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The Araceae plant family, commonly known as aroids, encompasses ca. 125 genera and over 3700 

species that are extraordinary diverse, with their attractive foliage being the most widely recognized 

feature as ornamentals, but others known as important staple food in the tropics where they originally 

reside. Many genera have been cultivated as ornamentals and are commercially among the important 

foliage plants used for interiorscaping. 

Xanthomonas axonopodis pv. dieffenbachiae (Xad) is known as the causal agent of bacterial blight on 

Araceae. It is the most destructive disease of ornamental aroid plants worldwide and is an ongoing 

threat to commercial production. It first emerged in The United States in 1939 and has since spread 

globally. Since its introduction in the Netherlands in 1997, probably mainly through the import of 

infected plant material including tissue culture plants of Anthurium spp., Xad has been a source of 

concern. Its systemic nature and long-term persistence in symptomless Anthurium made Xad difficult 

to intercept, and the fear of qualitative and quantitative losses is high. Moreover Xad was known to 

be heterogeneous genetically as well as in terms of virulence, which challenges they being one 

biological group of pathogens and their designation as a single pathovar. 

The PhD-study was initiated as part of the EU-FP7 project QBOL (‘Development of a new diagnostic 

tool using DNA barcoding to identify quarantine organisms in support of plant health’). In this QBOL 

project, ILVO (M. Maes) and UGent-Laboratory of Microbiology (P. De Vos) have been coordinator for 

the barcoding of the regulated plant bacterial pathogens. The objective was to develop a barcoding 

strategy to target bacteria from this quarantine list. Several Q-bacteria are described as species, but 

most as pathovars, which is a special purpose classification on the basis of a pathological feature. 

Moreover, in contrast to higher biota, there is no single gene in bacteria with the appropriate 

resolution level for barcode identification up to this pathovar level. More than one barcode region is 

needed, and a barcode decision scheme has been proposed based on core and accessory genes. This 

QBOL barcoding strategy for the bacteria is now a tool available on the Q-bank website (http://www.q-

bank.eu and http://www.q-bank.eu/Bacteria/DefaultInfo.aspx?Page=MolecularDS). 

The barcode decision scheme uses the following steps: 

• 16S rRNA gene sequencing is used as the first exploratory test in case there is no preliminary 

idea on the genus of bacterium that has been isolated from a plant commodity. 

• In the next decision step, one core gene locus is used to discriminate bacterial species within 

the genus. The result can eventually be confirmed with a second barcode region. 

• To further discriminate at the pathovar level, extra barcodes located in other core or accessory 

gene regions are being identified. 

The sequencing results revealed the heterogeneity within specific pathogens, as was the case for the 

Xanthomonas pathogens on aroids, which are up till now named as Xanthomonas axonopodis pv. 

http://www.q-bank.eu/
http://www.q-bank.eu/
http://www.q-bank.eu/Bacteria/DefaultInfo.aspx?Page=MolecularDS
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dieffenbachiae (Xad). Indeed, the first need was to revisit the taxonomy and the plant-associated 

specialization of these bacterial pathogens of high economic importance. 

The selection of Xad in this PhD research has been made taking into account the Q-relevance for the 

EU and the expected variability and complexity within the taxa. The heterogeneity of the pathogen 

genetically as well as in terms of virulence raised many questions which we tried to answer in this 

study. 

The first objective of this dissertation was to clarify the taxonomic position of strains identified as 

Xanthomonas axonopodis pv. dieffenbachiae. This led to the taxonomic revision of the X. axonopodis 

species complex, the allocation of the Xad strains into three different Xanthomonas species, and a 

better understanding of the relationships between strains belonging to these species. Clarification was 

also needed in support of the phytosanitary policy which recommends Xad for quarantine regulation. 

As a consequence, the second objective was to investigate whether the different taxonomic groups 

that we identified within Xad have a comparable pathogenic capacity on aroids and should therefore 

still be regarded as quarantine on aroids. This aspect has been studied by testing the pathogenic 

reactions in bio-assays on aroid plant genera and by whole genome sequencing, comparing an arsenal 

of pathogenicity-related genes between representative Xad strains. This led to conclusions on the 

diversity of the Xad strains regarding host range and aggressiveness, and can also be regarded as a 

contribution to bacterial phytopathology in general. 

This thesis starts with a general introduction (chapter 1), which contains i) a description of the biology, 

history, economic importance and cultivation of aroids, ii) a brief outline of the history and current 

taxonomy of the genus Xanthomonas, iii) an overview of the available scientific literature on Xad and 

bacterial blight. The next two chapters presents the study performed in the frame of the present PhD. 

In Chapter 2, the taxonomic relatedness between a collection of Xad strains and phylogenetically 

related Xanthomonas species and pathovars was investigated using MLSA, DDH, ANI calculation and 

biochemical analyses. Chapter 3 combines, research on the pathogenic abilities of Xad strains tested 

on Araceae plants from six different genera and the pathogenicity-related gene content of four of 

these Xad strains by means of whole genome sequence analysis. The aim was to evaluate whether the 

phylogenetic heterogeneity of Xad strains as concluded from Chapter 2 is also reflected in a pathogenic 

heterogeneity, leading to conclusions on the importance of the different taxa within Xad as pathogens 

of aroids, and with possible implications for regulation as quarantine pathogens. New pathovar names 

are indeed proposed for the groups that clearly exhibit pathogenicity on the aroids. 

Finally, the major findings of this work are summarized and the future research perspectives are 

discussed in chapter 4.
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Aroids are monocots that in our region and Europe in general are mostly known for their ornamental 

values as cut flowers, pot and landscape plants. Production of aroids occurs worldwide and is 

threatened by bacterial blight, which is caused by Xanthomonas axonopodis pv. dieffenbachiae. 

Because of its virulence and its broad host range within the Araceae family, Xanthomonas axonopodis 

pv. dieffenbachiae (Xad) is considered to be the most serious bacterial disease causing extensive crop 

losses in commercial foliage plant production. Thus it is a regulated pest in several countries and is 

included in the A2 list of the European and Mediterranean Plant Protection Organization (EPPO). For 

practical diagnosis, and plant health regulation, it is important that quarantine organisms can be 

unambiguously identified. Therefore, the aim of this study was to resolve the taxonomic and 

pathogenic identity of this aroid pathogen in order to avoid further confusion. 

Main objectives of this study were i) to clarify the taxonomic position of the diverse strains identified 

as Xad, ii) an attempt to resolve the complex taxonomic situation of X. axonopodis sensu Vauterin et 

al. (1995), and iii) to investigate whether the different taxonomic Xad groups have an important 

pathogenic capacity on aroids and should therefore be regarded as quarantine on aroids. 

The first study (Chapter 2) aimed at accurately assess the taxonomic position of this Xad pathogen. It 

led to the taxonomic revision of the X. axonopodis species complex and to a better understanding of 

the relationships between strains belonging to this and related species. We used MLSA on a broad 

collection of strains, and defined then a relevant subset of strains to be studied in DDH experiments, 

ANI calculations and biochemical analyses. By means of MLSA, the 109 strains were allocated into four 

phylogenetic groups, PG I to PG IV. These four groups belonged to four different species: X. axonopodis, 

X. citri, X. euvesicatoria and X. phaseoli. Interestingly, Xad strains belonged to X. citri, X. euvesicatoria 

and X. phaseoli but not to X. axonopodis. Besides the new taxonomic subdivision and classification of 

the Xad strains, several important taxonomic proposals were made within the Xanthomonas genus: 

reclassification of X. perforans and X. alfalfae as X. euvesicatoria, and reclassification of X. fuscans as 

X. citri. 

The second study (Chapter 3) focused on the pathogenic capacity of strains previously named as Xad 

associated with six aroid hosts. Two inoculation methods were used to evaluate the capability of 

eleven strains to cause either a local infection and/or further progression of the infection into the plant 

system. Several conclusions could be made based on these in planta tests. i) Xad strains belonging to 

X. phaseoli and X. citri are infective for the aroid species. ii) Xad strains originally isolated from 

Syngonium plants belong to X. phaseoli and have a host range restricted to its original host Syngonium. 

Therefore we proposed to classify them as the separate X. phaseoli pv. syngonii. iii) On the contrary, 

the Xad strains originally isolated from Philodendron are classified into X. euvesicatoria, but their 
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pathogenicity on the tested aroids is weak and doubtful and therefore we disregard them as specific 

pathogens of Araceae. Finally, iv) within the new taxonomic groups, the virulence of the different Xad 

strains varies to a certain extend. 

Furthermore, to improve the understanding about their different pathogenic capacity, we explored 

whole genome sequences for sets of pathogenicity-related genes present in four representative 

strains. Our findings revealed that also the X. euvesicatoria strain had the characteristics for being a 

plant pathogen, the majority of known virulence factors are present. Consequently, X. euvesicatoria 

strains may have another yet undefined host range and their pathogenicity is either not expressed or 

is repressed in aroid plants. 

In conclusion, this research showed that the previously reported phylogenetic heterogeneity of Xad 

strains (Chapter 2) was also reflected in a pathogenic heterogeneity and thus justifying the installation 

of three pathovars for the pathogens in aroids: X. phaseoli pv. dieffenbachiae comb. nov., X. phaseoli 

pv. syngonii comb. nov., and X. citri pv. aracearum comb. nov. In contrast, based on our study, the X. 

euvesicatoria strains isolated from Philodendron and formally also regarded as Xad strains do not 

represent “real pathogens” or quarantine organisms for aroids. At this time we consider them as 

under-studied plant pathogenic strains of unknown plant health related relevance. Further studies are 

needed to determine whether they should be designated as a separate pathovar of other hosts. 
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De araceeën of aronskelkfamilie zijn eenzaadlobbigen (monocotylen) die in onze regio en algemeen in 

Europa best gekend zijn om hun sierwaarde als snijbloemen en als pot- en tuinplanten. De productie 

van araceeën wordt wereldwijd bedreigd door een bladvlekkenziekte, veroorzaakt door Xanthomonas 

axonopodis pv. dieffenbachiae (Xad). Wegens zijn virulentie en breed gastheerbereik in de 

aronskelkfamilie, wordt Xad beschouwd als de meest ernstige bacteriële ziekte die grote verliezen 

veroorzaakt bij de commerciële productie van de decoratieve bladplanten. De pathogeen wordt 

daarom ook sterk gecontroleerd in meerdere landen en staat ook op de A2 lijst van de European and 

Mediterranean Plant Protection Organization (EPPO). Voor praktische diagnose-doeleinden en in het 

kader van de regulering is het belangrijk dat quarantaine-organismen ondubbelzinnig identificeerbaar 

zijn. Daarom was het doel van deze studie om de taxonomie en pathogene eigenschappen van deze 

pathogeen op araceeën op te helderen. 

De hoofddoelstellingen van deze studie waren i) de taxonomische plaatsing te verduidelijken van de 

diverse stammen die eerder als Xad geïdentificeerd werden, ii) te trachten de complexe taxonomie 

van X. axonopodis sensu Vauterin et al. (1995) op te helderen, en iii) te onderzoeken of de taxonomisch 

verschillende Xad groepen, zoals geïdentificeerd onder i), belangrijke en verschillende pathogeniciteit 

vertonen tegen araceeën en dus ook dienen te worden beschouwd als quarantaine organismen voor 

deze plantenfamilie. 

De eerste studie (Hoofdstuk 2) had tot doel de taxonomische plaats van Xad stammen te bepalen. Dit 

resulteerde in de taxonomische revisie van het X. axonopodis species complex en een beter inzicht in 

de verwantschappen tussen stammen van deze soort en naburige soorten. We gebruikten multilocus 

sequentie analyse (MLSA) op een brede verzameling van stammen en selecteerden daarna een 

relevante subset van stammen om in te sluiten bij DNA-DNA hybridizaties (DDH), ANI berekeningen en 

biochemische testen. Met MLSA werden 109 stammen in vier fylogenetische groepen ingedeeld, PG I 

tot PG IV. Deze vier groepen behoren tot vier verschillende soorten: X. axonopodis, X. citri, X. 

euvesicatoria and X. phaseoli. Opvallend was dat Xad stammen tot X. citri, X. euvesicatoria en X. 

phaseoli behoorden, maar niet tot X. axonopodis. Naast de nieuwe taxonomische indeling en 

classificering van de Xad stammen, werden enkele belangrijke taxonomische voorstellen gedaan in het 

genus Xanthomonas: reclassering van X. perforans en X. alfalfa als X. euvesicatoria, en reclassering van 

X. fuscans als X. citri. 

De tweede studie (Hoofdstuk 3) focuste op het pathogeen vermogen van Xad stammen die nu nieuw 

toegewezen zijn aan de drie Xanthomonas species op zes soorten van araceeën. Twee 

inoculatiemethoden werden gebruikt om de pathogeniciteit te evalueren van elf Xad stammen. 

Hiermee evalueerden we enerzijds lokale infectie van het blad en anderzijds een verdere progressie 
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van de infectie in de hele plant. Verschillende besluiten werden getrokken uit deze in planta testen. i) 

Xad stammen die behoren tot X. phaseoli en X. citri zijn pathogeen op araceeën. ii) Xad stammen 

oorspronkelijk van Syngonium planten afkomstig, behoren tot X. phaseoli, zijn dus ook pathogeen, 

maar met een waardplantbereik dat beperkt is tot de originele waardplant Syngonium. Daarom stelden 

we voor om ze te klasseren in de afzonderlijke pathovar, X. phaseoli pv. syngonii. iii) Daarentegen 

werden de Xad stammen oorspronkelijk afkomstig van Philodendron geklasseerd in X. euvesicatoria, 

en de pathogeniciteit van deze stammen op de geteste araceeën was zwak en twijfelachtig en daarom 

beschouwen we deze niet als specifieke pathogenen van araceeën. Ten slotte, iv) de virulentie van de 

diverse Xad stammen binnen de nieuwe taxonomische groepen vertoont een zekere variatie. 

Om een beter inzicht te bekomen in hun divers pathogeen vermogen, hebben we bovendien het 

voorkomen van groepen pathogeniciteitsgenen onderzocht in de volledige genoomsequenties van vier 

representatieve stammen. Onze resultaten toonden aan dat ook de X. euvesicatoria stam de 

kenmerken heeft van een plantpathogeen en de meeste gekende virulentiefactoren in zich draagt. Dit 

wijst erop dat X. euvesicatoria stammen een ander, mogelijk nog niet gekend waardplantbereik kan 

hebben en dat hun pathogeniciteit niet tot expressie komt of onderdrukt is in araceeën. 

Tot besluit, dit onderzoek toonde aan dat de eerder gerapporteerde fylogenetische heterogeniteit van 

Xad stammen (Hoofdstuk 2) ook weerspiegeld wordt in een heterogene pathogeniciteit die de creatie 

van drie pathovars rechtvaardigt voor deze pathogenen op araceeën: X. phaseoli pv. dieffenbachiae 

comb. nov., X. phaseoli pv. syngonii comb. nov., en X. citri pv. aracearum comb. nov. Onze studie toont 

verder aan dat X. euvesicatoria stammen geïsoleerd uit Philodendron, die vroeger als Xad stammen 

werden beschouwd, geen “echte pathogenen” zijn voor araceeën en we stellen dus voor van deze niet 

op nemen voor regulering en EPPO A2 quarantaine lijst. Momenteel beschouwen we hen als te weinig 

onderzochte pathogene stammen van onbekend belang voor plantengezondheid. Verdere studies zijn 

nodig om te bepalen of zij zouden moeten toegewezen worden aan een andere pathovar op andere 

waardplanten. 
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1.1 The family Araceae 

1.1.1 Introduction 

The Araceae (commonly known as aroids) are a widely distributed monocotyledonous family. They are 

commonly used as ornamentals (cut flowers and pot plants) or for landscaping in most (sub) tropical 

areas (Chen et al., 2005). Some species such as Alocasia macrorrhizos, Amorphophallus paeoniifolius, 

Colocasia esculenta and Xanthosoma sagittifolium are utilized for food in the tropics and subtropics. 

In this first part of the general introduction, the biology, history, economic importance and cultivation 

techniques will be briefly outlined. 

Kingdom: Plantae  

Subkingdom: Tracheobionta 

Super division: Spermatophyta  

Division: Magnoliophyta  

Class: Liliopsida  

Subclass: Arecidae 

Order: Arales 

Family: Araceae  

 

1.1.2 Biology of Araceae plants 

The high biodiversity of Araceae with ca. 125 genera and over 3700 species (Mayo et al., 1997), reflects 

their ability to occupy a wide range of environments. Most species of Araceae are ornamental plants 

and the most important genera are Anthurium Schott, Philodendron Schott and Dieffenbachia Schott 

(Pedralli, 2002) (Figure 1.1). Among these genera Anthurium grew in importance as a flowering pot 

crop due to development of dwarf cultivars (Henny, 1995). Although members of the Araceae family 

can be found in almost every climatic region except deserts and polar regions, most aroids are tropical 

and subtropical species. Species adapted for areas with cool or dry periods are characterized by 

dormancy of their corms, underground rhizomes or seeds, which allows them to survive unfavorable 

periods. This family also displays a notable diversity of life forms, including geophytes, climbers, 

epiphytes, helophytes, and free floating aquatic species (Bown, 2000; Croat, 1990). 
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Figure 1.1. Anthurium, Philodendron and Dieffenbachia, the most important ornamental plants of Araceae.  

 

Their vegetative parts are extremely varied; for instance, stems can be creeping or climbing and form 

rhizomes or distinct tubers; leaves range from simple to complexly divided, flowers range from very 

small to very big. For example, Amorphophallus titanium has the largest inflorescence in the word 

(approximately 2 meters), while the inflorescence of Homalomena minutisima measure few 

millimeters and is very difficult to be seen with the naked eye (Bown, 2000). A common characteristic 

of all aroids species is the spathe and spadix type of inflorescence (Figure 1.2). Flowers may be bisexual 

(monoclinous, hermaphrodite) or unisexual (diclinous). Unisexual flowers usually are born in separate 

female and male zones of the spadix, which often has a sterile apical appendix (Mayo et al., 1997; Judd 

et al., 1999). Because many aroids are monoecious there can be a high likelihood of self-pollination 

which leads to less genetic variety and less ability to adapt to environmental changes. The plant needs 

cross pollination to ensure a high variation. The aroid family is characterized by protogyny in which the 

female flowers ripen first and then later the male flowers produce pollen. The stages are easily 

observed in anthuriums, which have bisexual flowers (Bown, 2000). Protogyny is closely associated 

with cross pollination (Lebot, 2009). Araceae inflorescences are specifically adapted to insect 

pollination, although “wind tunnel” pollination has also been proposed (Mayo et al., 1997). Many 

plants in this family are heat-producing (thermogenesis) (Seymour & Schultze-Motel, 1997). Their 

flowers can reach up to 45°C even when the air temperature is much lower. In this way, the plants 

attract the insects to pollinate the plant and also prevent tissue damage in cold regions (Chauveau & 

Lance, 1982). The fruits of Araceae are typically juicy berries and most commonly red or orange (Mayo 

et al., 1997). 

Chromosome numbers are available for 862 species (26% of the family), ranging from 2n=10 to 

2n=168 and suggesting an ancestral haploid chromosome number of n=16 or n=18 (Cusimano et al., 

2012). More recently, the phylogenetic differences (Cusimano et al., 2011) were highlighted in a 

study on the cytogenetic differences among six genera within Araceae (Lakshmanan et al., 2015). 
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Figure 1.2. Aroid inflorescence. The spathe-and-spadix inflorescence is the main distinguishing feature of aroids. It display 
great plasticity in size and shape. Original figure taken from Bown, 2000. 

  

1.1.3 History and economic importance 

The word “aroid” is derived from the Latin word “arum”, which means lily and individual species of the 

Araceae have been recorded since those ancient times. The origin and the evolution of the Araceae is 

still poorly known. New fossil discoveries have been made in the Araceae (Friis et al., 2004). These 

have pushed back the history of the family more than 120 milion years ago to the early Cretaceous. 

Over 800 species of Araceae are of economic importance (ornamental, medicinal, edible). In our 

regions, the economically most important ornamental aroids belong to the Anthurium genus. The 

production value per ha for Anthurium cut flowers and pot plants in 2014 was approximately 398 and 

977 thousand euros, respectively and the total production value approximately 33 and 82 million 

euros, respectively (Van der Gaag & Bergsma-Vlami, 2015). Other than their use as ornamentals, the 
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family also offers many other benefits. Plowman (1969) documented the economic and commercial 

uses of aroids such as production of essential oil from Acorus, leaf extracts of Caladium for treatment 

of cancerous ulcers, dyes from Dieffenbachia seguine, and a powder used as an antidote for snakebite 

from Dracontium asperum. In the Amazon region, many species of Araceae are used for medicinal 

purposes, including the treatment of malaria and associated fevers and the most important species 

are from the genus Philodendron Schott (Kvist et al., 2006). The aroids also play an important role in 

the food security of millions of people in the tropics (Jackson et al., 2006). The Food and Agriculture 

Organization of the United Nations (FAO) estimates that around half a billion people in the (sub)tropics 

and developing world are involved in aroid cultivation, consumption and commerce. Colocasia 

esculenta (taro) and Xanthosoma sagittifolium (tannia) are the world’s oldest cultivated food plants 

and the most widely distributed and consumed aroids (Opara, 2002). Most aroid plant parts are edible 

and have good nutritional qualities. The roots and tubers are rich in carbohydrates and the leaves and 

stalks are an important source of protein, vitamins and minerals. Although highly nutritious, aroids 

also contain anti-nutrients, particularly oxalic acid, which can cause irritation of the skin, therefore 

appropriate preparation methods are required before they can be used as food (Mayo et al., 1997). 

1.1.4 Aroids breeding and cultivation 

For our regions, breeding objectives are mainly focused on developing new cultivars with improvement 

of traits related to ornamental value and stress resistance. Because the value of aroid plants lies in the 

esthetic qualities, the improvement of ornamental traits, such as plant form, color, leaf shape, texture, 

as well as growth rate has always been important to any breeding program. 

Aroid plants are predominantly cross-pollinating species. Elite parents are selected for intercrossing 

each generation and commercially interesting offspring are sexually or asexually propagated. The 

parents used in aroid plant hybridization are usually not derived from inbred, single-seed descent 

because inbreeding depression limits development of inbred lines in most foliage plant genera (Henny 

& Chen, 2004). Traditional breeding through hybridization has focused on heterozygosity. Intercrossing 

distinct clones with desirable characters, the populations created can be utilized for selection of new 

clones. When the parent clones are heterozygous, each seedling is a potential new cultivar and can be 

fixed by vegetative propagation (Henny & Chen, 2004). Depending on crossing parents, intraspecific 

(within a single species), interspecific (between different species) and intergeneric (between different 

genera) hybridization can be distinguished. Interspecific hybridization is the most common practice in 

producing hybrid cultivars in aroid plant breeding though the success of the method using traditional 

breeding depends on how closely the parental species are genetically relates (Lakshmanan et al., 

2015). In Araceae, there is no report yet on successful intergeneric hybrid production. Interspecific 

hybridization is well investigated in Anthurium (Kamemoto & Kuehnle, 1996; Henny, 1999) and 
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Philodendron with the production of P. corsinianum, a hybrid between P. lucidum and P. cariaceum 

(Wilfret & Sheehan, 1981). Interspecific hybridization may also produced hybrids in Aglaonema and 

Alocasia through conventional breeding (Henny & Chen, 2004). Other efforts were done to improve 

adventitious shoot regeneration for transformation or mutant selection in Anthurium, Dieffenbachia 

and Spathiphyllum (Orlikowska et al., 1995). Selection of varieties for resistant breeding is also 

prominent in aroids (Anaïs et al., 2000; Snijder at al., 2004; Goktepe et al., 2007; Seijo et al., 2010). 

Cultivar resistance to bacterial blight disease can be used to produce commercial resistant varieties 

(Anaïs et al., 2000). Until recently, very little molecular cytogenetic information was known for 

Araceae. Cusimano et al. (2011) performed a phylogenetic study to infer Araceae chromosome 

evolution based on molecular data compared with morphological and anatomical data analyses. 

Meanwhile, the clear cytogenetic differences were highlighted for six economically important species 

within Araceae (Anthurium andraeanum, Philodendron scandens, Syngonium auritum, Monstera 

deliciosa, Spathiphyllum wallisii and Zantedeschia elliottiana) (Lakshmanan et al., 2015). These 

molecular cytogenetic information and chromosome data are useful in further aroid breeding 

programmes. 

The aroids display such a diversity of ecological types that it is difficult to provide general information 

regarding cultivation that is applicable for all species. Many diverse cultivation systems are used 

around the world, depending on the climate, species and market situation of each producing region. 

For example, Anthurium species are relatively easy to grow, they require high humidity and minimum 

temperature of 18-20°C while Alocasia species needs more care because they are only suitable for 

warm conditions (high temperature, high humidity and shade) (Mayo et al., 1997). Also the genera 

with tubers or rhizomes demands special care, e.g. Amorphophallus, Caladium, Taccarum, 

Xanthosoma. These plants must be kept dry during their dormant period and they are best grown in 

pots in order to control the soil humidity, requiring abundant water during the growing period. 
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1.2 The genus Xanthomonas 

1.2.1 Introduction 

Xanthomonas is one of 22 currently acknowledged genera (http://www.bacterio.net) within the family 

of Xanthomonadaceae, order Xanthomonadales of the class of Gammaproteobacteria (Garrity et al., 

2005). The type species is X. campestris, and the type strain is X. campestris pv. campestris LMG 568 

(equivalent strain numbers: ATCC 33913, CCRC 12846, CCUG 47691, CECT 97, CFBP 5241, DSM 3586, 

JCM 13371, KACC 10913, NCPPB 528, PDDCC13). The genus Xanthomonas comprises 27 plant-

associated bacterial species and although most members of the genus are thought to have a narrow 

host range, Xanthomonas as a genus is able to infect a broad range of plants, covering at least 124 

monocotyledonous and 268 dicotyledonous species (Leyns et al., 1984). The genus was first proposed 

by Dowson (1939), who described 60 species. Although several efforts were made by different 

research groups to reclassify members of Xanthomonas (De Vos & De Ley, 1983; Swings et al., 1983; 

Van Den Mooter & Swings 1990; Yang et al., 1993; Vauterin et al., 1995), the taxonomy and 

classification in the genus is still undergoing revision because of phytopathogenic diversity (Vauterin 

et al., 2000; Rademaker et al., 2005; Schaad et al., 2005) and more recent in depth genomic 

characterization. Xanthomonas taxonomy continues to be controversial. 

1.2.2 Bacterial taxonomy 

 

 
 

Taxonomy (from Greek: taxis, “arrangement” and nomia, “method”) is the biological discipline of 

defining groups of organisms based on their shared characteristics, and giving names to the different 

groups. Cowan stated in 1968 (Cowan, 1968) that taxonomy is divided in three parts: (1) classification, 

arranging the organisms into groups based on similarity; (2) nomenclature, labeling the groups defined 

http://www.bacterio.net/
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by classification; (3) identification, assigning an unknown organism to an known taxonomic group. The 

interaction between these items are represented in a flow diagram in Figure 1.3. Modern taxonomy 

also includes phylogeny and population genetics as an integral part of the classification process 

(Vandamme et al., 1996). 

Prokaryote classification is the most recent among the different classifications of all living organisms. 

The taxonomic classification system (also called the Linnaean system after its inventor Carl Linnaeus, 

a Swedish botanist, zoologist and physician) uses a hierarchical model. There, the basic unit of 

biological classification, the species, was named according to the Linnaean binomial system consisting 

of two parts: a noun (substantive) in the nominative case, which correspond to the “genus”, followed 

by the epithet (adjective) that indicates the “species“ in that genus. Together these form the scientific 

name that identifies the species. This binominal system was applied both to plants and animals. In 

1786, the Danish naturalist Friedrich Müller described several bacterial species and attempted the first 

bacterial classification. 

Initially, bacterial species were defined according to the damage they produce. Plant pathologists 

assigned a new specific epithet to bacteria causing diseases on plants from which bacterial plant 

pathogens had not previously been isolated and/or diseases that looked different than other bacterial 

diseases on a particular host. This common practice was reflected in the “new host – new species” 

concept by Starr (1981). The number of species resulting from this practice grew rapidly, resulting in 

complex genera consisting of hundreds of species. 

The initially bacterial taxonomy evolved into a more objective one, after the release of the canonical 

Bergey’s Manual for Determinative Bacteriology in 1923, which represented a modern identification 

key for bacteria. At that time there was no common agreement on prokaryotic classification (Staley & 

Krieg, 1989), this manual and the later editions became the reference work on bacterial classification. 

These publications provided formal description of all bacterial taxa and keys for the identification of 

new isolates (Murray & Holt, 2005). Meanwhile, more flexible approaches such as numerical taxonomy 

and chemotaxonomy aimed to sort individual strains into species, genera and higher groupings 

(Rosselló-Mora & Amann, 2001). The need for a more formalized bacterial taxonomy led to the 

formation of an International Committee on Systematic Bacteriology (ICSB), now known as the 

International Committee on Systematics of Prokaryotes (ICSP). Between 1970 and 1980, the ICSB 

adopted the International Code of Nomenclature of Bacteria (Bacteriological Code; 1990 Revision 

(Lapage et al., 1992) and an Approved Lists of Bacterial Names (Skerman et al., 1980). The decision to 

recognize species as valid only if they were represented by a legitimate name, a species description 

and a type strain required pathologists to admit that many species differed only in host range, a 

character not considered to form part of a species description in terms of the Bacteriological Code. 

With these restrictions, many pathogens were considered to be members of the same species. This 
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problem was solved by recognizing the infrasubspecific term “pathovar” for populations of pathogens 

within species and by creating the International Standards for Naming Pathovars of Phytopathogenic 

Bacteria (The Standards (Dye et al., 1980), and the adaptation of its own “Comprehensive List of Names 

of Plant Pathogenic Bacteria” (Bull et al., 2010). 

 

 

Figure 1.3. Infomation flow diagram indicating the relationships between the characterization and the classification of a 
bacterial strain. Original figure taken from Trüper & Krämer, 1981. 

The Gold Standard of DNA-DNA homology. A new DNA homology based species concept was created 

in 1987, defining it as a group of strains, including the type strain, sharing 70% or greater DNA-DNA 

relatedness with 5°C or less ΔTm (difference in melting temperature in degrees Celsius between the 

homologous and heterologous hybrids under standard conditions (Wayne et al., 1987). Although this 

concept was considered the “gold standard” (Stackebrandt & Goebel, 1994) several practical problems 

existed because DNA-DNA hybridization (DDH) was time-consuming and because different methods 

were used to determine the level of DDH and these did not always show the same results (Gevers et 

al., 2005). Therefore the value of 70% DNA relatedness was considered indicative rather than absolute. 

A first alternative solution for this problem was provided with the appearance of 16S ribosomal RNA 

gene (16S rRNA gene) sequencing (Woese, 1987). Since the 16S rRNA is present in all bacteria, is 

functionally constant and is composed of conserved and variable regions, it has consistently served as 

a good taxonomic marker for deriving taxonomic relationships (Vandamme et al., 1996). Therefore it 

was suggested that strains sharing at least 97% 16S rRNA gene sequence identity, should be considered 

members of the same species (Stackebrandt & Goebel, 1994). However, the resolution of 16S rRNA 

gene was often insufficient to elucidate affiliations between closely related species (Fox et al., 1992; 
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Gevers et al., 2005) and sometimes it was impossible to draw a conclusion based on this threshold of 

97% sequence identity (Figure 1.4.). Stackebrandt and Ebers (2006) proposed to shift this 97% value 

to the new 98.7-99%, but this has not yet been widely adopted and was only recently started to be 

used (Yarza et al., 2014). 

 

 

 

Figure 1.4. Comparison of DNA-DNA and 16S rRNA similarities. 180 values from 27 independent articles of the IJSB vol. 49 
(1999) are represented. These data combine intrageneric values obtained for members of Proteobacteria, Cytophaga-
Flavobacterium-Bacteroides and Gram positives of high GC phyla. Original figure taken from Rosselló-Mora & Amman, 2001. 

 

The current consensus in bacterial taxonomy is to use a polyphasic approach for characterizing and 

classifying bacteria. A range of genotypic and phenotypic techniques are applied to characterize a 

bacterial species in the most comprehensive way possible (Vandamme et al., 1996; Moore et al., 2010). 

In practice, a species is defined as “a group of strains characterized by a certain degree of phenotypic 

consistency, by a significant degree (50 to 70% ) of whole genome DNA relatedness and over 97% 16S 

ribosomal RNA gene sequence identity” (Coenye et al., 2005). In general, phenotypic techniques are 

very useful in characterizing an organism and chemotaxomic methods might help in drawing a picture 

of high-level taxonomy. But phylogeny mostly cannot be determined based on phenotype alone. 

Therefore, genotypic methods, such as 16S rRNA gene sequencing and rRNA homology are mostly 

applied. However, the current species concept is criticized by some researchers as being too 

conservative, leading to an underestimation of the real diversity (Rosselló-Mora & Amman, 2001). 

Genomics based taxonomy. Currently, focus in bacterial taxonomy is on whole-genome sequencing 

(WGS), which might contribute to unravel evolutionary relationships between prokaryotes and to 

result in a workable, satisfying species concept (Coenye et al., 2005; Gevers et al., 2005; Konstantinidis 

& Tiedje, 2005). As stated earlier, 16S rRNA gene sequencing suffers from lack of resolution for closely 
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related strains, and alternatives were found in the analysis of housekeeping genes. Such approach is 

known as Multi Locus Sequence Typing (MLST) or Multi Locus Sequence Analysis (MLSA). MLSA 

schemes often provide higher resolution than 16S rRNA gene sequencing, allowing differentiation at 

the species level (Moore et al., 2010). Two of the most recent methods to delineate bacterial species 

are Average Nucleotide Identity (ANI) and Average Amino acid Identity (AAI) (Richter & Rosselló-Mora, 

2009). Both parameters rely on the pairwise comparison of whole genome sequences to determine a 

set of orthologous genes conserved among both genomes. Preliminary results have shown that ANI 

and AAI-values correlated extremely well with experimentally determined DDH-values, and the 

comparison between these techniques resulted in a threshold value of 95% ANI and 95-96% AAI for 

species delineation, comparable to the 70% DNA-relatedness value. Therefore it has been suggested 

that ANI could be a more practical replacement for DDH within the current species concept 

(Konstantinidis & Tiedje, 2005; Goris et al., 2007). However, it has also been observed that strains with 

a 95% ANI value could still have up to 20% difference in gene content, leading to a stricter ANI cut-off 

(98-99%) to obtain a higher predictive value for species delineation than the 70% DDH (Konstantinidis 

et al., 2006). 

1.2.3 Taxonomy of the genus Xanthomonas 

The genus Xanthomonas has been subject of numerous taxonomic and phylogenetic studies because 

of its phytopathogenic diversity. The 16S rRNA gene sequence homogeneity within Xanthomonas is 

very high with just three phylogenetic lineages being detected (Hauben et al., 1997). The largest 

lineage includes 15 Xanthomonas species, and the high degree of conservation of the 16S rRNA has 

limited the study of interspecific relationships within the genus (Figure 1.5.). 
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Figure 1.5. Phylogenetic relationship among Xanthomonas species based on partial 16S rRNA gene sequences. Original figure 
taken from Hauben et al., 1997. 

 

History of the genus. The first description of a plant disease known as “yellow disease of hyacinths” 

caused by a Xanthomonas strain was reported by Wakker in 1883. The disease was named Bacterium 

hyacinthi. Later, yellow-colonies were allocated to the genus Pseudomonas (Winslow et al., 1920) and 

afterwards to Phytomonas, a genus created to group all plant-pathogenic, yellow-pigmented bacteria 
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(Bergey et al., 1923). In 1930, Burkholder made a comparative study on a grand scale and he sorted 

out the major groups of bacteria that had previously been lumped into Phytomonas. Dowson (1939) 

classified plant-pathogenic bacteria mainly into three genera: (1) Bacterium Ehrenberg 1828, emend. 

Dowson 1939 for the Gram-negative bacteria with peritrichous flagella, (2) Pseudomonas Migula 1897, 

emend. Dowson 1939 for the green-fluorescent bacteria with polar flagella, and (3) a new genus, 

Xanthomonas Dowson 1939 for the Gram-negative, yellow pigmented bacteria with a single polar 

flagellum (Dowson, 1939; Garrett, 1981). Dowson also differentiated 19 species within this new genus 

(Van Den Mooter & Swings, 1990). 

Initially, each variant of the genus Xanthomonas showing a different host range or producing different 

disease symptoms was classified as a separate species, reflected in the new host-new species concept 

(Starr, 1981). However, this led to an unreasonably large number of nomenspecies, which later 

resulted in a reclassification according to the classical nomenclature. 

Burkholder and Starr discussed the impossibility of distinguishing the species within Xanthomonas by 

biochemical and physiological features alone without knowing their hosts, and they also criticized the 

new host – new species concept (Burkholder & Starr, 1948). Nevertheless, in Bergey’s Manual of 

Determinative Bacteriology, 7th ed., Burkholder listed 60 species within the genus (Burkholder, 1957). 

