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Compositional information = crucial petroleum/petrochemical industry
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Key is knowing the molecules:
• What they are
• Their performance
• Product impact
• Properties

Requirements:
• Characterization
• Detailed process models
• Business decision making

Real Time
Optimization

Planning
Raw material

Valuation

Blending &
Schedulling

Molecule driven process optimization 
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Fluctuating and unpredictable oil market

• In 2014
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Fluctuating and unpredictable oil market

• In 2016
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What happened?

Bloomberg, 2016
9
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Dealing with Petroleum Complexity :

Organize Composition by homologous series
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high electric field
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tunneling.

FI produces dominant molecular ions with little or no fragmentation
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FI

Benefits
• simple mass spectra, typically one molecular or 

molecular-like ionic species per compound.
• FI is the only ionization method that can ionize both 

saturates and aromatics without fragmentation. 
• little or no chemical background
• works well for small organic molecules and some 

petrochemical fractions
Limitations
• The sample must be thermally volatile. Samples are 

introduced in the same way as for electron ionization (EI)
Mass range
• Typically less than 1000 D

13
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Issues of concern for the chemical industry
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Main drivers

• Reserves of sweet crude oils are declining

• Reduction of CO2 emissions

• Alternative sources

• Political and policy changes

16
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Our drivers

• Efficiency

• Speed-up of development

• More detail and need for advanced models

• Atom efficiency and sustainable
production

17
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GC × GC (1)
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Detector
Detector

(7)

1. Injector
• Split/Splitless injector
• Cold-on column injector
• PTV injector
• Online Split/Splitless injector

2. 1st dimension column
• Apolar column (normal phase)
• Polar column (reverse phase)

3. 2nd dimension column
• Medium polar column 

(normal phase)
• Apolar or medium polar column 

(reverse phase)



HTC-14,  27/01/2016

GC × GC (2)
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Detector
Detector

(7)

4. Cryo valves for modulator

5. Modulator

6. Piece of deactivated column

7. Detector
• Flame ionization detector (FID)

= universal and quantitative

• Sulfur chemiluminescence detector (SCD)
= Sulfur selective and quantitative

• Nitrogen chemiluminescence detector (NCD)
= Nitrogen selective and quantitative

• TOF-MS
= universal and mainly qualitative but also 

quantitative analysis are possible (but difficult)
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GC × GC modulation
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4s 4s 4s 4s 4s 4s 4s 4s

1st dimension
separation

Modulation 2nd dimension
separation

Detection

� Enhanced Resolution
� Enhanced Signal/Noise Ratio
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GC × GC data processing

21Dallüge et al., J. Chrom. A 2003
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GC×GC analyses methodology

• Quantitative characterization via GC×GC-NCD/SCD with 

internal standards

• Internal standards (IS):

– Not being a part of the sample itself

– Not overlapping with other N- or S-compounds present in the 

pyrolysis oil

– S-compounds quantification: 3-chlorothiophene

– N-compounds quantification: 2-chloropyridine 

22
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Shale oil analyisis
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Correction method

S and N compounds are visible on the FID
⇒ Bias in the prediction of the hydrocarbons

⇒ Need for a correction procedure

⇒ GC × GC allows to define overlapping 
groups and a correction procedure can be 
derived

26
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GC × GC – FID chromatogram 
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GC × GC – TOF-MS SIC chromatogram 
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Selected ions: 108, 122, 136, and 150



HTC-14,  27/01/2016

GC × GC – NCD chromatogram 
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GC × GC – SCD chromatogram 

30
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#C P I MN DN MA NA DA NDA TA Pd An Q In Ac Ca T BT NBT DBT Ph Total

5 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0.24 0 0 0 0 0.25

6 1.61 2.28 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0.25 0 0 0 0.03 4.21

7 2.24 1.47 0 0 0.11 0 0 0 0 0.11 0.02 0 0 0 0 0.16 0 0 0 0.13 4.24

8 2.18 1.96 0 0 0.69 0 0 0 0 0.26 0.05 0 0.01 0 0 0.10 0.02 0 0 0.27 5.55

9 2.34 2.22 0.57 0 1.67 0 0 0 0 0.47 0.07 0.01 0.06 0 0 0.07 0.14 0 0 0.33 7.94

10 2.31 1.52 0.85 0 1.77 0.39 0.05 0 0 0.15 0.11 0.08 0.17 0 0 0.04 0.33 0 0 0.15 7.91

11 2.31 1.17 1.08 0 1.35 0.33 0.40 0.01 0 0.18 0.11 0.17 0.28 0 0 0.03 0.33 0 0 0 7.74

12 2.34 0.97 1.20 0.01 0.94 0.26 1.00 0.16 0 0.12 0.08 0.19 0.30 0 0 0.03 0.20 0.01 0.01 0 7.82

13 2.29 1.40 1.13 0.13 0.87 0.42 1.07 0.20 0 0.18 0.03 0.12 0.16 0 0.02 0.02 0.06 0 0.03 0 8.13

14 2.26 1.08 1.05 0.14 0.62 0.34 0.75 0.40 0.03 0.17 0 0.03 0.14 0.01 0.02 0 0.03 0 0.08 0 7.14

15 2.22 1.05 0.90 0.26 0.80 0.26 0.41 0.33 0.17 0.13 0 0 0 0.02 0 0 0.01 0 0.04 0 6.60

