we observe that intraday momentum is
related to the realized volatility and trading volume over the first half-hour
of trading.® To control for both effects, we include the realized volatility
during the first half-hour and the (common log of) volume as controls in
the regression and report the results in column (2). Controlling for volume
and realized volatility, we observe no change in the sign, magnitude, or
significance of the estimated coefficients. For completeness, we report the
pairwise correlations between the variables of interest in Table A.3. of the
Appendix.”

Turning to the other specifications, column (3) of Table 3.6 reports
the results for the specification examining the relation between intraday
momentum and periods of low and high levels of informed trading. In
particular, we construct a set of dummy variables that equal 1 depend-
ing on whether the level of informed trading during the first half-hour is
in the top (Dg), middle, or bottom (Dy) tercile, respectively. We then

5The results for the full sample, reported in Table A.l of the Appendix, remain
qualitatively the same.

6Gao et al. (2015) show that intraday momentum is positively associated with
volume and volatility. We repeat their analysis and find that intraday momentum is
positively associated with volume and volatility (see Table A.2 of the Appendix).

"The pairwise correlation between the EWQS and DPIN is high (0.69). However,
the coefficients for the specifications in which we omit one of the two variables (cfr.
infra) do not change meaningfully (see Table A.3), suggesting that multicollinearity is
not an issue.
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Table 3.6: Disentangling liquidity and informed trading during crises

™ ) €)Y )
Variables T Tl Tl T T
rf 0.0656**  0.0608**  0.0954* 0.0071 0.0368
(0.031)  (0.025)  (0.051)  (0.017)  (0.037)
Tsi -0.2271 -0.2467  -0.2299  -0.2458  -0.2338
(0.178)  (0.168)  (0.144)  (0.162)  (0.142)
Dy (DPIN) -1y -0.0447 -0.0354
(0.059) (0.056)
Du(DPIN) -7y -0.0756 -0.0765
(0.056) (0.054)
DL(EWQS) -7y 0.0136  0.0214
(0.027) (0.027)
Dy (EWQS) -1y 0.0642*  0.0671**
(0.036) (0.031)
Opening JQRV -0.0955 -0.0941 -0.0925 -0.0902
(0.078)  (0.070)  (0.075)  (0.067)
Opening log(Volume) -0.0000 -0.0000  -0.0000 -0.0000
(0.000) (0.000)  (0.000) (0.000)
Intercept 0.0000 0.0002 0.0002 0.0002 0.0002
(0.000) (0.000) (0.000)  (0.000) (0.000)
Observations 922 922 922 922 922
R2 (%) 15.7 19.0 21.7 20.2 23.0

This table presents regression results for the sub-sample that covers the 2007-
2009 Global Financial Crisis and the 2014 Russian currency crisis. In the
regression for the results in column (1), we regress the closing half-hour return
(r;) on the first half-hour return (ry) and the second last half-hour return
(rs1). In the regression for the results in column (2), we control for volume
and realized volatility during the first half-hour of trading. Column (3) reports
the results for an evaluation of the impact of informed trading on the closing
half-hour return. In column (4), we measure the impact of liquidity on the
closing half-hour return. Finally, in the regression for the results in column
(5) we combine both specifications. Newey and West (1987) robust standard
errors in parentheses. Significance at the 1%, 5%, and 10% levels indicated
by *** ** and *, respectively.
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interact these dummy variables with the observed return during the first
half-hour of trading, omitting the middle tercile to serve as the baseline.
The results in column (3) suggest that the predictive relation is not signif-
icantly stronger during periods of above-average or below-average levels
of informed trading in the first half-hour of the trading day.

We also analyze the alternative hypothesis, which relates intraday mo-
mentum to liquidity provision by day traders during the start of the trad-
ing session. Similar to the case of informed trading, we divide all trading
days into three different terciles, depending on the value of the EWQS
over the opening half-hour interval. We report the results in column (4)
of Table 3.6.

All else being equal, higher quoted spreads can also be the result of
high volatility. However, because we include the realized volatility over
the first half-hour of trading as a control variable, the regression specifi-
cation in column (4) of Table 3.6 should control for this effect and allow
us to better isolate the impact of liquidity provision following strong lig-
uidity demand. In this regression, we also interact the resulting dummy
variables with the first half-hour return. Interestingly, we find that the
first half-hour return in column (4) becomes insignificant. Instead, the
interaction term that interacts the first half-hour return with the dummy
in periods of high quoted spreads becomes positive and significantly so.
This finding suggests that intraday momentum is the result of high lig-
uidity demand by market participants during the opening combined with
dealers’ risk aversion to overnight inventory. Finally, we control for the
level of informed trading; see column (5). Menkhoff and Schmeling (2010)
find that informed traders in the MICEX tend to trade when spreads are
higher, implying that we need to control for the level of informed trading.

Interestingly, controlling for informed trading in column (5) of Table
3.6, we find that the relation becomes even more pronounced from a sta-
tistical perspective. This result suggests that intraday momentum tends
to occur during trading days when quoted spreads are high, even when
controlling for the potential effect of informed trading on spreads. We
interpret this finding as supportive of the hypothesis that intraday mo-
mentum is to a certain extent driven by a high liquidity demand during
the morning, combined with a strong risk aversion to overnight holdings
potentially driven by risk management policies, the disposition effect or
habits among market makers.

Are there institutional circumstances that may inform why intraday
momentum in the ruble market appears to be the result of liquidity provi-
sion, rather than informed trading? The main differences between foreign
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exchanges and other financial markets are the sheer size of FX markets
and the fact that these markets are only accessible by major dealers. We
suggest that, because the FX market is considerably larger in terms of
notional value, informed trading is less likely to impact prices. Simultane-
ously, however, if a sufficiently large fraction of the market’s participants
reacts similarly to a news announcement, then liquidity demand can be
expected to meaningfully impact prices (albeit temporarily).®

Second, the results suggest that the traders who provide liquidity to
these early trades close their positions and thus take exactly the same
direction as the information-driven trades at the start of the day. Because
these traders mirror the information-based trades in the morning, what
is their motivation and why do they not adjust their behavior?

We note that in the microstructure theory, the bid-ask spread consists
of three components: an order processing component, an adverse selection
component, and an inventory holding component (Huang and Stoll, 1997).
Changes in the bid-ask spread, in this case, are likely to be driven by
changes in the latter two components.”

One reason why the intraday pattern, if it is indeed driven by liquidity
provision during the opening session, may continue to exist is the follow-
ing. We can assume that, when market makers set their prices, they will
most likely take into consideration the ease with which they will be able
to eliminate the position. As such, a market maker will be willing to

8A second reason why liquidity may be the prime driver of intraday momentum
is the following. Informed traders attempt to hide their informational advantage by
splitting large orders (Chordia and Subrahmanyam, 2004) into several smaller, medium-
sized transactions (Chakravarty, 2001). Thus, their trading will be geared towards
avoiding a meaningful price impact. To the extent that traders are successful at hiding
their informational advantage, we will not observe any intraday momentum. Moreover,
although excess inventories require trading near the end of the trading day, the informed
trading hypothesis provides no rationale for informed traders to always trade in both
the morning and the afternoon. Because informed traders want to monetize their
informational advantage as quickly as possible (Bloomfield et al., 2005), it is less likely
that they will want to wait until the end of the trading day, especially, in markets
as deep as the FX markets. Moreover, earlier work using the same data on the same
market concludes that FX traders on the MICEX mainly trade during the opening
session through medium-sized orders (Menkhoff and Schmeling, 2010).

9The order processing component refers to market makers’ fixed costs. The adverse
selection component compensates the market maker in cases when he or she is trading
against a counterparty who may have superior information. For example, aggressive
(market) orders may indicate that the counterparty has private information and thus
may motivate the market maker to increase the spread. Finally, the inventory holding
component refers to a premium that the market maker requires for providing liquidity
during periods of unbalanced flows.
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provide liquidity provided that the premium (i.e., the inventory holding
component) received is higher than the likely cost of having to liquidate
the position later that day. In other words, the profit from providing
liquidity during the first half-hour should offset the expected loss from
forced liquidation later that trading day. This may provide explanatory
power for why the effect persists and why traders who generate the effect
continue to survive.

3.6 Robustness checks

We now present the results of additional regressions to test the robustness
of the intraday momentum effect on several dimensions. In particular, we
analyze whether the effect is robust across different subsamples, differ-
ent return sampling frequencies, alternative definitions of liquidity, and
changes in the estimation method.

3.6.1 Subsample analysis

We repeat the analysis for both crisis periods separately. If intraday
momentum in the RUB-USD market is indeed primarily a crisis-based
phenomenon, we should observe a significant relation during both crisis
periods. We report the results for the 2007-2009 Global Financial Crisis
and the 2014 Russian currency crisis in Panels A and B of Table 3.7,
respectively.

Although the relation is significant in both instances, the results in
Table 3.7 show that intraday momentum is especially pronounced during
the 2014 Russian currency crisis. This finding should not come as a sur-
prise, given that the ruble was to a large extent the object of the crisis.
This was not the case during the 2007-2009 Global Financial Crisis, where
equity and credit markets played the leading part.

3.6.2 Choice of the return frequency

The use of half-hour returns strictly follows earlier work on intraday mo-
mentum in financial markets. However, this usage leaves unanswered the
question of whether the peak of momentum predictability indeed is sit-
uated around this particular frequency. A natural question that arises
is whether the observed intraday momentum is robust to the use of dif-

74



7

Table 3.7: Robustness check - 2007-2009 Global Financial Crisis & 2014 Russian currency crisis

Panel A: 2007-2009 Global

Financial Crisis

Panel B: 2014 Russian

currency crisis

Variables T T 7 7 s T
Ty 0.0214%* 0.0214%* 0.0926* 0.0820**
(0.012) (0.012) (0.051) (0.039)
Tsl 0.0053 0.0045 -0.4832 -0.3836
(0.066) (0.066) (0.376)  (0.271)
Intercept 0.0001**  0.0001%* 0.0001%* -0.0001  -0.0001 -0.0002
(0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
Observations 686 686 686 236 236 236
R? (%) 1.4 0.0 1.4 19.7 12.3 27.2

This table presents the results for the sample periods of January 10, 2007 to December
30, 2009 and January 10, 2014 to December 30, 2014 regressing the closing half-hour
return (r;) on the first half-hour return (ry) and the second last half-hour return
(rs1). Newey and West (1987) robust standard errors in parentheses. Significance at
the 1%, 5%, and 10% levels indicated by *** ** and *, respectively.



Table 3.8: Robustness check - sensitivity of intraday momentum to the
return frequency

re/T 60 Minutes 30 Minutes 15 Minutes
60 Minutes 0.0457** 0.0667* 0.0245*
30 Minutes 0.0513** 0.0698* 0.0269**
15 Minutes 0.0214 0.0330* 0.0273**

This table presents regression results for the return frequency sensitiv-
ity analysis. The coefficients for the specification under equation (2)
for alternative opening and closing return frequencies are displayed.
Significance using Newey and West (1987) standard errors at the 1%,
5%, and 10% levels are indicated by *** ** and *, respectively.

ferent frequencies.!® To test whether intraday momentum is sensitive to
the frequency and whether half-hour returns are the peak of the observed
predictability, we re-run the regression in equation (1) for different combi-
nations of return frequencies. In particular, we perform K x K regressions
to analyze all potential combinations of the first and final 15-minute, half-
hour, and one-hour returns. We report the coefficients of interest in Table
3.8.

In Table 3.8, we find that intraday momentum is robust to the fre-
quency employed. In particular, the price action at the start of the trading
day is predictive of the price evolution near the end of the trading day, and
the relation is robust to the particular interval chosen. In economic terms,
the effect is strongest for opening half-hour returns on closing half-hour
returns.

Next, we analyze the robustness of the main results to a change in
frequency. Because both proposed mechanisms that may drive intraday
momentum can be expected to be at play especially during the very start
and end of the trading session, we re-run the main analysis, calculating
all variables of interest over the first 15 minutes of trading, and try to
predict the return during last 15 minutes of the trading session. The first
column of Table 3.9 reports the results. Our findings continue to hold,
indicating that the mechanism that drives intraday momentum is at play
at the very start of the trading session.

10We thank an anonymous referee for calling attention to this point.
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Table 3.9: Robustness check - alternative definitions and estimation
method

6 @) ®) @
Variables r T ] 7
rf 0.0031 0.0507 0.0418 0.0368
(0.019)  (0.036)  (0.038)  (0.036)
Tsl -0.0826 -0.2285 -0.2312 -0.2338%*
(0.088) (0.143) (0.142) (0.141)
Dy (DPIN) -1y 0.0035 -0.0413 -0.0346 -0.0354
(0.020) (0.058) (0.055) (0.055)
Dy (DPIN) - rf -0.0307 -0.0743 -0.0763 -0.0765
(0.027) (0.055) (0.054) (0.054)
DL(EWQS) -y 0.0193 0.0214
(0.019) (0.027)
Du(EWQS) - r; 0.0398%* 0.0671%*
(0.018) (0.031)
DL(ES) -y 0.0165
(0.037)
Du(ES) -y 0.0491*
(0.027)
Dp(VWQS) -1y 0.0049
(0.027)
Da(VWQS) -7y 0.0623%*
(0.030)
Opening O—%V -0.0827* -0.0919 -0.0902 -0.0902
(0.047)  (0.069)  (0.067)  (0.067)
Opening log(Volume) -0.0000 0.0000 0.0000 0.0000
(0.000)  (0.000)  (0.000)  (0.000)
Intercept 0.0003 0.0002 0.0002 0.0000
(0.000) (0.000) (0.000) (0.000)
Observations 922 922 922 922
R? (%) 11.3 22.2 23.0

This table reports the results for the robustness checks. Column (1)
reports the results of the main specification using an alternative return
frequency of 15-minutes for the first- and last half-hour return. Col-
umn (2) presents the results using the effective spread as a measure of
liquidity. Column (3) similarly presents the results using the volume-
weighted quoted spread as a liquidity measure. Finally, column (4)
reports the results obtained from estimation of the main specification
using a two-step GMM.Newey and West (1987) robust standard er-
rors in parentheses in column (1), (2), and (3). Significance at the
1%, 5%, and 10% levels indicated by *** ** and *  respectively.
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3.6.3 Alternative liquidity measures

Next, we assess the robustness of our main results to different measures
of liquidity. To that end, we repeat the specifications for Table 3.6 using
several alternative measures of liquidity that we can construct from our
data. First, we employ effective spread (ES) as the liquidity metric. The
result is shown in column (2) of Table 3.9 and confirms our baseline results
and the results described above. In particular, we continue to find that
liquidity appears to be the main driver of intraday momentum in the
RUB-USD FX market.

Second, we replace the EWQS variable from our baseline analysis with
the volume-weighted quoted spread (VWQS). This measure weights the
bid-ask spreads by the volume of trades, and therefore, it takes into con-
sideration the size of the trade matching the observed bid and ask prices.
We report the results in column (3) of Table 3.9. Here too, we find that
the intraday momentum effect is stronger when bid-ask spreads are high
during the opening half-hour.

3.6.4 Estimation method

The estimations we have performed so far are based on OLS. Return se-
ries, however, tend to exhibit volatility clustering, which, from a statistical
perspective, induces heteroscedasticity. In addition, high-frequency data
often exhibit significant levels of negative autocorrelation over very short
intervals (Roll, 1984) and positive autocorrelation over slightly longer in-
tervals. Some of these patterns are the result of microstructure-related
issues such as the bid-ask bounce, whereas others follow from the fact that
information processing takes time (Chordia et al., 2005). Using Newey
and West (1987) robust standard errors, we have so far accounted for
such effects on the estimation results.

Nonetheless, because we do not know the full shape of the distribution
of the data, we re-estimate the main results using generalized method of
moments (GMM). Although the moments we impose are identical to the
moments under OLS, a two-step GMM allows us to efficiently estimate the
model when we face heteroscedasticity and autocorrelation of an unknown
form. We report the result in the final column of Table 3.9. The results
indicate that our findings are robust to the particular estimation method
employed.
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3.7 Conclusion

In this paper, we use a long sample of transaction-level data at tick fre-
quency on the Russian ruble-U.S. dollar currency pair from the MICEX
to investigate the likely drivers of intraday momentum in this FX market.

We contribute to the emerging literature of momentum at the intraday
level in several ways. First, we find no evidence that intraday momentum
in the ruble market is the result of market participants’ strategic trading
during high-volume periods. Two observations motivate this conjecture.
First, there is no reason for informed traders in the ruble market to post-
pone trading until the last half-hour of trading, given that volume in the
market does not exhibit a U-shape intraday pattern. This is consistent
with work by Menkhoff and Schmeling (2010), who find that informed
traders in this particular market mainly trade during the opening of the
trading session. Second, we do not find a stronger intraday momentum
pattern on days with more informed trading in the first half-hour of trad-
ing.

Instead, we find evidence that closing half-hour returns are positively
related to opening half-hour returns on days when spreads in the ruble
market are high during the opening half-hour. These high spreads are
consistent with a strong liquidity demand by market participants in the
first half-hour of trading. This finding lends support to the argument that
dealers and other liquidity providers in the ruble market are trying to of-
fload unwanted inventories (Lyons, 1995; Bjgnnes and Rime, 2005) due
to their risk aversion to overnight holdings. This interpretation is consis-
tent with the empirical findings of Bjonnes et al. (2005), who show that
non-financial customers are the main liquidity providers in the overnight
foreign exchange market.

Second, we provide additional evidence that corroborates the finding of
Gao et al. (2015) that explicit trading hours matter for intraday momen-
tum. The particular nature of the RUB-USD FX market, a currency pair
for which spot trading is only possible on the MICEX, provides a unique
case where FX trading is subject to explicit trading hours. Finally, our
results lend further support to the finding that intraday momentum is
more pronounced during financial crises.
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Chapter 4

Duration Dependence,
Behavioral Restrictions,
and the Market Timing
Ability of Commodity
Trading Advisors!

