
RESEARCH ARTICLE

Prediction of Impending Type 1 Diabetes

through Automated Dual-Label Measurement

of Proinsulin:C-Peptide Ratio

Annelien Van Dalem1,2☯, Simke Demeester1,2☯, Eric V. Balti1, Bart Keymeulen1,3,

Pieter Gillard1,4, Bruno Lapauw5, Christophe De Block6, Pascale Abrams7, Eric Weber8,
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Abstract

Background

The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending

type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less

invasive function tests such as the proinsulin:C-peptide ratio (PI:C). The present study aims

to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-

resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic perfor-

mance for predicting type 1 diabetes with that of clamp-derived C-peptide release.

Methods

Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare

TT-TRFIA (AutoDelfia, Perkin-Elmer) with separate methods for proinsulin (in-house

TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive first-

degree relatives (n = 49; age 5–39) were tested for fasting PI:C, HOMA2-IR and hyperglyce-

mic clamp and followed for 20–57 months (interquartile range).

Results

TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96–0.99;

P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-

day %CV for PI:C at three different levels (4.5–7.1 vs 6.7–9.5 for separate methods). In
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high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596;

P<0.001) with first-phase C-peptide release during clamp (also with second phase release,

only available for age 12–39 years; n = 31), but only after normalization for HOMA2-IR. In

ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression

to diabetes equally well as clamp-derived C-peptide release.

Conclusions

The reproducibility of PI:C benefits from the automated simultaneous determination of both

hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the

more tedious hyperglycemic clamp test.

Introduction

There is growing consensus that immune interventions in type 1 diabetes should concentrate

on the presymptomatic disease phase [1–3]. Development of multiple islet autoantibodies indi-

cates a point of no return towards development of type 1 diabetes within 20 years in individu-

als at familial or HLA-DQ-inferred risk but less than 20% of them progress within 2–3 years

[3–5]. Immune intervention trials in asymptomatic type 1 diabetes require identification of a

subgroup with a much higher overall progression rate in the short term, in order to reach con-

clusions within a reasonable timeframe [5, 6]. We recently reported that detection of a

decreased first- or second phase C-peptide release during hyperglycemic clamp–the gold stan-

dard for beta cell function assessment [7, 8]–could serve this purpose, particularly when

applied in individuals positive for autoantibodies directed against IA-2 (IA-2A) or zinc trans-

porter 8 (ZnT8A) [9–12].

For large scale implementation more simple, minimally invasive alternatives to the hyper-

glycemic clamp are warranted [5, 13]. An increased proinsulin:C-peptide ratio (PI:C) has been

proposed as functional screening marker to identify multiple autoantibody-positive individu-

als at high risk of impending diabetes [14–16]. However, nutrient intake and the additive

errors of the proinsulin (PI) and C-peptide assays may negatively influence consistency of PI:C

during follow-up [14, 17]. When using separate immunoassays, between-assay imprecision of

this ratio ranged between 9.0 and 11.8% [14, 17]. This variability could be improved by select-

ing precise methods to determine both hormones separately [18, 19] or by measuring both

peptides simultaneously in the same reaction vessel [17]. We therefore developed a trefoil-type

time-resolved fluorescence immunoassay (TT-TRFIA) for simultaneous measurement of C-

peptide and PI, taking advantage of a common monoclonal capture antibody against the C-ter-

minus of C-peptide, and two differentially labeled monoclonal detection antibodies: one

directed against the N-terminus of C-peptide, and another against an epitope of the insulin

moiety of PI [17].

Here we have further automated this test by adapting it to the Autodelfia 1235 instrument

(Perkin-Elmer, Massachusetts, USA) which is likely to further reduce assay imprecision and is

also warranted in view of the screening effort needed to identify individuals with impending

diabetes among family members and, even more so, in the general population [20]. In the pres-

ent report we compared the analytical performance of this automated TT-TRFIA for PI:C with

that of state-of-the-art assays for C-peptide [18] and PI [19]. We next investigated the diagnos-

tic performance of the automated dual-label TT-TRFIA to predict progression to diabetes
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within 2 years in first-degree relatives at high autoantibody-inferred risk in parallel with that

of clamp-derived C-peptide release.