The fact that the different “species” were almost indistinguishable later led to the reduction of the 

number of species to just 5: X. albilineans, X. ampelina, X. axonopodis, X. campestris and X. fragariae 

(Dye et al., 1974). The consequence was a large-scale partial merge into a single species, Xanthomonas 

campestris which was then subdivided into different pathovars (Dye et al., 1974). Within the genus 

some changes were made: the species X. ampelina was transferred to a new genus Xylophilus, as 

Xylophilus ampelinus (Willems et al., 1987) and new species were integrated in the genus 

Xanthomonas, as X. populi formerly classified as Aplanobacter populi (Ridé & Ridé, 1992). Later, 

another reclassification was proposed by Young et al. (1978) based on the former taxonomy system. 

The evolution number of Xanthomonas species is given in Table 1.1. 

 
Table 1.1. Evolution of the number of Xanthomonas species 

 
 

 

 

 

 

 

Several studies attempted to delineate Xanthomonas species and clarify the relationships between the 

newly created pathovars using DNA Restriction Fragment Length Polymorphism (RFLP) profiling (Lazo 

Reference  Xanthomonas species (no.) 

Dowson (1939) 16 

Burkholder (1957) 60 

Dye et al. (1974) 5 

Vauterin et al. (1995) 20 

Parkinson et al. (2007) 27 
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et al., 1987), fatty acids (Yang et al., 1993) and numerical taxonomy (Van Den Mooter & Swings, 1990). 

In 1995, based on DNA-DNA hybridization of 183 strains Vauterin et al. proposed reclassification of the 

genus Xanthomonas in 20 species (20 DNA-DNA homology groups) including four earlier defined 

species such as X. albilineans, X. fragariae, X. populi and X. oryzae (Vauterin et al., 1995). Although the 

new nomenclature was confirmed with the Bacteriological Code and supported by rep-PCR and 

Amplified Fragment Length Polymorphism (AFLP) (Rademaker et al., 2000; Rademaker et al., 2005), it 

has not ceased to be the object of controversy in terms of nomenclature (Schaad et al., 2000; Young 

et al., 2001). These heated debates led to the rejection of several names proposed by Vauterin et al. 

(1995) (Schaad et al., 2000). However the Taxonomy Committee of Plant Pathogenic Bacteria did not 

accept the names proposed by Schaad et al. because of misinterpretation of the Bacteriological Code 

(Young et al., 2001). In 2005, based on Rep-PCR results of 339 strains of the genus Xanthomonas, 

Rademaker et al. identified 20 groups, which correspond to the 20 DNA-DNA homology groups of 

Vauterin et al. (1995) (Rademaker et al., 2005). In the same study the species X. axonopodis was 

divided into six subgroups. Thereafter, new species were defined based on the polyphasic approach. 

These new species included X. cynarae (Trébaol et al., 2000), X. euvesicatoria, X. perforans, X. gardneri 

(Jones et al., 2004), X. citri, X. fuscans, X. alfalfae (Schaad et al., 2005; Schaad et al., 2006), X. dyei 

(Young et al., 2010). A last species, X. maliensis, has recently been described (Triplett et al., 2015). 

Currently, diversity studies dealt with Xanthomonas gyrase B (gyrB) partial sequence analysis 

(Parkinson et al., 2007; Parkinson et al., 2009) and MLSA (Young et al., 2008). Although the 

classification of Xanthomonas is still changing up to this day, about 33 species are currently recognized 

(http://www.bacterio.net, last accessed on 25/01/2017 (Euzéby, 1997). 

Although gyrB sequence analysis and MLSA offer a clear phylogenetic differentiation of the 

Xanthomonas species, the resolution is often insufficient to distinguish at the pathovar level. The 

recent genomic approaches to Xanthomonas classification seem promising (Rodriguez et al., 2012) and 

once more genomes will be sequenced this genomic based taxonomy will result in new changes in 

Xanthomonas nomenclature. 

 

1.3 Bacterial blight of aroids 

1.3.1 Introduction 

Bacterial blight of aroids is caused by the bacterium which is up till recently named as Xanthomonas 

axonopodis pv. dieffenbachiae (Xad). The pathogen was first reported in the United States in 1939 

(McCulloch & Pirone, 1939) and has since then spread globally. Several species within the family of 

Araceae have been indicated as host plants (Chase, 1987). Under favorable conditions the disease can 

cause significant damage to both plant stock and aroid production. The pathogen is a quarantine 

http://www.bacterio.net/
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organism in some major Anthurium-production countries and appears on the A2 list of the European 

and Mediterranean Plant Protection Organization (EPPO). That means that the pathogen is locally 

present in the EPPO region and is recommended for regulation as quarantine pest in order to limit its 

further spread (EPPO, 2009). This third part of the General Introduction focuses on biology, control 

and detection of the aroid pathogen Xad, and defines the economic and legislative implications of the 

bacterial blight disease. 

1.3.2 Symptoms 

The disease can occur either as a local or as a systemic infection (Fukui et al., 1998). Local infection 

appears on the leaves and spathe. Usually, the pathogen invades the leaf through the hydathodes 

(Sakai & Alvarez, 1990) and only occasionally through stomata. The first symptoms are small star-

shaped water-soaked spots at the leaf margins, eventually with some yellowing, which appear necrotic 

under dry conditions. Leaf spots coalesce to large, V-shaped to irregular brown necrotic areas with a 

bright yellow margin. Systemic or vascular infection occurs when the bacterium spreads from the stem 

to other parts of the plant (Nishijima & Fujiyama, 1985). Older leaves and petioles are yellowing and 

easily break off to show dark brown vascular tissues at their base. Sometimes droplets of yellow 

bacterial ooze slime occur on infected petioles. Eventually the entire plant can be killed. Sometimes 

systemic infection also produces new water-soaked leaf spots, mainly near the main veins, when 

bacteria invade the leaf parenchyma from the infected vascular bundles. Some hosts only show leaf 

symptoms, while other hosts show both leaf and systemic symptoms. The symptom type may also 

depend on the infecting strain. Systemic infection may sometimes resemble foliar infection. This occurs 

when the bacterium moves upward from the vascular system in the stem into the leaf blade. In this 

case, water-soaked spots will occur near the main vein. The disease in Anthurium was originally 

described as a non-systemic leaf blight, but depending on the infecting strain, both leaf and systemic 

infections can occur (Figure 1.6.). Xad may occur in a latent form, also in tissue culture (Norman & 

Alvarez, 1994a; Fukui et al., 1996). 
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Figure 1.6. Typical symptoms of X. axonopodis pv. dieffenbachiae on Anthurium. Advanced foliar blight with necrotic areas 
surrounded by a bright yellow margin (a); early foliar blight symptoms, water-soaked spots at leaf margins (b); blacking of 
the spathe in the ’flower blight’ stage (c); systemic infection resulting in death of potted plants (d). Photos by W. Nishijima 
and T. Vowell. 

1.3.3 Causal Organism  

Domain: Bacteria 

  Phylum: Proteobacteria 

  Class: Gammaproteobacteria 

   Order: Xanthomonadales 

    Family: Xanthomonadaceae 

     Genus: Xanthomonas 

      Species: Xanthomonas axonopodis 

 

Xad is a gram-negative, rod-shaped bacterium. Cells are about 0.3-0.4 µm diameter and 1.5 µm in 

length, with a single polar flagellum (McCulloch & Pirone 1939; Bradbury, 1986). On Wilbrink-N agar 

medium (Koike, 1965) yellow, mucoid, circular and convex colonies appear after 2 to 3 days. Separate 

colonies easily coalesce and form darker yellow, opaque areas. Xad is able to infect a broad range of 

aroids and the strains display a complex host specificity (Chase et al., 1992). 
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Taxonomically, strains of Xad are known to be heterogeneous and it has been suggested that they 

represent different taxa (Rademaker et al., 2005; Donahoo et al., 2013). Xad strains isolated from 

Anthurium and Dieffenbachia were shown to comprise two types on the basis of SDS-PAGE profiles 

(Vauterin et al., 1991) and rRNA gene restriction patterns (Berthier et al., 1993). Although both types 

belong to the same DNA homology group (group 9), their level of DNA homology was only 66% 

(Vauterin et al., 1995). In a follow-up study, DNA homology group 9 was divided into six subgroups, 

with strains originating from Anthurium placed in subgroup 9.4 and strains from Dieffenbachia in 

subgroup 9.6 suggesting that the different genetic groups identified in X. axonopodis probably 

represent different species (Rademaker et al., 2005). Similar results were reported by Hajri et al. 

(2009), who corroborated that rpoD sequence analysis grouped X. axonopodis pv. dieffenbachiae 

strains according to their host of isolation (Anthurium, Dieffenbachia and Philodendron). Furthermore, 

Xad from group 9.6 has been included in the emended species description of X. citri (Ah-You et al., 

2009). The description referred to the strains not pathogenic to Anthurium spp..  

1.3.4 Disease cycle and epidemiology 

Xad seems primarily transmitted to aroid production fields through infected nursery stock (Norman & 

Alvarez, 1994a). Splashing water (rain or irrigation), aerosols, infested soil and possibly nematodes 

during planting are other sources of Xad-infection (Nishijima & Fujiyama, 1985; Alvarez et al., 1994). 

Although root damage by nematodes was associated with symptomless systemic infection in adult 

plants in the field, no experimental evidence was found that nematodes contribute to spreading of the 

bacterium (Fukui et al., 1998). Infected plant debris is another suspected primary source of Xad-

infection. Studies have also shown that the pathogen can survive in plant debris for more than four 

months (Duffy, 2000) and its capacity to spread through aerosols was demonstrated using Andersen 

samplers and settling plates (Alvarez et al., 2006). Natural spread between glasshouse companies is 

very unlikely to occur, but all care should be given to the sanitary condition of plant material that is 

introduced in the cultures and greenhouse. Xad can also be spread by human assistance through 

contaminated tools, clothes, infected soil on footwear, vehicles and equipment (Nishijima & Fujiyama, 

1985). Although the pathogen does not survive long in soil, this medium should not be overlooked as 

inoculum source (Duffy, 2000). Epiphytic survival and aroid leaf invasion by Xad, as well as disease 

development, are all favored by high temperature and humid conditions. Symptoms typically develop 

faster on young plants than on older, matured plants (Nishijima & Fujiyama, 1985). Disease severity 

was clearly higher in plants grown at 31°C than at 26°C or lower, independent of air humidity (Alvarez 

et al., 2006). Xad invades the leaf though hydathodes but in some cases under conditions that favor 

the opening of the stomata (light intensity and humidity) the bacterium enters the leaf though 

stomata. However, under low humidity, the bacteria never die, the lesions remain small and dry and 
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disease development is slower than under favorable conditions. Under moist conditions (high relative 

humidity), the bacteria multiply on the leaf surface and increase the probability of infection, the spots 

enlarge and merge to cover large areas. However, some infected plants can remain asymptomatic 

while the bacteria multiply and spread throughout the plant; such plants can exude guttation fluid 

containing bacteria (Norman et al., 1999). Studies have shown that the amino acids found in guttation 

fluid provide nutrients for invading bacteria (Sakai & Alvarez, 1990). These exudates can then be 

dispersed to new plants by dripping or splashing. Moreover, splash dispersal to plants at 5 meters 

distance occurred downwind of a sprinkler irrigated block of plants and behind a barrier installed to 

prevent bacterial movement by splash droplets. Therefore, appropriate precautions should be taken 

in case the propagation areas for tissue cultured plants are downwind of flower production areas 

(Alvarez et al., 1994). 

1.3.5 Geographic distribution 

The literature indicates that bacterial blight of aroids probably originated in South or Central America. 

The first scientific report dates back to 1939 (Table 1.2.) and described the disease as Bacterium 

dieffenbachiae (McCulloch & Pirone, 1939). Apparently, the disease first spread throughout the USA, 

probably through infected plant material (EPPO, 1997) and later the export of new plants spread the 

disease to other continents (Jouen et al., 2007). At present, the bacterium has spread globally, 

although several countries have taken measures to eradicate the pest (EPPO 2005, 2007). 

Table 1.2. Distribution of X. axonopodis pv. dieffenbachiae around the world 

Year of report Geographical region Reference  

1939 New Jersey  (McCulloch & Pirone, 1939)  

1952 Brazil (Robbs, 1955)  

1972 Hawaii  (Hayward, 1972)  

1985 California  (Cooksey, 1985)  

1985 Caribbean  (Prior et al., 1985)  

1985 Florida (Pohronezny et al., 1985)  

1987 Venezuela (Guevara & Debrot, 1987)  

1990 Philippines (Natural & Alvarez, 1990)  

1990 French Polynesia (Mu & Alvarez, 1990)  

1992 Puerto Rico  (Cortes-Monllor, 1992)  

1997 The Netherlands  (EPPO, 1997) 

1998 Taiwan (China)  (Hseu & Lin, 1998)  

2000 Italy (Zoina et al., 2000)  

Continued on next page   
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2000 Reunion Island (Soustrade et al., 2000)  

2002 China (Ji et al., 2003)  

2003 Turkey  (Aysan & Sahin, 2003)  

2004 Romania (Vlad et al., 2004)  

2007 New Caledonia (Jouen et al., 2007)  

2008 Poland (Pulawska et al., 2008)  

 

1.3.6 Detection and identification 

The basic detection method for Xad is visual inspection of aroid plants, isolation of the bacterium from 

symptomatic plants and identification by phenotypic and pathogenicity tests. However, visual 

inspections are not very effective because of latent infection, while identification by phenotypic and 

pathogenicity testing are time-consuming and have limited efficiency because of limitation of the 

sample size. Because the symptoms caused by Xad are easily confused with other pathogens as 

Pseudomonas and Ralstonia solanacearum, laboratory confirmation is required (Norman & Yuen, 

1999). Since the main host of Xad in our region is Anthurium, the interest was directed to develop 

techniques for the detection of the pathogen from this host. Until recently, the detection of Xad was 

based on a reference method which consisted of isolation of the bacterium from suspect symptoms 

on semi-selective media (Norman & Alvarez, 1989), followed by identification of Xanthomonas 

colonies by immunofluorescence (IF) and/or enzyme-linked immunosorbent assays (ELISA) using 

specific monoclonal or polyclonal antibodies (EPPO, 2004). Although the enrichment of target bacteria 

on semi-selective media before ELISA improves the sensitivity, the method predisposes to false 

positive reactions due to immunological cross-reaction with other associated bacteria, for example 

epiphytic and saprophytic bacteria which often overgrow the pathogen even when semi-selective 

media are used (Norman & Alvarez, 1994b). Therefore, the final confirmation was still made by 

pathogenicity testing by inoculating host plants and scoring symptom development. With the 

introduction of PCR, a number of fingerprinting techniques for isolate identification were reported 

(Louws & Alvarez, 2000; Khoodoo & Jaufeerally-Fakim, 2004; Khoodoo et al., 2005; Robéne-Soustrade 

et al., 2006). A multiplex PCR for Xad based on three sets of primers, combined with a genus-specific 

monoclonal antibody was successfully applied in direct leaf tissue screening (Khoodoo et al., 2005). 

This PCR was developed to detect and differentiate all the different groups among Xad strains, 

resulting in very complex profiles. Subsequently a nested PCR with increased sensitivity claimed more 

reliable Xad detection in symptomless contaminated plants. The nested-PCR has been developed to 

specifically detect and identify X. axonopodis pv. dieffenbachiae strains pathogenic to Anthurium 

(Robéne-Soustrade et al., 2006). More recently, the nested-PCR has been compared to the reference 
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method (isolation and serological identification of bacterial colonies) and to other alternative 

serological methods in order to ensure the most appropriate detection scheme (Chabirand et al., 

2014). The method has been included in the EPPO decision scheme as an alternative method to the 

biochemical and serological tests (EPPO 2009). Recent developments in Xanthomonas taxonomy, 

mainly the sequencing of several phylogenetically relevant genes (Young et al., 2008; Parkinson et al., 

2009), have claimed rapid identification of Xanthomonas species and pathovars, including X. 

axonopodis pv. dieffenbachiae. The available reference sequence records can be used to confirm the 

identity of any suspected Xad-isolate. 

1.3.7 Control 

Once established, eradication of the bacterium is very difficult because of its systemic and latent 

nature. Prevention is the most important management practice. Sanitation and exclusion are the main 

cultural measures (Lipp et al., 1992). For a long time, the only available method to reduce bacterial 

blight was to remove suspect leaves showing symptoms and to eliminate systemically infected plants 

(Nishijima, 1988). Different products have been used for chemical control, such as streptomycin or 

oxytetracycline (Sato, 1983). Because of their high cost and the development of streptomycin-resistant 

strains these control methods were later abandoned (Nishijima, 1988). In Europa such antibiotic are 

not allowed, therefore cupric hydroxide and mancozeb, reported as having good effectiveness against 

Xad, have replaced the two antibiotic products (Knauss et al., 1972). In the absence of effective 

chemicals, long-term disease management measures include sanitation, cultural practices, biological 

control (Toves, 2008). Sanitation combined with resistant or tolerant cultivars is the most effective 

approach against the disease (Valencia et al., 2004). Disinfection of cutting tools is essential for 

preventing the spread of blight, since plant materials which show no symptoms have the potential for 

latent infection. Although the sanitation practices and disinfection of tools are useful, they are 

insufficient for stopping disease spread. Drip irrigation rather than overhead or sprinkler irrigation 

reduced the spread of the bacterium through aerosols and water splash in the cultures and significantly 

reduced the incidence of bacterial blight (Kamemoto & Kuehnle, 1989; Alvarez & Norman, 1993). 

Appropriate nutrition is important for the plant susceptibility to diseases and it was suggested that 

lower fertilizer rates for pot plants could result in lower susceptibility of leaves to Xad and greater 

flower production (Chase, 1988). Higher levels of ammonium fertilizer led to higher amounts of amino 

compounds in guttation fluid when compared to nitrate fertilizers (Sakai & Alvarez, 1990). Increased 

amount of amino compounds were associated with greater plant susceptibility to disease. The use of 

sufficient amounts of nitrate fertilizer for plant growth reduced the amount of amino compounds in 

guttation fluid, and was proposed to reduce blight incidence (Sakai, 1991; Sakai et al., 1992). Growing 

aroids under cool and shaded conditions slows the progression of the disease. Inoculated plants 
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exposed to temperature higher than 27°C were more susceptible to disease than inoculated plants 

exposed to lower temperature (Alvarez et al., 1990). Although greenhouse trials indicated a 

relationship between fertilizer treatments and blight susceptibility, field trials were indecisive (Higaki 

et al., 1992). It is generally agreed that the most cost-effective method to control blight would be 

through the development of resistant cultivars (Prior et al., 1985; Anaïs et al., 2000). Thus far, 

transgenic resistance to the blight pathogen using peptide biocides (Kuehnle et al., 2004) has not 

provided satisfactory levels of resistance. Although the treatments considerably reduced Xad numbers 

and symptom development, the disease could not be completely eradicated without significant plant 

mortality. At present, pathogen-free planting material, hygienic measures, controlled temperature and 

restricted use of overhead irrigation are the most effective control measures for bacterial blight. 

1.3.8 Economic impact and legislative relevance 

Bacterial blight, caused by Xad has been of major economic concern among the anthurium growers 

worldwide. Although the disease causes heavy losses on Anthuriums and other members of the family 

Araceae, limited information is available on effective damages caused by the pathogen (Kelaniyangoda 

& Wickramarathne, 2009). High disease incidence was reported in Hawaii where it destroyed the 

production of approximately 200 small farms in 1985 – 1989. The cut flower production dropped from 

approximately 30 to 15.6 million stems per year in 1990 (Alvarez et al., 2006) and the losses for 1987 

exceeded 5 million dollars to the Anthurium cut flower industry in Hawaii. With the implementation of 

an integrated disease management program, losses were reduced to 5%. The pathogen produced also 

significant damage in Italy and Réunion Island where 80 to 100% of the plants showed symptoms 

(Soustrade et al., 2000; Zoina et al., 2000). Outbreak of Xad in Turkey was reported in Anthurium pot 

plants and disease incidences of 20 – 25% occurred (Aysan & Sahin, 2003). Application of active 

substances such as cupric hydroxide (Kocide 101) and mancozeb (manzate 200) already mentioned 

above may help decrease Xad mediated yield loss, even if they do not completely eradicate the disease. 

Economic losses can vary substantially among fields, greenhouses and production years. Direct field 

losses are an important part of the disease impact. The indirect cost associated with sanitary measures, 

disinfection actions as well as with tests in the certification of planting material are significant expenses 

spend every year to better control bacterial blight. 

As discussed earlier, the most effective control measure for Xad is still the prevention of introduction 

with planting stock. Therefore, bacterial blight was first introduced in the list of quarantine diseases of 

the European and Mediterranean Plant Protection Organization (EPPO) in 1997 (EPPO 1997). Any 

nursery plant consignment, imported in or transported within the EU, should have an official 

declaration that the place of production has been free of Xad symptoms. Imported or transported 

planting stock batches where Xad is discovered have to be destroyed. Also nurseries in the US, wishing 
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to export plants of Araceae to any EU countries, must have plant passport inspections (art. 2.3 in Annex 

V part A of directive 2000/29/EC). 

 

1.4 Virulence factors in Xanthomonas  

The establishment of infection by phytopathogenic bacteria is mediated by virulence factors. Virulence 

factors can generally be defined as all bacterial products or strategies that contribute to the ability of 

the bacterium to cause disease. To successfully colonize host plants, plant pathogenic bacteria must 

be able to adhere to the plant surface invade the mesophyll or the vascular system to acquire nutrients 

and resist plant defense responses. The classical plant bacterial pathogens reside in the intercellular 

spaces and they deploy an arsenal of secreted virulence factors to modulate host cell processes (Figure 

1.7). For Xanthomonas spp., the most extensively studied secretion system is the type III secretion 

system (T3SS). The T3SS is responsible for the secretion of various effectors into the host cell. 

Resistance mediated by R-genes of the host is predominantly based on the specific recognition of type 

III secreted effectors. The result of specific recognition is the hypersensitive response which inhibits 

pathogen proliferation. When not recognized, these effectors may suppress host defense mechanisms 

and promote virulence processes of the pathogen. Therefore, characterization of the genes encoding 

effector proteins may enable the identification of resistance mechanisms inside the host plants. In the 

following, the different secretion systems and other virulence factors present in Xanthomonas spp. 

and also potentially important for Xad infection will be described. 
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Figure 1.7. Schematic representation of protein secretion systems from Xanthomonas spp. Six types of protein secretion 
systems are encoded. T2S and T5S systems depend on the general secretory pathway (red: Sec) or the twin-arginine 
translocation (light purple: TAT) system for protein transport across the inner membrane. T3S, T4S and T6S systems are 
associated with extracellular pilus structures and presumably translocate proteins into the host cell. So far, protein 
translocation was experimentally proven for T3S systems. Only in a few cases does protein secretion depend on the formation 
of outer membrane vesicles (OMV). IM, inner membrane; OM, outer membrane; TAT, twin-arginine translocation. Original 
figure taken from Büttner & Bonas, 2010. 

1.4.1 The type III secretion system (T3SS) 

Type III secretion system (T3SS) is an important pathogenicity factor employed by most Gram-negative 

bacterial pathogens. It consists of more than 20 proteins which form a needle-like complex to deliver 

effector proteins directly from the bacterial cytoplasm into the host cells (Büttner & Bonas, 2002). In 

plant pathogens, the T3SS is encoded by hrp (hypersensitive response and pathogenicity) genes, 

essential for bacterial pathogenicity and hypersensitive response in host and non-host plants, 

respectively (Lindgren et al., 1986). At least nine hrp genes are conserved in plant and animal 

pathogenic bacteria and called hrc (hypersensitive response and conserved) genes (Bogdanove et al., 

1996). In contrast to the conserved T3SS apparatus, the type III effectors vary considerably among 

different plant pathogens and even among different strains of the same species (Greenberg & Vinatzer 

2003). This variation suggests that different strains have evolved different repertoires of virulence 

factors to infect and cause disease on specific host plants. To date, more than 100 different effector 

proteins that can be divided into 39 different so-called Xop (Xanthomonas outer protein) groups based 

on sequence relatedness (White et al., 2009) are known that are secreted via the T3SS. According to 

experimental and bioinformatic analyses, approximately 20–30 effectors with overlapping activities 

are typically secreted by one single Xanthomonas strain (Büttner & Bonas, 2010). These effectors can 

fulfil multiple functions, such as interference with host immunity or they may facilitate nutritional and 

virulence processes of the pathogen (Büttner & He, 2009). At the same time, they represent essential 

determinants of pathogenicity on susceptible plants and are required for the induction of the 

hypersensitive response (HR) on resistant plants (White et al., 2009). The fact that plant pathogenic 

bacteria secrete many type III effectors could be an adaptive feature of plant pathogens and suggests 

that functional redundancy may exist among these effectors (Büttner & Bonas, 2003). Some effectors 

such as the transcription activator-like effectors (TALEs) are structurally and functionally well-

characterized, and have been the subject of more than 20 years of ongoing research in the pepper and 

tomato pathogen Xanthomonas campestris pv. vesicatoria (Bogdanove et al., 2010). TALEs (also called 

AvrBs3/PthA-family effectors) and closely related proteins have been found in several but not all 

phytopathogenic Xanthomonas species. TALEs consist of a common N-terminus required for type III 

secretion and a C-terminus containing a nuclear localization signal (NLS) and an acidic activation 

domain (AAD). Nearly all characterized and cloned R-genes that are effective against Xanthomonas 

spp. rely on detection of or interaction with TALEs. 
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1.4.2 The type II secretion system (T2SS) 

A number of possible virulence factors are secreted via T2SS, including toxins, cell wall degrading 

enzymes (CWDEs), proteases, lipases and phosphatases. As extracellular pathogens, phytopathogenic 

bacteria encounter plant cell walls as barriers preventing access to the cytoplasmic contents of host 

cells. In order to infect the host plant effectively, many plant pathogens include a battery of cell wall 

degrading enzymes in their repertoire of virulence factors. These enzymes include pectinase, cellulases 

and proteases that work together to softer or break down plant cell walls, facilitating pathogen access 

and the release of nutrients for pathogen growth (Barras et al., 1994). X. campestris pv. campestris has 

an extensive collection of genes encoding putative cell wall degrading enzymes, including several 

pectic enzymes and cellulases (da Silva et al., 2002). Presumably, these enzymes contribute to the 

massive degeneration of plant tissue that occurs during development of black rot disease in plants 

infected with X. campestris pv. campestris (Agrios 2005). Xylanase is the enzyme that degrades xylan, 

a component of xylem vessels. X. oryzae pv. oryzae strains with a mutant xynB, the gene for xylanase 

secretion, have an abolished ability to accumulate xylanase in planta and attenuated virulence in rice 

(Rajeshwari et al., 2005). 

Other secretion systems  

Although poorly understood, Xanthomonas spp. may also make use of secretion systems other than 

T2SS and T3SS, that potentially also play important roles in the interaction with their host. In 

Xanthomonas spp. genes for all known protein transport systems of Gram-negative bacteria have been 

identified, i.e. type I, type IV, type V and type VI. For example, the type IV secretion system (T4SS) is 

known to contribute to virulence and it comprises 12 proteins, VirB1-VirB11 and VirD4 (Christie et al., 

2005). The type IV secretion system (T4SS) is related to bacterial conjugation machines (Juhas et al., 

2008) and is able to translocate proteins and/or protein-DNA complexes to the extracellular milieu or 

the host interior, in many cases contributing to the ability of the bacterial pathogen to colonize the 

host and evade its immune system (Backert & Meyer, 2006). In function, the T4SS very closely 

resembles the T3SS, which utilizes a flagellar export machine to inject effector molecules into the host 

cells (Macnab 1999). Both systems deliver substrates by a process requiring physical contact with 

target cells. Both systems require coupling or chaperone-like proteins for delivery of substrates to the 

respective transfer machines. Both systems are generally thought to export substrates in a one-step 

reaction via a trans-envelope channel. Finally, both systems elaborate extracellular pili or filaments 

that contribute in some way to substrate delivery. However, at least one fundamental difference exists 

between these two systems – the type IV systems can export long DNA polymers to recipient cells, 

whereas there is currently no evidence for transmission of nucleic acids via the type III machinery.  
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The type VI secretion machinery (T6SS) is a recently characterized secretion system that appears to 

constitute a phage-tail-spike-like injectisome that has the potential to introduce effector proteins 

directly into the cytoplasm of host cells (Filloux et al., 2008; Shrivastava & Mande, 2008), analogous to 

the T3SS and T4SS machineries. T6SS has diverse roles in virulence, symbiosis and interbacterial 

interactions (Records, 2011). Overall however, the identities and functions of T6SS effectors are still 

poorly understood. 

 

1.4.3 Extracellular polysaccharides (EPS) 

Almost all Xanthomonas spp. (except for Xanthomonas albilineans) produce a characteristic 

extracellular polysaccharide (EPS) called xanthan. Xanthan is a heteropolysaccharide consisting of 

repeating pentasaccharide units with a cellulose-like backbone and trisaccharide side chains of two 

mannose and one glucuronate residues. The production of xanthan in the bacteria is directed by 

several genes located on the gum gene cluster. The gum gene cluster typically consists of 12 genes 

which are highly conserved among Xanthomonas spp. (Katzen et al., 1998). Due to the highly hydrated 

and anionic consistency of xanthan, it is expected that it protects bacteria from environmental stresses 

such as dehydration and toxic compounds. In addition to protection, for vascular pathogens, xanthan 

might be responsible for wilting of host plants by blocking the water traffic in xylem vessels (Chan & 

Goodwin, 1999). Although the xanthan production and its function related to pathogenicity exist, 

expression of the gum gene cluster most likely contributes to epiphytic survival and is not required for 

pathogenicity (Katzen et al., 1998; Dunger et al., 2007; Rigano et al., 2007). 

However, xanthan has also been suggested to suppress basal plant defense responses such as callose 

deposition in the plant cell wall, which presumably occurs by chelation of divalent calcium ions in the 

plant apoplast and is required for the activation of plant defense responses (Aslam et al., 2008). 

Further, xanthan has been shown to be involved in the formation of bacterial biofilms in X. campestris 

pv. campestris and X. axonopodis pv. citri (Dow et al., 2003; Rigano et al., 2007; Torres et al., 2007) in 

which bacteria attach to each other forming an extracellular polymeric matrix consisting of proteins, 

lipids and EPS (Sutherland, 2001). Biofilm formation might contribute to bacterial epiphytic survival 

before colonization of the plant intercellular space because it presumably provides protection against 

antibiotics and host defense responses prior to attachment of vascular bacteria to xylem vessels 

(Stoodley et al., 2002). 

1.4.4 Lipopolysaccharides (LPS) 

In addition to EPS, lipopolysaccharides (LPS) represent another group of surface-associated virulence 

factors of Xanthomonas spp. Similar to EPS, LPS are essential components of the bacterial outer 
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membrane and may serves a dual role as physical barrier by protecting bacteria from antibacterial 

substances produced by plants and also as an inducer of plant defense-related genes (Newman et al., 

2000). It comprises three covalently linked components: an outer membrane–bound moiety called 

lipid A, a core oligosaccharide and polysaccharide side chains (O-antigen) (Raetz & Whitfield, 2002). In 

X. campestris pv. campestris, the synthesis of LPS is directed by the wxc gene cluster, which comprises 

15 different genes (Vorhölter et al., 2001). Mutations in the wxc gene cluster causes higher sensitivity 

in unfavorable conditions for Xanthomonas spp. and might therefore lead to an attenuation of 

bacterial virulence as it has been shown for X. campestris pv. campestris and X. campestris pv. 

citrumelo (Kingsley et al., 1993; Dow et al., 1995; Newman et al., 2001). Comparative sequence analysis 

of wxc gene clusters and whole genome sequences have revealed that LPS gene clusters of different 

Xanthomonas spp. are highly variable in number and identity of genes. Therefore, LPS genes 

presumably are subject to a strong diversifying selection in different species, pathovars or even strains 

(Lu et al., 2008). Variations in LPS composition facilitate bacteria to avoid recognition of resistance 

mechanisms of the plant and presumably also affect bacterial resistance to phage adsorption and/or 

infection (Ojanen et al., 1993; Hung et al., 2002). It has been suggested that variation in the LPS gene 

cluster among X. axonopodis pv. citrumelo, X. axonopodis pv. citri and X. campestris pv. vesicatoria 

might contribute to their differences in virulence or symptom development in plant hosts rather than 

serving as a determinant of their differential host range (Jalan et al., 2011). 

1.4.5 Gene cluster of regulation of pathogenicity factors (rpf) 

It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates 

virulence in response to the diffusible signal factor, DSF. DSF is often regarded as a quorum-sensing 

(QS) molecule that allows bacteria to assess their population density. Gram-negative bacteria typically 

produce homoserine lactose derivates as main QS signals (de Kievit & Iglewski, 2000). When the 

extracellular concentration of a secreted QS signal rises above a specific threshold, the bacterium can 

recognize the signal, which in turn regulates the expression of genes involved in diverse group 

behaviors, such as swarming motility, biofilm formation, cell division, stress survival, and production 

of virulence factors (Fuqua et al., 2001). Investigation of the function of rpf genes, was showed that 

mutations in rpfB, rpfC, rpfF, and rpfG reduce the virulence and motility in X. oryzae pv. oryzae (Xoo) 

and decrease the expression of genes involved in the production of EPS, lipopolysaccharide (LPS), 

phytase, xylanase, and lipases (Jeong et al., 2008). In X. campestris pv. campestris (Xcc), the inactivation 

of rpfI gene reduced expression levels of proteases indicating that rpfI is responsible for tissue 

degeneration during Xcc infection (Dow et al., 2000). 
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Abstract 

Xanthomonas axonopodis pv. dieffenbachiae (Xad) is the causal agent of anthurium bacterial blight 

and listed as an A2 quarantine organism by EPPO. However, the name Xad covers a variety of strains. 

Here, 25 Xad strains and 88 phylogenetically related strains, including Xanthomonas type strains and 

representatives of other pathovars, were examined using a polyphasic taxonomic approach. Multilocus 

sequence analysis of seven genes showed that strains isolated from Dieffenbachia, Philodendron, and 

Anthurium cluster into three distinct phylogenetic groups (PG I, II and III), while the type strain of X. 

axonopodis clustered into a fourth group (PG IV). PG I included the type strains of X. citri subsp. citri, 

X. citri subsp. malavacearum, X. fuscans subsp. fuscans and X. fuscans subsp. aurantifolii. PG II included 

the type strains of X. euvesicatoria, X. perforans, X. alfalfae subsp. alfalfae and X. alfalfae subsp. 

citrumelonis. PG III included the type strains of X. phaseoli. Each PG was shown to represent a single 

species based on average nucleotide identity values, DNA-DNA hybridization data and phenotypic 

characteristics. Therefore, strains named as Xad belong to PG I, PG II and PG III, and not to X. 

axonopodis (PG IV). Taxonomic proposals are made: emendations of the descriptions of X. citri, X. 

phaseoli and X. axonopodis, to encompass the strains of PG I, PG III and PG IV, respectively; 

reclassification of X. perforans and X. alfalfae as X. euvesicatoria and emendation of the description of 

X. euvesicatoria to encompass all strains of PG II. 

2.1 Introduction 

Xanthomonas axonopodis pv. dieffenbachiae (Xad) is the causal agent of anthurium bacterial blight. It 

affects members of the Araceae (aroids) causing leaf spots, blight and in some cases plant decay. 

Ornamental aroids such as Anthurium, Alocasia, Dieffenbachia and Philodendron are widely grown for 

use as indoor foliage. Other aroids such as Colocasia esculenta (taro), Alocasia (elephant ear), 

Cyrtosperma (swamp taro) and Xanthosoma (tannia) are used for food, animal fodder or medicinal 

purposes in the tropics and subtropics. Difficulties in controlling the spread of the pathogen, as well as 

the severity of disease symptoms, especially on Anthurium, led to the classification of Xad as an A2 

quarantine organism on the EPPO list (EPPO, 2009). The disease was first described in the United States 

(McCulloch & Pirone, 1939) and has since spread worldwide. The pathogen was originally named 

Xanthomonas dieffenbachiae according to the “new host-new species” concept by which a plant 

pathogenic xanthomonad isolated from a new host plant was classified as a new species. When the 

ʻApproved Listsʼ (Skerman et al., 1980) were implemented, the species was classified in X. campestris 

and the original species name was preserved in a special-purpose pathovar nomenclature as X. 

campestris pv. dieffenbachiae (Dye et al., 1980). In 1995, pathovar dieffenbachiae was transferred, 

together with 33 other X. campestris pathovars to X. axonopodis based on DNA-DNA hybridization 
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(DDH) data (Vauterin et al., 1995). The complex species X. axonopodis represents a high heterogeneity, 

not only in terms of pathogenicity to a wide range of unrelated host plant genera, but also genetically, 

based on rep-PCR and AFLP data, housekeeping gene sequences and DDH data (Rademaker et al., 

2000; Jones et al., 2004; Young et al., 2008; Parkinson et al., 2009). 

Recent phylogenetic analyses of the genus Xanthomonas based on comparison of house-keeping gene 

sequences, including the gyrase B gene (gyrB) (Parkinson et al., 2009) and the RNA polymerase β 

subunit gene (rpoB) (Ferreira-Tonin et al., 2012), proved successful to reliably discriminate 

Xanthomonas species. In the study of Parkinson et al. (2009), four phylogenetic clades were 

discriminated among known X. axonopodis pathotype strains. A gyrB fragment was also selected as a 

suitable barcode for identification of quarantine Xanthomonas taxa in the Quarantine Barcoding of Life 

project and is currently implemented in Q-bank for use by phytodiagnostic laboratories (www.q-

bank.eu/Bacteria). Also, it was reported that Xad strains cluster into separate groups according to their 

host of isolation (Rademaker et al., 2005; Hajri et al., 2009; Donahoo et al., 2013). 

