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The launching of the Sustainable Development Goals (SDG) by the United Nations (UN) in 2015 has pro-

vided a strong signal from the world’s governments that sustainable development must happen at global 

scale without leaving anyone aside. The post-2015 Development Agenda has the ambitious challenge of 

empowering all of us to achieve healthy and stable economies, fair and well-governed societies, respect for 

human rights, respect for the environment, and consequently world peace. 

Reaching the SDG targets will not be possible without a strong and sustainable global agriculture. Beyond 

their direct impact on hunger and malnutrition, agriculture and biomass-based industry are the common 

thread connecting together the SDGs, from poverty alleviation to education, gender equality, water use, 

energy use, economic growth and development, sustainable consumption and production, climate change, 

and ecosystem management.

Sustainable agriculture and downstream processing industry are knowledge based. We have technologies 

and know-how to succeed, and UN organizations such as FAO (Food and Agriculture Organization of the 

UN), UNESCO (United Nations Educational, Scientific and Cultural Organization) and UNIDO (United Na-

tions Industrial Development Organization) are engaged to bring all knowledge and tools made available 

by science and technology to individuals and institutions of civil society that can play a vigorous part in the 

development of sustainable value chains.

Technological innovation is dependent on the iterative process of science, under amazingly fast evolution. 

Since the beginning of the 21st Century, plant sciences have dramatically progressed in understanding the 

structure, function and regulation of the mechanisms that translate the plant genome into phenotypes. 

The latest discoveries have shown that genomes are much more dynamic entities than ever expected. 

Tapping into the very complex and intriguing RNA regulatory mechanisms have unravelled how epigenetics 

can be regulated in a tissue and even cell-specific manner by the gene expression. This fundamental knowl-

edge has led to the development of novel genome-editing technologies, which adjust genomic sequences 

at a high degree of precision.  The new tool for in vivo mutagenesis (CRISPR/Cas) can be used not only in 

plants but in their symbionts and pathogens as well. The application will foster the development of novel 

crops adapted to an intensified and sustainable production of food, feed and biomass.

Scientific progress is making it possible to design new hybrid plants to address some of the challenges our 

world is facing today. This includes, among others, crops resilient to abrupt changes in environmental con-

Foreword
Marc Van Montagu and Philippe Scholtès
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ditions, crops able to perform well in no-tilling agriculture (to prevent soil erosion), and through improved 

efficiency in nutrient use, crops that are less dependent on agro chemicals and their collateral damage on 

the soil microbiome. Such developments can impact crop productivity in some of the most densely-popu-

lated and vulnerable regions of the world.

Even though technological innovations are promising, their applications are not straightforward. This has 

been the case for Genetically Modified (GM) crop biotechnology. Its discovery in the 80s led to a series of 

technological inventions that opened a wide spectrum of agricultural and industrial applications. The inno-

vation has triggered one of the largest changes in the history of agriculture, yet it has faced an extremely 

hostile response to commercialization. The persistent lobbying and dissemination by ongovernmental or-

ganizations of alarming, though not supported by scientific evidence, information on the potential risks of 

GM crops has raised public suspicion and a general reluctance to adopt this novel technology. Plant scien-

tists have not been able to effectively balance this misinformation with science-based facts probably due to 

weak science communication strategies and poor exchanges with specialists in social, political, economic 

sciences and with the civil society. A major consequence for Europe is that legislators have established a 

discouraging, complex and costly regulatory system. By the same token, investment in GM technology was 

limited to companies with strong financial and human power. Small and medium enterprises and the public 

sector were set aside. Meanwhile, low-income economies are facing challenges in establishing a regulatory 

framework and in building sufficient capacity along the innovation chain. These different factors have led to 

a situation where only a few multinational corporates are able to propose a limited number of GM crops.

Nevertheless, in recent years several Public Sector research institutions in low-income countries and in 

emerging economies have made enormous efforts and progress to bring adapted GM crops in their agri-

cultural systems. Banana resistant to parasitic nematodes and weevils, potato resistant to blight, water-ef-

ficient maize, drought-tolerant groundnuts, rice, and sugarcane, Bt eggplant, cassava resistant to brown 

streak disease and cassava mosaic disease to name but a few, are public sector or public-private partner-

ship initiatives on field trial.  These examples show that low- and middle-income countries can develop their 

own tailored GM crops and become major actors in the world market.

This book, through its introductory overview chapter and selected country studies, explores the experience 

and achievements obtained by integrating GM technology in agricultural systems of developing countries 

and emerging economies. The emphasis is on the potential and concerns encountered with the adoption 

of these new technologies. The lessons learned over the last quarter century of experience should serve 

in the current debate on the challenges of sustainable agriculture intensification. The experiences of ag-

ricultural biotechnology provide a unique perspective on how to harness existing and future innovations 

to preserve the pristine nature still remaining on our planet, to cope with rapid population growth and to 

spread the benefits of science and technology to communities around the world.
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Abstract 
The Sustainable Developmental Goals aim to se-

cure immediate human needs, such as adequate 

food supply and healthcare and provision of clean, 

affordable, and accessible energy. These achieve-

ments have to be imbedded in a sustainability 

concept. Bioeconomy is at the core of this con-

cept in which agricultural (plant) biotechnology 

plays a major role in delivering biomass for food, 

feed, and industry. Modern plant biotechnology 

comprises the genetic modification technology 

and various molecular biological tools which en-

hances the plant breeding potential. It results in 

increased food supplies, increased farm income 

worldwide, and reduced environmental damage. 

Here we review the innovations in plant biotech-

nology that are available on the market or at the 

late developmental stages and their application 

to agriculture, agroforestry, industrial processes, 

and pharmaceutical industry. Special emphasis is 

given to approaches adapted to meet heteroge-

neous local needs and help support more inclu-

sive growth in low and middle-income countries.

Introduction
In the 21st century, humanity is faced by a myr-

iad of socioeconomic and resource challenges 

to supply diverse emerging and recurrent global 

needs to feed, clothe, and fuel a population grow-

ing in size, age, and wealth. Pressure on resource 

competition and scarcity as well as the identifica-

tion, evaluation, and quantification of the impact 

of the human pressure on the planet have cata-

lysed a global concern on the sustainability of the 

continuous development of human societies. The 

Holocene – the warm period of the past 10-12 

millennia – is the only state of the planet that we 

know for sure to support contemporary human 

societies and is now being destabilized. Indeed, 

since the later part of the 18th century, the effects 

of humans on the global environment have grown 

so dramatically that a new geological era, the An-

thropocene, has been proposed (Crutzen, 2002). 

There is an urgent need of a paradigm shift to 

maintain the Earth System (ES) in a safely operat-

ing space for humanity. Sustainable developmen-

tal goals have to be implemented to guarantee 

immediate human needs, such as food supply, 

healthcare, and energy, alongside measures for 

a stable ES functioning. Nine critical processes/

features have been proposed to regulate the ES 

Key innovations in plant biotechnology 
and their applications in agriculture, 
industrial processes, and healthcare
Sylvie De Buck, Dulce de Oliveira, and Marc Van Montagu

International Plant Biotechnology Outreach (IPBO), VIB, Technologiepark 3, 9052 Ghent, Belgium

Department for Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 

9052 Ghent, Belgium
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functioning: climate change, biosphere integrity, 

land system change, freshwater use, biochemical 

flows, ocean acidification, atmospheric aerosol 

loading, stratospheric ozone depletion, and novel 

entities. Scientifically based planetary boundary 

levels of human perturbation have been estab-

lished for these ES processes/features, beyond 

which the ES functioning may be substantially al-

tered (Steffen et al., 2015).

	

Embedded in this emerging ES thinking, the new 

bioeconomy proposes a global transition toward 

sustainability through a bio-based industry that 

integrates the use of renewable aquatic, and 

terrestrial resources and biological processes to 

create energy, materials and products with an 

environmentally friendly footprint. Besides bioin-

dustry, bioeconomy also encompasses research, 

climate, environment, and development policies.

	

The deployment of bioeconomy relies on techno-

logical developments, among which biotechnology 

plays a key role. Biotechnology-based industry is 

an emerging reality that generates economic op-

portunities for agriculture, healthcare, chemical, 

and manufacturing sectors, with far-reaching po-

tential impacts on socio-economic developments 

and environment. According to the Biotechnology 

Global Industry Guide (www.researchandmarkets.

com/reports/41522/biotechnology_global_indus-

try_guide), the total revenues of the global biotech-

nology industry were US$ 323.1 billion in 2014, 

representing a compound annual growth rate of 

7.2% between 2010 and 2014. The biotech indus-

try is revolutionary beyond industrial growth be-

cause it offers opportunities for society to walk a 

different path toward multiple sustainable goals. In 

the energy and chemical sectors, biotech innova-

tion reduces dependence on petroleum and fossil 

fuels and, consequently, cleans the environment 

and fights global climate change. In the healthcare 

sector, the biotech industry has developed and 

commercialized drugs, vaccines, and diagnostics 

with significant impact on length and quality of 

life. In the agricultural field, biotech innovations 

simultaneously increase food supplies, reduce en-

vironmental damage, conserve natural resources 

of land, water, and nutrients, and increase farm 

income in economies worldwide.

	

The future of the biotech industry, more specifi-

cally, the industrial and agricultural sector, holds 

considerably in biomass production. Although  

biomass has since long been used as feedstock, 

e.g. wood-based materials, pulp and paper pro-

duction, biomass-derived fibers, the transition 

toward the modern bioeconomy requires the 

sustainable raw material production and efficient 

biomass use, implying a set of principles that 

should be strived for: (i) increased yields for food, 

feed, and industrial feedstock with as minimal as 

possible increases in land, water, fossil fuels, and 

minerals for fertilizer production; (ii) flowing use 

of biomass as food, feed, material, and, finally, 

energy; and (iii) cyclic reaction in which products 

should be designed for disassembly and reuse, 

consumables should be returned harmlessly to 

the biosphere, durables should maximise their re-

use or upgrade, and renewable energy should be 

used to energize the process (Mathijs et al., 2015).

	

Agriculture is central for global development pro-

motion within the biophysical limits of a stable 

ES. The conventional tools of intensive agricul-

tural growth, i.e., mechanization, plant breeding, 

agrochemicals, and irrigation, diminish returns 

and threaten the ES resilience. Four ES features 

transgress the proposed planetary boundary lev-

els: climate change, biosphere integrity, biogeo-

chemical flows, and land system changes (Steffen 

et al., 2015). As agriculture is the anthropogenic 

perturbation with the most prominent impact, it 

is challenged to produce sustainable yields. Of 

the novel technologies of several kinds needed 

to achieve sustainably high-yield agriculture, one 

of the most important implementation is modern 

plant biotechnology, i.e. genetically modified (GM) 

technology and various molecular biological tools, 

that enhances the plant breeding potential and 

reduces the negative impact both within fields 

and surrounding lands.

	

Plant GM technology originated back in the 

1980s, when the first GM plant, resistant to the 
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antibiotic kanamycin, had been developed (Van 

Montagu, 2011 and references therein; Angenon 

et al., 2013). In the 1970s, Jeff Schell, Marc Van 

Montagu, and colleagues at the Ghent University 

(Belgium), who studied the tumor-inducing princi-

ple of Agrobacterium tumefaciens, discovered that 

a large plasmid was responsible for the formation 

of crown galls on infected plants and that part of 

its DNA was transferred to plant cells (Zaenen et 

al., 1974; Van Larebeke et al., 1975; Depicker et 

al., 1978). After it had become clear that Agro-

bacterium could be used as a vector to transfer 

foreign DNA to plant cells, fertile transgenic to-

bacco (Nicotiana tabacum) plants were generat-

ed that expressed and transmitted the chimeric 

antibiotic resistance genes to their progeny. A 

first company on plant genetic engineering, Plant 

Genetic Systems (Ghent, Belgium), was found-

ed (Van Lijsebettens et al., 2013 and references 

therein) and the GM technology was soon em-

ployed worldwide both in fundamental science to 

study gene function and in agriculture to produce 

transgenic crops with useful agronomic traits. The 

commercialization of GM crops started in 1996. 

Since then, the acreage of GM crops cultivated 

worldly has increased steadily to up to 100-fold 

the area planted. The average agronomic and 

economic benefits of GM crops are large and sig-

nificant (Klümper and Qaim, 2014) as is evidenced 

both in developed and developing countries. The 

agricultural sector is probably the segment of 

biotech industry that provides more benefits to 

the middle and low-income economies. In this 

introductory chapter we give an overview of the 

innovations in plant biotechnology that have been 

approved for commercialization or are at the late 

stages of development and their application to 

agriculture, agroforestry, industrial processes, 

and pharmaceutical industry.

Global GM crop plants
Genetic engineering has the potential to address 

the critical constrains of sustainable agriculture 

and the need for sufficient quantity of healthy food, 

feed, and biomass feedstock for the industry as well, 

but GM crops have delivered only a limited range of 

agronomic traits for the agriculture production. Of 

the possible GM crop options that have ever been 

commercialized in the world, only nine GM crops 

are grown commercially worldwide, among which 

soybean (Glycine max), maize (Zea mays), cotton 

(Gossypium hirsutum), and canola (Brassica napus) 

account for 99% of the worldwide GM crop acreage. 

In 2014, the largest share (50%) was for GM soy-

beans, followed by maize (30%), cotton (14%), and 

canola (5%) (James, 2014). Other crops that account 

for 1% of global GM planting are alfalfa (Medicago 

sativa), sugar beet (Beta vulgaris), papaya (Carica 

papaya), squash (Cucurbita pepo), and eggplant (So-

lanum melongena). Only three traits, herbicide tol-

erance (HT), insect resistance (IR), and hybrid vigor 

have been generated and introduced in almost all 

GM crops grown commercially over the past 20 

years. In 2014, 57% of the world’s land surface of 

GM crops was HT, 15% IR, and 28% both HT and IR, 

called stacked traits, whereas other traits, such as 

virus resistance and drought tolerance, collectively 

account for less than 1%. The drought-tolerant bio-

tech corn varieties are cultivated since 2013 only in 

the USA (James, 2014).

	

In Africa, where the GM technology is most need-

ed to foster agricultural transformation, the out-

put is deceiving. Only three African countries 

cultivate GM crops: South Africa with 2.7 million 

ha of maize, soybean, and cotton; Sudan with 0.1 

million ha of cotton; and Burkina Faso with 0.5 

million ha of cotton (James, 2014).

	

Despite this quite unsatisfying output in terms of 

crops and traits, farmer’s acceptance as well as 

global income, production, and environmental 

impacts of these biotech crops are impressive. 

Farmers who have been granted the opportunity, 

quickly adopted GM crops. By 2014, millions of 

farmers in 28 countries worldwide have chosen 

to plant GM crops over 181.5 million ha and grow 

almost half of the global plantings of soybean, 

maize, cotton, and canola. The GM traits have 

provided logistical advantages, risk reductions, 

and economic benefits.

	

Brookes and Barfoot (2015a) analyzed the changes  

in farm income thanks to the impact of GM  
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technologies on yields, key production costs, no-

tably seed cost and crop protection expenditure, 

but also impact on energy and labor costs where 

data were available, and the prospect of planting 

a second crop in one season. At the global lev-

el, GM technology has had a significant positive 

impact on farm income. The net economic bene-

fits of the four major GM crops (soybeans, maize, 

canola, and cotton) at the farm level amount to 

US$ 133.4 billion for 18 years of commercializa-

tion between 1996 and 2013. Approximately 70% 

of these gains have derived from yield and pro-

duction gains and 30% from cost savings, such 

as less ploughing, fewer pesticide sprays, and 

less labor. In 2013, the direct global farm income 

benefit was US$ 20.5 billion, which is equivalent 

to a 5.5% addition to the global production value 

of the four main crops. As expected, US farmers 

have been the largest beneficiaries of increased 

incomes, because they adopted the GM technol-

ogy early on and more than 80% of the four crops 

are GM since several years. More relevant is that 

farmers in developing and emerging economies 

got approximately 50% of the economic gains. 

The additional income benefits for soybean and 

maize farmers in South America (Argentina, Bo-

livia, Brazil, Colombia, Paraguay, and Uruguay) 

and cotton farmers in Asia (China and India) were 

US$ 31.1 billion and US$ 32.9 billion respective-

ly. Table 1 summarizes the economic impact of 

GM crops since their first commercialization year  

to 2013.

	

GM technology has also contributed to reduce 

the agriculture’s environmental footprint by facil-

itating environmentally friendly farming practices 

(Brookes and Barfoot 2015b). The GM IR traits 

replaced insecticides used to control pest. Since 

Biotech crop Total cumulative farmer’s 
income benefit 1996-2013 
(US$ billions)

Biotech trait Type of benefit Country

Soybean 14.8 HT soybeans (1st gener-
ation)

Lower production costs Brazil, USA, Canada, Uru-
guay, South Africa

Lower production costs + 
second crop gains

Argentina, Paraguay

Lower production costs + 
yield gains

Mexico, Bolivia, Romenia

HT soybean (2nd gener-
ation with higher yield 
potential)

Lower production costs + 
yield gains

USA, Canada

HT/IR soybean Cost savings as 1st 
generation HT soybean + 
insecticide savings + yield 
gains

Brazil, Argentina, Paraguay, 
Uruguay

Maize 7.36 HT maize Lower production costs USA, Canada, South Africa, 
Colombia

Lower production costs + 
yield gains

Argentina, Brazil, Philip-
pines

37.2 IR maize (resistance to corn 
boring pests)

Yields gains USA, South Africa, Hondu-
ras, Argentina, Philippines, 
Spain, Uruguay, Colombia, 
Canada, Brazil, Paraguay

IR maize (resistance to 
rootworm pests)

Yield gains USA, Canada

Cotton 1.49 HT cotton Lower production costs USA, South Africa, Aus-
tralia, Argentina, Uruguay, 
Paraguay

Lower production costs + 
yield gains

Brazil, Mexico, Colombia

40.78 IR cotton Yield gains USA, China, South Africa, 
Mexico, Argentina, India, 
Colombia, Burkina Faso, 
Pakistan, Burma

Canola 4.3 HT canola (tolerant to 
glyphosate)

Mostly yield gains where 
replacing triazine-tolerant 
canola

Australia

HT (tolerant to glufosinate)/
hybrid vigor canola

Mostly yield gains USA, Canada

Sugarbeet 0.14 HT sugarbeet Mostly yield gains USA, Canada

Table 1. Farm level economic benefits of GM crops

Adapted from Brookes and Barfoot (2015a).
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1996, the active insecticide ingredient use in cot-

ton and maize was reduced by 239 million and 

71.7 million kg, respectively, with the highest ben-

efits for cotton, because its culture requires an 

intensive treatment regime with insecticides. The 

adoption of GM IR cotton in China and India re-

sulted in a cumulative decrease in insecticides of 

over 192 million kg for the period 1996-2013. IR 

soybeans were first grown commercially in 2013, 

mostly in Brazil, and the savings in active insecti-

cide amounts in that year was above 0.4 million 

kg, corresponding to 1% of the total soybean in-

secticide use.

The environmental gains associated with the use 

of GM HT traits are related to the application of 

more environmentally friendly products and to 

simplified changes in farming systems. The adop-

tion of conservation tillage has led to additional 

soil carbon sequestration and a reduction in trac-

tor fuel use that amounted to 7,012 million liters 

between 1996 and 2013 (Carpenter, 2011). Less 

fuel, associated with fewer insecticide and herbi-

cide sprays and less or no ploughing, correspond-

ed to 28,005 million kg of CO2 eliminated from the 

atmosphere or, in terms of car equivalents, to 

12.4 million cars off the road for a year (Brookes 

and Barfoot 2015b).

	

The higher productivity of the currently commer-

cialized GM crops alleviates the pressure to con-

vert additional land for agriculture. To achieve the 

same tonnage of food, feed, and fiber obtained 

during the 1996-2013 period, 132 additional mil-

lion ha would have been needed with convention-

al crops only (James, 2014).

GM crops approved for 
commercialization in the world
In contrast to the limited number of GM crops 

on the market, an important number of crops, 

events, and traits have received approval for 

commercialization. As of 11th October 2015, a to-

tal of 40 countries granted regulatory approvals 

to 29 GM plants and 383 GM events, covering 36 

GM traits for use as food, feed and/or for culti-

vation (www.isaaa.org/gmapprovaldatabase). The 

fast-growing number of approved GM trait-con-

taining varieties and hybrids shows that GM tech-

nology does not narrow the genetic diversity of 

the crop plant. In addition to the commercial HT 

and IR GM traits used to construct the vast ma-

jority of GM crops on the market, GM traits have 

been also approved for abiotic stress tolerance, 

altered growth/yield, disease resistance, modified 

product quality, and pollination control systems. 

Table 2 summarizes the GM traits approved per 

GM plant. Remarkably, 13 different GM traits aim 

to change product quality in 13 different crops.

A number of noteworthy biotech crops/traits have 

been recently approved. In November 2014, the 

US Department of Agriculture (USDA) endorsed 

commercial planting of two crops employing an 

RNA interference (RNAi) approach: a transgen-

ic alfalfa with reduced lignin for improving fiber 

digestibility via RNAi of caffeoyl coenzyme 3-O- 

methyltransferase gene involved on the synthe-

sis of guaiacyl lignin subunit and a potato (Sola-

num tuberosum) with reduced levels of several 

enzymes, among which one that produces the 

potentially carcinogenic metabolite acrylamide. 

This Innate™ potato (J.R. Simplot, Boise, Idaho) 

also suffers less wastage from bruising (Waltz, 

2015). The Enlist™ Duo for maize and soybean 

(Dow AgroSciences, Indianapolis, IN, USA) that 

contains two stacked genes to confer tolerance 

to the herbicides glyphosate and 2,4-D-choline 

was approved in Canada in April 2014 and in the 

USA in September 2014 (James, 2014). Approval 

of the Arctic Apples, genetically engineered to re-

sist browning associated with cuts and bruises by 

reduction of the browning-causing enzyme levels 

was granted by the USDA in February 2015 and 

by the Food and Drug Administration (USA) in 

March 2015.

	

Developing countries also generated and ap-

proved novel biotech plants. In 2013, Indonesia 

ratified the environmental certificate for cultiva-

tion of drought-tolerant sugarcane (Saccharum 

spp.). In Brazil, a virus-resistant bean (Phaseolus 

vulgaris) was approved in 2011 and is due for 

commercialization in 2016 and a GM eucalyptus 



Commercial trait GM trait GM Plant

Abiotic Stress Tolerance Drought stress tolerance Maize

Sugarcane

Altered Growth/Yield Enhanced photosynthesis/yield Soybean

Volumetric wood increase Eucalyptus

Disease Resistance Black spot bruise tolerance Potato

Viral disease resistance Bean

Papaya

Plum

Squash

Sweet pepper

Tomato

Herbicide Tolerance Glufosinate herbicide tolerance Argentine canola

Cotton

Maize

Polish canola

Rice

Sugar beet

Glyphosate herbicide tolerance Cotton

Creeping bent grass

Maize

Polish canola

Potato

Soybean

Sugar beet

Wheat

Isoxaflutole herbicide tolerance Soybean

Mesotrione herbicide tolerance Soybean

Oxynil herbicide tolerance Argentine canola

Cotton

Tobacco

Sulfonylurea herbicide tolerance Carnation

Cotton

Flax

Maize

Soybean

Insect Resistance Coleopteran insect resistance Maize

Potato

Lepidopteran insect resistance Cotton

Eggplant

Maize

Poplar

Rice

Soybean

Tomato

Multiple insect resistance Cotton

Maize

Poplar

Modified Product Quality Altered lignin production Alfalfa

Non-browning phenotype Apple

Modified oil/fatty acid Argentine canola

Soybean

Phytase production Argentine canola

Maize

Modified flower color Carnation

Petunia

Rose

Modified amino acid Maize

Modified alpha amylase Maize

Delayed ripening/senescence Melon

Tomato

Delayed fruit softening Tomato

Modified starch/carbohydrate Potato

Reduced acrylamide potential Potato

Anti-allergy Rice

Nicotine reduction Tobacco

Pollination control system Fertility restoration Maize

Male sterility Argentine canola

Chicory

Maize

Table 2. Global status of GM technology: GM crops approved for commercialization in at least one country

Note. Source: ISAAA GM approval data base
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(Eucalyptus sp.) in 2015 (James, 2014; www.isaaa.

org/gmapprovaldatabase). FuturaGene, owned by 

the Brazil–based Suzano Pulp and Paper compa-

ny and the second largest producer of eucalyptus 

pulp globally, developed the transgenic eucalyp-

tus that contains a gene encoding an Arabidopsis 

thaliana protein that facilitates cell wall expansion 

and accelerates growth. According to FuturaGene, 

the GM tree produces 20% more wood than the 

conventional variety and is ready for harvest in 

five and a half years instead of seven.

	

There is a growing interest in GM forest trees due 

to the increasing global trend for timber produc-

tion from plantations and bioenergy applications. 

Since forests can be grown on marginal lands, 

competition with land resources suitable for ag-

ricultural production can be avoided. At the same 

time, the increased productivity from bioengi-

neered forests will provide an option to protect 

native forests.

	

A few GM forest trees have been produced com-

mercially. In China, poplar (Populus sp.) trees are 

cultivated for uses in furniture, boat making, pa-

per and chopsticks, because of their flexibility and 

close wood grain. (ISAAA, 2015). Since 2000, Chi-

na produces GM poplars to fight Asian longhorn 

beetle that devastated 7.04 million ha of poplar. 

Three clones of Populus nigra were developed 

with the Bacillus thuringiensis (Bt) gene cry1Aa and 

a hybrid white poplar (Populus alba) was trans-

formed by fusion of cry1Aa and the gene coding 

for a proteinase inhibitor from Sagittaria sagittifo-

lia. In the transgenic poplar plantations, the fast 

spread of the target insect pests was inhibited 

effectively and the number of insecticide applica-

tions was significantly reduced. The performance 

of the Bt black poplar plantations is significantly 

better than that of the clones deployed locally, re-

sulting in a substantial 90% reduction in leaf dam-

age. In 2014, GM poplar was cultivated in 543 ha 

in China (James, 2014).

	

ArborGen Inc. (Ridgeville, SC, USA), a tree seedling 

company, has developed a GM loblolly pine (Pinus 

taeda) cultivar with enhanced density. Lobloblly 

pines are used for lumber, plywood, and paper 

(ISAAA, 2015). As none of the inserted genes are 

derived from plant pests, the USDA deregulated 

the GM loblolly pine that can be cultivated without 

undergoing environmental studies (http://www.

capitalpress.com/Timber/20150128/usda-can-

not-restrict-gmo-pine).

Near-term innovations
Regulatory constraints, with delaying approvals 

and increasing costs, have discouraged biotech 

innovations, except in big corporations. The cost 

of discovery, development, and authorization of 

a new biotech crop or trait has been estimated 

to be approximately US$ 136 million (Prado et al., 

2014). Notwithstanding, good Research and De-

velopment  projects continue to be pursued both 

in developed and developing countries. A wide va-

riety of plants are being generated for resilience 

to biotic and abiotic stresses, increased water or 

nitrogen use efficiency (NUE), and nutritional im-

provements (Ricroch and Hénard-Damave, 2015). 

The major multinational agribusiness corpora-

tions often collaborate with public institutions, 

private entities, and philanthropic organizations 

in the least developed countries, particularly 

in Africa. Other relevant innovations for non-

food purposes, such as pharmaceutical, biofuel,  

starch, paper and textile industries are being  

pursued in developed countries.

Sustainable trait management
Management of several sustainable biotech traits 

is quickly becoming available. The main multina-

tional seed corporations continue to develop GM 

traits directed to broad-spectrum herbicides and 

resistance to chewing insects on a wide range of 

species. Most of these innovations are related to 

stacking different HT and/or IR genes. Gene stack-

ing simplifies and enhances pest management as 

demonstrated by IR and weed HR based on a sin-

gle gene technology (Que et al., 2010).

	

Nonetheless, research continue to focus on other 

kinds of sustainable agronomic traits and sever-

al traits and crops in the pipeline resulting from 

both private and public endeavors that target the 
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developing world are about to be commercial-

ized. Some case studies are listed below.

Water-Efficient Maize for Africa (WEMA)

Agriculture requires more water than any oth-

er human activity. Drought is a threat to farms 

around the world and in Africa drought is one of 

the major factors that prevent good yields. The 

Food and Agriculture Organization of the United 

Nations estimates that by 2025 approximately 

480 million Africans could be living in areas of wa-

ter scarcity. To face this challenge, plant scientists 

are developing drought-tolerant traits. The WEMA 

project is a public-private partnership that aims 

to improve food security and livelihoods for small 

farmers in Sub-Saharan Africa by finding ways to 

double the maize yields. In this project, GM and 

non-GM technology, including marker-assisted 

breeding, are combined to generate hybrid maize 

seeds with increased water use efficiency and re-

sistance to insect pests. To this end, the Bt gene 

will be stacked with the drought-tolerance bio-

tech trait (MON87460) that expresses the Bacillus 

subtilis cold-shock protein B (cspB), licensed from 

Monsanto. (http://wema.aatf-africa.org).

	

Centro de Investigación y de Estudios Avanzados del 

Instituto Politécnico Nacional (CINVESTAV-IPN)

In Mexico, the biotech maize CIEA-9 was devel-

oped with enhanced adaptation to severe drought 

and extreme temperatures. The antisense RNA 

expression was used for silencing trehalase in the 

popular maize inbred line B73 (derived from Iowa 

Stiff Stalk Synthetic). This biotech maize requires 

20% less water, endures high temperatures (up to 

50°C), and the seeds germinates at 8°C, demon-

strating their ability to withstand cold at early de-

velopment stages (Ortiz et al., 2014). In 2012, the 

Government of Mexico granted 4 ha for experi-

mental release of CIEA-9 in Sinaloa (Mexico). This 

permit was the first delivered to a Mexican public 

research center since the biosafety law was au-

thorized (Wolf and Otero, 2015).

Centro Internacional de Mejoramiento de Maíz y 

Trigo (CYMMYT; International Maize and Wheat Im-

provement Center)

Over the past five years, this Mexican center has 

analyzed experimental releases of genetically en-

gineered drought-resistant wheat (Triticum sp.). 

All the different events tested in experimental tri-

als on 0.1-ha plots at the Tlaltizapan Morelos site 

were drought resistant (Wolf and Otero, 2015).

ArborGen Inc.

This Brazilian company developed a GM eucalyp-

tus tree that can withstand extremely low tem-

perature. It contains a cold-inducible promoter 

driving a C repeat-binding protein from A. thalia-

na. This biotech tree combines the fast-growing 

and highly desirable fiber quality characteristics 

of a known Brazilian eucalyptus variety that can 

withstand freezing temperatures. Transgenic 

freeze-tolerant eucalyptus can grow up to 52.4 

feet (15.97 m) at 16.8oF (-8.4°C), compared to 

the control trees that grew only 0.3 feet (9 cm) 

(Hinchee et al., 2011). This freeze-tolerant tropical 

eucalyptus product (AGEH427) is currently going 

through the government review process for de-

regulation in the USA (www.arborgen.com).

Arcadia Biosciences Inc. (Davis, CA, USA)

The NUE trait contributes to improve yields in 

N-limited environments and reduces fertilizer 

costs and N fertilizer pollution (Hirel et al., 2011). 

Among the various genetic engineering strategies 

for NUE enhancement in crops, the overexpres-

sion of the gene coding for alanine aminotrans-

ferase that increases N uptake at early growth 

stages is a very promising candidate for commer-

cialization. The intellectual property associated 

with this invention has been licensed to Arcadia 

Biosciences Inc. The company possesses the 

rights to use this gene technology in major ce-

reals, such as wheat, sorghum (Sorghum bicolor), 

rice, maize, and barley (Hordeum vulgare), as well 

as in sugarcane. Field trials have been execut-

ed for rice in China, for rice and wheat in India. 

Its value for maize and rice is being assessed in 

Sub-Saharan Africa through private-public part-

nerships. Rice with NUE/water use efficiency and 

salt tolerance (NEWST) is on field trial in Uganda. 

The National Agricultural Research Organization 

(NARO), African Agriculture Technology Founda-
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tion (AATF), and Arcadia Biosciences cooperate 

on this research (Ortiz et al., 2014; James 2014).

Laboratorio Nacional de Genómica para la Biodiver-

sidad at CINVESTAV  

The National Laboratory of Genomics for Biodi-

versity at the Irapuato campus (Mexico) and a pri-

vate Mexican company are developing GM plants 

that will be able to absorb and optimize the use 

of phosphorus. The GM plants absorb phosphites 

rather than phosphates and so improve the use 

of fertilizers and weed control that compete for 

the phosphorus element. According to the devel-

opers, the trait can reduce the required amount 

of fertilizer by 30% to 50%, eliminates or reduces 

the use of herbicides, and is harmless to humans 

and animals. The group is developing a GM tobac-

co as first crop and, if successful, the trait will be 

introduced into maize for Africa in the near future 

(Wolf and Otero, 2015).

Examples of transgenic plants resistant to 

fungal disease

(1) Late blight of potato, one of the most devas-

tating diseases caused by a pathogen similar to 

fungi, Phytophthora infestans, accounts for 20% 

of potato harvest failures worldwide, translating 

into 14 million tons and valued at EURO 2.3 billion 

(Ortiz et al., 2014 and references therein). Sever-

al lines of transgenic potato containing R genes 

identified in wild relatives with high resistance to 

late blight have been produced (such as resistant 

genes from the wild Mexican relative Solanum bul-

bocastum, was used to breed the Fortuna cultivar 

and the Rpi-vnt1.1 gene isolated from Solanum 

venturii had been introduced into the potato vari-

ety Désiree). As these R genes had been identified 

in wild potato species, the use of the so-called cis-

genic technology facilitated the rapid transfer of 

these genes into cultivated potato varieties with-

out linkage drag. These plants have been shown 

to be resistant to late blight in several years of 

field tests (Gaffoor and Chopra, 2014 and refer-

ences therein; Ortiz et al., 2014, Jones, 2015).

(2)	 In wheat, one of the most damaging fungal dis-

eases is powdery mildew. Transgenic wheat lines 

harboring different versions of a powdery mildew 

resistance gene (Pm3 R) have gone through field 

tests. Two years of field trials have revealed that 

the GM plants were more resistant to powdery 

mildew than the nontransgenic control plants 

(Gaffoor and Chopra, 2014).

(3)	 The chestnut blight fungus secretes several 

toxic compounds, such as oxalic acid that low-

ers the pH of the surrounding plant tissue, with 

death of the infected tissue as a consequence. 

Plants transformed with a wheat gene encoding 

oxalate oxidase were able to detoxify the oxalic 

acid, thereby starving the fungus and restricting it 

to the bark of the tree (Castanea sp.). These plants 

were tolerant to the disease and have undergone 

rigorous laboratory testing and several years of 

successful field trials (Gaffoor and Chopra, 2014).

(4)	 Banana (Musa sp.) plants have been engi-

neered to control a bacterial disease Xanthomonas 

wilt, better known as BXW. The transgenic plants 

containing genes from sweet pepper (Capsicum 

annuum) encoding a hypersensitive response-as-

sisting protein (Hrap) or a ferredoxin-like protein 

(Pflp) were evaluated over two successive crop 

cycles in a confined field trial in Uganda (Tripathi 

et al., 2014). Approximately 20% of the 40 Hrap 

lines and 16% of the 26 Pflp lines, for a total of 

11 transgenic lines, showed 100% resistance and 

retained the resistance in the ratoon crop. As elic-

itor-induced resistance is not specific against par-

ticular pathogens, this transgenic approach may 

also provide effective control of other bacterial 

diseases of banana, such as moko or blood dis-

ease in other parts of the world. Nearly 15 million 

people either rely on bananas for their income or 

consumption, making it an important food and 

cash crop in the Great Lakes region of East Afri-

ca. Food security studies revealed that in Uganda, 

Rwanda, and Burundi, bananas constitute >30% 

of the daily per capita caloric intake, rising to 60% 

in some regions (Tripathi et al., 2014).

Other ongoing biotech crop research activities for 

sustainable management that are on field trials 

in Africa include: (i) IR cowpea (Vigna unguicula-
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ta) in Burkina Faso (L’Institut pour l’Etude et la 

Recherche Agronomique, AATF, Network for the 

Genetic Development of Cowpea, and The Com-

monwealth Scientific and Industrial Research 

Organization), Ghana (AATF and Savanna Agricul-

tural Research Institute), and Nigeria (AATF and 

Institute of Agricultural Research); (ii) virus-resist-

ant cassava (Manihot esculenta) in Nigeria (Nation-

al Root Crops Research Institute), Kenya (Kenya 

Agricultural and Livestock Research organization 

[KALRO], International Institute of Tropical Ag-

riculture [IITA], Danforth Plant Science Center 

[DDPSC], and Masinde Murilo University of Sci-

ence and Technology), and Uganda (NARO, DDP-

SC, and IITA); (iii) Fungal resistance and drought/

salt-tolerant wheat in Egypt (Agricultural Genetic 

Engineering Research Institute); (iv) Virus resistant 

sweet potato Ipomoea batatas) in Kenya (KALCRO 

and DDPSC), (vi) IR sweet potato in Uganda (NARO 

and DDPSC); and (vii) nematode-resistant banana 

(NARO and University of Leeds, UK) (James, 2014).

