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Abstract 

Most of ex-ante impact assessment policy models have been based on a parametric 

approach. We develop a novel non-parametric approach, called Inverse DEA. We use non 

parametric efficiency analysis for determining the farm’s technology and behaviour. Then, we 

compare the parametric approach and the Inverse DEA models to a known data generating 

process. We use a bio-economic model as a data generating process reflecting a real world 

situation where often non-linear relationships exist. Results suggest that traditional parametric 

approaches are biased and inconsistent. The Inverse DEA model under variable return to scale 

preserving technical efficiency scores outperforms any other specifications. However such 

non-parametric approach is by nature sensitive to noise which hampers its accuracy when it 

prevails. The use of panel data is preferable.  

 

Keywords:  parametric; Inverse DEA; simulation; policy model 

1. Introduction  

Ex-ante impact assessment policy models aim to understand and model the evolving 

dynamics behind farmer behaviour. Typically, the only information available to researchers is 

an input and output dataset expressed in monetary value or physical units with sometimes 

additional price information. The estimated policy models aim to describe the process that 

produces the data in an observed population, also called the Data Generating Process (DGP).  

The key question is what can we learn from this limited information? In other words, how can 

we use at best the information in a dataset to estimate relationships between inputs and 

outputs and so to mimic the DGP? Before being able to answer these questions, it is essential 

to be aware of the properties of whatever estimator used, requiring us to evaluate the 

consistency of the estimators. As researchers are never in the position to know the ‘true’ DGP 

often reasonable assumptions are made. These assumptions enable the estimation using 

estimators that have desirable properties and so allowing these properties to be inferred. At 

the same time, these assumptions should not impose any restriction that does not reflect 

reality which could lead to misleading conclusions. Indeed, any conclusion is valid to the 

extent that assumptions made are true. The different estimation techniques are like a 

continuum ranging from fully parametric estimation, passing by semi-parametric estimation to 

fully non parametric estimation. This goes in pair with the number and the strength of 

assumptions made. In this paper we compare two opposite estimation approaches: a 

parametric estimation approach where a production function is specified and a non-parametric 

approach where some assumptions are made only on the sample distribution. We test the 

aptitude of both methodologies to reveal a known bio-economic DGP. 

The choice of the DGP plays a determinant role. First of all, a DGP similar to one of the 

chosen estimation techniques will certainly favour it. Hence, a bio-economic model has been 

chosen as it is conceptually very different from both estimation approaches. Second, in the 

agricultural sector binding constraints are common, such as feed and fertilization 

requirements. Hence, any ex-ante policy models should be able to reveal these underlying 

discontinued relationships.  

Most of the agricultural policy models have been based on a parametric approach (see 

Heckelei et al, 2012), involving the specification of a production function, often a variable 

cost function taking typically the quadratic form. The main disadvantage of such method lies 

in the bias in the case of a misspecification of the functional form is miss-specified. Despite 



the fact that farmers rely on biological process subject to inequality constraints, it is often 

assumed that a parametric approach is a good approximation of the reality. Knowing that non 

linearity exists, we choose to evaluate a very flexible form of the production function while 

imposing economic properties such as monotonicity and concavity. 

On the other hand, we test a novel non-parametric approach enabling us to ex-ante 

predicts the impact of policy changes. The concept of this approach is to use non parametric 

efficiency analysis as a methodology for defining the farmer’s technology and behaviour. The 

simulation model maximises revenue and uses technical efficiency scores of each individual 

and the frontier as specification of the technology. It avoids specifying a functional 

relationship between inputs and outputs. Contrary to the parametric approach, the production 

function is determined by the data itself and the effect of the explanatory variables. Hence the 

arbitrary choice of a specified production function is removed preventing the misspecification 

of the distribution of inefficiency terms.  

The objective of this paper is to compare a parametric simulation versus a non-parametric 

simulation and to evaluate them against a known DGP. The particularity here is that a bio-

economic model is used as the DGP. For both approach we test whether or not estimator are 

consistent and whether or not they are biased. Finally we look to which extend inferences can 

be drawn. The paper is organised as follow: Section 2 describes the bio-economic DGP, the 

different samples that we generates from our DGP and the different performance criterion 

used in this study. Section 3 explains the parametric approach adopted in this paper. Section 4 

illustrate the non-parametric methodology and provides an explanatory example and section 5 

provides results of our simulation exercise. Finally Section 6 concludes, discusses limitations 

and further possible researches. 