The objective of this study was to investigate 25 Xad strains isolated worldwide from four aroid hosts 

(Anthurium, Dieffenbachia, Philodendron and Aglaonema), together with 88 phylogenetically related 

Xanthomonas species and pathovars, using a polyphasic taxonomic approach that included multilocus 

sequence analysis (MLSA) using seven genes, DDH, calculation of whole-genome average nucleotide 

identity (ANI) values, and biochemical analyses. 

2.2 Materials and methods 

2.2.1 Bacterial strains 

Twenty-five Xad strains and 88 phylogenetically related strains, including type strains and 

representatives of other Xanthomonas pathovars, were used in this study and are listed in 

Supplementary Table 2.1. Strains were obtained from CIRM-CFBP (International Centre for Microbial 

Resources-French Collection of Plant Associated Bacteria, France), NCPPB (National Collection of Plant 

Pathogenic Bacteria, York, UK), LMG (BCCM/LMG Bacteria Collection, Ghent University, Belgium) and 

from working collections of several research institutes. For long time storage, all strains were kept at -

80°C on beads in cryovials (Microbank, Prolab Diagnostics). Supplementary Table 2.2 presents the 

pathotype strains for which gyrB sequences available in GenBank, were used in Supplementary Figure 

2.1. 
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2.2.2 DNA extraction 

All strains were grown on Wilbrink’s medium with nitrate (Wilbrink-N) (Koike, 1965) and incubated for 

48 h at 28°C. A single bacterial colony from Wilbrink-N was transferred in 3 mL trypticase soy broth 

(TSB; Becton, Dickinson and Company) and grown for 24 h in a shaking incubator (200 rpm) at 28°C. 

The pellet of 1 mL TSB culture was used for genomic DNA extraction by the DNeasy Blood & Tissue kit 

(QIAGEN). DNA concentration and purity (according to A260/280 and A260/230) were determined using a 

ND-1000 spectrophotometer (NanoDrop) and DNA aliquots were stored at -20°C for further use. 

2.2.3 Multi-locus sequence analysis (MLSA) 

MLSA using seven housekeeping genes (atpD, dnaK, efp, glnA, gyrB, lrp, rpoD) was performed for 109 

Xanthomonas strains. The seven loci were chosen based on previous sequence-based studies of 

Xanthomonas species (Cubero. & Graham, 2004; Fargier et al., 2011; Hamza et al., 2012). Primers and 

annealing temperatures for amplification of these housekeeping genes are given in Supplementary 

Table 2.3. 

PCR reactions were done in a total volume of 25 µL consisting of 2 µL DNA template (25 ng µL-1), 2.5 

µL 10 x reaction buffer (Roche Applied Science) with 2 mM MgCl2, 0.5 µL dNTPs (10 mM), 1 µL of each 

10 mM primer, 0.2 µL FastStart Taq DNA polymerase (5 U µL-1; Roche Applied Science) and 17.8 µL 

milli-Q water. PCR amplifications were performed in a C1000 thermal cycler (Bio-Rad) using the 

following program: 5 min at 95°C; 35 cycles of 0.5 min at 95°C; 1 min at 72°C; and a final extension for 

10 min at 72°C. Products were visualized with the QIAxcel system and purified with NucleoSpin Gel 

and PCR clean-up (Macherey-Nägel). DNA concentration and quality were assessed in a ND-1000 

spectrophotometer. Purified PCR products were sequenced directly and in both directions by Beckman 

Coulter Genomics (UK) using the same primers as for the PCR amplification. 

Sequences were assembled with BIONUMERICS v. 7.0 software (Applied Maths), trimmed and deposited 

in Genbank with the accession numbers provided in Supplementary Table 2.4. Sequences were 

concatenated and aligned using CLUSTALW (Thompson et al., 1994) following the alphabetic order of 

the genes, ending in a sequence of 4815 bp (1–747 for atpD, 748–1683 for dnaK, 1684–2070 for efp, 

2071–2955 for glnA, 2956–3483 for gyrB, 3484–3942 for lrp, 3943–4815 for rpoD). A similarity matrix 

of all sequences was calculated using the same software Wiley Online Library (Constantin et al., 2016). 

Evolutionary distances were computed using the maximum likelihood method with the Tamura-Nei 

model (Tamura & Nei, 1993). Phylogenetic trees for each independent gene alignment (only the gyrB 

tree is provided, Supplementary Figure 2.1) as well as for the concatenated sequence alignment (Figure 

2.1) were generated, all using MEGA v.6 software (Tamura et al., 2013). Distance estimation was 

calculated using the p-distance substitution model with 1000 bootstrapping replications. The 

http://onlinelibrary.wiley.com/store/10.1111/ppa.12461/asset/supinfo/ppa12461-sup-0006-TableS5.xls?v=1&s=25daffc0d7dfa4505519d411b1d2695bd684c5c0
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nucleotide sequences of the seven genes were also translated into their corresponding amino acid 

sequences using the same software. The lengths of the peptide sequences for atpD, dnaK, efp, glnA, 

gyrB, lrp and rpoD were 249, 312, 129, 295, 176, 153 and 291 amino acids, respectively, resulting in a 

concatenated peptide length of 1605 amino acids. Individual and concatenated-peptide sequence 

trees were drawn in MEGA v.6 using the Tamura-Nei model and by estimating the gamma distribution 

with invariant sites parameters. Xanthomonas vasicola and Xanthomonas oryzae were used as the out-

groups. 

2.2.4 DNA-DNA hybridization 

DNA was extracted at large scale using the method described by (Wilson, 1987) with minor 

modifications (Cleenwerck et al., 2002). DDH was performed under stringent conditions in a solution 

containing 50% of formamide (v/v) at 51°C, which corresponds to the T0R+ 6°C, using a modified version 

of the microplate method described by Ezaki et al. (1989). The T0R was determined using the following 

equation by Goris et al. (1998): 0.51×average %GC content + 47°C–36°C (correction for 50% 

formamide), with 66 mol% taken as the average %GC content of X. axonopodis (Vauterin et al., 1995). 

For every DNA pair, reciprocal reactions (e.g. A×B and B×A) were carried out. Per DNA pair, the 

presented DNA-DNA relatedness value (Supplementary Table 2.5) is the average of the mean value of 

A×B and that of B×A, while the value between parentheses is the difference between the mean value 

of A×B and that of B×A. 

2.2.5 Whole-genome DNA sequencing, assembly and taxonomic analysis 

Custom DNA library preparation and sequencing using multiplex Illumina TruSeq v. 3.0 technology was 

performed at Baseclear N.V., Leiden, The Netherlands. A paired-end (PE) DNA library with 2 x 50 bp 

reads was constructed for each strain to generate assemblies with ~ 30x coverage. Sequencing was 

performed on a Hiseq2500 instrument (Illumina Inc.). The FASTQ sequence reads were generated using 

the Illumina CASAVA pipeline v. 1.8.3. Initial quality assessment was based on data passing the Illumina 

Chastity filtering. 

Subsequently, samples were demultiplexed and reads, containing adapters and/or PhiX control signal, 

were removed using an in-house filtering protocol from BASECLEAR. FASTQ files were delivered by FTP. 

First, the PE data set was quality trimmed at Q20 in a CLC BIOGENOMICS Genomics WORKBENCH v7.0 

using a quality score of 0.05 and a maximum of two ambiguous nucleotides per read. Then, de novo 

assembly was performed with the trimmed PE dataset using automatic word and bubble size 

parameters, a minimum contig length of 200bp and autodetection of paired distances without 

scaffolding. Other genome quality statistics are shown in (Supplementary Table 2.6). The resulting 

contigs were exported in FASTA format and used for ANI calculations in JSpecies v1.2.1. (Richter & 
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Rosselló-Mora, 2009) under BIO-LINUX v. 7.0 (Field et al., 2006) with default settings for BLAST-based 

analysis (ANIb). Whole genome sequences downloaded from GenBank were included (Table 2.1). The 

similarity matrix was exported and used to construct a complete linkage tree in BIONUMERICS v. 7.5 

(Figure 2.2). A scatter plot was constructed depicting the correlation between ANI values and MLSA 

similarities based on the concatenated gene sequences (Figure 2.3). The draft assemblies have been 

deposited in the GenBank WGS database with the accession numbers: JPYD00000000 (LMG 9322), 

JPYF00000000 (LMG 826), JPYC00000000 (LMG 27970), JPYG00000000 (LMG 495), JPYE00000000 

(LMG 982), JPYB00000000 (LMG 695), JPYH00000000 (LMG 7399), JPUN00000000 (LMG 12749) and 

JPUO00000000 (LMG 9055). 

2.2.6 Gas chromatographic analysis of FAMEs 

Whole cell fatty acid methyl ester (FAME) compositions were determined using a 6890N gas 

chromatograph (Agilent Technologies). Cultivation of the strains, harvesting of the cells, fatty acid 

extraction and analysis of the FAME were performed according to the recommendations of the 

Sherlock Microbial Identification System (MIDI, Newark, Delaware, USA). Fatty acids were extracted 

from cultures grown on trypticase soy agar (BBL) for 24 h at 28° C under aerobic conditions. The peaks 

of the profiles were identified using the TSBA50 peak naming table and identification library v. 5.0. The 

profiles were also compared with profiles of selected type strains of Xanthomonas species generated 

from cells of the same age using the same method and present in the FAME-database of BCCM/LMG 

Supplementary Table 2.7). 

2.2.7 Phenotypic analysis with the Biolog GEN III MicroPlate system  

Xanthomonas strains for Biolog GEN III MicroPlate (Biolog Inc.) assays were grown for 24 h under 

aerobic conditions on BUG medium without blood at 33°C. 

Inocula were prepared by picking up a 3 mm diameter area of cell growth from the surface of the agar 

plate using a sterile cotton stick, and by rubbing the stick against the bottom of a tube filled with 

inoculating fluid A. Each well of a Biolog GEN III microplate was filled with 100 µl of this fluid, and the 

plate was covered and incubated for 24 - 144 h at the same temperature as used to obtain the culture 

for inoculation. The microplates were read with a Biolog MicroStation microplate reader and analyzed 

using the Biolog Microbial Identification software, OmniLog Data Collection. 

However, for some species and pathovars, such as X. euvesicatoria, [X. campestris] pv. syngonii, X. 

axonopodis pv. axonopodis, X. fuscans pv. aurantifolii, X. campestris pv. campestris, X. bromi and X. 

oryzae the color reactions were not sufficiently developed for accurate reading when they were grown 
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at 33°C. For these strains better results were obtained when the strains were grown at 28°C and the 

plates incubated at a lower temperature (28°C) up to 144 hours. 

2.3 Results 

2.3.1 Multilocus Sequence Analysis (MLSA) 

MLSA of seven housekeeping genes (atpD, dnaK, efp, glnA, gyrB, lrp, and rpoD) was performed for 109 

Xanthomonas strains comprising 25 Xad strains and 84 strains of phylogenetically related pathovars. 

All individual gene trees revealed four large phylogenetic groups (PG I to IV) with the Xad strains 

distributed in three of these groups (PG I to III). The Xad strains in PG III, whether based on single genes 

(only the gyrB tree is shown in Supplementary Figure 2.1) or a concatenation of all seven genes (Figure 

2.1), formed a homogeneous group clearly separated from all other known pathovars in this group. In 

contrast, the Xad strains in PG I and II were only differentiated from other closely related pathovars in 

the same group by the concatenated nucleotide sequences and by partial sequences of four genes 

(atpD, dnaK, lrp, and rpoD), but not on sequences of efp, glnA and gyrB (Supplementary Figure 2.1). 

Most branch nodes were well supported by high bootstrap values, and quantitative support for the 

four PG’s is also shown in the similarity matrix given in Wiley Online Library (Constantin et al., 2016). 

The analysis of peptide sequences was similar to that of the nucleotides (data not shown). 

PG I comprises 35 strains including the Xad strains isolated from Dieffenbachia. This group is further 

divided in two subgroups, subgroup 1 (11 strains) and subgroup 2 (24 strains). Subgroup 1 included 

the type strains of X. citri subsp. citri and X. citri subsp. malavacearum and the pathotype strains of the 

X. axonopodis pathovars: citri, malvacearum, glycines, punicae and mangiferaeindicae. Subgroup 2 

contains the Xad strains isolated from Dieffenbachia and the type strains of X. fuscans subsp. fuscans 

and X. fuscans subsp. aurantifolii as well as the pathotype strains of X. axonopodis pathovars: 

anacardii, rhynchosiae, sesbaniae, vignaeradiatae, vignicola together with [X. campestris] pv. 

aracearum and [X. campestris] pv. thirumalacharii. 

PG II comprises 46 strains including the Xad strains isolated from Philodendron and the type strains of 

X. euvesicatoria, X. perforans, X. alfalfae subsp. alfalfae and X. alfalfae subsp. citrumelonis, as well as 

the pathotype strains of X. axonopodis pv. alfalfae, X. axonopodis pv. allii, X. axonopodis pv. coracanae, 

X. axonopodis pv. erythrinae, X. axonopodis pv. physalidicola, [X. campestris] pv. alangii, [X. 

campestris] pv. amorphophalli, [X. campestris] pv. argemones, [X. campestris] pv. betae, [X. 

campestris] pv. physalidis, [X. campestris] pv. sesami and [X. campestris] pv. tribuli. 

PG III comprises 23 strains including the pathotype strain of Xad amongst other Xad strains isolated 

from Anthurium as well as the type strain of X. phaseoli and the pathotype strains of X. axonopodis pv. 

manihotis, X. axonopodis pv. phaseoli and [X. campestris] pv. syngonii. 

http://onlinelibrary.wiley.com/store/10.1111/ppa.12461/asset/supinfo/ppa12461-sup-0006-TableS5.xls?v=1&s=25daffc0d7dfa4505519d411b1d2695bd684c5c0
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PG IV comprises the type strain of X. axonopodis and two strains from the sugar-cane pathogen X. 

axonopodis pv. vasculorum including the pathotype strain.  

Based on concatenated gene sequences, the similarity values within each PG were higher than 98.31% 

(PG I: ≥ 98.31%, PG II: ≥ 98.50%, PG III: ≥ 98.31% and PG IV: ≥ 98.93%), and the similarity values found 

between these groups ranged from 96.60 to 97.77% (Wiley Online Library, Constantin et al., 2016). 

 

 

 

http://onlinelibrary.wiley.com/store/10.1111/ppa.12461/asset/supinfo/ppa12461-sup-0006-TableS5.xls?v=1&s=25daffc0d7dfa4505519d411b1d2695bd684c5c0
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Figure 2.1. Maximum-likelihood phylogenetic tree of concatenated nucleotide sequences of partial atpD, dnaK, efp, glnA, gyrB, lrp 
and rpoD genes. In bold are all strains pathogenic to aroids. Bootstrap values greater than 50% are shown for 1000 replicates. 
Horizontal scale bar (0.005) at the bottom represents number of nucleotide substitutions per site. Concatenated sequences of X. 
vasicola LMG 736T and X. oryzae PXO99A were used as outgroups. T = type strain; PT = pathotype strain; nPT = neopathotype. 

2.3.2 DNA-DNA hybridization 

DNA-DNA hybridisations were made with a selection of strains from the four phylogenetic groups (PG I to 

IV) differentiated among X. axonopodis strains as indicated in Supplementary Table 2.5. Within PG I to PG 

III, DNA-DNA relatedness values of more than 70% were found, whereas relatedness values ranging from 
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57 to 62% were found with the type strain of X. axonopodis LMG 982T (PG IV) (Supplementary Table 2.5). 

These results suggested that strains from PG I, PG II and PG III should not be classified as X. axonopodis as 

the values are clearly below 70% (Wayne et al., 1987). Among G I, PG II and PG III values up to 69% were 

obtained, complicating the decision if they warranted classification as distinct species. 

2.3.3 Whole genome sequence analysis 

Nine genomes representing three strains of Xad and six strains of phylogenetically related pathovars were 

sequenced. These genomes were compared with available whole genome sequences of 17 other 

Xanthomonas strains, and ANI values were calculated. The similarity matrix of ANI values is shown in Table 

2.1. The ANI data confirmed that strains of PG I, PG II and PG III should not be classified as X. axonopodis 

and their ANI values with PG IV were clearly below the 95% value for species delineation cut-off (Goris et 

al., 2007; Richter & Rosselló-Mora, 2009). Within PG I, PG II and PG III ANI values above of more than 95.45% 

were found, with >98.37% for PG I subgroup1, >98.03% for PG I subgroup 2, >98.27% for PG II and >97.42% 

for PG III. The lowest ANI values (95.45-96.19%) were found within PG I between the subgroups 1 and 2. 

Further, the ANI values between PG I, PG II and PG III were not exceeding 94.14%, suggesting distinct 

species. A complete linkage tree based on the whole genome sequences was constructed and confirmed 

the topology found by MLSA (Figure 2.2). The ANI data matched the MLSA data as shown in Figure 2.3. In 

general, strains sharing an ANI value above 95% also showed at least ≥98.32% sequence similarity in MLSA. 

 

Figure 2.2. Gene content similarities among the genomes of Xanthomonas strains using complete linkage cluster analysis. 

Xanthomonas oryzae PXO99A was used as out-group. Xanthomonas axonopodis pv. dieffenbachiae strains are in bold. ANI = 

average nucleotide identity; PG = phylogenetic group; T = type strain; PT = pathotype strain. .
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Table 2.1. Average nucleotide identity (ANI) pairwise comparison values among (draft) whole genome sequences of selected Xanthomonas axonopodis (sensu Vauterin et 
al., 1995) strains. 
 

      1 2 3 4 5 6 7 8 9 10 11 12 13 

X. euvesicatoria (PG II) 1 X. perforans 91-118T ---                    

  2a X. alfalfae subsp. alfalfae LMG 495T 98.66 ---                  

  3 X. alfalfae subsp. citrumelonis F1 98.72 98.55 ---                

  4a X. axonopodis pv. dieffenbachiae LMG 12749  98.79 98.6 98.55 ---              

  5 X. euvesicatoria 85-10  98.55 98.44 98.47 98.41 ---            

  6a X. euvesicatoria LMG 27970T 98.52 98.27 98.37 98.28 99.95 ---               

X. phaseoli (PG III) 7 X. axonopodis pv. manihotis AT6B  93.72 93.63 93.58 93.66 93.67 93.52 ---            

  8 X. axonopodis pv. manihotis CIO1  93.7 93.67 93.6 93.65 93.73 93.56 99.86 ---          

  9 X. axonopodis pv. manihotis CFBP 1851  93.72 93.81 93.79 93.77 93.76 93.59 99.87 99.86 ---        

  10a X. campestris pv. syngonii LMG 9055PT 93.85 93.82 93.74 93.73 93.77 93.85 97.03 97.09 97.06 ---      

  11a X. axonopodis pv. dieffenbachiae LMG 695PT 93.73 93.72 93.68 93.67 93.59 93.62 97.42 97.64 97.7 97.21 ---     

X. axonopodis (PG IV) 12a X. axonopodis pv. axonopodis LMG 982T, PT  92.62 92.83 92.78 92.76 92.66 92.63 92.89 92.89 92.91 92.91 93.02 ---   

X. citri (PG I) 13 X. citri subsp. malvacearum X 18  94.09 94.11 94.06 94.14 94.08 94.0 93.19 93.15 93.18 93.27 93.2 92.66 --- 

  14 X. citri subsp. malvacearum GSPB 1386 94.07 94.01 93.91 94.02 94.13 94.02 93.14 93.14 93.15 93.0 93.16 92.62 99.97 

 subgroup 1 15 X. citri subsp. malvacearum GSPB 2388 93.72 93.68 93.62 93.71 93.78 93.67 93.12 93.1 93.12 92.88 93.06 92.58 99.24 

  16 X. citri pv. punicae LMG 859PT 93.87 93.81 93.82 93.82 93.83 93.75 93.18 93.15 93.13 92.98 93.14 92.59 98.55 

  17 X. axonopodis pv. citri AW 12879 93.84 93.77 93.74 93.82 93.72 93.75 93.18 93.16 93.16 92.97 92.98 92.66 98.5 

  18a X. citri subsp. citri LMG 9322T 93.84 93.86 93.84 93.87 93.72 93.71 93.11 93.1 93.13 92.96 93.15 92.65 98.5 

  19 X. axonopodis pv. citri 306 93.85 93.87 93.86 93.89 93.72 93.7 93.1 93.06 93.13 92.99 93.11 92.66 98.5 

  20 X. citri pv. mangiferaeindicae LMG 941PT  93.85 93.89 93.87 93.86 93.77 93.81 93.16 93.16 93.17 93.08 93.22 92.59 98.46 

  21 X. citri pv. glycines 12-2 93.88 93.83 93.92 93.84 93.8 93.75 93.15 93.13 93.22 92.98 93.18 92.64 98.48 

  22a X. axonopodis pv. dieffenbachiae LMG 7399  93.67 93.59 93.59 93.71 93.41 93.46 93.72 93.86 93.93 93.36 93.95 92.73 95.63 

 subgroup 2 23 X. fuscans subsp. aurantifolii ICPB 11122  93.69 93.67 93.67 93.7 93.66 93.7 93.18 93.19 93.21 93.06 93.16 92.64 95.86 

  24a X. fuscans subsp. fuscans LMG 826T 93.7 93.67 93.63 93.65 93.6 93.56 93.2 93.29 93.34 92.97 93.11 92.71 96.04 

  25 X. fuscans subsp. aurantifolii ICPB 10535  93.76 93.62 93.52 93.64 93.56 93.61 93.26 93.25 93.25 93.08 93.13 92.51 95.79 

  26 X. oryzae pv. oryzae PXO99A  89.55 89.6 89.52 89.84 89.4 89.53 89.14 89.29 89.26 89.13 89.31 89.18 89.52 
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      14 15 16 17 18 19 20 21 22 23 24 25 26 

X. euvesicatoria (PG II) 1 X.perforans 91-118T                

  2a X. alfalfae subsp. alfalfae LMG 495T                

  3 X. alfalfae subsp. citrumelonis F1                

  4a X. axonopodis pv. dieffenbachiae LMG 12749                 

  5 X. euvesicatoria 85-10                 

  6a X. euvesicatoria LMG 27970T                           

X. phaseoli (PG III) 7 X. axonopodis pv. manihotis AT6B                 

  8 X. axonopodis pv. manihotis CIO1                 

  9 X. axonopodis pv. manihotis CFBP 1851                 

  10a X. campestris pv. syngonii LMG 9055PT                

  11a X. axonopodis pv. dieffenbachiae LMG 695PT                           

X. axonopodis (PG IV) 12a X. axonopodis pv. axonopodis LMG 982T, PT                            

X. citri (PG I) 13 X. citri subsp. malvacearum X 18                            

  14 X. citri subsp. malvacearum GSPB 1386 ---                         

 subgroup 1 15 X. citri subsp. malvacearum GSPB 2388 99.2 ---                       

  16 X. citri pv. punicae LMG 859PT 98.51 98.64 ---                     

  17 X. axonopodis pv. citri AW 12879 98.45 98.45 98.65 ---                   

  18a X. citri subsp. citri LMG 9322T 98.34 98.42 98.59 99.68 ---                 

  19 X. axonopodis pv. citri 306 98.4 98.49 98.68 99.71 99.9 ---               

  20 X. citri pv. mangiferaeindicae LMG 941PT  98.43 98.56 98.74 98.7 98.66 98.76 ---             

  21 X. citri pv. glycines 12-2 98.37 98.47 98.57 98.66 98.6 98.58 98.66 ---           

  22a X. axonopodis pv. dieffenbachiae LMG 7399  95.6 95.49 95.71 95.45 95.54 95.61 95.56 95.58 ---         

 subgroup 2 23 X. fuscans subsp. aurantifolii ICPB 11122  95.81 95.94 95.91 96.0 95.92 95.99 96.11 96.06 98.03 ---       

  24a X. fuscans subsp. fuscans LMG 826T 96.0 96.07 96.14 96.08 96.05 96.15 96.11 96.19 98.11 98.77 ---     

  25 X. fuscans subsp. aurantifolii ICPB 10535  95.68 95.93 95.8 96.0 95.96 96.02 96.11 95.88 98.12 99.12 98.75 ---   

  26 X. oryzae pv. oryzae PXO99A  89.37 89.64 89.25 89.54 89.55 89.65 89.38 89.36 89.44 89.47 89.66 89.41 --- 

Strains with ANI values above 95% are considered to belong to the same species (in grey shading). T = type strain; PT = pathotype (pathovar reference) strain. 
aWhole genome sequences that were determined in this study (others were already available in GenBank with accession numbers provided in Supplementary Table 2.4). 
X. perforans 91-118T (Potnis et al., 2011) is the same strain as XV938, NCPPB 4321, LMG 28258.



Chapter 2: Taxonomic revision of Xad strains 

64 
 

 

 

 

Figure 2.3. Scatter plot showing the congruence between average nucleotide identity (ANI) values and multilocus sequence 
analysis (MLSA) similarities based on concatenated partial sequences of seven genes (atpD, dnaK, efp, glnA, gyrB, lrp and 
rpoD) from Xanthomonas strains. Each point represents the ANI similarity value from Table 2.1 with the corresponding MLSA 
similarity value among 26 strains. 

2.3.4 Phenotypic analysis 

The cellular fatty acid contents of 31 representative X. axonopodis strains and phylogenetically related 

strains are shown in Supplementary Table 2.7. All strains contained the three fatty acids characteristic 

for the genus Xanthomonas (C11:0 iso, C11:0 iso 3-OH, C13:0 iso 3-OH) (Vauterin et al., 1995). Although the 

strains within the four phylogenetic groups (PG I to PG IV) had an overall similar fatty acids 

compositions, the amount of fatty acids, such as C15:0 anteiso and C17:0 iso, enabled the differentiation 

of PG IV (X. axonopodis) from the other three PGs.  

The results of the Biolog GEN III metabolic fingerprinting tests for 23 representative strains are given 

in Supplementary Table 2.8. Strains from PG II were able to oxidize 31 substrates on average, followed 

by strains from PG III (mean number of 27 substrates). Strains from PG I and PG IV oxidized on average 

20 and 6 substrates, respectively. For each phylogenetic group, a number of core substrates were 

identified that can be oxidized by all strains tested. Strains from PG I, PG II and PG III can oxidize core 

sets of 5, 19 and 13 substrates, respectively. Also, strains from PG IV were metabolically more versatile 

in the oxidation of substrates than strains from the other three groups, although they could only 

oxidase less than 20%. Based on GEN III data from this study, combinations of the phenotypic features 
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shown in Table 2.2 appear useful to differentiate the four groups PG I to PG IV from each other and 

from closely related Xanthomonas species. 

Table 2.2. Distinguishing features for X. citri (PG I), X. euvesicatoria (PG II), X. phaseoli (PG III), X. axonopodis (PG 
IV) and related Xanthomonas species, based on Biolog GEN III data. 

 Speciesa         

Substrate 1 2 3 4 5 6 7 8 9 

D-Maltose 20 (/) 100 75 (+) 0 0 100 0 100 0 

D-Melibiose 40 (-) 100 50 (-) 0 100 100 0 100 0 

N-Acetyl-D-Glucosamine 100 100 100 66 (+) 100 100 100 0 100 

α-D-Glucose 100 100 100 100 100 100 100 0 100 

Glycerol 80 (+) 100 75 (+) 0 0 0 100 100 100 

D-Glucose-6-PO4 40 (-) 50 (/) 75 (+) 33 (/) 0 100 100 100 0 

D-Fructose-6-PO4 100 100 100 0 100 100 100 100 100 

Gelatin 80 (+) 83 (+) 75 (+) 0 0 100 100 0 100 

D-Saccharic acid 40 (-) 17 (/) 0 0 100 100 100 0 0 

L-Lactic Acid 40 (-) 33 (/) 25 (/) 33 (+) 0 0 100 0 0 

Antibiotic resistance assays          

Rifamycin SV 80 (+) 67 (+) 100 0 100 0 100 100 100 

Nalidixic Acid 20 (-) 67 (+) 100 66 (+) 100 100 100 100 100 

Aztreonam 40 (/) 67 (+) 100 33 (-) 100 100 100 100 100 

 
Values are the percentage of intermediate and positive (i.e. / or +) strains. For species 1-4, the result of the type strain is 
given in parantheses. All data were generated in this study. 
aSpecies: 1. X. citri (5 strains); 2. X. euvesicatoria (6 strains); 3. X. phaseoli (4 strains); 4. X. axonopodis (3 strains); 5. X. 
campestris LMG 568T; 6. X. melonis LMG 8670T; 7. X. bromi LMG 947T; 8. X. oryzae LMG 5047T; 9. X. vasicola LMG 736T. The 
type strain of each species is included. 

2.4 Discussion 

For practical diagnosis, it is important that quarantine organisms can be unambiguously identified, 

preferably in a rapid manner. This study aimed to clarify the taxonomic position of strains of Xad, which 

are acknowledged to be heterogeneous, possibly representing different taxa (Rademaker et al., 2005; 

Donahoo et al., 2013). For this purpose, a well-chosen set of collection strains was examined by a 

polyphasic taxonomic approach that included MLSA, DDH, ANI calculation and biochemical analysis. 

The 16S rRNA gene was not investigated for the strains, as the taxonomic resolution of this gene is too 

low within the genus Xanthomonas (Hauben et al., 1997). Hence, additional techniques are required 

to resolve differentiation of Xanthomonas (sub) species (Moore et al., 1997). 

DNA-DNA hybridization data are considered the ʼgold standardʼ to delineate bacterial species (Wayne 

et al., 1987). However, DDHs have provided contradictory results within Xanthomonas (Vauterin et al., 

1995; Schaad et al., 2005). The species X. axonopodis was emended, based mainly on DDH data, by 
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Vauterin et al. (1995) to include 34 pathovars previously classified in X. campestris. Strains within X. 

axonopodis shared 77 ± 15% DNA-DNA relatedness. Later, some of these pathovars were elevated to 

species rank such as X. euvesicatoria, X. perforans, X. alfalfae, X. citri and X. fuscans as they were 

claimed to show less than 48% DNA-DNA relatedness with the type strain of X. axonopodis (Jones et 

al., 2004; Schaad et al., 2005). Subsequently, Ah-You et al. (2009) proposed that X. fuscans should be 

considered a later heterotypic synonym of X. citri because of their close phylogenetic relationship and 

ΔTm values below 5°C (Wayne et al., 1987). DDH data from this study revealed that strains of PG I, PG 

II and PG III did not belong to X. axonopodis but it was unclear if these groups formed distinct species. 

In the last decade, MLSA and ANI have been proposed as alternative methods for DDH experiments 

(Gevers et al., 2005; Goris et al., 2007; Young et al., 2008). The advantage of MLSA is that a large 

number of strains can be analyzed with a better portability than DDH data. 

Multi-locus sequence analysis, based on several housekeeping gene sequences, has been used for 

species delineation within Xanthomonas (Young et al., 2008) and to obtain insight in X. axonopodis 

sensu Vauterin (1995) (Ah-You et al., 2009). To obtain reliable MLSA data, it is advised to use a 

minimum of five well-chosen housekeeping genes, universally present as single copies in the bacterial 

taxa studied (Stackebrandt et al., 2002). The MLSA data of the present study, based on seven loci, are 

congruent with those of previous studies using one or more of these loci (Ah-You et al., 2009; Parkinson 

et al., 2009; Almeida et al., 2010). The 109 strains included in this study, are found in four phylogenetic 

groups PG I to PG IV, which respectively correspond to the clades previously described by Parkinson et 

al. (2009) as X. fuscans clade, X. euvesicatoria species complex, X. euvesicatoria species complex sister 

clade and X. axonopodis clade. In addition these groups relate to the X. axonopodis subgroups 

previously identified by Rademaker et al. (2005), i.e. PG I to subgroups 9.5 and 9.6; PG II to subgroup 

9.2, PG III to subgroup 9.4 and PG IV to subgroup 9.3. 

The type strain of X. axonopodis belongs to PG IV. Strains of pathovar dieffenbachiae are distributed 

over three phylogenetic groups (PG I to III), with PG I containing strains mostly isolated from 

Dieffenbachia, PG II containing strains isolated from Philodendron, and PG III containing strains isolated 

from Anthurium except one that was isolated from Dieffenbachia. Similar results were reported by 

Hajri et al. (2009) who corroborated that rpoD sequence analysis grouped pathovar dieffenbachiae 

strains according to their host of isolation (Anthurium, Dieffenbachia and Philodendron). Also in the 

study of Rademaker et al. (2005), Xad strains isolated from Anthurium and those isolated from 

Dieffenbachia belonged to different subgroups (9.4 and 9.6, respectively). 

Previous studies have suggested that the different genetic groups identified in X. axonopodis probably 

represent different species (Rademaker et al., 2005; Young et al., 2008). This is confirmed here by ANI 

values, DDH data and in a lesser extent by phenotypic features. More specifically for the Xad strains, 

the present data indicate that they belong to three different species. Based on this data, and in 
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compliance with the rules of the International Code of Nomenclature of Prokaryotes (Parker et al., 

2015) and the International Standards for Naming Pathovars (Dye et al., 1980; Young et al., 1991), a 

number of taxonomic proposals are made and specified further in this paper. 

In this study, the MLSA data was congruent with the ANI data; MLSA is, therefore, proven suitable for 

accurate identification of strains of X. axonopodis sensu Vauterin et al. (1995) at the species level. 

Based on the similarity matrix Wiley Online Library (Constantin et al., 2016), similarities above 98.3% 

suggest species level classification. Values between species were not exceeding 97.7%. Similar results 

for X. axonopodis sensu Vauterin et al. (1995) were reported by Young et al. (2008). 

On the basis of this and other studies, it is clear that the formal bacterial classification and 

nomenclature based on the Bacterial Code (1990 Revision) is often conflicting with the pathovar 

infrasubspecific classification applied to the phytopathogenic diversity within Xanthomonas (Parker et 

al., 2015, Young et al., 1992). The use of pathovars is well established for the genus Xanthomonas and 

clearly indicates differences in pathogenic ability within a species. However, for some pathogenic 

Xanthomonas subspecies have been created instead of pathovars (X. fuscans subsp. fuscans, X. fuscans 

subsp. aurantifolii, X. citri subsp. citri and X. citri subsp. malvacearum in PG I), (X. alfalfae subsp. 

alfalfae and X. alfalfae subsp. citrumelonis in PG II) (Schaad et al., 2006). In the present autors’ opinion, 

these subspecies should be lowered in rank to the pathovar level. Even though the two subgroups 

distinguished within PG I (X. citri) could merit the creation of subspecies, it seems unappropriate to 

create subspecies for groups of strains that are meant to be distinguished on the basis of their 

pathogenicity on a certain host. This approach was, for example, already implemented by Ah-You et 

al. (2009); those authors regarded X. fuscans as a later heterotypic synonym of X. citri and, for 

consistency within Xanthomonas, designated the two subspecies of X. fuscans as pathovars, rather 

than subspecies, of X. citri. 

Here, a first taxonomic framework for the X. axonopodis species complex is proposed, removing 

subspecies and describing pathovars instead, allowing more extended studies that tackle the host-

pathogen relation more in depth. The proposed classification system is a combination of a rational 

taxonomy and a convenient pathovar classification system for phytosanitary management. In 

conclusion, the combination of genotypic and phenotypic data of a considerable set of strains of X. 

axonopodis sensu Vauterin et al. (1995), allows for several taxonomic proposals: emendation of the 

descriptions of X. citri, X. phaseoli and X. axonopodis, to encompass the strains of PG I, PG III and PG 

IV, respectively; reclassification of X. perforans, X. alfalfae as X. euvesicatoria and emendation of the 

description of X. euvesicatoria to encompass all strains of PG II. In addition, it is proposed to lower the 

investigated subspecies in rank to the pathovar level and reclassify the investigated pathovars now 

included in X. axonopodis according the species classification proposed here. However, it is clear that 

http://onlinelibrary.wiley.com/store/10.1111/ppa.12461/asset/supinfo/ppa12461-sup-0006-TableS5.xls?v=1&s=25daffc0d7dfa4505519d411b1d2695bd684c5c0
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still more pathovars of X. axonopodis are misclassified at the species level and require further revision, 

such as X. axonopodis pv. begoniae (Rademaker subgroup 9.1). 

In conclusion, strains now considered as Xad have been shown to belong to three phylogenetic groups 

representing separate species. Only Xad strains within PG III, which include the pathotype strain, can 

maintain the pathovar epithet ‘dieffenbachiae’ in a new combination as X. phaseoli pv. dieffenbachiae 

comb. nov. The Xad strains comprised within PG I and PG II should be named as novel pathovars 

respectively within X. citri and X. euvesicatoria, respectively, if this is supported by pathogenicity tests 

and characterization of pathogenicity genes in further studies. It is clear that a revision of the 

phytosanitary status of these xanthomonads pathogenic to Araceae is required. This new classification 

has consequences not only for these aroid pathogens on the EPPO A2 quarantine list but also for other 

EU regulated Xanthomonas plant pathogens (Council Directive 2000/29/EC). 