Methods

Participants

Offspring and siblings (n = 49; 5–39 years) of type 1 diabetes patients at high autoantibody-

inferred risk (IA-2A+ or ZnT8A+ plus�1 other autoantibody; ca 45% 5-year risk) [9] were

enrolled by the Belgian Diabetes Registry and underwent a metabolic assessment, consisting of

an oral glucose tolerance test (OGTT) and a hyperglycemic clamp test and were followed every

6 to 12 months. Children (n = 13; 5–11 years) only underwent the first 10 min of hyperglyce-

mia [12]. Baseline samples of the clamp were used to assess fasting PI:C, PI, C-peptide, glucose

and HOMA2-IR. Progression to diabetes was ascertained as before [12]. At diagnosis accord-

ing to American Diabetes Association criteria [21] patients were shifted to intensive insulin

treatment.

Written informed consent was obtained from each participant or from their parents in case

of minors. The study protocol was approved by the Ethics Committees of the Belgian Diabetes

Registry and participating university hospitals where the metabolic tests were performed (lead-

ing Ethics Committee: Universitair Ziekenhuis Brussel; non-leading Ethics Committees: Uni-

versitair Ziekenhuis Antwerpen, Universitair Ziekenhuis Gent, Universitair Ziekenhuis

Leuven; B.U.N. 143201422342) and conducted according to the Declaration of Helsinki as

revised in 2013 (http://www.wma.net/en/30publications/10policies/b3/, accessed on July 13th,

2016).

Hormonal assays were compared by split-sample analysis of anonymous surplus plasma

samples from the biobank of the Belgian Diabetes Registry obtained after informed consent (B.

U.N. 143201524128) for measuring pancreatic hormones and other early markers of type 1

diabetes at the Department of Clinical Chemistry and Radio-immunology (Universitair Zie-

kenhuis Brussel) which acts as reference laboratory for the Belgian Diabetes Registry [17].

Beta cell stimulation tests

During OGTT blood was sampled to determine glucose, PI, C-peptide and PI:C before and at

min 15 (only in some relatives), 30, 60, 90 and 120 after an oral glucose load of 1.75 g/kg with-

out exceeding the maximum of 75 g [11, 12]. A hyperglycemic clamp test was performed 1–2

weeks later, as previously described [12]. Briefly, after an overnight fast, 1.1 mol/L glucose

(Baxter, Brussels, Belgium) was infused via the left antecubital vein at time 0 and blood for hor-

mone measurements was drawn from the contralateral vein. The blood glucose level was raised

to reach a plateau of 10 mmol/L. After a priming dose of glucose, the hyperglycemic target was

maintained by adjusting the glucose infusion rate upon assessment of bedside blood glucose

levels every 5 min (Accu-chek1 Inform II, Roche Diagnostics, Mannheim, Germany) [12].

Blood samples were collected before and at min 2.5, 5, 7.5, 10, 120, 135 and 150 after start. The

trapezoidal rule was used to calculate area under the curve (AUC) of C-peptide release between

min 5–10 (AUC5-10 min C-peptide) and min 120–150 (AUC120-150min C-peptide) [11]. In

healthy controls, the intra-individual variability of AUC5-10min C-peptide and AUC120-150min

C-peptide amounted to 11.8% and 11.7% respectively, hereby outperforming reported data for

intravenous glucose tolerance tests [11].

Venous whole blood was collected in NaF tubes for glucose and K-EDTA tubes (Sarstedt,

Nümbrecht,Germany) containing aprotinin (Trasylol; Bayer, Brussels, Belgium); final concen-

tration 600 kallikrein inactivator units/mL) on ice for hormonal assays and glycated hemoglo-

bin (HbA1c). After centrifugation at 1600g for 15min, plasmata were aliquoted and stored at
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-80˚C. Under these conditions, hormone levels were stable long-term ([22] and own unpub-

lished data).

Analytical methods

Insulin autoantibodies (IAA), GAD65 autoantibodies (GADA), IA-2A and ZnT8A were deter-

mined in serum by liquid phase radiobinding assays (8, 10). Glucose was measured on Vitros

(O-CD, Rochester, NY) and HbA1c by HPLC (Tosoh, Tokyo, Japan).