2. Data Generating Process  

To evaluate the performance of the methods, many authors have used a parametric 

specification for the data generating process (DGP) (see Krüger, 2012, Andor and Hesse, 

2011 and, Banker et al., 1993). The disadvantage of using either a parametric approach or a 

non-parametric efficiency approach to compare both is that the results are predictable and do 

not provide insights about the reliability of the methods when the DGP is not known. A 

parametric specification of the DGP may certainly influence the results in favour of the 

parametric specification using the same functional form. 

A better and more extreme test of the methods is to feed them with a DGP that is 

conceptually very different both from the parametric and non-parametric policy models. 

Therefore, our approach uses a bio economic DGP. Furthermore, such DGP reflects the 

reality of the agricultural sector where often resource endowments are binding constraints in 

the short run. 

2.1. Specification of the DGP 

To do so, we choose to simulate the optimal feed input ration of a dairy cow. To ease 

understanding of the model only three different feed inputs can be chosen and only one output 

is simulated namely milk production. The objective of the model is to maximise profit given 

different input prices and output prices subject to feeding constraints. This is computed using 

General Algebraic Modeling System (GAMS) software and as our model is a non-linear 

optimisation problem we use the CONOPT solver. 

For a given sample of n observation with each observation j (j = 1,…,n) we can generate 

our data with the following non-linear optimisation problem (1): 

 



𝑀𝑎𝑥𝑋𝑘,𝑗 ,𝑌𝑟,𝑗
   ∑ [𝑌𝑟,𝑗 × 𝑝𝑟,𝑗 − ∑(𝑋𝑘,𝑗 × 𝑝𝑘,𝑗)

𝑘

]

𝑗

 
(1) 

S.t. ∑ 𝑋𝑘,𝑗 × 𝐼𝑛𝑡𝑎𝑘𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑘,𝑗

𝑘

≤ (휀𝑗 + 𝑀𝑎𝑥𝐼𝑛𝑡𝑎𝑘𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗
) +  𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝑌𝑟,𝑗

2    

 ∑ 𝑋𝑘,𝑗 ×

𝑘

𝐼𝑛𝑡𝑎𝑘𝑒𝑒𝑛𝑒𝑟𝑔𝑦𝑘,𝑗
≥ 𝑀𝑖𝑛𝐼𝑛𝑡𝑎𝑘𝑒𝑒𝑛𝑒𝑟𝑔𝑦

+  𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟𝑒𝑛𝑒𝑟𝑦 × 𝑌𝑟,𝑗
2  

 

 ∑ 𝑋𝑘,𝑗 ×

𝑘

𝐼𝑛𝑡𝑎𝑘𝑒𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑘,𝑗
≥ 𝑀𝑖𝑛𝐼𝑛𝑡𝑎𝑘𝑒𝑝𝑟𝑜𝑡𝑒𝑖𝑛

+  𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟𝑝𝑟𝑜𝑡𝑒𝑖𝑛 × 𝑌𝑟,𝑗
2  

 

 

Where profit is maximised given the fact that each observation faces different input prices 

𝑝𝑘,𝑗, and output prices 𝑝𝑟,𝑗. Prices are drawn from a uniform distribution of (0.5, 1.5). The 

first constraint ensures that the total feed intake does not exceed the maximum feed intake 

capacity of the cow. An error component 휀𝑗 is endogenously added and can have the 

following distribution (2): 

 
휀𝑗~ 𝑁(0; 0)𝑜𝑟 휀𝑗~ 𝑁(0; 0,05) 𝑜𝑟 휀𝑗~ 𝑁(0; 0,2) 𝑜𝑟 휀𝑗~ 𝑁(0; 0,5)     (2) 

 

In other words, we introduce different coefficients of variation to the maximum feed 

intake capacity of 0, 2.3, 9.1 and 22.7. When the coefficient of variation is 0, each observation 

is defined by an identic relationship between inputs and output. The dataset generated can be 

considered as a time series where the feed intake of one dairy cow is recorded for different 

prices that could have been observed at different point in time. As soon as an error term is 

introduced on the right hand side of the first constraint, the maximum feed intake capacity is 

different for each observation and we can consider that we generate a cross sectional dataset 

of several dairy cows at one point in time facing different prices. The second and the third 

constraints ensure respectively that the energy and protein requirements are full fill. 

Furthermore we investigate the effect of the sample size, we generate six different sample 

sizes: 1000, 500, 200, 100, 50 and 10 observations. 