Emended description of Xanthomonas citri (ex Hasse 1915) Gabriel et al. 1989 emend. Ah-

You et al. 2009 

The characteristics are as described for the genus (Vauterin et al., 2009) extended with data from this 

study. Using the Biolog GEN III MicroPlate system dextrin, N-acetyl-D-glucosamine, α-D-glucose, D-

galactose, D-Fructose-6-PO4, α-keto-glutaric acid, pH 6 are oxidized, but the following substrates are 

not: D-turanose, stachyose, α-D-lactose, β-methyl-D-glucoside, N-acetyl-β-D-galactosamine, N-acetyl-

neuraminic acid, D-fucose, L-rhamnose, D-mannitol, D-serine, p-hydroxy-phenylacetic acid, D-malic 

acid, γ-amino-butyric acid, β-hydroxy-D,L-butyric acid, fomnic acid, 4% NaCl, 8% NaCl, fusidic acid, D-

serine, troleando-mycin, guanidine HCl, lithium chloride. The oxidization of the following substrates is 

strain-dependent: D-maltose (20% of the strains), D-melibiose (40% of the strains), glycerol (80% of 

the strains), D-glucose-6-PO4 (40% of the strains), gelatin (80% of the strains), D-saccharic acid (40% 

of the strains), L-lactic acid (40% of the strains), rifamicin SV (80% of the strains), nalidixic acid (20% of 

the strains) and aztreonam (40% of the strains). The fatty acids C15:0 iso and summed feature 3 (C16:1 

ω7c / C15:0 iso 2-OH) are present in significant amounts in cells grown on TSA (BBL 11768) for 24h under 

aerobic conditions. X. citri can be differentiated from the phylogenetic close Xanthomonas species by 

MLSA (Ah-You et al., 2009; this study). 

The type strain is LMG 9322T = ICPB 10518T. 

 

X. citri pv. citri (Hasse 1915) comb. nov. 

= X. citri subsp. citri (Hasse 1915) Schaad et al. 2007. 

Description of Schaad et al. (2006) extended with the description of the species (this study). 

Pathotype strain: LMG 682; NCPPB 409. 
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The pathotype strain of X. citri pv. citri (LMG 682) and the type strain of X. citri subsp. citri (LMG 9322) 

are members of the same taxon (this study). Future pathogenicity studies should clarify if the type 

strain of X. citri subsp. citri can be classified in this pathovar. 

 

X. citri pv. malvacearum (Smith 1901) comb. nov.  

= X. citri subsp. malvacearum (Smith, 1901) Schaad et al. 2007. 

Description of Schaad et al. (2006) extended with the description of the species (this study) 

Pathotype strain: LMG 761; NCPPB 633. 

X. citri pv. malvacearum has the same pathogenicity as X. citri subsp. malvacearum (Schaad et al., 

2006)  

 

X. citri pv. glycines (Nakano 1919) comb. nov. 

= X. axonopodis pv. glycines (Nakano 1919) Vauterin et al. 1995. 

Description of Vauterin et al. (1995) extended with the description of the species (this study).  

Pathotype strain: LMG 712; NCPPB 554. 

 

X. citri pv. punicae (Hingorani and Singh 1959) comb. nov. 

= X. axonopodis pv. punicae (Hingorani and Singh 1959) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 859; NCPPB 466. 

 

X. citri pv. mangiferaindicae (Patel et al. 1948) comb. nov. 

= X. axonopodis pv. mangiferaeindicae (Patel et al. 1948) Ah-You et al. 2007. 

Description of Ah-You et al. (2007) extended with the description of the species (this study). 

Pathotype strain: LMG 941; NCPPB 490. 

 

X. citri pv. fuscans (Schaad et al. 2007) comb. nov.  

= X. fuscans subsp. fuscans Schaad et al. 2007 

Description of Schaad et al. (2006) extended with the description of the species (this study). 

The pathotype strain is the type strain of X. fuscans subsp. fuscans: LMG 826; NCPPB 381. 

The pathovar contains both the non-fuscous strains (X. axonopodis pv. phaseoli GL2 & GL3) and the 

fuscous strains (X. fuscans subsp. fuscans). 

 

X. citri pv. aurantifolii (Schaad et al. 2007) comb. nov. 

= X. fuscans subsp. aurantifolii Schaad et al. 2007 
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Description of Schaad et al. (2006) extended with the description of the species (this study). 

The pathotype strain is the type strain of X. fuscans subsp. aurantifolii: LMG 9179; NCPPB 3236. 

 

X. citri pv. anacardii (Ah-You et al. 2007) comb. nov.  

= X. axonopodis pv. anacardii Ah-You et al. 2007 

Description of Ah-You et al. (2007) extended with the description of the species (this study). 

Pathotype strains: CFBP 2913; ICMP 4088.  

 

X. citri pv. rhynchosiae (Sabet et al. 1969) comb. nov. 

= X. axonopodis pv. rhynchosiae (Sabet et al. 1969) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strains: LMG 8021; NCPPB 1827. 

 

X. citri pv. sesbaniae (Patel et al. 1952a) comb. nov. 

= X. axonopodis pv. sesbaniae (Patel et al. 1952a) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 867; NCPPB 582. 

 

X. citri pv. vignaeradiatae (Sabet et al. 1969) comb. nov. 

= X. axonopodis pv. vignaeradiatae (Sabet et al. 1969) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 936; NCPPB 2058. 

 

X. citri pv. vignicola (Burkholder 1944) comb. nov. 

= X. axonopodis pv. vignicola (Burkholder 1944) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 8752; NCPPB 1838. 

 

X. citri pv. aracearum (Berniac 1974) comb. nov. 

= X. campestris pv. aracearum (Berniac 1974) Dye et al. 1978. 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 532; NCPPB 2832. 

 

X. citri pv. thirumalacharii (Padhya & Patel 1964) comb. nov. 

= X. campestris pv. thirumalacharii (Padhya & Patel 1964) Dye et al. 1978. 
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Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 872; NCPPB 1452. 

 

Emended description of Xanthomonas euvesicatoria (Jones et al. 2006)  

The characteristics are as described for the genus (Vauterin et al., 2009) extended with data from this 

study. Using the Biolog GEN III MicroPlate system dextrin, D-maltose, D-cellobiose, gentiobiose, 

sucrose, D-melibiose, N-acetyl-D-glucosamine, α-D-glucose, D-mannose, D-fructose, D-galactose, L-

fucose, glycerol, D-fructose-6-PO4, L-glutamic acid, citric acid, α-keto-glutaric acid, L-malic acid, acetic 

acid, pH 6, 1% NaCl, 1% sodium lactate, lincomycin are oxidized, but the following substrates are not: 

stachyose, N-acetyl-neuraminic acid, D-sorbitol, D-mannitol, D-serine, p-hydroxy-phenylacetic acid, γ-

amino-butyric acid, β-hydroxy-D,L-butyric acid, 8% NaCl, potassium tellurite. The oxidization of the 

following substrates is strain-dependent: D-glucose-6-PO4 (50% of the strains), gelatin (80% of the 

strains), D-saccharic acid (20% of the strains), L-lactic acid (30% of the strains), rifamicin SV (65% of the 

strains), nalidixic acid (65% of the strains) and aztreonam (65% of the strains). The fatty acids C15:0 iso 

and summed feature 3 (C16:1 ω7c / C15:0 iso 2-OH) are present in significant amounts in cells grown on 

TSA (BBL 11768) for 24h under aerobic conditions. X. euvesicatoria can be differentiated from the 

phylogenetic close Xanthomonas species by MLSA (Ah-You et al., 2009; this study). 

The type strain is LMG 27970T = NCPPB 2968T. 

 

X. euvesicatoria pv. euvesicatoria (Jones el al. 2006) comb. nov. 

= X. euvesicatoria Jones el al. 2006 

Description of Jones et al. (2004) extended with the description of the species (this study). 

The pathotype strain is the type strain of X. euvesicatoria: LMG 27970; NCPPB 2968. 

 

X. euvesicatoria pv. perforans (Jones el al. 2006) comb. nov. 

= X. perforans Jones el al. 2006 

Description of Jones et al. (2004) extended with the description of the species (this study). 

The pathotype strain is the type strain of X. perforans: LMG 28258; NCPPB 4321. 

 

X. euvesicatoria pv. alfalfae (ex Riker et al. 1935) comb. nov. 

= X. alfalfae subsp. alfalfae (ex Riker et al. 1935) Schaad et al. 2007 

Description of Schaad et al. (2006) extended with the description of the species (this study). 

Pathotype strain: LMG 497; NCPPB 2062. 
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The pathotype strain of X. axonopodis pv. alfalfae (LMG 497) and the type strain of X. alfalfae subsp. 

alfalfae (LMG 495) are members of the same taxon (this study). Future pathogenicity studies should 

clarify if the type strain of X. alfalfae subsp. alfalfae can be classified in this pathovar. 

 

X. euvesicatoria pv. citrumelonis (Schaad et al., 2007) comb. nov. 

= X. alfalfae subsp. citrumelonis Schaad et al., 2007 

Description of Schaad et al. (2006) extended with the description of the species (this study). 

The pathotype strain is the type strain of X. alfalfae subsp. citrumelonis: LMG 9325; NCPPB 4376. 

 

X. euvesicatoria pv. allii (Kadota et al. 2000) comb. nov. 

= X. axonopodis pv. allii (Kadota et al. 2000) Roumagnac et al. 2004 

Description of Roumagnac et al. (2004) extended with the description of the species (this study). 

Pathotype strain: LMG 21894; NCPPB 4355. 

 

X. euvesicatoria pv. coracanae (Desai et al. 1965) comb. nov. 

= X. axonopodis pv. coracanae (Desai et al. 1965) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 686; NCPPB 1786. 

 

X. euvesicatoria pv. erythrinae (Patel et al. 1952b) comb. nov. 

= X. axonopodis pv. erythrinae (Patel et al. 1952b) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 698; NCPPB 578. 

 

X. euvesicatoria pv. physalidicola (Goto & Okabe, 1958) comb. nov. 

= X. axonopodis pv. physalidicola (Goto & Okabe, 1958) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 845, NCPPB 761. 

 

X. euvesicatoria pv. alangii (Padhya & Patel 1962) comb. nov. 

= X. campestris pv. alangii (Padhya & Patel 1962) Dye et al. 1978 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 470; NCPPB 1336. 
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X. euvesicatoria pv. amorphophalli (Jindal et al. 1972) comb. nov. 

= X. campestris pv. amorphophalli (Jindal et al. 1972) Dye et al. 1978 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 499; NCPPB 2371. 

 

X. euvesicatoria pv. argemones (Srinivasan et al. 1961) comb. nov. 

= X. campestris pv. argemones (Srinivasan et al. 1961) Dye et al. 1978 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 534; NCPPB 1593. 

 

X. euvesicatoria pv. betae (Robbs et al. 1981) comb. nov. 

= X. campestris pv. betae Robbs et al. 1981 

Description of Robbs et al. (1981) extended with the description of the species (this study). 

Pathotype strain: LMG 9040; NCPPB 2592. 

 

X. euvesicatoria pv. physalidis (Srinivasan et al. 1962) comb. nov. 

= X. campestris pv. physalidis (Srinivasan et al. 1962) Dye et al. 1978 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 846; NCPPB 1756. 

 

X. euvesicatoria pv. sesami (Sabet & Dowson, 1960) comb. nov. 

= X. campestris pv. sesami (Sabet & Dowson, 1960) Dye et al. 1978 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 865; NCPPB 631. 

 

X. euvesicatoria pv. tribuli (Srinivasan & Patel, 1956) comb. nov. 

= X. campestris pv. tribuli (Srinivasan & Patel, 1956) Dye et al. 1978 

Description of Dye et al. (1978) extended with the description of the species (this study). 

Pathotype strain: LMG 873; NCPPB 1454. 

 

Emended description of Xanthomonas axonopodis Starr and Garcés 1950 emend. Vauterin 

et al. 1995 

The characteristics are as described for the genus (Vauterin et al., 2009) extended with data from this 

study. Using the Biolog GEN III MicroPlate system α-D-glucose, α-keto-glutaric acid (weakly), pH 6, 1% 
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NaCl are oxidized, but the following substrates are not: D-maltose, D-turanose, stachyose, D-raffinose, 

α-D-lactose, D-melibiose, β-methyl-D-glucoside, D-salicin, N-acetyl-β-D-mannosamine, N-acetyl-β-D-

galactosamine, N-acetyl-neuraminic acid, L-rhamnose, inosine, D-sorbitol, D-mannitol, D-arabitol, 

myo-inositol, glycerol, D-fructose-6-PO4, D-serine, gelatin, L-arginine, L-aspartic acid, L-histidine, L-

pyroglutamic acid, L-serine, D-galacturonic acid, L-galactonic acid lactone, D-gluconic acid, D-

glucuronic acid, quinic acid, D-saccharic acid, p-hydroxy-phenylacetic acid, methyl pyruvate, D-lactic 

acid methyl ester, D-malic acid, γ-amino-butyric acid, α-hydroxy-butyric acid, β-hydroxy-D,L-butyric 

acid, propionic acid, fomnic acid, pH 5, 4% NaCl, 8% NaCl, fusidic acid, D-serine, troleando-mycin, 

rifamycin SV, minocycline, guanidine HCl, niaproof 4, vancomycin, lithium chloride, potassium tellurite, 

sodium butyrate, sodium bromate. The oxidization of the following substrates is strain-dependent: N-

acetyl-D-glucosamine (65% of the strains), D-glucose-6-PO4 (30% of the strains), L-lactic acid (30% of 

the strains), nalidixic acid (65% of the strains) and aztreonam (30% of the strains). The fatty acids C15:0 

iso, summed feature 3 (C16:1 ω7c / C15:0 iso 2-OH) and C17:0 iso are present in significant amounts in cells 

grown on TSA (BBL 11768) for 24h under aerobic conditions. X. axonopodis can be differentiated from 

the phylogenetic close Xanthomonas species by MLSA (Ah-You et al., 2009; this study). 

The type strain is LMG 982T = NCPPB 457T. 

 

Emended description of X. phaseoli (ex Smith 1897) Gabriel et al. 1989 

The characteristics are as described for the genus (Vauterin et al., 2009) extended with data from this 

study. Using the Biolog GEN III MicroPlate system dextrin, D-trehalose, D-cellobiose, gentiobiose, 

sucrose, N-acetyl-D-glucosamine, α-D-glucose, D-mannose, D-fructose, D-galactose, D-fructose-6-PO4, 

L-glutamic acid, citric acid, acetoacetic acid, pH 6, lincomycin, tetrazolium blue, rifamicin SV, nalidixic 

acid, aztreonam are oxidized, but the following substrates are not: stachyose, D-raffinose, α-D-lactose, 

β-methyl-D-glucoside, N-acetyl-neuraminic acid, D-sorbitol, D-mannitol, L-histidine, L-pyroglutamic 

acid, D-gluconic acid, quinic acid, D-saccharic acid, γ-amino butyric acid, α-hydoxy-butyric acid, β-

hydoxy-D,L-butyric acid, pH 5, 4% NaCl, 8% NaCl, minocycline. The oxidization of the following 

substrates is strain-dependent: D-maltose (75% of the strains), D-melobiose (50% of the strains), 

glycerol (75% of the strains), D-glucose-6-PO4 (75% of the strains), gelatin (75% of the strains), L-lactic 

acid (25% of the strains). The fatty acids C15:0 iso and summed feature 3 (C16:1 ω7c / C15:0 iso 2-OH) are 

present in significant amounts in cells grown on TSA (BBL 11768) for 24h under aerobic conditions. X. 

phaseoli can be differentiated from the phylogenetic close Xanthomonas species by MLSA (Ah-You et 

al., 2009; this study). 

The type strain is LMG 29033T = ATCC 49119T. 
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X. phaseoli pv. dieffenbachiae (McCulloch & Pirone 1939) comb. nov. 

= X. axonopodis pv. dieffenbachiae (McCulloch & Pirone 1939) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 695; NCPPB 1833. 

 

X. phaseoli pv. manihotis (Bondar 1915) comb. nov. 

= X. axonopodis pv. manihotis (Bondar 1915) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 784; NCPPB 1834. 

 

X. phaseoli pv. phaseoli (Smith 1897) comb. nov. 

= X. axonopodis pv. phaseoli (Smith 1897) Vauterin et al. 1995 

Description of Vauterin et al. (1995) extended with the description of the species (this study). 

Pathotype strain: LMG 7455; NCPPB 3035. 

The pathotype strain of X. axonopodis pv. phaseoli (LMG 7455) and the type strain of X. phaseoli (ATCC 

49119) are members of the same taxon (this study). Future pathogenicity studies should clarify if the 

type strain of X. phaseoli can be classified in this pathovar. 

This pathovar includes only the strains pathogenic to bean classified in X. axonopodis (subgroup 9.4 of 

Rademaker et al., 2005). 

 

X. phaseoli pv. syngonii (Dickey & Zumoff, 1987) comb. nov. 

= X. campestris pv. syngonii Dickey & Zumoff, 1987 

Description of Dickey & Zumoff, (1987) extended with the description of the species (this study). 

Pathotype strain: LMG 9055; NCPPB 3586 
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Supplementary material  
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Supplementary Figure 2.1. Maximum-likelihood phylogenetic tree of partial gyrB nucleotide sequences. Xad strains are in 
bold. Bootstrap values greater than 50% are shown for 1000 replicates. Horizontal scale bar (0.01) at the bottom represents 
number of nucleotide substitutions per site. Partial gyrB sequences of X. vasicola LMG 736T and X. oryzae PXO99A were used 
as outgroups. T = type strain. PT = pathotype strain. nPT = neopathotype. 
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Supplementary Table 2.1 Strains used in this study. Taxa are named according to the proposals made in this study with former names also provided in the table. 

Proposed species classification Strain no. Former (sub)species 
classification (List of 
Prokaryotic Names with 
Standing in Nomenclature)a 

Former name (below species level) 
according to Bull et al. (2010 & 2012)b 

Host Geographic 
origin 

Year 

X. citri (PG I, RG 9.5 & 9.6)c LMG 9322T 1 * † X. citri X. citri subsp. citri 2 Citrus aurantifolia USA  1989 

n = 35 306 X. citri X. citri / X. axonopodis pv. citri 1, 2 Citrus sp. — — 

 AW 12879 X. citri X. citri / X. axonopodis pv. citri 1, 2 Citrus aurantifolia USA — 

 GSPB 1386 X. citri X. citri subsp. malvacearum 2 Gossypium herbaceum  Nicaragua 1994 
subgroup 1 GSPB 2388 X. citri X. citri subsp. malvacearum 2 Gossypium herbaceum  Nicaragua 1986 
n = 11 LMG 11726 §1 † X. citri X. citri subsp. malvacearum 2 Gossypium sp. USA 1944 
 X 18 X. citri X. citri subsp. malvacearum 2 Gossypium herbaceum  Burkina Faso — 

 12-2 X. citri X. axonopodis pv. glycines 1, 2 Glycine max — — 

 LMG 859PT 1 X. axonopodis X. axonopodis pv. punicae Punica granatum India 1957 

 CFBP 2938 X. citri X. axonopodis pv. mangiferaeindicae 2 Schinus molle La Réunion 1986 
  LMG 941PT 1 X. citri X. axonopodis pv. mangiferaeindicae 2 Mangifera indica India 1957 

 LMG 826‡ 3 * † X. citri X. fuscans subsp. fuscans 2 Phaseolus vulgaris Canada 1957 
 LMG 8039 X. citri X. fuscans subsp. fuscans 2 Phaseolus vulgaris Africa 1982 
 LMG 8130 X. citri X. fuscans subsp. fuscans 2 Phaseolus vulgaris Australia 1972 

 ICPB 10535 X. citri X. fuscans subsp. aurantifolii 2 Citrus sp. — — 
 ICPB 11122 X. citri X. fuscans subsp. aurantifolii 2 Citrus sp. — — 
 LMG 8655 X. citri X. fuscans subsp. aurantifolii 2 Citrus aurantifolia Brazil 1981 
 LMG 9179¶ 3 † X. citri X. fuscans subsp. aurantifolii 2 Citrus limon Argentina 1989 
subgroup 2 LMG 9181 X. citri X. fuscans subsp. aurantifolii 2 Citrus aurantifolia Brazil 1989 
n = 24 LMG 9182 X. citri X. fuscans subsp. aurantifolii 2 Citrus aurantifolia Mexico 1989 
 LMG 9654 X. citri X. fuscans subsp. aurantifolii 2 Citrus aurantifolia Brazil 1989 
 LMG 25933 X. citri X. fuscans subsp. aurantifolii 2 Citrus limon Argentina 1981 
 LMG 25937 X. citri X. fuscans subsp. aurantifolii 2 Citrus aurantifolia Brazil 2000 

 LMG 7399 * † X. axonopodis X. axonopodis pv. dieffenbachiae 2 Dieffenbachia sp. USA 1950 
 LMG 7400 X. axonopodis X. axonopodis pv. dieffenbachiae 2 Dieffenbachia sp. USA 1950 
 PD 3821 X. axonopodis X. axonopodis pv. dieffenbachiae 2 Aglaonema cv. silver USA 2000 

 CFBP 2914 X. citri X. axonopodis pv. anacardii 2 Mangifera indica Brazil — 
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Proposed species classification Strain no. Former (sub)species 
classification (List of 
Prokaryotic Names with 
Standing in Nomenclature)a 

Former name (below species level) 
according to Bull et al. (2010 & 2012)b 

Host Geographic 
origin 

Year 

 LMG 8021PT 3 X. citri X. axonopodis pv. rhynchosiae 2 Rhynchosia memnonia  Sudan 1965 
 LMG 8022 X. citri X. axonopodis pv. rhynchosiae 2 Rhynchosia memnonia  Sudan 1966 

 LMG 867PT 3 X. citri X. axonopodis pv. sesbaniae 2 Sesbania sesban  India 1958 

 LMG 936PT 3 X. citri X. axonopodis pv. vignaeradiatae 2 Vigna radiata  Sudan 1966 

 LMG 828 X. citri X. axonopodis pv. vignicola 2, 3 Vigna unguiculata  Sudan 1956 
 LMG 8136 X. citri X. axonopodis pv. vignicola 2, 3 — India — 

 LMG 532PT 3 [X. campestris] [X. campestris] pv. aracearum Xanthosoma sagittifolium Guadeloupe — 

 LMG 872PT 3 [X. campestris] [X. campestris] pv. thirumalacharii Triumfetta pilosa  India 1961 

 LMG 495T 4 * † X. alfalfae subsp. alfalfae X. alfalfae subsp. alfalfae Medicago sativa India 1954 

 LMG 497PT 4 X. axonopodis pv. alfalfae X. alfalfae subsp. alfalfae Medicago sativa India 1954 

 F1 5 X. alfalfae subsp. citrumelonis X. alfalfae subsp. citrumelonis Citrus sp. USA 1984 

 LMG 9325T, PT 4 † X. alfalfae subsp. citrumelonis X. alfalfae subsp. citrumelonis Citrus sp. USA 1989 

 85-10 6 X. euvesicatoria X. euvesicatoria Capsicum annuum — — 

 LMG 668 X. euvesicatoria X. euvesicatoria Capsicum annuum cv. VR2 Cook Islands 1978 

 LMG 909 X. euvesicatoria X. euvesicatoria Capsicum sp. Côte D'ivoire 1979 

 LMG 910 † X. euvesicatoria X. euvesicatoria Capsicum sp. Morocco 1979 

 LMG 913 X. euvesicatoria X. euvesicatoria Capsicum sp. Senegal 1979 

 LMG 922 X. euvesicatoria X. euvesicatoria Capsicum frutescens USA 1939 

 LMG 926 X. euvesicatoria X. euvesicatoria Capsicum frutescens Hungary 1957 

 LMG 932 X. euvesicatoria X. euvesicatoria Capsicum frutescens Brazil 1971 

 LMG 25943 X. euvesicatoria X. euvesicatoria Capsicum annuum Brazil 1981 

 LMG 25945 X. euvesicatoria X. euvesicatoria Capsicum annuum Brazil 1983 

X. euvesicatoria (PG II, RG 9.2) LMG 27970T 4 * † X. euvesicatoria X. euvesicatoria Capsicum frutescens USA 1977 

n = 46 LMG 28258T 4,6 † X. perforans X. perforans Lycopersicon esculentum USA 1991 

 LMG 904 X. perforans X. perforans — — — 

 NCPPB 4322 X. perforans X. perforans Lycopersicon esculentum USA 1993 

 LMG 580 X. axonopodis X. axonopodis pv. allii Allium cepa USA 1976 

 LMG 9489 X. axonopodis X. axonopodis pv. allii Allium cepa USA 1989 

 LMG 21894nPT 7 X. axonopodis X. axonopodis pv. allii Allium cepa France — 
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Proposed species classification Strain no. Former (sub)species 
classification (List of 
Prokaryotic Names with 
Standing in Nomenclature)a 

Former name (below species level) 
according to Bull et al. (2010 & 2012)b 

Host Geographic 
origin 

Year 

 LMG 25669 X. axonopodis X. axonopodis pv. allii Allium fistulosum Japan 1998 

 LMG 25670 X. axonopodis X. axonopodis pv. allii Allium sativum Cuba 1986 

 LMG 25671 X. axonopodis X. axonopodis pv. allii Allium cepa Barbados — 

 LMG 25672 X. axonopodis X. axonopodis pv. allii Allium cepa Mauritius 1997 

 LMG 25674 X. axonopodis X. axonopodis pv. allii Allium cepa USA 1997 

 LMG 25675 X. axonopodis X. axonopodis pv. allii Allium cepa Brazil 1998 

 LMG 25676 X. axonopodis X. axonopodis pv. allii Allium cepa South Africa — 

 LMG 25677 X. axonopodis X. axonopodis pv. allii Allium cepa Venezuela 2001 

 LMG 25910 X. axonopodis X. axonopodis pv. allii Allium cepa Brazil 1993 

 LMG 25911 X. axonopodis X. axonopodis pv. allii Allium cepa Brazil 1998 

 LMG 686PT 4 X. axonopodis X. axonopodis pv. coracanae Eleusine coracana India 1965 

 CFBP 5693 X. axonopodis X. axonopodis pv. dieffenbachiae 2 Philodendron scandens USA — 

 LMG 12749 † X. axonopodis X. axonopodis pv. dieffenbachiae 2 Philodendron sp. USA 1992 

 LMG 12752 X. axonopodis X. axonopodis pv. dieffenbachiae 2 Philodendron sp. USA 1992 

 LMG 12894 X. axonopodis X. axonopodis pv. dieffenbachiae 2 Philodendron sp. USA 1992 

 LMG 12895 X. axonopodis X. axonopodis pv. dieffenbachiae 2 Philodendron sp. USA 1992 

 LMG 698PT 4 X. axonopodis X. axonopodis pv. erythrinae Erythrina variegata India 1953 

 LMG 845PT 4 X. axonopodis X. axonopodis pv. physalidicola Physalis alkekengi Japan 1960 

 LMG 470PT 4 [X. campestris] [X. campestris] pv. alangii Alangium salviifolium India 1960 

 LMG 499PT 4 [X. campestris] [X. campestris] pv. amorphophalli Amorphophallus campanulatus India 1968 

 LMG 534PT 4 [X. campestris] [X. campestris] pv. argemones Argemone mexicana India 1961 

 LMG 9040PT 4 [X. campestris] [X. campestris] pv. betae Beta vulgaris var. Hortensis Brazil 1973 

 LMG 846PT 4 [X. campestris] [X. campestris] pv. physalidis Physalis minima India 1961 

 LMG 865PT 4 [X. campestris] [X. campestris] pv. sesami Sesamum indicum Sudan 1958 

 LMG 873PT 4 [X. campestris] [X. campestris] pv. tribuli Tribulus terrestris India 1956 

 GBBC 922 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. The Netherlands 2002 

X. phaseoli (PG III, RG 9.4) LMG 695 PT 8 * † X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Brazil 1965 

n = 22 LMG 12708 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Guadeloupe 1992 
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Proposed species classification Strain no. Former (sub)species 
classification (List of 
Prokaryotic Names with 
Standing in Nomenclature)a 

Former name (below species level) 
according to Bull et al. (2010 & 2012)b 

Host Geographic 
origin 

Year 

 LMG 12716 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Guadeloupe 1992 

 LMG 12734 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Martinique 1992 

 LMG 12738 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Venezuela 1992 

 LMG 12739 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Hawaii 1992 

 LMG 12741 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Puerto Rico 1992 

 LMG 25938 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Brazil 1994 

 LMG 25939 X. axonopodis X. axonopodis pv. dieffenbachiae Dieffenbachia hib., var. Camilia Brazil 1995 

 LMG 25940 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Brazil 1998 

 NCPPB 3380 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. Jamaica — 

 PD 2797 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. The Netherlands 1995 

 PD 3413 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium sp. The Netherlands 1998 

 PD 4015 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium andreanum The Netherlands 2000 

 PD 4394 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium andreanum The Netherlands 2002 

 PD 4485 X. axonopodis X. axonopodis pv. dieffenbachiae Anthurium 'Leni' The Netherlands 2002 

 AT6B 9 X. axonopodis X. axonopodis pv. manihotis 8 Manihot esculenta — — 

 CFBP 18519 X. axonopodis X. axonopodis pv. manihotis 8 Manihot esculenta USA — 

 CIO19 X. axonopodis X. axonopodis pv. manihotis 8 Manihot esculenta — — 

 LMG 29033T 10† X. phaseoli X. axonopodis pv. phaseoli  Phaseolus vulgaris USA — 

 LMG 7455PT 8 † X. axonopodis X. axonopodis pv. phaseoli Phaseolus vulgaris USA 1978 

LMG 9055PT 8 * † [X. campestris] [X. campestris] pv. syngonii Syngonium podophyllum USA 1984 

X. axonopodis (PG IV, RG 9.3) LMG 982T, PT 11 * † X. axonopodis X. axonopodis pv. axonopodis Axonopus scoparius Columbia 1949 

n = 3 LMG 895 † X. axonopodis X. axonopodis pv. vasculorum Saccharum officinarum Australia 1946 

 LMG 901PT 11 † X. axonopodis X. axonopodis pv. vasculorum Saccharum officinarum Mauritius 1979 

 LMG 568T, PT † X. campestris X. campestris pv. campestris Brassica oleracea UK 1957 

 LMG 8670T, PT † X. melonis X. campestris pv. melonis Cucumis melo Brazil 1974 

 LMG 947T † X. bromi X. bromi Bromus carinatus France 1980 

 LMG 5047T, PT † X. oryzae  X. oryzae pv. oryzae Oryza sativa India 1965 

 PXO99A X. oryzae X. oryzae pv. oryzae Oryza sativa Los Banos — 
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Proposed species classification Strain no. Former (sub)species 
classification (List of 
Prokaryotic Names with 
Standing in Nomenclature)a 

Former name (below species level) 
according to Bull et al. (2010 & 2012)b 

Host Geographic 
origin 

Year 

 LMG 736T, PT X. vasicola X. vasicola pv. holcicola Sorghum vulgare New Zealand  1969 

a Conform to the rules of the International Code of Nomenclature of Prokaryotes; b Conform to the rules of the International Standards for Naming Pathovars of Plant Pathogenic Bacteria; c PG: phylogenetic 
groups determined in this study; RG: refers to the subgroups identified by Rademaker et al. (2005). 
T = type strain; nPT = neopathotype strain; PT = pathotype (pathovar reference) strain; § LMG 11726 is the type strain of X. citri subsp. malvacearum; ‡ LMG 826 is the type strain of X. fuscans subsp. fuscans; ¶ 
LMG 9179 is the type strain of X. fuscans subsp. aurantifolii (all are in bold). LMG = BCCM/LMG Bacteria Collection, Ghent University, Belgium; CFBP = French Collection of Plant Associated Bacteria; NCPPB = 
National Collection of Plant Pathogenic Bacteria, York, UK; GBBC = ILVO Plant Crop Protection, Merelbeke, Belgium. 
* strains investigated by DNA-DNA hybridization; † strains investigated by FAME and Biolog GEN III. All X. campestris pathovars not examined by Vauterin et al. (1995) and that are shown here not to belong to 
X. campestris are placed in parentheses [ ]. 
1 classified as X. citri according to Parkinson et al. (2009); 2 classified as X. citri according to Ah-you et al. (2009), with the comment that for X. axonopodis pv. dieffenbachiae, only strains non-pathogenic to 
Anthurium were re-classified as X. citri; 3 classified as X. fuscans according to Parkinson et al. (2009); 4 classified in the ‘X. euvesicatoria species complex’ according to Parkinson et al. (2009); 5 Schaad et al. 
(2006); 6 Potnis et al. (2011); 7 neopathotype (nPT) strain proposed by Roumagnac et al. (2004); 8 classified in the ‘X. euvesicatoria species complex sister clade’ according to Parkinson et al. (2009); 9 see Bart et 
al. (2012); 10 classified as X. phaseoli according to Gabriel et al. (1989); 11 classified as X. axonopodis according to Parkinson et al. (2009)  
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Supplementary Table 2.2. X. citri, X. euvesicatoria and X. phaseoli strains for which gyrB sequences, available in GenBank, were used in Supplementary Figure 2.1. 

Proposed species 
classification 

Strain no. Former 
(sub)species 
classification 

Former name (below species level) 
according to Bull et al. (2010 & 
2012) 

Host Geographic origin Year gyrB accession 
number 

X. citri (PG I) NCPPB 409PT 1 X. citri X. axonopodis pv. citri  Citrus limon New Zealand 1956 EU285147 

subgroup 1 NCPPB 633PT 1 X. citri X. axonopodis pv. malvacearum Gossypium sp. Sudan 1958 EU285125 

  NCPPB 554PT 1 X. citri X. axonopodis pv. glycines Glycine max Sudan 1956 EU285151 

subgroup 2 CFBP 2913PT 2 X. citri X. axonopodis pv. anacardii  Mangifera indica Brazil — EU015357 

 NCPPB 1838PT 3 X. citri X. axonopodis pv. vignicola Vigna sinensis USA 1942 EU285134 

X. euvesicatoria (PG II) CFBP 6107PT 4 X. axonopodis X. axonopodis pv. allii Allium fistulosum Japan 1998 EU015310 

X. phaseoli (PG III) NCPPB 1834PT 5 X. axonopodis X. axonopodis pv. manihotis Manihot esculenta Brazil 1965 EU285133 

CFBP = French Collection of Plant Associated Bacteria; NCPPB = National Collection of Plant Pathogenic Bacteria, York, UK. 
PT = pathotype (pathovar reference) strain. 
1 classified as X. citri according to Parkinson et al. (2009); 2 classified as X. citri according to Ah-you et al. (2009); 3 classified as X. fuscans according to Parkinson et al. (2009); 4 classified in ‘X. axonopodis 
subgroup 9.2 of Rademaker et al. (2005)’, containing the type strain of X. euvesicatoria, according to Ah-you et al. (2009); 5 classified in the ‘X. euvesicatoria species complex sister clade’ according to 
Parkinson et al. (2009).
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Supplementary Table 2.3. Primers and annealing temperatures used in this study for PCR amplification and sequencing of seven housekeeping genes. 

Locus Function Forward primer Reverse primer Annealing 
temperature 

(⁰C) 

Fragment 
length 

(bp) 

Use Reference 

atpD ATP synthase beta chain GGGCAAGATCGTTCAGAT GCTCTTGGTCGAGGTGAT 64 747 PCR & sequencing Bui Thi Ngoc et al., (2010) 

dnaK Heat shock protein 70 GGTGGAAGACCTGGTCAAGA TCCTTGACYTCGGTGAACTC 54 940 PCR & sequencing Young et al., (2008)  

efp Elongation factor P TCATCACCGAGACCGAATA TCCTGGTTGACGAACAGC 63 389 PCR & sequencing Bui Thi Ngoc et al., (2010) 

glnA Glutamine synthetase  ATCAAGGACAACAAGGTCG GCGGTGAAGGTCAGGTAG 60 887 PCR & sequencing Hajri et al., (2012)  

gyrB  Gyrase subunit beta AAGCAGGGCAAGAGCGAGCTGTA CAAGGTGCTGAAGATCTGGTC 50 530 PCR & sequencing Parkinson et al., (2007) 

lrp Leucine responsive-regulatory protein  GCGACGGCTGGAGCGCGACG GCGGTAGGACGCCATCTCGC 55 460 PCR & sequencing Cubero et al., (2004) 

rpoD RNA polymerase sigma 70-factor TGGAACAGGGCTATCTGACC CATTCYAGGTTGGTCTGRTT 54 873 PCR & sequencing Young et al., (2008)  
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Supplementary Table 2.4. Accession numbers of sequences for seven genes used in this study for MLSA. 