Output traits for food and feed
Nutritionally enhanced food crops

	

A few nutritionally enhanced food crops have un-

dergone safety approval, namely maize with in-

creased lysine content and canola and a number 

of GM soybeans with improved fatty acid profile, 

including high stearidonic acid, an intermediate of 

omega-3-Fatty Acid. However, the last decade wit-

nessed great progress in R&D to generate nutri-

tionally improved biotech food crops specifically 

for targeting low-income families. Addressing nu-

tritional deficiencies by gene engineering would 

lead to decreased healthcare costs and increased 

economic performance. Biofortified staple crops 

harboring essential micronutrients to benefit the 

world’s poor and new functional GM food crops 

for enhancing human health are under develop-

ment. Several of these GM crops are currently be-

ing tested in developing countries. Some relevant 

examples are given below.

(1) Golden Rice, named for its golden color due 

to its high β-carotene content, is one of the first 

examples of a GM staple crop that was specifical-

ly designed to combat malnutrition and vitamin A 

(VitA) deficiency, because it is an essential nutri-

ent needed for the visual system, growth, devel-

opment, and a healthy immune system. Golden 

Rice was generated by the research group of Ingo 

Potrykus (ETH Zürich, Switzerland) (Ye et al., 2000) 

to offer a viable solution for eye damage of three 

million preschool-aged children due to VitA lack. 

The GM rice (GR1) was engineered with two genes 

from other organisms (daffodil [Narcissus poet-

icus] and the bacterium Erwinia uredovoia) that 

reconstitute the carotenoid biosynthetic pathway 

within the rice genome (Tang et al., 2009). The cur-

rent Golden Rice version, known as GR2, utilizes 

genes from two distinct proVitA pathways, includ-

ing the maize phytoene synthesis gene instead of 

the analogous daffodil gene used in the GR1 rice. 

Golden rice can produce β-carotene amounts 

that were up to 35 μg/g dry rice. Bioavailability 

testing has confirmed that Golden Rice is an ef-

fective source of VitA in humans (Hefferon, 2015 

and references therein).

(2)	 Transgenic biofortified rice has also been engi-

neered to combat iron and folate deficiency, with 

improved mineral bioavailability, and with high 

content to essential amino acids, such as lysine 

(Blancquaert et al., 2015; Hefferon, 2015).

(3) The BioCassava Plus (BC+) program geneti-

cally engineered cassava with increased levels of 

iron and proVitA. Retention and bioavailability of 

transgenic cassava are similar to the findings on 

conventional biofortification research. The first 

field trials for a proVitA-biofortified cassava began 

in 2009, followed by trials for high-iron cassava, 

and delivery of the biofortified crops is expect-

ed in 2017. Additional traits included in BC+ are 

increased shelf life, reduced cyanide levels, and 

improved disease resistance (Tohme and Beyer, 

2014). The National Root Crops Research Insti-

tute of Nigeria is performing field trials with proVi-

tA-rich cassava (James, 2014).

(4)	 Transgenic bananas with proVitA and iron are 

being developed by the NARO Uganda and the 

Queensland University of Technology. The per 
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capita consumption of bananas is estimated to 

be 0.7 kg per day in Uganda. Scientists applied 

the pro-Vitamin A genes used in Golden Rice to 

a popular local variety. Bananas with up to 20 

ppm proVitA have been generated and trials have 

started in Uganda. The ProVitA bananas are ex-

pected to be released in 2020. A human bioavail-

ability study began in late 2013 (Waltz, 2014). 

(5) Sorghum biofortified with VitA and bioavailable 

zinc and iron is tested by the Africa Harvest and 

Pioneer Hi-Bred in Nigeria (in collaboration with 

the National Biotechnology Development Agen-

cy) and in Kenya (in collaboration with KALRO)  

(James, 2014).

(6) Nutritional fatty acids associated with reducing 

coronary heart disease risks can be introduced 

into oilseed crops to improve human health. So 

far, 10 transgenes that have led to the accumu-

lation of high-value fatty acids in plants (Ortiz et 

al., 2014). High oleic acid GM soybeans produced 

by Pioneer Hi-Bred International, Inc. (Pioneer), 

a DuPont Company (Johnston, IA, USA), was the 

first biotech soybean product of this kind (Plen-

ish™). RNAi technology was used to decrease the 

expression of the endogenous soybean gene en-

coding fatty acid desaturase (gm-fad2-1) that pro-

duced seeds with an increased concentration of 

oleic acid (C18:1) and a correspondingly reduced 

concentration of linoleic acid (C18:2). The pur-

pose of this change in fatty acid profile is to pro-

vide a stable vegetable oil that is suitable for frying 

applications without the need for hydrogenation 

(De Maria, 2013).

(7) To synthesize Omega-3 long-chain polyun-

saturated fatty acids found routinely in fish oils, 

scientists of the Rothamsted Research Institute 

(Harpenden, UK) have metabolically engineered 

camelina (Camelina sativa) plants. The metabolic 

pathway to produce this fatty acid was reconsti-

tuted in camelina by substituting synthetic ver-

sions of up to seven genes from marine algae 

(Betancor et al., 2015). The levels of eiosapen-

taenoic acid and docosahexaenoic acid obtained 

were economically reasonable, thus representing 

a tangible success. Therefore, GM oilseeds can be 

a novel source of this essential oil. Omega-3 long-

chain polyunsaturated fatty acids are of great in-

terest due to their dietary benefits, such as im-

provements to brain function and development 

as well as for cardiovascular health. The camelina 

plants with a high content of these omega-3 oils 

in the laboratory/glasshouse are being evaluated 

for their performance in the field. Other beneficial 

fatty acids have also been made in plant seed oils, 

including γ-linolenic and stearidonic acid, as well 

as arachidonic acid (Hefferon, 2015).

(8) Transgenic tomato (Solanum lycopersicum) 

fruits with threefold enhanced hydrophilic an-

tioxidant capacity have been obtained through 

metabolic engineering. The “purple” tomato con-

tains genes from two snapdragon (Antirrhinum 

majus) transcription factors Delila and Rosea1 

that control anthocyanin biosynthesis (Butelli et 

al., 2008). Anthocyanins, compounds found in 

blueberries (Cyanococcus sp.) and cranberries 

(Vaccinium sp.) are believed to fight cardiovascu-

lar diseases and exhibit anti-inflammatory prop-

erties. Tomatoes were chosen because they are 

quite affordable antioxidant sources. The GM 

tomato with an as much as 30% significantly ex-

tended life span in the cancer-prone mice (Mus 

musculus), is currently being tested on heart pa-

tients in Britain (Hefferon, 2015). A recent study 

shows that the purple tomato not only is more 

healthy, but also has a longer shelf life and is 

more resistant to diseases than not GM toma-

toes (Zhang et al., 2013).

(9)	Transgenic tomato plants that accumulat-

ed trans-resveratrol and trans-resveratrol-glu-

copyranoside have been obtained by transfor-

mation with the stilbene gene from grape (Vitis 

vinifera). These GM tomato lines showed a sig-

nificantly increased antioxidant capability and 

ascorbate content. The GM tomato extracts were 

able to counteract the pro-inflammatory effects 

of phorbol ester in a culture of monocyte-mac-

rophages (Hefferon, 2015).
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Nutrionally enhanced feed crops

GM feed crops have been developed to improve 

the nutritional value of animal feed as well as to 

produce more environmentally friendly manure. 

Biotech crops engineered with increased levels of 

amino acids are an alternative to the direct ad-

dition of supplemental amino acids in animal di-

ets. Examples of these types of crops include GM 

maize with enhanced production and accumula-

tion of free lysine in the corn kernel; protein-en-

riched GM soybean with more digestible lysine, 

methionine, threonine, and valine; high-methio-

nine GM lupine (Lupinus sp.); high-tryptophan 

GM rice; and GM alfalfa with increased levels of 

cysteine, methionine, aspartate, and lysine (ISAAA, 

2012; Hefferon, 2015).

	

GM feed crops with phytase enzyme have been 

shown to improve phosphorus availability. 

Non-ruminants cannot efficiently absorb phos-

phorus stored in plants as phytate salts. The un-

digested phosphates excreted by these animals 

can accumulate in the soil and water, leading to 

phosphorous pollution and organic matter ac-

cumulation. In addition, phytic acid forms insolu-

ble salts with zinc and other cations that reduce 

the bioavailability of trace minerals. GM corn, 

soybean, canola, and wheat expressing phytase 

transgenes have shown a positive effect on per-

formance, phosphorus retention, and excretion. 

Other antinutritive factors that have been tackled 

by plant gene engineering include GM soybeans 

with reduced levels of the antinutritive oligosa-

charides raffinose and stachyose and GM cotton 

seeds with low contents of the phenolic pigment 

gossypol (ISAAA, 2012).

Production of pharmaceuticals in 
biotech plants
Plants can be genetically engineered to harness 

endogenous metabolic pathways and the pro-

tein biosynthesis machinery to produce complex 

small-molecule compounds and recombinant bi-

ologicals. A number of plant species have been 

genetically engineered in several metabolic path-

ways to produce defined secondary metabolites 

of high pharmaceutical value, including paclitaxel, 

tropane, morphine, and terpenoid indole alka-

loids either as whole plants or cultured organs/

cells. Several advances are being implemented in 

terms of quality, purity, and yield, as well as proce-

dures to meet regulatory requirements to move 

from these products from proof-of-principle to 

commercial production (Fisher et al., 2015). 

	

One of the key features of plant-based produc-

tion platforms that distinguish them from other 

biological manufacturing concepts is the lack of 

a single biotechnological basis or a standardized 

platform. The technologies encompass stable 

transgene integration and transient expression 

in plants by means of bacterial, viral, or hybrid 

vectors (Chen and Lai, 2015). The platforms range 

from plant cells or simple plants, growing in bio-

reactors containing fully defined synthetic media, 

to whole plants growing in soil or in hydroponic 

environments. Whereas transient expression can 

produce very large amounts of the protein of in-

terest within a short time, transgenic plants are 

preferable when the transgenic seed production 

is needed. Many pharmaceutical products can be 

improved and made in a shortened time or on 

an enlarged scale in plant-based systems. These 

features are relevant when products can be pro-

duced with a superior quality and/or with plant 

specifications or when production scale and costs  

are important factors.

	

The production of recombinant pharmaceutical pro-

teins by means of using GM plants, often described 

as molecular farming, originated from the need for 

safe and inexpensive biopharmaceuticals in de-

veloping countries. Plants synthesizing expressing 

vaccine proteins can be grown using local farming 

techniques, only need to be partially processed, are 

easily transportable, and do not require refrigeration. 

Vaccines produced in food or feed crops effectively 

elicit an immune response to a particular pathogen 

when consumed fresh, dried, or lyophilized into a 

powder and reconstituted as a juice when needed. 

Therefore plant made vaccines could be easily avail-

able at low costs at remote regions of the planet  

(Hefferon, 2015).

These developments open interesting opportuni-
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ties for low-income countries and investment in 

manufacturing pharmaceuticals in plants increas-

es globally. When production needs to be scaled 

up, the capital investments on plant-manufactur-

ing platforms in special molecular farming are ex-

pected to be considerably lower than with mam-

malian cell culture platforms. Companies in the 

USA and Europe have invested in the establish-

ment of new currently good plant-manufacturing 

practice facilities (Lössl and Clarke, 2013).

	

In 2012, an important breakthrough was achieved 

when the first plant-made pharmaceutical product 

was approved for use in humans, namely ELELY-

SO® (taliglucerase alfa) (Pfizer, New York, NY, USA), 

a recombinant form of human glucocerebrosidase 

produced in transgenic carrot (Daucus carota) root 

bioreactors for the treatment of the lysosomal 

storage disorder Gaucher’s disease (Stoger et al., 

2014). Another product gained global attention be-

cause of its role in an experimental Ebola therapy. 

The monoclonal antibody ZMapp, developed by 

Mapp Pharmaceuticals (Mountain View, CA, USA), 

was produced in tobacco plants at Kentucky Bio-

processing, a unit of Reynolds American. The drug 

was first successfully tested in humans during the 

2014 West Africa Ebola virus outbreak, but has not 

yet been subjected to a randomized controlled tri-

al (Zhang et al., 2014). This spectacular example of 

molecular farming proved it to be a fast and cheap 

way to produce novel biologicals.

	

Besides these success stories, a number of plant-de-

rived pharmaceutical products are currently on the 

market or undergoing clinical development for 

several clinical applications, including antibiotic-as-

sociated diarrhea, inflammatory bowel disease, 

osteoporosis, HCV HSV/HIV, vaccine, anti-caries 

antibody, and microbicide (Sack et al., 2015). More-

over, several pharmaceutical companies with plant-

based production facilities established commercial 

platforms for nonpharmaceutical products, such 

as cosmetics, veterinary pharmaceuticals, technical 

enzymes, research reagents, and media ingredient, 

as a manner to generate revenue during costly clin-

ical studies (Sack et al., 2015).

It is important to be aware that, as for all medi-

cal interventions, safety and legal issues are re-

quired for production and usage of plant-made 

pharmaceuticals. Depending on the plant pro-

duction system, different biosafety rules apply. 

Metabolites produced in cell suspension cultures 

based on medicinal plants are treated as natural 

products, whereas recombinant proteins pro-

duced in plants are considered products of GM 

organisms and, therefore, follow different regula-

tions. The development of plant cell suspension 

cultures as a platform for plant-made pharma-

ceuticals have been encouraged, partly because 

of the lack of a coherent regulatory framework 

for whole plant-derived pharmaceuticals (Fisher 

et al., 2015). Consequently, the first plant-derived 

recombinant pharmaceutical protein approved 

for human use was produced in plant cells. Not-

withstanding, there are impressive efforts to in-

corporate the latest regulatory innovations of 

industry-like platforms into whole plant-based 

manufacturing processes and to define updated 

guidelines (Fischer et al., 2015). With innovative 

and optimized production processes that can 

be scaled up and appropriate regulatory and  

biosafety frameworks, plant-derived recombinant 

proteins may offer high-volume and cost-effective 

delivery systems for many medical applications in 

this century (Mangan, 2014).

	

Examples of veterinary pharmaceuticals pro-

duced in feed include GM seeds for antibiotic re-

placement in animal farming, such as rice grains 

with human lactoferrin and/or lysozyme as an-

tibacterial and immunity-stimulating agents in 

chickens and pigs (Humphrey et al., 2002; Hu et 

al., 2010). Recently, Arabidopsis seeds have been 

transformed with an antibody against entero-

toxigenic Escherichia coli and used as a proof of 

concept for a passive oral immunization-based 

approach for piglets (Virdi et al., 2013).

Plant biotechnology for  
industrial applications
Innovations on output traits aiming at supporting 

sustainable processes in the chemical and fuel 

industry are lagging behind other plant biotech 

developments. To our knowledge, the only prod-
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uct approved for commercialization is the Amflo-

ra potato produced by BASF Plant Science (http://

www.sciencemag.org/news/2013/12/eu-court-an-

nuls-gm-potato-approval). This GM potato produc-

es starch composed almost exclusively of amylo-

pectin because the gene coding for starch synthase, 

involved in the synthesis of amylose had been 

switched off by RNAi strategy. As for certain indus-

trial uses of starch only the thickening properties of 

amylopectin are required, the gelling amylose com-

ponent is undesirable in many products and can in-

terfere with certain processes. The chemical mod-

ification or separation of these two components is 

associated with increased consumption of energy 

and water. The European Commission approved 

the Amflora potato for industrial use in 2010 and 

cultivation started on a small scale in the Czech Re-

public, Sweden, and Germany. However, in January 

2012, BASF Plant Science decided to stop marketing 

the Amflora potato in Europe due to lack of accept-

ance of GM crops in Europe and relocated its head-

quarters from Germany to the USA. In 2013, the 

European Union annulled the approval for BASF’s  

Amflora potato. 

	

Potato has also been engineered to pro-

duce high-amylose starch by suppression of 

the starch-branching enzyme SBE1 and SBE2 

through RNAi. Still at R&D stage, the production of 

high-amylose starches can be used in the produc-

tion of packaging material as well as film and coat-

ing from natural resources (Menzel et al., 2015).

Other biochemical pathways for the production 

of molecules for the chemical industry are ac-

tively engineered, but most are still at R&D stage, 

including the tailoring of oil composition for use 

as biofuel and bio-based lubricants in camelina 

and Jatropha curcas (Kim et al., 2014; Kim et al., 

2015); altered lignin content and composition to 

develop more efficient biofuels and biomaterial 

conversion processes in poplar, sorghum, and 

sugarcane (Fu et al., 2011; Bottcher et al., 2013; 

Van Aker et al., 2014). Sugarcane has also been 

transformed with microbial genes that produce 

cellulose-degrading enzymes to produce self-pro-

cessing plants (Harrison et al., 2011).

Plant biotechnology  
for phytoremediation
There are a rapidly increasing number of scientific 

publications relating to phytoremediation and an 

expanding number of ways in which plants can 

be used for effective remediation of contaminat-

ed soil, sludge, sediment, ground water, surface 

water, and wastewater. Several case studies have 

demonstrated that GM technologies have suc-

cessfully enabled phytoremediation to be tailored 

towards specific pollutants. Examples include 

model plants developed to degrade 2,4,6-trinitro-

toluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-tri-

azine (RDX), trichloroethylene (TCE), and polychlo-

rinated biphenyls (PCBs) (Rylott et al., 2015). Focus 

is now turning from model plant systems to the 

transfer of this technology into plant species suit-

able for remediation in the field. One example is 

the transfer of rabbit cytochrome P450, 2E1 into 

poplar trees (Doty et al., 2007), based on the pio-

neering approach of expressing a single human 

2E1 in tobacco for increased degradation of TCE, 

vinyl chloride, carbon tetrachloride, chloroform 

and benzene (Doty et al., 2000; James et al., 2007).

Conclusion
Biotechnology provides to many of the challenges 

that our world faces today, from feeding and fuel-

ling a growing population, tackling a worldwide 

epidemic of neglected and chronic diseases, to 

mitigating the environmental impact of modern 

human societies. Plant biotechnology with focus 

on seed-varietal improvement, such as GM tech-

nology and molecular-assisted breeding, has gen-

erated products that help agriculture to achieve 

enhanced yields in a more sustainable manner. 

GM technology has brought significant improve-

ments to earned income, life quality, and per acre 

productivity. The global value of transgenic seed 

alone has been estimated at US$ 15.7 billion, rep-

resenting 35% of the approximately US$ 45 billion 

commercial seed market (James, 2014), which is a 

formidable achievement, considering the very lim-

ited number of commercialized crops and traits. 

Relevant is also that farmers in developing coun-

tries touched approximately 50% of the economic 
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gains of the GM technology and that GM crops 

generated a provisional benefit of US$ 68.21 bil-

lion between 1996-2013 (Brookes and Barfoot, 

2015a) for growers of which 94.1% or more than 

16.9 million were smallholder and resource-poor 

farmers from developing countries (James, 2014).

	

Although impressive, these figures are less re-

markable when challenged with the statistics of 

800 million people around the world, or 78% of 

the world’s poor people, who live in rural areas 

and rely on farming, livestock, aquaculture, and 

other agricultural work for their subsistence (www.

worldbank.org/en/news/feature/2014/11/12/

for-up-to-800-million-rural-poor-a-strong-world-

bank-commitment-to-agriculture) and for whom 

the GM technologies do not satisfactorily reach 

the needs in the least developed countries. Al-

though more than half of the global GM crop area 

is located in developing countries, the major GM 

crops commercialized today, i.e. soybean, maize, 

and canola, except cotton, are grown on large 

farms in Latin America and do not match the in-

terests of most smallholder farmers in the least 

developed countries. Crops of relevance to mar-

ginal environments, such as millet (Pennisetum 

glaucum), groundnut (Arachis sp.), cowpea, com-

mon bean (Phaseolus vulgaris), chickpea (Cicer ari-

etinum), pigeon pea (Cajanus cajan), cassava, yam 

(Dioscorea batatas), and sweet potato, to name a 

few, have been mostly ignored by GM technology.

	

Because of their restricted trade, these so-called 

neglected underutilized crop species (NUCS) 

present little economic interest for commercial 

seed companies, but they have the potential to 

play an important role in the improvement of 

food security by contributing to food quality and 

dietary diversity. NUCS may also increase sustain-

ability of agriculture, because they are believed to 

be well adapted to niche-specific environments, 

such as marginal and harsh lands, and to need 

a low input. As such, NUCS can help mitigate the 

impact of climate change on food production. 

However, these crops have been abandoned by 

researchers and farmers in favor of major crops 

that are sometimes promoted even in less suit-

able areas (Chivenge et al., 2015). Moreover, the 

limited information on the genetic potential, 

agronomy, water requirements, and nutrition of 

NUCS remains a hindrance to their development 

and competitiveness. Therefore, actions have to 

be taken to overcome the constraints and obsta-

cles for the cultivation of NUCS in regions where 

the uncertain climatic future can hamper food 

security, including acceleration of research to im-

prove genetics and management as well as cul-

tural acceptability and marketing.

	

Biotechnology tools can quicken the genetic im-

provement of NUCS. The GM approach can be 

used to introduce directly the desired sustaina-

ble management and the valuable output traits 

into varieties well adapted to local growing con-

ditions. A major technological constraint is plant 

transformation that is critical for the development 

of biotech crops, for which GM techniques, such 

as transgenics, cisgenics, or by precision breed-

ing, are required in the developmental process. 

The lack of efficient transformation protocols and 

breeding programs for geographical niche crops 

is in blatant contrast with the continuous striv-

ing for simpler, more robust, and more efficient 

transformation protocols for crop species for in-

tensive agriculture.

	

There have been significant advances in the de-

velopment of GM crops that can deliver food with 

health benefits beyond basic nutrition and in tar-

geting small-market crops and a few NUCS for 

quality traits. These so-called second-generation 

traits will soon reach the market. The innovations 

coincide with an increasing consumer demand 

for healthy and nutritious food. The public sector 

shares a great deal of the research done in this field 

and public-private partnerships excel in translating 

the proof-of-concept to a marketable product.

	

Plant-made pharmaceuticals have become a ma-

jor focus point since 2010, when realistic oppor-

tunities for commercial development emerged. 

Plant-manufacturing platforms for pharmaceu-

ticals or molecular farming open interesting 

prospects for low-income countries, where large 
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quantities of medicines need to be provided on a 

regular basis. Cost-effective local focus and nee-

dle-free deployment can be of great help for the 

treatment of tropical diseases.

	

In the industrial sector, plant biotechnology has 

the potential not only to generate more produc-

tive biomass feedstocks and minimize inputs, but 

also to develop more efficient biofuels, chemicals, 

and bio-material conversion processes. A num-

ber of nonfood crops improved with sustainable 

management have gone through the regulatory 

process. Additionally several biochemical path-

ways are currently being explored for the devel-

opment of quality traits for the chemical industry 

and for phytoremediation (Ricroch and Hénard-

Damave, 2015).

	

Of the greatest technological gaps in the commer-

cialization of second-generation biofuels along 

with chemicals are the conversion processes that 

are costly, environmentally threatening, and time 

consuming. Advanced nonfood feedstocks have 

to be developed that can grow on marginal lands 

and simultaneously can decrease the costs of 

lignocellulosic biomass pretreatments. Numer-

ous projects are under consideration that aim at 

engineering lignin content and monomer compo-

sition to optimize lignin degradation (Harfouche 

et al., 2014).

	

Examination of the fast uptake of biotech crops 

on millions of hectares globally and of the current 

R&D pipelines impacting numerous plant species 

indicates that plant biotechnology will be a major 

tool to overcome the challenges of sustainabili-

ty and development. Developing and emerging 

economies have taken the lead in terms of adop-

tion of biotech crops and also in approvals of new 

transgenic crop varieties (James, 2014). As more 

actors become involved in R&D and more tech-

nologies are adapted and applied to new regions 

and local crops, the more developing countries 

will play a leading role in agricultural biotechnolo-

gy. In the near term, most of the developing world 

will continue to rely on development assistance 

and innovations, as well as on technology part-

nerships and joint ventures with companies from 

developed countries that look for access to large 

developing markets. However, as research capac-

ities increase, public sector institutes and private 

firms in emerging and low-income economies are 

likely to develop new biotech crops on their own. 

In the not too distant future, agricultural biotech 

research in developed countries could be sur-

passed in the same manner that production has 

already been.

	

The opportunities offered by plant biotechnolo-

gy have never been greater, but neither have the 

challenges been, among which the most daunt-

ing is public perception and its influence on the 

regulation of biotech crops. All GM crops are sub-

mitted to a rigorous battery of tests and regula-

tory scrutiny prior to commercialization. Typically, 

the properties of the GM crops are compared to 

those of the corresponding non-GM variety with 

respect to various potential risk factors. Such 

comparative analyses include agronomic, molec-

ular, compositional, toxicological, and nutritional 

assessments. Regulatory systems must ensure 

that all steps are in place to guarantee biosafe-

ty, but they must also ensure that none of these 

steps is unnecessary. Currently, the biggest con-

straint to commercialization of transgenic prod-

ucts is the regulatory delay, including, among oth-

ers, test repetition, slow review time, and requests 

by regulators for additional information, often not 

necessary to demonstrate safety, and lack of clar-

ity with respect to the regulatory requirements. 

Another source of delay is political interference 

in the biosafety regulatory process that hampers 

technologies developed by public-sector insti-

tutions or small private firms that, compared to 

large multinational corporations, have less finan-

cial flexibility to absorb the costs until the regu-

latory authority finally renders its decision (Bayer 

et al., 2010). Thus, the extensive time needed to 

complete a regulatory file may significantly reduce 

the net benefits of GM products.

	

The costs of compliance with biosafety regulation 

also deter low-income and emerging economies 

from considering GM technologies as a solution 



29

to agricultural problems. Biotech developers 

must take into account not only the countries 

where the cultivation of the new biotech crops 

could take place, but also where the consump-

tion of such crops might ultimately occur. So, an 

emerging country that wants to export GM food 

to the developed world is confronted with regula-

tory frameworks that do not give it much latitude. 

Moreover, low-income and emerging economies 

will not be able to keep pace with the ever-chang-

ing regulatory requirements of the developed 

world and will clearly restrict their decision to ap-

ply GM technology.

	

Public perception of GM crops and food is influ-

enced by numerous factors, including access to 

information or misinformation, commercial ac-

tions by corporations, moral and ethical beliefs, 

and perceptions of personal benefit from the 

technology. Anti-GMO activists diffuse misinfor-

mation to uphold the belief that harm will come 

to those who consume foods made up of GM 

ingredients, heightening anxiety with the mass 

public as well as with public authorities (Blancke 

et al., 2015). This concerted opposition to GM 

crops resulted in a number of complex legal and 

regulatory issues that have halted cultivation and 

stymied plant research in Europe with disastrous 

consequences to the development of new crops 

varieties and their introduction to markets world-

wide. The best example is Golden Rice that has 

still not been approved for release in spite of its 

urgent need and readiness for well over a decade. 

Should concerns of this nature persist, R&D ef-

forts will probably be restricted to large agribusi-

ness corporations that will continue to focus on 

major intensive agriculture crops.

	

Nevertheless, there is no time to waste. The 

world’s overpopulation and the pressures on the 

Earth system require all the ingenuity human be-

ings can deliver. To ensure that the biotechnol-

ogies live up to the expectations, they will have 

to focus on the priorities that could slow, limit, or 

halt research and development, including neg-

ative public opinion and the lack of regulatory 

harmonization. Needless to say that markets and 

technology alone cannot promote the sustainable 

development of human societies. A deep trans-

formation of societal values in a holistic manner 

will be required that can only be achieved with 

strong political will.
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Abstract
Since the 1970s, biotechnology has influenced to 

the economic growth of many countries. In Brazil, 

the development of a national biotechnology pol-

icy occurred only in 2007. To date, the greatest  

biotechnological contribution in the country 

has undoubtedly been in the agribusiness sec-

tor, which is responsible for approximately 23% 

of Brazil’s Gross Domestic Product. Genetically 

modified (GM) crops, particularly soybean (Glycine 

max), maize (Zea mays), and cotton (Gossypium hir-

sutum), are the best examples of this biotechno-

logical application that increased between 3% and 

4% in 2014 (exceeding 42 million hectares), which 

is 4.6% higher than in 2013 and is the equivalent 

of 1.9 million hectares. Brazil harbors the second 

largest cultivated acreage of GM crops worldwide 

and a substantial growth is projected in the next 

few years. Currently, 50 transgenic events are au-

thorized for commercialization in Brazil, of which 

two, an imidazolinone-tolerant soybean and a 

golden mosaic virus-resistant common bean, are 

the direct outcome of national technology and 

public sector. Maize became the crop plant with 

the largest number of transgenic traits released 

in Brazil, accounting for 29 events and others in 

the pipeline for approval and commercialization, 

followed by cotton (12 events), and soybean (7 

events). The rapid increase in the adoption of GM 

crops results from the technical commission re-

sponsible for biosafety in Brazil, which is one of 

the most effective worldwide. Pest control, among 

other constraints in the agricultural sector, has 

been the subject of intense investigation by the 

Brazilian biotech sector and has received support 

from the public sector through the creation of 

programs for leveraging government and indus-

try partnerships.

Keywords: biotech crops, agribusiness, transgen-

ic plants, cotton, soybean, maize

Introduction
In the past two decades, innovation has played 

a pivotal role in economic development. The 

build-up of innovative technologies has been of 

foremost importance for successful and dynamic 

growth in developing countries (Organization for 

Economy Co-operation and Development, 2012). 

Advances and investments in biotechnology, in-

cluding those focused on health, agriculture, in-

dustry and the environment, are now crucial for 

any country to thrive on the global market.

Consequently, the application of biotechnology 

to various sectors and industries has increased 

exponentially. In 2014, 181.5 million hectares 

were grown with genetically modified (GM) crops 

worldwide in 28 countries, of which 20 devel-

oping countries and eight industrialized coun-

tries (James, 2014). Notably, approximately 53% 

(93.1 million hectares) of GM crops were pro-

duced in developing and emerging markets from  

Latin America, Asia, and Africa. The most culti-

vated transgenic crop in the world is soybean 

(Glycine max), representing over 50% of the to-
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tal transgenic crop area, followed by maize (Zea 

mays) and cotton (Gossypium hirsutum) (James, 

2014). A particular meta-analysis of the impacts 

of 147 commercialized transgenic crops over the 

last 19 adoption years (1995 to 2014) empha-

sized the multiple significant benefits generated 

by biotechnological (biotech) crops, including 

their contribution to a 37% reduction in chemical 

pesticide use, an 22% increase in crop yields, and 

a 68% increase in farmer profits (Klümper and  

Qaim, 2014).

Since the beginning of the 1970s, government 

institutions and agencies in Brazil, including Bra-

zilian Development Bank (BNDES), Brazilian Inno-

vation Agency (FINEP), National Counsel of Tech-

nological and Scientific Development (CNPq), and 

Brazilian Federal Agency for Support and Evalua-

tion of Graduate Education (CAPES), have invest-

ed in and provided support for the development 

of innovative products and processes in the coun-

try. An important step was the release of the Na-

tional Innovation Law in 2004 (Brasil, 2004). This 

legislation sought to encourage innovation within 

the public sector (particularly at universities) and 

to incite partnerships between academic institu-

tions and the private sector. Another initiative to 

coordinate the biotechnology policy was the cre-

ation of the National Biotechnology Committee 

to manage the implementation of government’s 

biotechnology policies (Brasil, 2007).

Recently, the Scientific American Worldview  

(http://www.saworldview.com/scorecard/ 

2 0 1 5 - s c i e n t i f i c - a m e r i c a n - w o r l d v i e w - 

overall-scores/) has released an overview of the 

performance of 54 nations in Biotechnology In-

novation, in which was aggregate performance 

in seven categories - Productivity, Intellectual 

Production Protection, Enterprise Support, In-

tensity, Education/Workforce, Foundations, and 

Policy & Stability. Overall, Brazil is in second posi-

tion among the Latin America’s countries, behind 

only the Chile, but even so several biotechnologi-

cal sectors must be better exploited, such as the 

related to biopharmaceutical products, once the 

country imports the great majority of medicines. 

Indeed, in the last two decades, Brazil has been 

a leader in the use of GM crops and in the de-

velopment of agricultural biotech products. In 

2014-2015, approximately 42.2 million hectares 

of biotech crops were under cultivation, unclud-

ing three major crops, maize, soybean and cot-

ton, at an adoption rate of 89.2% in the three 

cultures analyzed (Céleres, 2014; James, 2014; 

Céleres, 2015). Since 2009, the country ranks sec-

ond worldwide regarding the GM planted area, 

losing out to only the United States (73.1 million 

hectares), but Brazil was ahead of other BRIC 

countries, such as Russia and India, in terms of 

biotechnological advances.

Development of GM crops in Brazil
By 2020, the global population will reach ap-

proximately 7-8 billion people. Providing ade-

quate nutrition for all these people will be a great 

challenge, particularly in Asia, Africa, and Latin 

America, where the majority of the population 

is located. The intensification of food produc-

tion and distribution, associated with an increase 

in productivity and a reduction in agricultur-

al costs, are key factors to meet this challenge  

(www.worldometers.info/world-population).

Despite the production growth over the last 30 

years, pests continue to be the major causes 

of yield losses during the pre- and post-harvest 

periods (Carlini and Grossi-de-Sa, 2002; Ferry et 

al., 2006). Annually, the world average yield loss 

reaches approximately 42% (Paoletti and Piment-

el, 2000), resulting in a damage of up to US$ 250 

billion (Oerke et al., 2012). Even though more than 

2.5 million tons of pesticides are applied world-

wide, over 40% of the entire production is still 

lost prior to harvest by several pests, including 

insect pests and other phytopathogens (Grube 

et al., 2011; Ceresana Research, 2012). In con-

trast, the use of tolerant/resistant crop cultivars 

is considered the most efficient, cost-effective, 

and least environmentally damaging pest control  

method available.

Genetic engineering has enabled the generation 

of technologies that reduce losses and increase 
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crop yields. GM varieties provide improved farm-

ing practices and enhance the quantity and 

quality of agricultural commodities, boosting 

the farmers’ income and promoting economic 

growth. In the case of transgenic plants tolerant 

to herbicides or resistant to insects, management 

of invading plants and insects is facilitated and 

the application of pest-controlling substances is 

reduced. The available plants on the market that 

harbor both characteristics represent an efficient 

alternative for farmers. In addition to their agro-

nomic advantages, these varieties also favor the 

preservation of biodiversity.

The Brazilian Trade Balance in agribusiness has 

increased by 320% from US$ 25.90 billion in 2003 

to US$ 75.1 billion in 2015 (MAPA, 2015; Figure 1). 

This increase is higher than the overall Brazilian 

Trade Balance that went through many variations 

during the last decade, from US$ 46.46 billion in 

2006 to a deficit of US$ 3.9 billion in 2014 (MDIC, 

2013; MAPA, 2015). In 2014, the Brazilian Trade 

Balance closed with a surplus of US$ 5.5 billion 

for the agribusiness sector and in 2015, the ag-

ribusiness sector represented more than US$ 

391 billion of the country’s Gross Domestic Prod-

uct (GDP) (www.comexdobrasil.com/brasil-pro-

jeta-aumentar-em-us-20-bilhoes-as-exporta-

coes-do-agronegocio-ate-2018). The contribution 

of agribusiness to the Brazilian Export Balance 

is higher than any other sector in the country. In 

2013, 41.24% of the income from exports was re-

lated to agribusiness products (MDIC, 2013). Agri-

business is also responsible for the employment 

of approximately 35% of the working population 

of Brazil (Riedel, 2013; http://www.canaldoprodu-

tor.com.br/print/69844). Currently, Brazil holds 

7% of the global market for agricultural products 

and is expected to retain 10% of the global sector 

in 2018.

In the early 1990s, the first examples of the utili-

zation of GM crops in Brazil were controversial. At 

the time when farmers in the south of the country 

Figure 1. Brazilian trade balance from 1980 to 2015. Black and green bars correspond to the overall amount 

of Brazilian Trade Balance and the amount represented by the agribusiness in Brazil, respectively. Values 

are given in US$ Billion. Adapted from (MDIC, 2014; MAPA, 2015).
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started planting the first transgenic soybean, all 

transgenic seeds came from Argentina, because 

the cultivation and commercialization of GM 

crops in Brazil was approved only in 1995. Howev-

er, three years later, a “moratorium” on GM crop 

commercialization was established and upheld 

until 2003-2004. In 2005, after a broad political 

and social debate, a new regulatory framework 

resolved the legal conflicts, resulting in a new 

phase of plant biotechnology in Brazil. In fact, 

the number of commercial releases of transgen-

ic crops has significantly increased in Brazil after 

endorsement of this efficient and science-based 

approval system, known as the Biosafety Law.

