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ABSTRACT: Over the past decade, long noncoding RNAs
(lncRNAs) have emerged as novel functional entities of the
eukaryotic genome. However, the scientific community
remains divided over the amount of true noncoding transcripts
among the large number of unannotated transcripts identified
by recent large scale and deep RNA-sequencing efforts. Here,
we systematically exclude possible technical reasons underlying
the absence of lncRNA-encoded proteins in mass spectrometry
data sets, strongly suggesting that the large majority of
lncRNAs is indeed not translated.
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■ INTRODUCTION

Advances in sequencing technologies have uncovered pervasive
transcription of the eukaryotic genome outside of annotated
protein-coding loci. Most of these novel transcripts are long
(>200 nucleotides) and lack large open reading frames (ORFs)
and homology to annotated protein-coding genes.1 Termed
long noncoding RNAs (lncRNAs), these transcripts comprise a
vast, diverse, and largely unexplored class of RNA, out-
numbering any other class of genetic entities in the human
genome.2 Those that have been studied in detail play important
roles in a wide range of cellular processes during normal
development and in homeostasis and disease, including cancer.3

Similar to lncRNAs, short open reading frame (sORF)-
encoded polypeptides (SEPs) or micropeptides have gained
increased attention over the past few years. While classical
bioactive peptides are enzymatically cleaved from longer
protein precursors, micropeptides are small peptides (<100
amino acids) directly translated from single sORFs. So far, only
a limited number of these micropeptides have been discovered
and functionally characterized.4

The coding potential of newly discovered RNA transcripts is
typically assessed by means of prediction algorithms.5−7 While
each algorithm has its own strengths and weaknesses, they are
all biased to current annotations and may thus be unsuitable for
the detection of small or nonconserved proteins, including
micropeptides.
Although the advent of ribosome profiling8 (sequencing of

ribosome protected RNA fragments) promised to provide

evidence for (the lack of) translation of expressed ORFs, much
is still open to interpretation. Numerous studies report
substantial ribosome occupancy of lncRNA transcripts.9−12

The striking similarities in the pattern and size of ribosome
protected fragments covering protein-coding transcripts and
lncRNAs have led some researchers to conclude that up to 90%
of the lncRNA transcriptome bears coding ORFs.10 Other
researchers report much more conservative numbers.11−14 For
instance, if the relative abundance of ribosomes before and after
stop codons (termed ribosome release) is used to discriminate
between protein-coding and noncoding transcripts, only a few
novel coding ORFs are found.11 When taking into account the
phased movement of ribosomes across translated ORFs, only a
small number of novel peptides arising from transcripts
annotated as lncRNAs13 are identified. Different research
groups have thus developed different metrics and method-
ologies to detect coding ORFs in ribosome profiling data.
Without a consensus, the true coding potential of lncRNA
transcripts remains open to speculation.
Mass spectrometry is often considered as the gold standard

in detection and characterization of proteins or peptides. So far,
few studies have turned to mass spectrometry to study
micropeptides and lncRNA-encoded proteins. In our previous
work,15 we have reprocessed large quantities of tandem mass
spectrometry data obtained from the PRoteomics IDEntifica-
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tions (PRIDE) database. In brief, we reanalyzed raw data from
2,493 PRIDE experiments, containing 39,463,035 fragmenta-
tion mass spectra covering 68 human tissues using a
combinatorial database consisting of Uniprot protein sequences
and six reading frame translated LNCipedia lncRNAs. In these
searches, less than 1% of the lncRNA genes in LNCipedia were
covered by at least two unique peptide to spectrum matches
(PSMs), compared to approximately 87% of Uniprot proteins
(Volders et al., 2015; Tables S-1 and S-2). The results of these
searches are publicly available through the LNCipedia portal.
Other groups have reported similar numbers, ranging from

less than 100 up to 1,600 putative lncRNA-encoded proteins in
human.16−18 Compared to the more than 60,000 reported
lncRNA genes,2,19 these numbers are fairly low and definitely
much lower than those reported by various ribosome profiling
studies.
This discrepancy in the reported amounts of potentially

coding lncRNAs is the source of spirited discussion in the field.
Indeed, a resolution of this conflict has direct relevance for
further investigations into the biological roles of lncRNAs.
The most direct observation of coding lncRNAs is the actual

detection by mass spectrometry-based proteomics of the
encoded proteins. As such, the absence of large amounts of
detected lncRNA-derived proteins strongly hints at a limited
coding potential for lncRNAs. The main criticism of this
approach, however, is that mass spectrometry-based proteomics
is somehow biased against the detection of lncRNA products.
Here, we therefore examine the possible biases of mass

spectrometry to detect and characterize lncRNA-encoded
proteins based on a detailed yet exhaustive reprocessing of
very large amounts of public proteomics data. Our findings
clearly show that there are no obvious technical reasons why
mass spectrometry would have largely missed (micro)peptides
originating from noncoding RNA transcripts, thus eliminating
the possibility that mass spectrometry would be biased against
the detection of putative lncRNA-encoded proteins.