Strain no. atpD dnaK efp glnA gyrB lrp rpoD      
12-2* Genbank: NZ_AJJO00000000          
306* Genbank: NC_003919           
85-10* Genbank: NC_007508           
91-118* Genbank: NZ_AEQW00000000          
AT6B* Genbank: NZ_AKCX00000000          
AW 12879* Genbank: NC_020815           
CFBP 1851* Genbank: NZ_AKCY00000000          
CFBP 2914 KJ491108 KJ491198 KJ491288 KJ491378 KJ491468 KJ491558 KJ491648     
CFBP 2938 KJ491109 KJ491199 KJ491289 KJ491379 KJ491469 KJ491559 KJ491649     
CFBP 5693 KJ491110 KJ491200 KJ491290 KJ491380 KJ491470 KJ491560 KJ491650     
CIO1* Genbank:NZ_AKCZ00000000          
F1* Genbank:NC_016010           
GBBC 922 KJ491111 KJ491201 KJ491291 KJ491381 KJ491471 KJ491561 KJ491651     
GSPB 1386* Genbank: NZ_AHIB00000000          
GSPB 2388* Genbank: NZ_AHIC00000000          
ICPB 10535* Genbank: NZ_ACPY00000000          
ICPB 11122* Genbank: NZ_ACPX00000000          
LMG 11726 KJ491112 KJ491202 KJ491292 KJ491382 KJ491472 KJ491562 KJ491652     
LMG 12708 KJ491113 KJ491203 KJ491293 KJ491383 KJ491473 KJ491563 KJ491653     
LMG 12716 KJ491114 KJ491204 KJ491294 KJ491384 KJ491474 KJ491564 KJ491654     
LMG 12734 KJ491115 KJ491205 KJ491295 KJ491385 KJ491475 KJ491565 KJ491655     
LMG 12738 KJ491116 KJ491206 KJ491296 KJ491386 KJ491476 KJ491566 KJ491656     
LMG 12739 KJ491117 KJ491207 KJ491297 KJ491387 KJ491477 KJ491567 KJ491657     
LMG 12741 KJ491118 KJ491208 KJ491298 KJ491388 KJ491478 KJ491568 KJ491658     
LMG 12749 KJ491119 KJ491209 KJ491299 KJ491389 KJ491479 KJ491569 KJ491659     
LMG 12752 KJ491120 KJ491210 KJ491300 KJ491390 KJ491480 KJ491570 KJ491660     
LMG 12894 KJ491121 KJ491211 KJ491301 KJ491391 KJ491481 KJ491571 KJ491661     
LMG 12895 KJ491122 KJ491212 KJ491302 KJ491392 KJ491482 KJ491572 KJ491662     
LMG 21894 KJ491123 KJ491213 KJ491303 KJ491393 KJ491483 KJ491573 KJ491663     
LMG 25669 KJ491124 KJ491214 KJ491304 KJ491394 KJ491484 KJ491574 KJ491664     
LMG 25670 KJ491125 KJ491215 KJ491305 KJ491395 KJ491485 KJ491575 KJ491665     
LMG 25671 KJ491126 KJ491216 KJ491306 KJ491396 KJ491486 KJ491576 KJ491666     
LMG 25672 KJ491127 KJ491217 KJ491307 KJ491397 KJ491487 KJ491577 KJ491667     
LMG 25674 KJ491128 KJ491218 KJ491308 KJ491398 KJ491488 KJ491578 KJ491668     
LMG 25675 KJ491129 KJ491219 KJ491309 KJ491399 KJ491489 KJ491579 KJ491669     
LMG 25676 KJ491130 KJ491220 KJ491310 KJ491400 KJ491490 KJ491580 KJ491670     
LMG 25677 KJ491131 KJ491221 KJ491311 KJ491401 KJ491491 KJ491581 KJ491671     
LMG 25910 KJ491132 KJ491222 KJ491312 KJ491402 KJ491492 KJ491582 KJ491672     
LMG 25911 KJ491133 KJ491223 KJ491313 KJ491403 KJ491493 KJ491583 KJ491673     
LMG 25933 KJ491134 KJ491224 KJ491314 KJ491404 KJ491494 KJ491584 KJ491674     
LMG 25937 KJ491135 KJ491225 KJ491315 KJ491405 KJ491495 KJ491585 KJ491675     
LMG 25938 KJ491136 KJ491226 KJ491316 KJ491406 KJ491496 KJ491586 KJ491676     
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LMG 25939 KJ491137 KJ491227 KJ491317 KJ491407 KJ491497 KJ491587 KJ491677     
LMG 25940 KJ491138 KJ491228 KJ491318 KJ491408 KJ491498 KJ491588 KJ491678     
LMG 25943 KJ491139 KJ491229 KJ491319 KJ491409 KJ491499 KJ491589 KJ491679     
LMG 25945 KJ491140 KJ491230 KJ491320 KJ491410 KJ491500 KJ491590 KJ491680     
LMG 27970* Genbank: JPYC00000000          
LMG 470 KJ491141 KJ491231 KJ491321 KJ491411 KJ491501 KJ491591 KJ491681     
LMG 495* Genbank: JPYG00000000          
LMG 497 KJ491142 KJ491232 KJ491322 KJ491412 KJ491502 KJ491592 KJ491682     
LMG 499 KJ491143 KJ491233 KJ491323 KJ491413 KJ491503 KJ491593 KJ491683     
LMG 532 KJ491144 KJ491234 KJ491324 KJ491414 KJ491504 KJ491594 KJ491684     
LMG 534 KJ491145 KJ491235 KJ491325 KJ491415 KJ491505 KJ491595 KJ491685     
LMG 580 KJ491148 KJ491238 KJ491328 KJ491418 KJ491508 KJ491598 KJ491688     
LMG 668 KJ491149 KJ491239 KJ491329 KJ491419 KJ491509 KJ491599 KJ491689     
LMG 686 KJ491150 KJ491240 KJ491330 KJ491420 KJ491510 KJ491600 KJ491690     
LMG 695 KJ491151 KJ491241 KJ491331 KJ491421 KJ491511 KJ491601 KJ491691     
LMG 698 KJ491152 KJ491242 KJ491332 KJ491422 KJ491512 KJ491602 KJ491692     
LMG 736 KJ491154 KJ491244 KJ491334 KJ491424 KJ491514 KJ491604 KJ491694     
LMG 7399 KJ491155 KJ491245 KJ491335 KJ491425 KJ491515 KJ491605 KJ491695     
LMG 7400 KJ491156 KJ491246 KJ491336 KJ491426 KJ491516 KJ491606 KJ491696     
LMG 7455  KJ491157 KJ491247 KJ491337 KJ491427 KJ491517 KJ491607 KJ491697     
LMG 8021 KJ491158 KJ491248 KJ491338 KJ491428 KJ491518 KJ491608 KJ491698     
LMG 8022 KJ491159 KJ491249 KJ491339 KJ491429 KJ491519 KJ491609 KJ491699     
LMG 8039 KJ491160 KJ491250 KJ491340 KJ491430 KJ491520 KJ491610 KJ491700     
LMG 8130 KJ491161 KJ491251 KJ491341 KJ491431 KJ491521 KJ491611 KJ491701     
LMG 8136 KJ491162 KJ491252 KJ491342 KJ491432 KJ491522 KJ491612 KJ491702     
LMG 826 KJ491163 KJ491253 KJ491343 KJ491433 KJ491523 KJ491613 KJ491703     
LMG 828 KJ491164 KJ491254 KJ491344 KJ491434 KJ491524 KJ491614 KJ491704     
LMG 845 KJ491165 KJ491255 KJ491345 KJ491435 KJ491525 KJ491615 KJ491705     
LMG 846 KJ491166 KJ491256 KJ491346 KJ491436 KJ491526 KJ491616 KJ491706     
LMG 859* Genbank: NZ_CAGJ00000000          
LMG 865 KJ491167 KJ491257 KJ491347 KJ491437 KJ491527 KJ491617 KJ491707     
LMG 8655 KJ491168 KJ491258 KJ491348 KJ491438 KJ491528 KJ491618 KJ491708     
LMG 867 KJ491169 KJ491259 KJ491349 KJ491439 KJ491529 KJ491619 KJ491709    

 

LMG 872 KJ491170 KJ491260 KJ491350 KJ491440 KJ491530 KJ491620 KJ491710    
 

LMG 895† EU015167 EU498763 FJ376344 HQ591131 HQ591262 KM668207 EU499088     
LMG 901† EU015169 EU498798 FJ376346 HQ591132 HQ591263 KM668206 EU499130     
LMG 873 KJ491171 KJ491261 KJ491351 KJ491441 KJ491531 KJ491621 KJ491711     
LMG 904 KJ491172 KJ491262 KJ491352 KJ491442 KJ491532 KJ491622 KJ491712     
LMG 9040 KJ491173 KJ491263 KJ491353 KJ491443 KJ491533 KJ491623 KJ491713     
LMG 9055 KJ491174 KJ491264 KJ491354 KJ491444 KJ491534 KJ491624 KJ491714     
LMG 909 KJ491175 KJ491265 KJ491355 KJ491445 KJ491535 KJ491625 KJ491715     
LMG 910 KJ491176 KJ491266 KJ491356 KJ491446 KJ491536 KJ491626 KJ491716     
LMG 913 KJ491177 KJ491267 KJ491357 KJ491447 KJ491537 KJ491627 KJ491717     
LMG 9179 KJ491178 KJ491268 KJ491358 KJ491448 KJ491538 KJ491628 KJ491718     
LMG 9181 KJ491179 KJ491269 KJ491359 KJ491449 KJ491539 KJ491629 KJ491719     
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LMG 9182 KJ491180 KJ491270 KJ491360 KJ491450 KJ491540 KJ491630 KJ491720     
LMG 922 KJ491181 KJ491271 KJ491361 KJ491451 KJ491541 KJ491631 KJ491721     
LMG 926 KJ491182 KJ491272 KJ491362 KJ491452 KJ491542 KJ491632 KJ491722     
LMG 932 KJ491183 KJ491273 KJ491363 KJ491453 KJ491543 KJ491633 KJ491723     
LMG 9322 KJ491184 KJ491274 KJ491364 KJ491454 KJ491544 KJ491634 KJ491724     
LMG 9325 KJ491185 KJ491275 KJ491365 KJ491455 KJ491545 KJ491635 KJ491725     
LMG 936 KJ491186 KJ491276 KJ491366 KJ491456 KJ491546 KJ491636 KJ491726     
LMG 941* Genbank: NZ_CAHO00000000          
LMG 9489 KJ491187 KJ491277 KJ491367 KJ491457 KJ491547 KJ491637 KJ491727     
LMG 9654 KJ491188 KJ491278 KJ491368 KJ491458 KJ491548 KJ491638 KJ491728     
LMG 982 KJ491189 KJ491279 KJ491369 KJ491459 KJ491549 KJ491639 KJ491729     
NCPPB 3380 KJ491190 KJ491280 KJ491370 KJ491460 KJ491550 KJ491640 KJ491730     
NCPPB 4322 KJ491191 KJ491281 KJ491371 KJ491461 KJ491551 KJ491641 KJ491731     
PD 2797 KJ491192 KJ491282 KJ491372 KJ491462 KJ491552 KJ491642 KJ491732     
PD 3413 KJ491193 KJ491283 KJ491373 KJ491463 KJ491553 KJ491643 KJ491733     
PD 3821 KJ491194 KJ491284 KJ491374 KJ491464 KJ491554 KJ491644 KJ491734     
PD 4015 KJ491195 KJ491285 KJ491375 KJ491465 KJ491555 KJ491645 KJ491735     
PD 4394 KJ491196 KJ491286 KJ491376 KJ491466 KJ491556 KJ491646 KJ491736     
PD 4485 KJ491197 KJ491287 KJ491377 KJ491467 KJ491557 KJ491647 KJ491737     
PXO99A* Genbank: NC_010717           
X 18* Genbank: CM002136               

* Whole genome sequences downloaded from GenBank.     

† Only lrp gene sequences generated in this study, sequences of the other genes downloaded from GenBank. 
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Supplementary Table 2.5. DNA-DNA relatedness among selected strains of Xanthomonas axonopodis (sensu Vauterin et al., 1995). 

 Strain 1 2 3 4 5 6 7 8 

X. euvesicatoria (PG II) 
1. X. alfalfae subsp. alfalfae LMG 495T 100        

2. X. euvesicatoria LMG 27970T 78 (0) 100       

X. phaseoli (PG III) 
3. X. axonopodis pv. syngonii LMG 9055PT  63 (20) 100      

4. X. axonopodis pv. dieffenbachiae LMG 695PT  69 (7)  84 (45) 100     

X. axonopodis (PG IV) 5. X. axonopodis LMG 982T 57 (4) 58 (14)  62 (27) 100    

X. citri (PG I) 

6. X. citri subsp. citri LMG 9322T 64 (26) 57 (13) 64 (20) 65 (15) 61 (14) 100   

7. X. axonopodis pv. dieffenbachiae LMG 7399      82 (6) 100  

8. X. fuscans subsp. fuscans LMG 826T      84 (3) 88 (14) 100 

 

For every DNA pair reciprocal reactions (e.g. A×B and B×A) were carried out. The presented DNA-DNA relatedness values are the average of the mean value of A×B and that of B×A, while the values 
between parentheses are the difference between the mean value of A×B and that of B×A. T = type strain; PT = pathotype (pathovar reference) strain. 

 



 

89 
 

Supplementary Table 2.6. Main characteristics of assembled draft genomes of Xanthomonas strains generated in this study. 

WGS X. citri (PG I) X. euvesicatoria (PG II) X. phaseoli (PG III) X. axonopodis (PG IV) 

  LMG 826T LMG 7399 LMG 9322T LMG 495T LMG 12749 LMG 27970T LMG 9055PT LMG 695PT LMG 982T, PT 

Total clean reads 7565129 10473504 2933630 6709111 3048059 7148448 7972771 8525313 5517280 

Total bp reads used 381570338 528737707 148761579 339005127 154610187 361162989 392805460 429912446 278609524 

Sequence coverage 78,45499456 103,8527276 29,04023756 67,7688623 31,80348367 71,60594553 79,58030885 86,01531264 63,02963649 

N50 17723 31929 23058 29661 51301 13901 26041 61344 15863 

Number of contigs 760 495 661 488 296 869 575 228 700 

Maximum contig length 94705 139980 153966 110335 155040 51661 110431 316089 52118 

Total contig length 4863557 5091226 5122602 5002373 4861423 5043757 4935963 4998092 4420294 

GC % 64,87 64,52 64,73 64,77 65,09 65,65 64,85 64,87 64,52 
GenBank accesion 
numbers  JPYF00000000 

 
JPYH00000000  JPYD00000000 JPYG00000000 

 
JPUN00000000  JPYC00000000 JPUO00000000  JPYB00000000  JPYE00000000 

 N50= minimum number of contigs needed to cover 50% of the assembly
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Supplementary Table 2.7. Cellular fatty acid contents (%) of Xanthomonas axonopodis (sensu Vauterin et al., 1995) strains and a selection of type strains of Xanthomonas species, 
representing the diversity of the genus. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

C10:0 - 2.4 2.1 2.6 - - - - 2.7 - - - - 2.4 2.9 - - - - - - - - - - - - - - - - 

C11:0 iso 6.4 6.0 7.4 3.4 4.6 9.5 4.3 5.5 9.1 5.0 3.8 5.8 4.9 4.5 6.1 5.7 9.9 12.4 8.4 6.2 5.5 3.6 3.9 4.3 5.2 4.8 6.7 4.6 7.7 8.0 4.5 

C11:0 iso 3-OH 3.8 3.7 2.5 2.6 3.3 4.2 2.8 3.1 6.1 2.3 2.6 2.4 2.3 3.6 3.3 3.0 4.4 5.9 6.3 3.8 4.8 2.3 3.0 2.7 3.3 3.0 5.2 2.4 5.0 2.6 2.8 

C12:0 3-OH 4.3 9.3 5.7 9.7 2.6 6.0 4.7 5.2 10.5 4.5 5.6 3.8 5.6 9.9 9.4 5.0 4.6 5.1 3.7 2.3 4.1 3.7 3.8 4.8 3.8 2.2 4.2 3.8 2.4 5.3 - 

C12:0 iso 3-OH - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.6 - 

C13:0 2-OH - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C13:0 iso 3-OH 8.2 6.1 6.0 5.0 7.5 9.7 5.1 6.9 11.3 5.0 5.4 5.5 5.2 5.0 5.4 6.6 12.1 12.7 7.9 4.8 5.6 3.7 3.9 3.7 4.4 4.6 7.9 5.5 3.0 2.4 2.3 

C14:0 - 2.6 5.5 6.2 - - - - - - - - 2.0 3.1 3.2 - - - - - 2.2 - - - - - - - - - - 

C14:0 iso - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4 - 

C15:0 anteiso 11.2 8.0 12.5 5.8 22.7 10.9 21.0 6.1 6.4 9.6 11.0 11.5 10.3 14.4 7.3 - 2.6 - 12.1 5.5 3.1 - 2.5 11.9 16.2 7.2 10.5 4.9 5.0 6.4 - 

C15:0 iso 29.0 22.7 17.8 19.4 19.4 16.9 15.4 26.9 14.8 22.0 20.6 24.6 21.7 17.9 17.8 21.3 16.6 17.8 22.8 30.1 16.2 4.4 13.8 23.1 24.6 30.7 27.5 37.3 23.8 20.9 - 

C16:0 2.8 4.8 6.1 5.0 - - 3.4 5.1 4.0 4.3 5.3 2.7 4.6 5.2 4.9 8.5 - - 2.4 4.1 6.1 17.5 12.5 4.8 2.7 2.2 - 3.0 7.4 5.6 15.8 

C16:0 iso 2.1 - 2.0 - 3.0 - 2.3 - - 2.6 2.1 3.2 2.3 - - - - - - - - - - - 3.1 - - - - 7.8 2.8 

C16:1 ω9ϲ - - 2.2 - - 2.0 2.0 2.5 - - - - 2.1 - - - - - - - 2.9 3.3 3.9 - - - - - 2.7 - - 

C17:0 anteiso - - - - 3.0 - - - - - - - - - - - - - - - - - - - - - - - - - 3.6 

C17:0 iso 2.7 2.9 - - 6.1 5.1 5.0 5.2 4.3 7.0 6.0 3.8 3.4 2.9 3.8 11.7 10.3 9.4 6.0 10.3 8.0 18.1 6.6 7.6 4.4 8.1 6.2 5.7 5.2 2.5 18.5 

C17:1 ω8ϲ - - - - - - - - - - - - 2.0 - - 2.1 - - - - - - - - 2.5 - - - - - - 

C18:1 ω7ϲ - - - - - - - - - - - - - - - 2.6 - - - - - - - - - - - - - - 3.0 

C18:1 ω9ϲ - - - - - - - - - - - - - - - 2.2 - - - - - - - - - - - - - - - 

iso C17:1 ω9ϲ 4.1 3.2 2.2 - 10.4 5.7 5.6 3.8 3.3 5.8 4.4 4.3 3.1 2.9 2.8 6.4 16.3 15.0 8.1 10.1 20.2 9.1 12.1 6.1 3.9 10.7 10.9 8.4 6.5 2.0 26.0 

SF 3 16.7 21.8 21.6 28.6 8.0 15.9 18.1 18.0 15.1 17.9 19.1 14.6 19.4 23.6 21.1 20.4 13.4 12.5 9.8 10.0 14.0 23.2 21.0 18.9 13.2 18.8 10.9 11.9 22.8 15.4 12.5 

unknown 11.799 3.0 2.7 - 2.3 2.6 3.9 2.4 2.7 4.9 2.3 2.5 2.4 2.4 3.4 3.1 3.5 3.1 3.2 2.7 - 2.8 - 2.5 - 2.1 - 2.8 2.1 - - - 

SF 3, summed feature 3 (C16:1 ω7c / C15:0 iso 2-OH). 

1-5. X. citri (PG I): 1. X. citri subsp. citri LMG 9322T (this study); 2. X. citri subsp. malvacearum LMG 11726T (this study); 3. X. fuscans subsp. fuscans LMG 826T (this study); 4. X. fuscans subsp. aurantifolii 

LMG 9179T (this study); 5. X. axonopodis pv. dieffenbachiae LMG 7399 (this study); 6-11. X. euvesicatoria (PG II): 6. X. euvesicatoria LMG 27970T; 7. X. euvesicatoria LMG 910 (this study); 8. X. alfalfae 

subsp. alfalfae LMG 495T (this study); 9. X. alfalfae subsp. citrumelonis LMG 9325T (this study); 10. X. perforans LMG 28258T; 11. X. axonopodis pv. dieffenbachiae LMG 12749 (this study); 12-15. X. 

phaseoli (PG III): 12. X. phaseoli LMG 29033T (this study);13. X. axonopodis pv. phaseoli LMG 7455PT (this study); 14. [X. campestris] pv. syngonii LMG 9055PT (this study); 15. X. axonopodis pv. 

dieffenbachiae LMG 695PT (this study);16-18. X. axonopodis (PG IV): 16. X. axonopodis pv. axonopodis LMG 982T, PT (this study); 17. X. axonopodis pv. vasculorum LMG 901PT (this study); 18. X. axonopodis 

pv. vasculorum LMG 895 (this study); 19. X. campestris LMG 568T; 20. X. melonis LMG 8670T (this study); 21. X. bromi LMG 947T (this study); 22. X. oryzae LMG 5047T; 23. X. vasicola LMG 736T (this 

study); 24. X. vesicatoria LMG 911T; 25. X. arboricola LMG 747T; 26. X. gardneri LMG 962T, 27. X. cassavae LMG 673T; 28. X. maliensis LMG 27592T; 29. X. translucens LMG 876T; 30. X. sacchari LMG 471T; 

31. X. albilineans LMG 494T. -, not detectable or trace amount (< 2 %). Cultivation conditions prior to fatty acid extraction and fatty acid analyses were identical for all strains. Values are mean percentages. 

T = type strain; PT = pathotype (pathovar reference) strain.
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Supplementary Table 2.8. Phenotypic features of X. citri (PG I), X. euvesicatoria (PG II), X. phaseoli (PG III), X. axonopodis (PG IV) and the type strains of the phylogenetically closest 

Xanthomonas species, obtained through Biolog GEN III MicroPlate assays.            

     
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 

  33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 33°C 33°C 33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 28°C 33°C 28°C 28°C 33°C 

  24h 24h 24h 144h 24h 24h 24h 24h 24h 24h 24h 24h 24h 72h 24h 72h 24h 24h 24h 24h 24h 144h 24h 

                              
Carbon source oxidation 

assays                             

Dextrin  + + + + / + + + + + + + + / + / / / + + + / + 

D-Maltose / - - - - + + + + + + + + - + - - - - + - + - 

D-Trehalose / / + + / + + + + + / + + + + + - - + + / / / 

D-Cellobiose / / + + + + + + + + + + + + + / - - + + + + + 

Gentiobiose / / + + / + + + + + + + + + + / - - / + - / - 

Sucrose / - + + / + + + + + + + + + + + - / + + + - / 

D-Turanose - - - - - - - - - - / / / - - - - - - - - - - 

Stachyose - - - - - - - - - - - - - - - - - - - - - - - 

D-Raffinose - - - / - / - - - - / - - - - - - - - / - - - 

α-D-Lactose - - - - - - - - - - / - - - - - - - - + - / - 

D-Melibiose - - / / - + + + / + + - + - / - - - + + - / - 

β-Methyl-D-Glucoside - - - - - - - - / - - - - - - - - - - / - / - 

D-Salicin - - - - - / - - / / / - / - - - - - - + - / - 

N-Acetyl-D-Glucosamine + + + + + + + + + + + + / + + + - + + + + - + 

N-Acetyl-β-D-Mannosamine - - - / - - - - / - / / - - - - - - - - - - - 

N-Acetyl-β-D-Galactosamine - - - - - - - - / - - - / - - - - - - - - / - 

N-Acetyl-Neuraminic Acid - - - - - - - - - - - - - - - - - - - - - - - 

α-D-Glucose + + + + + + + + + + + + + + + + / / + + + - + 

D-Mannose + + + + / + + + + + + + + / + / - + + + + - + 

D-Fructose + + + + / + + + + + + + + + + / - / + + + - + 

D-Galactose + + + + + + + + + + + + + + + + - / + + + + + 

3-Methyl Glucose - / / / - / / - / / / - / - / / - - - / - + - 

D-Fucose - - - - - + - - / / / - / - / / - - / / / + - 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 

  33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 33°C 33°C 33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 28°C 33°C 28°C 28°C 33°C 

  24h 24h 24h 144h 24h 24h 24h 24h 24h 24h 24h 24h 24h 72h 24h 72h 24h 24h 24h 24h 24h 144h 24h 

L-Fucose + + + + / + + + + + + + + - / + - - + + + + + 

L-Rhamnose - - - - - / / - / / / - / - / - - - - - - / - 

Inosine - - - / - - - - / / - / / - - - - - - - - - - 

D-Sorbitol / - - - - - - - - - - - - - - - - - - / - - - 

D-Mannitol - - - - - - - - - - - - - - - - - - - - - / - 

D-Arabitol / - - / - - - - / - / / / - - - - - - - / / - 

myo-Inositol - - / - - - - - / - / - / - - - - - - - - / - 

Glycerol + / / + - / + / + + / + / - + - - - - - / / + 

D-Glucose-6-PO4 - - + + - / - - + - + + / - + / - - - / / + - 

D-Fructose-6-PO4 / / / + / + / / + / + / + / / - - - / / / + / 

D-Aspartic Acid - - - / - / - - + - / - / - / / - - - - / / - 

D-Serine - - - - - - - - - - - - + - - - - - / / / - - 

Gelatin + / / / - + + - + + / + / - + - - - - + / - / 

Glycyl-L-Proline / / - + / + / + / + / + / - / + / - / + + + - 

L-Alanine / / / + / + / / / + / + +  / / - - - + + - - 

L-Arginine - - - / - / - - / - / - / - - - - - - - / - - 

L-Aspartic Acid - - / / - / - / + + / / / / / - - - - - / - / 

L-Glutamic Acid + / + + / + + + + + + + + + + / - / / + + / / 

L-Histidine - - / - - / - - / - / - - - - - / - - - / + - 

L-Pyroglutamic Acid - - - / - / - - / - - - - - - - - - - - - / - 

L-Serine - - - - / + / - / + / + + + / - - - / / / - - 

Pectin + + + + / + + / + + + + + / / / - / + + + - + 

D-Galacturonic Acid / / / / - / / / / / / / / - - - - - / / / / / 

L-Galactonic Acid Lactone - - / / - - - - - - / / / - - - - - - - - - - 

D-Gluconic Acid - - - / - / - - / - - - - - - - - - - - - - - 

D-Glucuronic Acid - - / / - / - - / / / - / - - - - - - - / / / 

Glucuronamide  / / / / / / / / / / / / / / / / / / / / / + / 

Mucic acid - - / - - / - - - - - - - / - / - - + + / - - 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 

  33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 33°C 33°C 33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 28°C 33°C 28°C 28°C 33°C 

  24h 24h 24h 144h 24h 24h 24h 24h 24h 24h 24h 24h 24h 72h 24h 72h 24h 24h 24h 24h 24h 144h 24h 

Quinic Acid - - - + - / - - - - - - - - - - - - - - - - - 

D-Saccharic acid - - - + + / - - - - - - - - - - - - + + / - - 

p-Hydroxy-Phenylacetic Acid - - - - - - - - - - - - - / - - - - - - - - - 

Methyl Pyruvate / - - - / / / / - / - - / + / - - - / / / - / 

D-Lactic Acid Methyl Ester - - / / - / - - / - - / / - - - - - - - - - - 

L-Lactic Acid - - / / - / - / - - - / - - - + - - - - / - - 

Citric Acid / + + + + + + + + + + + + + + + - - + + + - + 

α-Keto-Glutaric Acid + + + + + + + + + + + + + - + / / / + / / + + 

D-Malic Acid - - - - - / - - - - - / - - - - - - / - / - - 

L-Malic Acid + / + + / + + + + + + + / - + + - / + + + / + 

Bromo-Succinic Acid / - + + - + / / / / + + - - / / - - + / + + + 

Tween 40 - - / + / + + + - / / + + / + / - - / / / - - 

γ-Amino-Butyric Acid - - - - - - - - - - - - - - - - - - - - - - - 

α-Hydroxy-Butyric Acid - - - / - / - / - - - - - - - - - - - - - - - 

β-Hydroxy-D,L-Butyric Acid - - - - - - - - - - - - - - - - - - - - - / - 

α-Keto-Butyric Acid - - / + / / / / / / / / / / / - / / / - - - - 

Acetoacetic Acid + / - - + + + + / + + + + + + / / / / / + - + 

Propionic Acid - - + - / + / + / + / + / + / - - - / / / - / 

Acetic Acid + / + - + + + + + + + + + + / + - / + + + + + 

Fomnic Acid  - - - - - - - - - / - + / - - - - - - - - - - 

                              

Chemical sensitivity assays                             

pH 6 + + + + + + + + + + + + + + + + / + + + + + + 

pH 5 - - - - / - - / - / - - - - - - - - / / / - / 

1% NaCl + + + - + + + + + + + + + / + + / + + + + + + 

4% NaCl - - - - - - / - - / - - - - - - - - + - / - - 

8% NaCl - - - - - - - - - - - - - - - - - - - - - - - 

1% Sodium Lactate + + + - + + + + + + + / + - + + - / + + + + + 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 

  33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 33°C 33°C 33°C 33°C 33°C 28°C 33°C 28°C 33°C 33°C 28°C 33°C 28°C 28°C 33°C 

  24h 24h 24h 144h 24h 24h 24h 24h 24h 24h 24h 24h 24h 72h 24h 72h 24h 24h 24h 24h 24h 144h 24h 

Fusidic Acid - - - - - / - - - - - - / / - - - - / - / / - 

D-Serine - - - - - / / - - - - - / - - - - - / - + / - 

Troleando-mycin - - - - - / - - - - - / / - - - - - / - / / - 

Rifamycin SV + / / - + + + / - + - + + + / - - - + - + + + 

Minocycline / - - - - / - - - - - - - - - - - - - - / / / 

Lincomycin  + + + - / + + + + + + + + + + + - / + + + + + 

Guanidine HCl - - - - - / / - / / / / / - / - - - + / - - - 

Niaproof 4 / - - - - / - - - / - - - - / - - - / - - / / 

Vancomycin / - - - - / - + - / / - / / / - - - / - / / - 

Tetrazolium Violet  / / / / + + / / / + + / + / + / / / + + / / / 

Tetrazolium Blue - + + - / + + / + + + + + + + / / / + / + / + 

Nalidixic Acid - - - / - + - / - + / / + / + + - / + / + / / 

Lithium Chloride - - - - - - - - - / / - / - / - - - / + - - - 

Potassium Tellurite / - - - - - - - - - - - - / - - - - / - - / - 

Aztreonam  / - - - + + / + - + - + + / / - - / / + / / / 

Sodium Butyrate - - - - / / - / / / - / / - - - - - / - / / - 

Sodium Bromate / - - - - - - / - - - - / - - - - - - / / - / 

 

1-5. X. citri (PG I): 1. X. citri subsp. citri LMG 9322T (this study); 2. X. citri subsp. malvacearum LMG 11726T (this study); 3. X. fuscans subsp. fuscans LMG 826T (this study); 4. X. fuscans subsp. aurantifolii 

LMG 9179T (this study); 5. X. axonopodis pv. dieffenbachiae LMG 7399 (this study); 6-11. X. euvesicatoria (PG II): 6. X. euvesicatoria LMG 27970T; 7. X. euvesicatoria LMG 910 (this study); 8. X. alfalfae 

subsp. alfalfae LMG 495T (this study); 9. X. alfalfae subsp. citrumelonis LMG 9325T (this study); 10. X. perforans LMG 28258T; 11. X. axonopodis pv. dieffenbachiae LMG 12749 (this study); 12-15. X. 

phaseoli (PG III): 12. X. phaseoli LMG 29033T (this study); 13. X. axonopodis pv. phaseoli LMG 7455PT (this study); 14. [X. campestris] pv. syngonii LMG 9055PT (this study); 15. X. axonopodis pv. 

dieffenbachiae LMG 695PT (this study); 16-18. X. axonopodis (PG IV): 16. X. axonopodis pv. axonopodis LMG 982T, PT (this study); 17. X. axonopodis pv. vasculorum LMG 901PT (this study); 18. X. axonopodis 

pv. vasculorum LMG 895 (this study); 19. X. campestris LMG 568T; 20. X. melonis LMG 8670T (this study); 21. X. bromi LMG 947T (this study); 22. X. oryzae LMG 5047T; 23. X. vasicola LMG 736T (this 

study). +, positive ; /, intermediate positive; -, negative. Prior to inoculation of the Biolog GEN III microplates, all strains were grown for 24 h under aerobic conditions on BUG medium without blood, 

at 28 or 33 °C, depending on the strain. The Biolog GEN III microplates were read with a Biolog MicroStation microplate reader after incubation for 24 to 144 h at the same temperature as used to 

obtain the culture for inoculation. 
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Abstract 

Bacterial leaf blight of aroids is caused by a heterogeneous group of xanthomonads listed as X. 

axonopodis pv. dieffenbachiae (Xad) on the EPPO A2 quarantine list. Recently, Xad strains were shown 

not to belong to X. axonopodis but to the species X. citri, X. phaseoli and X. euvesicatoria. Here, to 

verify the pathovar designation, eleven representative strains were tested for pathogenicity on six 

aroid genera. They had overlapping host ranges, only the strain isolated from Syngonium showed host 

specificity. The X. citri strains, isolated from various hosts, showed dissimilarity in virulence to the 

tested aroid genera. The X. phaseoli strains, isolated from Anthurium and Syngonium, were generally 

more virulent and, additionally, induced systemic infections. The X. euvesicatoria strains, isolated from 

Philodendron, were scored as not pathogenic on the tested aroids. Four representative strains were 

genome sequenced and showed a variable virulence-associated gene content. Pathogenicity to aroids 

was correlated with the presence of three specific T3 effector genes and with a T6SS gene sequence. 

Together, the phylogenetic and pathogenic differentiation among Xad strains justifies the installation 

of three pathovar epithets for the pathogens on aroids: X. phaseoli pv. dieffenbachiae comb. nov. for 

the strains isolated from Anthurium; X. phaseoli pv. syngonii comb. nov. for the strain isolated from 

Syngonium; and X. citri pv. aracearum comb. nov. for the strains isolated from Aglaonema, 

Xanthosoma and Dieffenbachia. It is proposed that phytosanitary regulations for xanthomonads on 

aroids are restricted to these three pathovars. 

3.1 Introduction 

Bacterial leaf blight of aroids is caused by xanthomonads named as Xanthomonas axonopodis pv. 

dieffenbachiae (Xad) and was reported for the first time on Dieffenbachia maculata in New Jersey, USA 

(McCulloch & Pirone, 1939). Although the first known host of Xad was Dieffenbachia, a strain isolated 

from Anthurium has been designated as pathovar reference strain of Xad (LMG 695PT). The disease 

primarily affects foliage aroids, i.e. Aglaonema, Anthurium, Caladium, Dieffenbachia, Epipremnum, 

Philodendron, Rhaphidophora, Scindapsus, Spathiphyllum and Syngonium (Chase et al., 1992), but also 

edible aroid species, i.e. Colocasia esculenta (taro), Alocasia (elephant ear), Cyrtosperma (swamp taro) 

and Xanthosoma (tannia). Some of these hosts have a high economic importance in the EU where they 

are propagated and grown as ornamentals in commercial greenhouses. The Netherlands is the leading 

producer of Anthurium cut flowers and pot plants. Because of its economic importance for the EU, Xad 

is considered an organism recommended for regulation as quarantine pest (EPPO, 2009). 

Strains isolated from Syngonium have been named as pathovar syngonii based on host range, 

symptomatology and some physiological differences from the other Xad strains (Dickey & Zumoff, 

1987; Lipp et al., 1992), although this separation has also been questioned (Chase et al., 1992). 



Chapter 3: Pathogenicity and virulence gene content of Xad strains 

104 
 

Bacterial leaf blight of aroids is known under different symptomatologies, with local infections on 

leaves and spathe, and systemic infections (Fukui et al., 1998). Early symptoms are small star-shaped 

spots eventually with some yellowing and water soaking and become necrotic under dry conditions. 

Leaf spots can coalesce to large, V-shaped or irregular brown necrotic areas with a bright yellow 

margin. Systemic infections occur when the pathogen invades the vascular system further spreading 

to other parts of the plant. Eventually the entire plant can be killed. In Anthurium the disease can 

display both leaf and systemic infections (Fukui et al., 1998). 

Xad seems primarily transmitted to aroid production fields through infected nursery stock (Norman & 

Alvarez, 1994). Splashing water (rain or irrigation), aerosols, infested soil and possibly nematodes 

during planting are other sources of Xad-infection. Infected plant debris is another suspected primary 

source of Xad-infection. Studies have also shown that the pathogen can survive in plant debris for more 

than four months (Duffy, 2000). Epiphytic survival and aroid leaf invasion by Xad, as well as disease 

development, are all favored by high temperature and humid conditions. Symptoms typically develop 

faster on young plants than on older, matured plants. Xad invades the leaf through hydathodes or 

wounds but in some cases, under conditions that favor the opening of the stomata (light intensity and 

humidity) the bacterium enters the leaf through stomata. Under moist conditions (high relative 

humidity), the bacteria multiply on the leaf surface and increase the probability of infection, and once 

inside the plant tissue, the spots enlarge and merge to cover large areas. However, some infected 

plants can remain asymptomatic while the bacteria multiply and spread throughout the plant; such 

plants can exude guttation fluid containing bacteria (Norman et al., 1999). Studies have shown that 

the amino acids found in guttation fluid provide nutrients for invading bacteria. These exudates can 

then be dispersed to new plants by dripping or splashing. 