PI:C was determined by TT-TRFIA which allows simultaneous measurement of C-peptide

and PI (S1 Table). Briefly, the common monoclonal capture antibody (mAb PEP-001, DAKO,

Glostrup, Denmark) has epitope specificity for C-terminal C-peptide. All captured molecules

containing the intact C-peptide sequence are detected by a second Eu3+-labelled (Perkin-

Elmer) mAb CPT-3F11 (DAKO) directed against N-terminal C-peptide, and captured mole-

cules containing an insulin moiety (proinsulin and conversion intermediates) [17] by a third

in-house biotinylated mAb (HUI 001; gift from Dr. Pass, Novo-Nordisk, Bagsvaerd, Denmark)

[23] in combination with Tb3+-labeled streptavidin (Perkin-Elmer). The use of two different

fluorescent labels allows to quantify the two detecting antibodies within the same reaction

compartment and the difference between both signals is a measure of the amount of true C-

peptide. For this study, the assay was adapted to the Autodelfia 1235 automated instrument

(Perkin-Elmer) and an outprint of the parameters for this application is shown in S1 File. Due

to the high cross-reactivity with conversion intermediates, the PI assay measures total PI

immunoreactive material [14], which is not a disadvantage as conversion intermediates are

also reported to increase in prediabetes [24, 25]. C-peptide levels up to at least 7000 pmol/L

did not interfere with PI measurements [18]. Because of the 100% cross-reactivity of PI in the

C-peptide assay, free C-peptide levels were obtained by subtracting the PI concentration from

the total C-peptide result [17].

For method comparison by split-sample analysis, C-peptide and PI were also measured sep-

arately by automated state-of-the-art methods, using an electrochemiluminescence immuno-

assay (ECLIA; Cobas e411/Elecsys, Roche C-peptide kit) [18] and an in-house TRFIA

(Autodelfia, Perkin-Elmer) [19] respectively. Between-day imprecision was determined by

analyzing three pooled human plasma samples containing different levels of the analytes in

duplicate during 20 different runs on 20 different days [26].

Statistics

Statistical analyses were performed two-tailed using SPSS version 22.0 for Windows (IBM

SPSS Statistics, Chicago, IL, USA) and considered significant if P<0.05 or <0.05/k for k com-

parisons (Bonferroni adjustment). Figures were generated with GraphPad Prism version 5.00

for Windows (San Diego, CA, USA). Differences between groups were assessed by Mann-

Whitney U or Kruskall-Wallis tests for continuous variables and by χ2 test or Fisher’s exact

test for categorical variables. Deming regression was used for method comparisons and Spear-

man-rank correlation coefficient (rs) to assess correlations between variables. Prediction of

2-year progression to diabetes in high-risk relatives was assessed by ROC analysis comprising

calculation of the AUC (95% CI) under the ROC curve (AUC-ROC), diagnostic sensitivity,

specificity and accuracy and the Akaike Information Criterion (AIC). AUC-ROCs were com-

pared according to [27] and variances according to [28]. HOMA2-IR was calculated with

https://www.dtu.ox.ac.uk/homacalculator/. Independent predictors of diabetes onset were

assessed using two-by-two Cox regression analysis to comply with Vittinghoff’s criterion [29].

Most relatives (92%) who did not develop diabetes during the study completed 2-year follow-

up.

PI:C Ratio and Prediction of Type 1 Diabetes
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Results

Analytical performance of the automated TT-TRFIA

Over a wide concentration range (100–4400 pmol/L C-peptide; 1.5–190 pmol/L PI), C-pep-

tide, PI and PI:C plasma levels obtained by automated TT-TRFIA were significantly correlated

(r2 = 0.96–0.99; P<0.001) with those from separate methods (TRFIA for PI and ECLIA for C-

peptide) (S1 Fig). The 95% CI for slope and intercept of the regression line were respectively

1.01–1.05 and -61.9–2.81 pmol/L for C-peptide, 1.14–1.20 and -0.86–1.44 pmol/L for PI, and

0.92–1.00 and 0.2–0.51% for PI:C.

Despite the fact that ECLIA achieved lowest CVs for C-peptide (2.2–2.8%), TT-TRFIA

could determine PI:C with greater precision (4.5–7.1%CV) than the combination of two sepa-

rate methods (TRFIA and ECLIA; 6.7–9.5%), especially for PI:C>2% (Table 1). At the highest

PI:C level, the %CV for TT-TRFIA was significantly lower than obtained with the two separate

assays (P<0.001 by Levene test) [28].