In 2014-2015, approximately 42.2 million hec-

tares of GM crops were cultivated in Brazil, rep-

resenting a 4.6% increase compared to 2013 and 

an adoption rate of 89.2%, more specifically, of 

93.2% for GM soybean, 72.6% for GM summer 

maize, 90% for GM winter maize, and 65.1% for 

GM cotton (Céleres, 2014; James, 2014). Of the 

42.2 million hectares of the GM crop area, GM soy-

bean was cultivated on 29.1 million hectares (68% 

of the total area), followed by GM maize (summer 

and winter) covering 12.5 million hectares (29.6%) 

and by GM cotton with 0.6 million hectares, an in-

crease of 25.1% over 2013 (Céleres, 2014, 2015; 

James, 2014) (Figure 2).  According to projections, 

the GM planted crop area will increase by 3.9% 

in 2015-2016 compared to that in 2014-2015, 

reaching 44.2 million hectares and an adoption 

rate of 90.7% for three products, soybean, maize, 

and cotton (Céleres, 2015). The high growth 

of the biotech crop area in Brazil represents a 

consolidated adoption and a large contribution 

to the Brazilian GDP, equivalent to more than  

US$ 0.5 trillion.

Biotech maize is responsible for the greatest 

increase in farmers’ income (58%), followed by 

soybean (39%) and cotton (3-4%) (Céleres, 2012). 

Considering the enhanced demand for agricul-

tural products, it is clear that expansion of the 

agricultural production will be needed and that 

GM crops will play a major role. Brazil is expect-

ed to cultivate 16.2 million hectares of GM cotton, 

178.4 million hectares of GM maize and 293.0 mil-
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Figure 2. Biotech Cultivation area in Brazil. Black, green, and light-green bars correspond to the total area 

used for agriculture in Brazil, for GM crops, and for non-GM crops in Brazil, more specifically for the planta-

tion of cotton, maize, and soybean, respectively. In more than 89% of the total agricultural area transgenic 

plants are cultivated. Approximately 93.2%, 82.4%, and 65.1% of all soybean, maize, and cotton planted in 

Brazil are transgenic, respectively. (Adapted from CONAB, 2014; Céleres, 2014).
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lion hectares of GM soybean within the next ten 

years, reaching a production worth of US$ 118.2 

billion (Céleres, 2012). Furthermore, a high adop-

tion rate is foreseen for GM crops with combined 

traits (such as insect resistance [IR] and herbicide 

tolerance [HT]) that has recently been welcomed 

by Brazilian farmers. The use of single-trait tech-

nology is rapidly decreasing compared to stacked 

traits, with a considerable contribution from the 

IR/HT soybean commercialization. From the tech-

nological data farmers will obviously prefer the 

stacked traits to the single feature due to their 

significant benefits.

The potential offered through the adoption of GM 

soybean, maize, and cotton crops clearly show 

important economic and environmental gains for 

both farmers and society. The economic benefits 

of biotech crops in Brazil were evaluated to be 

US$ 24.8 billion for the periods from 1996-1997 

and 2012-2013 and US$ 6.3 billion for the 2013 

year alone (Céleres, 2013, 2014). Additionally, 

based on provisional data, an annual economic 

assessment of the value of the use of GM crop 

technology in agriculture at the farm level, cover-

ing the benefits from biotech crops over a 10-year 

period (2003-2013) revealed that Brazil gained 

US$ 11.8 billion and, of which US$ 3.4 billion in 

2013 alone (Brookes and Barfoot, 2015).

Soybean
In Brazil, soybean cultivation is intense and agricul-

ture is often associated with utilization of advanced 

technology and modern cropping systems. Hence, 

the first transgenic event authorized in Brazil was 

Roundup Ready (RR) from Monsanto, a GM soy-

bean with tolerance to the herbicide glyphosate, 

conferred by the transgenic event GTS 40-3-2 (CT-

NBio, 1998). Since the release of soybean RR for 

planting and commercialization in Brazil in 2003-

2004, the GM crop adoption rate rapidly increased 

and is currently approximately 93.2% with approx-

imately 85% of all soybean cultivars grown repre-

senting the RR technology.

Two other transgenic soybean events that were 

approved for commercial planting in 2010 are 

also herbicide resistant (A2704-12 and A5547-127 

[Liberty Link] of Bayer SA) and show tolerance to 

glyphosinate ammonia (GA) (Table 1), with the ad-

vantage of high degradability and low toxicity to 

animals and the environment. Soil microorganisms 

rapidly degrade the glyphosate herbicide by using 

the molecule as a nitrogen source and releasing 

phosphorus and CO2 (CTNBio, 2010a, 2010b).

 

In the same year, the MON87701 & MON89788 

(Monsanto) event, which confers both tolerance 

to the herbicide glyphosate and resistance to 

insects, was approved for commercial planting. 

Both features were derived from crosses ob-

tained by classical breeding by means of already 

genetically modified parentals containing either 

of the transgenic events (CTNBio, 2010c). In 2011, 

15 different cultivars that contained this event 

were planted in the country.

In 2009, a new IR GM soybean event (BPS-

CV127-9, known as Cultivance™), developed 

through a partnership between the Brazilian gov-

ernment company (Empresa Brasileira de Pesqui-

sa Agropecuária [EMBRAPA]) and the private com-

pany Badische Anilin- und Soda-Fabrik (BASF) was 

approved for commercialization. This transgenic 

event was obtained by insertion into soybean of 

the Arabidopsis thaliana csr1-2 gene. This csr1-

2 gene encodes an acetohydroxy acid synthase 

protein conferring tolerance to imidazolinone 

herbicides due to a point mutation that results in 

a single amino acid substitution; the serine resi-

due at position 653 was replaced by asparagine 

(S653N). The Cultivance™ soybean event is the 

first GM soybean developed in partnership with 

a national research institution and is expected 

to be commercialized in Brazil in 2016. Recently, 

another soybean event has been approved, DAS-

68416-4 from Dow Agrosciences, with both IR 

and HT traits (CTNBio, 2015a). Currently, at least 

two other events are in the pipeline that contain 

genes coding for HT proteins and/or stacked 

traits (Coelho, 2013, 2015; CTNBio, 2015a).

The release of different events for the same trait 

is a strategic measure, because it contributes 
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Plant Company Event Commercial Name Regulatory  
Approval 

(Year)

Transgene Product Insect  
Resistance

Herbicide 
Resistance

Other 
Features

Soybean Monsanto 
Company

GTS-40-3-2 Roundup Ready™ Soybean 1998 / 2003 CP4 EPSPS* X

MON87701 & 
MON89788

Intacta™ RR™ 2 Pro 2010 CP4 EPSPS*; Cry1Ac X X

BASF & 
Embrapa

BPS-CV-127-9 Cultivance™ 2009 CSR-1-2* X

Dow 
Agroscience

DAS68416-4 Enlist™ Soybean 2015 AAD-12*; PAT* X X

Bayer 
CropScience

A5547-127 Liberty Link™ Soybean 2010 PAT* X

A2704-12 Liberty Link™ Soybean 2010 PAT* X

Maize Monsanto 
Company

MON810 YieldGard™, MaizeGard™ 2007 Cry1Ab X

NK603 Roundup Ready™ 2 Maize 2008 CP4 EPSPS* X

NK603 & 
MON810

YieldGard™ CB + RR 2009 CP4 EPSPS*; Cry1Ab X X

MON89034 YieldGard™ VT Pro 2009 Cry1A.105; Cry2Ab2 X

MON89034 & 
NK603

Genuity® VT Double Pro™ 2010 CP4 EPSPS*; Cry1A.105; 
Cry2Ab2

X X

MON88017 Yield Gard™ VT™ Rootworm™ 
RR2

2010 CP4 EPSPS*; Cry3Bb1 X X

MON89034 & 
MON88017

Genuity® VT Triple Pro™ 2011 CP4 EPSPS*; Cry1A.105; 
Cry2Ab2; Cry3Bb1

X X

NK603 & T25 Roundup Ready™ Liberty 
Link™ Maize

2015 CP4 EPSPS*; PAT* X

Bayer 
CropScience

T25 Liberty Link™ Maize 2007 PAT* X

Syngenta 
Seeds, Inc.

Bt11 Agrisure™ CB/LL 2008 PAT*; Cry1Ab X X

GA21 Roundup Ready™ Maize, 
Agrisure™ GT

2008 mEPSPS* X

Bt11 & MIR162 & 
GA21

Agrisure™ Viptera™ 3110 2010 mEPSPS*; Cry1Ab; 
Vip3Aa20*

X X

Bt11 & GA21 Agrisure™ GT/CB/LL 2009 PAT*; mEPSPS*; Cry1Ab X X

MIR162 Agrisure™ Viptera™ 2009 Vip3Aa20* X

MIR604 Agrisure™ RW 2014 mCry3A* X

Bt11 & MIR162 & 
MIR604 & GA21

Agrisure™ Viptera™ 3111, 
Agrisure™ Viptera™ 4

2014 Cry1Ab; mCry3A*; 
Vip3Aa20*; mEPSPS*; 
PAT*

X X

Dow 
Agrosciences

DAS-40278-9 Enlist™ Maize 2015 AAD-1* X

DuPont TC1507 & NK603 Herculex™ I RR 2009 CP4 EPSPS*; PAT*; 
Cry1F

X X

MON810 & 
TC1507 & NK603

Power Core™ 2011 CP4 EPSPS*; PAT*; 
Cry1Ab; Cry1F

X X

TC1507 & 
MON810

TC1507Xmon810 2011 PAT*; Cry1Ab; Cry1F X X

TC1507 & 
MON810 & 
MIR162

Not available 2015 Cry1Ab; Cry1F; 
Vip3Aa20*; PAT*

X X

MON810 & 
MIR162

Not available 2015 Cry1Ab; Vip3Aa20* X

MIR162 & NK603 Not available 2015 Vip3Aa20*; CP4 EPSPS* X X

MIR162 & TC1507 Not Available 2015 Cry1F; Vip3Aa20*; PAT* X X

TC1507 & MIR162 
& NK603

Not available 2015 Cry1F; Vip3Aa20*; PAT*; 
CP4 EPSPS*

X X

Table 1. Genetically Modified Crops Approved for Commercialization in Brazil.
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* �Abbreviations: 2mEPSPS: 5-enolpyruvyl shikimate-3-phosphate synthase enzyme (double mutant version); AAD-1: aryloxyalkanoate 
dioxygenase 1 protein; AAD-12: aryloxyalkanoate dioxygenase 12 protein; AC1: sense and antisense RNA of viral replication protein, i.e., 
no functional viral replication protein is produced; CEL1: CEL1 recombinant protein; CP4 EPSPS: 5-enolpyruvylshikimate-3-phosphate 
synthase enzyme from CP4 Agrobacterium tumefaciens strain; CSR-1-2: modified acetohydroxyacid synthase large subunit (AtAHASL); 
mCry3A: modified Cry3A; mEPSPS: modified 5-enolpyruvylshikimate-3-phosphate synthase enzyme; PAT: phosphinothricin N-acetyltrans-
ferase enzyme; Vip3Aa20: vegetative insecticidal protein.

1 Resistance to virus 
2 Volumetric increase of wood.

Plant Company Event Commercial Name Regulatory  
Approval 

(Year)

Transgene Product Insect  
Resistance

Herbicide 
Resistance

Other 
Features

TC1507 & 
MON810 & 
MIR162 & 
MON603

Not available 2015 Cry1Ab; Cry1F; 
Vip3Aa20*; CP4 EPSPS*; 
PAT*

X X

TC1507 & 
MON810 & 
NK603

Optimum™ Intrasect 2015 Cry1Ab; Cry1F; CP4 
EPSPS*; PAT*

X X

DuPont & Dow 
Agrosciences

TC1507 Herculex™ I, Herculex™ CB 2008 CP4 EPSPS*; Cry1Ab X X

TC1507 & DAS-
59122-7

Herculex™ XTRA 2013 PAT*; Cry1F; Cry34Ab1; 
Cry35Ab1

X X

Monsanto 
& Dow 
Agrosciences

MON89034 & 
TC1507 & NK603

Power Core PW/Dow 2010 CP4 EPSPS*; PAT*; 
Cry1A.105; Cry2Ab2; 
Cry1F

X X

Cotton Monsanto 
Company

MON531 Bollgard™ I 2005 Cry1Ac X

MON1445 Roundup Ready™ Cotton 2008 CP4 EPSPS* X

MON531 & 
MON1445

Bollgard™ I Roundup Ready™ 
Cotton

2009 CP4 EPSPS*; Cry1Ac X X

MON15985 Bollgard™ II 2009 Cry1Ac; Cry2Ab X

MON88913 MON88913-8 2011 CP4 EPSPS* X

MON15985 & 
MON88913

Bollgard™ II Roundup Ready™ 
Flex™ Cotton

2012 CP4 EPSPS*; Cry1Ac; 
Cry2Ab2

X X

Bayer 
CropScience

LLCotton25 Fibermax™ Liberty Link™ 
Cotton

2008 PAT* X

GHB614 GlyTol™ 2010 2mEPSPS* X

T304-40 & 
GHB119

TwinLink™ 2011 PAT*; Cry1Ab; Cry2Ac X X

GHB614 x T304-
40 & GHB 119

GlyTol™ TwinLink™ 2012 2mEPSPS*; Cry1Ab; 
Cry2Ac

X X

GHB614 & LLCot-
ton25

GlyTol™ Liberty Link™ Cotton 2012 2mEPSPS*; PAT* X

Dow 
Agrosciences

281-24-236 & 
3006-210-23

WideStrike 2009 PAT*; Cry1Ac; Cry1F X X

Bean Embrapa Embrapa 5.1 Embrapa 5.1 2011 AC1 (sense and anti-
sense) *

X1

Eucalyptus FuturaGene H421 Not Available 2015 CEL1* X2
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to both increased food security and agronomic 

productivity. The use of HT varieties with differ-

ent action mechanisms provides farmers with an 

improved way to manage resistant weeds due to 

selective pressure.

Maize
Brazil is the third largest producer and exporter 

of maize worldwide, after the United States and 

Argentina, but is only the fourth in terms of culti-

vation area of GM maize, surpassed by the United 

States, Canada, and Chile (www.gmo-compass.

org/eng/agri_biotechnology/gmo_planting/341.

genetically_modified_maize_global_area_under_

cultivation.html). In Brazil, the main insect pests 

of maize are caterpillars, including the fall army-

worm (Spodoptera frugiperda), the corn earworm 

(Helicoverpa zea), and the sugarcane borer (Di-

atrea saccharalis), which is also a corn pest. These 

insect pests cause crop losses of up to 35% and 

require dozens of insecticide applications for ef-

fective control during a culture cycle (Gallo et al., 

2002; Caccia et al., 2014).

As protection against these typical losses, Mon-

santo, Bayer, and Syngenta released three GM 

maize events in Brazil in 2007 (Table 1). MON810 

(YieldGuard™) from Monsanto of Brazil Ltd. was 

developed with a cry1Ab gene derived from the 

bacterium Bacillus thuringiensis that encodes the 

Cry1Ab protein (Bt protein) that is toxic to insects 

of the order Lepidoptera (CTNBio, 2007a). In 

2011, Brazil recorded 113 cultivars modified with 

the MON810 event.

The Bayer Company released the event T25 (Lib-

erty Link™) with the pat gene that provides trans-

genic maize crops with tolerance to herbicides, 

but a court ruling temporarily annulled the com-

mercial approval. In 2010, a new ruling definitively 

confirmed the approval for the whole country (CT-

NBio, 2007b) (Table 1).

In 2008, Syngenta Seeds Ltd. obtained approval 

for the commercial launch of the BT11 event, an 

IR maize obtained by the introduction of a genetic 

construct containing an insecticidal Btk gene and 

the pat gene as a selection marker. The Btk gene 

was obtained from B. thuringiensis var. kurstaki 

that encodes the Cry1Ab protein and confers re-

sistance to S. frugiperda, H. zea, and D. saccharalis 

(CTNBio, 2008a).

The need to increase the insect resistance with 

the pyramiding strategy while keeping the her-

bicide tolerance led Dow Agrosciences Seeds & 

Biotechnology of Brazil to partner with DuPont 

of Brazil to release improved transgenic corn 

events. In 2008, the commercial maize Herculex™ 

(TC1507) was approved in Brazil. The previous 

event included the pat and cry1f genes that pro-

vide tolerance to herbicides and resistance to in-

sects, respectively (CTNBio, 2008b).

In 2013, the GM maize, commercially denominat-

ed Herculex™ XTRA (TC1507 & DAS-59122-7), in-

cluded the produced PAT protein, responsible for 

the increased in herbicide tolerance and three Bt 

toxins (Cry1F, Cry34Ab1, and Cry35Ab1). Whereas 

Cry34Ab1 and Cry35Ab1 were involved in plant 

defense against coleopteran insects, Cry1F con-

trolled lepidopteran pests (CTNBio, 2013). This 

event was approved for commercialization after 

the successful partnership between Dupont and 

Dow Agrosciences.

The partnership between Dow Agrosciences and 

Monsanto of Brazil created MON89034 & TC1507 

& NK603 (Power Core PW/Dow). Released in 2010, 

it included the produced CP4 EPSPS and PAT pro-

teins to increase tolerance to glyphosate, togeth-

er with three Bt toxins (Cry1Ac.105, Cry2Ab2 and 

Cry1F) that significantly enhanced the resistance 

against S. frugiperda (CTNBio, 2010d) (Table 1).

In 2014, Syngenta Seeds Inc. released two trans-

genic corn events in Brazil: MIR604 and a combina-

tion of Bt11 & MIR162 & MIR604 & GA21 (CTNBio, 

2014). Whereas MIR604 (commercially known as 

Agrisure™ RW) displayed resistance against insects 

by expressing the mCry3A protein, the other event 

showed both herbicide tolerance and insect resist-

ance by expressing five foreign proteins, Cry1Ab, 

mCry3A, Vip3Aa20, mEPSPS, and PAT (Table 1).
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By 2015, maize is the crop with the largest num-

ber of transgenic traits released in Brazil, total-

ing 29 different events. Until 2014, Monsanto in 

Brazil Ltd. had the largest number of approved 

events, but in 2015, Brazilian DuPont (a division of 

Pioneer Seeds) released seven new events, all in-

volving insect resistance and herbicide tolerance 

(CTNBio, 2015b, 2015c). In the same year, Mon-

santo of Brazil Ltd. issued only one new event for 

herbicide tolerance (Table 1) (CTNBio, 2015d) and 

Dow Agrosciences a new GM corn, DAS-40278-9, 

commercially known as Enlist™, with increased 

tolerance to herbicides (CTNBio, 2015e).

Cotton
In terms of planted area, cotton is the third bio-

tech crop in Brazil, covering an estimated area of 

0.6 million hectares that represent over 65% of 

a total planted area of the 0.9 million hectares in 

2014-2015 (www.abrapa.com.br/estatisticas/Pa-

ginas/area-producao-produtividade-brasil.aspx; 

James, 2014; Pispini et al., 2014). Approximately 

23.6% of the transgenic cotton cultivated in Bra-

zil is tolerant to herbicides, 31.2% is resistant to 

insects, and 10.3% contains both traits. Most cot-

ton cultivation is located in the Midwest (approx-

imately 60%) and northeast (approximately 36%) 

regions of the country, particularly in the states 

of Mato Grosso, Bahia, and Goiás (Céleres, 2014; 

James, 2014; Pispini et al., 2014). 

The first approved transgenic cotton was the vari-

ety Bollgard™ I (event MON531) in 2005 that con-

fers resistance to the leaf worm (Alabama argilla-

cea), the pink bollworm (Pectinophora gossypiella), 

and the apple caterpillar (Heliothis virescens). By 

means of the commercial variety Coker 312, Mon-

santo introduced the gene encoding the Bt toxin 

Cry1Ac into the vector PV-GHBK04 and trans-

formed cotton plants via Agrobacterium tumefa-

ciens. The produced protein provided increased 

resistance against the three pests (CTNBio, 2005).

Three years later, Monsanto released the event 

MON1445 (Roundup Ready™), while Bayer simul-

taneously created LLCotton25 (Liberty Link), both 

of which are herbicide-tolerant GM cotton (Table 

1) (CTNBio, 2008c, 2008d). In 2009, events with 

both traits – tolerance to herbicide and resistance 

to insect pests – arrived on the market with two 

different releases: Bollgard™ I + Roundup Ready™ 

(RR) from Monsanto and WideStrike from Dow 

Agrosciences (Table 1) (CTNBio, 2009a). Where-

as Monsanto fused both proteins used in Boll-

gard™ I and RR (Cry1Ac and CP4 EPSPS) cotton, 

Dow Agrosciences introduced the first transgenic 

cotton with Cry1F protein, in addition to Cry1Ac 

and PAT proteins. Pyramiding of the Cry toxins al-

lowed an extension of the activity against insect 

pests, because the attacks of additional pests, 

such as Helicoverpa zea, Spodoptera frugiperda, 

Spodoptera exigua, Spodoptera eridania, Pseudo-

plusia includens, and Trichoplusia ni, could be con-

trolled as well (CTNBio, 2009b).

To date, 12 events of transgenic cotton have been 

approved for cultivation and commercialization in 

Brazil (Table 1), two of which provide insect resist-

ance, five increase herbicide tolerance, and the 

other five present both traits. Since 2005, cotton 

production and productivity have increased (al-

though varying over the years) and are expected 

to keep growing, because the amount of cultivat-

ed GM cotton continues to expand in Brazil.

Common beans
Brazil is the largest producer of beans in the 

world, with a production of 3.3 million tons per 

year, ahead of India (3.0 million tons), China (1.9 

million tons), and Mexico (1.3 million tons) (CON-

AB, 2013; www.almanaquedocampo.com.br/

verbete/exibir/89). The most common species 

cultivated in Brazil are Phaseolus vulgaris (com-

mon bean), which is found all over the Brazilian 

territory, and Vigna unguiculata (cowpea), which 

is mainly cultivated in the Amazon and northeast 

regions. Bean cultivation extends to all states of 

Brazil as a single system or intercalated with oth-

er crops. Previously considered a subsistence 

crop in small properties, the common bean is 

now adopted in production systems that require 

the use of intensive technologies, such as irri-

gation, pest control, and mechanical harvesting 

(Salvador, 2012).
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As a traditional food, beans are one of the main 

components of the Brazilian diet and are con-

sumed in large quantities. The grains of this leg-

ume represent an important source of protein, 

iron, and carbohydrates, particularly for popu-

lations from developing tropical and subtropical 

countries (http://www.agricultura.gov.br/vegetal/

culturas/feijao/saiba-mais). 

In addition to this high demand, another reason 

for the increase in bean import is the supply main-

tenance due to the losses caused by pathogens 

and pests. Many diseases affect the common bean 

that, in addition to yield reduction, also depreciate 

the quality of the product. These diseases may be 

of fungal, bacterial, or viral origin. The golden mo-

saic virus is one of the most devastating diseases 

of the common bean in several Brazilian states. It 

is economically important in the south of Goiás 

and Minas Gerais, as well as in the northern part of 

Paraná and Mato Grosso do Sul. This virus is capa-

ble of causing 100% yield losses, depending on the 

region and infection time. The symptoms become 

apparent in the infected plants when two to four of 

the trifoliate leaves start to develop a yellowish color  

(Wendland, 2011).

Although a number of techniques have been test-

ed and used to control the virus, there is an ur-

gent need to develop more efficient strategies for 

disease control. Hence, in 2011, EMBRAPA creat-

ed the world’s first GM common bean. It was also 

one of the world’s first examples of a transgenic 

crop that was completely developed by a public 

institution (CTNBio, 2011). Ten institutions con-

tributed, including four universities, six EMBRAPA 

units from four different states, and the Federal 

District. The GM event, designated Event 5.1, was 

generated with the RNA interference (RNAi) strat-

egy and was obtained through the insertion of 

transgenes into the nuclear genome of the bean 

through a biolistic technique (Aragão et al., 1996). 

The cultivation of transgenic beans will be an im-

portant tool for the control of the golden mosaic 

virus, not only in Brazil, but also in other coun-

tries that suffer from the disease, including India,  

Myanmar, China, the USA, and Mexico.

Eucalyptus
In Brazil, 7.6 million hectares were used for plant-

ing trees, a 2.8% increase compared to 2012 (7.39 

million hectares). Eucalyptus (Eucalyptus) spe-

cies represent 72% of all trees planted in Brazil 

and 20.7% correspond to pine (Pinus sp.) trees. 

Approximately 81% of the eucalyptus produced 

in the country, or more than 180 million m³, 

is converted into cellulose and paper (ABRAF, 

2010; Indústria brasileira de árvores [www.iba.

org]). The commercialization of eucalyptus for 

the production of cellulose, paper, laminate 

flooring, and charcoal contributed to 6% of 

the Brazilian Sectorial GDP in 2013 (approxi-

mately US$ 20.7 billion) (www.iba.org). Several 

areas are dedicated to eucalyptus plantations 

and 2% of all of the locally planted area are 

found in the State Minas Gerais. The city of 

Itamarandiba is one of the largest eucalyptus 

producers in Brazil (ABRAF, 2010). Consider-

ing the global market, Brazilian participation in 

forestry production represents 2%. The coun-

try occupies the 11th position in global paper 

production, representing 2.2% of this market 

(http://bracelpa.org.br/bra2/?q=en/node/228) 

and the 7th position in the global cellulose 

production market, corresponding to 4.2% of 

the country’s participation in this sector. How-

ever, Brazil’s largest market in the eucalyptus 

sector is in the lumber trade. With a partici-

pation of 4.3% in the global production, the 

country occupies the 5th position in this sector  

(http://bracelpa.org.br/bra2/?q=en/node/228).

Brazilian eucalyptus presents a strong potential 

for expansion in the international market over the 

next few years. Therefore, in 2015, the first GM 

eucalyptus (H421) from FuturaGene Brazil Tech-

nology, a company associated with the National 

Research and Development Association of Inno-

vative Companies (ANPEI) was approved in Bra-

zil. The new eucalyptus event aims at improving 

wood production by producing a protein capable 

of enhancing the volume of tree trunks (CTNBio, 

2015f). This approval provided a new vision for 

Brazil as a pioneer in the release of GM eucalyp-

tus for commercial purposes.
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Biosafety risk assessment -  
the Brazilian case
The use of GM crops in agriculture has exponen-

tially increased during the last decade. The high 

adoption rate is thought to reflect the growing 

benefits and satisfaction for the whole food pro-

duction chain, but public and scientific concerns 

have arisen regarding the environmental impact 

and safety of GM crops. Therefore, each country 

has created a legal framework to evaluate the bi-

osafety and, sometimes, other possible effects of 

commercialization, including social and economic 

issues. Thus, in many countries, including Brazil, 

before GM crops are authorized for commer-

cial purposes, national authorities conduct risk  

analysis procedures, which vary from one country  

to another.

Risk analysis includes three main components: 

risk assessment, risk management, and risk com-

munication (Figure 3). Risk assessment can be de-

fined as the identification of potential health or 

environmental hazards (adverse effects) and the 

determination of the probability that an identi-

fied hazard will occur (Organization for Economy 

Co-operation and Development, 2012). There-

fore, biosafety, comprising health and environ-

mental issues, is evaluated by risk analysis.

Risk management can be defined as the meas-

ures that must be taken to minimize or mitigate 

a potential hazard or adverse effect that has 

been identified in the risk analysis (including 

monitoring/surveillance) (Organization for Econ-

omy Co-operation and Development, 2012). Risk 

management also includes the process of weigh-

ing policy alternatives in the light of the risk as-

sessment results and other relevant evaluations 

(Johnson et al., 2007). Risk communication is 

the interactive exchange of information and sci-

ence-based opinions concerning risk among risk 

assessors, risk managers, consumers, and other 

stakeholders (Johnson et al., 2007).

Therefore, risk analysis constitutes an ample ac-

tivity that considers the information concerning 

Figure 3. Risk analysis flowchart, including risk assessment, management, and communication (adapted 

from Wolt et al., 2010). The biosafety risk assessment for commercial release of GM organisms is conducted 

by the Brazilian Technical Council of Biosafety (CTNBio), the Internal Commission of Biosafety (CIBio), and 

the National Council of Biosafety (CNBS). The members of CIBio and CTNBio are chosen by the Minister 

Chief of Staff, under major authorization by the President of Brazil (upper right corner).
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the risks to health and the environment (obtained 

during the risk assessment), as well as the eco-

nomic, political, moral, and ethical issues. In Brazil, 

risk assessment is conducted exclusively by the 

Brazilian National Biosafety Technical Commis-

sion (CTNBio), whereas the social and economic 

aspects of the commercialization are analyzed 

separately by a Council of Ministers, the National 

Council on Biosafety (CNBS) (Brasil, 2005; Nord-

ström, 2015), because the social and economic 

impacts related to the commercialization of GM 

products often require evaluations that are dif-

ferent from those involving risks to health and  

the environment.

In Brazil, CTNBio is composed of scientific spe-

cialists with Ph.Ds in biosafety, biotechnology, en-

vironment, biology, and human or animal health, 

whereas CNBS comprises only ministers, who have 

the state legitimacy to assess issues that may have 

socio-economic impacts in the country. This sepa-

ration minimizes the eventual ideological influenc-

es on the decision-making process and makes the 

Brazilian biosafety system pragmatic and efficient.

As a matter of fact, since this regulatory frame-

work was approved in 2005 by the 11.105 Law 

(Brasil, 2005), approval for the use of GM events 

in Brazil has rapidly increased, with 50 varieties of 

GM maize, cotton, soybean, common bean, and 

eucalyptus authorized for commercialization to 

date (Figure 4). Consequently, with the adoption 

of biotechnology in the field, more than 89% of 

the cultivars are now represented by transgenic 

plants (Figure 2). In addition to the use of trans-

genic plants for agriculture, Brazil is also investing 

in GM vaccines, diagnostic tests, and the produc-

tion of enzymes, hormones, and biofuels, some of 

which are produced as recombinant proteins in 

transgenic plants.

Figure 4. Number of events of GM crops approved by CTNBio for commercial release in Brazil. After the 

Biosafety Law (Brazil, 2005), the number of authorized varieties started to increase. (Adapted from Paes de 

Andadre et al., 2012;  CTNBio, 2015).
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Conclusions
The 2013-14 season marks the 10th anniversary of 

the use of the first GM seeds in Brazil. The coun-

try’s farmers now cultivate 50 biotech crop vari-

eties, including soybean, maize, cotton, common 

bean, and eucalyptus. Following the commer-

cial release of the golden mosaic virus-resistant 

bean developed by researchers from EMBRA-

PA, the Institution is now working in partnership 

with other countries, including Japan, on several 

drought-tolerant cultivars, such as soybean, cot-

ton, sugarcane (Saccharum officinarum), maize, 

and common beans (Ruane, 2013). EMBRAPA 

plays an important role in the development and 

future release of GM crops in Brazil, in collabo-

ration with international private companies and 

research institutions.

Moreover, other GM crop plants with differ-

ent traits, including GM rice (Oryza sativa) with 

increased yield, GM wheat (Triticum sp.) with 

drought stress tolerance (MAPA, 2013), and GM 

cotton with insect and nematode resistance, are 

also being developed in Brazil. Field trials of IR and 

HT GM sugarcane and GM Sorghum (Sorghum sp.) 

with increased sugar accumulation and biomass 

production will also be approved for cultivation in 

Brazil within the next few years.

In the last decade, the adoption of GM crops has 

produced considerable advances in crop manage-

ment and productivity, which have been accom-

panied by a remarkable change in the agricultural 

sector in Brazil that makes it a very competitive 

market, due to the arrival of large corporations. 

Consequently, a scaffold of knowledge protection 

and an enhanced openness of public institutions 

toward the private sector have become necessary 

(Lopes et al., 2012).

The majority of the Brazilian territory lies in the 

tropics, with unique soil and climate characteris-

tics, intense biotic and abiotic stresses, complex 

farming structures, and diverse patterns of tech-

nological infrastructure and logistics. Thus, inno-

vation in genetics and plant breeding to develop 

improved seeds and adapted production systems 

will be crucial for the country, particularly consid-

ering the increase in food demand in the predict-

ed scenarios of climate change (Assad et al., 2008; 

Lopes et al., 2012).

Thus far, the interrelationship between Brazilian 

entrepreneurial farming and agricultural research 

has resulted in the rapid implementation of trans-

genic crops, with clear benefits of their use.  Over 

the next decade, new varieties of sugarcane, cit-

rus (Citrus sp.), eucalyptus, and GM crops with 

traits such as resistance to both nematodes and 

insects, tolerance to other herbicides, and toler-

ance to water stress and saline soils are expect-

ed to arrive on the market. The future also points 

toward the creation of transgenic plants harbor-

ing enhanced nutritional properties or producing 

drugs. A prerequisite for these advances will be 

the continued strengthening of the strategic part-

nerships between public and private institutions.
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Abstract
The story of genetically modified (GM) crops in 

Argentina is still unfolding and is one the world 

has paid close attention for over the last 18 years. 

Currently, the country ranks third, behind the 

United States of America and Brazil, in GM crop 

area at the world level. The economic impacts of 

the introduction of GM technologies in Argentina 

have been very important. A key factor has been 

the occurrence of a strong synergy between her-

bicide-tolerant soybean (Glycine max) and no-till 

farming practices. The cumulative gross benefits 

resulting from the use of GM crops from 1996 to 

2010 have been estimated at US$ 72.65 billion. 

During that same period, 1.8 million jobs have 

been created as an indirect consequence of the 

introduction and adoption by farmers of agri-

cultural GM technologies. Thanks to the imple-

mentation of these new technologies, the global 

supply has been estimated to increase by 216.1 

million tons over these 15 years. The benefits 

from this supply shock have spilled over to world 

consumers, generating savings in food expendi-

tures estimated at US$ 89.0 billion. The case of 

GM crops in Argentina has been, undoubtedly, 

one of success. Long-term sustainability of these 

production systems as well as a number of insti-

tutional issues need to be assessed if the country 

is to consolidate this achievement.

Introduction
Research and Development (R&D), defined as 

new knowledge created and applied to increase 

the quantity and/or quality of biomass produced 

by human intervention, has driven progress in 

agriculture throughout history. In many countries 

with a long-standing tradition as export of agricul-

tural commodities, productivity gains attributable 

to changes in technology have been higher in ag-

riculture than in any other sector for a good part 

of the 20th century. That has been the case, for 

instance, in the United States of America (USA), 

until the advent of the digital era with computer, 

communication, and information technology.

The unavoidable increase in the demand for safe 

and good-quality food of a growing population, 

which is foreseen to reach 9 billion in 50 years, 

will challenge science and technology applied to 

agriculture. Both the attention and hopes of the 

world are focused on countries and regions with 

large food surpluses, that is, the biggest players 

in the international market of agricultural prod-

ucts. Nevertheless, in the less developed nations, 

the key factors that determine the advances in 

agricultural development, have implications in 

the very sensitive issue of food security for urban 

consumers, in the improvement of the farmers’ in-

come, and in an overall prospect of poverty allevi-

ation thanks to the availability of more affordable 

and safe food. As farmers are price takers, their 

income is tied directly to the yield of the products 

under their control. It is in this context that the 
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role of genetically modified (GM) crops in reshap-

ing the world agriculture will be described in this 

chapter. Argentina’s experience offers concrete 

evidence of the full expression of its potential and 

of the key role played in this story by a respon-

sible and effective institutional environment. This 

chapter is based on two reports (Trigo et al., 2009; 

Trigo, 2011) and looks into the impacts of availa-

bility and adoption of GM crops in that country, 

emphasizing both the benefits for the domestic 

economy and for the global consumers. In addi-

tion, some of the noneconomic advantages will be 

analyzed, resulting from the adoption of the GM 

technology by the farmers of Argentina, and some 

of the underlying drivers behind this process will 

be discussed briefly.

Evolution of the Argentinean agriculture
The history of agriculture in Argentina over the 

last century is one that shows a positive long-

term trend regarding the area planted with grains 

and oilseeds (Figure 1). Between 1900 and 2008, 

this area increased more than five-fold, from 5 to 

almost 28 million hectares. A strong growth took 

place in the first three decades, driven mostly 

by mechanization, which implied a capital-driv-

en process. Both the Great Depression and the 

restrictive domestic policies induced later a de-

crease in investments in the sector, all severely 

reducing the cultivated land from 18 million hec-

tares in 1940 to approximately 10 million in 1950. 

In the 1960s, thanks to the Green Revolution, the 

improved dwarf wheat (Triticum sp.) varieties and 

the high-yielding hybrid maize (Zea mays) turned 

out to be two major technological milestones that 

steered a renewed innovation-based productivity 

growth cycle unabated ever since. In 1991, no-till 

farming (NTF) started to be massively adopted. 