So, the information that is made available to estimate the parametric and the non-

parametric models is a sample1 (3) 

 
𝑋𝑘,𝑗 +  휀𝑘,𝑗 𝑤𝑖𝑡ℎ (𝑘 = 1,2,3)  (3) 

𝑌𝑟,𝑗𝑤𝑖𝑡ℎ (𝑟 = 1)   

 

 of n observation, with each observation j (j = 1,…,n) using three inputs and generating 

one output. However in reality, researchers often assume statistical errors which might have 

difference source of origins such as measurement errors made during the collection of data. 

For this reason, we also add an exogenous error term with the same distribution than 

mentioned in (2). In total we generate 96 different samples.  

 Then, we need points of reference against which the accuracy of both approaches will be 

tested. In the context of ex-ante agricultural policy models, we intend to predict for instance 

the change of inputs used due to price changes. Therefore, we implement price changes of 

inputs by running model (1)2 holding output quantities and output prices fixed. We obtain the 

following set of inputs: 

                                                 
1 In order to simplify the notation, sample generated from our DGP are in capital letter (𝑋𝑗, 𝑌𝑗) while the 

estimates are in lowercase letter (𝑥𝑗 , 𝑦𝑗). 

2 Problem (1) is a non-linear problem where we use the CONOPT solver. It has to be note that CONOPT 

does not guarantee optimum solution but rather a feasible solution. Additionally, for efficiency reasons it is often 

recommended to specify initial starting values of the variables. In order to not bias result and be as close as 

possible of real situations, we use the set of initial inputs 𝑋𝑘,𝑗  as initial starting values. 



 
𝑋𝑘,𝑗

∗  𝑤𝑖𝑡ℎ (𝑘 = 1,2,3)  (4) 

 

Where 𝑋𝑘,𝑗
∗  is the new set of inputs optimising profit under the new price conditions and 

leading to the same amount of output than previously. It has to be noted than the new prices 

are drawn from the same distribution than the initial prices. The question is to which extend 

the estimated parametric and non-parametric models will be able to simulate the same set of 

inputs 𝑋𝑘,𝑗
∗  after price changes. 

2.2. Simulation Scenario 

 The ultimate goal here is to measure the difference between the known DGP and the 

other scenarios in term of changes in input quantities due to price changes. The models tested 

are the parametric model named “Restricted Linear Regression model” (RLR) versus the non-

parametric Inverse DEA model. We refer to the parametric approach as a restricted model as 

we impose some important economic properties such as monotonicity and concavity. The 

inverse DEA model can either be specified under Constant Return to Scale (CRS) or under 

Variable Return to Scale (VRS). Figure 2 provides an overview of the comparison procedure: 

  

 
Figure 1. Simulation design 

2.3. Performance criterion 

The accuracy of the simulation models can be defined by to the bias and efficiency. T 

Different types of statistical bias exist: measurement, sampling, and estimation (Walther et al., 

2005). As their name implies, measurement and sampling bias refer to the intrinsic structure 

of the data set and usually do not disappear with an increase of the sampling effort. In our 

simulation setting measurement bias is only captured by the introduction of an exogenous 

error term in the DGP. Sampling bias is not introduced and thus not considered in this paper.  

Estimation bias is the difference between the estimated input changes and the ‘true’ input 

changes due to prices change. Estimation bias should decrease with an increasing sample size. 

Although the model could be unbiased, it is important to take into account the variance. 

Indeed, if the model is biased, an increase of the sample size just decreases the variance 

around a wrong estimate. On the other hand, if both the variance and bias tend towards zero, 

then our model is consistent.  

 Bias measure take typically into account the difference between the estimated value and 

the true value. One common measure is the Mean of the Mean Deviation (MMD) for each 

observation which corresponds to the difference between the new quantities of the input mix 

Models Tested Data Generating Process 

Bio-economic model: 

 With an endogenous error 

component 휀𝑗. 

 With an exogenous error component 

휀𝑗 . 