Between-method comparison of mean PI:C ratios (Table 1) revealed slightly higher values

for TT-TRFIA than with separate assays, the difference decreasing with increasing ratios. This

is compatible with the tendency towards lower C-peptide and higher PI values measured with

TT-TRFIA in the lower concentration ranges. This difference becomes relatively less impor-

tant at higher hormone levels as also indicated by the regression equations in S1 Fig.

Diagnostic performance of TT-TRFIA for impending diabetes

The PI:C ratio was found to increase to a variable degree with time after glucose load during

OGTT (Fig 1) without amplifying the differences between those who progressed to diabetes

during follow-up and those who did not (not shown). In search for functional markers that

could be determined on a single blood sample, we decided to use fasting samples instead of

random samples to evaluate the potential of PI:C ratio for prediction of impending diabetes to

optimize consistency of results. These samples also allow to calculate HOMA2-IR. A longitudi-

nal pilot study of PI:C values in autoantibody-positive relatives who rapidly progressed to dia-

betes from baseline clamp indicated an increasing trend in PI:C within 2 years before

diagnosis, with decreasing HOMA2-IR in many relatives: consequently the ratio of PI:C over

HOMA2-IR tended to increase even steeper before diagnosis (S2 Fig). In the present study,

HOMA2-IR was significantly and inversely correlated with clamp-derived insulin sensitivity

index (ISI, rs = -0.712; P = 0.001; only available in participants aged 12–39 years who under-

went a full clamp of 150 min) [11], hereby validating its use in the investigated cohort. Based

on these observations, we compared the capacity of PI:C–with or without adjustment for

HOMA2-IR–with that of clamp-derived AUC C-peptide to predict 2-year progression to

diabetes.

Table 1. Between-day imprecision (n = 20) of C-peptide, PI and PI:C, determined separately with two automated methods (ECLIA and TRFIA) or

simultaneously with the automated TT-TRFIA in pooled human plasma.

Low level Intermediate level High level

Analyte Method Mean ± SD %CV Mean ± SD %CV Mean ± SD %CV

C-peptide ECLIA 358 ± 10 pmol/L 2.8 500 ± 14 pmol/L 2.8 1537 ± 35 pmol/L 2.3

TT-TRFIA 327 ± 25 pmol/L 7.5 469 ± 34 pmol/L 7.2 1616 ± 83 pmol/L 5.1

PI TRFIA 4.2 ± 0.3 pmol/L 7.5 14.4 ± 0.9 pmol/L 6.4 73.7 ± 6.4 pmol/L 8.7

TT-TRFIA 4.8 ± 0.3 pmol/L 6.9 14.4 ± 1.2 pmol/L 8.1 77.4 ± 4.4 pmol/L 5.7

PI:C TRFIA/ECLIA 1.18 ± 0.09% 7.9 2.97 ± 0.20% 6.7 5.04 ± 0.48% 9.5

TT-TRFIA 1.49 ± 0.11% 7.1 3.18 ± 0.17% 5.2 5.03 ± 0.23% 4.5

doi:10.1371/journal.pone.0166702.t001
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During a median (interquartile range) follow-up of 36 (20–57) months, 25 of 49 relatives at

high autoantibody-inferred risk developed diabetes, 10 of whom within 2 years from baseline

clamp. Relatives who did not yet progress to diabetes (n = 24) and those who did progress after

more than 2 years from baseline clamp (n = 15) did not differ significantly in baseline charac-

teristics and were considered together (not shown). In comparison with both groups com-

bined (n = 39) rapid progressors from baseline clamp tended to have lower values for clamp-

derived AUC5-10min C-peptide, fasting C-peptide and HOMA2-IR, and higher values for

HbA1c and fasting PI:C (especially when corrected for HOMA2-IR) (Table 2). Both groups

did not differ in prevalence of HLA-DQ genotypes or the various autoantibody types (Table 2),

nor in autoantibody levels, regardless of whether all relatives were considered or only those

positive for a particular autoantibody specificity (not shown). Fasting PI:C was not correlated

with AUC5-10min C-peptide (Fig 2A) or HOMA2-IR (Fig 2B). However, normalizing PI:C for