International Review of Finance
In Press

4.1 Introduction

In general, the value potentially added through active management can
stem from one or two sources. First, there is the traditional security selec-
tion, i.e. the ability to add value by selecting securities that subsequently
outperform. Second, managers could also add value by successfully antic-
ipating market trends and reacting to these trends by entering or exiting
the market accordingly. This is referred to as market timing ability and

has received considerable attention over the last two decades.

L This chapter is based on joint work with Michael Frommel (Ghent University) and

Alexander Mende (RPM Risk & Portfolio Management AB).
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However, empirical evidence on whether managers do in fact add value
through one or both approaches is mixed. One of the first prominent stud-
ies on mutual fund performance is Sharpe (1966). He finds no evidence of
excess performance for funds compared to the DJIA over the period 1954-
1965. This result is confirmed by Jensen (1968), who shows that the aver-
age ‘alpha’ of mutual funds in his dataset is not significantly different from
zero. Subsequent evidence is more mixed, but seems to gravitate to the
null hypothesis of no significant outperformance by mutual funds. While
‘alpha’ captures security selection, other studies focus on fund managers’
market timing ability, i.e. the ability to adjust ones market exposure in
anticipation of future (stock) market movements. The majority of these
studies finds no (or sometimes even negative) market timing ability for
mutual funds (see e.g. Admati et al., 1986; Becker et al., 1999; Ferson
and Schadt, 1996; Henriksson and Merton, 1981; Jensen, 1972; Lehmann
and Modest, 1987; Merton, 1981, Kao et al., 1998).

As such, the consensus for mutual funds seems to emerge that mutual
fund managers, on average, add little value for investors. To some extent,
fees charged by these funds seem to explain most of the lack of perfor-
mance: Many studies, most recently Fama and French (2010), find that
funds’ gross returns outperform the market, while the net-of-fee returns do
not. This suggests that fund managers are capturing the outperformance
through fees.

Evidence for market timing among hedge funds is also mixed, although
more recent work indicates some market timing skill for these managers.
Whereas Fung et al. (2002) do not find evidence for market timing ability
among hedge funds Chen et al. (2010) study a sample of self-declared
market timing hedge funds and find evidence of market timing ability.
Chen (2007), who examines the timing ability of hedge funds with regard
to their focus markets, also finds evidence that a number of categories of
hedge funds (CTAs and Global Macro) can successfully time certain asset
markets. Finally, Kazemi and Li’s (2009) findings suggest that CTAs
generate their returns mostly from successful market timing.

However, whereas early studies use monthly returns to test for timing
ability, more recent studies such as Bollen and Busse (2001) and Jiang
et al. (2007) who use daily data come to more encouraging conclusions
about managers’ market timing abilities. These results provide evidence
that confirm the findings by Goetzmann et al. (2000) that the use of daily
data appears to increase the power of the market timing models to detect
market timing ability. Chance and Hemler (2001) analyze daily explicit
recommendations by market participants and also find evidence of market
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timing ability. Results in both papers further suggest that, when monthly
data is used, the evidence of positive market timing ability disappears.

One major drawback in applying existing market timing models to
monthly data is that the researcher implicitly assumes that the trading
frequency is also monthly. Goetzmann et al. (2000) are the first to point
out this behavioral restriction. The authors propose an adjustment that
assumes daily timing but that does not require collecting daily returns.
Nevertheless, they note that applying market timing models directly to
daily data is preferable. However, the application to daily data creates a
potential conflict: Standard tests for market timing (Treynor and Mazuy,
1966; Henriksson and Merton, 1981) use the market’s excess return as
benchmark for market timing. While this might be a reasonable assump-
tion at lower frequencies, for daily observations it is probably inconsistent
with managers’ actual timing practices. Both a lack of predictability in
daily returns and high transaction costs make such an approach improb-
able for most funds. Instead, portfolio managers rather think in trends
(Menkhoff, 2010). We therefore relax this somewhat restrictive behavioral
assumption that is implicit in the application of market timing models on
daily data. Instead we use ex-post classified trends as benchmarks.? As-
suming trend following behavior is particularly justified for CTAs (Fung
and Hsieh, 2001). CTAs manage client assets and take long or short posi-
tions in highly liquid equity, fixed-income, foreign exchange, metals, and
commodity futures markets. Thus, CTAs follow directional strategies and
are often described as trend following. Because of CTAs’ similarities to
hedge funds, they are usually considered a hedge fund category.

Our contribution to the existing literature is twofold. First, we adapt
the original Henriksson and Merton market timing model in a way that
makes it more realistic and avoids imposing a particular timing frequency.
In particular, we replace the ‘periodic’ timing decision based on monthly
or daily excess returns with a definition of timing that depends on (cu-
mulative) past price changes. Obviously, our adjustment also constitutes
a re-specification of the market timing definition. Chen and Knez (1996)
note, that any performance evaluation is generally arbitrary, a notion that
is strongly related to benchmark selection. This also applies to the choice
of the benchmark for market timing tests. Our definition of market tim-

2The fact that we use an ex-post trend decomposition model does not cause method-
ological problems, since we do not model managers’ decision process. Insofar we are
in line with standard market timing models which also rely on ex-post realized market
returns. Furthermore, and again in analogy with standard market timing tests, it does
not matter whether the detected trends are deterministic or stochastic.
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ing differs from the existing excess return-based definition and will lead
to different conclusions as to whether CTAs have timing ability. Our al-
ternative definition strongly follows a strand of literature that focuses on
formalizing ‘bull” and ‘bear’ states in financial markets using peaks and
troughs (see Lunde and Timmermann, 2004; Harding and Pagan, 2002;
Pagan and Sossounov, 2003). If successful market timing means success-
fully timing bull and bear market states, using such a definition provides
a natural and meaningful extension of existing market timing models.

Second, we extend the literature on market timing abilities of CTAs
using a proprietary dataset of realized audited daily returns of CTAs be-
tween 1994 and 2012. Since we use realized instead of reported returns
our dataset does not suffer from survivorship bias, backfill bias, or selec-
tion bias. Such biases can be meaningful. For example, Bhardwaj et al.
(2014) report that the combined backfill and survivorship bias in public
hedge fund databases sum up to approximately 7.8% annualized. Further-
more, since the returns we employ are not manipulated, they cannot be a
smoothed version of the true realized returns. Spurious serial correlation
that results from such smoothing can yield misleading performance statis-
tics (see Getmansky et al., 2004; Agarwal et al., 2011). As the dataset
covers the period 1994-2012, it includes the recent financial crisis as well.

The paper proceeds as follows. Section 4.2 describes the methodology
including the benchmark model by Henriksson and Merton (1981) and
our adaption of the model. Section 4.3 presents the dataset. Section
4.4 discusses our empirical results and conducts a number of robustness
checks. Finally, in Section 4.5, we summarize and conclude.

4.2 Methodology

Starting point is the model proposed by Henriksson and Merton (1981)
(henceforth HM model). This model assumes that the fund manager
allocates capital between a risk-free asset and equities based on a forecast
of the market excess return in the next period. To test a manager’s market
timing ability, the model tests whether the fund’s market beta is higher
during up-markets than down-markets. To apply the model to data on
hedge funds active in multiple markets, we need to extend the approach to
a multifactor version of the HM model (see Aragon, 2005; Chen (2007)):
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where ), is the time-invariant firm effect of fund p,r,; is the excess
return of fund p at time ¢,r,, ¢ is the excess return in market m, and p,, ;
is the error term. In the original HM model D,, ; is an indicator variable
that takes the value 1 if r,,; > 0 and zero otherwise. The coefficient
vm measures the difference in betas in down- vs. up-markets. ~,, will
be significantly positive for a manager who successfully times market m.
The HM model does not allow the manager to vary her exposure in any
but the most restrictive way. In particular, depending on her forecast, the
manager chooses two levels of 5. While this assumption can be consid-
ered restrictive or inappropriate in the case of mutual funds, the model
adequately describes the trading strategy of certain types of hedge funds
and CTAs in particular. CTAs either buy or sell futures contracts in a
particular market, which is arguably the type of systematic risk variation
assumed under the HM model.

Previous research on the timing ability of hedge funds relied on con-
structing equal-weighted portfolios (see Chen, 2007; Kazemi and Li, 2009)
to test for market timing ability among hedge funds. However, since we
have a panel of daily CTA observations, we have considerably more de-
grees of freedom than previous work which commonly employed monthly
data. Therefore, a panel approach is more appropriate as it allows more
accurate inference of the model parameters.

We estimate the model using fixed effects for each fund. This esti-
mation approach allows us to account for managers’ fixed effects that are
unrelated to market timing ability. For example, some funds in the sample
could be persistently more profitable for reasons that we do not observe.
At the same time, we also cluster the standard errors by manager because,
although the fixed effect dummies handle the fund effects, the dummies
will not handle some other relevant forms of correlated errors (Thompson,
2011).

In addition to manager fixed effects, time fixed effects might also be
present. Given that the managers are actively trading the same futures
markets, it is unlikely that the observations on the different managers
within every time period are not correlated. As such, the dataset can
be expected to contain time effects beyond those we are interested in.
Moreover, these time effects are probably not fixed. We can imagine that
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some CTAs perform better than others, depending on the particular mar-
ket environment. However, while our panel is extremely unbalanced, any
bias present in the standard errors due to time effects is likely to disap-
pear since we have a lot of observations along this dimension. This also
explains why we cluster on the less numerous (i.e. manager) dimension.

The construction of the dummy D,,; is a key component of the HM
model. The HM model, however, imposes a timing frequency that matches
the return frequency used to estimate the model. As we have already dis-
cussed in the introduction, performance evaluation is generally arbitrary
(Chen and Knez, 1996). This observation also applies to the benchmark of
what constitutes proper market timing. Consequently, the alternative def-
inition of market timing we put forth below differs from the above excess
return-based definition and might therefore lead to different conclusions as
to whether CTAs have timing ability under either definition. Our defini-
tion borrows extensively from recent literature that focuses on formalizing
bull and bear market states in financial markets using peaks and troughs
(see Lunde and Timmermann, 2004; Harding and Pagan, 2002; Pagan and
Sossounov, 2003). If by successful market timing investors mean success-
fully timing bull and bear states, then our definition provides a natural
extension of existing market timing models. In addition, such a definition
is in line with the observation that market professionals think in terms of
trends, rather than in terms of excess returns (Menkhoff, 2010).

Therefore, a dummy variable based on a trend identification scheme
seems to be a reasonable alternative to assuming that funds in general,
and CTAs in particular, make predictions only about the next period’s
excess return. This might be especially relevant when evaluating funds’
performance over very short time horizons. However, an application of
existing market timing models on daily data implies exactly that. Tem-
porary drops or increases in asset prices over several days can be expected
to be short-lived and might only induce partial adjustments or no adjust-
ment at all. This is especially the case if we consider transaction costs,
which can make daily adjustments based on daily forecasts of excess re-
turns costly.

We identify trends in asset markets by drawing on the academic liter-
ature that proposes methods to determine bull and bear states in stock
markets. This literature offers both parametric and nonparametric ap-
proaches.®> We rely on a threshold filter recently suggested by Lunde

3The most popular parametric approach imposes a Markov-switching model (Hamil-
ton, 1990) that allows for two regimes, booms and busts. Examples of applications of
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and Timmermann (2004), which is described in the Appendix. This fil-
ter has the advantage that it allows for duration dependence and does
not impose a phase length.* The threshold filter proposed by Lunde and
Timmermann identifies bull and bear markets based on a minimum price
change (‘threshold’) since the last peak or trough. Whereas an excess
return-based measure will classify a given period of negative price move-
ments as a bear market, the Lunde and Timmermann filter will not as
long as the drop does not exceed a certain threshold.

The drawback of this rules-based method is that we need to specify
the thresholds that define bull and bear markets.> Lunde and Timmer-
mann (2004) suggest such thresholds only for equity markets, based on
figures for bull and bear markets commonly reported in the financial press.
However, since we also want to explore CTAs’ market timing ability in
other asset markets, we first have to derive additional thresholds. Since
previous literature has not yet proposed a method to come up with such
thresholds, we employ an approach inspired by the work of Wegscheider
(1994). This method aims to identify trends, store their magnitude, and
subsequently remove them in an iterative way until all trends are identi-
fied. The advantage of this algorithm is that, rather than imposing some
arbitrary structure on the data, it focuses on the specific features of the
original data series to come up with thresholds. What we obtain is a set
of trends, starting from very small trends that last just one day to trends
that last several months. This makes it an ideal tool to derive appropri-
ate thresholds for the Lunde and Timmermann filter. We describe the
algorithm in detail in the Appendix.

this approach in the context of stock markets are Maheu and McCurdy (2000) and
Chen (2009). Nonparametric approaches rely on filters or dating algorithms that lo-
cate turning points (peaks and troughs) corresponding to local maxima and minima
of the financial series. Pagan and Sossounov (2003) modify the algorithm developed
by Bry and Boschan (1971) using definitions on the duration of bull and bear markets
found in financial press. Lunde and Timmermann (2004) construct a filter that iden-
tifies bull and bear markets based on a minimum price change since the most recent
peak or trough.

4Duration dependence means that “bull and bear hazard rates — that is, the proba-
bility that a bull or bear market terminates in the next period — depend on the age of
the market” (Lunde and Timmermann, 2004, p253).

5We want to avoid misclassification through imposing restrictions on the timing
frequency. Therefore, we cannot make use of the algorithm of Bry and Boschan (1971),
since this approach requires choosing the phase length.
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Figure 4.1: Evolution CTA Index
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4.3 Data

We carry out the empirical analysis using a proprietary dataset of daily
returns on 33 CTAs for the period January 1994 to May 2012. The data
is provided by a Swedish CTA specialist and fund of funds manager.5 We
focus on CTAs because CTAs can be considered a hedge fund category
that actively attempts to perform market timing. Returns are raw returns
in that they exclude manager fees and trading commissions and, thus,
provide an unbiased account of realized returns. The dataset does not
suffer from most of conventional biases found in public data bases due to
voluntarily reporting by funds. In particular, the data base does not suffer
from survivorship bias, backfill bias, or selection bias. Furthermore, since
the returns are not reported returns, they cannot be a smoothed version
of the true realized returns. This is important, since the spurious serial
correlation resulting from such smoothing yields misleading performance
statistics (see Getmansky et al., 2004).

In the sample of CTA funds, 26 are active across different asset markets
(‘diversified’), four funds trade exclusively in financials, and three funds
invest only in commodity futures. The time frame covers a variety of
market conditions including several financial crises. During 1994-2012,
markets have experienced pronounced directional moves. This makes the
sample period ideal to test for market timing ability. In Figure 4.1, we
plot the performance of an equally-weighted index of the CTAs’ returns
and compare it to the Russell 3000 Total Return Index. Shaded areas
correspond to bull market phases (as defined below).

To test for market timing ability for the main asset classes CTAs invest

5We do not identify the names of the CTAs in the dataset.
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in, we use daily observations for the following market indices: the Russell
3000 for equities, Barclays US Aggregate Bond Index, the S&P GSCI
Agricultural Commodities Spot Index, the S&P GSCI Energy Spot Index,
the S&P GSCI All Metals Spot Index and the Fed’s trade-weighted US
Dollar Index.” These market indices encompass the different asset classes
managed futures managers are active in.

In particular, we follow Fung and Hsieh (1997) and Agarwal and Naik
(2000; 2004). With some variation regarding particular indices used, these
authors consider a broad US stock market index, a US bond index, the
Fed’s trade-weighted US Dollar index, and the Goldman Sachs Commod-
ity Index (GSCI) as proxy for markets that hedge funds have exposure
to. We deviate from the above studies in that we break down the Gold-
man Sachs Commodity Index in its various components. We do this be-
cause CTAs have historically been active mostly in commodity markets
for which futures were first available. They might therefore have skills
particularly in these markets. The pairwise correlations between the in-
dices, reported in Panel C of Table 4.1, are relatively low. This indicates
that the co-movement on a daily basis between the different markets is
generally limited. The pairwise correlation is highest among commodity
indices but it is still sufficiently low to justify a separate treatment.

4.4 Results

We start by applying the algorithm proposed by Wegscheider (1994) to the
various markets. Once we have identified the trends in different markets,
we select the 99 percentile of trends found. In Table 4.2 we report the
results of the approach. Following Lunde and Timmermann (2004) we
allow for different cut-off values in the case of upward and downward
trends. This allows us to account for a positive drift in certain asset
classes and potential asymmetries in up and down trends.

