

Numerical Investigation of Process Intensification of Biomass Fast Pyrolysis in a Gas-Solid Vortex Reactor: Gas flow study

<u>Shekhar R. Kulkarni</u>, Laurien A. Vandewalle, Arturo González Quiroga, Pieter A. Reyniers, Kevin M. Van Geem, Guy B. Marin

Laboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be

2nd International Workshop on CFD & Biomass Thermochemical Conversion, Leipzig, 09/09/2016

Introduction: G-S Reactors

2

Contents

- Introduction
- Process Intensification in GSVR
- GSVR research at LCT
- Reactive GSVR
- Gas-Phase CFD Simulations
 - Computational Domain Study
 - Turbulence Model Study
 - Detailed Gas Study
- Summary & Conclusions
- Future Scope

Process Intensification in GSVR

Process Intensification in GSVR

GSVR Research at LCT

Cold-Flow Setup

Hot-Flow Setup

Modeling fast biomass pyrolysis in a gas-solid vortex reactor

Robert W. Ashcraft, Geraldine J. Heynderickx*, Guy B. Marin

Assessment of a Gas–Solid Vortex Reactor for SO_2/NO_x Adsorption from Flue Gas

Robert W. Ashcraft, Jelena Kovacevic, Geraldine J. Heynderickx,* and Guy B. Marin

Reactive GSVR

Operating Conditions:

- Gas Flow: 5 10 g s⁻¹
- Biomass Flow: 0.14 1.1 g s⁻¹
- Gas Temp: 800 950 K

Schematics:

- Internal Diameter: 80 mm
- Length: 15 mm
- 8 slots, 1 mm width
- Outlet Diameter: 20 mm

Simulation Conditions

Gas	Nitrogen	
Density Modeling	Ideal-Gas	
Inlet Temperature	842 K	
Flow rate	10 g s ⁻¹	
Boundary Conditions		
Inlet Pressure	50 kPa (g)	
Outlet Pressure	10 kPa (g)	
N ₂ -Walls	No-slip	
Gravity : Enabled (not significant)		
Eulerian-Eulerian model; ANSYS Fluent 15.0		

All results of these 3D simulations are studied on a horizontal plane at z = 10 mm. Circumferentially averaged values are plotted.

Computational Domain Study

P, V Plots | Various geometries

Flow characteristics in reactor are captured in all configurations \rightarrow pie-shape chosen for computational ease

Turbulence in GSVR

• Gas velocities: 60-140 m s⁻¹ (at slots)

Swirl Dotio $(S_{1}) = $	(Gas azimuthal velocity) _{in}
Swin Ratio $(S_{in}) = 1$	(Gas radial velocity) _{in}

- For reactive GSVR: S_{in} ~ 3-4; & Re: ~10⁴-10⁵
- $S_{in} > 0.5 \rightarrow turbulent flow$ ^[1]
- Highly turbulent, swirling flow in GSVR : realizable k-ε (rk-ε) or Reynold Stress Model (RSM) ^[2]
- Detailed secondary flow study (recirculation, counter-flow) crucial, specially in reactions where behavior of system with particles like fast pyrolysis is involved

Turbulence Models Comparison

Both models perform satisfactorily at pyrolysis conditions $\rightarrow \underline{k-\epsilon}$ chosen for computational ease.

Gas Velocity

- Negligible radial velocities
- Rise towards outlet, more outflow

- Very high azimuthal velocities in slots.
- Sets up strongly swirling flow.

Gas Pressure

- Pressure drop will reduce with solids.
- Total pressure drop: ~ 20 kPa [2]

[1] Niyogi et al., (2016), On near-wall jets in a disk-like vortex chamber, AIChE Journal[2] Pantzali et al., (2015), Radial pressure profiles in a cold-flow gas-solid vortex reactor. AIChE Journal

Summary & Conclusions

- GSVRs exhibit densely packed solid beds with larger widthto-height ratios & higher gas-solid slip velocities than FBs.
- Enhanced heat transfer characteristics allow for closer temperature control and is suitable for pyrolysis.
- Pie-shape (1/8th of entire reactor) chosen for computational advantages.
- Both realizable k-ε and RSM capture gas flow features in GSVR.

Future Work

- Study of solid beds under pyrolysis conditions.
- Incorporating various reaction mechanisms for biomass fast pyrolysis.
- Segregation and behavior study of various stages of biomass during pyrolysis.
- Quantifying heat transfer and process intensification assessment for biomass fast pyrolysis.

Acknowledgements

Institute for the Promotion of Innovation by Science and Technology in Flanders EU RESEARCH FUNDING 2007-2013 7TH FRAMEWORK PROGRAMME

FUNDING BY EU MEMBER STATE

Research Foundation Flanders Opening new horizons

Vlaams Supercomputer Centrum