Several earlier studies reported on the heterogeneity of Xad strains and suggested that they may 

represent different pathovars or species, but it was only recently that a taxonomic revision was made 

(Constantin et al., 2016). The study by Constantin et al., (2016) reclassified Xad strains to three species, 

with the strains isolated from Anthurium and Syngonium to X. phaseoli, strains isolated from 

Philodendron to X. euvesicatoria, and strains isolated from Dieffenbachia, Xanthosoma and Aglaonema 

to X. citri. The X. phaseoli pv. dieffenbachiae strains are predominantly isolated from Anthurium and X. 

citri pv. aracearum have been isolated from various aroid hosts such as: Aglaonema, Alocasia, 

Caladium, Colocasia, Dieffenbachia, Epipremnum, Rhaphidophora Spathiphyllum and Xanthosoma, 

(Lipp et at., 1992). Until now, all Xad strains infecting aroids are considered EU regulated, with even 

more ambiguity on the position of the pathogen occurring on Syngonium, known as X. campestris pv. 

syngonii. For the implementation of sanitary regulation it is of utmost importance to rely on a correct 

identification of the target pathogen and its pathogenic impact. 



Chapter 3: Pathogenicity and virulence gene content of Xad strains 

105 
 

Many candidate pathogenicity factors have been identified in Xanthomonas. The most important are 

the protein secretion systems and their effectors (Buttner & Bonas, 2010). Of special interest is the 

type III secretion system (T3SS) encoded by the hrp (Hypersensitive Response and Pathogenicity) gene 

cluster (Ryan et al., 2011) and its type III secretion effector (T3E) repertoire, which play an important 

role in plant-pathogen interactions and in defining host range (Hajri et al., 2009; White et al., 2009). 

Also, other important elements, such as extracellular polysaccharides (EPS) and cell wall degrading 

enzymes (CWDE) (Buttner & Bonas, 2010), are known to be involved in pathogenicity and virulence of 

xanthomonads. Knowledge on the virulence elements of Xad is limited: so far, only one study looked 

at the T3E repertoire of Xad strains isolated from three different aroid hosts and concluded that they 

were almost identical (Hajri et al., 2009). 

The objective of this study was to evaluate the pathogenicity of strains previously named Xad in order 

to identify these strains as groups of Araceae pathogens within their respective species, incorporating 

the phylogenomic and pathogenic diversity, and possible plant health regulatory implications. 

Therefore, pathogenicity tests were made on six aroid genera with strains representative for the three 

species differentiated among Xad strains, and whole genome sequences were explored for sets of 

pathogenicity genes present. 

3.2 Materials and methods 

3.2.1 Bacterial strains and inoculum preparation 

Ten Xad strains and one strain of Xanthomonas campestris pv. syngonii were used in this study (Table 

3.1). The strains were received from LMG (BCCM/LMG Belgian Coordinated Collections, Bacteria 

Collection), CIRM-CFBP (International Centre for Microbial Resources-French Collection of Plant 

Associated Bacteria), and PD (Culture Collection of Plant Pathogenic Bacteria, Plant Protection Service, 

the Netherlands) and were grown on Wilbrink-N at 28° C for 48h. Strain allocation to the respective 

species group was based on MLSA of seven housekeeping genes (Constantin et al., 2016). Inoculum for 

the pathogenicity tests was prepared from cultures grown for 24 hours. Bacterial cells were suspended 

in 10 mM phosphate buffer (PB) and the suspensions were adjusted to A 600 = 0.1 OD, corresponding 

to approximately 1 x 108 CFU/ml, and then further diluted to approximately 1 x 106 CFU/ml, which was 

verified by dilution plating. Within one hour after preparation, aliquots of 100 µL (about 105 cells) were 

used for inoculation of plants. 
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Table 3.1. Pathogenic Xanthomonas strains used in this study, isolated from different aroid plants and different geographical origins. 

Straina Received as New species allocationb 
Proposed pathovar 

namec 
Plant origin Geographical origin 

Year of 

isolation 

LMG 695PT X. axonopodis pv. dieffenbachiae X. phaseoli dieffenbachiae Anthurium sp. Brazil 1965 

LMG 25940 X. axonopodis pv. dieffenbachiae X. phaseoli dieffenbachiae Anthurium sp. Brazil 1998 

PD 4485 X. axonopodis pv. dieffenbachiae X. phaseoli dieffenbachiae Anthurium 'Leni' The Netherlands 2002 

PD 4015 X. axonopodis pv. dieffenbachiae X. phaseoli dieffenbachiae Anthurium andreanum The Netherlands 2000 

LMG 9055PT X. campestris pv. syngonii X. phaseoli  syngonii Syngonium podophyllum USA 1984 

PD 3821 X. axonopodis pv. dieffenbachiae X. citri aracearum Aglaonema ‘Silver’ USA 2000 

LMG 532PT X. campestris pv. aracearum X. citri aracearum Xanthosoma sagittifolium Guadeloupe 1972 

LMG 7399 X. axonopodis pv. dieffenbachiae X. citri aracearum Dieffenbachia sp. USA 1950 

LMG 12894 X. axonopodis pv. dieffenbachiae X. euvesicatoria  Philodendron sp. USA 1992 

LMG 12749 X. axonopodis pv. dieffenbachiae X. euvesicatoria  Philodendron sp. USA 1992 

CFBP 5693 X. axonopodis pv. dieffenbachiae X. euvesicatoria  Philodendron scandens USA NA 

 

PT: pathotype strain. Whole genome sequences were produced for the strains in bold. NA: not available. 
aLMG: BCCM/LMG Bacteria Collection, Belgium, CFBP: French Collection of Plant Associated Bacteria, PD: Culture Collection of Plant Pathogenic Bacteria, Plant Protection Service, The 
Netherlands. 
b According to Constantin et al., 2016.  
C This study. 
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3.2.2 Pathogenicity tests on aroids 

The eleven strains listed in Table 3.1 were inoculated on six aroid genera: Anthurium andraeanum 

‘Hearts Desire’, Aglaonema commutatum ‘Maria’, a complex interspecific hybrid Alocasia watsoniana 

x Alocasia sanderiana ‘Polly’, Dieffenbachia maculata ‘Camille’, Syngonium podophyllum ‘White 

Butterfly’ and Philodendron scandens subsp. oxycardium. The selected aroid genera are commonly 

used for pathogenicity tests with Araceae pathogens and they are the host plant for many of the tested 

strains (Chase et al., 1992; Robéne-Soustrade et al., 2006). The eleven tested strains are representative 

of the three phylogenetic groups. Two inoculation methods were used to evaluate the capability of the 

strains to cause either local and/or systemic infection. 

In a first evaluation for pathogenicity, the eleven strains were infiltrated in the leaf mesophyll, each 

strain on five plants per aroid genera. This is the method commonly used for pathogenicity testing of 

Xad strains on aroids (Lipp et al., 1992; Berthier et al.; 1993; Robène-Soustrade et al., 2006). On each 

plant, two young fully developed leaves were inoculated at two different points per leaf (four 

inoculations per plant). The bacterial suspension was infiltrated with a syringe into the mesophyll and 

the visible infiltrated area was marked with a pencil. The plants were placed in covered, large 

transparent polypropylene boxes to obtain maximum humidity conditions. On the same day of 

inoculation, the plants were transferred to a greenhouse under conditions of 100% humidity and 

day/night temperatures of 28±1/22±1°C, which are optimal for disease development. Symptom 

development was monitored over a two-month period. Symptoms were visually examined and rated 

using the scale illustrated in Figure 3.1. Each leaf inoculation point was rated resulting in 20 ratings for 

each strain per aroid genera. 

In a second evaluation for pathogenicity, the eleven strains were tested for their capability to cause 

disease symptoms when introduced in the vascular system. A 10 µl droplet of bacterial suspension was 

placed on a petiole and the petiole was then pierced through the droplet with a 25GA 5/8 inoculation 

needle. Each strain was tested on two plants per aroid genera, and on each plant the petioles of two 

young fully developed leaves were inoculated. The point of inoculation was wrapped with parafilm to 

seal the wound. 

The plants were observed for two months for symptom development, and inoculation responses were 

then further verified by re-isolation from the affected plant tissue. A sample, 1 cm2, was taken from 

the leaf tissue, cut into small pieces and transferred to sterile distilled water with shaking for a few 

seconds at 800 rpm. The extracts were left for 10-15 minutes to allow diffusion of bacteria out of the 

tissue, and then plated on Wilbrink-N medium. The identity of re-isolated bacteria was checked by 

partial gyrB gene sequencing (Parkinson et al., 2009). The differences between the strain from 

Dieffenbachia and the strains from Anthurium or Syngonium are 29 anf 28 SNPs, respectively. The 

difference between the strain from Anthurium and the strain from Syngonium is 8 SNPs. The 
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differences between the strain from Philodendron and those from Anthurium, Syngonium and 

Dieffenbachia are 14, 15 and 24 SNPs, respectively. 

 

Figure 3.1. Symptoms produced after infiltration of bacterial suspensions of Xanthomonas axonopodis pv. dieffenbachiae 
strains into the leaf mesophyll of Anthurium. Disease scores: 0 = no symptoms; 1 = discoloration or necrosis smaller than the 
infiltrated leaf area; 2 = water-soaked or discolored area not expanding beyond the infiltrated leaf area; 3 = water-soaked or 
discolored area expanding beyond the infiltrated leaf area; 4 = oily spots and/or yellowish leaf parts, some associated with 
wilting of the leaf. 

3.2.3 Whole-genome sequencing, assembly and gene annotations 

Four strains were used for whole genome analysis: LMG7399, LMG9055, LMG12749 and LMG25940 

(Table 3.1). A 350 bp insert whole genome shotgun library was constructed previously for LMG 7399, 

LMG 9055 and LMG 12749 to generate rough assemblies with +/- 30X coverage for average nucleotide 

identity (ANI) analyses (Constantin et al., 2016). These 30X assemblies were insufficient for a complete 

genome comparison; therefore a second sequencing run was initiated in this study to obtain a better 

assembly for in-depth genome analysis. A 500 bp insert library using multiplex Illumina TruSeq v3.0 

technology was constructed for each strain to generate assemblies with +/- 100X coverage. Paired-end 

(PE) sequencing (2x91bp) was performed on an Illumina Hiseq2000 instrument at BGI, Hong Kong. 

Subsequently, demultiplexed samples were trimmed (based on a threshold of Q = 20) with an extra 

adapter and duplicate removal step using CLC GENOMICS WORKBENCH v. 7.5. 

De novo assembly was performed with the trimmed PE datasets using DNASTAR SEQMAN NGEN v. 12.1.0 

build 137, MIRA v. 4.0.2, SOAPDENOVO2 v. 2.04, CLC GENOMICS WORKBENCH v. 7.5 or SPADES v. 3.1.0, with 

or without scaffolding and with a minimum contig size of 200 bp. Assembly QC metrics were calculated 
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for all resulting assemblies using QUAST v. 2.3. The best assemblies were chosen based on N50 values, 

number of contigs and % of mapped reads. Annotation was performed using RAST (Overbeek et al., 

2014). 

3.2.4 Comparative genome analysis 

For comparative genomic analysis, orthologous groups were determined by a reciprocal BLAST 

approach. The predicted proteins of the four genomes were downloaded from the RAST server. 

Pairwise comparisons between the protein sets of each genome were done by performing BLASTP 

searches. Sequences were considered orthologous when they were each other’s top hit in the BLAST 

searches, with a minimum of 60% identity and a minimum query length coverage of 75%. The resulting 

orthologous groups were manually checked. Genome assemblies were also submitted to PATRIC 

(Wattam et al., 2013) for additional comparative analyses using the PROTEIN FAMILY SORTER tool to 

confirm the results from the reciprocal BLAST searches. To identify putative type III secretion effectors, 

BLASTN and TBLASTN searches were carried out for all known T3E genes listed on the Xanthomonas.org 

website (White et al., 2009) against the four genome assemblies (LMG 25940, LMG 7399, LMG 12749, 

LMG 9055). The resulting BLAST hits (E < 1e-10) were manually checked for frameshifts or stop-codons. 

A similar strategy was used for plant cell wall degrading enzymes (CWDE), LPS cluster, type II, type IV 

and type VI secretion systems, where known gene and/or protein sequences of different Xanthomonas 

species were used as query in BLAST searches. In addition, the RAST annotations were manually 

screened for possible additional homologs. To identify type VI secretion system (T6SS) effectors a T6SS-

related protein class (COG3519) was used as bait (Vandroemme et al., 2013). Sequences which showed 

similarity to the T6SS-related COG3519 family proteins retrieved from other Xanthomonas genomes 

were collected and compared in BIONUMERICS v. 7.0 software (Applied Maths). A tree was generated 

with MEGA v.6 software using Maximum Likelihood algorithm and Tamura-Nei model with 1000 

bootstrap replicates.  

3.3 Results 

3.3.1 Pathogenicity tests on aroids 

The pathogenicity tests by leaf infiltration produced different degrees of symptoms depending on the 

strain and the aroid used (Table 3.2). No symptoms were observed in the control plants infiltrated with 

sterile buffer. In general, the cultivars of Aglaonema and Philodendron used in these tests were the 

most and the least susceptible aroids, as expressed in a mean pathogenicity score of 2.6 and 1.6, 

respectively (Table 3.2). Aglaonema commutatum ‘Maria’ was susceptible to nearly all tested strains, 

but was the least susceptible to the strains originally isolated from Philodendron. On the other hand, 
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Philodendron scandens was the least susceptible aroid and was also not susceptible to the strains 

originally isolated from Philodendron; sometimes no symptoms at all could be observed on the 

inoculated plants during the 2-month observation period. 

The pathogenicity tests by pricking the leaf petiole differentiated two groups among the Xad strains, 

those able to cause systemic infection and those that did not. Systemic infection was only observed 

for the strains that belong to the species X. phaseoli, which are the ones originally isolated from 

Anthurium and Syngonium. The strains originally isolated from Aglaonema, Xanthosoma, 

Dieffenbachia and Philodendron that belong to the species X. citri and X. euvesicatoria, did not cause 

systemic infection by the pin-prick inoculation of leaf petioles. 
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Table 3.2. Pathogenicity scores for the Xanthomonas axonopodis pv. dieffenbachiae strains two months after inoculation of the leaves or in the petiole vascular tissue of six 
aroid plant species. 

    Virulence indexc 

Strain Species namea Pathovar nameb Original host Aglaonema  Alocasia Anthurium Dieffenbachia Philodendron Syngonium 

LMG 695PT X. phaseoli  pv. dieffenbachiae Anthurium sp. 2.2 ± 0.5 1.7 ± 0.8 2 ± 0.0/S 2.7 ± 0.9 1.6 ± 0.6 2 ± 0.3 

PD 4485 X. phaseoli  pv. dieffenbachiae Anthurium ‘Leni’ 2.8 ± 0.8 2.4 ± 0.9 3.9 ± 0.3/S 2.1 ± 0.3/S 1.6 ± 0.6 1.8 ± 0.4 

PD 4015 X. phaseoli  pv. dieffenbachiae Anthurium andreanum 2.6 ± 0.8 2.3 ± 0.5 4 ± 0.0/S 2.3 ± 0.5 1.4 ± 0.5 2 ± 0.0 

LMG 25940 X. phaseoli pv. dieffenbachiae Anthurium sp. 2.1 ± 0.3 4 ± 0.0 2.5 ± 0.9 2.6 ± 0.7/S 1.8 ± 0.4 2 ± 0.5 

 

LMG 9055PT X. phaseoli  

 

pv. syngonii Syngonium podophyllum 2.9 ± 0.6 0 ± 0.0 1 ± 0.6 0.5 ± 0.8 0.9 ± 0.9 4 ± 0.0/S 

 

PD 3821 X. citri  

 

pv. aracearum Aglaonema ‘Silver’ 3.8 ± 0.4 3 ± 0.6 0.7 ± 0.7 0.9 ± 0.8 2 ± 0.4 2.8 ± 1.0 

LMG 532PT X. citri  pv. aracearum Xanthosoma sagittifolium 2.7 ± 0.9 0.7 ± 0.8 1.3 ± 0.6 1.4 ± 0.6 1.4 ± 0.6 2.3 ± 0.7 

LMG 7399 X. citri  pv. aracearum Dieffenbachia sp. 2.9 ± 0.9 3 ± 0.5 2 ± 0.2 2.3 ± 0.7 1.8 ± 0.4 2.3 ± 0.5 

 

LMG 12894 X. euvesicatoria 

 

Philodendron sp. 2 ± 0.0 0.6 ± 0.8 1.3 ± 0.6 1.9 ± 0.4 1.8 ± 0.7 1.3 ± 0.5 

LMG 12749 X. euvesicatoria   Philodendron sp. 2 ± 0.0 1.5 ± 0.7 1.6 ± 0.5 2 ± 0.0 1.2 ± 0.6 1.1 ± 0.5 

CFBP 5693 X. euvesicatoria   Philodendron scandens 2.2 ± 0.6 1.6 ± 0.6 1.4 ± 0.5 1.8 ± 0.4 1.6 ± 0.5 1.4 ± 0.5 

 Mean¶   2.6 1.9 2 1.9 1.6 2.1 

 

PT = pathotype strain. 

a According to Constantin et al., 2016. 
b Proposed in this study. 
c Given values are the mean ( ± standard deviation) of 20 leaf inoculations (four inoculations per plant, five plants per strain), each leaf inoculation point was rated using the following scale: 0 = 
no symptoms, 1 = discoloration or necrosis smaller than the infiltrated leaf area, 2 = water-soaked or discoloration not expanding beyond the infiltrated leaf area, 3 = water-soaked area 
expanding beyond the infiltrated leaf area, 4 = oily spots and/or yellowish leaf parts, some associated with wilting of the leaf; S= systemic infection observed in at least one of the four inoculated 
leaf petioles upon pricking of the vascular tissue. 
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The X. phaseoli strains (strains originally isolated from Anthurium and Syngonium) 

The strains isolated from Anthurium (Table 3.2) infected all studied aroid plants with leaf pathogenicity 

scores ≥ 2 (except Philodendron). Disease severity varied with the strain/aroid combination but, within 

two weeks, leaf infiltration resulted in a light green to yellowish discoloration of the inoculated leaf 

area. In some cases, the symptoms spread over the leaf surface, with oily spots and yellowish patchy 

areas. Four to five weeks after inoculation, the lesions were necrotic and often extended beyond the 

infiltrated area. After two months, about 50% of the inoculated leaves were wilted and dead. 

The strains isolated from Anthurium also caused a systemic infection by pin-pricking of the leaf petiole 

in Anthurium and/or Dieffenbachia (Figure 3.2a,b). In Anthurium, this resulted in water-soaked and 

necrotic spots along the veins, spreading towards the leaf margins, and finally covering the entire leaf. 

After 1-2 weeks the whole leaf turned yellow, the petiole began to rot at the base and the leaf dropped. 

In Dieffenbachia, the systemic infection appeared as brown zones in the midrib together with water-

soaked spots in the surrounding mesophyll (Figure 3.2b). The strain LMG 9055 isolated from 

Syngonium displayed strong host specialization by causing severe leaf symptoms and systemic 

infection only in its original host Syngonium (Figure 3.3). The strain from Syngonium also caused leaf 

spots on Aglaonema but did not cause any symptoms on the other tested aroids. In Syngonium, 

symptoms spread over the whole leaf and to other uninoculated leaves. About 2 weeks after leaf 

infiltration, the first symptoms appeared as oily spots that, after 4 weeks, became necrotic and 

surrounded by a bright yellow margin. The lesions developed a papery appearance. In the final stage, 

diseased leaves turned yellow and completely withered. 

 

 

Figure 3.2. Systemic infection caused by X. phaseoli strains, originally isolated from Anthurium, after leaf petiole pin-prick 
inoculation of LMG 695 into Anthurium (a) and LMG 25940 into Dieffenbachia (b). 
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Figure 3.3. X. phaseoli strain LMG 9055, originally isolated from Syngonium, caused typical blight symptoms on Syngonium 
podophyllum ‘White Butterfly’ after leaf infiltration (a) and leaf petiole pin-prick inoculation (b). 

The X. citri strains (strains originally isolated from Aglaonema, Xanthosoma and Dieffenbachia) 

These strains showed dissimilarity in their virulence to the tested aroids. The strain LMG 7399 from 

Dieffenbachia had the highest virulence (Figure 3.4, Table 3.2) after inoculation by leaf infiltration, but 

none of the strains caused a systemic infection after pin-prick inoculation in the petiole. Generally, the 

initial symptoms were a slight yellowing of the infiltrated leaf area and water-soaked spots that 

subsequently turned necrotic. As the disease progressed, more leaf tissue was killed and the large, 

brown areas were surrounded by a yellow border. Although symptom expression varied, no correlation 

could be established between strain/aroid combination. 

 

 

Figure 3.4. Typical leaf blight symptoms caused by the X. citri strains. Inoculation of Aglaonema commutatum ‘Maria’ with 
strain PD 3821 (a), Syngonium podophyllum ‘White Butterfly’ with strain LMG 7399 (b) and Alocasia with strain LMG 7399(c). 

The X. euvesicatoria strains (strains originally isolated from Philodendron) 
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These strains did not show a clear pathogenicity, causing no or very weak symptoms in the aroids 

tested. In addition, they did not induce a systemic infection in any of the tested aroids after the pin-

prick inoculation of petioles. Thus, these strains can be considered as non-pathogenic, even in 

Philodendron from where they have originally been isolated. Tests were performed in Philodendron 

scandens, but the results were also confirmed in Philodendron 'Xanadu' (data not shown). Even though 

no symptoms were observed on inoculated plants during the 2-month observation period, inoculated 

strains could be re-isolated from the symptomless infiltrated leaf areas indicating that they survived 

within the leaf tissue (results not shown). 

3.3.2 Analyses of draft genome sequences of four strains previously known as Xad 

The draft genome sequences of X. phaseoli pv. dieffenbachiae strain LMG 25940 (hereafter Xpd), X. 

phaseoli pv. syngonium strain LMG 9055 (hereafter Xps), X. citri pv. aracearum strain LMG 7399 

(hereafter Xca), and X. euvesicatoria strain LMG 12749 (hereafter Xe) were assembled by combining 

different datasets (a 2x50bp read set from the previous study (Constantin et al., 2016) and a 2x91bp 

read set from this study). The best assemblies were obtained using the following software/dataset 

combinations for Xpd: NGEN assembly without scaffolding using the 2x91bp reads only; for Xps: CLC 

GENOMICS WORKBENCH assembly with scaffolding using the 2x91 bp reads only; for Xca: CLC Genomics 

Workbench assembly without scaffolding using the 2x91bp reads only and for Xe: NGEN assembly 

without scaffolding using both read sets. After automatic annotation by the PGAAP online annotation 

pipeline, these draft assemblies were deposited in GenBank WGS database with accession numbers: 

JPYH02000000 (LMG 7399), JPUN02000000 (LMG 12749), JPYI02000000 (LMG 25940), JPUO02000000 

(LMG 9055). RAST annotations are available with accession numbers: LMG7399 (Xca): 92828.12; 

LMG25940 (Xpd): 6666666.94921; LMG12749 (Xe): 92828.9; LMG9055 (Xps): 270916.4. 

Assembly metrics are shown in Table 3.3. The N50 (minimum number of contigs needed to cover 50% 

of the assembly) values are 146, 52 and 216 for Xpd, Xps and Xe, respectively, and 63 for Xca. All four 

draft genomes have a high GC content (~65%) as commonly reported for members of the genus 

Xanthomonas (Ryan et al., 2011). 

The predicted protein sequences of the four strains were compared by reciprocal BLAST searches and 

the analysis suggested that the core genome consists of 3058 orthologs found in all four genomes. A 

Venn diagram representing the common and the specific genes of all four genomes is shown in Figure 

3.5. Interestingly, 175 genes were specifically shared between the two vascular pathogens (i.e. those 

able to cause systemic infection after pin-prick inoculation of the petiole) Xpd and Xps (Supplementary 

Table 3.1). The gene sequences coded for acetyltransferase, ABC transporters, components of type IV 



Chapter 3: Pathogenicity and virulence gene content of Xad strains 

115 
 

pilus. More than half of the genes shared by Xpd and Xps belonged to hypothetical or unknown 

proteins. 

Table 3.3. General features of the four Xanthomonas genome sequences. 

 Xca (LMG7399) Xe (LMG 12749) Xpd (LMG 25940) Xps (LMG 9055) 

Total contig size (bp) 5.127.485 4.887.792 5.030.124 4.976.908 
No. contigs (>200 bp) 205 55 105 232 
N50 (bp)a 63,001 216,885 146,936 52,766 
Largest contig size (bp) 175,936 758,646 587,613 177,161 
Average coverage 128.16 117.47 130.3 135.91 
Mapped reads (% of total) 99.46 99.98 99.94 99.63 
GC content (%) 64.55 65.09 64.89 64.85 
Protein coding part (% of contigs) 83 85 84 84 
Protein coding genes predicted by RAST 4359 4230 4327 4432 
Average ORF length (bp) 981 978 972 939 
rRNA operons 3 3 3 5 
tRNA genes 54 53 51 48 
Insertion sequence elements 20 25 26 21 
RAST ID 92828.12 92828.9 6666666.94921 270916.4 
GenBank accession number  JPYH02000000 JPUN02000000 JPYI02000000 JPUO02000000 

 

Xca: Xanthomonas citri pv. aracearum; Xe: X. euvesicatoria; Xpd: X. phaseoli pv. dieffenbachiae; Xps: X. phaseoli pv. syngonii. 
a Size of the smallest contig in the N50 set. 

 

 

 

 

Figure 3.5. Venn diagram representing the common and the specific genes between four genomes of Xanthomonas strains 
from aroids. Yellow = X. phaseoli pv. dieffenbachiae (Xpd) strain LMG 25940, red = X. phaseoli pv. syngonii (Xps) strain LMG 
9055, green = X. citri pv. aracearum (Xca) strain LMG 7399 and blue = X. euvesicatoria (Xe) strain LMG 12749. Numbers in 
parentheses represent the amount of protein coding genes found for each strain; they are divided in the diagram as specific 
or shared between strains. 
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3.3.3 Genes of the type III secretion system (T3SS) 

Annotation of the T3SS gene cluster showed that all four strains have an almost identical hrp cluster 

organization (Figure 3.6). The gene order is similar and consistent with the previously characterized 

Xanthomonas hrp cluster (Jalan et al., 2011). 

The cluster is composed of 27 genes in Xpd and Xca, 29 genes in Xps, and 30 genes in Xe, extending 

from hpa2 to hrpF in a region of approximately 27 kb. The three extra genes in Xe are two mobile 

genetic elements, located between hpa1 and hpa2, and a gene for a hypothetical protein; the extra 

genes in Xps encode two hypothetical proteins. It has been suggested that loci flanking the hrp cluster 

on both sides are predisposed to the insertion of mobile genetic elements carrying virulence genes and 

being part of pathogenicity islands (Darrasse et al., 2013). 

Comparison of the type III secretion effector (T3E) repertoire between the four genome sequences 

(Table 3.4) allowed the identification of effectors that are either conserved in all four strains, that are 

strain-specific, or that are common only to the aroid pathogens, (thus differentiating them from the 

Xe strain that was shown to be nonpathogenic to aroids. Together, a total of 39 out of the 64 T3E gene 

families identified in other Xanthomonas genomes (www.xanthomonas.org; White et al., 2009) were 

found over the four strains (Table 3.4). Three T3Es (xopE2, xopG, xopAM) were found specific for the 

aroid pathogens and are missing from Xe LMG 12749 (Table 5). These three effectors are important 

pathogenicity candidates on aroids. Overall, the most aggressive pathogens on aroid plants (X. phaseoli 

strains LMG 25940 and LMG 9055) had the least number of T3E genes that were estimated functional 

(20 and 22 genes for LMG 25940 and LMG 9055, respectively), while Xe strain LMG 12749 which proved 

nonpathogenic on the aroids tested, had the greatest T3E repertoire with 27 genes. The strain isolated 

from Syngonium had more T3E genes than the strain isolated from Anthurium which was also observed 

by Robéne et al. (2016) for LMG 695 from Anthurium and LMG 9055 from Syngonium. Moreover, the 

XopJ5, XopAF and XopAJ genes which were only present in Xe strain LMG 12749 had low GC content 

(XopJ5 (AvrXccB) - 59%, XopAF (AvrXv3) - 53%, XopAJ (AvrRxo1) - 50%) compared to an average genome 

GC content of 65%. Also, non-functionality of T3 effectors due to gene truncations and frameshifts was 

higher in the strains that were pathogens on aroids (8, 6, and 6 genes affected in LMG 25940, LMG 

9055, and LMG 7399, respectively) than in Xe strain LMG 12749 (4 genes affected). 

To check for occurrence of possible sequencing errors that may be responsible for the results, these 

gene regions (XopI, XopK, XopL and XopV) were PCR-amplified and Sanger sequenced using standard 

conditions. All original sequences were confirmed, and thus supported the correctness of the above 

findings.

http://www.xanthomonas.org/
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Figure 3.6. Comparison of type III secretion system clusters of the four sequenced strains of Xanthomonas. HP = hypothetical protein; ME = mobile element; LMG 12749 = X. euvesicatoria strain 
isolated from Philodendron, LMG 25940 = X. phaseoli pv. dieffenbachiae strain isolated from Anthurium, LMG 7399 = X. citri pv. aracearum strain isolated from Dieffenbachia, LMG 9055 = X. 
phaseoli pv. syngonii strain isolated from Syngonium. 
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Table 3.4. Overview of the type III secretion effector repertoire in each of the four Xanthomonas genomes. 
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1 avrBs1 0 0 0 1   

2 avrBs2 1 1 1 1   

3 hpa2 1 1 1 1   

4 hpaA 1 1 1 1   

5 xopA 1 1 1 1   

6 xopB 1 0 0 0   

7 xopC2 1 1 1 1   

8 xopE1 1 1 1 0   

9 xopE2 2 1 0 1   

10 xopF1 1 1 ΨF ΨF   

11 xopF2 ΨT ΨT 1 1   

12 xopG 1 1 0 1   

13 xopI ΨF 0 1 1   

14 xopJ5 0 0 1 0   

15 xopK ΨF 1 1 ΨF   

16 xopL ΨT 1 1 1  
 

17 xopN 1 1 1 1   

18 xopP 1 1 1 2   

19 xopQ 1 1 1 1   

20 xopR 1 1 1 0   

21 xopT 0 0 0  Seq   

22 xopV 1 ΨF 1 1   

23 xopW 0 0 ΨF 0   

24 xopX 1 ΨF 1 1   

25 xopZ1 1 1 1 1   

26 xopAD  0 ΨT 1 ΨT   

27 xopAE 1 1 1 1   

28 xopAF 0 0 1 0   

29 xopAG 1 1 1 0  
 

30 xopAJ 0 0 1 0   

31 xopAK 1 ΨF 1 1   

32 xopAL2 1 0 0 0   

33 xopAM 1 1 0 1   

34 xopAO 0 1 0 0   

35 xopAP 1 ΨT 1 ΨT   

36 xopAU 1 ΨT 1 1   

37 xopAV ΨT ΨT ΨT ΨT   
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38 xopAW 0 0 1 0   

39 xopAX ΨT 0 ΨT ΨT   
Total number of functional T3E 

genes 24 20 27 22   
 gene regions were PCR-amplified and Sanger sequenced using standard conditions 

“1”: one homolog present 

“2”: two homologs present 

“0”: no homolog found 

“ΨT”: coding DNA sequence encountered, but protein believed inactive due to truncation 

“ΨF”: coding DNA sequence encountered, but protein believed to be inactive due to frameshift 

“Seq”: coding DNA sequence truncated due to incomplete genome-assembly; functional protein assumed present during further 
processing of data.  
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Table 3.5. Type III effector genes found in the genomes of the three Xanthomonas strains representing the three newly proposed pathovars on aroids. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAST annotations of the three genomes: LMG 25940: 6666666.94921; LMG9055: 270916.4; LMG 7399: 92828.12.  
aBold; type III effector genes not found in X. euvesicatoria LMG 12749, which in pathogenicity tests appears not pathogenic to aroids. 
bStrain names according to the taxonomic study of Constantin et al. (2016) and newly proposed pathovar name (this work). 
cCoding DNA sequence found in two different contigs due to genome assembly, protein assumed functional. 
dTwo homologs present. 

 

Strainsb 
X. phaseoli pv. dieffenbachiae 

LMG 25940 
X. phaseoli pv. syngonii 

LMG 9055 
X. citri pv. aracearum  

LMG 7399 
Pfam domains 

Effector gene a    

avrBs2 XPD_4278 XPS_3430 XCA_321 
Glycerophosphoryl diester 

phosphodiesterase 

hpa2 XPD_3175 XPS_3246 XCA_2529 - 

hpaA XPD_3157 XPS_3264 XCA_2547 - 

xopA XPD_3173 XPS_3247 XCA_2531 - 

xopC2 XPD_376 XPS_3327 XCA_73 Haloacid dehalogenase-like hydrolase 

xopE2 XPD_3101 XPS_4455/ XPS_4446c XCA_2864, XCA_2967d Putative transglutaminase 

xopG XPD_4330 XPS_4454 XCA_4362 M27-family peptidase 

xopN XPD_3872 XPS_2688 XCA_1373 ARM/HEAT repeat 

xopP XPD_377 XPS_3326 XCA_74 - 

xopQ XPD_49 XPS_2551 XCA_2652 
Inosine uridine nucleoside N-

ribohydrolase 

xopZ1 XPD_1376 XPS_3104 XCA_871 - 

xopAE XPD_3149 XPS_4456 XCA_2556 LRR protein 

xopAM XPD_405 XPS_3153 XCA_100 - 

http://merops.sanger.ac.uk/cgi-bin/make_frame_file?id=M27
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3.3.4 Genes of the type II secretion system (T2SS) 

The T2SS is important for the secretion of toxins and cell-wall degrading enzymes in several 

Xanthomonas pathogens (Ryan et al., 2011). The xps gene cluster, present in all the sequenced 

pathogenic xanthomonads, is known for its contribution to virulence in X. campestris pv. vesicatoria 

The xcs gene cluster is found only in certain species of Xanthomonas and its virulence function is still 

unclear (Szczesny et al., 2010). In the four Xanthomonas genomes studied here, both the xps and xcs 

gene clusters were found as very conserved, with xps being composed of 11 genes and xcs of 12 genes 

(Supplementary Table 3.2). 

3.3.5 Genes of the type IV secretion system (T4SS) 

The T4SS has been described as an important bacterial factor helping bacterial adaptation to new hosts 

(Saenz et al., 2007). Eleven T4SS genes known to contribute to secretion of virulence factors were 

identified, but with big differences between the strains (Supplementary Table 3.3). Xpd and Xe strains 

have the same set of 11 T4SS genes, while Xca and Xps strains have only two but different T4SS genes. 

Sequence homology between the vir genes of Xpd and Xe ranged from 68 to 96%, which makes it 

unclear if these vir genes are all true orthologs. RAST annotated VirB5-like genes, but with a low 

sequence homology (~35%) to VirB5 of X. euvesicatoria 85-10, and thus were interpreted as absent. 

3.3.6 Genes of the type VI secretion system (T6SS) 

The T6SS is the most recent characterized system implicated in eukaryotic cell targeting and virulence 

through effector secretion and described in several bacteria among which Pseudomonas fluorescens 

and P. syringae (Records & Gross, 2010). Genes of the T6SS were searched in the Xanthomonas 

genomes using the T6SS-related protein class (COG3519). Three T6SS sequence types have been 

discriminated within Xanthomonas (Potnis et al., 2011). In this study, two of these types were also 

found in the genomes of strains LMG 25940, LMG 9055 and LMG 12749, while LMG 7399 had only one 

type. Cluster analysis based on the sequence of this common T6SS gene, grouped together the three 

strains proven pathogenic on aroids (LMG 25940, LMG 9055, LMG 7399), clearly separating them from 

strain LMG 12749 that showed nonpathogenic to aroids (Figure 3.7). Xe strain LMG 12749 grouped 

with other X. euvesicatoria strains (such as strains formerly named X. perforans and X. alfalfae subsp. 

citrumelonis). 
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Figure 3.7. Relationship among type VI secretion system-related COG3519-family proteins retrieved from Xanthomonas 
genomes and compared in this study. The tree was constructed using the neighbor joining method and bootstrap values 
calculated with 1000 replicates are shown on the cluster nodes. Genbank accession numbers are given between rectangular 
brackets. RAST annotations of the four genomes generated in this study are: X. citri pv. aracearum strain LMG 7399: 92828.12; 
Xanthomonas phaseoli pv. dieffenbachiae strain LMG 25940: 6666666.94921; X. euvesicatoria strain LMG 12749: 92828.9; X. 
phaseoli pv. syngonii strain LMG 9055: 270916.4; RAST accession numbers are given in round brackets. 
 

3.3.7 Genes of cell-wall degrading enzymes (CWDE) 

All four genomes were screened for CWDE by looking for homologs of known Xanthomonas CWDE, 

combined with manual screening of RAST annotations. Each strain seemed to have its own 

combination of enzymes with pectinolytic, cellulolytic and hemicellulolytic activities (Supplementary 

Table 3.4). Xpd strain LMG 25940 has the most (40) and Xps strain LMG 9055 the least (27). Noteworthy 
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was the accumulation of inactive gene homologs due to frameshifts and truncations in the Xps strain 

LMG 9055. 

3.3.8 TonB - dependent transporters 

Outer membrane TonB-dependent transporters (TBDT) are involved in the active transport of plant 

nutrients, mostly carbohydrates (Schauer et al., 2008). There is a large variation in the number of TBDT 

genes among Xanthomonas and this number seem to be linked to the ecological niche and lifestyle of 

the species considered (Schauer et al., 2008). The four Xanthomonas genomes were screened for 

homologs of 96 TBDT references (Supplementary Table 3.5). The average TBDT gene repertoire ran up 

to 55 homologs, with Xca strain LMG 7399 having the most (62) and Xps strain LMG 9055 the least 

(44). The small TBDT sets in Xps strain LMG 9055 and Xpd strain LMG 25940 may indicate that these 

strains, like other species of Xanthomonas such as X. oryzae, X. albilineans and X. fragariae, are 

adapted to plant scavenging and to a life in nutrient-poor environments. 