For the equity market index, our results indicate that the top 1 per-
centile of upward trends exceeds 19.04% while the corresponding value for
downward trends is only -10.22%. These values are close to the ones re-
ported in the financial press and the ones Lunde and Timmermann (2004)
use (20% and 10% for bull and bear markets, respectively). Cut-off val-
ues for the other asset classes differ considerably from the values for stock
markets. For example, large trends in the bond market that are similar in

7In line with Lunde and Timmermann we use daily price indices to identify trends
in the different markets.
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Table 4.1: Descriptive Statistics of the Dataset

Panel A: Summary Statistics CTAs

Mean Min P25 P50 P75 Max
Return 0.0150% -0.0743% 0.0001% 0.0161% 0.0360%  0.0703%
Standard deviation 0.72% 0.21% 0.54% 0.79% 0.89% 1.19%
Age 3.9 0.3 1.5 2.7 4.9 13.9
Skewness -0.152 -2.006 -0.468 -0.221 0.154 3.523
Kurtosis 9.058 3.258 5.582 6.798 9.259 66.580

Panel B: Summary Statistics Factors
Market Index Mean return  Standard deviation Min Max
EQUIT Russell 3000 TR 0.01% 0.54% -4.23% 4.72%
BOND Barclays US Aggr. Bond 0.00% 0.11% -0.77% 0.59%
AGRI S&P GSCI Agri. Commodity 0.00% 0.52% -3.32% 3.11%
ENER S&P GSCI Energy Spot 0.02% 0.84% -6.25% 4.26%
METAL S&P GSCI All Metals Spot 0.01% 0.50% -3.11% 2.90%
CUR Fed’s Trade-Weighted USD 0.00% 0.14% -1.25% 1.24%
Panel C: Correlation Market Indices

Market EQUIT BOND AGRI ENERGY METAL CUR
EQUIT 1.00
BOND -0.12 1.00
AGRI 0.15 -0.09 1.00
ENERGY 0.15 -0.07 0.28 1.00
METAL 0.21 -0.09 0.31 0.30 1.00
CUR -0.13 -0.02 -0.23 -0.21 -0.39 1.00

This table reports summary statistics for the set of CTAs and the factors used in the multifactor approach.
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Table 4.2: Results Identification Bull and Bear Markets

Cut-off values

Russell 3000 TR Index

Barclays US Aggregate Bond Index
GSCI Agricultural Commodities Index
GSCI Energy Spot Index

GSCI All Metals Spot Index

Fed’s Trade-weighted USD Index

Market
EQUIT
BOND
AGRI
ENER
METAL
CUR

Upward trends

Standard deviation = Downward trends

Standard deviation

19.04% 6.08% -10.22% 2.81%
2.56% 0.58% -4.63% 0.99%
13.85% 2.68% -19.58% 4.23%
23.90% 9.18% -19.71% 4.62%
10.61% 2.36% -16.01% 3.60%
4.07% 1.23% -4.59% 4.44%
Panel B: Concordance Index
EQUIT BOND AGRI ENER
1

0.576 1.000

0.644 0.649 1.000

0.676 0.640 0.663 1.000
0.560 0.570 0.468 0.555
0.474 0.386 0.242 0.421

The concordance index measures the fraction of the time the cycles are in the same state. If the index is unity, trends
in both markets are exactly pro-cyclical, while a value of zero indicates that they are perfectly countercyclical. For
two series y+ and z+ and a sample size of T, the index can be calculated as:

I= 4 [SF ey + S0 (1= Sa) - (1= Sy.0)]

where Sz ¢+ and Sy ¢ are dummies that equal 1 in the case of an upward trends and zero otherwise.



Figure 4.2: Bull and Bear Markets Identified
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frequency only exceed 2.56% for up markets and -4.63% for down markets.
The largest trends are reported for the S&P GSCI energy market, with
upward trends of over 23.90% and downward trends exceeding -19.71%.8
The results support our view that a separate trend classification for ev-
ery asset class is necessary. It would prove unrealistic to generalize the
equity-based thresholds from the financial press to other asset classes.

Based on the thresholds derived above we can employ the filter sug-
gested by Lunde and Timmermann to obtain a classification of the mar-
kets into bull and bear market periods. The results are reported in Figure
4.2 with bull markets periods shaded grey. Obviously, the filter iden-
tifies major market events such as the dotcom bubble, the bull market
between 2003 and 2006 for stocks. It also captures major surges in agri-
cultural commodity, energy, and metal prices. To measure the degree of
co-movement between the trends, we employ the concordance index, pro-
posed by Harding and Pagan (2002). The results, reported in Table 4.2,
show that markets are in the same market state about half to two-thirds
of the time, depending on the markets under consideration. Of course,
this does not necessarily mean that they start and end at the same time.
Two markets might be trending upwards two-thirds of the time, but both
market might nevertheless experience bear markets at different points in
time.

8 A similar analysis was performed using the S&P 500 as the equity index, yielding
19.00% and -10.80%, respectively.
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In unreported tests, we test for the presence of duration dependence
given our classification. In particular, we apply the tests by Shapiro and
Wilk (1972), Brain and Shapiro (1983), and Ohn et al. (2004) for du-
ration dependence. All tests indicate statistically significant duration
dependence in both the equity and currency market. For agricultural
commodities, only the result from the Shapiro and Wilk (1972) test is
significant at the 10% level. These results confirm our view that duration
dependence plays a role in an number of markets under consideration and
that the threshold filter of Lunde and Timmermann should be preferred.

4.4.1 Market Timing Ability

We now turn to our main analysis, testing whether CTAs are able to
successfully time the bull and bear markets identified above. We report
the results for the main regressions in Table 4.3.

The first set of regression results, corresponding to our baseline model
outlined in Section 4.2, suggests that CTAs exhibit market timing abil-
ity in all of the markets considered. All the interaction terms measuring
timing ability are highly significant and show the expected sign.® The
intercept, which is the average value of the manager fixed effects, is sig-
nificantly negative. Although returns of the funds are before fees and
transaction costs, nevertheless, they reflect implicit transaction costs. In
particular, the negative coefficient on the intercept likely reflects bid-ask
spreads.

Turning to the economic significance of the timing coefficients reported
in Table 4.3, we see that the magnitude of the observed market timing
is meaningful. For example, a 1% increase in bond markets when bond
markets exhibit a positive trend is associated, on average, with a 1.28%
(0.313% + 0.967%) return to the fund. When bond markets are declining,
however, the funds’ returns are only associated with a decrease by 0.313%
on average for every 1% decrease in bonds. In other words, funds tend to
exhibit a significantly positive beta to bond markets during up-markets,
but an insignificant beta during down-markets. Similarly, all else equal,
a 1% increase in the trade-weighted US dollar index during up-trends is

9We note that these results do not allow us to infer the extent to which a manager
anticipates trends in a particular asset class on a stand-alone basis. In particular,
managers’ timing ability in one market can be the result of successfully anticipating the
trends in other markets. The high degree of overlapping in market states, as evidenced
by the concordance index calculated in Table 4.2, makes this a likely possibility. For
example, we can imagine that if a manager expects a strong reversal in the stock
market, she will use that information to adjust her exposure to, say, energy markets.
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Figure 4.3: (Monthly) Excess Return-based Classification
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associated to a 0.389% (0.938%-0.549%) increase in the funds’ returns,
whereas the funds seem to gain 0.549% for every 1% decrease in the index
during down-markets.

Next, we contrast these findings with the results obtained for two
existing models. First, we apply the HM model to daily data, where the
dummy variable is one when the excess return for the month is positive
and zero otherwise. A visual illustration of the classification that results
from the HM model is shown in Figure 4.3.Clearly, this classification leads
to a more dispersed set of up- and down market periods.

Column (2) of Table 4.3 reports the results when we employ this def-
inition of bull and bear markets. The coefficients of the timing variables
suggest that in this case, too, i.e. CTAs exhibit timing ability in four out
of six markets considered. This result reveals that also under the tradi-
tional definition of market timing ability, CTAs show clear evidence of
market timing skill.

Finally, we also consider the daily version of the HM model suggested
by Bollen and Busse (2001), where instead of using monthly excess re-
turns, we look at dailies. In days where the excess return is positive, the
dummy is one, while it is zero otherwise. This approach is commonly fol-
lowed when researchers have access to daily data. The results, reported
in column (3) of Table 4.3, are striking. The estimates suggest that when
using this definition of market timing, CTAs do not exhibit any timing
skill. On the contrary, we find evidence of significantly negative timing
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Table 4.3: Market Timing Ability of CTAs

(1) (2) 3)

Equities -0.161%%* -0.121%%* -0.145%*%*
(0.0388) (0.0316) (0.0227)
Equities -D1 ¢ 0.158*** 0.0454 0.0649
(0.0411) (0.0311) (0.0522)
Bonds 0.313 0.700%** 1.188***
(0.190) (0.167) (0.183)
Bonds D2 ¢ 0.967*** 0.563*** -0.527%**
(0.245) (0.164) (0.127)
Agri. Commodities -0.0237 -0.0480** -0.00113
(0.0223) (0.0181) (0.0223)
Agri. Commodities D3¢ 0.0714%* 0.114%*** 0.0277
(0.0278) (0.0232) (0.0266)
Energy -0.0284 0.0304* 0.0635%**
(0.0194) (0.0178) (0.0188)
Energy -Dy,; 0.157%%* 0.0682%** -0.0134
(0.0276) (0.0220) (0.0169)
Metals 0.0349 0.156%*** 0.214*%*
(0.0392) (0.0279) (0.0358)
Metals -Ds ¢ 0.146*** -0.0115 -0.144%*%*
(0.0415) (0.0234) (0.0320)
Currencies -0.549%%* -0.204* -0.119
(0.104) (0.120) (0.120)
Currencies -Dg,¢ 0.938*** 0.209* -0.00406
(0.132) (0.118) (0.108)
Constant -0.000169*** 3.36e-05 0.000578***
(6.04e-05) (4.27e-05) (0.000146)
Observations 32,450 32,450 32,450
Adj. R-squared 0.070 0.044 0.040
Number of funds 33 33 33

This Table reports the results for Eq (1), using different definitions for the
market timing dummies. Column (1) reports the results for the specifica-
tion that employs a bull- and bear market definition using the approach
of Lunde and Timmermann (2004). Column (2) reports the results using
the definition proposed by Henriksson and Merton (1981). Finally, col-
umn (3) reports the results using the specification of Bollen and Busse
(2001).

Cluster-robust standard errors in parentheses. Significance at 1%, 5%,
and 10% level indicated by *** ** and *, respectively.
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skill. The reason for this result might relate to the behavioral restriction
that is implicit in a direct application of the HM model to daily data.
Such an application of the model implicitly assumes that market timing
is executed on a daily basis, but as mentioned above this restriction seems
too binding for the funds under consideration.

4.4.2 Robustness Checks

To verify whether our proposed approach, i.e. analyzing funds’ market
timing ability in terms of trends rather than in terms of excess returns,
indeed adds value, we perform a number of robustness checks.

4.4.2.1 Correlation across Time

To test the significance of the results, we have ignored the potential impact
of correlation across time. We cluster on the less numerous (i.e. by firm)
dimension following the suggestions of Petersen (2008) and Thompson
(2011). In particular, if the time dimension is considerably larger than the
firm dimension, the bias due to correlation can be expected to disappear
as long as one (single)-clusters on the less numerous dimension. It may
nevertheless be instructive to cluster by time as well, since the regressors
vary by time but not by firm.

To this end, we perform a number of robustness checks to test whether
our results are robust to correlation across time. First, we include the
regression results where we include time fixed effects. At the same time, we
still cluster the standard errors by fund. This is one way of simultaneously
handling firm and time fixed effects, although there are also limitations
to such an approach (see Thompson, 2011). The first column of Table
4.4 reports the results, where we omit the dummy for 1994 to serve as
reference category. We find that our results are robust to time fixed
effects.

Next, we also report the results where standard errors are clustered
by time and clustered both by time and by firm (two-way clustering).
Clustering simultaneously by time and firm follows the work of Thompson
(2011) and Petersen (2009). Column (2) and (3) of Table 4.4 report the
results for clustering by time and two-way clustering, respectively. We
find that our results are robust to clustering along both dimensions.
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Table 4.4: Robustness to Correlation across Time

@) 2 3)
Equities -0.1603*** -0.1589%** -0.1589%**
(0.041) (0.034) (0.047)
Equities -D1 ¢ 0.1669%** 0.1630%** 0.1630%**
(0.045) (0.046) (0.057)
Bonds 0.3102 0.3041%* 0.3041
(0.190) (0.171) (0.234)
Bonds D2 0.9702%** 0.9789%** 0.9789%**
(0.248) (0.222) (0.307)
Agri. Commodities -0.0276 -0.0256 -0.0256
(0.024) (0.038) (0.040)
Agri. Commodities -D3 ¢ 0.0777%* 0.0760%* 0.0760
(0.029) (0.045) (0.048)
Energy -0.0265 -0.0257 -0.0257
(0.020) (0.025) (0.030)
Energy <Dyt 0.1565%** 0.1538*** 0.1538%**
(0.029) (0.030) (0.039)
Metals 0.0451 0.0438 0.0438
(0.042) (0.044) (0.055)
Metals -Ds ¢ 0.1553%%* 0.1551%%* 0.1551%%*
(0.044) (0.049) (0.060)
Currencies -0.5649%** -0.5456%** -0.5456%**
(0.111) (0.119) (0.153)
Currencies -Dg,¢ 1.0043*** 0.9638%** 0.9638%**
(0.145) (0.166) (0.200)
Constant -0.000295  -0.000275%** -0.000275%**
(0.001) (0.000) (0.000)
Time Fixed Effects Yes
Observations 32,450 32,450 32,450
Adj. R-squared 0.069 0.067 0.067

This Table reports the results for a robustness checks where we test the
robustness of the specification in the first column of Table 4.3 for correla-
tion across time. Column (1) reports the results for a specification where
we include time fixed effects. Column (2) reports the results when we
cluster by time. In column (3), we report the results from clustering both
by time and by firm (two-way clustering). Standard errors in parentheses.
Significance at 1%, 5%, and 10% level indicated by ***, ** and *, respec-

tively.

100



4.4.2.2 Thresholds

We also test whether the baseline result in Section 4.4 is robust to the
thresholds used. While the thresholds for the stock market are close to the
ones proposed by Lunde and Timmermann (2004), the other thresholds
are not well-established yet. Therefore, we redo the analysis with bigger
(smaller) thresholds. In particular, we increase (decrease) the absolute
value of the thresholds by one standard deviation to look at whether our
results still hold for somewhat higher (smaller) trends. The results, re-
ported in column (1) and (2) Table 4.5, suggest that our baseline results
are only to a minor extent driven by the particular set of thresholds ob-
tained in Section 4.4. Especially, CTAs seem to be successful at timing the
larger trends in currencies, since for the smaller trends the managers show
negative timing ability. Similarly, the funds do not show timing ability
for the very large trends in agricultural commodities. Nevertheless, the
explanatory power of our model seems to be increasing with the size of
the trend. This suggests that CTAs’ market timing ability takes the form
of successfully timing the larger trends in the different markets.

4.4.2.3 Microstructure issues

The use of daily fund data might lead to microstructure related issues such
as possible thin or nonsynchronous trading and stale pricing (Scholes and
Williams, 1977). It is unlikely that our results are driven by such issues,
given the nature of the futures markets CTAs trade in. Nevertheless, we
re-estimate our baseline model but include lagged values for the market
factors (Dimson, 1979). In that case, the model changes to:

M M M
Tpt = Q + Z ﬁl,mrm,t + Z ﬁQ,me,t—l + Z 'YmDm,t *Tm,t + Ap + Hp,t
m=1 m=1 m=1

(4.2)

The results, reported in column (3) of Table 4.5, show that these

concerns are unwarranted. Including lagged market factors does not ma-
terially impact results for the variables of interest.

4.4.2.4 Conditional Performance

To ensure that funds indeed add value in successfully timing markets, we
also investigate the performance conditional on public information. This
approach, suggested by Ferson and Schadt (1996), is motivated from the
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Table 4.5: Robustness Checks

(1) (2) (3) (4) (5) (6)
Equities S0.162%F%  _0.173%FF  _0.173%¥F  _0.120%%F  -0.230%**  -0.199%**
(0.0356) (0.0397) (0.0402) (0.0393) (0.0363) (0.0456)
Equities - D1 ¢ 0.187%** 0.196%** 0.165%** 0.191%%*  0.206%** 0.135%*
(0.0421) (0.0434) (0.0413) (0.0375) (0.0685) (0.0643)
Bonds 0.109 0.269 0.317 0.0506 0.110 0.260
(0.220) (0.175) (0.192) (0.219) (0.184) (0.216)
Bonds Dy, 1.204%%* 1.102%%* 0.984*** 0.747%%* 0.241 0.0474
(0.289) (0.186) (0.251) (0.262) (0.228) (0.302)
Agri. Com 0.0237 -0.0975%**  _0.0181 -0.00107 0.0692 0.00185
(0.0236) (0.0212) (0.0219) (0.0272) (0.0438) (0.0296)
Agri. Com -D3;  -0.00011 0.200%** 0.0640** 0.0769%* -0.0372 0.0673
(0.0267) (0.0263) (0.0273) (0.0302) (0.0458) (0.0442)
Energy -0.0166 0.00772 -0.0239 0.0332%* 0.0348 0.0215
(0.0184) (0.0150) (0.0185) (0.0147) (0.0317) (0.0234)
Energy -Da 0.151%** 0.105%** 0.153%** 0.109%** 0.0186 0.0356
(0.0280) (0.0205) (0.0267) (0.0208) (0.0377) (0.0342)
Metals 0.0113 0.0454 0.0472 0.0942%* -0.135 -0.0706
(0.0459) (0.0390) (0.0391) (0.0436) (0.0813) (0.0445)
Metals -Ds,¢ 0.175%** 0.148*** 0.137%** 0.0921%* 0.164** 0.126*
(0.0510) (0.0433) (0.0412) (0.0407) (0.0800) (0.0706)
Currencies -0.809%** 0.00974 S0.580%F%  L0.451%F*  _0.411%¥*  _0,395%*
(0.118) (0.115) (0.110) (0.134) (0.134) (0.148)
Currencies -Dg ¢ 1.277%%* -0.334%* 0.912%** 0.860%**  (0.472%%* 0.427%*
(0.144) (0.123) (0.130) (0.138) (0.134) (0.166)
Constant -0.0001%*  -0.0001**  -0.0002**  -0.00014**  -0.0014 -0.0060*

(5.57e-05)  (5.91e-05)  (6.13e-05)  (5.33e-05)  (0.0019) (0.0034)

Time Fixed Yes
Effects

Controls for Yes

macro-economic

information

32,450 32,450 32,449 32,449 1,486 1,486
Observations 0.079 0.062 0.073 0.106 0.088 0.064
Adj. R-squared 33 33 33 33 33 33

This Table reports the results for a number of robustness checks. In column (1) and (2) we test
the robustness of the results to higher and lower thresholds, respectively. In column (3) we include
lagged market factors to account for potential microstructure issues. In column (4) we control for
publicly available information, following Ferson and Schadt (1996). Column (5) and (6) report
the results from estimating the bull and bear market and the Henriksson-Merton specification the
using monthly data.