■ INFLUENCE OF PROTEIN COMPOSITION ON
DETECTABILITY BY MASS SPECTROMETRY

Mass spectrometry enables high-throughput protein identi-
fication in complex samples. However, there is some

controversy regarding the limitations of this technique in
terms of detectability of peptides and thus, by extension,
proteins. Several potential causes have been proposed,
including biases due to the size of the protein sequence, the
amino acid composition, the abundance, and the half-life of

proteins.20−22 Here, we investigate these presumed issues and
identify potential reasons as to why certain predicted ORF
products evade detection. The applied strategy revolves around
the reprocessing of publicly available data in PRIDE,23 one of
the world’s leading mass spectrometry repositories.24 Sequence
database searches were performed using an automated
reprocessing pipeline, consisting of pride-asap25 for the
detection of data set specific parameters, SearchGUI26 to
match the fragmentation mass spectra against peptides derived
from protein sequence databases, and PeptideShaker27 to
integrate the identifications and control these at a 1% false
discovery rate at the peptide-to-spectrum match level.
Because the combination of known canonical human protein

sequences and hypothetical lncRNA-derived sequences can
hamper protein inference, the overlap between both data sets
must be investigated. This was achieved by matching the full set
of tryptic peptides originating from the six reading frame
translated LNCipedia database (version 3.1) against the full set
of human canonical proteins in UniProtKB/SwissProt.28 Out of
8,645,916 hypothetical tryprtic peptide sequences, only 277,412
had one or more identical matches in the protein sequence data
set. The overlap is thus minimal (approximately 3.21%), which
is about equal to the between-protein tryptic peptide overlap
for the human complement of UniProtKB/Swiss-Prot, which
does not consider any splice isoforms. This indicates that
uniquely identifying lncRNA polypeptides should be no more
difficult than identifying unique human proteins.
A first potential factor that may contribute to a detection bias

is the size of a protein. In order to analyze this, publicly
available submissions of human projects to PRIDE were
searched against the human complement of the UniProtKB/
SwissProt28 protein sequence database using our reprocessing
pipeline. The resulting set of proteins was ranked according to
sequence length. A simple spectral count over all PRIDE assays
in which a protein was identified was used to indicate the
number of times the protein was observed. Q8WZ42, the
megadalton protein titin, represented by its canonical isoform
of 34,350 residues, was identified 298 times in 183 assays. This
indicates that large proteins are picked up despite their length,
as is to be expected due to the relatively higher number of
potential MS/MS-identifiable peptides following enzymatic
cleavage of larger proteins. At the same time, short proteins
are also frequently identified across a broad range of assays
(Table 1). It is noteworthy that, out of 20,207 human entries in
UniProtKB/SwissProt, only 36(mainly) tissue or cell
specificproteins (0.18%) are smaller than the shortest
reported protein sequences in Table 1. These numbers provide
a strong indication that protein length is not likely a major
determining factor in protein detectability by mass spectrom-
etry using standard sampling protocols.
A second feature that could impose a bias on protein

detection using mass spectrometry is the amino acid sequence
composition. The existence of such a potential bias was
investigated by comparing the composition of peptides that
have been identified at high confidence with the composition of
in silico generated peptide sequences. A theoretical digest of the
human UniProtKB/SwissProt database was therefore created
using dbtoolkit29 with tryptic cleavage rules, allowing for two
missed cleavages. Both empirical peptides from the reprocess-
ing of the human data in PRIDE and in silico obtaining peptide
sequences from the in silico digest of UniProtKB/SwissProt
were filtered to sizes between 5 and 30 amino acids, which is
the common range of observed peptide lengths in practice.30

Table 1. Ten Shortest Human Proteins Identified by
Reprocessing of the Reprocessed PRIDE Data

protein gene name
length
(AA)

average MW
(Da)

spectral
count

assay
count

P62328 TMSB4X 44 4921.46 787 287
P63313 TMSB10 44 4894.48 366 229
Q8N4H5 TOMM5 51 6035.31 88 70
P62891 RPL39 51 6275.49 109 52
Q59GN2 RPL39P5 51 6322.59 107 51
Q5VTU8 ATP5EP2 51 5806.87 53 43
P56381 ATP5E 51 5648.57 53 43
Q96IX5 USMG5 58 6326.38 112 86
P62861 FAU 59 6647.86 248 141
P13640 MT1G 62 6647.86 71 47
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The amino acid composition of both theoretical and observed
peptides was then calculated by counting the occurrence rate of
an amino acid per position in the sequence (Figure 1). There is
a high positive correlation between both data sets (Spearman ρ

= 0.952, p < 0.01), hinting that there is no reason to assume
that the compositions of proteins identified by the reprocessing
of PRIDE and those generated by in silico digestion are very
different. The higher occurrence rates for R and K in the

Figure 1. Comparison between theoretical (UniProtKB/SwissProt) and observed (reprocessed PRIDE data) peptide sequence amino acid
composition for human data from PRIDE and UniProtKB/SwissProt.