NTF consists basically on sowing of seeds at the 

required depth with a minimum disturbance of 

the soil structure. This is achieved through the 

use of specially designed machinery to elimi-

nate the need for plowing and other previously 

required tillage practices. In 1996, the first GM 

herbicide-tolerant (HT) soybean (Glycine max) va-

rieties were available. These GM crops induced 

a synergy with NTF of such a magnitude that it 

surpassed all expectations, vastly outperforming 

even its counterparts in the USA, the center of or-

igin of both technologies.

As further evidence of the importance of innova-

tion and technology in the history of agriculture 

in Argentina, Figure 2 shows how both labor and 

land productivity have evolved between 1908 

and 2007. In 1908, Argentina was already a ma-

Figure 1. Evolution of the area planted with grains and oilseeds in Argentina (1900-2008) (Cap, 2012).
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jor player in international agricultural commodity 

markets: each farm worker produced 7.5 tons of 

grains and oilseeds and one hectare of land yield-

ed one ton of products. A century later, 58.2 tons 

of grains and oilseeds were produced per farm 

worker with a yield of 3.14 tons per hectare. 

A study on the sources of the growth in the Ar-

gentinean farm sector (Lema, 2010) has con-

firmed the overwhelming preeminence of tech-

nical change among them (Figure 3). From 1963, 

approximately the start of the second wave of 

sustained expansion, to 2009, the agricultural 

sector recorded a growth of over two-thirds due 

to increases in the total productivity factor (TPF), 

the ratio of output and input quantities, a figure 

rarely seen in farm sectors of Argentina’s size. 

There is one caveat that should be brought up: 

the reported contribution of land to this process 

(20%) is most likely an overestimation, because 

land use expansion cannot always be regarded as 

linearly independent of technical change. In other 

words, at least a fraction of that 20% should be 

credited to innovation, and thus the TPF contribu-

Figure 2. Technological change in Argentina: evolution of labor and land productivity in Tons of grains+oil-

seeds per worker and per hectare (1908-2007) (Cap, 2012).
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tion would even be higher than 68.3%. However, 

in the current econometric tools used to estimate 

the TPF, special situations, such as the one de-

scribed, are not built into the formulas used in the 

calculations. Theoretical econometricians should 

probably look into how to remove such method-

ological restrictions like this in order to improve 

the existing tools. 

Gm crops in Argentina
The story of GM crops in Argentina is still unfold-

ing and is one that the world has been paying 

close attention to over the last 18 years. This was 

partly because a number of variables that played 

a role in this story were simply not found any-

where else. Unexpected synergies took place on 

a scale never seen before. The sheer magnitude 

of the figures involved has shaken the founda-

tions of traditional econometric analytical tools. 

Traditional agricultural economics were at a loss 

when trying to track and model the causal rela-

tionships using those same tools. Prices have not 

driven this unprecedented shift in the supply of 

grains and oilseeds, but technological change has 

and still does, which is one of the reasons why 

this story has attracted so much attention. In the 

next sections, we will deal briefly with most of the 

issues mentioned above.

The first GM crops introduced in the Argentine-

an agriculture were soybean varieties tolerant 

to the herbicide glyphosate. These HT varieties 

were released by the national regulatory author-

ity and, subsequently, made commercially avail-

able in the 1996/1997 crop season. Since then, 

20 additional events have been approved for 

commercialization, planting, and consumption 

as food, feed, or fiber, including 15 HT, insect-re-

sistant (IR), and HT-IR maize varieties, three HT, 

IR, and HT-IR cotton (Gossypium hirsutum) varie-

ties, and two soybean varieties resistant to her-

bicides other than glyphosate. Since the creation 

in 1991 by the Argentinean Government of the 

National Advisory Commission on Agricultural 

Biotechnology (CONABIA), 1,721 applications for 

field trials have been granted. Maize, soybean, 

cotton, and sunflower (Helianthus ...) are the 

crops with the greatest number of implemented 

field trials, followed by wheat, rice (Oryza sativa), 

potato (Solanum tuberosum), and alfalfa (Glycine 

sativa). In terms of traits, there has been an im-

portant evolution from single traits (HT and IR) to 

combined or stacked traits that clearly prevail, a 

trend also observed elsewhere around the world 

(James, 2010). The vast majority of technologies 

subjected to field trials were of foreign origin.  

In the 2010/2011 crop season, the technologies 

were applied on nearly 22.9 million hectares, of 

which 19 million were cultivated with HT soybean; 

3.5 million hectares with GM maize, of which 1.6 

million with IR traits, 300,000 with HT ones, and 1.6 

million with both traits stacked; and 614,000 hec-

tares with GM cotton, of which 56,000 HT, 8,000 

IR, and 550,000 with both traits stacked (Consejo 

Argentino para la Informacíon y el Desarrollo de la 

Biotecnología; www.argenbio.org). These figures 

represent approximately 100%, 86%, and 99%, of 

the total area planted with soybean, maize, and 

cotton, respectively (Figure 4).

These numbers place Argentina third, behind the 

USA and Brazil, in GM crop area at the world level, 

followed immediately by India and Canada (James, 

2010). This adoption dynamic is almost unprece-

dented in the history of the world agriculture and 

it is only comparable to the path followed by the 

adoption of hybrid maize into the State of Iowa 

(USA) in the 1930s. Even within the boundaries of 

the Argentinean experience, the evolution of the 

use of GM technologies by its farmers parallels 

very positively with other innovative plant ma-

terials, such as wheat with Mexican germplasm, 

developed by the Center for the improvement of 

Maize and Wheat (CIMMYT), and that gave rise to 

the “Green Revolution” and hybrid maize. Both 

events took place a few decades earlier (Figure 4). 

It took 27 years for Argentinean farmers to adopt 

hybrid maize at the level reached for GM maize 

after only 13 years and 12 years were needed to 

adopt Mexican wheat 12 years, whereas in just 

four planting seasons the same adoption level 

was reached at the farm level for soybean, i.e. 

90% of total planted area. It is worth noting, how-

ever, that none of the major technologies involved 
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was a product of the local R&D system. All the GM 

technologies that received approval for commer-

cial use were created by multinational seed com-

panies and introduced into the local genetic pool. 

The predominance of foreign technologies has 

remained unchanged since the first HT soybean 

varieties were introduced for field testing during 

the early 1990s. Still no applications for field test 

permits have been filed for locally developed in-

novations in any of the major crops. This caveat 

notwithstanding, there is a wide consensus that 

the strength of local breeding programs and the 

existence of a consolidated seed industry have 

played a key role in the rapid diffusion and adop-

tion of these new technologies.

The impact of GM technologies on the 
economy of Argentina
The economic impact of the introduction of GM 

technologies – HT soybean in particular – in Ar-

gentina has been very important, not only due 

to the reduction of production costs, but also 

because they provided a renewed thrust to a 

growth cycle in agriculture. That started some 

years before thanks to economic incentives, such 

as elimination of export taxes and reduction or 

elimination of import duties on farm machinery, 

which made investment in a new technology eas-

ier and more affordable for farmers. Another key 

factor was also the strong synergy between HT 

soybean and NTF practices. Indeed, shortening 

the idle time between harvests of wheat and sow-

ing of soybean enabled double cropping through 

the use of short-cycle soybean varieties in regions 

where this land productivity-enhancing manage-

ment system had not been feasible until then. 

This real example lends support to the hypothe-

sis of the implicit assumption that the expansion 

of cultivated land on the one hand and changes 

in factor productivity on the other hand are lin-

early independent. The net effect of this synergy 

has been the emergence of a significant “virtual” 

growth in total planted acreage without an actual 

increase in the available of arable land. This ex-

pansion in cultivated land has been estimated in 

the range of 3.5 million hectares and has been 

Figure 4. Adoption rate of the different GM technologies versus other technological milestones (Trigo, 2011).
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undoubtedly one of the main economic determi-

nants in the farmers’ adoption of the new tech-

nologies. This favorable shift has been reinforced 

by the free fall in the price of glyphosate from 

US$ 10/liter by the end of the 1990s to less than 

US$ 3/liter in 2000, as a direct effect of the patent 

expiration and the occurrence of new suppliers 

on the market. At the same time, these new tech-

nologies made soybean strongly competitive with 

other crops, such as maize and sunflower. In turn, 

livestock production (beef and milk) induced an 

intensification process that, in the end, increased 

productivity in these other farm activities that 

compensated for the area reduction and sus-

tained the output levels achieved before the soy-

bean expansion had occurred. During the 1996-

2005 period, the area with pastures (both natural 

and planted) has been estimated to have suffered 

a reduction of more than 5 million hectares while 

the supply of beef and milk remained stable (Tri-

go and Cap, 2006). These productivity increases 

have not been recorded in the statistics because 

the yield indicators commonly used, namely the 

slaughtered beef heads/year and the volume of 

milk for dairy, are computed without reference to 

the area on which that output is produced.

In this context, the cumulative gross benefits for 

Argentina resulting from the use of GM crops 

during the period 1996/1997–2010/2011 have 

been evaluated to amount to US$ 72.65 billion, 

of which US$ 65.44 billion from HT soybean (US$ 

3.52 billion from the reduced production costs 

and US$ 61.92 billion from the expanded cultivat-

ed acreage), US$ 5.38 billion from the use of IR 

and HT maize (single and combined events), and 

US$ 1.83 billion from the use of IR and HT cotton 

(single and combined events). The bulk of these 

benefits (72.67%) went to the farmers, whereas 

the input industry received approximately 7.38% 

of the grand total and the Federal Government 

– thanks to revenues from export duties – the re-

maining 19.95% (Figure 5). Regarding the crops, 

the benefit distribution follows a similar pattern, 

namely farmers cultivating soybean and maize 

captured 72.4% and 68.2% of the grand total, 

respectively. However, the benefits of the suppli-

er sector differ mostly in the plant propagation 

patterns of each crop – open-pollinated soybean 

and cotton varieties versus maize hybrids – and 

the status concerning the intellectual proper-

ty rights (IPRs). The original HT genes were not 

granted patents in Argentina: ASGROW, the seed 

company that held those IPRs at the time of the 

commercial release of the GM soybean varieties, 

failed to file an application with the regulatory au-

thorities. For an extensive discussion on the situ-

ation regarding IPRs, see Trigo et al. (2002). More-

over, the farmers had the opportunity to save 

grain by using an open-pollinated plant species, 

such as soybean, as seed in the following planting 

season. This right had been granted by the pro-

visions of the 1978 International Convention for 

the Protection of New Varieties of Plants, to which 

Argentina adheres. Thus, the lack of patents and 

the grain saving became a strong incentive for an 

illegal seed market, both for soybean and cotton 

seeds, but not for maize. Indeed, hybrid seed pro-

duction results from crossing genetically homog-

enous parent lines that are not available outside 

the seed company itself and, thus, precludes the 

option available to soybean and cotton farmers. 

The effect of the differences among these GM 

crops was that seed companies gained 19% of 

the total benefits in the case of maize, but only 

3.2% and 3% in the case of soybean and cotton, 

respectively (Trigo, 2011). 

In addition to the direct economic benefits report-

ed above, the introduction of GM crops into Ar-

gentinean agriculture has also had, through a set 

of multipliers, a significant economy-wide impact, 

particularly in terms of job creation. During the 

1996-2010 period, 1.8 million jobs were created 

as an indirect effect of the introduction and adop-

tion by farmers of agricultural GM technologies in 

Argentina (Trigo, 2011). For the job creation esti-

mates, each additional dollar in goods generated 

by the adoption of GM materials (valued at border 

price, i.e., FOB prices at Argentine Ports) was sup-

posed to generate another dollar in the services 

sector (transportation, storage, etc), according to 

a procedure based on the actual “cost” of adding 

one job to the economy for each year during the 
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period under analysis in terms of GDP. For this ex-

ercise, a baseline stock was assumed of 10 million 

jobs in 1996 (when GM soybean was released) 

with annual cumulative increases or subtractions 

to account for the evolution of GDP along the dif-

ferent stages of the economic cycle (for details on 

the procedure and the complete estimation, see 

Trigo, 2011). This figure in itself is impressive, con-

sidering the relatively small size of the economy 

of Argentina, which has a workforce estimated at 

17 million in 2010. Its relevance is further empha-

sized when one considers that the period under 

analysis includes the crisis years of 2001-2003, in 

which the fixed peso-dollar exchange rate that 

was pegged at a value of one was abandoned, the 

public debt was 100 billion dollar, the economy 

shrunkened by 10.9% in 2002, and the unemploy-

ment rate skyrocketed to 21.5% (Instituto Nacion-

al de Estadística y Censos; www.indec.mecon.ar).

Figure 5. Soybeans: distribution of the cumulative benefits (1996-2011) attributable to the adaption of GM 

HT technology in Argentina. (Trigo, 2011)

The analytical tool used to estimate the economic impacts of GM events is based on a dynamic Simulation 

Graphical Modeling and Analysis (SIGMA) model, developed by the Instituto Nacional de Tecnología Agro-

pecuaria (INTA). The model replicates situations that occur in the field in countries with a great diversity in 

technological and productive realities not due to agro-ecological differences but mainly to socio-economic 

factors. The key component of the model is the replication of the farmers’ adoption process of innovations 

that introduce changes into the production function, inducing a more efficient use of resources, in turn, 

increasing crop yields, and/or reducing costs, and/or improving the product quality, and/or expanding the 

potentially suitable area for its commercial production. The model may be used for ex-ante and ex-post 

studies. The final result is an estimate of the effects of alternative technology generation and adoption 

scenarios (regional or national) on the total aggregate output. SIGMA calculates the social rather than the 

private benefits, namely how much more (both in volume and value) when compared to the baseline can 

be produced due to the adoption of technologies already available on the market or to be generated in the 

future by the R&D system (for details, see Appendix I; Trigo. 2011).
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Source: Trigo, E. (2011)
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Noneconomic benefits
The expansion of GM crops in Argentina has 

moved along with an impressive acreage increase 

under NTF. This NTF is particularly meaningful 

for its environmental impacts since, on the one 

hand, it has enabled to partially reverse the neg-

ative effects (externalities) of conventional tilling 

and plowing practices on the physical structure 

of Pampean soils (Viglizzo et al., 2010) and, on the 

other hand, to significantly improve the energy 

balance in the agricultural sector (Pincen et al., 

2010).

NTF began to be utilized in Argentina by the end 

of the 1980s, because the cumulative effects of 

both water and wind erosion were already mani-

fest in many of the most fertile areas of the Pam-

pas. Continuous farming based on traditional till-

ing practices and without pasture rotations due 

to their low profitability (Secretaría de Agricultura, 

Ganadería y Pesca y Consejo Federal Agropecuar-

io, 1995) resulted in decreased yields. Therefore, 

the impact on the economic viability of farming, 

together with an enhanced availability of state-

of-the-art no-till sowing equipment, thanks to the 

deregulation and opening of the economy, and 

the reduction in direct costs due to the elimina-

tion of tillage practices, were ideal to launch the 

diffusion of NTF that, in turn, led to an increased 

productivity that made up for a portion of the 

losses incurred until that time. However, it was 

not until the introduction of HT soybean that the 

process gained momentum and NTF consolidat-

ed itself as the predominant soil management 

strategy in farms all across the country (Figure 6). 

The NTF are evolved from approximately 300,000 

hectares in 1990/1991 to nearly 25 million hec-

tares at the present time (for an in-depth discus-

sion on this process, see Trigo et al., 2010). The 

combination of NTF and HT soybean integrates 

two technological concepts: one that consists of 

new mechanical technologies that modify the soil-

crop interaction and one that is based on the use 

of a total herbicide (glyphosate), which is highly 

effective in eliminating a wide array of weeds vir-

tually without residual effect. Glyphosate persists 

in the soil between 12 and 60 days, it carries a low 

polluting risk of underground waters, it is mildly 

toxic on animals, and it does not accumulate in 

animal tissues (Pincen et al., 2010). The combined 

use of mechanical technologies and total herbi-

cides imply an increase in the use of inputs, gen-

Figure 6. Evolution of planted area with NTF and type of herbicide used.

Based on data from the Asociación Argentina de Productores en Siembra Directa (www.aapresid.org.ar) 

and the Cámara de Sanidad Agropecuaria y Fertilizantes (www.casafe.org).

Source: The authors, based on data from AAPRESID (www.aapresid.org.ar) and CASAFE (www.casafe.org).
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erally described as “hard” intensification (Figure 

6), but this intensification is, at the same time, 

environmentally friendly because it has resulted 

in a parallel reduction in the use of other herbi-

cides with high residual effects, such as atrazine. 

Although the benefits of the synergy between HT 

soybean and NTF are difficult to quantify, the po-

tentially positive effects cannot be ignored on soil 

fertility and, thus, on present and future land pro-

ductivity as well as other promising effects, such 

as contribution to the mitigation of the so-called 

“greenhouse effect” (thanks to reduced emission 

levels N02). Regarding the organic matter con-

tent of soils, in NTF systems with crop rotations, 

including wheat, maize, or sorghum, the annual 

soil losses are under 2 ton/hectare, a value much 

lower than the tolerable maximum of 10 ton/hec-

tare and below the levels recorded under other 

soil management practices (Casas, 2006). 

Between 1996 and 2009, the total fuel consump-

tion in soybean farming in Argentina increased by 

201.3 million liters (95.1%), from 211.6 to 412.9 

million liters/year, but the average consumption 

per hectare dropped by 38%, from 35.8 to 22.2 

liters/hectare, implying a decrease in carbon diox-

ide emission of 5.19 million tons when compared 

to what would have been emitted if soybean 

cropping had been based on conventional tillage 

practices (Brookes and Barefoot, 2011). On an 

annual basis, this figure represents a reduction 

of 13.5 million liters of fuel. Similar effects have 

been reported regarding the carbon sequestra-

tion impact, resulting from the use of reduced 

or no-till soil management practices: the total 

cumulative amount of carbon sequestered over 

the 13-year period was estimated at 13.82 million 

tons (Brookes and Barefoot, 2011). Impacts of the 

same nature have been described for maize and 

cotton, but with a lower magnitude, because the 

planted area planted and the time elapsed since 

these technologies had been made available to 

farmers differ significantly from the values record-

ed for soybean.

Sustainability issues associated with the 
soybean expansion
The above mentioned synergies and benefits 

do not necessarily mean that one should ignore 

the potential risks associated with the massive 

transformation of farming systems that appears 

to have been triggered by the introduction of 

GM crops into Argentina during the mid-1990s. 

Particularly important are the extensive losses of 

soil nutrients, as a consequence of the increas-

ing predominance of monoculture (especially in 

the case of soybean) and the relatively low ferti-

lization levels recorded in Argentina. Moreover, 

the potential negative effects of the more frag-

ile ecosystems of the new agricultural frontier in 

the Northeastern and Northwestern sub-humid 

areas that have gradually become suitable for 

growing soybean and, thus, have increased the 

acreage of arable land. The environmental effects 

due to changes in land use patterns are a per-

tinent issue that falls beyond the scope of this 

chapter. It is worth pointing out that, even though 

soybean represents a core component of pres-

ent-day cropping systems without pasture rota-

tions, this process had started long before soy-

bean became predominant in the farming scene 

of Argentina. Most of the areas where soybean 

is grown now had previously been planted with 

other crops. Changes in rainfall patterns that ena-

bled crop cultivation on land where was not pos-

sible before, have been identified as one of the 

probable drivers in this process (Grau y Gasparri, 

2005). Regardless of these facts, which should be 

further analyzed and discussed, sustainable farm-

ing strategies are highly relevant, given the mag-

nitude of the figures involved. The key issue that 

needs to be addressed is the long-term effect of 

the continued “export” of soil nutrients, particu-

larly phosphorus, because replacement is either 

nonexistent or insufficient. Recently, soybean has 

been found to positively respond to phosphorus 

fertilization with an increase of 500 to 730 kg per 

hectare. The cumulative amount of phosphorus 

“exported” between 1996 and 2010 has been 

estimated at more than 14 million tons of triple 

super phosphate and the restocking cost for this 

particular nutrient for the entire 15-year period 
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under study at US$ 7.95 billion (Trigo, 2011). This 

obviously large figure accounts only for 8.41% 

of the total cumulative benefits accrued for the 

1996-2010 period.

Contributions to global food security
Argentina is one of the main players in the inter-

national soybean market – it is the third largest 

producer, exporting almost 100% of its produc-

tion; thus, in addition to the impact on the coun-

try’s own economy, positive effects can also be 

identified at the global level through contribu-

tions to the enhancement of food security. The 

implementation of the new technologies by Ar-

gentinean farmers has been evaluated to result in 

an increase in global supply of 216.1 million tons 

over a 15-year period, which would account for 

22.53% of the world’s cumulative increase in soy-

bean production for the same period (Trigo and 

Cap, 2006; Trigo, 2011). In turn, it leads to inter-

national market price levels that were significantly 

lower than those that would have prevailed with-

out them (Trigo and Cap, 2006; Trigo, 2011). The 

estimation was based on the supply price flexibili-

ty of soybean that measures the response of pric-

es to changes in output with 0.80, using as a start-

ing point for the supply price elasticity of soybean 

in the USA, the world’s biggest producer, implying 

(given that certain assumptions hold) a price flex-

ibility value of 1.25 (for a more complete discus-

sion of the methodology and calculation process, 

see Trigo and Cap, 2006). In these terms, the total 

benefits to world consumers – had Argentina not 

adopted the new technologies and had its farming 

patterns remained unchanged – represent sav-

ings in consumer expenditures of US$ 89.0 billion 

for the 1996-2010 period. Whether these savings 

have effectively been passed to the consumers 

or have been captured totally or partially as rent 

by the other links in the value chain remain to be 

seen. Notwithstanding, GM technologies have a 

considerable potential with implications concern-

ing issues of welfare economics.

Conclusion
The parallel story of GM crops and NTF soil man-

agement technologies in Argentina has been, un-

doubtedly, one of success, but it also highlights a 

set of issues that should be addressed. The eco-

nomic benefits obtained by the farmers, either 

directly or indirectly, by many other players in 

multiple value chains, and by the federal govern-

ment (generating funding for a potential increase 

in the supply of public goods) have crossed over 

the geographical boundaries to overflow onto 

world consumers. This complex web of impacts 

has resulted from the adoption of these tech-

nologies by the Argentinean farmers, but it also 

identifies some of the necessary conditions that 

should be met by a country to be able to bene-

fit from their availability, which may have little to 

do with its own R&D capacities. A key feature in 

this story is the fact that Argentina has adopted 

very early on the available innovations. This be-

havior was possible because the institutions were 

already in place that allowed almost immediately 

diffusion and transfer of these technologies to 

the farmers. By the early 1990s, both the biosafe-

ty regulations and the infrastructure required to 

assess effectively the GM technologies existed;  

furthermore, a very proactive and efficient seed 

industry enabled the rapid introduction of the 

new traits into commercial varieties that were al-

ready well adapted to the multiple agro-ecological 

conditions in the different growing areas and con-

tributed to their rapid diffusion. Had these par-

ticular features not have been present, this story 

would, most likely, have been less successful. The 

bottom line of this case leads us to conclude that, 

at least at the present state of GM technologies, 

biosafety institutions and a well-functioning seed 

market in place seem to be more important than 

a well-endowed local R&D apparatus to generate 

innovations. As GM technologies seem to “travel 

well”, it is essential for any country to have the 

right tools in place at the time of their availability 

to extract the maximum benefits.

Another relevant issue deals with the noneco-

nomic implications of the introduction of these 

technologies. The synergies between GM tech-
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nologies and no-till practices have contributed to 

generate a “win-win” outcome, combining increas-

es in productivity and output with positive micro- 

and macro-environmental impacts. Nevertheless, 

there is still need to recognize that alongside this 

virtuous cycle, there are other not so clear-cut is-

sues merit a closer look, given the magnitude of 

the changes described. The dramatic expansion 

of the area planted with soybean and the increase 

in output of grains and oilseeds as a whole have 

brought about important benefits, but have also 

induced a shift in land allocation that raises ques-

tions about the long-term sustainability of the 

current farming system, due to the detrimental 

effects on soil nutrient levels and the potentially 

negative impact on fragile ecosystems. Although 

these concerns are legitimate, they do not detract 

from the clearly positive net balance of the first 15 

years of GM crops in Argentina. However, they do 

highlight the need for appropriate policy respons-

es aimed at optimizing the management of this 

particular kind of innovations. GM technologies 

are groundbreaking events and for a successful 

implementation at the farm level they require ad-

equate biosafety and IPR frameworks for a suc-

cessful implementation at the farm level.
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Abstract
The use of genetically modified (GM) crops has 

exploded over the last decade worldwide. In 

2012, developing countries increased their share 

of the global cultivation of biotechnology crops to 

more than 50% of the total, a trend expected to 

persist in the future. In Latin America, farmers in 

11 countries planted more than 70 million hec-

tares of GM crops in 2014. The technology has 

been embraced wholeheartedly by the largest 

and wealthiest countries, such as Brazil and Ar-

gentina, but the adoption rates and policy ap-

proaches to GM crops within the less-developed 

Central American countries differ and can provide 

a window into the future of the GM Revolution. 

Whereas Costa Rica has embraced various pro-

jects, Nicaragua and Honduras, the two countries 

with the largest land areas in Central America are 

on opposite ends of the spectrum when it comes 

to growing GM crops. Furthermore, anti-GM 

groups have expended great energy to ban bio-

technology crop production in the Central Amer-

ican region. Here, we give an overview of the GM 

experiences in Costa Rica, Honduras, and Nicara-

gua and propose recommendations for improv-

ing public and private Research and Development 

(R&D) to enhance the contribution of GM technol-

ogy to support sustainable agriculture in the re-

gion. In addition, we discuss the challenges that 

hamper the abilities to create food security while 

protecting the environment. We also stress the 

need for scientists to create awareness among 

the public about the scientific facts regarding GM 

organisms.

 

Introduction
Over the course of thousands of years, agricul-

tural practices have developed a broad spectrum 

of food options. Scientific advances in molecu-

lar biology and, more recently, the application 

of modern biotechnology into agriculture, have 

steadily improved plant yield and product quali-

ty. This result has been accomplished by means 

of both traditional plant breeding and so-called 

genetically modified (GM) technology. Unlike tra-

ditional plant breeding methods, in which hun-

dreds of unknown genes are often transferred 

from one plant to another, GM technology allows 

the precise and efficient transfer of known genes 

that confer resistance to pests, diseases, herbi-

cides, and environmental stress to an otherwise 

unprotected host. It offers opportunities for im-

proving the overall nutritional characteristics of 

food by controlling quality traits, such as superior 

post-harvest storage and nutritional content (Nap 

et al., 2003). Yet, surprisingly, anti-GM groups insist 

that the precision of GM technology is inherently 

more dangerous than the wholesale transfer of 
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1 Universidad Centroamericana, Molecular Biology Center, Managua, Nicaragua
2 New England Biolabs, Ipswich, MA 01938, USA



66

unknown genes between hosts. Modern biotech-

nology now plays a crucial role in food production 

and it is progressively considered a key instru-

ment for increasing and improving sustainable 

agricultural production, decreasing poverty and 

hunger, and boosting food security. GM technolo-

gy is desperately needed in the developing world, 

but much less so in developed countries where 

hunger is less of a problem.

Since the first commercial release of a GM crop in 

1996, more and more farmers have adopted the 

technology annually. GM crops are planted in 28 

countries, covering 181.5 million hectares world-

wide. Twenty years later, developing countries 

grow more hectares of GM crops than developed 

countries (James, 2014) and the GM crop fraction 

is projected to increase dramatically, especially 

in developing countries (Wieczorek and Wright, 

2012). Argentina and Brazil are among the world’s 

largest developing countries producing GM 

crops. As of 2014, eleven countries in Latin Ameri-

ca have approved GM crops for various purposes, 

namely Argentina, Brazil, Bolivia, Chile, Colombia, 

Costa Rica, Cuba, Honduras, Mexico, Paraguay,  

and Uruguay.

Below we describe the GM situation in Central 

America, focusing on the regulatory rules and 

policies implemented in Honduras, Costa Rica, 

and Nicaragua and propose recommendations 

for improving public and private Research and 

Development (R&D) to increase the contribution 

of GM technology toward improving sustainable 

agriculture in the region.

The situation in Central America

Nicaragua
There is no commercial production of GM crops 

in Nicaragua. However, for a number of years 

Nicaragua has authorized the import of GM soy-

bean (Glycine max) meal and GM corn (Zea mays) 

for animal feed. According to a United States De-

partment of Agriculture (USDA) report from the 

Global Agricultural Information Network (GAIN), 

in 2014, Nicaragua imported over 154,500 met-

ric tons (MT) of GM yellow corn from the United 

States with a total value of US$ 40.7 million and 

the GM soybean meal imports in the same year 

reached over 80,000 MT with a total value of US$ 

39.6 million (http://gain.fas.usda.gov/Recent GAIN 

Publications/Agricultural Biotechnology Annual_Ma-

nagua_Nicaragua_7-14-2015.pdf). There are no 

known reports on Nicaraguan imports of other 

biotechnology or “biotech” crops from the US or 

other countries.

The import of GM grains was first approved of-

ficially in 2005. The Ministry of Agriculture and 

Forestry (MAGFOR) issued a ministerial resolution 

(no. 034-2005, now expired) in response to a re-

quest from grain importers. The resolution was 

granted with the specific objective of allowing the 

import of 15 GM corn events for animal feed, re-

newable on a yearly basis.

From 2005 on, the Nicaraguan government 

started requiring notification of imports of GM 

organisms to comply with the provisions of the 

Cartagena Protocol on Biosafety (Secretariat of 

the Convention of Biological Diversity, 2000), of 

which Nicaragua is a signatory. Among the new 

requirements, companies interested in importing 

biotech crops are obliged to apply and file a risk 

analysis of a GM event prior to its import. In 2010, 

the Nicaraguan Parliament approved Law 705 

on “The Prevention of Risks from Living Modified 

Organisms through Molecular Biotechnology”. Its 

application, however, has been restricted due to a 

lack of procedural norms necessary for its imple-

mentation. Indeed, although the Nicaraguan Gov-

ernment approved the import of GM corn in 2005 

through the ministerial resolution 034-2005, the 

legal framework for Law 705 for the regulation of 

GM plants and animals has yet to be completed.

Law 705 introduces a wide-ranging, science-based 

platform for regulating the use of living GM organ-

isms in a broad spectrum of instances, including 

confined use, research, release into the environ-

ment, commercialization, propagation and evalu-

ation of field production, transportation, transit, 

import, and export, that are all destined for hu-
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man consumption or for processing and animal 

feed. This law not only controls the usage of GM 

crops for all agricultural purposes, but also for 

bio-medication, conservation, preservation, and 

other uses linked to biological diversity.

In keeping with Law 705, the National Commit-

tee on GMO Risk Analysis (CONARGEN) was cre-

ated to regulate entry of GM crops and to de-

termine their possible presence in the country.  

CONARGEN includes officials from MAGFOR, spe-

cifically the Chief Director of the General Direction 

for Animal and Plant Health Protection (DGPSA) 

and from the Ministry of the Environment and 

Natural Resources (MARENA). In 2014, DGP-

SA was renamed as the Institute of Agricultural 

Health and Protection (IPSA).  The presidency of 

CONARGEN alternates each year between these 

two government agencies. Other members are 

representatives from the Nicaraguan Institute 

for Agricultural Technology (INTA), the Ministry 

of Health (MINSA), various universities, such as 

the National Agrarian University (UNA) and the 

University of Central America (UCA). There is one 

representative from the private sector and one 

from the environmental nongovernmental organ-

izations.

Costa Rica
Since 1992, Costa Rica has been cultivating bio-

tech crops for seed production, specifically cot-

ton (Gossypium hirsutum) and soybean with all 

seeds destined for export, although there are 

currently no central government restrictions on 

planting GM crops for domestic seed production. 

The acreage for biotech crops peaked in 2009 at 

1,697 ha, including approximately 1,500 ha of soy-

bean alone. However, it is estimated that in 2015 

only 300 ha were planted with GM crops (USDA 

GAIN report; http://gain.fas.usda.gov/Recent GAIN 

Publications/Agricultural Biotechnology Annual_San 

Jose_Costa Rica_7-15-2015.pdf), of which a large 

majority was planted with GM cotton destined for 

propagation of planting seeds and export to the 

United States. Costa Rica produces GM cotton 

and soybean seed entirely for export and not for 

local consumption.

Overall, in Costa Rica the procedures for obtaining 

authorization from the government to plant GM 

varieties are uncomplicated and do not obstruct 

production. Projects and events are approved 

on a case by case basis without specific legisla-

tion for biotech products for food consumption, 

animal feed, or food processing. Costa Rica runs 

projects to bring to market the red-fleshed GM 

“Rosé” pineapple (Ananas comosus) of Del Monte 

(patent pending).

Imports of GM grains and soybeans for animal 

feed production are evaluated with the same 

procedures used for the importation of any other 

agricultural product and follow the technical re-

quirements established by the Cartagena Proto-

col on Biosafety, a supplementary agreement to 

the United Nations Convention on Biological Di-

versity of 1993 (Mackenzie et al., 2003).

However, in 1990, Costa Rica established the 

National Technical Biosafety Commission (NTBC) 

under the leadership of the Ministry of Agricul-

ture. Under the law, the NTBC has the power to 

regulate import and cultivation of biotech crops, 

including export, research, testing, movement, 

propagation, industrial production, marketing, 

and use of transgenic and other GM organisms 

for agricultural use (Animal and Plant Health 

Protection Law 7664 of April 1997). Neverthe-

less, new legislation is under consideration that 

may pose a threat to future developments in  

biotech agriculture.

Honduras
Since 1998, Honduras has planted GM maize. Al-

though the country produces only a minor frac-

tion of the global biotech crop yield (0.001%), its 

positive GM experience illustrates the potential 

value of GM technologies for developing coun-

tries, in general, and for Central America, in par-

ticular. Honduras was the first country in Central 

America and one of only five countries in Latin 

America to allow field trials and commercial pro-

duction of GM crops (USDA GAIN report; http://

gain.fas.usda.gov/Recent GAIN Publications/Agri-

cultural Biotechnology Annual_Tegucigalpa_Hon-
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duras_7-8-2015.pdf). In 2014, Honduras planted 

34,000 ha for the commercial production of GM 

corn, including several field trials of new GM va-

rieties. GM corn is commercialized within the 

domestic market and exported to various coun-

tries, including the US, Colombia, and Argentina. 

Honduras also imports GM soybeans and corn to 

supply poultry, livestock, and fishery enterprises.

Honduras has a science-based agricultural bio-

technology regulatory system that is increasingly 

used as a good example for biotechnology policy 

and regulations by other countries in the region. 

The current administrative policy is empowered 

by the Phytozoosanitary Law of the Ministry of 

Agriculture and Livestock (SAG), modified as part 

of the Central American-Dominican Republic Free 

Trade Agreement (CAFTA-DR), and regulated 

by the Biosecurity Regulation with Emphasis in 

Transgenic Plants. Additionally, Honduras ratified 

the Cartagena Protocol in 2008 and has estab-

lished specific regulations concerning the intel-

lectual property protection of plant varieties as  

of 2012.

The National Service of Plant and Animal Health 

(SENASA) within SAG is responsible for designing 

the regulatory framework for agricultural biotech-

nology. SENASA relies on advice from the Nation-

al Committee of Biotechnology and Biosecurity 

whose members are experts from the public and 

private sectors.

Biotechnology can be used as a 
developmental tool in Central America
In less developed countries, such as those in Cen-

tral America, the success of agricultural biotech-

nology will depend on sufficient institutional sup-

port to foster private sector investments and on 

stimulation of public efforts, mainly at universities, 

to assess and adapt the technology to the specific 

regional needs.

In 1998, the Honduran government introduced 

a concerted strategy to promote agricultural  

biotechnology, facilitating commercial production 

and field testing. The high adoption rate of GM 

crops in Honduras may be interpreted as a re-

flection of farmer satisfaction and benefit for the 

whole production chain. Data from a study com-

paring non-GM corn (traditional or hybrid) with 

closely-related GM corn revealed a significant 

increase in yield for the GM corn. The maximum 

yield per hectare was 2.7 MT for traditional corn, 

3.6 MT for hybrid corn, and 8.0 MT for GM corn.

Corn is an important food staple in Central Amer-

ica and is cultivated for local trade within each 

country. For a large majority of farmers, howev-

er, it is intended for household consumption. The 

average yield of approximately 2 MT per hectare 

in Central America is one of the lowest in Latin 

America. This low yield has various causes, includ-

ing poor soil fertility and insect damage. There-

fore, insect-resistant GM corn would present an 

alternative to chemical controls, especially bene-

fiting small farm holders.