휀𝑗~ 𝑁(0; 0)𝑜𝑟 휀𝑗~ 𝑁(0; 0,05) 

 𝑜𝑟 휀𝑗~ 𝑁(0; 0,2) 𝑜𝑟 휀𝑗~ 𝑁(0; 0,5) 

 With a variation in the sample size: 

1000, 500, 200,100, 50, 10 

Restricted Linear Regression model 

Inverse DEA model (CRS) 

Inverse DEA model (VRS) 



after price changes from the DGP noted 𝑋𝑘,𝑗
∗ , and the predicted quantities of the input mix 

after price changes calculated with the different scenarios noted 𝑥𝑘,𝑗. Another indicator is the 

Mean of the Mean Absolute Deviation for each observation (MMAD). It takes into account 

the difference between the estimated input changes and the true input changes, but also 

eliminates the direction of the difference taking into account the variance of the estimates. 

The MMAD assesses the overall consistency of the model taking into account bias and 

efficiency. The mathematical formula of the MMD and MMAD are the following (5): 

𝑀𝑀𝐷 =
∑ (𝑋𝑘,𝑗

∗𝑛
𝑗=1 − 𝑥𝑘,𝑗)

𝑛
 

(5) 

𝑀𝑀𝐴𝐷 =
∑ |𝑋𝑘,𝑗

∗ − 𝑥𝑘,𝑗|𝑛
𝑗=1

𝑛
 

 

 

To gain additional insight, we also used graphical descriptive statics such as boxplot of 

the mean deviation (MD) as a performance criterion.  

3. The parametric approach 

As parametric approach, we test a very flexible functional form as it promises a better fit 

to the data. We tested several polynomial functions until the fourth order, however for 

parsimony reasons we only present the results of the most relevant one naming cubic 

production function and dropped when necessary the non-significant parameters. 

Unfortunately, a third order flexible functional form comes at the cost of economic properties 

such as monotonicity and curvature being violated. Therefore, we impose concavity and 

monotonicity for each observation permitting to choose inputs level that maximize profit.    

We use Ordinary Least Square methodology to estimates the unknown parameters. Let’s 

consider a set of n observation, with each observation j (j = 1,…,n) using i inputs 𝑋𝑘,𝑗(k=1,…, 

i) and generating s outputs 𝑌𝑟,𝑗(r=1,…, s) obtain from problem (1). We can derive the 

following non-linear optimisation problem (6): 

 

𝑀𝑖𝑛𝛽𝑘,𝛿𝑘,𝑙,𝛾𝑘,𝑙,𝑚
 ∑ 휀𝑗

2

𝑗

 
(6) 

S.t 
𝑌𝑟,𝑗 = 𝛼 + ∑ 𝛽

𝑘
(𝑋𝑘,𝑗 + 휀𝑗)

𝑘

+ ∑ ∑ 𝛿𝑘,𝑙

𝑙𝑘

(𝑋𝑘,𝑗 + 휀𝑗)(𝑋𝑙,𝑗 + 휀𝑗)

+ ∑ ∑ ∑ 𝛾
𝑘,𝑙,𝑚

(𝑋𝑘,𝑗 + 휀𝑗)(𝑋𝑙,𝑗 + 휀𝑗)(𝑋𝑚,𝑗 + 휀𝑗)

𝑚𝑙𝑘

+ 휀𝑗 

 

 𝜕𝑌𝑟,𝑗

𝜕(𝑋𝑘,𝑗 + 휀𝑗)
≥ 0 for 𝑘, 𝑙, 𝑚 = 𝑙, … , 𝑖 

 

 𝜕²𝑌𝑟,𝑗

𝜕²(𝑋𝑘,𝑗 + 휀𝑗)
≤ 0 for 𝑘, 𝑙, 𝑚 = 𝑙, … , 𝑖 

 

 

where 𝛽, 𝛿 𝑎𝑛𝑑 𝛾 are the parameters to be estimated. According to economic theory Y 

must be monotonic and concave. The first and second constraints ensure monotonicity and 

concavity respectively. 

Once we have estimated the production function we can simulate changes in input mix 

due to a change in input prices while keeping output fixed. We then solve the following non-

linear optimisation model (7): 

 



𝑀𝑎𝑥𝑦𝑟,𝑗𝑥𝑘,𝑗
 ∑ [𝑌𝑟,𝑗 × 𝑝𝑟,𝑗 − ∑(𝑥𝑘,𝑗 × 𝑝𝑘,𝑗

∗ )

𝑘

]

𝑗

 
(6) 