Cluster-robust standard errors in parentheses. Significance at 1%, 5%, and 10% level indicated by
*¥*x k% and ¥, respectively.
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idea that profitable trading strategies relying on public information should
not yield superior performance. To estimate this model, we make use of
four different macroeconomic variables to control for publicly available in-
formation: a dividend yield, a liquidity premium, a default risk premium,
and the risk-free rate.!? All four variables are constructed using daily
data. Following Ferson and Schadt (1996), the variables are demeaned
and their lagged values are interacted with the market factors.
The model takes the following form:

Tpt = « + Zn]\{zl ﬁl,mrmi + Zn]\{zl ﬂZ,mei—l + an\{zl 'YmDm,t *Tmt
Y ot DTt Cntm1 + Ap + it
(4.3)
where ¢y, +—1 represent the lagged and demeaned macroeconomic vari-

ables. These interaction terms pick up the movements through time of
the conditional betas as they relate to the market indicators. Column
(4) of Table 4.5 reports the conditional market timing performance of the
CTAs, which suggests that the CTAs’ successful time-varying exposure
to the different factors cannot be explained by publicly available infor-
mation. Incidentally, the inclusion of these macro-economic variables also
controls for potential common shocks. This specification therefore pro-
vides complementary evidence that our results are robust to time fixed
effects.

4.4.2.5 Return Frequency

Next, we test the impact of the frequency of the return data on our results.
Previous literature commonly relied on monthly data, mainly due to data
availability issues. Bollen and Busse (2001) show that evidence of monthly
timing ability tends to disappear when daily data is employed. To ver-
ify whether our results are also sensitive to the data frequency, we redo
the analysis using monthly data. In particular, we redo both the spec-
ification bull and bear market specification and the excess return-based
specification.

10The term spread, which proxies for the liquidity premium, is calculated as the
difference between the US Treasury 10 year yield and the (annualised) three-month
US T-Bill yield. The latter also serves as the risk-free rate. The quality spread is
the difference between the US Corporate Bonds Moody’s Seasoned AAA and the US
Corporate Bonds Moody’s Seasoned BAA rate. The dividend yield is the daily dividend
yield of the S&P 500.
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Results are shown in columns (5) and (6) of Table 4.5. When employ-
ing our baseline model to monthly data, we find the evidence of positive
timing ability disappearing for half of the markets under consideration.
The results for the original HM model using monthly data yield identical
results. The evidence of positive timing ability reported in column (2) of
Table 4.3 is no longer present in column (6) of Table 4.5. These results
are in line with previous literature and illustrate the importance of using
daily data for testing market timing ability.

4.4.2.6 Impact of fees

An analysis of alpha after fees provides another dimension along which
we can evaluate the robustness of our results. Such an analysis is relevant
since hedge funds’ fee structure impacts net-of-fee returns in a non-linear
way. This is the case since part of hedge fund managers’ compensation
is based on performance relative to a high-water mark. To assess the
impact of fees, we re-estimate the main specifications in the paper (Table
4.3) using after fee returns. The results are reported in Table 4.6.

We find that our results are robust to the use of net-of-fee returns.
The only change that we observe, is a slight drop in the constant. This is
consistent with the findings of Kazemi and Li (2009) who note that, since
CTAs do not engage in security selections, the slightly negative constants
may be the result of fees and transaction costs.

4.4.2.7 Subsample Analysis

Finally, we perform a subsample analysis to investigate how CTAs’ market
timing ability has evolved over time. We use subsamples defined by events.
In particular, we look at the period up to the dotcom crash (1994-1999),
the period of the crash and subsequent bull market (2000-2007) and finally
the recent financial crisis (2008-2012). We report the results for the three
sample periods in Table 4.7.

In general, we find that there has been some time variation in CTAs’
timing ability of trends in the different markets under consideration. For
the period 1994-1999, CTAs exhibit positive timing ability in markets,
although only significantly so in half of the cases. In contrast, while
timing ability with regard to equity markets improves considerably during
the second sub-period, the results suggest a clear absence of timing ability
in agricultural markets. Finally, the period 2008-2012 suggests an overall
improvement in the timing ability of CTAs, compared to the previous two
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Table 4.6: Market Timing and Net-of-fee Returns

(1) (2) (3)
Equities -0.1593%** -0.1157%%* -0.1388%**
(0.041) (0.033) (0.022)
Equities -D1 ¢ 0.1637*** 0.0418 0.0600
(0.044) (0.034) (0.053)
Bonds 0.3055 0.7086*** 1.2023***
(0.188) (0.169) (0.185)
Bonds -Da ¢ 0.9771%** 0.5416%** -0.5560%**
(0.244) (0.174) (0.129)
Agri. Commodities -0.0275 -0.0487** -0.0007
(0.024) (0.019) (0.024)
Agri. Commodities -D3 ¢ 0.0795%** 0.1173%** 0.0291
(0.029) (0.025) (0.028)
Energy -0.0261 0.0305* 0.0639%**
(0.020) (0.018) (0.019)
Energy -Da ¢ 0.1540%** 0.0678%** -0.0143
(0.029) (0.021) (0.017)
Metals 0.0420 0.1714%** 0.2344%**
(0.042) (0.030) (0.041)
Metals -Ds ¢ 0.1578%** -0.0117 -0.1545%**
(0.044) (0.024) (0.037)
Currencies -0.5523%** -0.1877 -0.1015
(0.111) (0.125) (0.127)
Currencies -Deg ¢ 0.9762%** 0.2033 -0.0093
(0.141) (0.123) (0.114)
Constant -0.000279*** -6.30e-05 0.000524***
(0.000) (0.000) (0.000)
Observations 32,450 32,450 32,450
Adj. R-squared 0.067 0.042 0.038
Number of funds 33 33 33

This Table reports the results for a robustness checks where we re-estimate
the specifications in Table 3 using net-of-fee returns, rather than gross returns.
Column (1) reports the results based on a bull- and bear markets using the
algorithm of Lunde and Timmermann (2004). Column (2) reports the results
for the specification that uses the classification of Henriksson and Merton
(1981). Finally, column (3) reports the results using the approach of Bollen
and Busse (2001).

Standard errors, clustered by fund, in parentheses.

Significance at 1%, 5%, and 10% level indicated by *** ** and *, respectively
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Table 4.7: Subsample Analysis

1994-1999 2000-2007 2008-2012
Equities -0.182 -0.286%** -0.0800*
(0.141) (0.0418) (0.0455)
Equities -D1 ¢ 0.190 0.334%** 0.0670
(0.143) (0.0413) (0.0460)
Bonds -1.183** 0.198 1.176%**
(0.239) (0.261) (0.159)
Bonds D2 ¢ 3.101%* 1.004%** -0.0800
(0.614) (0.232) (0.222)
Agri. Commodities -0.120%* 0.116** 0.00374
(0.0391) (0.0421) (0.0217)
Agri. Commodities D3¢ 0.412 -0.110** 0.0879%***
(0.227) (0.0390) (0.0259)
Energy -0.0849* 0.0104 -0.0886**
(0.0295)  (0.0168) (0.0314)
Energy -Day ¢ 0.316%** 0.124%** 0.174%**
(0.0339) (0.0242) (0.0503)
Metals -0.206** 0.143** 0.0134
(0.0388)  (0.0682) (0.0377)
Metals -Ds ¢ 0.331%%* 0.0459 0.178***
(0.0504)  (0.0713) (0.0462)
Currencies 0.0676 -1.004*** -0.213**
(0.214) (0.146) (0.0773)
Currencies -Deg ¢ 0.986 1.407*** 0.508%**
(0.480) (0.250) (0.169)
Constant -0.000194 -7.47e-05 -0.000337***
(0.000155)  (4.79e-05) (0.000112)
Observations 2,724 17,857 11,846
Adj. R-squared 0.119 0.090 0.070
Number of funds 33 33 33

This Table reports the results for a subsample analysis. Cluster-robust stan-
dard errors in parentheses. Significance at 1%, 5%, and 10% level indicated
by *** ** and *, respectively.
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sub-periods. With the exception of bonds and equities, CTAs seem to have
successfully timed the other markets under consideration. This finding is
consistent with the clear trends that emerged during the financial crisis.
The absence of timing ability in stock and bond markets is consistent with
anecdotal evidence that CTAs got whipsawed in these markets following
the risk-on/risk-off environment after 2009.

4.5 Concluding Remarks

In this paper we extend the well-established Henriksson-Merton model
for market timing by using a less restrictive assumption on managers’
objectives. In particular, we assume that the manager attempts to time
bull and bear markets, rather than expected excess returns over the next
period (i.e. next month or next day). As such, our analysis bridges the lit-
erature on bull and bear market identification and tests for market timing
ability. Our approach builds on the observation that market professionals
think in trends rather than in terms of excess returns.

Since any performance evaluation is generally arbitrary, we test whether
market participants succeed in timing the trends we identify using our
proposed definition. In particular, we test whether CTAs, a hedge fund
category that attempts to profit from trends, are able to successfully time
bull and bear periods in the asset classes they are generally active in. Our
results suggest that CTAs exhibit market timing ability and are generally
able to successfully time trends in financial markets.
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Appendix

Threshold Filter by Lunde and Timmermann (2004)

Let I; be an indicator that takes on the value 1 if the stock market is in a
bull state and 0 otherwise. The stock price at the end of period t is ;. Let
A1 be a scalar fraction defining the threshold of the movement required
to go from a bear to a bull market. Similarly, let Ao be the fraction for
shifts from a bull market to a bear market. Suppose that at tg, the stock
market is at a local maximum, i.e. I;, = 1. Set ™" = x;, where x4, is
the value of the stock price at time tg. We can then apply the following
filter to classify stock markets:
Step 1: If I;_; at time t equals 1:

1. In the case where z; > z™%”, the peak is updated so that ™*

It is set equal to 1.

= T¢.

2. If y < (1—X1)-2™** there is a switch from a bull to a bear market.
Retroactively apply I; = 0 since last peak up to time point ¢.

3. Ifay > (1 — A1) - ™% and a¢ < ™97, it is set equal to 1.
If I;_1 at time ¢ equals 0:

1. In the case where z; < 2™, the trough is updated so that 2" =
x¢. It is set equal to O.

2. If 2, > (14 A2)-2™", there is a switch from a bear to a bull market.
Retroactively apply I; = 1 since last trough up to time point t.

3. If oy < (1+ A2) - 2™ and x; > ™™ it is set equal to 0.
Step 2:
Go back to step 1 until the end of the time series is reached. [J
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Trend Identification Algorithm by Wegscheider (1994)

Let T C {1,2,...,N} be a nonlinear subset of observations. The left
corner point t,,;, of T being the smallest value, the right cornerpoint t,,4,
being the largest value of T'. All other points are called inner observations
of T. We write T< for T {tnar}. For t € T with t > tyn, tr, is the
preceding observation of ¢ in T'. Formally:

tp =max{t' : ¥ €T, t <t}

Similarly, ¢t is the subsequent observation of t in T for ¢ < t,,4, 0.

Let (x¢)ier with Ty C {1,2,..., N} be a time series of at least two
values. The size of a particular trend is denoted as 7, and determined as
follows:

Step 1: For all t < tp,4e with x;, — 2+ = 0, observation ¢ is removed.
Let T} be the set of remaining observations.

Step 2: If 77 contains only one element, there is no trend and the
iteration is cancelled. All inner points ¢ of 77 with x¢, < z; < x4,
and z;, > x; > 1, respectively, share the same trend and are therefore
removed. Let T be the set of remaining observations.

Step 3: Let ¢’ be the first observation, at which the smallest difference
between two consecutive observations in 715 starts:

t'=min{t: t € Ty, | xty, — 2t |= min{| x5, — 5 |2 s€T5}

Trend 7, is defined by the following arithmetic return:

X ;1 —XT,/
")/p = tR i
wt/

When ¢ and t; are both inner observations or both corner observa-
tions of T», the size of the trend is saved and both ¢’ and t/; are removed.

For t' = t,,;m and t/R < tmaz, the size of the trend is saved and t’ is
removed.

For t,R = tmae and t' > t,in, the size of the trend is saved and ¢4, iS
removed.

Let T5 be the set of remaining observations.

Step 4: Set T, = T3 and go back to step 3 until 75 is empty. O
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Chapter 5

Adaptive Time Series
Momentum: Incorporating
Trend Signal Strength and
the Performance of
Managed Futures!

5.1 Introduction

According to BarclayHedge, a public hedge fund database with an exten-
sive coverage of Managed Futures funds, total assets under management
(AUM) in the Managed Futures or Commodity Trading Advisors (CTAs)
industry stood at 333 billion USD at the end of the third quarter of 2015.
This makes the Managed Futures industry the second biggest hedge fund
category after Fixed Income Arbitrage.

Until recently, no commonly accepted asset-based benchmarks were
available for the CTA industry. Instead, practitioners commonly bench-
marked CTAs’ performance against manager-based indices. To some ex-
tent, the reliance on manager-based benchmarks is related to the challenge
with constructing appropriate benchmarks for CTAs, as there is generally

IThis chapter is based on joint work with Péter Erdds.
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no long bias in CTAs’ trading strategies. While a manager will generally
disclose the markets he or she is active in, the actual position at any point
in time will be long or short, depending on the manager’s assessment of
the prevailing trend in the underlying market.

Benchmarking against peers has its limitations, however. Manager-
based benchmarks reflect both the returns to potential market inefficien-
cies that the constituents in the index attempt to exploit as well as indi-
vidual managers’ skill. Moreover, Fung and Hsieh (2004) point out that
hedge fund indices can be expected to inherit some of the biases that are
inherent in hedge fund databases. As a consequence, the alpha estimated
from such models for any individual manager may not accurately reflect
managerial skill.

Instead of benchmarking against peers, an alternative approach that
consists of benchmarking managers against a naive trend-following strat-
egy which is completely asset-based may be more valuable. Moskowitz,
Ooi, and Pedersen (2012) are the first to propose a futures-based trading
strategy that captures the returns to systematic trend-following in futures
markets.? The authors coin the observed trend effect time series momen-
tum, and show that time series momentum cannot be explained by the risk
factors proposed by Fama and French (1993) and Carhart (1997). Baltas
and Kosowski (2013) build on the work of Moskowitz, Ooi, and Pedersen
(2012) to suggest a set of the Futures-Based Trend-Following Strategies.
Considering weekly and daily strategies in addition to monthly strategies,
the authors show that their proposed TSMOM factors significantly im-
prove the explanatory power of multifactor models applied to Managed
Futures funds’ returns.

In this paper, we contribute to the literature on the performance eval-
uation of Managed Futures funds in two ways. First, we evaluate the
performance of a trend-following strategy that combines short-term time
series momentum signals with longer-term time series momentum signals.
Whereas a standard time-series momentum approach relying on binary
signals does not capture trend strength, aggregating time series momen-
tum signals of different lookback horizons results in a signal that measures
the strength of a trend in a particular market. This allows us to allocate
to a position in proportion to the signal strength.

We hypothesize that incorporating signal strength may yield a more

2For completeness, we note that Fung and Hsieh (2001) propose so-called Primitive
Trend-following Factors (PTFS) for trend-following funds. These factors capture the
returns to market timing using constructed lookback-straddle prices. To the best of
our knowledge, these factors have not gained industrywide traction.
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robust time series momentum factor that better anticipates reversals. In
addition, incorporating signal strength can be expected to be closer to
the actual practices of trend-following asset managers. Coincidentally,
the aggregation over a wide range of potential parametrizations avoids
an arbitrary choice of certain parametrizations and considerably reduces
data mining and calibration concerns. Diversification considerations more
generally may be another reason for combining signals over different hori-
zons. Baltas and Kosowski (2013), for example, show that time series
strategies over different lookback horizons have low correlations, implying
considerable diversification benefits.

To provide some intuition on why diversifying among or combining
different trend-following signals may add value and improve the overall
performance of a strategy, consider the following hypothetical example.
Suppose we have two securities, whose price paths are reported in Table
5.1.

[Table 1 about here.]

We note that both securities have the same initial value and terminal
value, and that the securities’ returns exhibit identical levels of volatility
over the period considered. In other words, both securities only differ in
their interim price path. Application of a simple (long-term) time series
momentum strategy over the period ¢ through ¢ — 3 yields a long signal
in both instances. When we include the intermediate signals, however,
we observe that the trends in both securities are considerably different.
Aggregating all the time series momentum signal suggests that a reversal
may be taking place for security A, whereas at ¢ there is a strong and
persistent trend in security B. This simple example suggests that aggre-
gating signals over different lookback periods may add value as it captures
additional features on the nature of the trend.

Second, in implementing the above approach, we incorporate a number
of market frictions and real-life limitations, such as contract-specific trans-
action costs, the impact of exchange rate risk on contracts’ profit-and-loss,
and delays between signal generation and trade execution. Earlier work
by Hurst, Ooi, and Pedersen (2013) points out the importance of some
of these frictions. Incorporating practical implementation issues ensures
that the factor is both an investable asset-based factor, which allows a
meaningful analysis of stand-alone performance, and that it is investable.
The latter implies that the our factor can be used as a somewhat more
realistic benchmark for the CTA industry. Not taking these frictions into
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consideration may raise the bar for managers too much, hampering a
meaningful interpretation of fund alpha.