Figure 2. Reprocessing results for PRIDE data sets derived from human blood plasma mapped onto the abundance values reported by Anderson and
Hunter.32 The size of a bubble corresponds to the number of PRIDE assays in which that protein was identified.
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experimental data are most likely related to the fact that these
are the residues that are targeted by the most common sample
preparation procedure, which involves protein digestion by
trypsin. This is indeed the confirmed case for the majority of
PRIDE projects. In addition, these residues are strong bases
and therefore strongly promote ionization. The explanation for
the slightly lower occurrence rate of S in the experimental data
can be related to the fact that S can be phosphorylated in vivo,
and to the somewhat lower efficiency in the detection of
phosphorylated residues.
Another important property that can affect detection by mass

spectrometry is protein (and thus peptide) abundance in the
sample. Although there are examples of successful enrichment
protocols,31 the detection of products of rare translation events
is not straightforward. In order to investigate the influence of
the abundance on the detectability of proteins by mass
spectrometry, we first make use of the study by Anderson
and Hunter32 that reports empirically obtained protein
quantification values in human blood plasma. Reprocessing of
the subset of PRIDE data sets derived from human blood was
carried out, and their estimated abundances were mapped to
the values reported by Anderson and Hunter (Figure 2). While
it is clear that the lowest abundant proteins are not detected,
the abundance range of human plasma is quite extreme at 11
orders of magnitude, of which at least eight are covered reliably
in the PRIDE data. This analysis thus shows that mass

Figure 3. Reprocessing results for all PRIDE murine data mapped onto the half-life values reported by Schwanhaüsser et al.33 The size of the bubble
corresponds to the number of PRIDE assays in which the protein was identified.

Figure 4. Instability index distributions of human UniProtKB/
SwissProt proteins, and of identified proteins from reprocessed
human data sets in PRIDE.
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Figure 5. LncRNA and mRNA expression profile and detectability. (a) Two-dimensional kernel density plot of lncRNA and mRNA expression levels
and subcellular localization. The enrichment of nuclear over cytosolic expression versus the expression in the whole-cell extract is shown. Selected
lncRNA and protein-coding genes are depicted. Especially low abundant lncRNAs show nuclear enrichment compared to mRNAs (adapted from
Djebali et al.1). (b) Whole-cell expression distribution for lncRNAs and mRNAs. Although lncRNAs are generally expressed at lower levels, a
substantial overlap is observed. (c) Normalized spectral abundance factor (NSAF) of the detected protein as a function of its RNA expression level.
While mRNA expression and NSAF are moderately correlated, the entire range of expression is clearly covered and thus detectable with mass
spectrometry.
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spectrometry-based proteomics is only biased against the very
least abundant proteins.
Another possibility for detection bias is provided by the half-

life of a protein, as rapidly degraded proteins may escape
detection as well. In order to assess a possible bias based on
protein half-life, we make use of the study by Schwanhaüsser et
al., where half-life values for murine proteins are reported.33

Because PRIDE also contains murine data, extensive reprocess-
ing of these murine data sets against the mouse complement of
the UniProtKB/SwissProt database was performed and the
reprocessed identifications were mapped to the originally
reported half-life data (Figure 3). This analysis reveals that the
PRIDE data cover the entire half-life range, indicating no
influence of protein half-life values on detectability.
In addition, we calculated the N-terminal instability index of

human proteins as described by Guruprasad et al.34 This metric
is based on the dipeptide composition of a protein and provides
a crude estimation of protein half-life when large-scale
experimental data are lacking, as is the case for human proteins.
The underlying assumption is that a protein’s half-life correlates
negatively to its relative instability. We therefore compared the
calculated instability indices for all proteins in the human
complement of UniProtKB/SwissProt with those calculated for
the identified proteins from the human data sets in PRIDE.
Only a minor deviation is revealed between the instability index
distributions of observed and theoretical proteins (Figure 4),
providing additional proof that the degradation rate of a protein
has little, if any, influence on its detectability.