Costa Rica is the only Central-American country 

that has engaged in the development of locally 

designed GM crops, carrying out laboratory and 

glasshouse-based research for this purpose. Cur-

rently, Costa Rican scientists are involved in re-

search aimed at the development of GM rice re-

sistant to virus and herbicides, banana (Musa sp.) 

resistant to black Sigatoka, and pineapple with in-

creased antioxidant content. It has been reported 

that field testing of biotech pineapples, bananas 

and rice are at the confined-field trial phase.

This progress in agricultural research, which may 

be explained by governmental commitment to 

education, science, and innovation, however, 

conflicts with the slow adoption of commercially 

cultivated GM crops when compared to Hondu-

ras. Although Costa Rica appears at the forefront 

of domestic GM product development in Central 

America, the farmers seem to benefit the most  

in Honduras.

In the late 1990s, Nicaragua took the lead in ef-

forts to develop biotechnology. Since 2000, the 

UCA at Managua  has been organizing and hosting 

international biotechnology conferences in the 
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region with world-renowned scientists, informa-

tive presentations, and networking opportunities 

for the scientific, nonscientific, and student com-

munities as well as coordinating field trips to local 

sites of scientific interest. The keynote speaker 

of the 2008 Conference was Professor Marc Van 

Montagu (Ghent University, Belgium), who, to-

gether with Jeff Schell, discovered a natural vector 

for plant transformation and created a procedure 

to produce transgenic plants. The Molecular Biol-

ogy Center at the UCA collaborates with Profes-

sor Van Montagu, now at the International Plant 

Biotechnology Outreach (IPBO) (Ghent, Belgium), 

to enhance human capacities, training, and edu-

cation in plant molecular biology and biosafety in 

Central America.

Similarly, and more recently, Honduras has 

also been promoting agricultural biotechnol-

ogy through a series of seminars focused on 

scientific studies regarding the use of biotech-

nology. In 2012, Honduras hosted a regional 

biotech outreach program focusing on food se-

curity, biosafety, and agricultural development. 

This event, attended by officials and scientists 

from all Central-American countries, was aimed 

at strengthening the development and safe use 

of agricultural biotechnology as a strategic plat-

form for increasing productivity and competitive-

ness in agriculture. One of the key commitments 

from this meeting was to develop a common 

vision between agricultural and environmental 

policies in the region. A number of regional and 

international institutions collaborate in these ef-

forts, including the Public Research and Regula-

tion Initiative (PRRI), the International Food Pol-

icy Research Institute (IFPRI), the Service for the 

Acquisition of Agri-biotech Applications (ISAAA) 

and the Inter-American Institute for Cooperation  

in Agriculture (IICA).

Improving public and private R&D 
to boost sustainable agriculture  
in the region
A framework for improving public and private R&D 

(capacity building) in Central America would greatly 

enhance sustainable agriculture and food security 

in the region. Biotechnology is a sine qua non of the 

modern knowledge society. Developing countries 

create capacities in biotechnology as part of their 

growth strategies. In Central America, a sizable 

share of research and innovation is conducted with-

in public institutions. Strengthening the scientific 

and technical capacities of universities and institutes 

will enable them to play a more important role in 

GM research relevant to the needs of the countries 

and to assimilate new technologies that otherwise 

offer limited incentives for the international private 

sector. Public institutions are in an advantageous 

position, because they are often closely linked to 

end-users of agricultural technology products, such 

as farmers and local rural government agencies. 

Furthermore, by facilitating the participation of pub-

licly funded research institutions in the GM crop 

development process, the developing countries will 

probably reap the benefits of agricultural biotech-

nology rapidly and efficiently and with a more sus-

tainable development approach.

Foreign donors and lending institutions (such 

as the World Bank and the Inter-American De-

velopment Bank) could provide support for the 

development of GM varieties and traits in Cen-

tral America via public-private partnerships to 

address strategic development needs, including 

those of resource-poor farmers. At the same 

time, the governments of the developing na-

tions should also contribute their own funds to 

reduce the dependence on industrialized coun-

tries and to retain decision-making control re-

garding fundamental agricultural research and  

development priorities.

Biotechnology R&D is an expensive enterprise. 

Placing a new GM product on the market can 

cost in the range of US$ 1.5-4.5 million and even 

up to US$ 15 million (Traxler, 2001). This large 

financial investment represents a major limita-

tion for less developed countries. Therefore, it 

might be advisable to establish international co-

operations with large corporations as a regional 

block to profit from this technology. This strategy 

could create the foundation of a continuous local  

biotech development.
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Most developing countries have limited or no re-

search experience with GM organisms and agri-

cultural research in general is mostly inadequate. 

One way around this dilemma would be to identi-

fy and employ existing new technologies with the 

intention of developing local capacity to innovate 

new products. Honduras and Argentina have 

been doing this successfully. In the case of Argen-

tina, genes generated in the US were introduced 

into the local germplasm base for both soybeans 

and corn (Burachik and Traynor, 2001).

Stimulating biotechnology R&D in the develop-

ing world is an arduous task. Countries must 

balance, among others, between a complex set 

of economic, social, and political goals with in-

sufficient resources and a host of environmen-

tal and scientific needs. Relevant priorities in 

terms of policy can be identified through tech-

nology assessment that contemplates different 

biotechnology options, while establishing core 

economic and social goals. The channeling of 

biotechnological development toward sustain-

able growth and food security must take into 

account the wider environment available to facil-

itate the technology, as well as the possible im-

pacts of specific GM crops on rural livelihoods. 

Moreover, for biotechnology to succeed in  

enhancing food security in Central America, 

governments may want to establish guidelines 

requiring that new GM varieties introduced 

into the country demonstrate direct benefits 

for rural development, such as enhanced crop 

yields; along with research on agronomic and 

soil conditions in the areas where new GM crops  

are planned.

Ideally, developing countries would design a com-

prehensive plan to support not only the regula-

tory framework and implementation, but also 

the development of biosafety and biotech policy. 

National Academies of Sciences have been shown 

to play an important role by facilitating debates 

and building consensus among various stake-

holders, because they are trusted institutions 

that address contentious GM issues (Aerni and  

Bernauer, 2006).

In Central America, the development of agricul-

tural biotechnology and specifically of GM crops 

must be carried out via a sustainable approach to 

agriculture that faces the specific challenges and 

opportunities brought about by these modern 

technologies. The appropriate methodology would 

be strengthened by considering economic bene-

fits within a broader framework of sustainability. 

Indeed, agricultural biotechnology has remarka-

ble potential to lower the environmental impact of 

farming through limitation of chemical treatments 

on farms, stimulation of no-tillage farming prac- 

tices, reduction of soil erosion, and efficient inten-

sification by producing more food on less land.

Appropriate policies should be established 

through good governance, ensuring that they 

act as a tool for sustainable development to con-

serve the environment for future generations. 

For instance, governments could provide funding 

for public universities to support public-interest 

research on crops considered crucial for society 

(Huffman et al., 2006) and they could endorse in-

stitutional mechanisms to facilitate access to in-

formation and critical knowledge, while address-

ing intellectual property protection (Graff and 

Zilberman, 2001; Atkinson et al., 2003).

Agricultural biotechnology could also be used to 

improve additional crops beyond the traditional 

herbicide- and insect-resistant GM traits, includ-

ing plants with reduced water requirements, 

plants that fix nitrogen, and plants that reduce 

fertilizer-caused pollution. Crops could also be 

tailored to assess global food insecurity by the 

incorporation of enhanced nutritional qualities 

or resilience to a changing climate (National Re-

search Council, 2010).

Anti-GM activism may obstruct 
development in small countries
Despite the positive legal framework in Costa Rica, 

some anti-GM actions could prevent the potential 

development of the agricultural biotech sector. En-

vironmental activist groups have been implement-

ing a decade-long campaign against the cultivation 

and commercialization of GM crops and they have 
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recently called for legal banning of the import of 

transgenic grains and for establishing a labeling 

system for transgenic foods. In Honduras, con-

sumer groups have also been influenced by wide-

spread negative information. This same anti-GM 

activism has been quite pronounced in Nicaragua 

to the point that government is now very cautious 

about promoting agricultural biotechnology. For 

the same reason, the government has not imple-

mented the official regulations for GM approvals. 

As Nicaragua has a reasonable biotech law and 

strong intellectual property right protections, stim-

ulation of private sector investments in modern 

technologies seems plausible. However, hesitation 

and ambiguity on the part of the government may 

deter large investments in GM crop production 

and discourage biotech companies from introduc-

ing new GM crops into Central America.

The use of biotechnology and, specifically, the ge-

netic modification of plants to increase yield, to 

protect against pest invasions, and to confront is-

sues resulting from climate change is not without 

conflict. As with many other scientific innovations 

when they had first been introduced, GM prod-

ucts for animal and human consumption have 

met varying degrees of acceptance, suspicion, 

skepticism, and, frequently, outright rejection. 

There are many reasons why this spectrum of re-

sponses has been and remains in many commu-

nities in Central America.

The desire to prevent international mega-cor-

porations from controlling local seed produc-

tion and supply is, of course, paramount in the 

minds of many members of the anti-transgenic 

movement led by local and international nongov-

ernmental organizations. The regulation, or lack 

thereof, of local seed supplies is directly related to 

power and ownership issues, even of sovereignty, 

and self-determination in developing nations and 

their communities of small, independent farmers 

(Pearson, 2012). Unfair seed production agree-

ments in favor of large multinational corporations 

and tactics by these corporations, seen as “bully-

ing”, may have a detrimental effect on small farm-

ers. The struggles of the small seed producers are 

shared within the community and beyond, creat-

ing doubt and fear among an increasing number 

of farmers and their supporting organizations.

Fear, ignorance of the science behind GM food 

production, and negative reputation of foreign 

multinationals, coupled with genuine concerns for 

safety, are all used by large and small actors in the 

movement against GM import, production, and 

consumption in Central America and elsewhere. 

Many American and European anti-GM organiza-

tions actively support local initiatives in the region.

Concluding remarks
Agricultural biotechnology is a key technological 

platform to foster sustainable economies in devel-

oping countries and to enhance food security in 

the fight against global hunger. Some new varieties 

may also be developed to increase the resilience 

to climate change. In addressing all of these chal-

lenges, less-developed countries, such as those of 

Central America, need to make use of all available 

tools. In particular, it would be foolish to exclude 

GM methods because of specious political argu-

ments that have been promulgated in Europe. 

Such arguments against GM crops have no direct 

consequences in Europe because increase of its 

food production is not required. In contrast, the 

developing countries need GM crops desperately 

if they are to feed their expanding populations.

Governments should adopt appropriate pro-ag-

ricultural biotechnology policies and laws based 

on sound science and should promote a rigorous 

public relations campaign to improve the accep- 

tance of GM technology. Speaking from their own 

experience, science academies and universities 

could provide independent advice to policy-mak-

ers and the public. As the Central-American re-

gion is still in the early stages of biotechnology 

diffusion, capacity building should be strength-

ened, specifically in the area of applied research. 

New crops should be judged by their contribution 

to the needs of the Central-American countries, 

particularly those related to food requirements 

of low-income populations, and not be arbitrarily 

banned because of the production method.
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Abstract
South Africans have been growing genetical-

ly modified (GM) crops since 1999 and the area 

under cultivation has steadily increased since. 

Insect-resistant cotton (Gossypium hirsutum) was 

introduced in 1997 as the first GM crop grown by 

both commercial and smallholder farmers. In re-

cent years cotton plantings, whether GM or not, 

have decreased for economic reasons. In 2013, 

some 96% of commercial maize (Zea mays) cul-

tivation was GM carrying either Bacillus thuring-

iensis-mediated insect resistance, herbicide re-

sistance, or both. This included white maize for 

human consumption and yellow maize for animal 

feed. The crops are grown by both commercial 

and smallholder farmers. Herbicide-resistant 

GM soybean (Glycine max) is also cultivated. The 

adoption of GM insect-resistant maize has re-

sulted in increased yields and reduced pesticide 

use with associated environmental and economic 

benefits. There is also anecdotal evidence of re-

duced mycotoxin contamination in food products 

from GM insect- resistant maize. Aflatoxins have 

been implicated in oesophageal cancer, a disease 

widespread in parts of Africa where homebrewed 

maize beer is widely consumed. Recommenda-

tions for future cultivation of GM crops include 

improving access to seed by smallholder farm-

ers, provision of extension services, implementa-

tion of appropriate integrated pest management 

practices, and implementation of selective labe-

ling. New GM crops in the pipeline need to be ex-

pedited to allow field trials to occur.

 

Introduction
The area planted to genetically modified (GM) 

crops in South Africa has steadily increased since 

they were first introduced in 1997. Currently, the 

maize (Zea mays) crop covers some 2.5 million 

hectares, of which 2.14 are GM (86% adoption). 

Soybeans (Glycine max) are grown on 600,000 

hectares, of which 552,000 are GM (92% adop-

tion), whereas cotton (Gossypium hirsutum) is 

a small crop cultivated on 8,000 hectares, all of 

which is GM (James, 2014).

The Genetically Modified Organisms Act was 

promulgated in May 1997, but could not be im-

plemented until the Regulations were approved. 

As approval only happened in November 1999, 

during the intervening period, applications for 

trial or commercial releases were handled by the 

South African Committee for Genetic Experimen-

tation (SAGENE).

To give an idea of the number of applications 

SAGENE handled during 1997 alone, of a total of 

27, 13 were introduced for maize, four for cotton, 

two for soybeans, one each for canola (Brassica 

napus), strawberry (Fragaria × ananassa), euca-

lyptus (Eucalyptus obliqua), and apple (Malus do-

mestica), and four for microorganisms (Thomson, 

Genetically Modified Crops  
in South Africa
Jennifer Ann Thomson

Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, 

South Africa



74

2013a). The GMO events approved for commer-

cial release in South Africa from 1997 until 2014 

are listed in Table 1.

The adoption of currently approved traits is 

seemingly reaching saturation because not all 

plantings require Bacillus thurigiensis (Bt) insect re-

sistance. Indeed, in many cases cost savings can 

be achieved by applying fungicide and insecticide 

simultaneously through overhead irrigation when 

needed. In addition, some regions are not sub-

ject to severe stalk borer pressure (James, 2014). 

However, new traits in the pipeline, such as fungal 

resistance and drought tolerance, may serve to 

further enhance adoption levels.

Cotton production has declined in recent years 

due to movement away from risky dryland re-

gions to regions under irrigation, where it has to 

compete with maize or soybeans. Additionally, 

there have been problems with cotton gin clo-

sures. Therefore, only approximately 9,000 hec-

tares were planted with GM cotton in 2014 com-

pared with 11,000 hectares in 2012, of which 95% 

contained the stacked Bt and herbicide resistance 

genes, whereas the remaining 5% was herbicide 

resistant used as refugia (James, 2014).

In addition to GM crops grown for commercial re-

leases, permits were also issued for commodity 

clearance of imported GM crops. The approved 

commodities from 2012 to 2014 are listed in Ta-

ble 2, showing that food producers in South Afri-

ca use imported GM crops as well as those pro-

duced locally.

There are a number of reasons why South Africa 

led the way among countries in Africa in introduc-

ing GM crops. One was the existence of SAGENE, 

the body which, prior to the introduction of the 

Event Crop Trait Company Year approved

TC1507xMON810 xNK603 Maize Insect resistance Pioneer 2014

Herbicide tolerant

TC1507xMON810 Maize Insect resistance Pioneer 2014

Herbicide tolerant

TC1507 Maize insect resistance Pioneer 2012

Herbicide tolerant

BT11xGA21 Maize Insect resistance Syngenta 2010

Herbicide tolerant

GA21 Maize Herbicide tolerant Syngenta 2010 

MON89034xNK603 Maize Insect resistance Monsanto 2010

Herbicide tolerant

MON89034 Maize Insect resistance Monsanto 2010 

Bollgard IIxRR flex (MON15985x MON88913) Cotton Insect resistant Monsanto 2007

Herbicide tolerant

MON88913 (RR flex) Cotton Herbicide tolerant Monsanto 2007 

MON810xNK603 Maize Insect resistant Monsanto 2007

Maize Herbicide tolerant

Bolgard RR Cotton Insect resistant Monsanto 2005

Cotton Herbicide tolerant

Bollgard II, line 15985 Cotton Insect resistant Monsanto 2003

Bt11 Maize Insect resistant Syngenta 2003

NK603 Maize Herbicide tolerant Monsanto 2002

GTS40-3-2 Soybean Herbicide tolerant Monsanto 2001

RR lines 1445 & 1698 Cotton Herbicide tolerant Monsanto 2000

Line 531/Bollgard Cotton Insect resistant Monsanto 1997

MON810/Yieldgard Maize Insect resistant Monsanto 1997

Table 1. GMO general release approvals under the GMO Act

Source: www.daff.gov.za/doc/GeneralReleaseApprovals.pdf
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GMO Act, facilitated early on farm trials and sub-

sequent commercial releases. Furthermore, an 

organization, AfricaBio aided information dissem-

ination about GM crops and held regular farmers’ 

meetings to help spread farmer-to-farmer expe-

riences. Finally, the fact that South Africa is home 

to many highly sophisticated commercial farmers 

facilitated GM crop adoption (Thomson, 2013b).

Hereafter, the various GM crops will be discussed 

based on their traits. As most of these crops are 

grown by commercial and smallholder farmers 

(less than 2 hectares), the experiences of both 

types will be covered.

Insect resistance

Bt cotton
Bt cotton has been grown commercially in South 

Africa since 1999. An analysis of the benefits of 

adoption by both small- and large-scale farm-

ers (Gouse et al., 2004) revealed that the yield 

increase was 18.5% for large-scale farmers who 

irrigated, 13.8%, for large-scale farmers under 

rainfed agriculture, and 45.8% for small-scale 

farmers. Besides the yield benefits, the adoption 

of Bt cotton also caused a decrease in the volume 

of insecticides sprayed, with associated cost and 

health benefits. As small-scale farmers do most 

of their spraying by hand, this reduction usually 

meant more time for weeding and other farm 

management activities.

According to Gouse et al. (2004), “a high percent-

age of large-scale farmers have indicated that 

peace of mind about bollworms is a very impor-

tant benefit of Bt cotton.” This confidence gave 

farmers managerial freedom to devote time to 

other crops or general farming activities. These 

farmers also noticed increased populations of 

beneficial insects, such as ladybirds and lace-

wings, in Bt cotton fields, indicating a possible 

environmental advantage due to reduced insec-

ticide applications.

The area in South Africa where most of the Bt 

cotton is grown by small-scale farmers is the 

Makhathini Flats of KwaZulu-Natal. This region is 

rich in indigenous plants and weeds that act as 

natural host plants for all the bollworm species. 

Therefore, they act as alternative refuges for the 

moths and have helped to prevent the build-up of 

Bt-resistant insects (Green et al., 2003), in contrast 

to Bt maize.

In recent years, plantings of cotton, whether Bt or 

not, have decreased partly due to the world-wide 

drop in cotton prices. The yields of 12 to 15 tons per 

ha of dryland cotton that is produced predominant-

ly by small-scale farmers are not competitive. How-

Event Crop Trait Company Year approved

BT11x59122xMIR604xTC1507xGA21 Maize Insect resistant
Herbicide tolerant

Syngenta 2014

BT11xMIR604xTC1507x5307xGA21 Maize Insect resistant
Herbicide tolerant

Syngenta 2014

BT111xMIR162xMIR604xTC1507x5307 Maize Insect resistant
Herbicide tolerant

Syngenta 2014

MIR162 Maze Insect resistant Syngenta 2014

MON89034xMON88017 Maize Insect resistant
Insect resistant

Monsanto 2014

MON87701xMON89788 Soybean Herbicide tolerant
Insect resistant

Monsanto 2013

MON89788 Soybean Herbicide tolerant Monsanto 2013

DAS-44406-6 Soybean Herbicide tolerant Dow AgroSciences 2013

DAS-40278-9 Maize Herbicide tolerant Dow AgroSciences 2012

CV127 Soybean Herbicide tolerant BASF 2012

MON89034xTC1507xNK603 Maize Insect resistant Dow AgroSciences/
Monsanto

2012

Table 2. GMO commodity clearance approvals under the GMO Act

Source: www.daff.gov.za/doc/CommodityClearanceApprovals.pdf
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ever, all the cotton planted in 2014 was expected 

to be GM, mostly carrying the Bt gene together with 

herbicide resistance (James, 2014). The decrease 

in Bt cotton cultivation by small-scale farmers, such 

as those in the Makhathini Flats area, is due to the 

above economic reasons and not to a failure of  

the technology.

Bt maize
Maize, although technically a grain, is used in 

cooking as a vegetable or starch. In many African 

countries it is the staple food that people can 

eat three times a day. White maize is consumed 

by humans, yellow maize is fed to livestock and 

poultry. South Africa is the only African country 

growing commercial GM maize that is mostly con-

sumed locally by commercial farmers producing 

approximately 96% of the crop.

GM maize was introduced in 1997, but only be-

came commercially adopted on a major scale in 

2000. Since then, GM maize plantings have in-

creased dramatically. Maize can be severely dam-

aged by the larvae of the maize stalk borer, Bus-

seola fusca, and, as with cotton, genes coding for 

Bt toxin varieties can be introduced into this crop 

to protect it. In a 2009 study of 80 farmers plant-

ing Bt maize, it was found that the two greatest 

advantages associated with these plantings were 

convenient management (88%) and increased 

productivity (42.5%), whereas 42.5% indicated 

that they perceived Bt technology to be environ-

mentally friendly (Kruger et al., 2009).

In 2014, some 86% of commercial maize plant-

ings were estimated to be GM, of which 28% car-

ried the single Bt gene and the remainder com-

prised either herbicide resistance or both traits 

stacked. The adoption was very similar for white 

and yellow maize and is now reaching saturation 

because not all plantings are subject to severe 

stalk borer pressure and, hence, do not require Bt 

insect resistance. Over 92% of commercial maize 

samples tested were positive for GM traits, either 

pure GM or co-mingled. Some traders import or 

contract farmers for non-GM grain for certain 

customers (James, 2014).

The first report on resistance of the maize stem 

borer to Bt occurred in 2007. In order to limit 

such resistance, farmers are required to plant 

refugia. Refuges are defined as habitats in which 

the target pest is not under selection pressure 

because of the toxin and, therefore, provide a 

sustainable environment for pest development. 

The principle underlying the high-dose and ref-

uge strategy is that any resistant insect emerging 

from the Bt crop is more likely to mate with one 

of the much larger number of susceptible pest in-

sects from refugia than with each other, thereby 

decreasing the selection of Bt resistance alleles  

(Bourguet, 2004).

Initial levels of refuge compliance were low and, 

even though farmers were obliged to plant a refuge 

area for each Bt maize field, only 77.7% did so dur-

ing 1998. However, this number increased to 100% 

during 2008 (Kruger et al., 2009). Although the evo-

lution of resistance of Buscola fusca can probably be 

ascribed to several factors, including rainfall and hu-

midity, the low initial levels of compliance to refuge 

requirements probably played an important role 

(Kruger et al., 2011a). Interestingly, farmers remain 

positive about the technology in spite of resistance 

development (Kruger et al., 2011b).

A different story appeared when small-scale farm-

ers were surveyed. Of the 78 farmers interviewed, 

only 59% had more than 10 years of experience 

in cultivating maize and were well aware of the 

key production constraints. Their knowledge of 

GM maize production practices was very poor 

and knowledge of the risks associated with this 

technology was completely lacking. None of the 

farmers interviewed properly understood the ref-

uge strategy. In addition, most were illiterate and 

were, therefore, unable to read and understand 

the information on the user guides (Assefa and 

van den Berg, 2010). Clearly, this issue needs to 

be addressed if small-scale farmers are to culti-

vate Bt maize.

Remedial actions taken in South Africa have includ-

ed the release of pyramided maize hybrids that 

combine two different toxin-producing transgenes, 
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Cry1A.105 and Cry2Ab2, replacing the ineffective 

single transgene. However, it remains to be seen 

whether cross resistance will occur between the 

Cry1A.105/Cry2Ab2 and the closely related Cry1Ab 

toxin. In hindsight, the survival of Buscola fusca lar-

vae noted in 1988 should have triggered actions 

to address the issue and to monitor compliance 

with refuge requirements. This retrospection also 

emphasizes that Bt crops should not be seen and 

used in isolation from other insect resistance man-

agement measures (Van den Berg et al., 2013).

Post-harvest fungus resistance
Smallholder farmers in South Africa often store 

their annual maize crop in storage cribs that are 

open to the air. If the cobs have been “nibbled” 

by insect borers, holes will occur in their kernels. 

These kernels are perfect breeding grounds for 

fungi under rainy and sunny conditions alike. 

Many fungi are Aspergillus species that produce 

aflatoxins, a known human carcinogen that has 

been linked to liver cancer (http://ehtrust.org/fact-

sheets-facts-about-aflatoxin/). Instead of using 

such infected maize directly for food, many women 

will ferment it to form beer. As aflatoxins have also 

been implicated in oesophageal cancer, it is little 

wonder that this disease is widespread in parts of 

Africa where homebrewed maize beer is widely 

consumed. One indirect benefit of  Bt maize adop-

tion that has been observed in different countries 

is reduced mycotoxin contamination (F. Wu, 2006). 

Mycotoxins are secondary metabolites produced 

by fungi that colonize crops such as maize. Insect 

damage is one factor that predisposes maize ker-

nels to fungus contamination. There is strong field 

evidence that Bt maize has significantly lower levels 

of mycotoxins that non-Bt isolines. Hence Bt maize 

is an important genetic tool for reducing mycotox-

in contamination. 

Herbicide resistance

Maize
Weeds compete with crops for moisture, nutri-

ents, and light. Uncontrolled weed growth can 

thus result in significant yield losses. Therefore, 

farmers have been spraying herbicides on their 

crops for decades. As with insecticidal sprays, 

spraying is often done by means of airplanes, with 

the result that a great deal of the spray drifts away 

from the target sites.

The best known example of transgenic herbi-

cide resistance is Monsanto’s RoundupReady®. 

The active ingredient in the herbicide Roundup 

is glyphosate which acts on an enzyme found in 

many plants, including maize and its weeds. Using 

Roundup on conventional maize fields is a tricky 

operation because the herbicide must not make 

contact with the crop. RoundupReady® maize 

produces a naturally occurring form of the tar-

get enzyme, 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS) that is resistant to glyphosate 

and, hence, to the herbicide. The gene encoding 

the glyphosate resistant form of EPSPS was de-

rived from Agrobacterium tumefaciens, coinciden-

tally the bacterium that is used to genetically ma-

nipulate plants.

In 2014, 19% of the GM maize crop in South Africa 

was herbicide tolerant, whereas 53% was planted 

to stacked Bt and herbicide-tolerant traits (James, 

2014). South Africa is the only country in the world 

where smallholder farmers have been producing 

a GM subsistence crop for a relatively long period 

of time. A study that followed the farmers’ experi-

ence for eight seasons in KwaZulu-Natal (Gouse, 

2012) revealed that both Bt and herbicide-toler-

ant maize seeds were valued. Interestingly, the 

farmers were more willing to pay for the weed 

control convenience than for insect borer control. 

The reason is that weeds are always present and 

the herbicide-tolerant seeds are a labor-saving 

device, whereas insect infestations come and go 

from season to season. Therefore, the option of 

planting seeds with stacked genes for both traits 

would apparently be preferred.

However, smallholder farmers have experienced 

practical problems related to obtaining crop cred-

it, signing of contracts to comply with refuge plant-

ing, enforcing refugia, and obtaining small aliquots 

of GM seeds (James, 2013). However, in 2013, mar-

keting of GM seeds in packets of 2 to 25 kg saw 
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planting of 6,308 hectares of GM white maize (8% 

insect resistant, 61% herbicide tolerant and 31% 

stacked), as well as 7,180 hectares of GM yellow 

maize (0.9% insect resistant, 78% herbicide toler-

ant and 21% stacked). This successful smallholder 

adoption is expected to increase (James, 2013). In 

the Gauteng region, where much of the country’s 

maize is grown, the number of smallholder farm-

ers cultivating GM maize has increased from 10 to 

33 with the number of hectares increasing from 

20 to 1275 in 2011 to 2014, respectively (AfricaBio, 

personal communication).

One of the positive environmental impacts of 

herbicide-resistant maize is the use of no-till cul-

tivation or conservation tillage. With conventional 

maize, farmers till the soil to allow weeds to grow, 

spray with herbicides, and then wait a sufficient 

time for their degradation before planting. Now, 

they can allow weeds and maize to grow together 

before spraying. This results in reduced soil ero-

sion and better moisture retention in the soil. In 

addition, Roundup is more readily degradable by 

bacteria than many other herbicides (Balthazor 

and Hallas, 1986).

Soybean
Soybeans are not a major crop in South Africa, 

with a planted area of approximately 600,000 

hectares in 2014 (James, 2014). However, 92% of 

the crop is GM herbicide tolerant.

Traits in the pipeline
A number of different GM crops specific for 

(South) Africa have been developed by the pub-

lic sector in South Africa. These include improved 

sugarcane (Saccharum officinarum), eucalyptus, 

and grapevine (Vitis sp.) varieties, post-harvest 

damage-protected potato (Solanum tuberosum), 

and virus-resistant cassava (Manihot esculenta). 

Maize resistant to the African endemic maize 

streak virus, one of the major threats to this crop 

in Africa, and tolerant to drought, a condition that 

is becoming increasingly important due to climate 

change, has also been produced (Thomson et al., 

2014). However, no field trials have taken place 

for any of these crops. The reasons include lack 

of funding, complicated regulatory environment, 

and market uncertainties.

Another crop being developed is vitamin A-en-

riched sorghum (Sorghum bicolor), similar to the 

Golden Rice (Oryza sativa) variety (Ye et al., 2000). 

In 2005, the Bill and Melinda Gates Foundation 

funded the African Biofortified Sorghum (ABS) 

project, run by an international consortium un-

der the leadership of Africa Harvest, an Afri-

can-based international non-profit organization. 

This engineered sorghum contains the gene for 

a high-lysine storage protein from barley (Horde-

um vulgare) and has increased levels of Vitamin 

A, iron, and zinc. In 2013, the ABS initiative re-

ceived a “Patents for Humanity Award” from the 

USA Patent and Trademark Office for its efforts to 

improve nutrition, production, and availability of 

sorghum in Africa (http://biosorghum.org).

Recommendations
GM crops are clearly popular with growers, com-

mercial and smallholder alike, because of the 

agronomic advantages they offer. To quote one 

farmer from the Mpumulanga province: “On av-

erage, with GM maize I get 5 tons/hectare on dry-

land, which is 0.5 tons better than conventional 

maize and under irrigation 10 tons/hectare, which 

is 1 ton better than conventional, equivalent to 

2,000 rand (US$ 200) plus 60 rand per hectare 

for better quality” (James, 2013). Another farmer 

in the Free State province, who grows 3,000 hec-

tares of GM maize as well as 340 hectares of soy-

beans, ascribes his success in crop production to 

GM varieties (James, 2013).

The mandatory labeling of GM/GMO “goods”, in-

gredients, or components, as prescribed in Regu-

lation 7 of the Consumer Protection Act of 2008 

should have entered into force in 2011. It has elicit-

ed ongoing criticism from stakeholders in the food 

chain due to its ambiguity and complexity. There 

has been little effort on the side of the Department 

of Trade and Industry to proceed with the enforce-

ment of this regulation that might be seen by trad-

ing partners as a technical barrier (James, 2013).

My recommendations regarding currently ap-
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proved GM crops are the following:

1. �Improve access to small amounts of seed by 

smallholder farmers.

2. �Provide farmers with agricultural extension ser-

vices to help them understand how to handle 

new and improved cultivars, enabling them to 

realize the importance of planting refugia (in 

the case of Bt crops) and to encourage them 

to operate in cooperatives to better implement 

appropriate agronomic and integrated pest 

management practices.

3. �Implement the labeling requirements by includ-

ing the words “may contain ingredients derived 

from GM crops”, where appropriate. This word-

ing is necessary because South Africa does 

not require the segregation of GM and non-

GM crops post-harvest. When producers can 

prove conclusively (in a court of law if required) 

that items contain less than the prescribed 

limit of GM crop-derived ingredients (1% per 

total mass or volume), then the words “does 

not contain ingredients derived from GMOs” 

should be mentioned.

My recommendations regarding GM crops in the 

pipeline are the following:

1. �Developers are needed to bring these crops to 

field trials and beyond. Many potential investors 

view crops that are important to Africans only 

as unable to make a return on their investment. 

I challenge this view as the resultant increase 

in food security could help to turn around the 

economies of many African countries.

2. �Governments should also realize that by sup-

porting this technology they can improve food 

security, nutritional security, and add to eco-

nomic growth.

3. �The South African regulatory authorities should 

rethink their current tendency to view any 

“home-made” GM crop as representing a great-

er risk than imported ones because of the lack 

of international biosafety data. Government 

authorities need to realize that African sci-

entists are just as capable of developing safe 

and valuable GM crops as their internation-

al counterparts and they also need to build 

their confidence in their own abilities to assess  

risk effectively.
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Abstract
The West-African cotton (Gossypium hirsutum) 

industry has a huge economic potential. In par-

ticular, Benin, Burkina Faso, Ivory Coast, and Mali 

play an important role as exporter on the world 

market. Still, the cotton sector is also subject to 

a number of risks that can threaten the sustaina-

bility of the cotton production in West Africa. This 

chapter overviews the challenging pest problems 

and assesses how biotechnology and, more spe-

cifically, insect-resistant cotton (Bt cotton), over-

come these problems. Introduction of Bt cotton 

in Burkina Faso and South Africa resulted in im-

portant benefits regarding yield, farmer income, 

pesticide use, and environmental and health 

impacts. When structural and institutional lim-

itations are suppressed to realize its full poten-

tial, Bt cotton can clearly contribute both to the 

economic and environmental sustainability of the  

cotton production.

 

Introduction
Cotton (Gossypium hirsutum) is an important in-

dustrial crop worldwide and the predominant 

natural fiber in the textile industry. Despite com-

petition with artificial fibers, cotton remains im-

portant and accounted for 30% of the more than 

82 million tons of textile fibers processed in 2013 

(www.icac.org/tech/Overview/100-facts-about-

cotton). In 2000, the world production of cotton 

was twice that of 1960. Even though the produc-

tion is subject to fluctuations, it still increases 

(http://faostat3.fao.org/home) (Figure 1). Farmers 

produce seed cotton that is processed into cotton 

lint, mainly for the textile industry to produce fab-

rics for clothing, furniture applications, or money 

bills. From the seeds derived from the seed cot-

ton less than 1% is used to plant cotton again 

(www.icac.org/tech/Overview/100-facts-about-

cotton). Cotton seeds are mainly applied in food 

and feed. The protein-rich seeds can  be used as 

feed for ruminants, but, because they contain the 

toxic gossypol, they are not suited for consump-

tion as such by humans and monogastric animals. 

Processing of the cotton seeds yields an edible oil 

that is suitable for cooking and human consump-

tion as well as additional byproducts utilized in 

The success story of Bt cotton 
in Burkina Faso: a role model for 
sustainable cotton production in  
other cotton-growing countries?
Ine Pertry1,2, Edouard I.R. Sanou3, Stijn Speelman3, and Ivan Ingelbrecht1,2

1 International Plant Biotechnology Outreach (IPBO), VIB, 9052 Ghent, Belgium
2 Department for Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
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soaps and cosmetics (www.vib.be/en/about-vib/

plant-biotech-news/Documents/ BackgroundRe-

port_BT_Cotton.pdf).

Cotton is a subtropical crop and is grown either 

under irrigation or in sub-humid and semi-arid 

locations with an annual rainfall between 50 and 

150 cm (ECOWAS-SWAC/OECD, 2006). Because 

of the high vulnerability to insect infestations, 

cotton is currently grown in a few tropical loca-

tions only. In 2013, the top producers of seed 

cotton were China (18.93 million tons [Mt]), India 

(18.91 Mt), USA (7.63 Mt), and Pakistan (6.24 Mt) 

(http://faostat3.fao.org/home). The West-African 

production levels are quite low (2.35 Mt). Nev-

ertheless, the four main cotton-producing coun-

tries in West Africa, Benin, Burkina Faso, Ivory 

Coast, and Mali, play an important exporter role 

on the world market. Export of high-quality cot-

ton accounts for approximately 80% of the total 

production of the entire region. The cotton indus-

try is seen as an important source of economic 

growth as well as a social safety net for the re-

gion, especially in rural areas because it secures 

farmers’ income and generates employment. As 

a result, cotton is often referred to as ‘white gold’ 

(Redifer et al., 2014; Vitale and Greenplate 2014;  

http://faostat3.fao.org/home).

