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NUMERICAL AND EXPERIMENTAL STUDY OF SECONDARY FLOW
FEATURES IN A GAS VORTEX UNIT
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Introduction Experimental Techniques

» Centrifugal field generated by azimuthal
injection of gas into a confined disc-shaped
static chamber.

» Gas only flow: potential applications such as
flame stabilization, clean combustion from
secondary flow features.

» Gas-solid flow: dense rotating fluidized bed with
high slip velocities suitable for fast reactions
such as biomass pyrolysis.

The Gas Vortex Unit
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CFD Simulations

Exhaust

—_—
~~o
~
~
~

Steady, incompressible flow.

3D, 40° section of GVU
(=2x10° cells) with periodic
BCs.

Turbulence modeling: RANS
Reynolds Stress model.

Boundary layer resolution:
Stress-omega formulation and
prism cell layers resolving
near wall regions (y*=1).

Pressure-velocity coupling:
PRESTO! Scheme.

Spatial resolution: Third
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OUTLET > Ne%ative gauge pressure near axis
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» Extended backflow region along the
exhaust.

» Suction of ambient gas from exhaust.
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Secondary Flow Features: Counterflow

Experimental velocities and streamlines

» Jet entrainment induces a
flow reversal. c L
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Eperimental CFD simulation
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Conclusions
» The bulk flow through the GVU is dominated by

the azimuthal velocity exhibiting free-swirl flow
in the disc part and solid body-like rotation near

» Experimental detection of

the central exhaust.

vortex core and stagnation
points.

» Tracers needed for PIV are
affected by strong centrifugal
forces justifying measurement

} » Radial jets appear near the two end-walls of the
unit due to the imbalance between the
centrifugal force and radial pressure gradient.

» Swirl decay due to exhaust wall friction

0

of counterflow:

» further pushed towards
circumferential wall,

» more compact,
than in the CFD simulations.

generates an adverse pressure gradient along the
exhaust line resulting in an extended backflow.

> Jet entrainment of the bulk gas in the disc part
of the unit causes a second flow reversal
resulting in the counterflow.
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Future Work

= Combination of kinetic models
with CFD code to study the
effect of the secondary flows in
processes such as combustion.

= Particulate flow CFD simulations

to study the effect of bed

formation on secondary flow

features.
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