S.t 𝑌𝑟,𝑗 = 𝛼 + ∑ 𝛽𝑘𝑥𝑘,𝑗

𝑘

+ ∑ ∑ 𝛿𝑘𝑙

𝑙𝑘

𝑥𝑘,𝑗𝑥𝑙,𝑗 + ∑ ∑ ∑ 𝛾𝑘𝑙𝑚𝑥𝑘,𝑗

𝑚𝑙𝑘

𝑥𝑙,𝑗𝑥𝑚,𝑗 + 휀𝑗 
 

 𝜕𝑌𝑟,𝑗

𝜕𝑥𝑘,𝑗

≥ 0 𝑓𝑜𝑟 𝑘, 𝑙, 𝑚 = 𝑙, … , 𝑖 
 

 𝜕²𝑌𝑟,𝑗

𝜕²𝑥𝑘,𝑗

≤ 0 for 𝑘, 𝑙, 𝑚 = 𝑙, … , 𝑖 
 

 

where we maximise profit after change in input prices 𝑝𝑘,𝑗
∗  subject to the production 

function constraint estimated in problem (5), monotonicity and concavity constraints. 

4. The Inverse DEA approach 

Data Envelopment Analysis (DEA) is used here as a methodology which approximates 

the production function by a piece-wise linear envelopment supported by the observed data 

points, that contain all data points and that respect some economics properties such as 

monotonicity, convexity and return of scale. This concept has already been applied by 

Speelman et al. (2009), Frija et al. (2011) and Oude Lansink et al. (2008). However, to the 

best of our knowledge none papers have assessed the accuracy of such models.  

Beyond efficiency measurement, Wei et al. (2000) extended the inverse optimization 

problem to the DEA framework for short-term input and output estimation. Frija et al. (2011) 

and Speelman and al. (2009) have applied such Inverse DEA model in the field of forecasting 

and resource allocation. In this configuration inputs and outputs are used as parameters to 

determine objective values, in other words their efficiency scores. The model can estimate the 

needed changes in the input combination due to policy change while preserving the initial 

technology frontier. The model is input oriented and can exhibit constant returns to scale 

(CRS) or variable return to scale (VRS). Input substitution is feasible given the change in 

policies. The procedure is in two steps. First the firm-level inefficiency is measured with DEA 

and next the observed peers are used as piecewise linear technology frontier during 

simulation.  

4.1. Measuring firm-level inefficiency with DEA 

DEA uses linear programming methods to construct a non-parametric piecewise frontier 

which envelopes the observed input and output data for all observations. In this paper we used 

the models proposed by Charnes, Cooper and Rhodes, (1978) and Banker, Charnes and 

Cooper, (1984). For a given observation denote with the subscript o, we can derive the 

following linear problem, known as the envelopment form (7) : 

 
𝑀𝑖𝑛𝜃,𝜆𝑗

𝜃𝑜   (7) 

S.t. 
∑ 𝜆𝑗𝑌𝑟,𝑗 − 𝑌𝑟,𝑜 ≥  0,

𝑛

𝑗=1

 
 

 
𝜃𝑜𝑋𝑘,𝑜 −  ∑ 𝜆𝑗𝑋𝑘,𝑗

𝑛

𝑗

≥ 0, 𝑤𝑖𝑡ℎ (𝑘 = 1,2,3)   

 

 

 𝜆𝑗 ≥ 0 

∑ 𝜆𝑗 = 1, 𝑢𝑛𝑑𝑒𝑟 𝑉𝑅𝑆 

𝑛

𝑗=1

 

 



 

where 𝜃 is a scalar and 𝜆 is a 𝑛 × 1 vector of constants. The value of 𝜃 obtained is the 

technical efficiency (TE) score of the i-th firm. This model is referred to as providing a radial 

projection of inefficient observations on the frontier. Specifically, each input is reduced by an 

equi-proportional factor 𝜃.The value of 𝜃 lies between zero and one, with a value of one 

indicating that considered observation is on the frontier and so technically efficient. The 

problem (7) must be solved n times, once for each observation. 