We find that our strategy, which we coin adaptive time series momen-
tum (ATSMOM), matches the stylized facts of manager-based indices
along a number of dimensions. Moreover, our benchmark significantly
outperforms existing benchmarks in explaining the returns of Managed
Futures funds. Decomposing the ATSMOM factor, we find that a second
significant factor, which we coin the “speed factor”, appears to be present
in time series momentum’s returns. This speed factor, which we extract
using a principal component analysis (PCA) and which buys longer-term
and sells shorter-term TSMOM strategies, is similar but not identical to
the speed factor proposed by Greyserman and Kaminski (2014). We find
that Managed Futures funds tend to load negatively on the speed factor.
Interestingly, however, we find that fund alpha is positively related to
speed factor exposure.

Turning to performance evaluation using our new factors, we find that
smaller Managed Futures funds exhibit a nearly even exposure to every
asset class under consideration. At the same time, larger funds tend to
overweight more liquid (futures) markets, predominantly Fixed Income.
Although our asset-based factors capture much of the return variation of
CTA managers, we find that some CTA managers continue to outperform
on a risk-adjusted basis.

To investigate the drivers of the observed alpha, we analyze the rela-
tionship between risk-adjusted performance and fund characteristics. We
find that fund characteristics only account for a small fraction of the cross-
sectional variation in fund alphas, suggesting that the estimated alphas
are indicative of managerial skill. Interestingly, we also document strong
persistence in the estimated alphas, in that good annual performance in
one year tends to repeat in the subsequent year. Finally, we find that
contemporaneous fund flows do not affect the risk-adjusted performance
of managers. This suggests capacity constraints are less of an issue for
CTAs. These results echo the findings of Baltas and Kosowski (2013), who
rigorously test for capacity constraints in trend-following strategies. Their
results suggest that futures markets are liquid enough to accommodate
the trading activity of the CTA industry.
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5.2 Literature Review

Mutual funds are commonly benchmarked against a combination of mar-
ket indices and risk factors such as the factors suggested by Fama and
French (1993) and Carhart (1997). Similarly, most hedge fund cate-
gories are evaluated against Fung and Hsieh’s seven-factor (or eight-factor)
model (Fung and Hsieh, 2004). While these factor models perform well in
explaining the returns of mutual funds and most hedge fund categories,
their performance in explaining Managed Futures funds’ return variation
is limited. Instead, the Managed Futures industry still largely relies on
manager-based indices. Such indices reflect the average performance of
the selected funds and provide a measure of the industry’s performance.?
This practice is in stark contrast to the above-described practices for mu-
tual funds and other hedge fund categories and may have a number of
limitations, as pointed out in the introduction.

There have nevertheless been several studies that attempt to model
the returns generated by Managed Futures funds. Fung and Hsieh (2001)
are among the first to focus on replicating trend-following hedge funds’
returns. The authors suggest the use of primitive trend-following strate-
gies (PTFS) based on lookback straddles, which capture the returns of a
market timer. While implementing these factors in practice is possible,
Harvey et al. (2016) note that it is neither straightforward nor cheap.

More recently, there has been renewed attention for modelling the re-
turns accruing to Managed Futures funds. Moskowitz, Ooi, and Pedersen
(2012) are the first to document, in a systematic manner, the presence of
a “trend” effect for a broad range of futures and forward contracts. They
coin this effect time series momentum (TSMOM), which relies solely on
the continuation of the price direction of the asset under consideration.
Moskowitz, Ooi, and Pedersen (2012) show that a portfolio of TSMOM
strategies, diversified across different asset classes, consistently delivers
large and significant excess returns. Time series momentum is related,
but not identical to cross-sectional (or Carhart) momentum which relies
on past winners outperforming past losers.

Baltas and Kosowski (2013) build on the work of Moskowitz, Ooi, and
Pedersen (2012) to suggest a set of the Futures-Based Trend-Following
Strategies. The authors extend the existing literature on time series mo-

3For completeness, we note that the Société Générale (formerly Newedge) Trend
Indicator index, which relies on a 20,/120 moving average crossover futures-based model,
is also sometimes used by practitioners to capture the returns accruing to Managed
Futures funds.
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mentum by considering weekly and daily strategies. Baltas and Kosowski
(2013) also provide clear evidence that Managed Futures funds attempt to
exploit momentum in the time series domain. In particular, the authors
show that their suggested TSMOM factors significantly improve the ex-
planatory power of multifactor models applied to Managed Futures funds’
returns and outperform the PTFS suggested by Fung and Hsieh (2001).

Our approach borrows from and extends the works of Moskowitz, Ooi,
and Pedersen (2012) and Baltas and Kosowski (2013). In particular, we
investigate the economic gains of using more than one or just a few time
series momentum signals. The use of multiple signals can be motivated
along several lines. First, aggregating a large number of signals results in a
combined signal that captures signal strength. This addresses a limitation
in existing applications of time series momentum strategies where the
binary nature dictates a either a long or short allocation, regardless of the
strength of the trend. As a consequence, risk is allocated across different
securities and sectors without regard to the strength of the trends in
the different markets. It seems reasonable to assume that a reliance on
an aggregate or several signals is closer to the CTA industry’s practice.
Second, an investor ex ante does not know the performance of a particular
(e.g. atwelve month) parametrization. From a diversification perspective,
it may be more prudent to combine a considerable number of signals.

The choice of the strategy parameters is also an important consider-
ation from a performance evaluation perspective. One can question the
investabilitity of a benchmark that is based on just one signal, since such
a strategy is underdiversified and suffers from a hindsight bias. This
hindsight bias is inherent when relying on specific parametrizations that
performed well historically and it may raise the bar for managers too
much, as pointed out by Hurst, Ooi, and Pedersen (2012). Combining
different candidate signals, however, we avoid having to select a specific
set of parameter specifications, thereby reducing model risk while at the
same time enhancing ’signal’ diversification.

The idea of combining trend signals from different lookback periods
matches a recent new avenue in academic research. In particular, Han,
Zhou, and Zhu (2016) analyze the economic gains of combining signals
from short-, intermediate, and long-term moving average signals in equi-
ties. They find that combining the price trend information outperforms
the price trends separately. Our work is similar in spirit, but it has a
different scope in terms of assets. Additionally, since we focus only on
signals of up to one year we do not have to consider price reversals which,
literature suggests, tend to occur over horizons beyond one year.
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Our adjustment to existing time series momentum strategies implies
that our work is also strongly related to other recent contributions that at-
tempt to improve time series momentum strategies. Baltas and Kosowski
(2015) investigate the impact of different volatility estimators on the strat-
egy’s turnover and find that more efficient estimation of volatility can
substantially reduce rebalancing costs. They continue to show that tak-
ing into consideration pairwise correlations among assets further improves
time series momentum’s performance by limiting downside risk.

5.3 Data

We employ data from several distinct data sources. To construct the
ATSMOM strategy, we employ daily futures contract data obtained from
CSI Data. We retrieve monthly data on Managed Futures funds from the
BarclayHedge database. In addition, in-house data from RPM Risk &
Portfolio Management AB complements the subsection where we estimate
the transaction costs for CTAs.?

5.3.1 Futures Data

The futures dataset that we use consists of daily Close Price, Open In-
terest, and Volume for 98 futures contracts across four asset classes. In-
dividual futures contract data are obtained from CSI Data and cover the
period from January 1990 to September 2015. We report the list of futures
contracts covered in Table 2. Since some contracts only started trading
or were discontinued during the sample period, we also report the period
over which each contract is actually included in the subsequent analysis.

[Table 2 about here.|
[Table 2 (cont.) about here.]

Since futures contracts are short-lived contracts that expire at a pre-
determined date, we first construct a continuous time series of futures
prices for each contract. In the online appendix, we describe the par-
ticular approach used. The daily returns calculated from the continuous

4RPM Risk & Portfolio Management AB, a specialist investment manager based in
Stockholm, Sweden is a fund-of-funds specializing in Managed Futures strategies and
liquid Global Macro managers.
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futures prices, are equivalent to fully collateralized (unleveraged) returns
in excess of the risk-free rate (for a thorough discussion, refer to Baltas
and Kosowski (2015) and references therein). As such, the daily excess
returns are constructed as
- Fiy—Fi1
' Fiy
where F}; corresponds to the futures price of asset i at time ¢. The list of
futures contracts that we employ is one of the most comprehensive used
in the literature, as we include a number of metal-related futures and a
number of currency pairs that are commonly traded by CTAs.

(5.1)

5.3.2 Managed Futures Data

To analyze the relationship between our proposed strategy and Managed
Futures funds’ performance we collect monthly net-of-fee returns of live
and dead funds labeled CTA in the BarclayHedge Database. Although
reporting to hedge fund databases is voluntary, Joenviara, Kosowski, and
Tolonen (2012) — in an analysis of the different publicly available hedge
fund databases — conclude that BarclayHedge is the most comprehensive
hedge fund database, especially for Managed Futures funds. We restrict
the data on Managed Futures funds to the period from January 1994 to
September 2015. We employ data from January 1994 to mitigate a poten-
tial survivorship bias, since most databases only started collecting infor-
mation on defunct programs from 1994 onwards (see Joenvéira, Kosowski,
and Tolonen, 2012).

We filter the sample of funds by looking at their self-declared strategy
description and remove funds whose description is not consistent with the
definition of CTAs. In the process, we discard duplicates by excluding
multiple share classes and focus on the fund’s flagship program that at-
tracts the largest assets-under-management (AUM). To account for back-
fill bias, we drop the first 12 observations (see Kosowski, Naik, and Teo,
2007).° We also drop funds with (AUM) below 10 million USD to restrict
the set of funds to the investable universe. Finally, we focus on funds that
report their returns either in USD or EUR. The EUR-denominated re-

5By keeping track of the number of months that are backfilled when a fund is first
included in BarclayHedge database, we have tracked backfill bias for the period 2005-
2010. For that sample period, the median (average) backfill bias was twelve (fourteen)
months.
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turns and AUM are converted to USD using the end-of-month EUR/USD
spot rate provided by the Bank of England.

We focus on systematic trend-following CTAs, which we select based
on funds’ self-declared strategy description as well as an analysis of their
return characteristics. We focus on systematic trend-following managers
as their performance is most clearly related to the concept of time series
momentum. These managers do not make discretionary decisions and
show a high correlation with manager-based benchmark indices such as
the SG Trend Index. These programs are usually diversified and invest
across many liquid futures markets. Applying the above adjustments,
we obtain a sample of 433 systematic trend-following CTA funds. From
this set of funds, we construct both an AUM-weighted and an equal-risk
weighted index. Both portfolios are rebalanced monthly.

5.4 Methodology

We construct a portfolio which follows a strategy that we will refer to
as ATSMOM, and which is diversified both across time and across asset
classes. The aim is to construct a portfolio that is more representative of
systematic trend-following CTAs than a time series momentum approach
based on a single lookback period. We can imagine that diversification
benefits across time and assets result in fund performance that is less
sensitive to inevitable trend reversals.

The construction of the ATSMOM builds on the works of Moskowitz,
Ooi, and Pedersen (2012) and Baltas and Kosowski (2013) (hereinafter
MOP and BK, respectively). Analytically, using daily returns, a diversi-
fied TSMOM strategy can be constructed as follows

0.4/v261
T4l = ngn (rr—jr-14) - P TTTH1 (5.2)
where sgn is the signum function, that is, sgn(rr—;r—1,) is the sign of
the return over the lookback horizon [T'— 4,7 —j + 1,...,T — 1] lagged
two days, L is the number of assets in the strategy and or_go,7—1, is
the two-day lagged RiskMetrics’ standard exponentially weighted moving
average (EWMA) estimator of volatility with a 60-day rolling window.%

6We first convert the daily returns of futures contracts denoted in a foreign currency
to USD, since the weighting scheme in Eq. 5.1 is aimed at obtaining a (ex post) level
of volatility in USD.
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Algebraically, the EWMA estimator in Eq. 5.2 is calculated as follows

o7 = (1= A Z)\t L —7)? (5.3)

where A is the decay factor, which we choose such that the center of
mass is at around 60 days. We follow MOP in using this simple model
for estimating volatility. The correction factor of 0.4 to the estimated
volatility in Eq. (2) is suggested by MOP as to achieve an ex ante volatil-
ity of 40% per security. This is motivated from the observation that a
40% scaling factor can be expected to yield risk factors with an ex post
volatility of around 12% per annum, which roughly matches the volatility
of the equity risk factors of Fama and French (1993) (see Moskowitz, Ooi,
and Pedersen, 2012).

The ATSMOM strategy is defined as a time series momentum strategy
whereby we average the signal for any given security in the portfolio over
a wide set of lookback horizons. Algebraically’,

XL: S esgn(rr—jr—14)\  0.4/v/261 (5.4
i1 = — . e )
T — 251 OT—60,T—1,1 S

We do not consider lookback periods of strictly less than 10 trading
days. In the case of such relatively short trading intervals, the high degree
of noise makes the type of signal extraction used here unlikely. Momentum
trading at such short intervals can be expected to be based on additional
information (e.g. order flow) rather than closing prices alone. Such short-
term strategies likely also employ intraday rebalancing. Results for a
trading strategy that also includes horizons between 1 and 9 days are
qualitatively unchanged and are available up on request. This equivalent
to a strategy where the strategy trades the net position of every futures
contract across the different lookback portfolios.

From eq. (5.4) it is clear that the signal for every futures contract will
vary between minus one and plus one (i.e. S; € [—1,1]) depending on the
strength of the trend. This is a desirable charactistics as a simple TSMOM
strategy based on one lookback period can be criticised on the fact that

7An alternative way to think about the ATSMOM strategy is by viewing it simply
as an equal-weighted portfolio of diversified TSMOM portfolios over different lookback
horizons. The overall strategy only trades the net position of every futures contract
across the different lookback portfolios.
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it is a binary signal. As a result, a standard time-series momentum signal
does not capture signal strength. As we illustrated in the introduction,
our approach will mechanically allocate more to the futures contracts that
exhibit ‘clearer’ trends. When trends start to fade, however, the short-
term signals will force the strategy to lower exposure more quickly than in
the case of a strategy that only considers one long-term signal, and vice
versa. At the portfolio-level, the strategy reduces exposure to markets
where trends become less pronounced and adds to futures contracts where
trends are or become more pronounced, in a more ‘adaptive’ way than a
standard TSMOM strategy based on a single lookback horizon.

In addition to constructing an adaptive TSMOM strategy, we also at-
tempt to improve existing TSMOM strategies or CTA benchmarks along
several other dimensions. First, the available benchmarks imply signal
generation and trade execution on the same day, that is, for example, sig-
nal generation at the close price and entering the market during the same
closing session. When rebalancing frequency is low, such as in the case of
Moskowitz, Ooi, and Pedersen (2012) who employ monthly rebalancing,
the impact of the exact closing price employed may be limited. In our
case, however, the impact may be sizeable as we rebalance and thus may
shift positions daily.

In line with the work of Hurst, Ooi, and Pedersen (2013), we systemat-
ically skip one trading day between signal generation and trade execution.
For example, we only enter a position at Tuesday’s closing price if that
decision relies on a signal generated based on Monday’s closing price. Sim-
ilarly, the first day we can close that same position is during Wednesday’s
closing session and the return of such a position will be the percentage
price difference between Wednesday’s and Tuesday’s closing prices.

Another aspect we consider is the impact of contracts that are traded
in a foreign currency, instead of the base currency (USD). We assume that
the collateral or margin is always held in the base currency. Thus, only
the daily profit and loss (P&L) generated from positions in the contracts
traded in a foreign currency is exchanged to USD at the daily closing
exchange rate. The margin itself, which is held in domestic currency, is
not exposed to exchange rate risk (see Appendix A in Koijen et al., 2016).
We use the exchange rates provided by the Bank of England or, when
these are not available, the exchange rates of the respective central bank
to convert the daily P&L of the foreign currency denominated contracts.
We can imagine that incorporating trading frictions and exchange rate
fluctuations can improve the explanatory power of industry benchmarks.

We should emphasize that the proposed ATSMOM strategy does not
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trade every diversified TSMOM portfolio (one for each time frame) sep-
arately, but rather trades the netted position after aggregating the sig-
nals for each constituting TSMOM portfolio. As such ATSMOM is an
equally-weighted portfolio of each TSMOM strategy. This way we follow
the industry standard and non-negligibly, we substantially reduce the level
of transaction costs. The resulting strategy is likely to increase/decrease
existing positions only fractionally each day. Only these net changes and
the rollover of positions generate transaction costs.®

5.5 Results

In this section, we start by estimating the transaction costs for the futures
contracts under consideration. Next, we evaluate the performance of the
ATSMOM strategy and compare the approach to the futures-based fac-
tors suggested by MOP and BK, as well as a number of more traditional
risk factors that are used in the context of hedge fund analysis. We also
analyze the relationship between our newly constructed factor and sys-
tematic trend-following CTAs. Finally, we extend our baseline strategy
by decomposing ATSMOM’s drivers, which leads to the introduction of a
‘speed factor’. We conclude with an analysis of the relationship between
our newly proposed factors and CTAs.

5.5.1 Estimation of Transaction Costs

Existing benchmarks, with the exception of the SG Trend Indicator index,
do not consider transaction costs incurred executing a systematic trend-
following program. To allow for a meaningful performance measurement,
we account for transaction costs. A prerequisite to the formation of a
CTA benchmark that considers costs is, of course, appropriate estimates
of the trading costs typically incurred by CTAs.