HOMA2-IR unveiled a highly significant hyperbolic correlation (rs = -0.596; P<0.001) with

AUC5-10min C-peptide, andalso with AUC120-150min C-peptide, only available for age 12–39

years (n = 31; rs = -0.529; P = 0.002) (Fig 2C). Both in healthy controls (n = 59) and in relatives

with the high-risk autoantibody profile PI:C was significantly correlated with body mass index

(BMI) z-score (rs = 0.417; P = 0.001 and rs = 0.357; P = 0.015, respectively; data available for 46

relatives), was similar in males and females, but was higher in individuals under age 20 years

than in those aged 20 years or more. In contrast, HOMA2-IR conducted PI:C was independent

of BMI z-score, sex and age (data not shown).

Fig 1. Evolution of proinsulin (A), C-peptide (B), glucose (C) and PI:C ratio (D) during OGTT in relatives at

high autoantibody-inferred risk; *P = 0.003; **P<0.001. The number of available samples tested is indicated

above each time point.

doi:10.1371/journal.pone.0166702.g001
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All variables from Table 2 were tested in univariate Cox regression for prediction of 2-year

progression to diabetes and those with P<0.1 were entered in two-by-two multivariate models

against PI:C without (Model 1) or with (Model 2) normalization for HOMA2-IR (Table 3).

Fasting PI:C remained an independent predictor of impending diabetes (P = 0.035–0.001)

together with AUC5-10min C-peptide (P<0.001), fasting C-peptide (P = 0.001), HOMA2-IR

(P = 0.001) and HbA1c (P = 0.044), respectively, whereas PI:C/HOMA2-IR outperformed all

other parameters (Table 3), and the most informative OGTT-derived parameters [12] as well

(not shown). In high-risk relatives with normal glucose tolerance at baseline (n = 44) only

AUC5-10min C-peptide or HOMA2-IR- adjusted PI:C predicted diabetes onset within 2 years

(7 events; not shown). ROC-curve analysis for fasting blood glucose and for the parameters

associated with 2-year progression to type 1 diabetes in Table 3 showed that PI:C/HOMA2-IR

Table 2. Characteristics of relatives at high autoantibody-inferred risk (HR) (IA-2A+ or ZnT8A+ plus� 1 other autoantibody) [9] according to pro-

gression rate to diabetes.

Progressors to diabetes

Characteristics Within 2 years After 2 years/not yet P

Baseline

n 10 39

Age, years 15 (8–24) 16 (12–23) 0.487

Sex, n males/n females 6/4 21/18 1.000

BMIa, z-score -0.33 (-1.13–1.54) 0.20 (-0.56–1.53) 0.252

HbA1c, % 5.6 (5.4–5.7) 5.3 (5.1–5.4) 0.015

Fasting glucose, mmol/L 4.4 (3.9–5.3) 4.3 (4.1–4.7) 0.628

Fasting proinsulin, pmol/L 5.8 (4.1–13.9) 8.5 (5.2–12.1) 0.348

Fasting C-peptide, pmol/L 385 (188–454) 537 (392–691) 0.010

Fasting PI:C ratio, % 2.37 (1.46–2.84) 1.57 (1.32–1.95) 0.080

Fasting PI:C ratio / HOMA2-IRb, % 2.66 (1.82–5.21) 1.64 (1.18–2.35) 0.005

AUC5-10min C-peptidec, pmol.min.L-1 494 (396–576) 877 (678–1152) < 0.001

AUC5-10min C-peptidec / HOMA2-IRb, pmol.min.L-1 664 (484–1092) 892 (722–1111) 0.107

HOMA2-IRb 0.8 (0.4–1.0) 1.1 (0.8–1.4) 0.021

Antibody seropositivitya,d

IAA, n (%) 6 (60) 18 (47) 0.477

GADA, n (%) 9 (90) 35 (92) 1.000

IA-2A, n (%) 9 (90) 32 (84) 1.000

ZnT8A, n (%) 9 (90) 36 (95) 0.512

Number of autoantibodies 4 (2–4) 3 (3–4) 0.490

HLA-DQ haplotype

DQ2/DQ8, n (%) 4 (40) 9 (23) 0.422

DQ8/nonDQ2, n (%) 3 (30) 20 (54) 0.299

DQ2/nonDQ8, n (%) 2 (20) 7 (18) 1.000

nonDQ2/nonDQ8, n (%) 1 (10) 3 (8) 1.000

Follow-up from baseline, months 8 (5–19) 39 (34–60) < 0.001

Parameters measured during hyperglycemic clamp test unless otherwise indicated; data are median, n (n/n) or n (%)
ameasured at the time of OGTT
bHOMA2-IR, homeostatic model assessment for insulin resistance
cAUC5-10min, first-phase AUC C-peptide release during hyperglycemic clamp test (min 5–10); threshold for significance: P<0.05/22 or P<0.0023 (Bonferroni