■ LNCRNA EXPRESSION AND COMPOSITION SHOW
NO INDICATION OF CODING POTENTIAL

The expression profiles of lncRNAs differ extensively from
those of protein-coding mRNAs (Figure 5a). LncRNAs are
generally expressed at a lower level and are more abundant in
the nucleus. While mRNAs are transported to the cytoplasm for
ribosomal translation, several lncRNAs have a documented
function in the nucleus.35 As such, the nuclear enrichment of
lncRNAs suggests a noncoding role for the majority of the
lncRNA transcripts.
We have observed that very low protein abundance can

hamper the detection by mass spectrometry (Figure 2) and
lncRNAs are expressed at lower levels compared to mRNAs.

Because expression level is a good predictor for protein
concentration,36 one might speculate that lncRNAs give rise to
proteins at concentrations below the mass spectrometry
detection limit. To examine this issue, we first compared
lncRNA and mRNA expression levels in the GENCODE v7
data set1 (see Supporting Information for details). While the
average expression level of lncRNAs is below that of protein-
coding genes, the expression range is very similar (Figure 5b).
In addition, a substantial number of lncRNAs are expressed at
levels similar to typical mRNA transcripts. To evaluate the
protein detectability as a function of its mRNA expression, we
compared mRNA expression levels to the normalized spectral
abundance factor (NSAF+)37 of the corresponding protein.
The expression level is defined as the maximally observed
RPKM (reads per kilobase per million mapped reads) for a
particular mRNA across 11 cell lines in the GENCODE data
set. The maximally observed NSAF+ for each protein from the
4,413 assays in PRIDE that originate from these cell lines is
reported. The NSAF+ and RPKM show a low but significant
correlation (Spearman ρ = 0.32, p-value <0.01), which is
particularly apparent in the higher expression ranges (Figure
5c). Importantly, even though low abundant proteins are more
difficult to detect, detected proteins cover the entire expression
range. Thus, should lncRNAs give rise to proteins, their
concentrations should be detectable by mass spectrometry.
The fact remains that most (if not all) lncRNAs contain

canonical ORFs. While predictions classify these as noncoding
(hence the annotation as lncRNA), it is conceivable that these
ORFs represent recent evolutionary adaptations and are thus
difficult to detect by in silico analyses. To evaluate if lncRNA
ORFs are evolutionary retained or products of random
nucleotide progression, we examined the relative size of these
ORFs. By using the reverse complement of the sequence as a
control, it is obvious that mRNA ORFs are much larger than
random ORFs in the reverse complement sequence (see
Supporting Information for details). In contrast, lncRNA ORFs
do not differ in size from randomly occurring ORFs (Figure 6),
suggesting that they are indeed the product of random
nucleotide progression. In addition, it was previously shown
that lncRNA ORFs do not show the within-species substitution
patterns expected of recently evolved proteins.11

Figure 6. Relative size of the largest canonical ORF in mRNA and lncRNA transcripts. Using the reverse complement sequence as a control, it is
apparent that lncRNA (as opposed to mRNA) ORFs are not larger than what would be expected from random nucleotide progression.
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■ CONCLUSIONS
Investigations into the proportion of coding lncRNAs have
resulted in very different estimates. RNA-based analyses,
including ribosome profiling, have led to very high estimates,
while the more direct measurement of lncRNA-derived proteins
via mass spectrometry has turned up only a small percentage of
putatively coding lncRNAs. In order to help resolve this
discrepancy, we here performed a detailed yet thorough analysis
across the very large amounts of publicly data available for the
human and murine proteomes to eliminate possible biases of
mass spectrometry-based proteomics in detecting lncRNA-
derived proteins. Our analyses reveal that the detection of
proteins by mass spectrometry displays only limited bias,
relating to proteins with very low abundance and/or very short
sequence lengths (shorter than 44 amino acids). Nevertheless,
it should be noted that specialized methods can circumvent the
observed protein detection biases. Targeted sampling of less
studied tissues may still reveal the existence of lncRNA-
encoded, tissue specific1 translation products. Short translation
products can be picked up using peptidomics approaches,38 and
enrichment protocols31 can boost yet unseen (micro)peptides
above the mass spectrometry detection threshold. Our analyses
thus also delineate useful methods and protocols for
comprehensive analysis strategies that are tailored toward
finding yet unfound putative protein products from lncRNAs.
Even though mass spectrometry has its limitations in the

detection of very low abundant or very small proteins, we firmly
demonstrate here that these limitations alone cannot explain
the discrepancy between the observed number of lncRNA-
encoded proteins and the predicted number by various
ribosome profiling studies. In addition, we show that the
putative protein products of lncRNA ORFs do not differ in
protein sequence length or composition from currently well-
detectable proteins. It is thus unlikely that the majority of the
current lncRNA annotation consists of miss-classified protein-
coding genes. These findings confirm that ribosome association
alone is insufficient to define novel coding ORFs, as was already
suggested by some ribosome profiling studies.
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