16 2.20 0.70 0.77 0.18 0.50 0.16 0.24 0.16 0.40 0.10 0 0 0 0 0 0 0 0 0 0 5.41

17 2.07 0.84 0.87 0.10 0.49 0.11 0.14 0.10 0.14 0.05 0 0 0 0 0 0 0 0 0 0 4.91

18 1.98 0.80 0.91 0.09 0.30 0.09 0.03 0.07 0 0.03 0 0 0 0 0 0 0 0 0 0 4.31

19 1.64 0.72 0.58 0.09 0.26 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.37

20 1.54 0.48 0.75 0.06 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.03
21 1.36 0.38 0.58 0.07 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.56
22 1.35 0.37 0.43 0.05 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.29
23 1.12 0.32 0.28 0.04 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.81
24 0.89 0.25 0.20 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.38
25 0.77 0.07 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00
26 0.60 0.08 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.76
27 0.46 0.06 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.60
28 0.31 0.05 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.41
29 0.21 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27
30 0.13 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19
31 0.05 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09
32 0.03 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07
33 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03

Total 38.85 20.36 12.63 1.22 10.92 2.43 4.09 1.42 0.73 1.98 0.47 0.60 1.11 0.03 0.04 0.93 1.11 0.01 0.16 0.91 10031
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On-line analysis

• Importance of sulfur and nitrogen containing compounds 
on steam cracking is two folded
� High S and N content in heavier petroleum fractions (becoming 

more attractive as steam cracking feedstocks)

� Significant influence on steam cracking performance

� Trace analysis of sulfur and nitrogen an important challenge

� SCD and NCD are the most suitable for analyzing S and N amount (ppb level)

32
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Furnace + Reactor

HTC-13, Bruges, Belgium, 29/01/2014

Pilot plant steam cracking setup

Control Room
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HTC-13, Bruges, Belgium, 29/01/2014

Pilot plant setup
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Coated heated 
transfer lines

GC�GC

GC�GC

HTC-13, Bruges, Belgium, 29/01/2014

Pilot Plant: On-line effluent sampling

GC×GC

GC×GC

Restek® Sulfinert
Coated Tubing 

Sulfur IS
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Nitrogen = Internal Standard

Methane = Reference Component
GC×GC temperature program: -40°C � 300°C

HTC-13, Bruges, Belgium, 29/01/2014

Universal On-line quantification

GC×GC

GC×GC

Sulfur IS

GC×GC (FID)
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GC×GC-FID/NCD setup
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HTC-13, Bruges, Belgium, 29/01/2014

GC×GC

Heated
Transfer-line

NCD
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GC×GC-FID/SCD setup
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HTC-13, Bruges, Belgium, 29/01/2014

� SCD and FID are in series

� Both simultaneous and 
separate analyses are possible

Simultaneous Separate

Single analysis
(85 min)

Double analysis
(2×85 min)

Maximum 
sensitivity for 

either FID or SCD

Maximum 
sensitivity for both 

FID and SCD

(1)

(3)

(2)

1) deactivated column
2) valves for liquid CO2
3) cryogenic modulator
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FID
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Nitrogen On-line quantification

Sulfur IS

GC×GC

GC×GC

1) deactivated column
2) valves for liquid CO2
3) cryogenic modulator

2-chloropyridine Nitrogen IS
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Experimental conditions

40
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Nitrogen compounds

41
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On-line FID analysis

421D part 2D part

Not modulated Modulated

Ethylene : 43 wt%
Propylene : 15 wt%

Benzene : 4 wt%
Heptane : 1 wt%
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pyridin addition

43
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Thiophene addition

44

• Thiophene slightly decomposes – stable under tested conditions (COT, tau )

• H2S is the major product in the effluent (DMDS responsible for its production)

• Methyl-, ethyl- substituted thiophenes, benzothiophene at higher ppmwS/HC

SCD
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Fourier-transform ion cyclotron resonance 
(FT-ICR) MS 

• It enables the acquisition of high-resolution mass spectra 
with high accuracy (developed in 1950’s and 1970’s)

• Almost unlimited resolution - >107

• Quantification is not easy
• Other limitations of FT-ICR MS are that it cannot 

differentiate between molecules which have exactly the 
same molecular formula but different structures 

• Muller et al. performed the quantitative characterization 
of sulfur containing compounds in gas oil (GO). GC×GC 
was used as the reference method. The comparison of 
FT-ICR MS results with GC×GC results showed good 
agreement for sulfur families as in most cases the 
deviation was within 5% and 15%. 

46
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Working principle
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• Ions are generated in 
the source and pass 
through a series of 
pumping stages to 
increasingly high 
vacuum 

• Then ions enter the 
cell (ion trap)

• Cell is located inside 
high field magnet 
(typically 4.7 to 13 
Tesla) 

• The frequency of rotation of the ions is dependent on their m/z ratio
• Excitation of each individual m/z is achieved by a swept RF pulse across the 

excitation plates of the cell=>measurement of all the ions in one go 
• producing a complex frequency vs. time spectrum (the convoluted frequency 

spectrum or FID) containing all the signals. Deconvolution of this signal by FT 
methods results in the deconvoluted frequency vs. intensity spectrum which is then 
converted to the mass vs. intensity spectrum 
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Schematic of Carbon number vs. DBE

48
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Conclusions

• Molecule driven process optimization is the key driver for 
the oil and petrochemical industry to consider more advanced 
analytical techniques 

• GC×GC-SCD/NCD/FID/Tof-MS setups enable quantitative 
analysis of PA(S)(N) H compounds and shale oil

• GC×GC-NCD/SCD/Tof-MS/FID successfully applied online

• GC×GC, GC-FIMS and FT-ICMS should join forces to resolve 
the challenges of the future

50
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Glossary

• GC×GC – comprehensive two-dimensional gas 
chromatography

• SCD – sulfur chemiluminescence detector
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