correction)
dno significant difference between both groups in IAA, GADA, IA-2A or ZnT8A levels in IAA+, GADA+, IA-2A+ or ZnT8A+ relatives, respectively

doi:10.1371/journal.pone.0166702.t002

PI:C Ratio and Prediction of Type 1 Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0166702 December 1, 2016 7 / 14



achieved values for AUC under the ROC-curve (AUC-ROC), diagnostic accuracy, and AIC

that came closest to the values observed for AUC5-10min C-peptide (Table 4; not significantly

different according to [27]). Combinations of AUC5-10min or HOMA-corrected PI:C with 2 or

more markers derived from fasting samples tended to improve their AUC-ROC values without

reaching significance (only a selection of all possible combinations are shown in Table 4,

including those with the highest values). Using criteria for cutoff values defined in previous

publications [11, 12, 14], AUC5-10min C-peptide (< percentile 10 of healthy controls) and

HOMA2-IR-adjusted PI:C (� percentile 66 of healthy controls) both identified 7 of 10 relatives

who progressed within 2 years.

Fig 2. Relation between fasting PI:C and AUC5-10min C-peptide (A), fasting PI:C and HOMA2-IR (B) and fasting PI:C corrected for HOMA2-IR and AUC5-10min

C-peptide (C) in relatives at high autoantibody-inferred risk (HR) (IA-2A+ or ZnT8A+ plus� 1 other autoantibody) (9). Filled triangles = progressors within 2

years (n = 10), open triangles = slow-/non-progressors (n = 39). AUC5-10min C-peptide: first-phase AUC C-peptide release during hyperglycemic clamp test

(min 5–10); HOMA2-IR: homeostatic model assessment for insulin resistance; rs: Spearman’s rank correlation coefficient; NS: not significant

doi:10.1371/journal.pone.0166702.g002

Table 3. Cox regression analysis for 2-year progression (10 events) to type 1 diabetes in 49 first-degree relatives at high autoantibody-inferred

risk (HR) (IA-2A+ or ZnT8A+ plus� 1 other autoantibody) [9]. All variables from Table 2 were tested univariately. Only those with univariate P<0.1 are

shown here and were entered in two-by-two multivariate models.

Univariate Multivariate Multivariate Multivariate Multivariate

Independent variable P P HR 95% CIa P HR 95% CIa P HR 95% CIa P HR 95% CIa

Model 1

Fasting PI:C 0.024 0.008 1.27–4.96 0.001 1.77–8.52 0.001 1.80–8.61 0.035 1.05–3.41

AUC5-10min C-peptideb 0.001 < 0.001 0.990–0.997 - - - - - -

Fasting C-peptide 0.013 - - 0.001 0.987–0.997

HOMA2-IRc 0.022 - - - - 0.001 0.002–0.185 - -

HbA1c 0.035 - - - - - - 0.044 1.07–89.5

Model 2

Fasting PI:C / HOMA2-IRc < 0.001 < 0.001 1.35–2.52 < 0.001 1.42–2.76 < 0.001 1.35–2.52 < 0.001 1.35–2.50

AUC5-10min C-peptideb 0.001 0.077 - - - - - - -

Fasting C-peptide 0.013 - - 0.469 - - - - -

HOMA2-IRc 0.022 - - - - 0.456 - - -

HbA1c 0.035 - - - - - - 0.079 -

a95% confidence interval of hazard ratio
bAUC5-10min, first-phase AUC C-peptide release during hyperglycemic clamp test (min 5–10)
cHOMA2-IR, homeostatic model assessment for insulin resistance; threshold for significance for multiple two-by-two multivariate analyses: P<0.05/8 or

P<0.0063

doi:10.1371/journal.pone.0166702.t003
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Of note, 2h post-glucose load C-peptide over glucose ratio–recently proposed as a marker

of beta cell function [30]–performed equally well as HOMA2-IR corrected PI:C in ROC analy-

sis (AUC-ROC = 0.81 (95% CI 0.66–0.96); NS vs PI:C/HOMA2-IR; not shown), but was not

further considered here because we focused on biomarkers that could be determined on fast-

ing samples. In the present study the AUC-ROC of PI:C obtained with separate methods for

PI and C-peptide was not significantly worse than that achieved by TT-TRFIA (not shown).