Despite its economic potential, the cotton indus-

try is also subject to a number of risks, such as 

price fluctuations of inputs (i.e. fuel, fertilizers, 

and pesticides) and cotton on the world market, 

changing weather conditions, and emergence of 

pests and/or pesticide resistance. All these can 

threaten the sustainability of the cotton produc-

tion in West Africa (Redifer et al., 2014, Vitale and 

Greenplate, 2014). In this chapter, we look at the 

pest problems that challenge the cotton produc-

tion and how biotechnology and, more specifical-

ly, insect-resistant cotton (Bt cotton), can play a 

role to overcome these problems. Furthermore, 

we aim to evaluate the contribution of Bt cotton 

to sustainable cotton production in Burkina Faso 

and South Africa. Specifically reviewing the intro-

duction of Bt cotton into these countries, we will 

take into account the lessons learned and analyze 

whether it can serve as a role model in other cot-

ton-growing countries in West Africa to increase 

the sustainability of the cotton sector.

Cotton production sustainability and the 
role of Bt cotton
Cotton production is subject to a number of risks, 

among which its susceptibility to a wide range of 

insect pests, such as the caterpillars Helicoverpa 

armigera (cotton bollworm), Pectinophora gossypii 

(pink bollworm), and Heliothis virescens (tobacco 

bollworm), was responsible for the largest eco-

Figure 1. Global production of cotton seed (green) and lint cotton (grey) (M tonnes) (source: FAOSTAT, 2015)

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

10

15

20

25

30

35

40

45

50

55



83

nomical losses before efficient management strat-

egies were put in place (www.cottoninc.com/fib-

er/Agricultural Disciplines/Entomology/). For West 

Africa, the cotton bollworm has been reported to 

be the main threat and to be able to cause up to 

90% damage when untreated (Vitale and Green-

plate, 2014). The larvae feed on cotton terminals, 

small squares, such as blooms, large squares, 

and bolls, provoking important losses (Boyd et al., 

2004). As traditional pest control measures have 

become less efficient, other alternatives have  

been explored.

The common Gram-positive soil bacterium Ba-

cillus thuringiensis (Bt) produces crystal (Cry) 

proteins with an insecticidal activity. Large-scale 

screening of different Bt strains has revealed over 

700 cry gene sequences, of which some without 

known invertebrate target, but many effective 

against insect pests (Palma et al., 2014). More 

importantly, these Cry proteins that are specific 

to a limited number of insect species belonging 

to the orders of Lepidoptera, Diptera, Coleop-

tera, Hymenoptera, Homoptera, Othoptera, and 

Mallophaga, are not toxic to humans (Bravo et 

al., 2012). The Cry proteins are ingested as pro-

toxins and processed in the insect gut into Cry 

toxins, which recognize and bind specific recep-

tors in the insect gut wall, with pore formation 

(Bravo et al., 2012) or apoptosis (Zhang et al., 

2006) as a result. Eventually, the insect dies due 

to starvation and to bacterial or other infections  

(www.vib.be/en/about-vib/plant-biotech-news/

Documents/BackgroundReport_BT_Cotton.pdf).

As Cry proteins of B. thuringiensis are highly effec-

tive as well as specific against a number of insect 

pests, they were used as bioinsecticides already at 

the end of the 1930s (Schnepf et al., 1998; Bravo 

et al., 2012), but these commercial preparations 

that often contained a mixture of spores and 

crystals were not widely adopted. Inefficiency was 

high because of the non-optimal spray coverage 

and because rain showers washed off the pesti-

cides. Moreover production costs were relatively 

high and  the formulation was sensitive to UV deg-

radation (Krattiger, 1997). The plant genetic trans-

formation technology triggered the interest in Bt 

applications because they can bypass these disad-

vantages: spraying is no longer required, because 

the crops produce the Cry proteins themselves 

and, thus, are protected throughout their life cycle  

(www.vib.be/en/about-vib/plant-biotech-news/

Documents/ BackgroundReport_BT_Cotton.pdf). 

Biotechnology can greatly contribute to agricul-

tural challenges. Bt-mediated insect resistance 

was one of the first commercialized traits, namely 

in 1995, when the Bt potato (Solanum tuberosum) 

resistant to the Colorado potato beetle (Leptino-

tarsa decemlineata) was the first Bt crop approved 

for commercialization in the USA (James and Krat-

tiger, 1996). Since then, the Bt trait has been suc-

cessfully introduced into a number of crops, such 

as maize (Zea mays), brinjal or eggplant (Solanum 

melongena), poplar (Populus sp.), potato, and cot-

ton and has resulted in a worldwide adoption. In 

2014, 55 million hectares of insect-resistant Bt 

crops were planted (James, 2014).  In 1996, Bt cot-

ton was grown for the first time in the USA on 1.7 

million acres (approximately 688,000 ha). Bollgar-

dTM (Monsanto, St. Louis, MO, USA) cotton pro-

duced one Cry protein (Cry1A[c]) that conferred 

resistance against Helicoverpa armigera (cotton 

bollworm), Pectinophora gossypii (pink bollworm), 

Bucculatrix thurberiella (cotton leaf perforator), 

Trichoplusia ni (cabbage looper), and Estigmene 

acrea (Drury) (saltmarsh caterpillar) (Krattiger, 

1997). Since this first successful introduction, 

biotech cotton has been adopted by many cot-

ton-growing countries and new biotech cotton va-

rieties have been developed, such as herbicide-tol-

erant (HT) cotton or biotech hybrid cotton that 

produces two or more Bt toxins with different ac-

tion modes or combined with herbicide tolerance 

(James, 2014). BollgardII cotton synthesizes two 

proteins from Bacillus thuriengiensis: Cry1Ac and 

Cry2Ab and was developed by introducing the cry-

2Ab gene into transgenic cotton that already con-

tained the cry1Ac gene. These two Cry toxins are 

recognized by different receptor sites on the mid-

gut wall of the insects. Cry1Ac is effective against 

Helicoverpa armigera and Helicoverpa punctigera 

(Australian bollworm) as well as against Earias vit-

tella (rough bollworm), Pectinophora gossypii, and 
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some other Lepidoptera spp. The addition of Cry-

2Ab increases the efficacy by extending the peri-

od in which it effectively controls Helicoverpa spp.  

(www.monsanto.com/global/au/products/docu-

ments/bollgard-ii-technical-manual.pdf). An addi-

tional advantage is that the possibility that a target 

insect develops resistance simultaneously against 

the two different Cry toxins will be extremely rare 

(www.vib.be/en/about-vib/plant-biotech-news/

Documents/BackgroundReport_BT_Cotton.pdf).

In 2014, 15 countries, namely India, USA, China, 

Pakistan, Australia, Burkina Faso, Brazil, Argen-

tina, Paraguay, South Africa, Myanmar, Mexico, 

Colombia, Sudan, and Costa Rica, grew a total of 

25.1 million hectares of Bt cotton, constituting  

68% of the global cotton planted area (James, 

2014). In Africa, Bt cotton had already been intro-

duced in 1998 (Gouse et al., 2004), when it had 

been approved for commercialization in South Af-

rica. It took another 10 years for the first commer-

cial release in Burkina Faso and in 2012, Sudan 

was the third African country to adopt Bt cotton 

(James, 2014). To date, 73.8% of the cotton plant-

ed in Burkina Faso and 80% in Sudan is Bt cotton. 

Even though South Africa grows a relatively low 

acreage of cotton, the adoption rate of Bt cotton 

is high and reached 95%, whereas the remaining 

5% is HT cotton planted as refuge area to manage 

insect resistance development (James, 2014).

The wide-scale adoption of insect-resistant (IR) 

cotton has resulted both in a positive environ-

mental and economic impact when compared 

to conventional farming practices. In 2012, the 

global farmer income gains from the use of IR 

cotton have been estimated at US$ 5.3 billion. 

These gains resulted mainly from increased yields 

thanks to reduced crop damage, especially in de-

veloping countries, but also from decreased input 

costs, mostly in developed countries (Brookes and 

Barfoot, 2014). The number of insecticide sprays 

could be reduced significantly, corresponding 

to important savings in insecticide-active ingre-

dients: 205.4 million kg cumulatively from 1996 

to 2012 or a reduced environmental impact of 

28.2% (as measured by the Environmental Im-

pact Quotient). An additional positive effect from 

using biotech IR cotton is the decreased fuel us-

age, namely 17 million liters in 2012 (Barfoot and 

Brookes, 2014).

The cotton industry in Burkina Faso
Cotton was already produced in West-Africa dur-

ing the colonial period at the beginning of the 

20th century. In 1949 under the French admin-

istration, the Compagnie française pour le dével-

oppement des fibres textiles (CFDT) was founded 

and contributed to the development of the cot-

ton industry (Perret, 2009). The CFDT applied the 

parastatal industry model: a vertical coordination 

between producers and company. Under a par-

astatal structure, the company provides inputs, 

such as seeds, pesticides, and fertilizers, and 

technical advice to the farmers. After the grow-

ing season, the company buys the yield at fixed 

prices from the farmers, who in this manner pay 

off their input credit, and takes up transportation, 

ginning, and marketing (Theriault and Serra, 2014; 

Tumusiime et al., 2014).

After independency in the early 1960s, state-

owned enterprises set up the parastatal model 

and promoted cotton production (Theriault and 

Serra, 2014; Tumusiime et al., 2014). After the 

independence of Haute-Volta, renamed Burkina 

Faso in 1984, the CFDT partnered with the govern-

ment and private investors to found the Sociéte 

Voltaïque/Burkinabé des Fibres Textiles, abbre-

viated SOFITEX (Redifer et al., 2014). The cotton 

production increased as producers gained access 

to chemical fertilizers, insecticides, herbicides, 

and improved cotton seeds. Land expansion also 

contributed to intensify the cotton production (Vi-

tale and Greenplate, 2014), namely from 74,000 

ha in 1981 to 406,000 ha in 2003 (Redifer et al., 

2014). This was of great importance for the eco-

nomic development and rural livelihoods.

However, in the late 1990s, the world prices col-

lapsed and the sector faced an economic crisis. 

The sector was also subject to bad governance and 

mismanagement. Input credits were given also to 

non-cotton farmers, even though cotton revenue 
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remained the principal mean to cover the loans. 

In addition, some farmers sold their inputs on the 

black market without repaying their loans (Theriault 

and Serra, 2014). The economic crisis led to struc-

tural and market-oriented reforms. The sector was 

partially liberalized and two new additional ginning 

companies, Faso-Coton and Société Cotonnière du 

Gourma (SOCOMA) were established. This howev-

er did not result in a price competition between the 

three companies (Tumusiime et al., 2014) because 

they each manage their own production zone and 

retained a parastatal structure. SOFITEX controls 

the West and approximately 80 to 90% of Burkina 

Faso’s total cotton production, SOCOMA the East, 

and Faso-Coton the center (Bassett, 2014; Redif-

er et al., 2014). Market coordination and contract 

enforcement were improved by installing region-

al cooperatives restricted to cotton farmers only, 

whereas a national inter-professional association 

grouped the unions of the farmers, the Union Na-

tionale des Producteurs de Coton du Burkina Faso 

(UNPCB; the national cotton producer association 

or growers’ union) and the ginners, Association 

Professionnelle Des Sociétés Cotonnières du Bur-

kina (APROCOB, the professional association of 

cotton companies of Burkina) (Theriault and Serra, 

2014; Redifer et al., 2014; Vitale and Greenplate, 

2014). As a consequence, the involvement of the 

producers in the companies increased, while the 

government’s role in decision making was reduced 

(Tumusiime et al., 2014).

Despite these reforms, the cotton produc-

tion level decreased between 2006 and 2011  

(http://faostat3.fao.org/home). One reason is that 

the costs for fertilizers had increased and simul-

taneously the cotton prices dropped, imposing a 

serious pressure on the sector. To tackle these 

short-term risks, two publicly managed schemes 

were installed: the “Stabilization Fund” in 2007 

and the “Input Fund” in 2012. In short, farmers re-

ceive subsidies from the Stabilization Fund when 

cotton prices are low and funds are returned in 

years with high cotton prices. The Input Fund en-

sures that input costs, in particular fertilizers, are 

affordable by supplying credits at reduced costs 

(Redifer et al., 2014).

In the last years, Burkina Faso’s cotton production 

has recovered, reaching 766,000 tons in total in 

2013 (http://faostat3.fao.org/home), representing 

3.5% of Burkina Faso’s gross domestic product in 

real terms. Cotton accounted for 18% of the ex-

port earnings in 2013 and 15-20% of the labor in-

come is estimated to derive directly from it (Red-

ifer et al., 2014). Nevertheless on the long term, 

cotton prices might still continue to drop. Cur-

rently, there is a production surplus, resulting in 

significant stock volumes. The International Cot-

ton Advisory Committee predicts that “Even as-

suming reasonably lower production and higher 

consumption in the next few years, it will take sev-

eral seasons for the significant volume of stocks 

to reach a more sustainable level, and low cotton 

prices are likely to persist while the market adjusts”  

(www.icac.org/Press-Release/2015/PR-1-Low-

Cotton-Prices-A-Long-term-Problem#zoneTop-

Wrap). This situation could threaten the sustain-

ability of the cotton sector in Burkina Faso and 

concerns raise that under continuing low prices 

producers might shift away to other crops.

Bt cotton introduction in Burkina Faso
Input costs arise not only from the acquisition of 

seeds and fertilizers, but also from pesticides. In 

conventional cotton cultivation, farmers typical-

ly spray 6 times throughout the season and in 

Burkina Faso annually the aggregate insecticide 

costs can roughly be as high as US$ 60 million. 

In addition, insecticide resistance had emerged in 

Burkina Faso, with, as a consequence, not only an 

intensified insecticide use, but also a shift towards  

broad-spectrum, more toxic insecticides that 

pose significant health hazards. The decreasing 

efficiency of the conventional pest control mea-

sures triggered the interest of Burkina Faso in 

biotechnological applications as a new pest con-

trol option. In collaboration with Monsanto, two 

regional Bolgard II varieties were generated. In 

parallel, the government developed a legal frame-

work to regulate field testing and commercializa-

tion of genetically modified (GM) crops. After sev-

eral years of field trials (2003-2007), the National 

Biosafety Agency authorized the two Bt cotton va-

rieties for seed production and commercialization 
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in 2008 (Vitale and Greenplate, 2014), which were 

distributed that year by the three cotton-produc-

ing companies and planted on approximately 

8,500 ha for seed multiplication. One year later, 

the adoption rate already increased to 29% and 

reached 70% in 2014 or a total of 454,124 ha, 

demonstrating the success of Bt cotton in Burkina 

Faso (Figure 2) (James, 2009, 2014).

The parastatal structure of the cotton industry 

in Burkina Faso facilitated the introduction of Bt 

cotton (Vitale and Greenplate, 2014). The large 

number of smallholders, approximately 300,000, 

who grow cotton would result in numerous con-

tracts and agreements under the typical market-

ing model, but the vertical coordination through 

APROCOB allowed the upstream introduction 

of the technology and reduced the number of 

agreements to enforce the legal compliance and 

prevent resale and reuse of the Bt cotton seeds. 

In addition, the legal burden was shifted from the 

producers to the company. The royalties were set 

up in such a manner that the fee for the Monsan-

to technology depended on the farmer’s income. 

The gross income is calculated as the value of 

increased yield plus savings in insecticides and 

is divided between the farmers (two-thirds) and 

Monsanto and the seed companies (one-third) 

(James, 2014). Burkina Faso continues to support 

Bt cotton and a new authorization for 10 years for 

Bollgard II has been issued in 2013. Meanwhile, 

other cotton biotech varieties are explored: for 

example, Roundup Ready® Flex cotton (Monsan-

to) was in its fourth year of field trials in 2014 and 

field trials have started with the stacked Bollgard II 

x Roundup Ready® Flex cotton (ABNE, 2015).

The introduction of Bt cotton into Burkina Faso 

in 2008-2009 has also created a research pool 

regarding socioeconomic, environmental, and 

health impacts. Several studies have been con-

ducted over a period of five years (2009-2013) 

and annually reported to the Agence Nationale 

de Biosécurité, the National Biosecurity Agency 

(ANB). The following paragraphs summarize the 

main findings of these reports (I.R.E. Sanou, G. 

Vognan, J. Vitale and I. Brants, personal commu-

nication).

Yield performance (kg ha-1)
In the 2013 growing season, the yield of growers 

of Bt cotton was 14.3% higher than that of con-

ventional cotton growers (Figure 3). Moreover, 

such yield gain has been observed for each agri-

cultural campaign from 2009 to 2013, albeit with 

yearly variations that may be essentially due to 

two factors, namely raining season fluctuations 

and fertilizer mixtures. Nevertheless, it is clear 

that cultivation of Bt cotton created a substantial 

yield gain of at least 14%.

Figure 2. Adoption rate of Bt cotton in Burkina Faso.
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Bt cotton profitability (US$ ha-1)
In 2013, analyses indicated that farmers derive 

the majority of their income from growing Bt cot-

ton (on average 63.1%), implying that Bt cotton is 

an economically important crop for the country. 

For the yearly reports to the ANB, the profitability 

of Bt and conventional cotton has been analyzed 

by comparison of net incomes, by taking into ac-

count the gross income based on yield, the sale 

price of cotton, as well as the average input costs 

for seeds, fertilizers, insecticides, herbicides, and 

labor. The average costs are considered because, 

besides seed cost, each cost is able to change 

from one agricultural campaign to another in Bur-

kina Faso. In fact, during each campaign, a dialog 

framework is instituted between the government 

and the farmer’s organization UNPCB that fixes all 

prices considering the cotton currency on the in-

ternational market.

At the end of an agricultural campaign, a Bt cotton 

grower experiences on average a production cost 

quasi equivalent to a conventional cotton grower 

(US$ 319 ha-1 to US$ 312 .ha 1) (Figure 4). This in-

significant difference in production costs is due to 

the fact that even though Bt cotton farmers have 

a relevant gain in insecticides treatments, they 

incur higher seed costs. As a result, the sum of 

seeds and insecticide costs is approximately the 

same for Bt cotton (US$ 78 ha-1) and conventional 

cotton (US$ 75 ha-1). Nevertheless, farmers grow-

ing Bt cotton have a 65.1% higher net income 

than conventional cotton growers that could be 

attributed to the yield gains and concurrently in-

creased gross income.

Environmental impact
Bt cotton has been discredited at its adoption time 

due to the perception of possible environmental 

risks, but field observations show a clearly posi-

tive impact. Since its introduction in 2008, a sig-

nificant reduction in the insecticide use has been 

observed (Figure 5) (http://faostat3.fao.org/home) 

with a beneficial impact on the environment. This 

reduction results from the reduced annual num-

bers of sprays from 6 to 2 as recommended to 

control sucking insects present in the field.

The yearly reports to the ANB also assessed the be-

havior of  Bt cotton farmers regarding this recom-

mendation. On average, 1.1% of the farmers do not 

spray their fields at all, 18.9% once a year, and 80% 

report to faithfully respect the two sprays. Never-

theless, disregard of the recommended number of 

sprays is not without consequences on yield perfor-

mance (Figure 6). Indeed, two insecticide sprays to 

deal with the secondary insect pests improve yields 

on average by 17.9% and even 40.7% compared to 

one and no treatment, respectively.

Specific interviews under the research framework 

from 2011 to 2013 focused mostly on the identi-

Figure 3. Yield performance (Kg.ha-1); BG II: BGII, Bollgard II (Bt cotton); conv., conventional cotton.

BG II

Conv.

Yield gain (%)

Yi
el

d 
(k

g/
ha

)

Yi
el

d 
ga

in
 (%

)

0

200

2009 2010 2011 2012 2013 Ave

600

400

1400

1200

1000

800

0.0

5.0

15.0

10.

35.0

30.0

25.0

20.0

1178

18.2 29.2 19.8 20.2 14.3 20.2

1097 1175

981

1103

918

1052

920

1121

933
849

997



88

Figure 4. Average Bt cotton profitability (US$ ha-1) from 2009-2013. BG II, Bollgard II (Bt cotton); conv., con-

ventional cotton; insect., insecticides; fert., fertilizers; product., production.
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Figure 5. Use of insecticides in Burkina Faso since the introduction of Bt cotton in 2008.
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fication of beneficial species present in Bt cotton 

fields, such as termites, bees, and ants that have a 

role in the agroecosystem equilibrium. All farmers 

interviewed certified the presence of these spe-

cies. These results match outcomes of Bt cotton 

trials before commercialization, indicating that re-

duction of insecticide treatments would increase 

the presence of beneficial organisms.

Health impacts
Field surveys of the Institut National pour l’Etude 

et la Recherche Agronomiques indicated that over 

seven growing seasons (2004-2010), 50.8% of the 

cotton farmers experienced at least one pesticide 

poisoning incident, despite the extensive services in 

good management practices provided by the seed 

companies. Approximately 80.3% of these incidents 

could be attributed to the application of Lepidop-

tera-targeting insecticides. These incidents have se-
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rious health impacts, from symptoms ranging from 

dizziness to difficult breathing and vomiting and, ad-

ditionally, they lead to economic losses as well due 

to medical costs and a loss of income, which have 

been estimated at US$ 39.22 per incident. However, 

with the introduction of Bt cotton, farmers were able 

to reduce the number of sprays. The 2011 survey 

showed a 75% decreased pesticide use for Bt cot-

ton farmers, translating into a projected reduction 

of 30,380 poisoning incidents and a positive eco-

nomic impact of US$ 1.09 million per year.

In conclusion, both the farmers and the environ-

ment have benefitted from the introduction of 

Bt cotton in Burkina Faso, not only by improving 

the safety of the working conditions but also by 

an increased net income from the yield gains. The 

2011 survey indicated that the reduced pesticide 

use combined with the enhanced yields were 

perceived by 63.5% of the farmers as the most 

important motivation to adopt Bt cotton, whereas 

for an additional 16% the limitation in health risks 

was the single most important reason.

Bt cotton introduction in South Africa
South Africa planted Bt cotton for the first time 

in 1998. The adoption rate continued to increase 

and the Bt cotton coverage reached 95% in 2007 

(with the remaining 5% HT cotton planted as ref-

uge area) (James, 2007). Bt cotton was not only 

adopted by large-scale farmers, but also by small-

holders. In the 1998/1999 season, 12% of the 

cotton-growing farmers in the Makhathini region 

planted Bt cotton. This grew to 40% in 1999/2000, 

60% in 2000/2001, and 90% in 2001/2002 (Ismael 

et al., 2002; Gouse et al., 2005). Studies indicated 

that the yield increases had the highest impact 

on the income of both large-scale and small-scale 

farmers, with the largest yield increases obtained 

by the large-scale farmers who use irrigation. 

Furthermore, the reduced number of insecticide 

sprays additionally result in decreased application 

costs. Large-scale farmers save on diesel costs 

and tractor hours, whereas small-scale farmers 

benefit from labor savings that can be reinvest-

ed into other agricultural management practices, 

such as weeding and harvesting. Together, these 

benefits generate increased farming income for 

both groups, despite the high seed costs and 

additional technology fee (Gouse et al., 2004). Of 

course, yield benefits can differ from one season 

to another, because they are also influenced by 

weather conditions and insect pressure. Analysis 

indicates that the yield increase from Bt cotton 

is higher during a wet season when insect pres-

sure is higher and the pesticides are washed off 

Figure 6. Yield performance (kg ha-1) according to the insecticides sprays in Bt cotton fields. 
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by rain than in a dry year without significant yield 

advantage. Even so, the overall impact is positive 

and weather-related variation is reduced (Gouse 

et al., 2005). Besides the economic benefits, the 

number of insecticide sprayings related to Bt cot-

ton plantings had decreased between 1998 and 

2001 with a beneficial impact on the environment 

(Morse et al., 2006). Surprinsingly, this decrease 

resulted from a reduction not only in pesticides 

targeting H. armigera,  but also in the highly toxic 

pesticides targeting secondary pests. The advan-

tage would be less clear, when the applications of 

the latter would increase again.

The issue of field-emerging  
Bt resistance and its solution
The main threat to the success of the Bt appli-

cations would be the development of insect 

resistance in the field. In the past, the cotton 

bollworm has been able to adapt to the chemi-

cal pesticides, hereby reducing their efficien-

cy. The large-scale exploitation of Bt cotton in-

creases the selective pressure and Bt-resistant 

insects have already been observed in the field  

(www.vib.be/en/about-vib/plant-biotech-news/

Documents/BackgroundReport_BT_Cotton.pdf). 

Field-evolved resistance to Cry1Ac with reduced 

crop efficacy has been reported in cotton fields in 

the USA (in 2002) and India (in 2009), both within 

less than 10 years after their commercialization. 

In 2005, only 2 years after the commercialization 

of Cry1Ac and Cry2Ab hybrid cotton, Cry2Ab- 

resistant insect populations have been detect-

ed in the USA, possibly caused by Cry1Ac cross- 

resistance. Experiments have indeed indicated 

that resistance to plants that produce two Cry tox-

ins evolves faster when they are grown alongside  

single-toxin plants (Tabashnik et al., 2013).

It is widely recognized that the level of pest re-

sistance to Bt crops will determine their long-

term efficacy. Hence, proactive measures have 

been set up to delay and manage the evolu-

tion of pest resistance (Tabashnik et al., 2013;  

www.vib.be/en/about-vib/plant-biotech-news/

Documents/BackgroundReport_BT_Cotton.pdf). 

The United States Environment Protection Agency 

imposed a number of IR management practices, 

with planting of refuge areas as a key component 

(http://www3.epa.gov/pesticides/chem_search/

reg_actions/pip/regofbtcrops.htm). Other meas-

ures include monitoring for resistance develop-

ment or for increased tolerance to the Bt pro-

tein; education of and increased communication 

among growers, producers, researchers, and the 

public; development of a remedial action plan in 

case of identified resistance.

The refuge approach is based on the assumption 

that inheritance of resistance is recessive and 

that mating between susceptible and resistant  

insects will result in progeny susceptible to the 

Bt toxin(s). The success of this strategy does 

not only depend on the recessive nature of the 

resistance, but also on a low initial frequency of 

resistance alleles and the abundant presence of 

non-Bt host plant refuges. For example, Australia 

applies a very strict refuge requirement, name-

ly 70% for one-toxin and 10% for two-toxin Bt 

cotton. The resistance frequency in Australia re-

mained below 1% for Helicoverpa armigera and 

Helicoverpa punctigera after more than a decade 

since its first release. In addition, the dose of 

Cry toxins in Bt crops has to be high enough to 

eliminate more than 99% of susceptible insects 

under field conditions. This strategy is referred 

to as ‘the high-dose rule’  (Tabashnik et al., 2013;  

www.vib.be/en/about-vib/plant-biotech-news/

Documents/BackgroundReport_BT_Cotton.pdf). 

Indeed, studies on Bt maize in South Africa have 

shown that resistance development to Busseola 

fusca (maize stalkborer) has been enhanced be-

cause the crop did not conform with the high-

dose requirement. Moreover, this was aggravated 

by  the low compliance to refuge requirements by 

South-African farmers during the first 5-7 years 

after release (Kruger et al., 2012; van den Berg et 

al., 2013).

In theory, combining different Bt toxins targeting 

the same pest into one plant, the so-called pyr-

amids or stacks, significantly lowers the chance 

of resistance development, but the example de-

scribed above indicates that resistance develops 
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faster when pyramids are grown alongside sin-

gle-toxin plants. Resistance can emerge already 

after two years in the absence of appropriate 

insect resistance management practices and sub-

optimal design of the resistance gene(s) (Tabash-

nik et al., 2013). Nevertheless, under optimal cir-

cumstances and when all factors influencing the 

development of insect resistance are taken into 

account, Bt crop efficiency can be sustained for 

15 years or more. Even with the use of Bt pyra-

mids, it is absolutely imperative that farmers are 

informed on and comply with insect resistance 

management practices when they adopt Bt crops 

to ensure their sustainability.

Bt cotton for the West-African  
cotton production
Before considering the introduction of Bt cotton 

into other West-African cotton production sys-

tems, it will be important to introduce the trait 

into local varieties adapted to the regional climat-

ic conditions to fully gain the benefits observed 

for Burkina Faso and South Africa. In addition, the 

local farmers will need to be trained to implement 

resistance management practices to ensure a du-

rable crop protection and to avoid or delay the 

development of insect resistance. When these 

important factors are taken into account, the ex-

amples described above clearly indicate that Bt 

cotton adoption into the cotton production sys-

tems is beneficial with regard to yield and farm 

income, pesticide use, and environmental and 

health impact.

However, it should be considered that the 

South-African farmers have been confronted with 

some limitations, such as difficult climatic condi-

tions, failing credit system, and monopsonistic 

cotton companies, which can all put pressure on 

the sustainability of the cotton economy (Gouse 

et al., 2005; Morse et al., 2006; Witt et al., 2006). Al-

though Burkina Faso reformed its cotton sector, it 

did not create competition. As a result, world mar-

ket prices are not always translated into producer 

prices which in 2011, led even to farmer protests 

(Bassett, 2014). In contrast, studies have shown 

that in the absence of a well-functioning credit 

market, parastatal structures improved growth in 

the cotton sector (Tumusiime et al., 2014). In Bur-

kina Faso, the reforms tackled the challenges on  

a global level by establishing a funding mecha-

nism to balance the impacts of seasonal varia-

tions in input and/or international cotton prices 

(Redifer et al., 2014).

In conclusion, it is clear that Bt cotton presents im-

portant benefits that contribute both to econom-

ic as well as environmental sustainability, but the 

structural and institutional limitations should be 

addressed appropriately to realize its full potential.
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Abstract
Comparable to the rapid adoption of the 

high-yielding crop varieties during the Green Rev-

olution, four agriculturally important countries of 

South Asia are at the forefront in implementing 

genetically modified (GM) crops to reduce pro-

duction cost and increase food production. India, 

Pakistan, and Myanmar were the first to approve 

the commercial cultivation of the first generation 

of insect-resistant Bt cotton (Gossypium hirsutum). 

Likewise, Bangladesh was the first country in the 

world to commercialize insect-resistant Bt brinjal 

or eggplant (Solanum melongena) varieties to in-

crease domestic vegetable production. Approxi-

mately 1.7 billion people live in South Asia, with 

the majority depending on agriculture for liveli-

hood, employment, and economic activity. India, 

Bangladesh, and Pakistan are also home to the 

poorest people in the world. Furthermore, South 

Asia suffers from malnutrition and hunger that are 

rampant in the rural areas. These countries are 

also vulnerable to climate change and seasonal 

weather disturbances that often result in severe 

losses in crop production and decreased income 

for farm communities. These four South Asian 

countries have either set up or are in the process 

of setting up policies and regulatory frameworks 

and have adopted GM crop technologies to help 

address agricultural constraints and improve 

their farmer’s livelihoods in the 21st century.

 

Overview of agriculture in South Asia
Agriculture is at the heart of employment, liveli-

hood, and economic activities in the South Asian 

regions, including the countries of the South Asian 

Association for Regional Cooperation and Myan-

mar. Agriculture contributes to one-third to two-

thirds of the gross domestic production and em-

ploys two-thirds of the population. In the 1970s, 

the introduction and rapid adoption of semi-

dwarf and high-yielding crop varieties and hybrids 

enabled smallholder farmers to achieve break-

throughs in yield and production, helping these 

countries to feed the ever growing population. Of 

the approximately 1.7 billion people in 2015, the 

populations of India, Pakistan, Bangladesh, and 

Myanmar are estimated to be 1,250 million, 182 

million, 156 million, and 53 million, respectively. 

In these countries 42% of the world’s population 

is estimated to earn less than US$ 1.25 per day  

(http://www.worldbank.org/en/news/feature/ 

2014/03/24/south-asia-regional-brief), with the 

Eastern States of India and Bangladesh as the 

dark spots of rural poverty. In addition to ex-

treme poverty, malnutrition, and hunger are 

rampant in these rural parts. The South Asian 

countries are also vulnerable to climate change 

and seasonal weather disturbances that put a 

tremendous pressure on agriculture for meeting 

food security. As noted in Table 1, India has to 

feed its 1.25 billion people from the ever shrink-

ing arable land of 157 million hectares and the 
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availability of arable land per person has de-

creased to 0.05 hectare per person in Bangladesh  

(http://data.worldbank.org/region/SAS). On the 

contrary, the demand for food in terms of cal-

ories increases in each country, because food 

consumption shifts toward non-vegetarian food 

with an increasing income (Table 1). At the na-

tional level, the productivity of the major crops 

is either stagnant or decelerating, thus widening 

the gap between demand and supply in the food 

production system. In recent years, the availabil-

ity of food grains, pulses, edible oil, vegetables, 

and fruit has decreased (Choudhary et al., 2014a). 

Similarly, the average cereal yields in the ma-

jor Asian countries are among the lowest in the 

world (Table 2). With the exception of maize (Zea 

mays) and cotton (Gossypium hirsutum), the yields 

of other crops, including rice (Oryza sativa), wheat 

(Triticum sp.) and millets are stagnant and need 

to increase to maintain the food supply. Many 

countries are at risk of crop damage due to pests 

and diseases and sometimes crop failures result 

from the effects of climate change. The South 

Asian region often registers significant yield de-

creases that require the introduction of improved 

crop varieties and farming practices. These new 

crops should not only withstand biotic and abiot-

ic stresses, but also help smallholders to create 

more resource-efficient and resilient farming sys-

tems. The adoption of improved crop varieties is 

indispensable for competitive agriculture, which 

remains at the heart of rural transformation.

Globally important GM Crops
In 2014, GM crops were planted over 181 million 

hectares in 28 countries, spanning from North 

and South America, Africa, Europe, Asia, and Oce-

ania. More than 18 million farmers benefited by 

planting crops that were resistant to insects and/

or tolerant to herbicides. Of these 28 countries, 

four of them are South-Asian countries, namely 

India, Pakistan, Bangladesh, and Myanmar (James, 

2014). The insect-resistant (IR) and herbicide-tol-

erant (HT) traits are two of the major innovations 

that are effectively utilized by smallholder farmers 

in both industrial and developing countries. No-

tably, the IR and HT traits are the most advanced 

technologies in the agricultural sector that are 

packaged into the simplest form of crop inputs 

known as seed. Firstly, the familiarity to seed 

makes this technology preferred by the small-

holder farmers, leading to a rapid uptake of GM 

crops in both industrial and developing countries. 

Secondly, both IR/HT traits are accessible in lo-

cal crop varieties that are grown and known for 

decades. The IR trait, which is available in single 

and double genes, tackles effectively the major 

insect pests of crops, such as cotton, maize, and 

Country Population 
(millions)

Total arable (Mha) Arable land  
(ha/person)

Rural population  
(% of total  

population)

Employment in  
agriculture (% of 

total employment)

Small farms  
(millions) 

India 1250 157 0.13 68 51 93

Pakistan 182 21 0.12 62 45 -

Bangladesh 156 8.7 0.05 67 - 17

Myanmar 53 10.4 0.20 67 - -

Table 1. Key Agriculture Indicators in South Asia 

Country Wheat 
(Mha)

Rice (Mha) Maize (Mha) Soybean (Mha) Cotton (Mha) Cereal* Yield  
(kg/ha)

India 29 42 9.0 10 12 2,962

Pakistan 8.5 2.5 1.0 - 3.0 2,722

Bangladesh 0.4 11 0.2 0.04 0.05 4,357

Myanmar 0.1 7 0.45 - 0.35 3,641

Table 2. Area and Yield of Major Crops in South Asia 

*Cereal: wheat, rice, maize and millets
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brinjal or eggplant (Solanum melongena). The first 

generation of the single-gene IR trait (cry1Ac gene) 

imparts effective resistance to the American boll-

worm Helicoverpa armigera in cotton and Leu-

cinodes orbonalis, known as the Shoot and Fruit 

Borer (FSB) of brinjal. The double-gene IR trait 

controls both Helicoverpa armigera and Spodop-

tera pests in cotton. Uniquely, GM crops are also 

available with stacked traits of IR/HT. In addition 

to controlling the insect pests through the IR trait, 

the HT trait helps farmers to kill weeds by spray-

ing herbicides on HT crops without damaging the 

crop. Stacking of the IR and HT traits offers farm-

ers an advanced and environmentally friendly 

alternative to tackle multiple constraints, such as 

effective control of specific insect pests and effi-

cient management of weeds.