8When a futures contract is rolled over to a further-dated contract, the strategy
closes the nearby contract and opens a position in the new contract. The date of the
contract rollover coincides with the rollover used for the construction of the continuous
futures (see the Appendix). On such days, turnover is usually much higher than on
other days. Daily turnover fairly limited, except in the case of short rate futures. These
contracts exhibit very low levels of volatility (0.01% average daily volatility) compared
to other contracts (1.2% average daily volatility) and thus a large notional position
is needed to obtain the same target level of volatility. Omitting the Eurodollar, the
Euribor, and the 90-day bank accepted bill, the turnover equals 29%. Each short rate
futures generates an average daily turnover of around 22-23%, whereas, the average
turnover for the other contracts is just 0.3%.
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To this end, we first estimate the explicit trading costs from actual
charges incurred in one of RPM Risk & Portfolio Management’s flagship
funds over a one-year period from August 2013 through August 2014.
Explicit trading costs include gross commissions, clearing fees, exchange
fees, NFA (National Futures Association) charges, and brokerage and ex-
ecution charges. Second, we also need to account for implicit transaction
costs arising from the bid-ask spread that traders usually pay market
makers for providing liquidity.” In line with the standard approach in
the literature, in a round trip, the bid-ask spread can be approximated
by the tick size. This simplification dates back to Demsetz (1968), who
argues that when customers trade through market makers, they will pay
the difference between the true price and the bid or ask price on every
trade. We therefore employ the reported tick-size for every contract to
approximate the implicit transaction cost for every contract.'’

Ideally, we should re-estimate transaction costs from time to time.
Unfortunately, we only have transaction costs data for a very recent pe-
riod. Following Hurst, Ooi, and Pedersen (2012), we therefore assume
that in the first half of the sample period (1991-2002), transaction costs
were twice as high as in the second half of the sample period (2003-2015).
Table 5.3 reports the estimated transaction costs for each asset class.

[Table 3 about here.]

The results in Table 5.3 clearly illustrate that trading costs vary con-
siderably from asset class to asset class; in basis points of traded notional
amount, short-rate futures are the least expensive to trade, though these
contracts are also the least volatile. Trading in VIX and grains futures is
most expensive. This finding is mainly driven by large tick size indicating

9Effective spread estimators (Roll, 1984; Smith and Whaley, 1994) and approaches
to estimate bid-ask spread directly from the order book (Locke and Venkatesh, 1997)
have also been proposed. Szakmary, Shen, and Sharma (2010) and Locke and
Venkatesh (1997) point out, however, that these estimates are close to the tick size.
Since estimating the bid-ask spread from the order book is beyond the scope of the
current paper, we stick to the simplification that the tick size is a good proxy for the
bid-ask spread.

10We note that transaction costs are likely to be a nonlinear function of trading
volume. In the absence of transaction-level data, however, it is not possible to quantify
the relationship. In addition, taking into consideration transaction costs and other
frictions such as position limits requires assumptions on the portfolio’s size. We refer
to the work of Frazzini, Israel, and Moskowitz (2012) for more details on the impact of
transaction costs on exploiting asset pricing anomalies. In this study, we assume that
transaction costs increase linearly with trading volume.
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lower liquidity in these markets. In all markets, except for energy com-
modities and industrial metals, the half tick size accounts for more than
half of the total estimated trading cost. On average, across all markets
traded, we find that the bid-ask spread is responsible for almost three
quarters of the overall transaction costs.

5.5.2 Adaptive TSMOM’s Stand-alone Performance

In Table 5.4 we report performance statistics for the adaptive TSMOM
strategy as well as results for the factors suggested by Moskowitz, Ooi,
and Pedersen (2012) and Baltas and Kosowski (2013). The diversified
time series momentum factor (henceforth MOP) is available from Ap-
plied Quantitative Research’s (AQR) website. The monthly, weekly, and
daily Futures-based Trend-following Benchmarks (FTB, henceforth BK,
BKyw, and BKp) are available from Robert Kosowski’s website. For the
ATSMOM factor, we report the results both gross and net of transaction
costs in panel A. The existing benchmarks, in panel B, are gross of trans-
action costs. All the factors are scaled to 10% volatility for comparison.

[Table 4 about here.]

We observe that the ATSMOM strategy yields somewhat higher min-
imum and maximum returns than the MOP factor and the BKp and
BKyw proposed by Moskowitz, Ooi, and Pedersen (2012) and Baltas and
Kosowski (2013). This suggests that the ATSMOM strategy is success-
ful at limiting downside risk and to allocating more to better performing
assets. The lower downside risk is likely to be the consequence of diversifi-
cation benefits as well as the higher rebalancing frequency. In particular,
more frequent rebalancing implies that the strategy will respond more
quickly to changes in trends. In contrast, MOP’s factor is rebalanced
monthly. More frequent rebalancing, however, does not guarantee lower
downside risk, as is evident from BKp‘s MDD. Taking into account trans-
action costs, the benefits resulting from the more pro-active nature of the
adaptive TSMOM strategy clearly come at a cost. The Sharpe ratio net-
of-transaction costs drops to 0.96.

The higher upside of the ATSMOM strategy also translates to a higher
skewness and kurtosis. High skewness is consistent with one of the styl-
ized facts of CTAs in that these funds tend to produce positively skewed
returns (refer to, among others, Fung and Hsieh (2001), Lamm Jr (2005),
and Ding and Shawky (2007)). This feature is also present in the BKy,
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and BKp. Before transaction costs, we find that the ATSMOM strategy
reports slightly lower average annual returns than the MOP factor, result-
ing in a Sharpe ratio of the ATSMOM that does not differ significantly
from the Sharpe ratio of MOP (using the approach of Ledoit and Wolf
(2008) to test the statistical significance, we obtain a p-value of 0.288).

The focus of this work is, of course, not on stand-alone performance.
The results so far simply indicate that our newly proposed benchmark
is able to compete with existing benchmarks. Next, we turn to the use
of ATSMOM as a benchmark for the Managed Futures industry. Does
the adaptive nature of our newly proposed factor better capture Managed
Futures funds’ performance?

5.5.3 A Benchmark for Managed Futures Funds?

In Panel C of Table 5.4, we report the performance of existing industry
indices. These indices are often used by practitioners to benchmark indi-
vidual managers. The two most commonly used CTA benchmarks are the
BarclayHedge CTA Index and the SG (formerly Newedge) CTA Index.
BarclayHedge also publishes a large cap index called BTOP 50 and SG
a Trend-Following sub-index.'! In addition to these manager-based in-
dices, SG also constructs an asset-based benchmark called the SG Trend
Indicator index which reflects the returns of a strategy that relies on a
simple 20/120 moving average crossover model. The index is reported net
of transaction costs and a hypothetical 2% management and 20% perfor-
mance fee.

In addition to the above indices, we also construct an AUM weighted
as well as an equal risk-weighted (ERW) index using the systematic trend-
following CTAs selected in Section 5.3. Similarly to the other CTA indices,
these indices are also far from investable as one cannot rebalance a CTA
portfolio on a monthly basis. Lengthy due diligence and legal processes
to opening new managers and closing existing managers makes such an
approach impractical. Nevertheless, the indices are representative of then-
current CTAs. Further, it is reasonable to expect that the TSMOM-
based benchmarks are particularly relevant for systematic trend-followers,

' The BarclayHedge and SCG manager-based indices are equal-weighted. This has the
drawback these indices are overweight CTAs that target higher levels of volatility. The
manager-based indices are rebalanced once a year. The BarclayHedge CTA index is a
broad index of CTAs, some of which are not necessarily trend-followers nor systematic.
The SG CTA index includes only the largest 20 CTAs that are open to investment and
report performance and AUM on a daily basis.
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but may be not for other types of CTAs. While time series momentum
benchmarks may also be relevant for discretionary trend-followers, the
data set at our disposal only includes 19 discretionary trend-following
CTAs that meet the selection criteria. For this reason, we do not include
discretionary managers explicitly.

We observe that most of the CTA indices exhibit positive skewness,
drawdowns of approximately 15% at 10% annual volatility (with the ex-
ception of the BTOP 50), and Sharpe ratios of 0.31 to 0.93. The Trend
Indicator strategy reports the highest drawdown, which may be because
of the fact that the index employs just one long-term moving average
crossover. The industry practice, in contrast, may be rather to apply
several different horizons simultaneously, thereby limiting downside risk.

In Figure 1 we plot the 3-year rolling window Sharpe ratio of the
different benchmarks reported in Panel A and B of Table 5.4.

[Figure 1 about here.]

The performance of the proposed ATSMOM strategy is almost always
somewhere between the slower(-to-react) (MOP TSMOM) and faster (BK
Daily) strategies and is less likely to significantly out or underperform the
other benchmarks. This is what one would expect from a strategy that
allocates both to shorter and longer-term strategies. Longer-term strate-
gies usually outperform shorter-term strategies. This was clearly the case
during 2013 through 2015, when the MOP factor clearly outperformed
ATSMOM. However, in periods when shorter-term strategies outperform,
longer-term strategies tend to suffer. Greyserman and Kaminski (2014)
note that it may be difficult, if not impossible, to determine ex ante the
horizon that will perform best over a given period. In such an environ-
ment, it may be better to trade a wide portfolio of horizons.

To put the performance of the adaptive TSMOM strategy in another
perspective, Figure 2 compares the rolling 3-year Sharpe ratio of the adap-
tive TSMOM strategy, the SG Trend indicator, and the MOP factor, on
the one hand, and peer-based indices, on the other hand. We observe that
the SG Trend indicator performed better in the early period of the sample,
although slightly underperforming the manager-based indices most of the
time. The performance of the adaptive strategy follows the performance
of trend-following managers more closely, especially in recent years. Both
observations are consistent with market participants’ sense that the CTA
industry is moving towards increased sophistication and diversification.

[Figure 2 about here.]
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In Table 5.5, we report the correlation of the different futures-based
strategies with the manager indices. With regard to the factors of Baltas
and Kosowski (2013), we include a linear combination of the three separate
factors which we refer to here as ‘Average BK’.

[Table 5 about here.]

Interestingly, the correlation between the adaptive TSMOM strategy
and the manager-based indices exceeds the correlation of the average of
the BK factors. This suggests that our factor may add value over a com-
bination of the factors of Baltas and Kosowski (2013).

Moving beyond simple summary statistics, we investigate the rela-
tionship between our proposed adaptive TSMOM strategy and exist-
ing (equity-based) risk factors, the primitive trend-following strategies
(PTFS) of Fung and Hsieh (2001) and a number of other recently pro-
posed risk factors in Table 5.6.

[Table 6 about here.]

In column (1) and (2) we report the results for regressions specifi-
cations where we regress the monthly (excess) returns of the adaptive
TSMOM strategy on the excess returns of the Fama and French (1993)
factors and a combination of these and Carhart (1997) cross-sectional mo-
mentum factor. We find that the adaptive TSMOM factor produces eco-
nomically large and significant alphas against existing risk factors, both
gross (Panel A) and after transaction costs (panel B). The alphas vary
from 9.5% p.a. to up to 13.2% p.a. These results mimic the findings of
Moskowitz, Ooi, and Pedersen (2012) that time series momentum is not
well explained by existing (equity-based) risk factors.

In column (3), we include the tradable (equity-based) liquidity fac-
tor of Pastor and Stambaugh (2003) and find that (equity) liquidity is
unrelated to TSMOM. The results in column (4) report the estimates
for a regression where we include the PTFS factors of Fung and Hsieh,
2001. In column (5), we report the results for 8-factor model of Fung
and Hsieh (2004), where we include all five PTFS factors rather than just
the commodities, bonds, and foreign exchange PTFS. While the extended
FH model tends to work well for most hedge fund categories (see Fung
and Hsieh, 2004), only the PTFS factors are significant in explaining our
TSMOM factor. The results corroborate earlier findings that TSMOM is
generally unrelated to equity risk factors and that it is only partly related
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to existing momentum factors such as Carhart’s cross-sectional momen-
tum and the lookback straddle based trend-following factors of Fung and
Hsieh (2001). In the appendix, we follow the work of Moskowitz, Ooi,
and Pedersen (2012), Asness, Moskowitz, and Pedersen (2013), and Koi-
jen et al. (2016) and regress the adaptive TSMOM strategy’s returns on
a number of macroeconomic, liquidity, volatility, and sentiment variables.
We find that variation in these variables does not explain the observed
excess returns of the adaptive TSMOM strategy.

Finally, we also regress the strategy’s returns against the Global Value
and Global (cross-sectional) Momentum factors proposed by Asness, Moskowitz,
and Pedersen (2013), which are arguably more appropriate since these
factors cover multiple asset classes.'?> We find that both factors perform
somewhat better in explaining the variation in our strategy’s returns,
with both coefficients being significantly positive. The strategy, however,
continues to generate a significant and substantial alpha of 5.64% p.a.
vis-a-vis these factors.

Table 5.7, Panel A, reports the explanatory power of a number of
asset-based style regressions, where we regress the most commonly used
manager-based CTA indices against commonly used asset-style based hedge
fund benchmarks. We consider the period from January 2000 through
January 2012, for which data for all variables is available.

[Table 7 about here.]

Consistent with our earlier findings, Fung and Hsieh’ PTFS explain
up to 30% of the variation in the manager indices. The 10-factor model,
which considers other hedge fund asset-based style factors in addition
to the PTFS, performs marginally better, although it still only accounts
for 20% to 35% of the variation in CTAs’ returns. Turning to the SG
Trend Indicator, an industry benchmark that has gained some traction
among practitioners in the CTA industry, we find that this indicator per-
forms surprisingly well over the sample period considered. Moskowitz,
Ooi, and Pedersen (2012) their TSMOM factor also performs consistently
across the CTA benchmarks and produces R2s of around 45%, slightly
lower than that of the Trend Indicator. The three-factor model of Baltas
and Kosowski (2013) yields comparable results, with adjusted R?s rang-
ing from 40% to 50%, in line with the authors’ findings. The adaptive
TSMOM strategy, however, performs better across the board.

12We thank an anonymous referee for pointing out this additional analysis.
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Next, we also perform 60-month rolling regressions to analyze poten-
tial time-variation in the explanatory power of the different asset-based
style factors. The explanatory power for the different models vis-a-vis the
BarclayHedge index (ERW) is reported in Figure 3.

[Figure 3 about here.]

Two points are worth noting. First, the explanatory power of Fung
and Hsieh’s 8-factor model that incorporates the all PTFS factors has im-
proved somewhat the last few years, suggesting that CTAs have behaved
more like other hedge fund categories in recent years. Two, the ATSMOM
factor mimics CTAs’ returns more closely in the second half of the sample
period.

These results, while tentative, leave unanswered the question of sta-
tistical significance. To determine whether the observed increase of our
proposed factor in capturing CTAs’ returns is meaningful, we compare the
adaptive time-series momentum strategy to the model proposed by Bal-
tas and Kosowski (2013).'% To this end, we first estimate the incremental
value added from using the adaptive momentum strategy by calculating
the residuals from a regression that regresses the adaptive time series mo-
mentum strategy against the Futures-based Trend-following Benchmark
(FTB) Strategies. For comparison purposes, we scale all the regressors
including the residuals to 10%. We then rerun the specification of Baltas
and Kosowski, including the obtained residuals. If the coefficient on the
residuals is statistically significant, then this confirms that our proposed
factors adds value over and above the FTB. The results are reported in
panel B of table 5.7.

Not only do we find that the coefficient is significant at conventional
levels, and leads to a meaningful increase in the explanatory power of
the models (i.e. a 15 to 20 percentage points increase compared to the
initially reported adjusted R-squared, see Panel A), we also observe that
the relationship is economically significant. In particular, scaled to the
same volatility, we find that the coefficient on the residuals is comparable
in magnitude to Baltas and Kosowski’s monthly and weekly factor.

13We refrain from using an incremental F-test because of potential multicollinearity
issues. Table 5.5 indicates that our proposed factor and the average of the FTB exhibit
a 0.8 pairwise Pearson correlation.
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5.5.4 Decomposing Adaptive Time Series Momentum

Our approach uses TSMOM portfolios with lookback horizons from 10
days to 260 days as the building blocks, with the adaptive TSMOM strat-
egy trading the net position. We can look at these 251 portfolios as
separate variables, jointly describing trend-following performance. In an
attempt to better understand CTAs’ returns, we try to decompose the
proposed strategy’s returns into its constituent (significant) factors. The
question we wish to evaluate here is whether a single factor, which we
call the adaptive TSMOM strategy and which is a simple average of the
TSMOM strategy portfolios, is enough to fully describe time series mo-
mentum strategies in general. The evidence in Greyserman and Kaminski
(2014) suggests that there may be other factors beyond ATSMOM driving
CTA returns.

One way to address this empirical question is to employ a principal
component analysis (PCA) to the constituting TSMOM portfolios. To
analyze the statistical significance of the different principal components
in time series momentum’s returns, we draw 10,000 bootstrapped samples
(see Peres-Neto, Jackson, and Somers, 2003) to calculate p-values for the
estimated eigenvalues. The eigenvalues are compared to both the broken-
stick and Marcenko and Pastur distribution (see e.g., Siiss, 2012).

We find that, at the 90% confidence level, both distributions indi-
cate that the first three principal components, corresponding to the three
largest eigenvalues, are significant. At the 95% level of significance, the
Marcenko-Pastur critical values still point towards three significant com-
ponents. The broken-stick model, however, suggests that only the first two
PCs are significant. Regressing the CTA manager-based indices against
the first three PCs, we find that only the first two are significant.