Discussion

The automated TT-TRFIA for simultaneous measurement of PI, C-peptide and their ratio was

shown to generate results that correlate well with values obtained with singleplex state-of-the-

art methods for both hormones, while achieving better precision for PI:C. Using this new

assay format, fasting PI:C significantly and inversely correlated with clamp-derived AUC C-

peptide in relatives at high autoantibody-inferred risk, but only after normalization for

HOMA2-IR, and predicted impending diabetes equally well as the gold standard [7, 8].

Table 4. Receiver operating characteristic (ROC) analysis for prediction of progression to diabetes within 2 years in high autoantibody-inferred

risk (HR) (IA-2A+ or ZnT8A+ plus� 1 other autoantibody) [9].

ROC-AUCa 95% CI Sensitivity (%) Specificity (%) Accuracy (%) AICb

Fasting glucose 0.55 0.31–0.79 40 90 80

Fasting PI:C 0.68 0.49–0.87 70 77 74 50.2

HOMA2-IRc 0.74 0.56–0.92 80 59 67 46.3

HbA1c 0.75 0.57–0.94 70 82 79 48.7

Fasting C-peptide 0.78 0.63–0.93 100 49 56 41.5

Fasting PI:C /

HOMA2-IRc
0.79 0.64–0.94 50 95 84 40.4

AUC5-10min C-peptided 0.88 0.75–1.00 90 82 84 34.8

AUC5-10min C-peptided

+ Fasting

glucose

0.89 0.76–1.00 90 87 88 36.4

+ Fasting PI:C 0.90 0.77–1.00 90 90 90 33.5

+ HOMA2-IRc 0.89 0.76–1.00 90 87 88 36.8

+ HbA1c 0.91 0.80–1.00 90 84 85 32.8

+ Fasting C-

peptide

0.87 0.72–1.00 89 82 83 36.5

+ Fasting PI:C

/ HOMA2-IRc
0.92 0.80–1.00 90 87 88 34.2

Fasting PI:C /

HOMA2-IRc

+ Fasting

glucose

0.82 0.68–0.96 90 62 67 41.3

+ HbA1c 0.82 0.63–1.00 80 79 79 40.2

+ Fasting C-

peptide

0.85 0.72–0.97 100 59 67 36.7

+ HOMA2-IR

+ HbA1c

+ fasting

glucose

0.93 0.85–1.00 100 82 85 36.2

aAUC under the ROC-curve
bAkaike Information Criterion
cHOMA2-IR, homeostatic model assessment for insulin resistance
dAUC5-10min, first-phase AUC C-peptide release during hyperglycemic clamp test (min 5–10)

doi:10.1371/journal.pone.0166702.t004
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Reproducibility of PI:C benefitted from assay automation and the lack of additive effects of

both analytes’ imprecision [17]: indeed, TT-TRFIA tended to outperform both the combina-

tion PI-TRFIA/C-peptide ECLIA and reported values for the manually performed TT-TRFIA

(6.4–11% CV) in this respect [17]. Better precision is likely to improve consistency of results

during follow-up, but whether it also translates into a higher predictive value of the ratio deter-

mined with TT-TRFIA remains to be investigated in larger studies. The % CVs obtained with

C-peptide ECLIA and PI TRFIA are in line with published values [18, 19, 31, 32], but it is evi-

dent that the use of separate methods with smaller CV’s (especially for PI) might have a further

beneficial effect on the predictive value of the PI:C ratio.