Approval and adoption of GM crops in 
South Asia
In 2002, India was the first South Asian country 

to approve the commercial planting of Bt cotton 

(Table 3). It was a breakthrough to revive the ail-

ing cotton sector in the country that was then 

characterized by a stagnation in terms of produc-

tion, a decelerating yield trend with consequently 

overreliance on import for many decades. Before 

2002, Indian cotton farmers suffered consider-

able losses due to the heavy infestation of Heli-

coverpa armigera, thus requiring often numerous 

insecticide sprays. Half of the total amount of in-

secticides used in the country was consumed for 

cotton alone before the commercial approval of 

Bt cotton in 2002 (Kranthi, 2012). Figure 1 shows 

percent reduction of insecticides on cotton with 

Country Biotech 
crop

Approval Biotech area in 
2014 

Total area Adoption Date  
of signature

Date of entry 
into force

India Cotton 2002 11.6 Mha 12.25 Mha 95% 01/23/2001 09/11/2003

Pakistan Cotton 2010 2.85 Mha 3.2 Mha 88% 01/04/2001 05/31/2009

Myanmar Cotton 2010 318,000 ha 360,000 ha 88% 05/11/2001 05/13/2008

Bangladesh Brinjal 2013 12 ha 50,000 ha <1% 05/24/2000 05/05/2004

Nepal 03/02/2001 09/11/2003

Bhutan - 09/11/2003

Maldives - 09/11/2003

Sri Lanka 05/24/2000 07/26/2004

Afghanistan - 05/21/2013

Table 3. Approval of insect resistant (Bt) Crops in South Asia

Figure 1. Percent reduction of insecticides on cotton with respect to total insecticides and pesticides used 

in agriculture in India, 2001 to 2012. Source: Kranthi (2012); Choudhary, et al. (2014).
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respect to total insecticides and pesticides used in 

agriculture in India, 2001 to 2012. A large number 

of insect-resistant Bt cotton varieties that express 

single cry genes were successfully developed and 

released between 2002 and 2006. In 2006, the 

Government of India released the double-gene 

Bt cotton hybrids that contained the cry1Ac and 

cry2Ab genes. In subsequent years, double-gene 

Bt cotton hybrids were approved that controlled 

both Helicoverpa armigera and Spodoptera. These 

hybrids were widely adopted by cotton farmers 

across the country. In the meantime, four other 

events of Bt cotton that express different variants 

of the cry gene(s) were approved as well. Howev-

er, the smallholder cotton farmers preferred the 

double-gene Bt cotton hybrids over the other Bt 

cotton events. In the 2002-2014 period, cotton 

farmers, irrespective of farm size and income, re-

placed the commonly used chemical-based crop 

protection methods for the insect-resistant Bt 

cotton method that is a more efficient and cost-ef-

fective crop protection (Choudhary et. al., 2014a). 

In the same period, farmers grew Bt cotton over a 

very large acreage, covering irrigated, rainfed, and 

semi-irrigated areas of the country. By 2014, the 

area under Bt cotton cultivation had increased 

to over 11.6 million hectares, corresponding to 

95% of the total cotton area in the country (Table 

3). Approximately 7 million smallholder farmers 

representing more than 95% of the total cotton 

farmers in the country adopted Bt cotton in the 

10 cotton-growing states (James, 2014). Thus, Bt 

cotton has become an integral part of the cotton 

cultivation in India.

Following the success of Bt cotton in India, the 

neighbouring country Pakistan, became the sec-

ond South Asian country to approve the com-

mercial cultivation of the single cry gene-based 

Bt cotton varieties in 2010 (Table 3). Eight Bt cot-

ton varieties expressing the cry1Ac gene, includ-

ing the Mon531 event developed by Monsanto 

and one Bt cotton hybrid expressing the fused 

cry1Ac and cry1Ab genes (GFM event) developed 

by Pakistani public-sector institutes and local 

seed companies, received approval for commer-

cial cultivation by the Punjab Seed Council (PSC). 

Later, the former federal Ministry of Food and 

Agriculture and the federal National Biosafety 

Committee (NBC) of the Pakistan Environmental 

Protection Agency (Pak EPA) endorsed the PSC 

decision for commercial release of Bt cotton (at  

http://environment.gov.pk/national-biosafe-

ty-center-nbcs-directorate/). In the subsequent 

years, the PSC approved additional varieties of Bt 

cotton, totalling 30 Bt cotton varieties and two Bt 

cotton hybrids in 2014. Notably, in the fifth year 

of cultivation of Bt cotton varieties and hybrids, 

Bt cotton was cultivated in 2.85 (88%) out of 3.2 

million hectares of cotton and approximately 

700,000 smallholder cotton farmers planted and 

benefited from Bt cotton in 2014. It is noteworthy 

that Bt cotton occupied almost the entire cotton 

crop acreage in the Punjab and Sindh provinces 

and a substantial part in Baluchistan and Khyber 

Pakhtunkhwa – four important cotton-growing 

provinces of Pakistan.

In 2010, Myanmar (formerly known as Burma) 

officially released the commercial cultivation of 

a long-staple Bt cotton variety, designated “Silver 

Sixth” and popularly known as “Ngwe chi 6”, that 

had been developed, produced, and distributed 

by the State-owned Myanmar Industrial Crops 

Development Enterprise. In the same year, the 

National Seed Committee of the Ministry of Ag-

riculture and Irrigation officially registered “Ngwe 

chi 6” for commercial cultivation and it was used 

unofficially for the first time by farmers in 2006-

2007. During this period, this Bt cotton variety 

became very popular in all major cotton-growing 

regions, including Western Bago, Mandalay, Mag-

we, and Sagaing. At the time of official release, 

the “Ngwe chi 6” Bt cotton was estimated to be 

grown by 375,000 farmers on approximately 

270,000 hectares (an average of 0.7 hectares of 

Bt cotton per farm) (Choudhary and Gaur, 2010), 

whereas in 2014, it occupied the entire long-sta-

ple acreage of 318,000 hectares (88%) of 360,000 

hectares of cotton in Myanmar (Table 3). Approx-

imately 454,000 smallholder farmers planted the 

Bt cotton variety in 2014. Until now, “Ngwe chi 6”  

is the only long-staple Bt cotton variety released in 

Myanmar (James, 2014) and has been approved 
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in the absence of a national biosafety system, 

of which the formulation is being processed 

and considered by the national assembly in the  

near future.

In contrast to the approval of feed and fiber 

GM crops in the world, Bangladesh – the most 

densely populated country in South Asia - took 

a historical decision on 30 October, 2013 to ap-

prove the official release of four GM varieties of 

Bt brinjal (eggplant) for a limited commercial cul-

tivation. As such, Bangladesh became the first 

country in the world to approve the cultivation 

and consumption of Bt brinjal, namely resistant to 

FSB. Brinjal is grown over approximately 50,000 

hectares throughout the year, and suffers regu-

lar and heavy yield losses due a very destructive 

insect pest, the FSB that is difficult to control by 

conventional insecticides. However, during heavy 

infestation, farmers have no other option than to 

apply insecticides, sometimes every other day, 

up to a total of 80 applications per season. This 

has serious implications for producers, consum-

ers, and also the environment. The Government 

of Bangladesh through its National Committee 

on Biosafety of the Ministry of Environment and 

Forests approved the release of four Bt brinjal va-

rieties produced by the Bangladesh Agricultural 

Research Institute: Bt Brinjal-1 variety, popularly 

known as Uttara, for planting in the Rajshahi re-

gion; Bt Brinjal-2 (Kajla) in the Barisal region; Bt 

Brinjal-3 (Nayantara) in the Rangpur and Dhaka 

regions; and Bt Brinjal-4 variety, known as Iswardi/

ISD006, for planting in the Pabna and Chittagong 

regions (Choudhary and Gaur, 2014). On 22 Jan-

uary 2014, the seedlings of these four Bt brinjal 

varieties were distributed by the Honorable Min-

ister of Agriculture, Ms. Matia Chowdhury, to 20 

smallholder farmers, who became the first Bang-

ladeshi farmers to plant Bt brinjal over 2 hectares 

in four representative regions, namely Gazipur, 

Jamalpur, Pabna, and Rangpur in the spring. Sub-

sequently, the Bangladesh Agricultural Research 

Institute distributed seedlings to 100 additional 

farmers in the winter of 2014. In total, 120 farm-

ers planted Bt brinjal varieties over 12 hectares 

in four intensive brinjal-growing areas of Bangla-

desh (James, 2014) (Table 3). The Government of 

Bangladesh is expected to release five additional 

Bt brinjal varieties in the near future to provide a 

wider choice to brinjal growers also in other areas 

of the country and plans to bring 20,000 hectares 

(approximately 40%) of the total 50,000 hectares 

across 20 districts under nine Bt brinjal varieties 

in the next five years.

Biosafety and regulatory system of GM 
crops in South Asia
Nine countries of the South Asian region have 

ratified the Cartagena Protocol on Biosafety (Sec-

retariat of the Convention of Biological Diversity 

2000) from 2003 to 2013 (Table 3). The Conven-

tion of Biological Diversity of 1993 recognizes the 

potential of modern biotechnology to contribute 

to human well-being, while taking cognizance 

that modern biotechnology could have negative 

effects on environment and human health. It 

emphasizes the need to regulate the risks asso-

ciated with the use of living modified organisms 

(LMOs) and calls for the legally mandatory inter-

national instrument on biosafety in the form of 

the Cartagena Protocol on Biosafety that came 

into force in 2003. The Protocol focuses on the 

transboundary movement of the LMOs and seeks 

to lay down an internationally acceptable frame-

work to provide an adequate level of protection 

against the possible adverse effects of LMOs on 

biodiversity and human health. The Cartagena 

Protocol mandates the parties to establish an 

advanced informed agreement procedure to 

ensure that countries can take informed deci-

sions regarding the importation of such organ-

isms into their territory. The Cartagena Protocol 

also establishes a Biosafety Clearing House to 

facilitate the exchange of information on LMOs 

and to assist countries in the implementation 

of the Protocol. India was the first country in 

the South Asian region to ratify the Protocol in 

2003 and Afghanistan the last that assented  

in 2013. 

Although many South Asian countries have adopt-

ed the protocol (Table 3), only a few have recog-

nized biosafety and regulatory systems for testing, 
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commercial approval, and import and export of 

the LMOs. India, Pakistan, and Bangladesh are the 

three South Asian countries that have established 

a working biosafety and regulatory system on GM 

crops (Table 4). Prior to joining the Cartagena Pro-

tocol on Biosafety, India notified the Environmen-

tal Protection Agency Rules on “the manufacture, 

use, import, export, and storage of hazardous 

micro-organisms, genetically engineered organ-

isms, or cells 1989”, commonly referred as the 

EPA Rules 1989. The EPA Rules 1989 provides 

the legal and institutional framework for granting 

approvals for testing and commercialization of 

GM crops from the research stage to large-scale 

commercial use. The Ministry of Environment and 

Forest administers the apex biotech regulatory 

committee, the Genetic Engineering Appraisal 

Committee (GEAC), whereas the Review Commit-

tee on Genetic Manipulation functions under the 

supervision of the Department of Biotechnology. 

The EPA Rules 1989 mandates each institute to 

have an Institutional Biosafety Committee before 

projects are undertaken that involve recombinant 

DNA technology. Bt cotton is the only GM crop 

evaluated and approved for commercial cultiva-

tion by GEAC in 2002. Although the GEAC thor-

oughly evaluated Bt brinjal and declared it safe 

for environmental release in 2009, a moratorium 

had been imposed on its commercial release in 

2010 (MOEF, 2010). The GEAC-led Indian regula-

tory system has successfully evaluated the safe-

ty, efficacy, and performance of numerous GM 

crops that involved many traits, including insect  

resistance, herbicide tolerance, nitrogen use  

efficiency, hybrid vigor, salinity, and drought  

tolerance.

Similarly, tthe Pak-EPA of the Ministry of Climate 

Change administers the National Biosafety Com-

mittee, an apex regulatory committee with the 

mandate to approve the commercial release of 

GM crops in Pakistan. Other regulatory commit-

tees include the Technical Advisory Committee 

and the Institutional Biosafety Committees (Table 

4) that were set up with the notification of the 

Pakistan Biosafety Rules 2005, issued under the 

Pakistan Environmental Protection Act 1997 of 

the Ministry of Climate Change. Accordingly, the 

National Biosafety Guidelines 2005 were devel-

oped and notified to provide a roadmap, proce-

dures, and protocols to evaluate the safety and 

efficacy of GM crops in Pakistan. The Pak-EPA also 

institutionalizes the National Biosafety Centre to 

coordinate the evaluation process among differ-

ent committees. In 2010, Pakistan approved the 

commercial release of its first GM crop, Bt cotton.

In recent years, Bangladesh has created a unique 

biosafety regulatory system under the Bang-

ladesh Biosafety Rules 2012 and the Biosafety 

Guidelines of Bangladesh 2007, comprising key 

biosafety committees led by the National Com-

mittee on Biosafety that is administered by the 

Ministry of Environment and Forests. Another 

committee is the National Technical Committee 

on Crop Biotechnology of the Ministry of Agricul-

ture that evaluates and recommends decisions 

to the National Committee on Biosafety on GM 

crops and to the Biosafety Core Committee of the 

Ministry of Environment and Forests. This pro-

vides the obtained technical comments and rec-

ommendation on GM crops and informs the In-

stitutional Biosafety Committees of the respective 

institutes that assess and monitor the research 

and development activities of GM crops at the 

Country Regulatory Agency Administrative  Ministry Approved GM crops

India Genetic Engineering Appraisal Committee (GEAC) 
Review Committee on Genetic Manipulation 
(RCGM)/Institutional Biosafety Committee (IBSC)

Ministry of Environment, Forests and Climate 
Change (MOEF&CC)/Department of Biotechnology 
(DBT)

Cotton

Pakistan National Biosafety Committee (NBC)/Technical 
Advisory Committee (TAC)/Institutional Biosafety 
Committee (IBC)

PAK-EPA/Ministry of Climate Change Cotton

Bangladesh National Committee on Biosafety (NCB)/National 
Technical Committee for Crop Biotechnology 
(NTCCB)/Biosafety Core Committee (BCC)/
Institutional Biosafety Committee (IBC)

Ministry of Environment and Forest (MOEF)/Ministry 
of Agriculture (MOA)

Brinjal

Myanmar National Seed Committee (NSC) Ministry of Agriculture and Irrigation (MOAI) Cotton

Table 4. Regulatory agencies on GM crops in key South Asian countries 
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institute level (Hussain and Lagos, 2014). These 

committees coordinate the biosafety assessment 

of GM crops from laboratory experiments all the 

way to approval for commercial release. NCB is 

the apex decision making body on approving the 

commercial release of GM crops in the country. In 

October 2013, the NCB approved the commercial 

release of the country’s first GM insect-resistant 

Bt brinjal. Bangladesh is an exemplary model for 

the successful public-private partnership and de-

livery of the benefits of Bt brinjal to resource-poor 

farmers in South Asia. Bt brinjal was developed by 

the Bangladesh Agricultural Research Institute in 

collaboration with the private Indian seed compa-

ny Mahyco and had been facilitated by the Agri-

cultural Biotechnology Support Project, funded by 

the United States Agency for International Devel-

opment. It was the first collaborative project on 

GM crops between India and Bangladesh.

The biosafety regulatory framework of other 

Asian countries is either at the draft or conceptual 

stage. Myanmar is the only country in South Asia 

that approved the commercial cultivation of a GM 

crop, a long staple Bt cotton variety “Ngwe Chi 

6”, without a national biosafety system in place. 

However, this Bt cotton variety “Ngwe Chi 6”was 

approved by the National Seed Committee of the 

Ministry of Agriculture and Irrigation in 2010. In 

the past, the Ministry of Agriculture and Irrigation 

with the help of the Global Environment Facility 

of the United Nations Environment Programme 

(UNEP GEF) drafted the Myanmar National Bi-

osafety Framework 2006 that aims at balancing 

the use of biotechnology with ensuring human 

health and biodiversity (www.unep.org/biosafe-

ty/files/MMNBFrep.pdf). In the meantime, Myan-

mar has benefited from the large-scale planting 

of Bt cotton from 2006 to 2014. At national level, 

cotton production has more than doubled from 

271,069 MT in 2006-07 to 618,220 MT in 2012-

13 (James, 2014). Yields of the long staple cotton 

increased to 2,100 kg per hectare as compared 

to the yield of 450 kg per hectare for short staple 

cotton. Brookes and Barfoot (2014) estimated an 

enhanced farm income at US$293 million for the 

period 2006 to 2013 and the benefits for 2013 

alone at US$28 million. In this context, therefore, 

the draft biosafety framework needs a critical revi-

sion for developing a cost- and time-effective reg-

ulatory system to officially introduce double gene 

Bt cotton varieties in the country. Similarly, the 

UNEP GEF assisted Sri Lanka to draft its National 

Biosafety Framework 2005 and the Guidelines for 

the Safe Use of Recombinant DNA Technology in 

the Laboratory 2005 (LKNBFrep.pdf). The biosafe-

ty framework was prepared to ensure that poten-

tial risks resulting from modern biotechnology 

applications and its products would be minimized 

and that biodiversity, human health, and envi-

ronment would be protected in a maximum way 

(Gupta et al., 2014). Meanwhile, the Government 

of Sri Lanka notified the Food (Control of Import, 

Sale, and Labeling of Genetically Modified Foods) 

Regulation 2006 to ensure the proper regulation 

of the transboundary movement of GM crops. 

The Government of Sri Lanka is also drafting the 

National Biosafety Act to create a workable frame-

work for experimentation, export, import, and 

commercial release of GM crops. Other South-

Asian countries, including Bhutan, Afghanistan, 

and Maldives have very limited activities involving 

GM crops.

Impact of GM crops in South Asia
Four South Asian countries have harnessed enor-

mous benefits from GM crops as evidenced by 

the rapid uptake and expansion of GM crop culti-

vation. India achieved a near 95% adoption of Bt 

cotton at the national level between 2002 to 2014 

and similarly of 88% in both Pakistan and Myan-

mar between 2010 and 2014 (Table 3). Notably, 

the adoption of Bt cotton was distributed even-

ly among all the cotton-growing areas in these 

countries, irrespective of farm size and status 

of farmers in the society. Empirical studies show 

significantly reduced cultivation cost and increase 

in cotton production due to the wide-scale adop-

tion of Bt cotton. Further, the adoption of Bt cot-

ton allowed farmers to reduce insecticide sprays 

for the management of Helicoverpa armigera  

from on average more than 24 to only 2-3 sprays 

per season. Uniquely, the market share for cot-

ton insecticides as a percentage of total insec-
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ticides decreased from 46% in 2001 to 20% in 

2011 and, more specifically, from 71% in 2001 

to 3% in 2011 for the insecticide against cotton 

bollworm (Choudhary et al., 2014a). The same 

trend was observed in Bt cotton areas of Paki-

stan and Myanmar. In Pakistan, a Bt cotton study 

noted important health and environmental ad-

vantages in terms of reduced incidence of acute 

pesticide poisoning and increased higher farm-

land biodiversity with reduced soil and ground-

water contaminations, respectively (Kouser and  

Qaim, 2013).

On the production side, Bt cotton contributed 

not only to an increase in productivity at farm 

level, but also in doubling the cotton production 

in India and Myanmar. In Myanmar, farmers in-

creased the long-staple cotton yield by 125% 

from 2006-2007 to 2013-2014, resulting in a net 

income estimated at US$ 138 million for the pe-

riod 2006 to 2013 and at US$ 28 million benefits 

for 2013 alone (Winn and Vasquez, 2011). In In-

dia, the acreage expanded rapidly from 9 million 

hectares to 12 million hectares, thus developing 

non-traditional cotton areas in the semi-arid trop-

ics. Consequently, the national cotton production 

increased from 13.6 million bales in 2002-2003 to 

39 million bales in 2013-2014, almost a tripling of 

cotton production in twelve years. Figure 2 shows 

a strong correlation between the large-scale 

adoption of Bt cotton and a positive trend in cot-

ton production, regardless of yearly fluctuations 

in cotton yield (Choudhary and Gaur, 2015).

As a result, the South Asian input to the global 

cotton production improved from 20% in 2001 

to 33% in 2014. In India, the average cotton yield 

evolved from 308 kg lint per hectare in 2001-2002 

to more than 500 kg lint per hectare in 2013-

2014. Bt cotton enhanced farm income by US$ 

16.7 billion in the twelve year period 2002 to 2013 

and US$ 2.1 billion in 2013 alone. Hence, farmers 

across the countries preferred to grow Bt cotton 

because it became comparatively more profitable 

than other crops, such as millets and legumes. 

In Pakistan, the gains from the large-scale cultiva-

tion of Bt cotton were limited to the production 

costs and were not observed on cotton produc-

tivity, largely due to a lack in proper supply of Bt 

cotton varieties, adverse weather conditions, and 

infestation by the cotton leaf curl virus in the ma-

Figure 2. Impact of Bt cotton on the cotton production in India (1950 to 2015). Source: Blaise et al. (2014); 

adapted from James (2014).
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jor cotton-producing Punjab province. Notably, at 

the national level, Bt cotton had been estimated 

to deliver a total benefit of US$ 701/hectare, in-

cluding the health and environmental benefits 

of US$ 195/hectare (Kouser and Qaim, 2013). 

Translation of these benefits into gross benefits 

would have provided economic gains from Bt cot-

ton varieties for Pakistan of US$ 615 million for 

2010-2013 and US$ 368 million for 2013 alone 

(Brookes and Barfoot, 2014).

The commercial approval of Bt brinjal in Bangla-

desh, although limited to 12 hectares and grown 

by 120 farmers in 2014, demonstrated the effec-

tiveness of the Bt technology in the field also for 

brinjal. In line with the data generated during the 

field experiments, Bt brinjal substantially reduced 

insecticide sprays, namely by 70-90%, diminish-

ing the production cost of unblemished fruits, 

enhancing yield (by at least 30%) and fruit mar-

ketability, and thus increasing income and return 

from the local market. In terms of value, farmers 

spent less on pesticide sprays resulting in a net 

economic benefit of US$ 1,868 per hectare over 

non-Bt brinjal (Choudhary et al., 2014b). Empirical 

results suggest that the large-scale cultivation of 

Bt brinjal could generate a substantial economic 

benefit for approximately 150,000 brinjal growers 

in Bangladesh.

Experiences from four GM crops growing coun-

tries in South Asia indicate a rapid adoption and 

acceptability of GM crops by smallholder farmers. 

It has been demonstrated that the Bt technology 

is scale neutral and has delivered similar benefits, 

if not more, to smallholder farmers in develop-

ing countries as to the large scale farmers of in-

dustrial countries. Figure 3 captures the trend in 

adoption of Biotech cotton by large scale farmers 

in USA from 1996 to 2015 as compared to the 

smallholder Bt cotton farmers in India from 2002 

to 2015.      

Future prospects of GM crops  
in South Asia
Crop improvement by integrating the best bio-

technological traits and optimal germplasm re-

mains the key priority for most of the South Asian 

region. Biotechnological traits have opened an 

enormous opportunity to complement conven-

tional selection and mutation breeding. From the 

vast experience of growing GM crops in India, Pa-

kistan, Myanmar, and Bangladesh, GM crops obvi-

ously offer the possibility to tackle challenges rou-

Figure 3. Adoption of biotech cotton by famers in the USA and India, 1996 to 2015. 

Source: Analyzed by Bhagirath Choudhary, 2015
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tinely encountered by farmers and, therefore, to 

help improve crop productivity, enhance income 

and ensure livelihood. As of now, the countries 

in South Asia have only experienced the IR ben-

efits of GM crops. The opportunities of promising 

commercial GM traits cultivated in other parts of 

the world need to be explored to advance the 

crop improvement paradigm. These traits include 

HT, virus resistance, drought tolerance, quality 

traits, and above all multiple trait stacking to opti-

mize resource utilization and to maximize input- 

output return.

Ongoing field experiments in South Asia (Table 

5) of GM crops include IR/HT, but also nutritional 

enhancement, disease resistance, nitrogen use 

efficiency, and salinity tolerance. A dozen crops 

with these GM traits have either been analyzed 

in laboratories or are at the event selection and 

confined-field trial stages in India, Pakistan, and 

Bangladesh. These crops and traits are likely can-

didates for commercial approval in the South 

Asian region in the near (1-3 years) to medium 

term (2-5 years).

The continuation of field experiments and possi-

ble commercial approval hinge on multiple factors 

that differ from country to country. Bangladesh 

forges ahead with great emphasis on GM crops 

developed preferably by public-sector institutes. 

Besides Bt brinjal, Bangladesh is testing Asia’s first 

late blight-resistant (LBR) potato (Solanum tubero-

sum) varieties, developed by the public sector in-

stitute Bangladesh Agricultural Research Institute 

and the Potato Research Centre and facilitated by 

the United States Agency for International Devel-

opment led the Agricultural Biotechnology Sup-

port Project. This LBR potato carries a resistance 

gene from a wild-type potato (Solanum bulbocast-

anum) species that would significantly reduce 

the amount of fungicides and result in increased 

potato yield and quality. Golden rice is another 

public-sector product developed by the Bangla-

desh Rice Research Institute in collaboration with 

the International Rice Research Institute and has 

been field-tested in the last couple of years. Re-

cently, Bangladesh field tested the IR cotton vari-

ety developed jointly by Supreme Seed (Dhaka) in 

association with the Hubei Provincial Seed Group 

Co. (China) in the field. This Bt cotton variety was 

Country Crop Gene/Traita Organizationb Status

Bangladesh Brinjal  
(5 additional 
varieties)

Cotton

Potato

Golden Rice

IR

IR

LBR

NE

BARI

Supreme-Hubei Seeds

BARI/ABSP-II

BARI/IRRI

Final stage

Import approval and field testing

Confined field trials

Confined field trials

India Cotton

Maize

Mustard

Brinjal

Brinjal

Chickpea

Rice

Rice

Rice

IR and HT

IR/HT

PQ

IR

IR

IR

NUE

ST

AP

Mahyco/Monsanto

Monsanto

Delhi University

Mahyco

Bejo Sheetal/Ankur/Rasi

Sungro Seeds

Mahyco

Mahyco

BASF

Pending commercial approval

Biosafety research level 2 stage

Final Stage

Under moratorium

Biosafety research level 1 stage

Biosafety research level 1 stage

Biosafety research level 1 stage

Biosafety research level 1stage

Event selection trial

Myanmar Cotton IR (double gene) MOAI Final stage

Pakistan Cotton

Maize

Sugarcane

Wheat

IR and HT

IR and HT

-

-

Monsanto

Monsanto, Pioneer, Syngenta

NIBGE 

NIBGE

Import permit granted; no trials yet

Advanced field trials

Field trials

Field trials

Table 5. Status of GM field trials in key South Asian countries, 2015

a �AP, Agronomic Performance; IR, Insect Resistance; HT, Herbicide Tolerance; LBR, Late Blight Resistance; NE, nutritional enhancement; 
NUE, nitrogen use efficiency; PQ, product quality, ST, salinity tolerance.

b �ASBP-II, Agricultural Biotechnology Support Project II; BARI, Bangladesh Agricultural Research Institute; BASF, Badische Anilin und Soda 
Fabrik; IRRI, International Rice Research Institute; MOAI, Ministry of Agriculture and Irrigation; NIBGE, National Institute for Biotechnology 
and Genetic Engineering.
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field tested in the Kharif (monsoon) 2015 season 

for evaluating the safety, efficacy, and agronomic 

performance. Bangladesh aims at increasing cot-

ton production to offset the huge import of raw 

cotton from India and China and to sustain the 

growing textile industry in the country.

Pakistan suffered an enormous opportunity cost 

in not taking full advantage of Bt cotton due to the 

absence of a comprehensive policy on GM crops, 

protection of plant variety system, and uncertain-

ty surrounding biosafety regulation. The policy 

and regulatory uncertainty compounded when 

the Federal Government of Pakistan enacted the 

18th Amendment in pursuant of the Constitution 

(18th Amendment) Act 2010 that devolved many 

federal subjects, including environment, to the 

Provinces in April 2010. Subsequently, agricul-

ture, environment, and biosafety matters were 

reorganized between the Federal level and the 

Provinces and also among various ministries at 

the Federal level. At present, the National Biosafe-

ty Centre (NBC) functions under the Environmen-

tal Protection Agency (EPA) and is administered 

by the Ministry of Climate Change. For the last 

two years, NBC is working without any permanent 

staff and the EPA officials are temporarily looking 

after the NBC affairs with a very limited technical 

capacity to handle cases related to field trials and 

commercial approval of GM crops. In 2016, two 

important GM crops that await commercial ap-

proval include Bt/HT cotton and Bt/HT maize.

Myanmar drafted a National Biosafety bill in 2006, 

but realized that it needs to be reviewed and en-

acted by the parliament before other GM crops 

can be introduced into the country.

Bhutan maintains its GM-free status as far as cul-

tivation is concerned, following the decision in 

April 2011 to ban GM crops issued by the Ministry 

of Agriculture and Forestry. However, the coun-

try allows the import of processed and semi-pro-

cessed GM products that are incapable of repro-

duction and of which the safety assessment has 

been conducted in the country of origin (Yang-

zom, 2014). As of 2015, Bhutan is considering the 

enactment of the Biosafety Bill 2014 that should 

clear the way for experimentation, commercial 

release, and import and export of GM foods in  

the future.

The future prospects of GM crops in India re-

main unclear after the moratorium on Bt brinjal 

imposed by the Ministry of Environment and 

Forests in February 2010, although it had been 

approved in October 2009. However, after the 

moratorium period, the regulatory system has 

become indecisive, causing delays and discontin-

uation of field testing of GM crops. The additional 

requirement of the “no objection certificate” from 

(the) State(s) prior to conducting field trials has 

further complicated the regulatory system. In 

2014, the country has made significant strides 

on the regulatory front by granting approval for 

field trials of IR/HT maize in Maharashtra in the 

kharif 2014 season and of GM mustard (Brassica 

juncea) in Punjab and New Delhi in rabi (spring) 

2014 season. Other GM crops, such as brinjal, 

rice, and chickpea (Cicer arietinum) that received 

permission to undergo field trials are awaiting 

the “no objection certificate” from the respective 

States. In the same year, GEAC also approved 

four biotech events of soybean (Glycine max) for 

import and use as feed. In 2016, India is expect-

ed to consider the commercial approval of GM 

mustard (Brassica juncea) with enhanced hetero-

sis. Table 5 presents a comprehensive list of GM 

crops that are under field trials and nearing com-

mercial approval in India.

In 2016, India is likely to either approve or reject 

the commercial release of Bt/HT cotton devel-

oped by Mahyco, GM mustard by Delhi University, 

and Bt/HT maize developed by Monsanto. These 

three GM crops have completed the required 

tests for safety, efficacy, and agronomic perfor-

mance. These crop developers are expected to 

submit the final biosafety dossiers for commercial 

release to GEAC in 2016. Therefore, it is impor-

tant for the country to overcome the bottlenecks 

in the current regulatory system and critically 

evaluate the potential of GM crops in improving 

production and productivity of important crops.
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Finally, it is noteworthy to recognize that the farm-

ers in India, Bangladesh, Pakistan, and Myanmar 

have adopted GM crops, including Bt cotton and 

Bt brinjal. Although the experience of growing GM 

crops has been remarkable, but limited to cotton 

and brinjal only, a large number of GM crops and 

traits are being field tested in the South Asian re-

gion. GM crops, such as Bt/HT cotton, Bt/Ht maize, 

Bt chickpea, Bt brinjal, Golden rice, LBR potato, and 

GM mustard are important crops for smallholder 

farmers in South Asia. These GM crops and other 

crops in the pipeline will only be cultivated provid-

ed the governments in the respective South Asian 

countries show strong political will and support 

that are essential to ensure that these GM crops 

reach the South Asian farmers. The way forward 

for the South Asian counties is to develop South-

South collaborations to avoid “reinvention of the 

wheel” and promote the Public-Private Partner-

ships to quickly deliver GM crops to those who 

need them the most.
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Abstract
Advances in forest biotechnology have the poten-

tial to deliver step changes in woody biomass pro-

ductivity and process efficiency and an expansion 

of quality, scope, and scale of forest products and 

services. Well-placed, well-managed plantations 

of yield-enhanced, yield-protected tree varie-

ties could deliver far more than simply meeting 

market fiber demand. By using degraded land, 

above- and belowground carbon sequestration 

and avoided deforestation impacts would be con-

siderable. Transfer and uptake of best practices 

to developing countries could help address rural 

development, food security, and poverty allevia-

tion objectives of the Post-2015 Development 

Agenda of the United Nations. Driven by appro-

priately designed supply chain transformation 

initiatives, responsible procurement policies, and 

consumer-driven awareness, investments in bio-

mass-based chemicals and fuels could be part of 

means to ease fossil-fuel dependency, uncouple 

growth from emissions, and open a new era for 

sustainable materials. Advances in imaging and 

mapping technologies, coupled with progress in 

field-sensing technologies will allow precision ag-

riculture and forestry to be deployed effectively 

in ways that spare high conservation value areas  

and identify areas for ecosystem restoration. 

Underpinning all these aspects will provide new 

standards for incorporation of the free prior and 

informed consent of local communities and for-

est-dependent populations, including transpar-

ency and verification.

 

Introduction
To prevent natural resources from becoming 

binding constraints for development, the world 

economy must be better reconciled within the 

finite global ecosystem. With limited scope for 

sustainable resource throughput, ensuring well 

being within planetary boundaries will require 

transformational changes in resource use effi-

ciency to meet increasing, diversifying, and shift-

ing demands. In practical terms, step changes 

in productivity and process efficiency will be re-

quired as well as expansion in quality, scope, and 

scale of products and services.

The social, economic, and environmental dimen-

sions of forests and forestry will permeate every as-

pect of this transformation – from driving new en-

ergy solutions and supporting rural development, 

Greening the Supply Chain:  
The potential for a forest 
biomass-based bio-economy*
Mike May1, Stanley Hirsch1 and Eugenio Cesar Ulian2

1 �FuturaGene Ltd., Park Tamar, PO Box 199, Rehovot 7610102, Israel
2 FuturaGene Brazil Tecnologia Ltda, Itapetininga, CEP 18207780, São Paulo, Brazil

* This paper is dedicated to the memory of Eugenio Ulian, Vice President for Regulatory Affairs, who died tragically in a cycling accident 
on May 24, 2015 in Brazil.
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to mitigating climate change and safeguarding the 

ecosystems on which future generations will de-

pend. Sustainable production practices coupled 

with novel woody biomass utilization have the po-

tential to steer the transition toward a low-carbon 

development trajectory – a bioeconomy – that 

would reduce dependency on fossil fuels and 

uncouple growth from emissions. In June 2012, 

during a side event of the Food and Agriculture 

Organization of the United Nations (FAO), Inter-

national Council of Forest and Paper Associations, 

Associação Brasileira de Celulose e Papel, and 

partners at Rio +20 entitled “Forests: the heart of 

a green economy”, we presented a systems-based 

view of the needs to attain this goal (available at:  

http://www.futuragene.com/en/presentations.aspx).

This proposal of doing more with less outlined the 

building blocks of an innovation-driven, technolo-

gy-rich trajectory for the forestry sector toward a 

world in which 9 billion people will live well in 2050 

within planetary boundaries. In this change theory, 

there are three critical assumptions. Firstly, a funda-

mental prerequisite is to bring together an interde-

pendent clustering of forest and forestry stakehold-

ers (private sector, non-government organizations, 

government, the United Nations system, finance, 

and research community) to design and implement 

a bioeconomy based on sustainable production, 

trade, and consumption of forest products. Second-

ly, scientific and technological innovations will be im-

plemented that will drive biomass productivity and 

process efficiency and expand the quality and scope 

of products and services on scale and time. Thirdly, 

mechanisms for technology transfer and enhanced 

international cooperation will be required to enable 

conveying biomass-based industrial development 

tools and practices to developing countries. Implicit-

ly, the mechanisms are to favor uptake of advanced 

technology by smallholders and enhancement of 

their access to local and international markets.

All assumptions, addressing the political, social, 

economic, and technological barriers to the im-

plementation of a forest biomass-based bioecon-

omy would need to be adopted in unison. There-

fore, the immediate requirement is a new vision 

on forest policy cohesion, local and international 

cooperation, and scientific collaboration.

In our opinion, the potential for this vision to 

emerge is real, based on the premise that in-

vestment in a forest biomass-based bioecono-

my is the cheapest, most accessible, and dura-

ble option for simultaneously achieving climate 

change mitigation and sustainable development 

agendas. The experience of the Brazilian plant-

ed forest sector provides insights into a possible 

forest biomass-based solution and the required 

impact-delivering conditions. The priority areas 

are intensification of sustainable plantation man-

agement, increase in downstream products and 

services based on woody biomass, frameworks to 

direct research to meet productivity challenges 

and to provide technology governance, diffusion 

and uptake, down to the local level, and mecha-

nisms to guide consumer acceptance of scientific 

and technological innovations for sustainable in-

tensification. This chapter takes a critical look at 

this vision viability, convergence of the individual 

components of the trajectory, validation of the 

assumptions made, and assessment of the influ-

ences of recent trends in the political landscape.