In Figure 4, we plot the loadings of the first two principal components
of the 251 horizon portfolios and the corresponding 95% bootstrapped
confidence bands applying the bootstrap procedure suggested by Peres-
Neto, Jackson, and Somers (2003). The first principal component (PC1)
is similar to an equal-weighted portfolio of horizon portfolios, which is
consistent with the definition of the adaptive TSMOM strategy. Indeed,
the first PC shows a correlation of 0.99 with the strategy’s net returns.'*

14

ATSMOM, by design, assigns an equal weight to each TSMOM strategy with a
lookback window between 10 and 260 days. This implies that there is a significant
amount of overlap in the lookback windows. For example, the 10-day window is also
part of the 11-day, the 12-day, up to the 260-day window (though it becomes increas-
ingly less important in determining the trend). To generalise, any N-day window is
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[Figure 4 about here.]

The second principal component (PC2), however, does not load uni-
formly on the different constituent portfolios. Instead, Figure 4 indicates
that PC 2 is equivalent to a strategy that buys shorter horizon (strategies
that react fast to changes in trends) and sells longer horizon momentum
strategies (strategies that react slowly to changes in trends). It can there-
fore be interpreted as a “speed factor”, referring to the trading speed of the
TSMOM strategies. The factor is close to the opposite of the speed factor
in Greyserman and Kaminski (2014), which buys longer (slower) and sells
shorter-horizon (faster) momentum strategies. Nevertheless, without loss
of generality, we take the negative of PC 2 to get a speed factor similar
in Greyserman and Kaminski (2014). Principal components are indiffer-
ent to scaling since they are extracted in a way to show zero pairwise
correlation.

We know that longer-term momentum strategies outperform their shorter-
term counterparts. At the same time, however, longer-term strategies also
generate lower skewness (see Table 5.4). The positive average return of
the speed factor may thus be a compensation for the lower skewness of
longer-term strategies. In that sense, the speed factor can be interpreted
as a risk factor. The reasoning that the lower skewness is compensated
by the speed factor is related to the arguments provided by Greyserman
and Kaminski (2014). They argue that the speed factor is a reward for
higher loss tolerance of longer-term momentum strategies.

In Figure 5 we plot the Sharpe ratio for a portfolio that combines
ATSMOM with the speed factor, net of transaction costs, as a function of
the weight of the speed factor. If the speed factor is scaled to the volatility
of the adaptive TSMOM strategy then, through diversification and lower
trading costs, the factor contributes positively to the overall performance
if its weight is capped at 20% (see Figure 5). Diversification follows from
the fact that, by construction, the speed factor has a correlation of zero
with the adaptive TSMOM strategy (although the sample correlation may
deviate from zero). Thus, calculating the net returns of the speed factor,
we assume that it has a (risk) weight equal to 20% of the overall adaptive
strategy.

part of all longer-term windows. For this reason, the short-term windows are generally
more "over-weight" in the overall strategy. This becomes obvious in Figure 4, where
PC1 and PC2 load collectively more in the shorter-term signals. These dynamics may
explain the large significance of the first two eigenvalues. We thank an anonymous
referee for this valuable insight.
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[Figure 5 about here.]

We note that, although the ATSMOM strategy is a tradable momen-
tum trading program, PC2 is not yet a tradable factor. This is because
PC2 is not net of transaction costs and its composition relies on load-
ings that are estimated in-sample. Without accounting for real trading
conditions, the performance measurement vis-a-vis this factor may be mis-
leading. Therefore, we construct a tradable factor which we henceforth
refer to as the speed factor. The weights of the horizon portfolios in the
speed factor at any point in time are proportional to the loadings esti-
mated over the entire past history up to the penultimate day, to avoid a
look-ahead bias. The initial training period is one year.

It is unlikely that a CTA will trade a strategy similar to the speed
factor on a stand-alone basis or separately from a more general TSMOM
strategy. It may instead be the case that the speed factor is used as an
overlay to complement a more general trend-following strategy, and that
only the net positions are traded. From this perspective, only the addi-
tional trading costs related to the speed factor need to deducted. In what
follows, we discuss the speed factor’s performance from this perspective.

To further analyze the newly introduced speed factor, we regress the
factor against existing risk factors in Table 5.8.

[Table 8 about here.]

As expected, we find that the speed factor is unrelated to the adaptive
TSMOM strategy. At the same time, however, it appears to be related to
BK’s factors, the PFTS factors, the Carhart cross-sectional momentum
factor, and the Stambaugh-Pastor liquidity factor. The positive associa-
tion with the liquidity factor may be surprising at first sight, especially in
light of the earlier finding that the adaptive TSMOM strategy is unrelated
to liquidity risk. The speed factor, however, invests in longer-term (slower-
to-react) momentum and sells shorter-term (faster-to-react) momentum
strategies and can thus be expected to be more exposed to liquidity risk
as longer-term systems accommodate slower to a situation when liquid-
ity dries up. On account that the speed factor is an auxiliary factor, we
calculate descriptive statistics for the speed factor’s and the combined
portfolio’s returns net of transaction costs in Table 5.9.

[Table 9 about here.]

The speed factor itself underperforms the adaptive TSMOM strategy.
Because of its complementary nature, however, stand-alone performance
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is not that meaningful. We therefore focus on the statistics with regard
to the portfolio that allocates 80% to the adaptive TSMOM strategy and
20% to the speed factor. Combining the speed factor with the baseline
ATSMOM strategy, we find some improvement for a number of key per-
formance measures compared to the standard adaptive TSMOM strategy.
We can conclude that the speed factor adds some value from a portfolio
management point of view.

5.5.6 The Speed Factor, Asset Class-based Factors
and CTA Performance

With the introduction of the speed factor, we repeat the previous analy-
sis where we regress the various manager-based indices against the newly
introduced factors. We also extend the analysis by considering asset-class
specific factors for commodity, equity index, fixed income, and foreign ex-
change futures. The asset class-based factors are scaled to 10% volatility.
The results can be found in Table 5.10.

[Table 10 about here.]

As we have already discussed in the previous section, the ATSMOM
strategy is able to explain a substantial part of the variation in Managed
Futures funds’ returns (Table 5.10, Panel A) indicating no abnormal re-
turns among the CTA indices. This suggests that the ATSMOM strategy
captures CTAs’ trading behavior fairly accurately.

Extending the model with the speed factor increases the fit of most of
the regressions, with the exception of the SG indices (Table 5.10, Panel
B). The intercepts of the regressions have also increased, but remain sta-
tistically insignificant in all but one case. The ERW index generates a
significant alpha of 1.69% p.a.

In Panel C of Table 5.10, we report the results for the asset class-
based adaptive TSMOM strategies. Applying asset class-based adap-
tive TSMOM benchmarks has two apparent advantages over a diversified
adaptive TSMOM strategy. First, the asset class-based benchmarks im-
prove the explanatory power five percentage points on average. Second,
asset class benchmarks allow for a style analysis. Since we have scaled
the asset class-based factors to 10% volatility p.a., we can compare the
loadings directly. Looking at Table 5.10, Panel C and Panel D, we find
that CTAs allocate most to fixed income futures and least to FX and
commodity futures. However, the weight of each asset class tends to de-
pend on fund size; large capitalization indices, most of all, the BTOP50
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and the AUM-weighted Barclay systematic TF invest more in more liquid
markets, i.e., fixed income and less in commodities. Small capitalization
managers, gauged by the Barclay CTA and equal risk-weighted Barclay
systematic TF indices, invest more evenly across asset classes.
Employing the asset-class based ATSMOM factors and the speed fac-
tor, we turn to individual CTAs. In particular, we apply the model to all
the individual funds included in the BarclayHedge sample that have at
least a one-year track record after inclusion in the database (see Section
5.3). We note that dropping funds that stop reporting before turning two
years (one-year of track record in the database in addition to the earlier
correction for backfill bias) induces some survivorship bias. Table 5.11 re-
ports the mean and median of the parameter estimates for 335 funds that
have produced jointly significant betas at the 10% level of significance.

[Table 11 about here.]

On average, our model is able to explain 40% of the variation in in-
dividual CTAs’ returns. The average (median) alpha is positive at 0.29%
(0.82%) p.a., with 16% of the fund alphas significantly positive and 6%
significantly negative. For the funds for which we obtain a significant al-
pha, we observe considerable variation. Funds with significantly positive
alphas generate mean (median) alphas of 4.77% (3.91%) p.a. Funds with
significantly negative alphas underperform the adaptive TSMOM strate-
gies by an average (median) of 9.55% (6.56%) p.a.

Interestingly, the Fixed Income adaptive TSMOM factor is significant
in 70% of the funds. Thus, CTAs tend to be exposed to fixed income most
frequently and this result corroborates with the fact that manager-based
indices load most heavily on the Fixed Income factor. The commodity
sector is the second most important one, being significant in 64% of the
cases. The equity factor is significant in 53%, whereas the FX factor is
significant for 48% of the funds. The speed factor is also an important
driver of CTA returns being significant in half of the regressions.

Having obtained the alphas versus our proposed factors for the indi-
vidual CTAs, we continue to investigate the role of fund characteristics
in generating alpha. For this particular analysis, we regress the alpha for
each fund for every year on yearly fund characteristics that include lagged
alpha, fund size, fund age, a standard measure of fund flow, R2 and the
relative factor exposures of the performance regressions, the level of man-
agement and incentive fees, margin-to-equity (ME) ratio, and round turns
per million dollars per year.
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The alphas are estimated and therefore subject to measurement error.
If we do not correct for this, the measurement error will generate het-
eroscedasticity in the panel regression residuals and it may cause standard
significance tests to be invalid. To correct for potential heteroscedastic-
ity, we weight each observation by the reciprocal of the standard errors
of the performance regressions, as in Dahlquist, Engstrom, and Séderlind
(2000).

Table 5.12 reports the results controlling for time-fixed effects. In
column (1) we omit the margin-to-equity (ME) ratio and round turns per
million USD per year statistics, as they are only available for a subset of
CTAs. We run a specification that includes the ME ratio and round turns
per million in column (2) and (3) of Table 5.12 , respectively.

[Table 12 about here.]

The results in Table 5.12 suggest strong momentum in Managed Fu-
tures funds’ performance. CTAs that outperformed our benchmark port-
folios in the previous year tend to repeat that superior performance the
following year. Fund size appears to negatively affect risk-adjusted perfor-
mance. Somewhat surprising though, aging is positively related to better
alphas. However, for instance, the expected risk-adjusted performance of
a five year old CTA that has 1 billion USD under management is, ceteris
paribus, 1.7% p.a. less than that of a CTA that manages only 10 million
USD but it is only two years old indicating that interpreting one of the
variables alone can be misleading.

Contemporaneous fund flows do not affect risk-adjusted performance.
This suggests that capacity constraints are less an issue for CTAs. Adding
the R2s of the performance regressions, we test and reject the hypothesis
in Sun, Wang, and Zheng (2012) that hedge funds whose returns are less
explainable by risk factors bear more managerial skills. In contrast, funds
that engage in pure trend-following approaches tend to generate higher
risk-adjusted performance. Thus, alpha does not appear to derive from
being less mainstream, but from other sources. This may include superior
risk management, better trade execution, and lower explicit transaction
costs.

The factor weights are simply calculated from absolute loadings in the
individual performance regressions. All else equal, we find that higher
equity momentum exposure is likely to result in higher risk-adjusted per-
formance. In contrast, funds with higher allocations to Fixed Income TF
strategies tend to generate lower alpha. Interestingly, CTAs that have
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higher exposure to the speed factor significantly outperform those who
have less exposure. The speed factor exposure is likely to be a proxy for
the level of sophistication of the manager, since our results suggest that
there is some benefit from allocating to the speed factor in terms of di-
versification and lower transaction costs. All in all, asset exposure, i.e.,
style is partly accountable for superior risk-adjusted performance.

Higher margin usage over capital invested (ME ratio) appears to be
a sign of better performance, most probably through economies of scale.
This result suggests that higher risk-taking does not, per se, imply inferior
risk management and thus poorer performance. Finally, more trading in
terms of rounds per million USD per year does not affect risk-adjusted
performance.

Only a small part of the cross-sectional variation in estimated alphas
is attributable to fund characteristics such as past performance, fund age,
fund size, fees, and style. We conclude that the alphas obtained vis-a-
vis our new risk factors can, to some extent, be interpreted as capturing
managerial skill.

5.6 Conclusion

In this paper we propose a time series momentum strategy that changes
the exposure to futures markets more dynamically by aggregating time se-
ries momentum signals over a wide range of horizons. This way, the model
increases the allocation to the markets where trends are more well-behaved
and decreases exposure to the markets where trends are reversing. We
find that our approach better explains Managed Futures funds’ reported
returns. As such, our approach can aid practitioners in benchmarking
and manager selection. We also find that a subset of funds continues to
exhibit positive alpha vis-a-vis our new risk factors. Moreover, the ab-
normal returns of these funds can only be partly explained by observable
fund characteristics and thus appear indicative of skill.

Importantly, we document strong momentum in CTA risk-adjusted
performance, as stellar performance in one year tends to repeat in the
subsequent year, and find evidence that fund size is negatively, whereas
fund age is positively related to risk-adjusted performance. Fund style,
i.e., asset class exposure and the applied trading strategy, also contributes
to CTA alphas. Contemporaneous fund flows, in contrast, do not affect
risk-adjusted performance, suggesting capacity constraints are less an is-
sue for CTAs. Higher management and performance fees do not signal
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prospect for better performance.
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Table 5.1: Example Aggregating Trend-following Signals

Security A Security B T A Tt B
t—3 90 90
t—2 130 83 44.44%  -8.28%
t—1 140 120 7.69% 45.37%
t 125 125 -10.71%  4.17%
Signal Signal oA oB
Sign(t — 1,t 1 T 28.08%  28.08%
Sign(t —2,t -1 1
Sign(t —3,t 1 1
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Table 5.2: Summary Statistics Futures

Start End Cur (%) (%) Skew. Kurt MDD (%) SR
Mexican Peso 04-95 09-15 USD 4.82 10.52 20.97 6.73 -31.20 0.45
Swiss Franc 01-90 09-15 USD 1.11 11.24 0.10 3.92 -49.41 0.10
British Pound 01-90 09-15 USD 1.49 9.19 .0.60 5.41 -29.41 0.16
Canadian Dollar 01-90 09-15 UsD 0.40 7.87 .0.34 6.28 -28.21 0.05
Japanese Yen 01-90 09-15 USD -1.01 10.89 0.60 6.03 -61.65 -0.09
Australian Dollar 01-90 09-15 USD 2.57 11.52 _0.33 4.75 -41.30 0.22
US Dollar Index 01-90 09-15 UsD -0.71 8.53 0.36 3.78 -44.33 -0.08
Euro FX 05-98 09-15 USD 0.27 10.37 _0.03 3.82 -32.35 0.03
SA Rand 05-97 09-15 USD 1.82 16.42 0.18 3.73 -46.89 0.11
Brazilian Real 11-95 09-15 USD 4.44 18.42 _1.47 13.38 -53.45 0.24
USD/SEK 05-00 09-15 SEK 0.06 11.85 0.17 3.42 -45.53 0.01
USD/NOK 05-00 09-15 NOK -0.86 11.78 0.49 4.30 -50.80 -0.07
NZ Dollar 05-97 09-15 USD 3.12 13.36 .0.16 4.30 -41.34 0.23
AUD/NZD 05-99 09-15 NZD -0.74 7.74 0.02 2.79 -28.88 -0.10
AUD/Japan Yen 05-02 09-15 JPY 7.35 15.11 _0.88 6.24 -42.61 0.47
Euro FX/ Yen 01-99 09-15 JPY 2.88 12.49 .0.55 5.12 -40.58 0.23
EUR/Nok 09-11 09-15 NOK 3.55 6.80 0.11 2.46 -8.55 0.52
EUR/SEK 06-11 09-15 SEK -0.31 4.68 _0.81 4.05 -11.34 -0.07
EUR/GBP 01-99 09-15 GBP -0.34 8.16 1.63 12.32 -27.73 -0.04
EUR/CHF 01-99 09-15 CHF -0.88 6.58 -2.60 19.03 -34.66 -0.14
CAC-40 Index 01-90 09-15 EUR 4.59 19.29 _0.34 3.20 -62.89 0.23
Nikkei 225 09-90 09-15 USD 0.42 21.60 0.11 3.37 -77.47 0.02
Russell 2000 02-93 09-15 USsD 7.88 19.12 .0.49 4.19 -53.95 0.40
S&P Midcap 400 02-92 09-15 USD 9.40 16.61 .0.66 5.30 -52.79 0.54
Hang Seng 01-90 09-15 HKD 12.24 26.13 0.25 5.34 -58.90 0.44
DAX 11-90 09-15 EUR 7.12 20.74 .0.51 4.88 -71.72 0.33
S&P 500 01-90 09-15 UsD 6.67 14.57 .0.62 4.26 -58.65 0.45
Topix Index 04-90 09-15 JPY 0.21 19.93 0.17 4.07 -73.13 0.01
FTSE 100 Index 01-90 09-15 GBP 3.44 14.52 -0.40 3.45 -52.82 0.23
Swiss Market 11-90 09-15 CHF 9.15 15.80 .0.59 4.44 -52.65 0.56
Ibex 35 Index 04-92 09-15 EUR 7.87 21.77 _0.22 3.62 -59.23 0.35
MIB 30 Stock 11-94 09-15 EUR 4.61 22.50 0.15 3.66 -68.88 0.20
Nasdaq 100 04-96 09-15 USD 11.18 26.73 _0.27 4.09 -83.03 0.40
MSCI Taiwan 01-97 09-15 USD 5.54 26.56 0.13 3.85 -64.71 0.20
DJ Industrial Avg 10-97 09-15 USD 5.01 14.88 _0.63 4.31 -49.75 0.33
KOSPI 200 Index 01-98 09-15 KRW 10.43 28.99 0.43 4.07 -58.55 0.34
DoJStoxx 50 06-98 09-15 EUR 1.45 16.66 _0.52 3.82 -66.68 0.09
DJ Euro Stoxx 06-98 09-15 EUR 2.40 19.68 _0.43 3.80 -64.00 0.12
S&P Canada 60 09-99 09-15 CAD 5.24 14.93 _0.71 4.66 -51.85 0.34
CBOE VIX 03-04 09-15 UsD -30.93 62.44 1.95 9.15 -99.89 _0.59
OMX 10-92 09-15 SEK 11.87 21.71 0.04 4.72 -72.40 0.52
US MSCI EAFE 09-10 09-15 USD 4.81 15.64 10.36 3.16 -24.49 0.30
Amsterdam EOE 10-92 09-15 EUR 7.70 19.62 _0.74 4.81 -68.87 0.38
NYSE Comp 01-90 09-11 USD 5.04 14.70 _0.81 5.11 -57.40 0.34
All Ordinary SPI 01-90 09-01 AUD 2.93 14.26 -0.31 2.83 -28.56 0.20
SPI 200 05-00 09-15 AUD 3.72 13.25 .0.75 3.66 -51.85 0.28
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Table 5.2: Summary Statistics Futures (Cont.)