Other strengths of the study include the use of 2-year progression to diagnosis, which is a

key instrument for secondary prevention trials with immune intervention [5], and the use of

fasting plasma samples which is likely to optimize consistency of PI:C values during follow-up

[14] and allows calculation of HOMA2-IR. Our preliminary data are limited by the number of

fast progressors from baseline clamp, and should be confirmed in larger, longitudinal studies

in independent risk groups. They should also further investigate the exact relationship between

changes in PI:C and HOMA2-IR according to time from diabetes onset. As in previous studies

[11, 12], we did not use the heated-hand technique in the clamp tests as this is cumbersome for

multiple sampling and omitting it was not reported to induce spurious results [33]. First-phase

C-peptide release was calculated as AUC5-10min C-peptide which translated in a robust intrain-

dividual reproducibility which equaled that of second-phase release (<12% intraindividual

variation) [11].

Our results suggest that PI:C reflects a combination of beta cell function and insulin action

as it correlates with BMI z-score, and–after adjustment for HOMA2-IR–with clamp-derived

C-peptide release. A disproportionately high PI value, expressed as PI:C or PI:insulin ratio,

was proposed to mainly indicate sub(clinical) beta cell dysfunction in (impending) type 2 or

type 1 diabetes [15, 34–36]. However, the fact that PI:C only significantly and inversely corre-

lated with clamp-derived AUC C-peptide release when corrected for HOMA2-IR suggests that

PI:C also reflects to some degree the level of insulin resistance. In the present group of autoan-

tibody-positive relatives, most individuals had normal to increased insulin sensitivity

(HOMA2-IR<1.0; Table 2) but in some the rise in PI or PI:C relative to AUC C-peptide may

have been disproportionate due to insulin resistance (see e.g. the point to the right in Fig 2A).

Omission of this outlier did not change the (lack of) significance in the various panels of Fig 2.

This non-progressor had an elevated PI:C ratio and BMI z-score (2.65), but a low HOMA2-IR

adjusted PI:C ratio. Normalization of the PI:C ratio for HOMA2-IR improved its overall corre-

lation with AUC C-peptide (Fig 2C). It also rendered this parameter independent of age, sex

and BMI z-score at variance with uncorrected PI:C according to this study and [37].

HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more

tedious hyperglycemic clamp test. It outperformed clamp-derived AUC C-peptide in Cox

regression analysis, but achieved a slightly–though not significantly–lower AUC-ROC. It

requires only a fasting blood sample and is thus more widely applicable than stimulation tests

in the age category 5–39 years, the target population for secondary prevention trials consisting

of school children and active young adults. In multivariate Cox regression this variable outper-

formed fasting C-peptide and HbA1c, previously shown to predict time to diabetes in children

at risk [38]. AUC-ROC and AIC were slightly though not significantly better for HOMA2-IR

corrected PI:C than for HbA1c or fasting C-peptide [27]. Combination of several markers that

can be determined on a single fasting blood sample (PI:C, HOMA2-IR, HbA1c, fasting glu-

cose) could slightly, though as yet not significantly, improve the diagnostic performance in

ROC-analysis. Larger studies in multiple autoantibody-positive individuals should decide

whether a combination of those markers can be moulded into a composite risk score with
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further improved predictive value. Conclusions remained valid in absence of dysglycemia and

were independent of IAA and IA-2A levels (not shown)–reportedly associated with rapid pro-

gression in children [39, 40]; indeed, relatives who did progress to diabetes within 2 years from

baseline and those who did progress later or not yet, did not differ in antibody levels in our

cohort, probably due to our definition of high-risk autoantibody profile (IA-2A+ or ZnT8A+

plus�1 other autoantibody+) [9].

Taken together our results indicate that rapid progression to type 1 diabetes associates with a

more pronounced deterioration of beta cell function relative to insulin resistance as assessed by

HOMA2-IR. They are in line with previous reports that insulin resistance makes only a border-

line contribution to risk of progression to diabetes in individuals with an already compromised

beta cell function [41–43]. Larger follow-up studies in risk groups comparing HOMA2-IR-cor-

rected PI:C, clamp-derived measures [5], HbA1c [38], and glycemic variability [13] are needed

to further document consistency of results over time, and to determine generally applicable cut-

off values for HOMA2-IR-corrected PI:C in the perspective of further refining staging of pre-

symptomatic type 1 diabetes [4], identifying rapid progressors and establishing minimally

invasive criteria for inclusion in secondary prevention trials.
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