3.3.9 Genes involved in bacterial mobility 

All four strains contain genes for flagellum synthesis in four similar clusters along the genomes. Clusters 

1 and 3, as previously described by Moreira et al. (2010), are conserved among all four Xanthomonas 

genomes (Figure 3.8A). Cluster 1 consists of 17 genes from flgM to fliS and are spread over an 

approximately 18 kb region. Cluster 3 contains just two genes, coding for flagellar motor proteins A 

and B (motA and motB). Cluster 2 consists of 23, 24, 25 and 26 fli genes in LMG 7399, LMG 12749, LMG 

25940 and LMG 9055, respectively (Figure 3.8B) and these genes are organized in an order similar to 

those in X. euvesicatoria pv citrumelonis (formerly X. axonopodis pv. citrumelonis; data not shown). 

However, the four genomes differ in the number and location of inserted hypothetical proteins in this 

cluster. Cluster 4 is part of a cluster identified in X. citri pv. fuscans (formerly, X. fuscans subsp. fuscans) 

(Moreira et al., 2010), and in all four draft genomes it contained 7 genes (Figure 3.8C). Furthermore, 

cluster 4 has several nearly repeated copies of a methyl-accepting chemotaxis protein gene (mcp), 

which is unusual in bacteria, being first reported in X. campestris pv. campestris and X. citri pv. citri 

(formerly X. axonopodis pv. citri) and suggested to have a remarkable role in chemotaxis (da Silva et 

al., 2002). In addition, multiple copies of the mcp gene are scattered throughout the four genomes, 

not only in the vicinity of the flagellum gene cluster 4.
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Figure 3.8. Schematic representation of the genomic clusters with flagellar genes (fli, fih, mot) in the four sequenced 
Xanthomonas strains, Xanthomonas phaseoli pv. dieffenbachiae strain LMG 25940, X. phaseoli pv. syngonii strain LMG 9055, 
X. citri pv. aracearum strain LMG 7399 and X. euvesicatoria strain LMG 12749. A) Cluster 1 and cluster 3 found in all four 
strains, B) Cluster 2 found in all four strains but in different organization, and C) Cluster 4 found in all four strains. GGDEF = 
protein domain involved in biofilm formation, motility, exopolysaccharide and cell differentiation, HP = hypothetical protein, 
che = chemotaxis protein, par = partitioning protein. 
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3.3.10 Extracellular polysaccharides (EPS) 

EPS is regarded as an important pathogenicity factor in plant pathogenic bacteria. Xanthan is a main 

compound of the EPS in xanthomonads (Rigano et al., 2007). It is encoded by a cluster of 12 gum genes, 

gumCDEFGHIJKLMN (Supplementary Table 3.6). In the four genomes analysed in this study, this gene 

cluster was comparable to that of other xanthomonads, showing an identical organization of 

approximately 15 kb (Jalan et al., 2011). 

3.3.11 Gene cluster of regulation of pathogenicity factors (rpf) 

The rpf gene cluster is found in all pathogenic xanthomonads, and was also found in all the four 

genomes studied here. It encodes a quorum-sensing system that has been associated with regulation 

of motility, biofilm formation and virulence in several Xanthomonas species (Buttner & Bonas, 2010). 

This cell-to-cell signaling is mediated by the signal molecule DSF (diffusible signaling factor) and RpfF 

is responsible for the synthesis of DSF, whereas RpfC and RpfG are implicated in DSF perception and 

signal transduction (Ryan et al., 2010). This gene cluster comprises nine genes in X. campestris pv. 

campestris 8004 (Tang et al. 1991) and eight genes in X. fuscans subsp. fuscans 4834-R (Darrasse et al., 

2013). In the four genomes analyzed here, six genes (rpf BCEFGH) were predicted (data not shown). 

3.3.12 Lipopolysaccharide locus (LPS) 

The LPS locus in Xanthomonas is a hypervariable cluster which has a role in virulence (Dharmapuri et 

al., 2001). This essential component confers a double role as a physical barrier by protecting bacteria 

from antibacterial substances and also as an inducer of plant defense-related genes (Newman et al., 

2000). LPS is an amphipathic molecule consisting of a hydrophobic glycolipid anchor termed lipid A, a 

hydrophilic polysaccharide portion in the core region and the O-antigen polysaccharide chain 

(Sperandeo et al., 2009). The LPS cluster is involved in systhesis of O-antigen polysaccharide.  

The LPS cluster is confined between two highly conserved housekeeping genes, met and etf, encoding 

the cystathionine gamma lyase and electron transport flavoprotein, respectively. Comparison of this 

cluster from draft genomes of the four sequenced xanthomonads revealed high variability in the 

number of genes and their sequences. The flanking genes of etfB, etfA and metB, metC are conserved 

in all four genomes. Apart from the gene content, the length of the LPS cluster is variable from 19.7 to 

25.9 kb, while the GC content varies from 55.9% to 58.6%. The list of genes identified in the four 

genomes is given in Table 3.6. All genes were manually checked for frameshifts or stop-codons but no 

mutations were found. The LPS locus of Xpd (LMG 25940) has at least 17 homologs to Xps (LMG 9055), 

9 homologs to Xp (LMG 12749) and only 2 to Xca (LMG 7399). The LPS cluster organization in strain 
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LMG 25940 from Anthurium is similar to that in strain LMG 9055 from Syngonium, suggesting that they 

may share a common ancestral LPS cluster (Figure 3.9). 

 

 

Figure 3.9. Phylogenetic tree based on conserved metC, metB and etfB, etfA genes that flank the variable lipopolysaccharide 
(LPS) locus. The tree was generated with MEGA v.6 software using maximum likelihood algorithm with 1000 bootstrap 
replicates. Branch length is proportional to divergence, the 0,01 scale represents 1% difference. LMG 9055 = X. phaseoli pv. 
syngonii, LMG 25940 = X. phaseoli pv. dieffenbachiae, LMG 12749 = X. euvesicatoria, LMG 7399 = X. citri pv. aracearum. 
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Table 3.6. LPS locus content and organization in four Xanthomonas genomes. 

LMG 25940   LMG 9055   LMG 12749   LMG 7399   

Gene  
Size 
(aa) Gene  

Size 
(aa) Gene  

Size 
(aa) Gene  

Size 
(aa) 

metC 456 metC 456 metC 456 metC 456 

metB 404 metB 404 metB 399 metB 397 

O-antigen-permease protein RfD 220 O-antigen-permease protein RfD 220 teichoic ATP-binding protein TagH 434 hypothetical protein  72 

teichoic ATP-binding protein TagH 448 teichoic ATP-binding protein TagH 448 glycosyltransferase group 2 1415 putative glycosyltransferase  1068 

chloramphenicol acethyltransferase 175 chloramphenicol acethyltransferase 175 hypothetical protein  520 O-antigen-permease protein RfD 261 

glycosyltransferase 338 glycosyltransferase 338 probable transmembrane protein 660 ATP-binding protein ABC transporter  311 

glycosyltransferase 835 glycosyltransferase 835 phytoene desaturase  421 SAM dependent methyltransferase 453 

putative glycosyltransferase  325 putative glycosyltransferase  238 putative oxidoreductase  314 glycosyltransferase 1125 

hypothetical protein  571 hypothetical protein  125 sorbitol-6-phosphate 2-dehydrogenase  242 GDP-mannose 307 

hypothetical protein  534 hypothetical protein  130 probable oxidoreductase 433 UDP-glucose epimerase 263 

hypothetical protein  501 phytoene desaturase  421 putative membrane protein  462 hypothetical protein  686 

hypothetical protein  130 putative oxidoreductase  314 integral membrane protein 328 lipopolysaccharide RfbA 376 

phytoene desaturase  421 methyltransferase 223 etfA 314 etfA 313 

putative oxidoreductase  314 sorbitol-6-phosphate 2-dehydrogenase  242 etfB 248 etfB 248 

methyltransferase 223 probable oxidoreductase 433       

sorbitol-6-phosphate 2-dehydrogenase  242 putative membrane protein  462       

probable oxidoreductase 433 integral membrane protein 328       

putative membrane protein  462 etfA 314       

integral membrane protein 328 etfB 248       

etfA 314          

etfB 248             
 

aa, amino acids; bold, proteins with the same length and function in the different genomes. 
LMG 25940, Xanthomonas phaseoli pv. dieffenbachiae; LMG 9055, X. phaseoli pv. syngonii; LMG 12479, X. euvesicatoria; LMG 7399, X. citri pv. aracearum. 
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3.4 Discussion 

Recently, strains named Xanthomonas axonopodis pv. dieffenbachiae (Xad) were confirmed to be 

heterogeneous and were allocated to three distinct species (Constantin et al., 2016). This raised 

questions as whether strains isolated from plants of the family Araceae (aroids) and identified as 

belonging to one of these distinct species, are equally important as pathogens of aroids. In addition, 

would a pathovar name be justified to differentiate them from other pathovars of the same species 

that are pathogens of different hosts? Clarification is also needed in support of the phytosanitary policy 

towards this heterogeneous group of Xad bacteria that are listed on the A2 list of the European and 

Mediterranean Plant Protection Organization (EPPO). Therefore, this investigation was carried out, 

using both plant pathogenicity tests and genome analysis, to identify the true pathogens of aroids and 

to propose new name combinations using the existing pathovar epithets. 

The results of this study showed that there is variability in disease severity dependent on the bacterial 

strain. This is the first time that the pathogenicity of individual strains within each host-strain group 

(species) has been presented. Previous studies scored pathogenicity of Xad strains as positive/negative 

(Berthier et al., 1993; Robéne-Soustrade et al., 2006), or as a mean severity rating per host-strain group 

(Chase et al., 1992; Lipp et al., 1992); the variation among individual strains within a group was not 

considered. The results presented here are in agreement with the earlier studies that used a severity 

rating scale (Chase et al., 1992; Lipp et al., 1992). From these it can be deduced that a few other strains 

from hosts other than Anthurium (probably X. citri pv. aracearum) caused symptoms on Anthurium. 

In general, in the present study, a difference in susceptibility between the tested aroids was observed, 

with Aglaonema and Philodendron being respectively the most and least sensitive to infection by the 

eleven tested strains. This is not fully in agreement with the observation of Chase et al. (1992). The 

strains classified into X. phaseoli, originally isolated from Anthurium and Syngonium, and the strains 

classified into X. citri, originally isolated from a wider host range including Aglaonema, Xanthosoma 

and Dieffenbachia, were scored and confirmed in the pathogenicity tests as ‘real pathogens’ on the 

tested aroids. Within these two species, only the X. phaseoli pv. syngonii strain LMG 9055 (formerly X. 

campestris pv. syngonii) showed a host specialization restricted to its original host Syngonium. The 

other strains tested (classified into X. phaseoli and X. citri) infected the six tested aroids with a variable 

degree of aggressiveness and with X. phaseoli strains typically being most virulent. In contrast, the 

strains classified into X. euvesicatoria, and originally isolated from Philodendron, were only weakly 

pathogenic on the aroids tested; hence, their pathogenicity could not be confirmed, even after re-

inoculation of these strains on two different Philodendron cultivars. It is generally accepted that strains 

isolated from aroids are more virulent on their host of origin than on other aroid hosts; however, the 

strains from Philodendron are atypical as they failed to produce clear symptoms even on their original 
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host. Althought the number of strains studied and their geographical origin were limited, the data do 

not support the designation of X. euvesicatoria strains from Philodendron as a separate pathovar, 

because of their lack of specificity to aroid hosts. At present, these should be considered as under-

studied plant pathogenic strains of unknown plant health-related relevance; further studies are 

needed to determine whether they should be designated as a separate pathovar of other hosts. Even 

in Aglaonema, shown to be the most susceptible host, these X. euvesicatoria strains were not 

aggressive, although viable cells could be recovered from the places of inoculation and beyond. 

Multiplication in aroid host tissue is not always a clear indication for a pathogenic interaction, and 

could equally be an indication for true plant-associated bacteria; nonpathogenic xanthomonads, such 

as the Xad strains belonging to serogroup 12 or group IV in the study by Robéne-Soustrade et al. (2006), 

have been reported to multiply in aroid leaf tissue after inoculation. 

On the other hand, an isolate from a symptomatic aroid plant and identified as X. citri or X. phaseoli is 

to be suspected as an important pathogen to this range of host plants. Their allocation to a definitive 

pathovar allocation within the species, remains to be determined by extra pathogenicity tests on a 

range of relevant aroid genera. In previous studies, strains isolated from Syngonium and identified as 

X. phaseoli pv. syngonii, recognized by their aggressive character restricted to Syngonium, have been 

designated as a separate pathovar (Dickey & Zumoff, 1987; Lipp et al., 1992). 

In the present analysis of four genomes, the pathogenicity-related gene content, (genes for hrp, T2SS, 

T3SS, T4SS, T6SS, CWDE, Flagella, EPS, GIs, rpf, LPS) enabled the identification of the X. euvesicatoria 

strain LMG 12749 from Philodendron as a plant pathogen. It is plausible that these X. euvesicatoria 

strains, originally isolated from Philodendron, have another, as yet undefined host range and that their 

pathogenicity is either not expressed, or is repressed in aroid plants. Although there is variation in 

functional gene content among the analyzed genomes, especially for specific genes of T3SS, T4SS and 

CWDE, there may be plausible indications that the X. euvesicatoria strain from Philodendron has a 

different host range. For example, the combination of the T3 effector genes XopE2, XopG and XopAM 

is only found in the genomes of strains that are pathogenic on aroids and classified into X. phaseoli and 

X. citri. Also, the T6SS gene sequences of X. euvesicatoria strain were clearly differentiated from those 

of the other strains pathogenic on aroid. Of course, more genomes need to be analyzed to support this 

interpretation. Based on the phylogenetic differentiation of Xad strains published earlier (Constantin 

et al., 2016) and the results of the pathogenicity tests in this study, it is proposed to name the 

pathogens on aroids as X. phaseoli pvs dieffenbachiae and syngonii comb. nov., and X. citri pv. 

aracearum comb. nov. 

In addition to the genes that were scored as present/absent in the genomes, a considerable number 

of pathogenicity genes were found that were not functional due to frameshift or truncation. Up to 

eight dysfunctional genes for cell wall degradation were scored in X. phaseoli pv. syngonii strain LMG 



Chapter 3: Pathogenicity and virulence gene content of Xad strains 

130 
 

9055, as well as eight dysfunctional T3E genes in X. phaseoli pv. dieffenbachiae strain LMG 25940. 

These two strains, which were the most aggressive on aroids, have the least functional T3 effectors of 

the four strains; in contrast, X. euvesicatoria strain LMG 12749, which is not pathogenic to aroids, has 

27 T3 effectors. It is yet unclear how these genomic evolutionary changes relate to pathogenicity or 

virulence of the strains towards aroids. T3 effectors can indeed function as pathogenicity factors, but 

in other associations can trigger defence in the plant. 

Bacterial leaf blight of aroids has the highest impact when the pathogen is not restricted to leaf spots, 

but expands and spreads in the plant tissue and even further into the vascular system. This also 

represents a high risk for trade of infected plants or planting material in which visual symptoms are 

not always readily expressed. The X. phaseoli pvs dieffenbachiae and syngonii strains and the X. citri 

pv. aracearum strains were able to cause severe and extended leaf symptoms, depending on the 

strain-aroid species combination. In addition, X. phaseoli pvs dieffenbachiae and syngonii strains could 

also affect the vascular tissue. Althought the X. phaseoli pv. syngonii strain induced a systemic infection 

only in its original host Syngonium, the strains from Anthurium (X. phaseoli pv. dieffenbachiae) caused 

a systemic infection in Anthurium and/or Dieffenbachia plants. Thus, strains from Anthurium are of 

major interest for quarantine regulation status. 

Detailed comparative genome analyses provide insights into the differentiation and unique 

pathogenicity-related gene profile of each strain. The four genomes are quite conserved with respect 

to the different gene families studied. However, in addition to common content, each of these strains 

has specificities. A unique gene, the effector XopAO, was found for X. phaseoli pv. dieffenbachiae strain 

LMG 25940, a representative strain of the pathogen typically infecting Anthurium. This effector has 

only been identified in two other xanthomonads, X. gardneri and X. axonopodis pv. manihotis, and an 

origin from Pseudomonas via horizontal gene transfer events has been proposed (Potnis et al., 2011). 

This gene should be searched for in other strains and relatives of X. phaseoli pv. dieffenbachiae to 

check it as a potential marker for this important pathogen of Anthurium in Europe. Another important 

gene region is the LPS cluster. Phylogenetic insight, based on conserved metC, metB and etfB, etfA 

genes that flank the LPS locus, suggests that the two vascular pathogens (LMG 25940 and LMG 9055) 

have retained an ancestral type of LPS gene cluster (Figure 3.9). In contrast, LMG 7399 and LMG 12749 

have acquired new genes in the LPS gene cluster during the course of evolution so that the cluster is 

completely different in gene organization and the number of genes that are encoded. Although it was 

suggested that there is no obvious correlation of the content of the LPS gene cluster with host 

specificity (Lu et al., 2008), the variation in the LPS gene cluster among the four strains might contribute 

to their differences in virulence or symptom development in different plant hosts. 

As the scientific community is still searching for insight into genomic features that specify host 

pathogenicity range, it is expected that future research will lead to the development and 
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implementation of simpler tests for these and other Xanthomonas pathovars, several of which are EU-

regulated and belong to X. citri and X. phaseoli, e.g. some important pathogens on citrus and on bean. 

The work presented should contribute to this aim.  

In conclusion, the previously reported phylogenetic heterogeneity of Xad strains (Constantin et al., 

2016) is also reflected in a pathogenic heterogeneity, justifying the installation of three pathovars for 

the pathogens on aroids: X. phaseoli pv. dieffenbachiae comb. nov., X. phaseoli pv. syngonii comb. 

nov., and X. citri pv. aracearum comb. nov. 
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Supplementary material  

Supplementary Table 3.1. Genes common to LMG 9055 and LMG 25940. 

LMG9055 LMG25940 Gene name 

fig|270916.4.peg.1892 fig|6666666.94921.peg.102 Integrase 

fig|270916.4.peg.4278 fig|6666666.94921.peg.1037 Heavy metal RND efflux outer membrane protein, CzcC family 

fig|270916.4.peg.4279 fig|6666666.94921.peg.1038 Probable Co/Zn/Cd efflux system membrane fusion protein 

fig|270916.4.peg.4280 fig|6666666.94921.peg.1039 Cobalt-zinc-cadmium resistance protein CzcA; Cation efflux system protein CusA 

fig|270916.4.peg.4281 fig|6666666.94921.peg.1040 Cobalt-zinc-cadmium resistance protein CzcD 

fig|270916.4.peg.4282 fig|6666666.94921.peg.1041 inner membrane protein 

fig|270916.4.peg.3890 fig|6666666.94921.peg.1047 hypothetical protein 

fig|270916.4.peg.1276 fig|6666666.94921.peg.1056 FIG01210241: hypothetical protein 

fig|270916.4.peg.1274 fig|6666666.94921.peg.1057 Porphobilinogen synthase (EC 4.2.1.24) 

fig|270916.4.peg.1265 fig|6666666.94921.peg.1065 toxin secretion ABC transporter, ATP-binding subunit/permease protein, putative 

fig|270916.4.peg.1264 fig|6666666.94921.peg.1066 hypothetical protein 

fig|270916.4.peg.1886 fig|6666666.94921.peg.107 hypothetical protein 

fig|270916.4.peg.249 fig|6666666.94921.peg.1104 hypothetical protein 

fig|270916.4.peg.474 fig|6666666.94921.peg.1138 hypothetical protein 

fig|270916.4.peg.2133 fig|6666666.94921.peg.1152 hypothetical protein 

fig|270916.4.peg.3570 fig|6666666.94921.peg.1156 hypothetical protein 

fig|270916.4.peg.4207 fig|6666666.94921.peg.1189 hypothetical protein 

fig|270916.4.peg.593 fig|6666666.94921.peg.1205 hypothetical protein 

fig|270916.4.peg.3590 fig|6666666.94921.peg.1276 hypothetical protein 

fig|270916.4.peg.1208 fig|6666666.94921.peg.1294 hypothetical protein 

fig|270916.4.peg.2940 fig|6666666.94921.peg.13 hypothetical protein 

fig|270916.4.peg.75 fig|6666666.94921.peg.1425 hypothetical protein 

fig|270916.4.peg.74 fig|6666666.94921.peg.1426 hypothetical protein 

fig|270916.4.peg.3291 fig|6666666.94921.peg.1522 hypothetical protein 

fig|270916.4.peg.1287 fig|6666666.94921.peg.1546 hypothetical protein 

fig|270916.4.peg.1660 fig|6666666.94921.peg.1550 outer membrane hemolysin activator protein 

fig|270916.4.peg.2557 fig|6666666.94921.peg.1554 hypothetical protein 

fig|270916.4.peg.2576 fig|6666666.94921.peg.1571 hypothetical protein 

fig|270916.4.peg.2582 fig|6666666.94921.peg.1579 hypothetical protein 

fig|270916.4.peg.2943 fig|6666666.94921.peg.16 putative; ORF located using Glimmer/Genemark 

fig|270916.4.peg.4007 fig|6666666.94921.peg.1644 putative; ORF located using Glimmer/Genemark 

fig|270916.4.peg.2023 fig|6666666.94921.peg.1670 hypothetical protein 

fig|270916.4.peg.840 fig|6666666.94921.peg.168 Histone acetyltransferase HPA2 and related acetyltransferases 
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fig|270916.4.peg.3877 fig|6666666.94921.peg.1688 phenol hydroxylase 

fig|270916.4.peg.3626 fig|6666666.94921.peg.1703 Carbonic anhydrase (EC 4.2.1.1) 

fig|270916.4.peg.1979 fig|6666666.94921.peg.1708 FIG01210955: hypothetical protein 

fig|270916.4.peg.4056 fig|6666666.94921.peg.1741 hypothetical protein 

fig|270916.4.peg.4060 fig|6666666.94921.peg.1746 hypothetical protein 

fig|270916.4.peg.4404 fig|6666666.94921.peg.1785 hypothetical protein 

fig|270916.4.peg.853 fig|6666666.94921.peg.180 FIG01213901: hypothetical protein 

fig|270916.4.peg.122 fig|6666666.94921.peg.1818 hypothetical protein 

fig|270916.4.peg.111 fig|6666666.94921.peg.1828 Transcriptional regulator, AraC family 

fig|270916.4.peg.110 fig|6666666.94921.peg.1829 Peptidase, S41 family 

fig|270916.4.peg.109 fig|6666666.94921.peg.1830 hypothetical protein 

fig|270916.4.peg.4027 fig|6666666.94921.peg.1876 hypothetical protein 

fig|270916.4.peg.752 fig|6666666.94921.peg.1910 FIG01210386: hypothetical protein 

fig|270916.4.peg.2487 fig|6666666.94921.peg.1929 FIG01212773: hypothetical protein 

fig|270916.4.peg.2496 fig|6666666.94921.peg.1937 hypothetical protein 

fig|270916.4.peg.2501 fig|6666666.94921.peg.1943 hypothetical protein 

fig|270916.4.peg.3754 fig|6666666.94921.peg.2000 hypothetical protein 

fig|270916.4.peg.3732 fig|6666666.94921.peg.2023 hypothetical protein 

fig|270916.4.peg.1920 fig|6666666.94921.peg.203 Aspartyl-tRNA(Asn) amidotransferase subunit A (EC 6.3.5.6) @ Glutamyl-tRNA(Gln) amidotransferase subunit A (EC 6.3.5.7) 

fig|270916.4.peg.1921 fig|6666666.94921.peg.204 Transcriptional regulator, TetR family 

fig|270916.4.peg.327 fig|6666666.94921.peg.2076 hypothetical protein 

fig|270916.4.peg.332 fig|6666666.94921.peg.2081 hypothetical protein 

fig|270916.4.peg.345 fig|6666666.94921.peg.2094 FIG01209735: hypothetical protein 

fig|270916.4.peg.1931 fig|6666666.94921.peg.214 hypothetical protein 

fig|270916.4.peg.3210 fig|6666666.94921.peg.2140 hypothetical protein 

fig|270916.4.peg.3980 fig|6666666.94921.peg.2155 Acyl carrier protein 

fig|270916.4.peg.1937 fig|6666666.94921.peg.220 hypothetical protein 

fig|270916.4.peg.2172 fig|6666666.94921.peg.2210 hypothetical protein 

fig|270916.4.peg.2173 fig|6666666.94921.peg.2211 hypothetical protein 

fig|270916.4.peg.2196 fig|6666666.94921.peg.2234 hypothetical protein 

fig|270916.4.peg.2214 fig|6666666.94921.peg.2251 putative translation initiation factor IF-2 

fig|270916.4.peg.2232 fig|6666666.94921.peg.2268 FIG01213917: hypothetical protein 

fig|270916.4.peg.2235 fig|6666666.94921.peg.2272 O-antigen export system permease protein RfbD 

fig|270916.4.peg.2236 fig|6666666.94921.peg.2273 Teichoic acid export ATP-binding protein TagH (EC 3.6.3.40) 

fig|270916.4.peg.2237 fig|6666666.94921.peg.2274 Chloramphenicol acetyltransferase (EC 2.3.1.28) 

fig|270916.4.peg.2238 fig|6666666.94921.peg.2275 Glycosyltransferase (EC 2.4.1.-) 

fig|270916.4.peg.2239 fig|6666666.94921.peg.2276 Glycosyltransferase (EC 2.4.1.-) 
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fig|270916.4.peg.963 fig|6666666.94921.peg.2280 hypothetical protein 

fig|270916.4.peg.3650 fig|6666666.94921.peg.2282 FIG01212275: hypothetical protein 

fig|270916.4.peg.3653 fig|6666666.94921.peg.2285 Methyltransferase type 11 

fig|270916.4.peg.1947 fig|6666666.94921.peg.230 putative autotransporter protein 

fig|270916.4.peg.3679 fig|6666666.94921.peg.2311 hypothetical protein 

fig|270916.4.peg.3681 fig|6666666.94921.peg.2313 hypothetical protein 

fig|270916.4.peg.430 fig|6666666.94921.peg.2346 hypothetical protein 

fig|270916.4.peg.414 fig|6666666.94921.peg.2363 Uncharacterized protein 

fig|270916.4.peg.3792 fig|6666666.94921.peg.2405 MloA 

fig|270916.4.peg.3798 fig|6666666.94921.peg.2412 acetyltransferase, GNAT family 

fig|270916.4.peg.3939 fig|6666666.94921.peg.2449 hypothetical protein 

fig|270916.4.peg.1518 fig|6666666.94921.peg.2499 hypothetical protein 

fig|270916.4.peg.4164 fig|6666666.94921.peg.2519 hypothetical protein 

fig|270916.4.peg.4147 fig|6666666.94921.peg.2536 hypothetical protein 

fig|270916.4.peg.1029 fig|6666666.94921.peg.2546 hypothetical protein 

fig|270916.4.peg.2158 fig|6666666.94921.peg.255 hypothetical protein 

fig|270916.4.peg.1048 fig|6666666.94921.peg.2564 UDP-glucose 6-dehydrogenase (EC 1.1.1.22) 

fig|270916.4.peg.1062 fig|6666666.94921.peg.2579 FIG01210012: hypothetical protein 

fig|270916.4.peg.1102 fig|6666666.94921.peg.2625 hypothetical protein 

fig|270916.4.peg.1120 fig|6666666.94921.peg.2643 hypothetical protein 

fig|270916.4.peg.1150 fig|6666666.94921.peg.2677 hypothetical protein 

fig|270916.4.peg.1164 fig|6666666.94921.peg.2691 FIG01211514: hypothetical protein 

fig|270916.4.peg.1363 fig|6666666.94921.peg.2720 hypothetical protein 

fig|270916.4.peg.3013 fig|6666666.94921.peg.2793 hypothetical protein 

fig|270916.4.peg.3023 fig|6666666.94921.peg.2804 FIG01212583: hypothetical protein 

fig|270916.4.peg.961 fig|6666666.94921.peg.2808 hypothetical protein 

fig|270916.4.peg.948 fig|6666666.94921.peg.2821 Beta-galactosidase (EC 3.2.1.23) 

fig|270916.4.peg.944 fig|6666666.94921.peg.2825 hypothetical protein 

fig|270916.4.peg.2753 fig|6666666.94921.peg.2836 hypothetical protein 

fig|270916.4.peg.1236 fig|6666666.94921.peg.2911 FIG01210924: hypothetical protein 

fig|270916.4.peg.2061 fig|6666666.94921.peg.2914 FIG01211600: hypothetical protein 

fig|270916.4.peg.2064 fig|6666666.94921.peg.2917 hypothetical protein 

fig|270916.4.peg.2387 fig|6666666.94921.peg.2962 TonB-dependent receptor 

fig|270916.4.peg.2386 fig|6666666.94921.peg.2963 Flavin monoamine oxidase-related protein 

fig|270916.4.peg.4260 fig|6666666.94921.peg.3062 hypothetical protein 

fig|270916.4.peg.555 fig|6666666.94921.peg.3091 Chlorogenate esterase 

fig|270916.4.peg.3388 fig|6666666.94921.peg.311 hypothetical protein 
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fig|270916.4.peg.2452 fig|6666666.94921.peg.3123 hypothetical protein 

fig|270916.4.peg.3267 fig|6666666.94921.peg.3154 Type III secretion protein HrpE 

fig|270916.4.peg.3239 fig|6666666.94921.peg.3181 Ubiquinone biosynthesis monooxygenase UbiB 

fig|270916.4.peg.3227 fig|6666666.94921.peg.3193 Biopolymer transport protein ExbD/TolR 

fig|270916.4.peg.287 fig|6666666.94921.peg.3219 hypothetical protein 

fig|270916.4.peg.1759 fig|6666666.94921.peg.3266 hypothetical protein 

fig|270916.4.peg.1843 fig|6666666.94921.peg.3351 hypothetical protein 

fig|270916.4.peg.1854 fig|6666666.94921.peg.3362 hypothetical protein 

fig|270916.4.peg.1859 fig|6666666.94921.peg.3366 motif=eukaryotic putative RNA-binding region RNP-1 signature 

fig|270916.4.peg.1324 fig|6666666.94921.peg.3396 YciL protein 

fig|270916.4.peg.3895 fig|6666666.94921.peg.3435 hypothetical protein 

fig|270916.4.peg.2019 fig|6666666.94921.peg.3485 putative secreted protein 

fig|270916.4.peg.371 fig|6666666.94921.peg.3517 N-carbamoylputrescine amidase (EC 3.5.1.53) 

fig|270916.4.peg.362 fig|6666666.94921.peg.3527 hypothetical protein 

fig|270916.4.peg.2926 fig|6666666.94921.peg.3646 hypothetical protein 

fig|270916.4.peg.3642 fig|6666666.94921.peg.3683 Uncharacterized protein ImpJ/VasE 

fig|270916.4.peg.2764 fig|6666666.94921.peg.3747 Type IV fimbrial biogenesis protein PilY1 

fig|270916.4.peg.2766 fig|6666666.94921.peg.3749 Type IV fimbrial biogenesis protein PilW 

fig|270916.4.peg.2767 fig|6666666.94921.peg.3750 Type IV fimbrial biogenesis protein PilV 

fig|270916.4.peg.3127 fig|6666666.94921.peg.379 hypothetical protein 

fig|270916.4.peg.2826 fig|6666666.94921.peg.3812 cath1 

fig|270916.4.peg.3130 fig|6666666.94921.peg.382 hypothetical protein 

fig|270916.4.peg.2729 fig|6666666.94921.peg.3832 methylated-DNA-protein-cysteine S-methyltransferase related protein 

fig|270916.4.peg.3135 fig|6666666.94921.peg.386 hypothetical protein 

fig|270916.4.peg.2682 fig|6666666.94921.peg.3878 Transcriptional regulator 

fig|270916.4.peg.2681 fig|6666666.94921.peg.3879 FIG01211170: hypothetical protein 

fig|270916.4.peg.2661 fig|6666666.94921.peg.3895 hypothetical protein 

fig|270916.4.peg.3139 fig|6666666.94921.peg.390 hypothetical protein 

fig|270916.4.peg.1726 fig|6666666.94921.peg.3943 hypothetical protein 

fig|270916.4.peg.1731 fig|6666666.94921.peg.3949 hypothetical protein 

fig|270916.4.peg.201 fig|6666666.94921.peg.4046 FIG01213181: hypothetical protein 

fig|270916.4.peg.193 fig|6666666.94921.peg.4056 LptA, protein essential for LPS transport across the periplasm 

fig|270916.4.peg.992 fig|6666666.94921.peg.4075 hypothetical protein 

fig|270916.4.peg.1609 fig|6666666.94921.peg.4107 Histidine kinase/response regulator hybrid protein 

fig|270916.4.peg.1641 fig|6666666.94921.peg.4136 hypothetical protein 

fig|270916.4.peg.3070 fig|6666666.94921.peg.4155 hypothetical protein 

fig|270916.4.peg.1377 fig|6666666.94921.peg.4233 FIG01209684: hypothetical protein 
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fig|270916.4.peg.1687 fig|6666666.94921.peg.4251 L-Proline/Glycine betaine transporter ProP 

fig|270916.4.peg.1697 fig|6666666.94921.peg.4260 hypothetical protein 

fig|270916.4.peg.3424 fig|6666666.94921.peg.4273 Death on curing protein, Doc toxin 

fig|270916.4.peg.4203 fig|6666666.94921.peg.4292 hypothetical protein 

fig|270916.4.peg.2038 fig|6666666.94921.peg.4300 hypothetical protein 

fig|270916.4.peg.2048 fig|6666666.94921.peg.4310 hypothetical protein 

fig|270916.4.peg.2051 fig|6666666.94921.peg.4312 hypothetical protein 

fig|270916.4.peg.2547 fig|6666666.94921.peg.44 hypothetical protein 

fig|270916.4.peg.2855 fig|6666666.94921.peg.448 hypothetical protein 

fig|270916.4.peg.2842 fig|6666666.94921.peg.460 hypothetical protein 

fig|270916.4.peg.682 fig|6666666.94921.peg.479 hypothetical protein 

fig|270916.4.peg.680 fig|6666666.94921.peg.481 hypothetical protein 

fig|270916.4.peg.2552 fig|6666666.94921.peg.50 HigA protein (antitoxin to HigB) 

fig|270916.4.peg.647 fig|6666666.94921.peg.517 hypothetical protein 

fig|270916.4.peg.636 fig|6666666.94921.peg.527 hypothetical protein 

fig|270916.4.peg.609 fig|6666666.94921.peg.554 hypothetical protein 

fig|270916.4.peg.3822 fig|6666666.94921.peg.568 hypothetical protein 

fig|270916.4.peg.3867 fig|6666666.94921.peg.611 hypothetical protein 

fig|270916.4.peg.2125 fig|6666666.94921.peg.621 FIG01209811: hypothetical protein 

fig|270916.4.peg.2112 fig|6666666.94921.peg.634 hypothetical protein 

fig|270916.4.peg.2107 fig|6666666.94921.peg.639 Mlr6622 protein 

fig|270916.4.peg.2246 fig|6666666.94921.peg.697 FIG01211604: hypothetical protein 

fig|270916.4.peg.487 fig|6666666.94921.peg.710 putative; ORF located using Glimmer/Genemark 

fig|270916.4.peg.514 fig|6666666.94921.peg.735 hypothetical protein 

fig|270916.4.peg.3953 fig|6666666.94921.peg.783 hypothetical protein 

fig|270916.4.peg.4223 fig|6666666.94921.peg.812 Type IV fimbrial assembly, ATPase PilB 

fig|270916.4.peg.4222 fig|6666666.94921.peg.813 Type IV fimbrial assembly, ATPase PilB 

fig|270916.4.peg.65 fig|6666666.94921.peg.843 hypothetical protein 

fig|270916.4.peg.162 fig|6666666.94921.peg.907 Lactoylglutathione lyase and related lyase 

fig|270916.4.peg.155 fig|6666666.94921.peg.913 hypothetical protein 

fig|270916.4.peg.927 fig|6666666.94921.peg.985 hypothetical protein 
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Supplementary Table 3.2. Type II secretion system (T2SS). 