Start End Cur n(%) (%) Skew. Kurt. MDD (%) SR
Treasury Bonds 01-90 09-15 USD 5.46 9.31 0.10 5.16 -15.83 0.57
Canada 10Y Gov 01-90 09-15 CAD 4.31 6.00 _0.03 3.30 -14.80 0.71
3M-Eurodollar 01-90 09-15 UsD 0.19 0.22 0.68 5.77 -0.68 0.87
10-YR Treasury 01-90 09-15 USD 4.47 5.94 0.13 4.73 -11.69 0.74
Japan 10Y Gov 04-90 09-15 JPY 3.76 4.18 _0.58 7.04 -9.59 0.89
Long Gilt 01-90 09-15 GBP 3.64 6.81 0.00 3.44 -15.65 0.53
US 2-YR Treasury 06-90 09-15 UsD 1.60 1.64 0.26 3.56 -3.82 0.97
US 10 YR Bonds 01-90 09-15 AUD 4.64 7.87 _0.01 3.26 -23.59 0.58
US 90-Day Bill 01-90 09-15 AUD 0.13 0.25 0.43 6.61 -0.61 0.52
US 3 Year Bonds 01-90 09-15 AUD 2.19 3.41 -0.01 5.05 -8.75 0.64
US 5-YR Treasury 01-90 09-15 USD 3.23 4.02 0.10 3.91 -8.52 0.79
Muni Note Index 01-90 03-06 USD 5.23 6.79 _0.52 3.02 -16.66 0.76
Euro Buxl 10-98 09-15 EUR 6.19 10.73 0.76 5.05 -17.15 0.56
Geerman Bund 10-98 09-15 EUR 4.06 5.27 0.11 2.85 -9.93 0.76
German Bobl 10-98 09-15 EUR 2.60 3.17 _0.02 2.75 -7.42 0.81
German Schatz 10-98 09-15 EUR 0.90 1.31 0.16 4.00 -4.01 0.69
3Y Korean Bond 09-99 09-15 KRW 2.72 3.11 0.39 5.30 -4.86 0.86
PIBOR 01-90 06-99 EUR -0.01 0.35 _1.47 10.81 -1.56 -0.02
3M Euribor 09-98 09-15 EUR 0.08 0.15 2.38 21.61 -0.52 0.53
Gas Oil 01-90 09-15 UsD 11.13 32.05 0.48 5.15 -73.39 0.33
Nat Gas 04-90 09-15 USD -11.63 48.05 0.57 4.63 -99.81 -0.26
Brent Crude 01-90 09-15 USD 12.10 33.39 0.60 6.76 -75.63 0.34
Heating Oil 06-06 09-15 USsD -4.13 28.23 -0.19 3.94 -70.00 -0.15
Light Crude 01-90 09-15 USD 5.94 33.65 0.44 5.26 -87.15 0.17
Unleaded Gas 01-90 12-06 USD 18.05 36.80 0.84 5.93 -63.18 0.46
Rbob Electronic 10-05 09-15 USsD 4.73 33.08 -0.56 5.60 -70.44 0.14
Copper 01-90 09-15 USD 8.19 25.72 -0.03 5.71 -63.90 0.31
Platinum 01-90 09-15 USD 4.40 20.23 _0.55 6.52 -62.28 0.21
Silver 01-90 09-15 USD 4.44 28.45 0.12 3.87 -71.55 0.15
Gold 01-90 09-15 UsD 2.05 15.77 0.18 4.25 -61.55 0.13
Palladium 01-90 09-15 USD 10.94 32.68 0.47 6.68 -86.15 0.32
Live Cattle 01-90 09-15 USD 0.43 13.15 20.69 5.81 -45.11 0.03
Live Hogs 01-90 09-15 UsD -5.02 24.49 -0.08 3.63 -94.06 -0.21
Pork Bellies 01-90 07-11 USD 6.58 38.09 0.84 4.61 -80.00 0.17
Feeder Cattle 01-90 09-15 USD 3.16 13.59 _0.47 5.24 -38.61 0.23
Corn 01-90 09-15 USsD -2.08 26.16 0.32 3.96 -84.50 -0.08
Oat 01-90 09-15 USD -0.09 29.49 0.65 4.66 -88.85 0.00
Soybeans 01-90 09-15 USD 5.67 23.49 _0.01 3.68 -50.50 0.24
Soybean Meal 01-90 09-15 USD 12.46 25.81 0.46 4.24 -43.72 0.46
Soybean Oil 01-90 09-15 UsD -0.48 24.34 0.13 4.64 -72.25 -0.02
Wheat W 01-90 09-15 USD -4.88 27.69 0.46 4.81 -94.44 -0.18
Wheat 01-90 09-15 USD 0.03 27.21 0.51 4.65 -82.15 0.00
Cocoa 01-90 09-15 UsD 0.34 29.02 0.49 4.17 -90.23 0.01
Cotton No. 2 01-90 09-15 USD -1.83 26.19 0.26 3.87 -93.14 -0.07
Coffee 01-90 09-15 USD -1.28 37.88 1.21 6.19 -94.21 -0.03
Orange Juice 01-90 09-15 USsD -3.98 30.04 0.48 4.35 -91.99 -0.14
Sugar No. 11 01-90 09-15 USD 2.59 30.71 0.26 3.59 -72.49 0.08
Lumber 01-90 09-15 USD -6.22 31.10 0.45 4.16 -97.52 -0.21
Nickel 01-90 09-15 USsD 7.79 33.17 0.24 3.52 -79.39 0.23
Aluminum 10-92 09-15 USD 3.55 18.46 .0.34 7.23 -60.47 0.19
Lead 01-90 09-15 USD 7.23 26.52 _0.01 4.34 -72.70 0.26
Zinc 01-90 09-15 USD 4.21 24.56 .0.03 4.84 -74.94 0.17
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Table 5.6: Adaptive TSMOM strategy against existing risk factors

Panel A: Gross of Transaction Costs

(1) @) 3) (4) (5) (6)
MKT -0.1344% -0.0605 -0.0565 -0.0691
(0.070) (0.069) (0.066) (0.063)
SMB 0.0218 -0.0083 -0.0045 0.0589
(0.054) (0.055) (0.055) (0.048)
HML -0.0228 0.0473 0.0350
(0.070) (0.067) (0.070)
MOM 0.1943%**  0.1964***
(0.042) (0.043)
Liquidity factor -0.0865
(0.056)
PTFSBD 0.0092 0.0010
(0.015) (0.014)
PTFSFX 0.0334** 0.0288%*
(0.014) (0.013)
PTFSCOM 0.0455%**  0.0441%**
(0.015) (0.015)
PTFSIR 0.0007 0.0008
(0.012) (0.012)
PTFSSTK 0.0427** 0.0408**
(0.018) (0.018)
EM 0.0495
(0.043)
Bond Factor -0.0157
(0.012)
Credit Spread 1.2142
(1.460)
Global VAL 0.3489**
(0.137)
Global MOM 0.8587*%*
(0.123)
Constant 0.0104*** 0.0089*** 0.0094*** 0.0121%** 0.0118*** 0.0060***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
R-squared 0.033 0.118 0.129 0.195 0.237 0.239
Panel B: Net of Transaction Costs
1) (2) (3) (4) (5) (6)
Constant 0.0091*** 0.0076*** 0.0081*** 0.0108*** 0.0105%** 0.0047***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
R-squared 0.032 0.114 0.125 0.193 0.236 0.236

Adaptive TSMOM strategy’s returns are regressed against existing risk factors. Panel A reports the
results for strategy gross of transaction costs. Panel B reports the alpha for the same regressions
using the net-of-transaction costs strategy returns. The risk factors for the Fama and French (1993)
and Carhart (1997) models have been downloaded from Kenneth French’s website. The Pastor
and Stambaugh (2003) traded liquidity factor has been obtained from Lubos Pastor’s website. The
Fung and Hsieh (2001) factors have been taken from David A. Hsieh’s Hedge Fund Data Library.

The Global value and Global Momentum Factor have been taken from AQR’s website.

* k%
s >

and *** denote significance at the 90, 95, and 99% level, respectively. Robust standard errors in

parentheses.
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Table 5.8: Speed Factor Regressions Against Existing Risk Factors.
(1 (2) (3) (4) (5) (6) ()
MKT 0.0370
(0.068)
EM -0.0328
(0.052
SMB 0.065
(0.062)
PTFSBD -0.0581¥**  _0,0520%**
(0.013) (0.012)
PTFSFX -0.0135 -0.0111
(0.013) (0.013)
PTFSCOM -0.0295%%  -0.0277%*
(0.013) (0.013)
PTFSIR -0.0170%*%*  _0.0165%**
(0.006) (0.006)
PTFSSTK -0.0B57¥**  _0,0505%**
(0.015) (0.015)
BOND -0.0145
(0.009)
CREDIT 0.5737
(1.010)
BE 0.5603***
(0.048)
BKw -0.5779%**
(0.052)
BKp -0.1927%**
(0.056)
LIQ 0.1715%**
(0.058)
ATSMOM -0.0310
(0.092)
MOP 0.3122%**
(0.083)
GVAL 0.2889*
(0.164)
GMOM 0.6829%**
(0.168)
Constant 0.0021  -0.0020 0.0018 -0.0020 -0.0012 0.0004  -0.0012
(0.002)  (0.002) (0.001) (0.002) (0.002) (0.002)  (0.002)
Observations 215 215 215 215 215 215 215
R-squared 0.001 0.122 0.637 0.296 0.268 0.050 0.173

The tradeable speed factor returns, net of transaction costs, are regressed against existing risk

factors.

The adaptive TSMOM returns are net of transaction costs.

The risk factors for the

Fama and French (1993) and Carhart (1997) models have been downloaded from Kenneth French’s
website. The Pastor and Stambaugh (2003) traded liquidity factor from January 1994 to December
2014 has been obtained from Lubos Pastor’s website. The Fung and Hsieh (2001) factors have been
taken from David A. Hsieh’s Hedge Fund Data Library. *, ** and *** asterisks denote significance
at 90, 95, and 99% level, respectively. Robust standard errors in parentheses.

152



Table 5.9: Summary Statistics for the Speed Factor

ATSMOM (Net of  Speed Factor (Net  Portfolio 80/20 (net

TCs) of TCs) of TCs)
Min (%) 5.91 13.92 6.17
Max (%) 15.22 8.89 13.17
Ann. Mean (%) 9.62 3.32 10.10
Ann. Median (%) 7.73 7.83 11.58
Ann. St. Dev. (%) 10.00 10.00 10.00
Skewness 0.71 -0.97 0.37
Kurtosis 5.61 5.74 4.21
Sharpe 0.96 0.33 1.01
Sortino 1.93 0.39 1.99
Max DD (%) -14.13 -34.27 -13.08
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Table 5.10: Asset pricing regressions on manager-based indices

Barclay BTOP 50 SG CTA SG Trend BH Syst BH Syst
Trend Trend
(AUM) (ERW)
Panel A
ATSMOM 0.4638%%* 0.6541%%* 0.6878%F* 0.6842%%* 0.8258%%* 0.4398%F%
(0.041) (0.051) (0.065) (0.072) (0.074) (0.032)
Constant 0.0001 -0.0024** -0.0018 -0.0021* 0.0002 0.0011
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.483 0.503 0.611 0.605 0.565 0.617
Panel B
ATSMOM 0.4518F** 0.6332%F%F 0.688TFF% 0.6840%F* 0.8200%%F 0.4361FF%
(0.047) (0.053) (0.064) (0.071) (0.080) (0.036)
Speed Factor -0.1473%** -0.1219%** 0.0056 -0.0031 -0.1873%** -0.1168***
(0.037) (0.044) (0.052) (0.049) (0.062) (0.027)
Constant 0.0007 -0.0018 -0.0019 -0.0021* 0.0008 0.0014%*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.528 0.530 0.611 0.605 0.594 0.660
Panel C
ATSMOMco 0.5718%F* 0.5444%F%* 0.6454F% 0.6478%FFF 0.6947F%* 0.5088%F*
(0.105) (0.111) (0.142) (0.143) (0.147) (0.069
ATSMOMEq 0.2316%** 0.3742%** 0.4771*%* 0.5908%** 0.6726%** 0.2872%**
(0.066) (0.081) (0.093) (0.090) (0.093) (0.045)
ATSMOMp; 0.6985%** 1.1444%* 1.2303*** 1.2746%** 1.5401%** 0.7005***
(0.088) (0.125) (0.152) (0.154) (0.149) (0.070)
ATSMOMp x 0.4982%* 0.7636** 0.6464** 0.4397 0.6398* 0.3963**
(0.214) (0.307) (0.297) (0.273) (0.349) (0.173)
Constant -0.0001 -0.0027%* -0.0021** -0.0023** -0.0000 0.0009
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.529 0.571 0.676 0.667 0.632 0.662
Panel D
ATSMOMgcoMm 0.5617FFF 0.5490%%F 0.6454%F% 0.6479%F* 0.6837FFF 0.5016%F%
(0.109) (0.113) (0.142) (0.144) (0.151) (0.072)
ATSMOMEgqg 0.2544*** 0.3936%** 0.4770*** 0.5898*** 0.6848%** 0.2952***
(0.068) (0.081) (0.091) (0.089) (0.095) (0.047)
ATSMOMpr 0.6630%** 1.1086*** 1.2303%** 1.2743%** 1.4943%** 0.6705***
(0.090) (0.126) (0.152) (0.154) (0.140) (0.064)
ATSMOMpx 0.4739%* 0.7027** 0.6464%* 0.4394 0.6500%* 0.4030**
(0.215) (0.292) (0.298) (0.274) (0.360) (0.179)
Speed Factor -0.1370%** -0.1154%** -0.0008 -0.0074 -0.1617*** -0.1062%**
(0.036) (0.038) (0.046) (0.045) (0.056) (0.025)
Constant 0.0005 -0.0021%* -0.0021* -0.0023** 0.0005 0.0012%*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.564 0.591 0.676 0.667 0.653 0.697

This table shows the results of the asset pricing regressions against net returns (net of transaction
costs) of the adaptive TSMOM strategy, the adaptive TSMOM strategy and speed factor, the asset
class based adaptive TSMOM strategies, and the asset class based adaptive TSMOM strategy and
speed factor in Panel A, B, C, and D, respectively. The asset class-based factors are adjusted to 10%
annualized volatility. The dependent variables of the regressions are returns of various manager-
based indices which are net of transaction costs. *, ** and *** asterisks denote significance at 90,

95, and 99% level, respectively. Robust standard errors in parentheses.
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Table 5.12: Panel regressions on alphas

) )] @)
Alpha (t-1) 017 0.207" 02T
Log (FuM) S0.07%%  0.12%%* -0.15%%*
Age 0.10*** 0.09%** 0.09%**
Fund Flow 0.00 0.00 0.00
R? Perfor. Regr. 3.53%** 3.50%** 4.26%**
Com. Exp. -1.10 -0.31 -0.17
Eq. Exp. 3.21%k* g K% 2.68%%*
FI Exp. -1.47%* -1.46%* -1.31%
FX Exp. -1.11 -1.07 -0.15
Speed Exp. 3.5THRE 3 GORHRK 3.47%H
Mgmt. Fee -0.25 -0.34%* -0.29
Incent. Fee -0.09%**  -0.12%%* -0.16%%*
ME Ratio 0.11%** 0.13***
Round Turns / MUSD 0.00
No. of Obs. 2254 2007 1615
Adj. R? 0.30 0.33 0.37

This table shows the cross-sectional analysis of the estimated alphas for
335 individual CTAs. The round turns per million USD per year and
the margin-to-equity (ME ratio) statistics are not available for each CTA,
therefore, in column (2) and (3) we repeat the regressions for the subset
of funds for which data are available. The reported coeflicients rely on
a weighted least squares (WLS) panel regression that accounts for CTA
period specific fixed effects. The dependent variable which is the alpha
estimates from the performance regressions (see Table 5.11) is subjected
to measurement errors proportional to the standard errors of the perfor-
mance regressions. Therefore, in the estimation the weights are estimated
standard errors of the performance regressions. The standard errors are
clustered on both the specific manager and period. *, ** and *** as-
terisks denote significance at 90, 95, and 99% level, respectively. Robust
standard errors in parentheses.
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Figure 1: 3-Year Rolling Sharpe Ratio Of Rival Objective Benchmarks
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Figure 2: 3-Year Rolling Sharpe Ratios Of Manager Indices And The
Benchmarks
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Figure 3: 60-Month Rolling Window Regression BarclayHedge (ERW)
vs.CTA Benchmarks
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Figure 4: The Loadings Of The First Two Principal Components Of Hori-
zon Portfolios
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Figure 5: Portfolio performance as a function of speed factor’s weight
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