The productivity challenge
The ways in which strategies for transforming 

land, water, and energy use are designed and im-

plemented will be decisive in determining future 

well-being within planetary boundaries. Currently, 

the patterns of land and resource use and scale 

and intensity of changes in land use threaten the 

ecological infrastructure of the planet. From a 

climate perspective alone, agriculture, forestry, 

and other land use account for just under 15% 

of anthropogenic greenhouse gas emissions (ap-

proximately 10-12 gigaton (Gt) CO2 equivalent/

year) (Smith et al., 2014). There is robust evidence 

and high levels of agreement that “Leveraging the 

mitigation potential in the [forest] sector is extreme-

ly important in meeting emission reduction targets” 

(Smith et al., 2014). Forests, sustainably managed 

forestry operations, and forest products are car-

bon sinks: whereas forests cover only 12% of the 

planet, they store 66% of all terrestrial carbon, 

providing 30% of the total mitigation capacity 
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needed to abate the rise in atmospheric carbon 

over the next 20 years (Dobbs et al., 2007), ab-

sorbing roughly 50% of fossil fuel-based green-

house gas emissions in 2009 (Stevens et al., 

2014). Any realistic climate change attenuation 

or adaptation strategy must invoke a comprehen-

sive forest protection plan. Prevented defores- 

tation would provide 5.8 of the estimated 17 Gt 

CO2 equivalents necessary to keep atmospheric 

carbon concentrations below 450 ppm, of which 

planted forests could provide 1.5 Gt CO2 equiv-

alents (Dobbs et al., 2007). By halving deforesta-

tion, net benefits of approximately US$ 3.7 trillion 

over the long term (Eliasch, 2008) (counting only 

the avoided damage costs of climate change) 

could be generated, taking advantage of the 2 

billion hectares of degraded land that are avail-

able for reforestation, of which 75% in Africa 

(Minnemeyer et al., 2012). A coordinated effort is 

imperative to slow, halt, or reverse deforestation 

and forest degradation from 13 million hectares  

per year.

Leadership is required to successfully integrate 

the future role of forests, sustainable forestry, 

and forest product trade and consumption in this 

complex agenda, because wood harvesting could 

triple to approximately 10 billion m3 in 2050 (WWF, 

2011a/b/c/d, 2015). As market demand for food, 

fiber, and fuel will increase in the coming decades, 

so will the impact on the planet’s natural resourc-

es. The costs of inaction are not acceptable: the 

global economic cost of climate change caused by 

deforestation is estimated to possibly reach US$ 1 

trillion a year (net present value) by 2100 (Eliasch, 

2008). Therefore, actions to halt or slow deforest-

ation by responsible investment in agriculture are 

needed, conceivable, and effective.

What is needed is a step change in the efficiency 

of production that can only be achieved through 

a technological upgrade to intensify existing prac-

tices for agricultural commodity production. The 

development of appropriate technologies and 

standards to guide development and use will be 

an essential prerequisite for ensuring a sustaina-

ble and general next innovation wave.

Sustainable intensification of woody 
biomass productivity
The forest sector faces the significant challenge 

of reducing logging pressure on natural forests, 

while meeting growing, diversifying, and shifting 

demands. Plantations are increasingly being seen 

as part of the solution (Forest Stewardship Coun-

cil [FSC], 2012), because they produce more wood 

on less land than natural forests and, hence, 

could spare land for other uses. In 2006, whereas 

tree plantations comprised only 7% of total forest 

area, they provided 50% of industrial roundwood 

(Jagels, 2006). These “Intensively Managed Plant-

ed Forests” provided 40% (Kanowski and Murray, 

2008), yielding far more wood per hectare than 

natural forests, especially close to the equator.

However, to meet future demands and avoid 

logging of natural forests, the plantation area 

will need to double by 2050: roughly 250 million 

hectares of new plantations (WWF, 2011a/b/c/d 

2015). The Forests Solutions Group of the World 

Business Council for Sustainable Development 

(WBCSD, 2012) defined a set of clear forestry 

sector deliverables to ensure the transition to a 

world in which “9 billion people live well and within 

the limits of the planet”, including increasing forest 

carbon stocks by 10% (239 Gt CO2 or 6.8 Gt CO2/

year between 2015 and 2050) by: (i) significantly 

reducing tropical deforestation by 5 million hec-

tares per year (savings of nearly 5 Gt CO2/year); 

(ii) reducing harvest in modified natural forests 

by 4 million hectare per year (for instance by de-

creasing fuel wood harvesting with savings of 0.7 

Gt CO2/year), and (iii) tripling yield and harvest of 

planted forests from 800 million m3 to 2.7 billion 

m3 from 7% to 11% of the world’s forests to meet 

demands for wood, paper, and biomass (sav-

ings of 2.35 Gt CO2/year and a net gain of 1.5). 

Enhancement and protection of yields of plant-

ed forests would be achieved “through genetic 

improvements that emphasize a mix of plant traits 

(drought tolerance, insect resistance, product char-

acteristics) and adaptation to different forest types 

and locations” (WBCSD, 2012).
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How does sustainable plantation 
management work in practice?  
The example of the Brazilian  
Planted Forest sector
The experience of the planted forest sector in 

Brazil provides a striking example of how a blend 

of policy measures, voluntary actions, adoption 

and diffusion of technology, and multi stakehold-

er engagement can transform plantation produc-

tivity from a situation of environmental and social 

crisis. Twenty years ago, plantation-based pro-

duction was considered with concern and oppo-

sition, including from conservationists and social 

nongovernmental organizations. Their worries 

were real, particularly where deep failures of for-

est governance systems and land-tenure issues 

contributed to social deprivation, inequality, and 

environmental degradation.

In Brazil, the development of principles and crite-

ria for sustainable forest management by FSC co-

incided with social and environmental policies of 

the government and plantation strategies of com-

panies to increase intensity, efficiency, and quali-

ty of pulp production. This convergence provided 

a strong incentive for companies and plantation 

owners to plant on degraded land and to save and 

restore protected reserves, all under guidance of 

international conventions and guidelines, such as 

the Convention on Biological Diversity, the Interna-

tional Labour Organization declaration on Funda-

mental Principles and Rights at Work, the FAO Vol-

untary Guidelines for Responsible Management 

of Planted Forests, and the Committee on World 

Food Security (CFS) Voluntary Guidelines on the 

Responsible Governance of Land Tenure (VGGT).

As soon as policy and governance frameworks 

for plantation management are in place, they can 

drive the investments that underpin a globally 

competitive industry that, in turn, can restore de-

graded lands, conserve biodiversity, and support 

rural livelihoods. To date, the experience in Brazil 

has shown that such a goal can be been achieved 

without transferring the additional costs to con-

sumers with the following key impacts. (i) For 

each hectare of forest planted, an average of 0.6 

hectares of natural forest is restored, thus estab-

lishing ecological corridors and mosaics on lands 

that were previously degraded and representing 

a net positive gain of almost 3 million hectares of 

secondary forest and a significant contribution to 

ecosystem functions, such as biodiversity pres-

ervation and carbon storage, absorbing roughly 

64 million metric tons of CO2 from the atmos-

phere every year. (ii) Brazilian plantations-based 

companies work with local communities to agree 

collectively on best practice and integrate rough-

ly 13,000 families into the forestry industry chain 

through outgrower programs in over 1,000 mu-

nicipalities in some of the poorest and most re-

mote areas of the country. In 2013, Brazilian 

plantations-based companies invested US$ 64 

million in social programs, adding multiple values 

to the quality of life of local communities. (iii) Pro-

duction outsourcing is common practice: Suzano 

Pulp and Paper Company sources up to 30% of its 

fiber from outgrowers, mostly smallholders, and 

has helped groups to become certified, covering 

22,400 hectares of plantations and 13,000 of nat-

ural forest to date, thus, providing outgrowers a 

price premium, making income per hectare four 

fold higher than ranching, which is the main rural 

activity in most of the production regions. (iv) To-

day, 100% of the market pulp is produced from 

only 0.7% of all arable land, creating more than 

4.4 million direct and indirect jobs and significant-

ly reducing the pressure to bring natural forest 

areas into production. The joined livestock and 

forestry programs of the Ministry of Agriculture 

targets 70 million hectares of land for integrating 

productivity-enhancing approaches in agriculture 

and forestry.

In Brazil today, the process of developing and im-

plementing policy and standards for plantation 

management has created a framework for an 

on-going dialog around the topic of plantations. 

Although a great deal remains to be achieved, 

some interim findings of significance are that (i)  

deep-rooted conflict can be overcome when lead-

ership on performance standards and coopera-

tion on actions has an impact on common objec-

tives; (ii) a sympathetic approach to ecosystems, 
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local communities, and small forest owners can 

be a viable business strategy, without additional 

costs for the consumers; and (iii) mechanisms 

to distribute and share the benefits of research 

(improvements via conventional breeding) into 

plantation productivity with smallholders can be 

a win-win situation for business and communities.

The Brazilian experience shows the power of what 

can be achieved through guarantee convergence 

between Government and company policies. This 

collaborative framework has fuelled substantial 

investments of plantation companies in improved 

forestry practices, enhanced breeding, rational 

landscape-scale forest zoning, perfected technol-

ogies, ameliorated governance, including strong 

social safeguards, and sound policies. These di-

rect and indirect social and environmental indica-

tors demonstrate the potency of voluntary com-

mitments in creating a system in which targeted 

extraction of natural resources can have a net 

positive impact on social standards and environ-

mental protection.

Market transformation: responsible 
commodity production and trade
Where and how commodities are produced, pro-

cessed, consumed, and financed present a mo-

saic of opportunities and challenges that require 

systemic transformational changes. Forests and 

the sustainable production and consumption of 

forest products are at the centre of this concern.

Sustainable productivity intensification is nec-

essary to meet the increasing demand while  

moving to net zero deforestation and degrada-

tion (Godfrey et al., 2010). Climate resilience and 

carbon neutrality could be achieved by enhanc-

ing plantation yield and developing strategies that 

provide protection against future pest and disease 

outbreaks. The exploitation of new low-volume, 

high-value pathways for the utilization of planta-

tion biomass could generate options for relieving 

dependence on fossil fuel use in the carbon-based 

chemical, specialized fiber, and polymer sector (a 

bio-economy). The Forest Products Association of 

Canada (FPAC) Biopathways study estimated a mar-

ket value of over US$ 200 billion for biomass-based 

products (FPAC, 2011).

However, to achieve an intensified productivity, the 

existing performance standards that were designed 

to manage linear incremental changes will not suf-

fice. Future standards must take the complexity of 

systemic transformational changes into account with 

a governance framework for the highly disruptive 

process of further intensification. Such a framework 

must be conceived to provide social safeguards and 

effective stewardship and to stimulate preferential 

procurement and increased consumer awareness. 

To this end, the Market Transformation Initiative  

(http://wwf.panda.org/what_we_do/how_we_work/

businesses/transforming_markets/) has been cre-

ated, offering a collaborative approach toward 

climate resilience and zero net deforestation and 

degradation through responsible agricultural com-

modity production. The created coalitions cap-

ture 40-50% of demands through leveraging 25%  

of producers.

To incorporate forest productivity into this new 

matrix, scientific and technological innovations 

for enhanced plantation productivity will have to 

be integrated into zoning and land management 

under local social license. The Brazilian experi-

ence of the plantation sector in internalizing the 

costs of ecosystem protection and social license 

could provide an invaluable guidance on what can 

be produced, by whom, and how.

 

The forest sector, the forest certification bodies, 

governments, and civil society have the opportu-

nity to be precompetitive, collectively setting new 

targets for plantation management that will feed 

the supply chains of the future. The creation of a 

governance system with resilience and ambition 

to meet these challenges will depend on dialog 

that addresses the stakeholder concerns over the 

implications of sustainable intensification, thus 

resulting in a unity of baseline criteria. Not only 

would such an alliance deliver credible solutions, 

but it would also have the legitimacy to guide and 

influence global policy arising from the Post-2015 

Development Agenda of the UN.
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The rationale for productivity gain:  
the need for scientific and  
technological innovation
The rationale for intensifying plantation produc-

tivity is based on the formulation of principles, cri-

teria, and indicators. This process is governed by 

the following framework. (i) The world economy 

must be reconciled in a finite global ecosystem, 

if natural resources are not to become binding 

development constraints. (ii) Enhanced resource 

use efficiency will be required to ensure well-be-

ing within planetary boundaries, while meeting 

increasing demand. (iii) In practical terms, step 

changes in productivity and process efficiency will 

be necessary as well as enhanced quality, scope, 

and scale of products and services. (iv) Improved 

process efficiency and scope of products can only 

be achieved by increased dependence on scien-

tific and technological innovation. If the principal 

means to achieve resource use efficiency is to 

produce more from less through an intensifica-

tion of existing practices and, in turn, relies on an 

increased dependence on scientific and techno-

logical innovation, then frameworks will be need-

ed to direct research to meet productivity chal-

lenges and to provide governance for technology 

utilization, diffusion, and implementation, down 

to the local level, and local users.

Therefore, the fundamental challenge and op-

portunity of our time are to develop leadership 

in the formulation of a framework that will mas-

ter production efficiency in transformative ways 

and that stimulates preferential acquisition and 

increased consumer awareness, in which the 

physical challenge is the elaboration and use of 

science and technology for the sustainable in-

tensification of forest commodity production and 

the social challenge has to ensure that technolo-

gy reaches those who need it the most. Further-

more, a behavioral transformation is required as 

well to create a governance framework for the 

highly disruptive and controversial process of  

further intensification.

Risk perception: common objections to 
genetically modified trees
Today, the position concerning genetically mod-

ified (GM) trees is similar to that regarding plan-

tations 20 years ago. The debate on GM trees is 

intimately linked with that on plantations because 

of its relevance to productivity enhancement. 

In 2000, worries over GM trees have led to the 

adoption of policies that prohibit their growth on 

land certified both by the FSC and Programme for 

the Endorsement of Forest Certification (PEFC). 

At present, the FSC Policy on GM organisms bans 

the use of GM trees, but under the Policy of As-

sociation permits field trials of GM trees outside 

the certified areas. Many of these concerns were 

catalogued in 2007 by the United Nations Envi-

ronment Programme (UNEP, 2007) and a subset 

can be found in the FSC Policy for Association.

The vast body of scientific knowledge accumu-

lated through fundamental research carried out 

since 2000 and through the experiences and 

data from the field tests on GM trees carried out 

around the world have provided answers to the 

apprehension against GM trees. A study from 

the European Commission Directorate-General 

(2010) reported that between 2001-2010, a total 

of 50 projects involving more than 400 research 

groups and representing European research 

grants of roughly EUR 200 million had been fo-

cused on GMO safety alone and the funding on 

GMO safety since 1982 was more than EUR 300 

million, involving research on environmental im-

pacts of GMOs, GMO and food safety, and risk 

assessment and management. The main conclu-

sion to be drawn from the efforts of more than 130 

research projects, covering a period of more than 25 

years of research and involving more than 500 inde-

pendent research groups, is that biotechnology, and 

in particular GMOs are not per se more risky than 

e.g. conventional plant breeding technologies”.

A sector-wide interest in the development and 

use of GM trees is primarily to provide the step 

changes needed for yield enhancement and yield 

protection. Before a widespread deployment of 

GM trees, there is a window of opportunity for 
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the FSC and GM tree-developing institutions to 

establish a common framework for the criteria 

that would govern development and utilization.

Safe use of GM technology:  
more than 700 field trials since 1988
A summary of the global status of field tests with 

GM trees in different countries has been pub-

lished (FAO, 2004). Since 1988, more than 700 

approved field trials for GM trees are reported, of 

which 28 species and 32 traits were tested in the 

European Union and 37 species and 36 traits in 

the USA. The large number of species and traits, 

of which many were aimed at environmental ben-

efits, can be attributed to the fact that until 2004, 

the bulk of all trial applications were from pub-

lic sector institutes, representing public sector 

interests, and curiosity-driven, non-commercial 

objectives, including species conservation (Amer-

ican elm [Ulnus americana] and American chest-

nut [Castanea dentata]), and phytoremediation. 

A large body of data was obtained that allowed 

the analysis of many of the technology-related 

concerns, such as gene flow and gene stabili-

ty, and provided a track record of biosafety and  

risk assessment.

Productivity and technology:  
producing more from less
Productivity has to be considered historically to 

understand how research priorities can be built 

to support the objectives of sustainable produc-

tivity intensification. At FuturaGene, the initial fo-

cus has been on yield enhancement to provide 

a step change to the incremental improvements 

obtained over 40 years of conventional breeding 

at Suzano Pulp and Paper Company. Thanks to 

breeding for improved tree varieties, plantation 

productivity has been doubled since the 1970s, 

meaning that the amount of land required to feed 

a 1 million ton per year of pulp mill has decreased 

from 171,500 to 73,500 hectares. If the 1970s 

productivity levels were in practice today, the eu-

calyptus plantation of Brazil would be 9.9, rather 

than 5.1, million hectares. Clonal development 

and breeding provide continuous improvements 

in quality and supply, while maintaining genetic 

diversity. Suzano has a collection of 15,000 clones 

in its breeding programs that offer a robust ge-

netic base for yield improvement, fiber quality, 

and resilience. If enhancing plantation productiv-

ity requires a continued emphasis on increasing 

technical efficiency, then genetic modification 

could be part of the solution. The technology has 

an important relevance in Brazil, where yield im-

provements of eucalyptus through conventional 

breeding are now limited and where the emer-

gence of various pests and diseases demand ur-

gent solutions to adequately protect yields.

Yield-enhanced GM eucalyptus:  
laboratory and field studies
To increase the improvements obtained over 40 

years of conventional breeding at Suzano, the 

present strategic focus is on yield enhancement. 

The most advanced GM trees in the pipeline are 

transformed with the endoglucanase-encoding 

gene from the plant Arabidopsis thaliana. This 

gene is present in all plant species and its product 

is part of normal plant development processes, 

facilitating relaxation of the crystalline matrix of 

the rigid plant cell wall during cell growth, there-

by enhancing overall plant growth. The results 

obtained in field trials under different agroeco-

logical conditions at a variety of locations in Brazil 

show an average yield enhancement of 20% com-

pared to conventional varieties, almost half of the 

entire yield gain achieved over the last 40 years  

of breeding.

Brazilian biosafety regime:  
general considerations
Laboratory and field-testing of the yield-enhanced 

eucalyptus of FuturaGene in Brazil have been 

conducted under the 2005 Brazilian Biosafety law 

11.105 and Normative 5 – GM event characteriza-

tion, environmental testing, and health and safety 

testing. The principles of the Brazilian Biosafety 

law and Normative 5 are based on the provisions 

of the Cartagena Protocol on Biosafety (Secretari-

at of the Convention of Biological Diversity, 2000), 

the Codex Alimentarius, and the precautionary 

principle (1992)4. The Brazilian Biosafety law con-

forms to decision IX/5(1) taken at the 9th Confer-
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ence Of the Parties to the Convention on Biolog-

ical Diversity in 2008 and created the National 

Biosafety Council, the National Biosafety Commis-

sion (CTNBio), the Internal Biosafety Commission, 

and the Biosafety Quality Certificate. CTNBio es-

tablishes all normatives required to perform work 

with GMOs, including Normative 5, for biosafety 

of commercial approvals.

The Brazilian Biosafety law is very strongly com-

parable with other national and regional regimes. 

A comparison with the European biosafety risk 

assessment procedures that are widely acknowl-

edged to be the most stringent in the world re-

veals the two to be essentially equivalent in terms 

of regulatory framework, risk assessment, deci-

sion process, and accompanying measures.

Under this framework, the regulatory field trials of 

FuturaGene have established field performance 

criteria and allowed the collection of biosafety 

data. The design of the studies formulated under 

the directives of the Brazilian Biosafety law ad-

dresses many of the commonly raised concerns 

and directly the decision IX/5(1) of the United Na-

tions Convention on Biological Diversity5.

A dossier was submitted to CTNBio in January 

2014, and in September 2014 at a public audi-

ence in Brasilia, and finally approved for commer-

cial use in April 2015. Approval was based on a 

rigorous examination of the data presented that 

showed a substantial equivalence to convention-

al trees, no risks to animal or human health, and 

no detrimental environmental impact. Indeed, in 

the GM event, an Arabidopsis protein is produced, 

representing a protein family present in all plants 

without homology to known allergens or toxins. 

The GM trees show no visible changes in struc-

ture, other than faster growth rate, without mod-

ifications in fiber, wood, or chemical properties 

nor in pollen morphology or viability. The environ-

mental impact of these GM trees has also been 

rigorously tested without changes in decomposi-

tion rate, nor impact on other organisms, includ-

ing aquatic species, microorganisms, insects, and 

bees. Gene flow studies have been conducted, 

tending to zero at <700 m and the invasive po-

tential of the trees is unchanged, because, as an 

exotic species, the trees cannot cross with wild 

species in Brazil. A number of studies carried 

out under a variety of agroecological conditions 

in different seasons indicate that water usage by 

the GM trees is similar to that of conventional 

varieties, in spite of the faster growth rate. Two 

of the most important insights into the impact of 

the trees on the biophysical soil characteristics 

are provided by studies on soil arthropod diver-

sity and population dynamics as well as on the 

molecular assessment of the diversity of soil bac-

teria and fungi. No differences in the arthropod, 

bacterial and fungal populations occurred when 

the soils of conventional and yield-increased GM 

eucalyptus were compared. Considering that the 

diversity and abundance of these organisms are 

highly dependent on the physical, chemical, and 

hydrological properties of their environment, and 

that any change in water use due to the increased 

4 �Article 1 of the Brazilian Biosafety Law states: “This Law provides for safety norms and inspection mechanisms for the construction, 
culture, production, manipulation, transportation, transfer, import, export, storage, research, marketing, environmental release and dis-
charge of genetically modified organisms – GMOs and their by-products, guided by the need for scientific development in the biosafety 
and biotechnology area, the protection of life and human beings, of animal and plant health, and in compliance with the precautionary 
principle.”

5 �(r) Reaffirm the need to take a precautionary approach when addressing the issue of genetically modified trees;
(s) Authorize the release of genetically modified trees only after completion of studies in containment, including in greenhouse and con-
fined field trials, in accordance with national legislation where existent, addressing long–term effects as well as thorough, comprehen-
sive, science-based and transparent risk assessments to avoid possible negative environmental impacts on forest biological diversity;
(t) Also consider the potential socio-economic impacts of genetically modified trees as well as their potential impact on the livelihoods 
of indigenous and local communities;
(u) Acknowledge the entitlement of Parties, in accordance with their domestic legislation, to suspend the release of genetically modified 
trees, in particular where risk assessment so advises or where adequate capacities to undertake such assessment is not available;
(v) Further engage to develop risk-assessment criteria specifically for genetically modified trees;
(z) Provide the available information and the scientific evidence regarding the overall effects of genetically modified trees on the conser-
vation and sustainable use of biological diversity to the Executive Secretary for dissemination through the clearing-house mechanism;
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productivity of the GM eucalyptus would neces-

sarily result in changes in the populations of these 

indicator organisms, we conclude, that, based on 

the studies carried out so far, the GM eucalyptus 

does not affect the soil hydrology.

Technology diffusion and future  
social impact
One of the major concerns raised against the 

development of GM trees is the consolidation of 

corporate control over land and use of natural 

resources and the deterioration of smallholder 

rights. Will smallholders have access to GM tree 

technologies and will the presence of GM tree 

plantations impact the livelihoods of local com-

munities? In the case of Suzano, the company 

strategy, voluntary agreements with landowners 

(including smallholders), and national legislation 

will determine the rate of technology utilization 

and the diffusion level to other landowners. Su-

zano has specific written procedures for engage-

ment with indigenous people, local communi-

ties, and smallholders within social responsibility 

policies and guidelines. Under these provisions, 

Suzano works closely with local communities 

and, depending on the region, indigenous peo-

ple whether directly as outgrowers, or not. The 

company considers that the use of GM trees can 

bring substantial benefits in the regions in which 

it operates. Approximately 31% of the pulp is de-

rived from over 1,000 forest outgrowers, of which 

80% are smallholders, who have currently access 

to the company’s genetic material (clones) to 

produce eucalyptus wood. Furthermore, the GM 

trees under development would be made availa-

ble for planting in the company’s own plantations 

and to the outgrowers under arrangements sim-

ilar to the existing proprietary non-GM varieties, 

in continuation of the policy of providing access 

to the best available planting material. Free, Prior 

and Informed Consent (FPIC) is part of this pro-

cess and Suzano already follows the certification 

rules regarding FPIC and will maintain them re-

garding GM tree use. The Brazilian Planted Forest 

sector as a whole has evolved through close re-

lationships with local communities to collectively 

agree on best practice and by integrating roughly 

20,000 families in the supply chain through out-

grower programs.

The relevance of the Post-2015 
Development Agenda
A milestone for intergovernmental policy de-

velopment (UN, 2014) is the year 2015. The 

sustainable development goals, the Post-2015 

Development Agenda, and the outcomes of the 

2015 Climate Change negotiations will all be crit-

ical for determining how forests and forestry can 

contribute to future well-being within planetary 

boundaries (Milledge et al., 2014). The fundamen-

tal consideration that runs through the proposed 

outcomes is that unprecedented cohesion, coop-

eration, and collaboration on enhanced efficiency 

in natural resource use will be required to alter 

the trajectory of global development toward a 

“safe operating space for humanity” (Rockström  

et al., 2009).

Cooperation and governance
At the heart of the common interests is the pro-

motion of mechanisms to develop, introduce, and 

ensure sustainable forest management practices 

in an environment of constantly increasing fiber 

demand. Technology and innovation are core ele-

ments in this equation as well as the open dialog 

with all stakeholders regarding appropriate gov-

ernance frameworks to increase forest produc-

tivity. Currently, we strongly believe in a real and 

practical opportunity for developing, in a collab-

orative manner, the governance of technologies 

that would guide research and ensure manage-

ment and diffusion of the technology to those 

who could benefit the most.

By embedding such a framework within existing 

standards for plantation management, the impact 

of GM trees under consideration for participatory 

and negotiated land-use planning, emphasis on 

strengthening smallholder benefits, and biodiver-

sity protection would be addressed. Hence, pro-

ductivity intensification could free land for other 

use, such as food production for local markets 

and biodiversity, further decreasing the logging 

pressure on natural forests and their associated 
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communities, ecosystem services, and biodiversi-

ty. Conditions that promote diffusion and transfer 

of the technology could benefit the communities 

of outgrowers who currently access genetic ma-

terial and clones to produce wood. Such a frame-

work would fully support the findings that set for-

ward the need for sustainable intensification of 

smallholder productivity (FAO, 2014).

The certification bodies could lead this process, as 

they did for plantations, creating a framework that 

is sector wide, but built on case-by-case assess-

ment protocols and relevant national and interna-

tional laws, conventions, and voluntary standards. 

For the scientific and technological innovation a 

similar leadership is needed as the one that gener-

ated the governance frameworks for the principles 

and criteria of plantation management.

Thus, GM trees as a feedstock for a bioeconomy 

are part of the solution for market transformation. 

The GM tree debate and plantations are linked by 

the need for sustainable intensification and, like 

plantations, not all GM trees are equal and their 

impact needs to be assessed on a case-by-case 

basis. The forest sector understands the need for 

productivity enhancement and yield protection 

and is open for cooperation with the civil society 

in a constructive debate on scientific and techno-

logical innovation. Creation of public support to 

accept the social and environmental impact of 

sustainable intensification will depend on the de-

bate quality on the subject. Clearly, convergence 

on governance is needed to ensure sound forest 

management and sustainability in the face of in-

creasing demand and environmental constraints.

Existing dialog platforms provide input 
for decision making
Important concerns over the negative im-

pact of both plantations and GM trees per-

sist. However, to meet the challenge of find-

ing an acceptable way forward on plantations, 

the New Generation Plantations Platform  

(www.newgenerationplantations.org) established 

by WWF in 2007 brought together companies, 

government forest agencies, and civil society 

from around the world to explore, share, and pro-

mote improved ways of planning and managing  

plantations. The experience of the last seven 

years clearly shows that carefully designed and 

managed plantations in the right places can ben-

efit people and nature when they are developed 

through an effective stakeholder participation 

that maintains the ecosystem integrity, protects 

high conservation values, and contributes to in-

clusive green growth.

In parallel, The Forests Dialogue, (www. 

theforestsdialogue.org) is a platform and process 

that is pioneering new standards in multistake-

holder partnership and international dialog to 

resolve current and future conflicts and to define 

solutions for some of the key fracture lines that 

divide opinion – such as FPIC, Intensively Man-

aged Planted Forests, GM trees, and the Food, 

Fuel, Fiber, and Forests.

These forums provide a means to create inputs 

for an informed debate on both plantations and 

GM trees within the certification bodies, for gov-

ernments and for policy makers. Indeed, pre-

cisely agreement on these issues will determine 

how quickly and how effectively the world is able 

to make a transition toward economic, social, 

and environmental renewal. Given that the envi-

ronmental issues of plantation forestry are well 

known and that well-developed tools are availa-

ble, multistakeholder processes are the new fron-

tier to evaluate the process-based technological 

advances and to ensure inclusive local economic 

development, hence, reconciling stakeholder per-

spectives and priorities and bringing innovation 

to the local level and the family farmer.

Conclusions
An inclusive, low-carbon development model is 

required to uncouple growth from gas emissions, 

substitute fossil fuel dependency, and halt or re-

verse present cycles of deprivation, degradation, 

and inequality. In short, a revolution in resource 

use efficiency is necessary (Enkvist et al., 2007). 

The collectively faced challenges are complex and 

so are the solutions. Through vision and action, 
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sustainable intensification of plantation forestry 

provides an opportunity to enhance the quality of 

human livelihoods, while maintaining and protect-

ing the natural resources, biodiversity, and eco-

systems. The way forward is improved and con-

structive dialog on technology, enabling policies 

that stimulate the flow of needed technology and 

investment and the international cooperation in 

technology development and deployment. A ra-

tional debate on two critical aspects of this model 

is essential, namely on the supply-side interven-

tions that are vital for sustainable intensification 

of biomass supply to fuel development, transfer, 

and uptake of the model, and on the multistake-

holder convergence that is mandatory for under-

standing, acceptance, and, ultimately, governance 

of the model. The three most important conclu-

sions are that clearly identified solutions and ben-

efits for increasing the production efficiency exist, 

platforms for dialog are available, and frameworks 

to deliver timely impact on scale are emerging in 

the Post 2015 Agenda of the UN. The key action 

point is the creation of a space for stakeholder 

convergence to collectively promote a cohesive 

policy environment and to enable the switch for 

a transformational change. Progress toward a 

bioeconomy will be determined by how well col-

lective resistance to transformational change can  

be overcome.
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Agriculture and the agribusiness sector are fun-

damental to the livelihoods and food security of 

populations worldwide and form the backbone 

of the economies of many developing countries. 

The sustainable growth of the sector is key in at-

taining the United Nations Sustainable Develop-

ment Goals (SDGs) particularly Goals 1 and 2 to 

end poverty and zero hunger. These goals are as 

important as challenging because the countries 

facing extreme poverty and hunger are also often 

the ones with the highest expected demographic 

growth. In addition, climatic change and variabil-

ity is expected to result in further losses in food 

production and decreased incomes of the people 

whose livelihoods depend on agriculture. This is 

especially true in the poorest regions of the world, 

where smallholder farmers and landless house-

holds dominate the agriculture sector. This book 

highlights the adoption of biotechnology GM 

crops in agricultural systems of some developing 

and emerging countries, in Africa, Asia, Central 

and South America. Although the adoption rate, 

speed and extent was shown to be very diverse 

over the different countries there are similarities 

regarding success, bottlenecks and concerns.

 From the second half of the twentieth century on, 

agriculture has undergone extreme changes and 

exponential growth - thanks to initiatives led and 

encouraged by people like Norman Borlaug (No-

bel Peace Laureate 1970) - with the development 

of high-yielding crops, modernization of farming 

techniques, the use of hybrid seeds, synthetic fer-

tilizers, and pesticides by farmers. Even though 

this so called “Green Revolution” has allowed mil-

lions of people to be saved from starvation and 

has ensured food security in many regions of the 

world, some of the poorest countries to date, 

have not benefited to the highest extent from 

these breakthroughs in agriculture production. 

Biotechnological techniques have further opened 

up an enormous opportunity to complement con-

ventional selection and mutation breeding in in-

troducing new traits into the genetic background 

of an existing crop variety. If not encouraged, it 

might well be that these same countries will not 

benefit from what is today named the second 

green revolution. This new step in agriculture is 

based on the use of genetic engineering technol-

ogies and marker-assisted selection to develop 

new crops and foods that will take the lead in pro-

ducing increased crop yield and nutritional value. 

During the last 20 years, the adoption rate of GM 

crops has been remarkable but, remains limited 

to a few crops (mainly maize, soyabean, cotton 

and canola) and traits (mainly herbicide tolerance 

and insect resistance), which are appealing to 

growers and investors because of the agronom-

ically and economically added value they offer. 

Currently, a number of new GM crops and traits 

are being field tested in different parts of the 

world, including major food crops, such as rice 

and potato, but also crops such as chickpea, mus-

tard, and cassava that are important food crops 

in Asia, South America or Africa. These crops are 

gaining importance on the global markets as ex-

port commodities of the producing countries that 
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are developing. The new upcoming crops and 

traits are the result of multiple international re-

search initiatives started under public, private or 

public private partnerships. These research and 

development initiatives are being conducted to 

produce not only improved GM crops using a 

combination (stack) of existing traits, but also new 

types of GM plants. Newly developed crops aim at 

providing an added value not only to growers, but 

to the consumer as well (vitamin A, iron or folate 

enriched), or present a clear environmental ben-

efit (e.g. nitrogen- or water-efficient plants) with 

the potential to optimize resource utilization and 

to maximize input-output return.  The continu-

ous advancement of technologies, as for example 

the currently heavily discussed Novel Breeding 

Techniques (NBTs), and the increase of biological 

knowledge and comprehension, promises to fur-

ther extend the possibilities for the development 

of crops and traits of high quality.

The cultivation of GM crops is still very much po-

larized to a few countries with the largest areas 

of cultivation in the USA, Brazil, Argentina, India, 

Canada and China. Although only five European 

countries (Spain, Portugal, Czech Republic, Slo-

vakia and Romania) grow GM maize, Europe is a 

substantial importer of GM crops for its livestock 

industry. In the last years, different African coun-

tries conducted field trials with biotech/GM staple 

crops, including rice, maize, wheat, sorghum, ba-

nana, cassava, cowpea, potato and sweet potato. 

However, currently only three countries namely 

Burkina Faso, Sudan and South Africa, are com-

mercially growing GM crops. The reason can be 

attributed to different factors, including the low 

availability of GM crops adapted to regional con-

ditions and regulatory systems that are not yet 

fully operational in every country. Both issues are 

arguments for investors and companies to stay 

away from this market.

Indeed, the regulatory systems concerning GM 

crop cultivation pose a major bottleneck for po-

tential expansion. Laws regulating GM crop culti-

vation are still under development in some cases 

or display a high level of complexity, making com-

mercialization of GM crops difficult. In addition, a 

lack of homogeneity in regulation at an interna-

tional level is hindering commercialization in the 

global market as well. 

To consolidate the successful adoption of GM 

crops worldwide and ensure the long-term sus-

tainability of the production systems, a number of 

institutional issues need to be considered, based 

on the successes, challenges and lessons learned 

from current producers of GM crops. For exam-

ple, Argentina and other countries producing GM 

soybean, have experienced dramatic expansion 

of land allocated to production, as well as the in-

crease in output of grains and oilseeds as a whole. 

This did not only bring significant economic  bene-

fits to these countries, but it also induced a shift in 

land allocation raising questions about the long-

term sustainability of the current farming system 

due to detrimental effects on soil nutrient levels 

and the potential negative impact on fragile eco-

systems. While these concerns are legitimate, the 

cultivation of GM cultivars cannot be incriminated 

as the sole culprits, because it might be more the 

effect of a general and essential need for agri-

culture intensification. Upcoming GM crops with 

novel traits allowing cultivation under higher crop 

densities or using less water and nutrients, sup-

port sustainability in that, increased productivity 

can be achieved without further exploiting the 

scarce water and land resources. This would go a 

long way in amplifying the positive net balance of 

20 years of GM crops. It is therefore important to 

highlight the need for appropriate policy respons-

es aimed at optimizing the management of these 

innovations with adequate biosafety and regula-

tory frameworks and at establishing sustainability 

of agricultural systems. Finally, to ensure every 

country in need benefits from the transfer of 

technology and investment, international cooper-

ation in technology development and deployment 

is essential. Although investors might view crops 

important for developing countries as unable to 

make a return on investment, it could be argued 

that supporting the expansion of local crops in 

developing countries, would invariably lead to in-

creased food security, improved livelihoods and 



better incomes. This would especially be the case 

for the farming communities, who will then be in 

a better position to afford new technologies and 

inputs for their farming and off-farming activities. 

It is therefore also of major importance that the 

adoption of technologies is accompanied by de-

velopment of the entire value chains including 

processing industries and marketing in order to 

create an added value for agricultural production 

and development. 

Although nobody should claim that one technolo-

gy can solve by itself major issues such as hunger 

and poverty, adoption of GM technology com-

bined with an efficient soil, water and pest man-

agement is a promising component for a sustain-

able intensification of agriculture in many regions 

of the world.
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