Gene name CDS name 

  LMG 7399 (Xca) LMG 25940 (Xpd) LMG 12749 (Xe) LMG 9055 (Xps) 

xcsC Xca_3877 Xpd_662 Xe_2003 Xps_2277 

xcsD Xca_3876 Xpd_666 Xe_2004 Xps_2278 

xcsE Xca_3875 Xpd_665 Xe_2005 Xps_2279 

xcsF Xca_3874 Xpd_664 Xe_2006 Xps_2280 

xcsG Xca_334 Xpd_663 Xe_2007 Xps_2281 

xcsH Xca_335 Xpd_662 Xe_2008 Xps_2282 

xcsI Xca_336 Xpd_661 Xe_2009 Xps_2283 

xcsJ Xca_337 Xpd_660 Xe_2010 Xps_2284 

xcsK Xca_338 Xpd_659 Xe_2011 Xps_2285 

xcsL Xca_339 Xpd_658 Xe_2012 Xps_2286 

xcsM Xca_340 Xpd_657 Xe_2013 Xps_2287 

xcsN Xca_341 Xpd_656 Xe_2014 Xps_2288 

xpsD Xca_3694 Xpd_1733 Xe_2536 Xps_873 

xpsE Xca_3704 Xpd_1722 Xe_2525 Xps_862 

xpsF Xca_3703 Xpd_1724 Xe_2527 Xps_864 

xpsG Xca_3702 Xpd_1725 Xe_2528 Xps_865 

xpsH Xca_3701 Xpd_1726 Xe_2529 Xps_866 

xpsI Xca_3700 Xpd_1727 Xe_2530 Xps_867 

xpsJ Xca_3699 Xpd_1728 Xe_2531 Xps_868 

xpsK Xac_3698 Xpd_1729 Xe_2532 Xps_869 

xpsL Xac_3697 Xpd_1730 Xe_2533 Xps_870 

xpsM Xac_3696 Xpd_1731 Xe_2534 Xps_871 

xpsN Xac_3695 Xpd_1732 Xe_2535 Xps_872 

 
RAST annotations of the four genomes: LMG7399: 92828.12; LMG25940: 6666666.94921; LMG12749: 92828.9; LMG9055: 
270916.4. 
Xca = X. citri pv. aracearum; Xpd = X. phaseoli pv. dieffenbachiae; Xe = X. euvesicatoria; Xps = X. phaseoli pv. syngonii; CDS = 
Coding DNA sequence. 

 

Supplementary Table 3.3. Type IV secretion system (T4SS). 
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1 virD4 Seq 1 1 0 

2 virB1 0 1 1 0 

3 virB2 0 1 1 0 

4 virB3 0 1 1 0 

5 virB4 0 1 1 0 

6 virB5 0 0 0 0 

7 virB6 1 1 1 0 

8 virB7 0 1 1 0 

9 virB8 0 1 1 0 

10 virB9 0 1 1 0 

11 virB10 0 1 1 1 

12 virB11 0 1 1 1 

Total   2 11 11 2 

 
“1”: one homolog present; “0”: no homolog found; “Seq”: coding DNA sequence truncated due to incomplete genome-
assembly; functional protein assumed present during further processing of data. 
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Supplementary Table 3.4. Genes of cell-wall degrading enzymes (CWDE). 
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Polygalacturonases 
X. campestris campestris ATCC 33913 [Genbank:NP_637621] 0 1 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638805] 1 1 0 ΨT 

Pectate Lyases 

X. campestris campestris ATCC 33913 [Genbank:NP_635517] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_636036] ΨF 1 1 Seq 

X. campestris campestris ATCC 33913 [Genbank:NP_636037] 0 0 0 0 

X. campestris raphani 756C [Genbank:YP_005635831] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638163] 1 1 1 Seq 

X. citri citri 306 [Genbank:NP_642689] 0 0 0 ΨT 

X. euvesicatoria 85-10 [Genbank:YP_364009] 0 0 0 0 

Pectin Methylesterases 
X. campestris campestris ATCC 33913 [Genbank:NP_635516] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637620] ΨF 1 0 0 

Rhamnogalacturonan acetylesterase X. campestris campestris ATCC 33913 [Genbank:NP_635549] 1 1 1 1 

Rhamnogalacturonases 
X. citri citri 306 [Genbank:NP_643812] 1 1 1 ΨF 

X. sacchari NCPPB 4393 [Genbank:ZP_09854047] 0 0 0 0 

Beta-galactosidases X. axonopodis pv. citrumelo F1 [Genbank: AEO42072] 1 1 1 1 

  X. fuscans [Genbank: WP_007971476] 1 1 1 1 

  X. axonopodis [Genbank: WP_046736031] 1 1 1 1 

  X. fuscans [Genbank: WP_007970973] 1 1 1 1 

  X. fuscans [Genbank: WP_007971487] 1 0 0 0 

  X. fuscans [Genbank: WP_042676235] 0 0 0 0 

  X. euvesicatoria [Genbank: WP_042841330] 1 1 1 ΨF 
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Arabinogalactan galactosidase X. axonopodis [Genbank: WP_039568305] 0 1 0 1 

  X. axonopodis [Genbank:WP_039567878] ΨF ΨF ΨF 1 

   10 13 9 9 

 Cellulolytic enzymes       

Cellulases 

X. campestris campestris ATCC 33913 [Genbank:NP_635421] 2 2 2 0 

X. campestris campestris ATCC 33913 [Genbank:NP_635422] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_635423] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637119] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637741] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638726] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638727] 1 1 ΨT 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638867] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638881] 1 1 0 0 

X. citri citri 306 [Genbank:NP_643823] 1 1 1 1 

X. citri citri 306 [Genbank:NP_640702] 1 ΨF 1 1 

Cellobiosidases 
X. campestris campestris ATCC 33913 [Genbank:NP_638506] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638880] 1 1 0 0 

Beta-glucosidases 

X. campestris campestris ATCC 33913 [Genbank:NP_636465] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637141] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638240] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639445] 1 1 0 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_636777] 1 1 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639159] 1 1 1 1 

X. axonopodis Genbank:WP_029829302] 1 0 0 0 

   17 15 12 10 

 Hemicellulolytic enzymes       

Xylanases 

X. campestris campestris ATCC 33913 [Genbank:NP_635539] 0 0 0 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636248] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638385] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639454] 1 1 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639457] 1 1 1 ΨF 

X. citri citri 306 [Genbank:NP_644551] 1 1 1 1 

Xylosidases/arabinosidases 
X. campestris campestris ATCC 33913 [Genbank:NP_635544] ΨF 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636552] 1 1 1 1 
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X. campestris campestris ATCC 33913 [Genbank:NP_637122] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637752] 1 1 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639314] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639403] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639444] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_639461] 1 1 1 ΨT 

   11 12 12 8 

       

 Total  38 40 33 27 
 
“1”: at least one homolog present. 
“2”: two homologs present. 
“0”: no homolog found. 
“ΨT”: coding DNA sequence encountered, but protein believe inactive due to truncation. 
“ΨF”: coding DNA sequence encountered, but protein believed inactive due to frameshift. 
“Seq”: coding DNA sequence truncated due to incomplete genome-assembly; functional protein assumed present during further processing of data. 
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Supplementary Table 3.5. Occurrence of TonB-dependent transporters among the four sequenced 

Xanthomonas strains. 

Reference retrieved from Reference Locus X
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X. campestris campestris ATCC 33913 [Genbank:NP_635445] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_635493] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_635514] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_635515] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_635553] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_635788] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_635791] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_635923] 1 ΨT 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_636066] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636150] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_636159] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636332] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636412] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_636416] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636553] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636632] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_636714] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_636765] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637089] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637116] 1 1 1 ΨT 

X. campestris campestris ATCC 33913 [Genbank:NP_637257] ΨT 1 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637355] 1 0 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637411] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637564] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637739] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637749] 1 1 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637754] Seq ΨF 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_637821] 1 1 1 Seq 

X. campestris campestris ATCC 33913 [Genbank:NP_637847] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_637920] 1 1 ΨT Seq 

X. campestris campestris ATCC 33913 [Genbank:NP_637921] 0 1 0 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638006] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638013] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_638120] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638176] 1 ΨT 1 Seq 

X. campestris campestris ATCC 33913 [Genbank:NP_638215] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638235] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638292] 0 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638383] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638390] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638392] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638393] 1 1 1 1 
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X. campestris campestris ATCC 33913 [Genbank:NP_638397] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638414] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638426] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638507] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638523] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638555] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638625] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_638662] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638704] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638751] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_638754] Seq 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_638773] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_638820] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_638864] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638941] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_638981] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639060] 1 0 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639302] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639391] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639459] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639470] 1 1 1 ΨF 

X. campestris campestris ATCC 33913 [Genbank:NP_639471] 1 ΨT 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639496] 0 0 0 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639556] 0 0 1 0 

X. campestris campestris ATCC 33913 [Genbank:NP_639569] 1 1 1 1 

X. campestris campestris ATCC 33913 [Genbank:NP_639571] 0 0 0 0 

X. fragariae LMG 25863 [Genbank:O1K_06422] 0 0 0 0 

X. fragariae LMG 25863 [Genbank:O1K_11570] ΨF ΨF 1 1 

X. campestris campestris B100 [Genbank:YP_001901736] 0 0 0 0 

X. citri citri 306 [Genbank:NP_640647] 1 0 0 0 

X. citri citri 306 [Genbank:NP_641043] ΨF 1 1 1 

X. citri citri 306 [Genbank:NP_641059] 0 0 0 0 

X. citri citri 306 [Genbank:NP_642097] 1 1 1 1 

X. citri citri 306 [Genbank:NP_642502] 1 0 0 0 

X. citri citri 306 [Genbank:NP_643082] 1 ΨF 0 ΨT 

X. citri citri 306 [Genbank:NP_643359] 0 0 0 0 

X. citri citri 306 [Genbank:NP_643386] 1 0 0 0 

X. citri citri 306 [Genbank:NP_643677] 1 1 1 1 

X. citri citri 306 [Genbank:NP_643725] 1 1 1 1 

X. citri citri 306 [Genbank:NP_643751] 1 1 1 ΨF 

X. citri citri 306 [Genbank:NP_643755] 1 1 1 1 

X. citri citri 306 [Genbank:NP_643805] 0 0 0 0 

X. citri citri 306 [Genbank:NP_643836] 0 0 0 0 

X. citri citri 306 [Genbank:NP_643920] 1 0 0 0 

X. citri citri 306 [Genbank:NP_643927] 1 0 0 0 

X. citri citri 306 [Genbank:NP_644430] 1 1 1 1 

X. gardneri ATCC 19865 [Genbank:ZP_08182603] ΨT 1 0 ΨT 

X. gardneri ATCC 19865 [Genbank:ZP_08183237] 0 0 0 0 

X. gardneri ATCC 19865 [Genbank:ZP_08185761] 0 0 0 0 

X. sacchari NCPPB 4393 [Genbank:ZP_09853472] 0 0 0 0 

X. sacchari NCPPB 4393 [Genbank:ZP_09854914] 0 0 0 0 

X. sacchari NCPPB 4393 [Genbank:ZP_09856367] 0 0 0 0 

X. sacchari NCPPB 4393 [Genbank:ZP_09856515] 0 0 0 0 

X. sacchari NCPPB 4393 [Genbank:ZP_09856761] 0 0 0 0 

Total   62 55 60 44 



Chapter 3: Pathogenicity and virulence gene content of Xad strains 

143 
 

 
“1”: one homolog present. 
“0”: no homolog found. 
“ΨT”: coding DNA sequence encountered, but protein believe inactive due to truncation. 
“ΨF”: coding DNA sequence encountered, but protein believed inactive due to frameshift. 
“Seq”: coding DNA sequence truncated due to incomplete genome-assembly; functional protein assumed present during 
further processing of data. 

 

Supplementary Table 3.6. The xanthan gum gene cluster in the four sequenced Xanthomonas strains. 

Gene name  CDS name  

  LMG 7399 (Xca) LMG 25940 (Xpd) LMG 12749 (Xe) LMG 9055 (Xps) 

gumC  Xca_2779 Xpd_1263 Xe_77 Xps_3603 

gumD Xca_2780 Xpd_1264 Xe_78 Xps_3602 

gumE Xca_2781 Xpd_1265 Xe_79 Xps_3601 

gumF Xca_2782 Xpd_1266 Xe_80 Xps_3600 

gumG Xca_2783 Xpd_1267 Xe_81 Xps_3599 

gumH Xca_2784 Xpd_1268 Xe_82 Xps_3598 

gumI Xca_2785 Xpd_1269 Xe_83 Xps_3597 

gumJ Xca_2786 Xpd_1270 Xe_84 Xps_3596 

gumK Xca_2787 Xpd_1271 Xe_85 Xps_3595 

gumL Xca_2788 Xpd_1272 Xe_86 Xps_3594 

gumM Xca_2789 Xpd_1273 Xe_87 Xps_3593 

HP Xca_2790 Xpd_1274 Xe_88 Xps_3592 

gumN Xca_2791 Xpd_1275 Xe_89 Xps_3591 

 
RAST annotations of the four genomes: LMG7399: 92828.12; LMG25940: 6666666.94921; LMG12749: 92828.9; LMG9055: 
270916.4. 
Xca = X. citri pv. aracearum; Xpd = X. phaseoli pv. dieffenbachiae; Xe = X. euvesicatoria; Xps = X. phaseoli pv. syngonii; CDS = 
Coding DNA sequence; HP = hypothetical protein. 
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4.1 Introduction 

Bacterial blight of aroids caused by bacteria named as Xanthomonas axonopodis pv. dieffenbachiae 

(Xad) is a devastating disease and responsible for significant crop losses. Difficulties in controlling the 

spread of the pathogen, as well as the severity of the disease led to the classification of Xad as an A2 

quarantine organism on the EPPO list (EPPO, 2009). Within the EU, this is especially relevant in order 

to protect and control the disease in the production of Anthurium which is an economically important 

host plant. Based on gyrB and avrBs2 sequences generated in the EU-FP7 project QBOL (‘Development 

of a new diagnostic tool using DNA barcoding to identify quarantine organisms in support of plant 

health’), the ILVO partner has revealed three different sequence groups within Xad and a correlation 

of this grouping with the host plant from which they had been isolated (generally Anthurium, 

Dieffenbachia and Philodendron). This indicates that the Xad strains do not reflect one genetic entity, 

and consequently, it also implicated further research on the pathogenic group known as Xad and on 

its regulated status. Clarifying the taxonomic position of Xad strains, investigating the pathogenic 

capacity of Xad strains on a range of aroids and exploring whole genome sequences for sets of 

pathogenicity genes were the three main objectives of this PhD study. 

4.2 Clarifying the taxonomic position of Xad strains within X. axonopodis 

species complex 

The genus Xanthomonas has been subject to numerous taxonomical and phylogenetic studies. Since 

1990, a major overhaul of Xanthomonas taxonomy was undertaken by Vauterin et al. (1990), a report 

that was followed by many other studies. The need for this revision arose due to the extensive use of 

the pathovar classification system for newly isolated Xanthomonas, which is a classification with no 

taxonomic relevance that is used as a matter of convenience. The use of this system, with disregard 

for an accurate taxonomic positioning, led to more than 100 different pathovars being included in 

Xanthomonas campestris. Although the pathovar designation should be based on the type of symptom 

it produces on the host plant from which it was isolated and also on the host plant range (Dye, 1980), 

strains of X. campestris were often assigned to the pathovar only on the basis of the host plant they 

were isolated from without regarding pathogenicity (Starr, 1981). The DNA-DNA hybridization (DDH) 

assays (Vauterin et al., 1995) and more recently, Multi Locus Sequence Analysis (MLSA) and Amplified 

Fragment Length Polymorphism (AFLP) (Ah-You et al., 2009; Young et al., 2010) led to a major 

rearrangement of the taxonomic status of several Xanthomonas species within the genus. A 

comprehensive DNA-DNA hybridization study resulted in the recognition of 20 species (Vauterin et al., 

1995) with X. axonopodis (DNA-DNA homology group 9) being the least homogeneous species of the 
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genus (Schaad et al., 2000). Based on AFLP and rep-PCR data six genetic clusters were described within 

this species (Rademaker et al., 2000; Rademaker et al., 2005). 

X. axonopodis has been recently modified by several proposals that renamed some pathovars as 

species (Jones et al., 2004; Schaad et al., 2005). These proposals did not put forward a comprehensive 

review of this species, but several name changes were made in studies that focused on a few target 

pathogens (e.g. those on tomato and pepper, bean, citrus), of which the nomenclature was changed, 

leaving unmodified the nomenclature of phylogenetically very closely related pathovars. Moreover, it 

has been intensely debated that X. axonopodis is in fact a species complex and that the different 

genetic groups identified within it may represent different species. The proposals made were not 

validated as they did not fulfil the taxonomic and nomenclatural rules (Young et al., 1991; Ah-You et 

al., 2009). Clearly, a more robust taxonomic investigation of the X. axonopodis species complex was 

needed. In this context, our study was very timely. Besides clarifying the taxonomic position of Xad 

strains, it also resolved an unclear taxonomic situation with several parallel and sometimes non-

comprehensive nomenclatures and led to a better understanding of the relationships between strains 

of X. axonopodis sensu Vauterin et al. (1995). 

Because for practical diagnosis it is important that quarantine organisms are unambiguously identified, 

the first objective of this dissertation was to clarify the taxonomic allocation of Xad strains known to 

be heterogeneous. Therefore, an extensive study has been performed as detailed in chapter 2. To date, 

DDH, 16S rRNA gene sequence analyses and MLSA analysis are the preferred techniques for delineating 

bacterial species. However, DDH and 16S rRNA gene sequence analysis have some limitations including 

the impossibility of assembling cumulative databases based on DDH and the inadequate resolution for 

species differentiation of the 16S rRNA gene sequences due to the conservative nature of this gene. 

Therefore, often the application of additional molecular techniques is needed. More recently, the 

average nucleotide identity (ANI) analysis of conserved and shared genes between two strains has 

been proposed to delineate bacterial species (Richter & Rosselló-Mora, 2009). Although the method is 

probably the most accurate for species delination, comparative analysis of whole genome data 

remains still limited accessible and therefore not yet fully exploited in the context of new species 

description. However, this is changing fast. Recently, taxonomic journals such as Systematic and 

Applied Microbiology have started to list the complete genome sequence of the type strain and 

calculation of ANI values with close relatives as requirements for new species descriptions (Richter & 

Rosselló-Mora, 2009). It therefore seems complete genomes will soon become indispensable for 

taxonomy. 

As the taxonomic resolution of 16S rRNA gene is too low within Xanthomonas, this gene was not 

investigated for the strains included in our study. First, MLSA based on seven genes was used to 

investigate a set of Xad strains together with a considerable number of phylogenetically related strains. 



Chapter 4: General discussion, conclusions and perspectives 

151 
 

Our MLSA data was congruent with those of previous studies (Ah-You et al., 2009; Parkinson et al., 

2009). Moreover, the four phylogenetic groups from our study correspond to the clades previously 

described by Parkinson et al. (2009) (X. fuscans clade, X. euvesicatoria species complex, X. 

euvesicatoria species complex sister clade and X. axonopodis clade) and the subgroups identified by 

Rademaker et al. (2005), subgroups 9.5 & 9.6, subgroups 9.2, 9.3, and 9.4 (Table 4.1). Second, a well-

chosen set of strains was examined using DDH, ANI calculations and biochemical analysis. Based on 

the data generated in this study, we proved that each of the four groups represent different species. 

Moreover, the MLSA data was congruent with the ANI data and proved to be suitable for accurate 

identification of strains of X. axonopodis sensu Vauterin et al. (1995) at the species level. So, for the 

Xad strains we were able to show that they belong to three different species outside X. axonopodis. 

Based on this data, and in compliance with the rules of the International Code of Nomenclature of 

Prokaryotes (the “Code”) (Parker et al., 2015) and the International Standards for Naming Pathovars 

(the “Standards”) (Dye et al., 1980; Young et al., 1992), new taxonomic proposals are made. Due to 

the huge genotypic diversity within these taxa, the taxonomic revision was challenging, especially 

because some phylogenetic groups (PGs) contained multiple type strains. In these cases the question 

was which species name to maintain for these phylogenetic groups. PG I included the type strains of 

X. citri subsp. citri, X. citri subsp. malvacearum, X. fuscans subsp. fuscans and X. fuscans subsp. 

aurantifolii, while PG II included the type strains of X. euvesicatoria, X. perforans, X. alfalfae subsp. 

alfalfae and X. alfalfae subsp. citrumelonis. The combination of genotypic and phenotypic data 

together with the rules of the International Code of Nomenclature of Prokaryotes (Rule 42: “In the 

case of subspecies, species, subgenera, and genera, if two or more of those taxa of the same rank are 

united, the oldest legitimate name or epithet is retained”) allowed for reclassification of X. perforans 

and X. alfalfae as X. euvesicatoria and emendations of the descriptions of X. citri, X. phaseoli and X. 

axonopodis. PG III contains the ‘long forgotten’ X. phaseoli type strain. The species  was described by 

Gabriel et al. (1989), and validly published however Young et al. (1991) and the subcommittee of the 

taxonomy of Pseudomonas found the proposal to reinstate X. phaseoli as species of the genus 

Xanthomonas insufficient. During the last 20 years this species was forgotten and not included in the 

major taxonomic studies on Xanthomonas (Vauterin et al. 1995; Rademaker et al., 2005; Parkinson et 

al., 2009; Young et al., 2008) and not even in papers on X. axonopodis pv. phaseoli (Mkandawire et al., 

2004; Alavi et al., 2007; 2008). However X. phaseoli it is still on the list of Prokaryotic Names with 

Standing in Nomenclature so it has to be considered;  therefore the strains from PG III were named X. 

phaseoli. PG IV is the only one remaining to be called X. axonopodis as it contains the type strain of X. 

axonopodis. 

As already mentioned, the taxonomic proposals from this study were made according to the “Code” 

and the “Standards” although the bacterial classification and nomenclature based on the “Code” is 
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often conflicting with the pathovar classification applied to the phytopathogenic diversity within 

Xanthomonas. The use of pathovars is well established for the genus Xanthomonas and clearly 

indicates differences in pathogenic ability within a species, but has no taxonomic value. However, for 

some pathogenic Xanthomonas, subspecies have been created instead of pathovars (X. fuscans subsp. 

fuscans, X. fuscans subsp. aurantifolii, X. citri subsp. citri, X. citri subsp. malvacearum, X. alfalfae subsp. 

alfalfae and X. alfalfae subsp. citrumelonis). It seems unapproriate to create subspecies for groups of 

strains that are meant to be distinguished on the basis of their pathogenicity on a certain host. 

Therefore, we proposed to change the investigated subspecies to pathovars. The existing pathovars 

have been reclassified according to the classification proposed here (Table 4.2). Although 113 strains 

were investigated in our study, it is clear that still more pathovars of X. axonopodis are misclassified at 

the species level and require further revision (i.e. X. axonopodis pv. begoniae). 

Thus, a first taxonomic framework for the X. axonopodis species complex was proposed in this study, 

removing subspecies and describing pathovars instead, allowing more extended studies that tackle the 

host–pathogen relation in more depth. The proposed classification system is a combination of a 

rational taxonomy and a convenient pathovar classification system for phytosanitary management. 

In conclusion, our study not only confirmed earlier research regarding the heterogeneity within this 

group of xanthomonads, but also took the decisive step to make a reclassification of strains formerly 

named as Xad, including phylogenetically closely related pathovars. Another merit of our study was 

that for the first time, Xad strains have been affiliated to three species, and remarkably they do not 

belong to X. axonopodis. Moreover, only Xad strains grouping with the pathotype strain, can maintain 

the pathovar epithet “dieffenbachiae” in a new combination as X. phaseoli pv. dieffenbachiae comb. 

nov. according to the International Standards for Naming Pathovars (Rule 27: “Division of a pathovar. 

When a pathovar is divided into two or more new pathovars the original pathovar epithet must be-

retained for that new pathovar which contains the designated pathotype strain”). This new 

classification has consequences not only for these aroid pathogens on the EPPO A2 quarantine list but 

also for other EU regulated Xanthomonas plant pathogens (Council Directive 2000/29/EC). For 

instance, the citrus pathogen on the EPPO A1 quarantine list, X. citri causes citrus canker – a disease 

which results in heavy economic losses to the citrus industry worldwide. The names have to be 

adjusted based on the new classification in the List of Accepted Species Names. According to the 

bacterial code (Parker et al., 2015), a proposed name is validly published when it appears in the 

International Journal of Systematic and Evolutionary Microbiology (IJSEM). Therefore we sent a 

validation request together with our published paper on the revision of X. axonopodis species complex 

(Constantin et al., 2016) to the IJSEM. The emendations of Xanthomonas species descriptions will be 

listed in List of Changes in Taxonomic Opinion no  26, to be published in the July issue of the IJSEM. 
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Table 4.1. The position of the four emended species (X. citri, X. euvesicatoria, X. phaseoli, X. axonopodis) in 

previous studies 

Constantin et al. (2016) Parkinson et al. (2009) Rademaker et al. (2005) 

X. citri PG I X. fuscans RG 9.5 & 9.6 

X. euvesicatoria PG II X. euvesicatoria RG 9.2 

X. phaseoli PG III X. euvesicatoria sister clade RG 9.4 

X. axonopodis PG IV X. axonopodis  RG 9.3 
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Tabel 4.2 Reclasification of strains that belonged to X. axonopodis species complex 

 

All X. campestris pathovars not examined by Vauterin et al. (1995) and that are shown here not to belong to X. campestris 
are placed in parentheses [ ]. 

Strain no Former name (below species level) 
according to Bull et al. (2010 & 2012) 

Proposed name 

LMG 9322 X. citri subsp. citri X. citri pv. citri 

306, AW 12879 X. axonopodis pv. citri X. citri pv. citri 

GSPB 1386, GSPB 2388, LMG 11726, X 18 X. citri subsp. malvacearum X. citri pv. citri 

12-2 X. axonopodis pv. glycines X. citri pv. glycines 

LMG 859 X. axonopodis pv. punicae X. citri pv. punicae 

CFBP 2938, LMG 941 X. axonopodis pv. mangiferaeindicae X. citri pv. mangiferaeindicae 

LMG 826, LMG 8039, LMG 8130 X. fuscans subsp. fuscans X. citri pv. fuscans 

ICPB 10535, ICPB 11122, LMG 8655, LMG 
9179, LMG 9181, LMG 9182, LMG 9654, LMG 
25933, LMG 25937 

X. fuscans subsp. aurantifolii X. citri pv. aurantifolii 

LMG 7399, LMG 7400, PD 3821 X. axonopodis pv. dieffenbachiae X. citri pv. aracearum 

CFBP 2914 X. axonopodis pv. anacardii X. citri pv. anacardii 

LMG 8021, LMG 8022 X. axonopodis pv. rhynchosiae X. citri pv. rhynchosiae 

LMG 867 X. axonopodis pv. sesbaniae X. citri pv. sesbaniae 

LMG 936 X. axonopodis pv. vignaeradiatae X. citri pv. vignaeradiatae 

LMG 828, LMG 8136 X. axonopodis pv. vignicola X. citri pv. vignicola 

LMG 532 [X. campestris] pv. aracearum X. citri pv. aracearum 

LMG 872 [X. campestris] pv. thirumalacharii X. citri pv. thirumalacharii 

LMG 495, LMG 497 X. alfalfae subsp. alfalfae X. euvesicatoria pv. alfalfae 

F1, LMG 9325 X. alfalfae subsp. citrumelonis X. euvesicatoria pv. citrumelonis 

85-10, LMG 668, LMG 909, LMG 910, LMG 
913, LMG 922, LMG 926, LMG 932, LMG 
25943, LMG 25945, LMG 27970 

X. euvesicatoria X. euvesicatoria pv. euvesicatoria 

LMG 28258, LMG 904, NCPPB 4322 X. perforans X. euvesicatoria pv. perforans 

LMG 580, LMG 9489, LMG 21894, LMG 
25669, LMG 25670, LMG 25671, LMG 25672, 
LMG 25674, LMG 25675, LMG 25676, LMG 
25677, LMG 25910, LMG 25911 

X. axonopodis pv. allii X. euvesicatoria pv. alii 

LMG 686 X. axonopodis pv. coracanae X. euvesicatoria pv. coracanae 

CFBP 5693, LMG 12749, LMG 12752, LMG 
12894, LMG 12895 

X. axonopodis pv. dieffenbachiae X. euvesicatoria 

LMG 698 X. axonopodis pv. erythrinae X. euvesicatoria pv. erythrinae 

LMG 845 X. axonopodis pv. physalidicola X. euvesicatoria pv. physalidicola 

LMG 470 [X. campestris] pv. alangii X. euvesicatoria pv. alangii 

LMG 499 [X. campestris] pv. amorphophalli X. euvesicatoria pv. amorphophalli 

LMG 534 [X. campestris] pv. argemones X. euvesicatoria pv. argemones 

LMG 9040 [X. campestris] pv. betae X. euvesicatoria pv. betae 

LMG 846 [X. campestris] pv. physalidis X. euvesicatoria pv. physalidis 

LMG 865 [X. campestris] pv. sesami X. euvesicatoria pv. sesami 

LMG 873 [X. campestris] pv. tribuli X. euvesicatoria pv. tribuli 

GBBC 922, LMG 695, LMG 12708, LMG 12716, 
LMG 12734, LMG 12738, LMG 12739, LMG 
12741, LMG 25938, LMG 25939, LMG 25940, 
NCPPB 3380, PD 2797, PD 3413, PD 4015, PD 
4394, PD 4485 

X. axonopodis pv. dieffenbachiae X. phaseoli pv. dieffenbachiae 

AT6B, CFBP 1851, CIO1 X. axonopodis pv. manihotis X. phaseoli pv. manihotis 

LMG 29033, LMG 7455 X. axonopodis pv. phaseoli X. phaseoli pv. phaseoli 

LMG 9055 [X. campestris] pv. syngonii X. phaseoli pv. syngonii 

LMG 982 X. axonopodis pv. axonopodis X. axonopodis pv. axonopodis 

LMG 895, LMG 901 X. axonopodis pv. vasculorum X. axonopodis pv. vasculorum 
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4.3 Pathogenicity and virulence gene content of the Xanthomonas pathogens 

on Araceae  

Bacterial blight of aroids is caused by xanthomonads formerly known as Xanthomonas axonopodis pv. 

dieffenbachiae. Prior to 1995, xanthomonads causing bacterial blight of aroids were classified under a 

single species, X. campestris and then transferred to X. axonopodis (Vauterin et al., 1995). As a 

consequence of our taxonomic study (Chapter 2, Constantin et al., 2016), Xad strains are now allocated 

in three other species namely, X. citri, X. phaseoli and X. euvesicatoria. 

It is clear that bacterial classification and nomenclature based on the bacterial code (Parker et al., 

2015) is not appropriate for pathovar infrasubspecies classification, which is however needed to 

identify a specific pathogen in some Xanthomonas species that harbor different pathovars, and which 

is the case for the three species to which the Xad strains have been allocated. Pathogenicity tests to 

determine host range are an essential part of the pathovar classification. Consequently, our first paper 

on the taxonomic revision clearly needed a continuation in order to identify these strains as groups of 

aroid pathogens within their respective species. Therefore, in Chapter 3 we studied their pathogenicity 

to aroid hosts by in planta bioassays, and whole genome sequence analysis has been performed to 

supplement the knowledge concerning genomic features related to pathogenicity in Xanthomonas. 

There is still insufficient information available in the literature about the actual phytopathogenic 

specialization of the former Xad strains. In contrast to the numerous studies reporting on the Xad 

genetic diversity, only few studies included pathogenicity tests on a range of aroid hosts (Lipp et al., 

1992; Chase et al., 1992; Berthier et al., 1993; Robéne-Soustrade et al., 2006). Moreover, these studies 

described the pathogenicity as mean values per host-strain group, not showing variation among 

individual strains. Lipp et al. (1992) and Chase et al. (1992) used a “virulence rating scale” for scoring 

pathogenicity but the other studies scored the symptoms only as “positive or negative”, in which case 

a general conclusion was made based on the majority of strains within each host-strain group, hence 

strain variation within each group cannot be recognized. Our study is the first to present the 

pathogenicity of individual strains within each host-strain group (species), and shows a strain 

dependent variation in virulence to aroid host genera. 

We performed pathogenicity tests with eleven strains on six different aroid species. The first important 

findings was that Aglaonema plants were the most susceptible and Philodendron plants the least 

susceptible to infection by the eleven tested strains. Two different Philodendron cultivars were tested 

with the same results. The symptoms on Philodendron were weak and appeared later than on the 

other plants. Besides that the strain isolated from Syngonium only infects Syngonium inducing severe 

and systemic infection, confirming the findings of Chase et al. (1992). Another remark was that the 

strains isolated from Anthurium which now belong to X. phaseoli were aggressive and able to cause 
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systemic infections on Anthurium and Dieffenbachia, as also reported by previous studies (Lipp et al., 

1992; Robéne-Soustrade et al., 2006). Also the strains isolated from Aglaonema, Xanthosoma and 

Dieffenbachia which now belong to X. citri were virulent, they produced leaf spots, but not systemic 

infections. In contrast, the X. euvesicatoria strains isolated from Philodendron showed only a weak and 

doubtful pathogenicity. Overall, our tests have demonstrated that except for the pathogen isolated 

from Syngonium, which is restricted to this host, strains had some overlapping host ranges, although 

severity of disease can vary between host species. 

In order to get insights into the host range specificity and diversity among these former Xad strains 

now belonging to three species, we sequenced whole genomes of four representative strains 

belonging to the three groups. Comparison of the predicted protein sequences of the four strains by 

reciprocal blast search showed that X. phaseoli pv. dieffenbachiae (isolated from Anthurium) is closely 

related to X. phaseoli pv. syngonii (isolated from Syngonium), which was an extra confirmation for both 

strains now designated to the same X. phaseoli species. We compared different clusters of 

pathogenicity-related genes in the draft genomes and interestingly found similar profiles, also for the 

X. euvesicatoria strain isolated from Philodendron which was scored as non-pathogenic to the tested 

aroid hosts. So based on its gene content, this strain, and by extention also the other X. euvesicatoria 

strains isolated from Philodendron that were previously in the big Xad pool, are probably to be 

regarded as pathogens but to yet unknown plant hosts. Although the four genomes are quite 

conserved with respect to the different gene families studied, each strain has its specificities. Certain 

pathogenicity genes are possibly associated with strain preference to a particular host range or 

virulence. We discerned differences in gene content between the strains restricted to mesophyll 

(causing leaf symptoms) and the strains that cause systemic infections, but also differences in gene 

content among the strains that cause systemic infections. For the time being, the meaning of these 

gene differences, is not clear-cut, it stays hypothetical as the function of several genes is still unknown. 

In this respect, our work did not provide clear interpretations on the relation between gene presence 

and symptomatology or host range, but is rather to be regarded as a contribution to building data and 

knowledge in this complex matter. Type II and type III secretion clusters were present in the four 

strains, and they were similar in terms of genetic organization and sequence identity. Type III secretion 

effectors are regarded as important pathogenicity factors and host range determinants. They are 

translocated into the plant cell and interfere with the plant immune response. We screened the four 

draft genomes for effectors and found interesting similarities and differences in the effector 

repertoires. Common effectors (13) of the three strains representing the three newly proposed 

pathovars on aroids are important pathogenicity candidates on aroids. Three of these 13 effectors 

namely XopE2, XopG and XopAM were found absent from the X. euvesicatoria strain identified as a 

non-pathogen for the aroid hosts. Although these effectors are also reported in other Xanthomonas 



Chapter 4: General discussion, conclusions and perspectives 

157 
 

genomes (da Silva et al., 2002; Potnis et al., 2011), this effector combination, might contribute to 

disease on aroid plants. These genes need to be functionally characterized to understand their roles in 

virulence and host specificity. This can be done creating mutants for these genes and testing their 

pathogenic capacity (Büttner et al., 2002; Lorenz & Büttner, 2009). 

Based on our previous study (Constantin et al., 2016) and the results of the pathogenicity tests in this 

study, we propose to name the pathogens on aroids as X. phaseoli pvs dieffenbachiae and syngonii 

comb. nov., and X. citri pv. aracearum comb. nov. We also propose to reconsider the current 

quarantine status of the pathogen within the EU and to restrict phytosanitary regulations for 

xanthomonads on aroids to these three pathovars. The name X. axonopodis pv. dieffenbachiae has to 

be removed from the A2 list and be replaced by the three pathovars mentioned above. The EPPO Lists 

are reviewed every year by the Working Party on the Phytosanitary Regulations and approved by 

Council. These pathovar names have also to be adjusted based on the classification proposed in this 

study by the Committee on Taxonomy of Phytopathogenic Bacteria of the International Society for 

Plant Pathology (ISPP-CTPPB). Therefore our published paper (Constantin et al., 2017) will be sent to 

the ISPP-CTPPB and in consequence the new pathovar names proposed here will be published further 

in the List of New Names of Plant Pathogenic Bacteria in the Journal of Plant Pathology. 

It is clear that pathovars have been created for a practical reason and that they are linked with 

pathogenicity characteristics, in consequence with the quarantine system. It would be interesting to 

create a quarantine system that is based on the presence of well documented pathogenicity 

determinants (e.g. the effectors). With enough information on the causative genes that are 

determinative for infection, the presence of these genes would then be the “quarantine criteria”. 

Although this dissertation leaves many questions unanswered, all methods applied in this PhD study 

painted a consistent picture of Xad as a complex of pathogens. The work presented shows a global 

overview of mechanisms involved in virulence but further studies are needed to test and improve the 

understanding of the role of all the virulence-related features mentioned here in repect to the 

pathogenicity groups correlating to the three Xanthomonas species in which the Xad strains are now 

allocated. Final conclusions on the species-specific virulence factors would yet be premature and 

incorrect since virulence on the same host plants showed to be also strain dependend. 

In any case, the results of this PhD study can be included in an reassessment of the regulatory status 

of Xad within the EU, and may present interesting insights to researchers studying plant pathogenic 

Xanthomonas in general as well as those developing future control measures for Xad on aroids. The 

work outlined in this thesis has demonstrated that the phylogenetic heterogeneity of Xad strains is 

mirrored in pathogenic heterogeneity justifying the installation of three pathovars for the pathogens 

on aroids, and omitting the X. euvesicatoria strains. 
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