4.2. Inverse DEA simulation 

The second step is to apply an Inverse DEA model to simulate the impact of policy 

changes, an input price change 𝑝𝑘,𝑗
∗ . Here, we need to calculate the new optimal input level of 

for a given observation noted 𝑥𝑖,𝑜  which maximises revenue while at the same time 

preserving the TE score of DMUo found in problem (1). We can derive the following linear 

problem (8): 

 

max
𝜆𝑗𝑝𝑒𝑒𝑟,𝑥𝑠𝑖𝑚𝑐𝑒

∑ 𝑝𝑟,𝑜𝑌𝑟,𝑜 

𝑠

𝑟=1

− ∑ 𝑝𝑘,𝑜
∗ 𝑥𝑘,𝑜

𝑚

𝑘=1

 𝑤𝑖𝑡ℎ (𝑘 = 1,2,3) 
(8) 

S.t.                  
∑ 𝜆𝑗𝑝𝑒𝑒𝑟𝑌𝑟,𝑗𝑝𝑒𝑒𝑟

𝑛

𝑗𝑝𝑒𝑒𝑟

≥ 𝑌𝑟,𝑜 
 

 
∑ 𝜆𝑗𝑝𝑒𝑒𝑟

𝑛

𝑗𝑝𝑒𝑒𝑟

𝑥𝑘,𝑗𝑝𝑒𝑒𝑟 ≤ 𝜃𝑜𝑥𝑠𝑖𝑚𝑖,𝑜
∗  

 

 𝜆𝑗𝑝𝑒𝑒𝑟 ≥ 0 

∑ 𝜆𝑗𝑝𝑒𝑒𝑟 = 1, 𝑢𝑛𝑑𝑒𝑟 𝑉𝑅𝑆 

𝑛

𝑗=1

 

 

 

The model maximizes the profit of observation o given its output price 𝑝𝑟,𝑜 and its new 

input prices 𝑝𝑘,𝑜
∗ . The constraints make sure that the efficiency score 𝜃𝑜 remains the same and 

jpeer refers to the peer observations defining the production frontier. The new optimal input 

vector 𝑥𝑘,𝑜 calculated by the model leads to a new observations maximising profit and 

preserving initial efficiency score. 

We now illustrate our model and its solution method with a simple example under CRS. 

Let’s consider three observations with two inputs and one output. The data of inputs and 

output are shown in the following table 1. 

 

Table 1: Inputs and output of a simple example 
 A B C 

Input 1 2 4 3 

Input 2 4 4 2 

Output 1 1 1 

TE scores 1 0.66 1 

 

The model is illustrated in Figure 2, B is technically inefficient, and its production 

frontier is P(B). Its technical inefficiency score derived from model (1) is 0.66. For the 

respective input one and two, the market prices are one and three represented by the initial 

isocost line in Figure 1. A and C are technically efficient but only C is cost efficient, meaning 

that its inputs combination minimises cost.  

Now we assume that the prices of both inputs change, and that the slope of the new iso-

cost line is −4. As a result B will shift along its production frontier P(B) in order to maintain 



its technical efficiency score, in the meantime, the model tries to find a point that minimise 

cost. If we imagine a parallel shift of the new isocost line until it becomes tangent to P(B), the 

tangency point Bn is the input combination preserving inefficiency of B and minimising its 

costs under the new price conditions. A remains the same as its inputs combination minimise 

costs and C adopts the same input combinations that A.  

 
Figure 2: Simulating effect of price changes in a simple example 

5. Results  

Let’s first examine the MMAD and the MMD of the different models for six sample sizes 

and without any error terms added to the DGP whether endogenously or exogenously. The 

solid lines in Figure 3 shows the changes of the MMAD scores with changing sample size 

while the dashed line illustrates the impact of the sample size on the MMD scores. 

 

 
Figure 3. MMAD and MMD of the different tested model from a DGP without any error component 



In such faultless setting, we can consider that our DGP generates a time series dataset of 

one dairy cow for different prices free of measurement bias (see 2.1). The Inverse DEA model 

under VRS outperforms any other model independently of the sample size variation. Its 

MMAD decreases towards zero with an increase of the sample size, indicating the consistency 

of the model. Hence, the DEA model under VRS is consistent and so able to reveal the 

underlying DGP as the sample size increases infinitely. The second criterion, MMD, provides 

information about over- and under-estimation, which is bias of the models. For a sample size 

of 10 observations, the Inverse DEA model under VRS performs very well although a small 

negative MMD prevails. The model tends to slightly overestimate input changes but bias 

decreases with an increase of the sample size. Figure 3(2) shows boxplots of the input change 

estimates from the Inverse DEA model under VRS and the RLR model. Recalling that the 

efficiency is measured by  the variance of our estimates, the boxplots of Figure 3 indicates 

that the Inverse DEA model performs in general very well as the variance is very low, but that 

some outliers may hamper results.  

Regarding Inverse DEA under CRS, its MMAD is large and more importantly it is not 

affected by an increase of the sample size. The Inverse DEA model under CRS is inconsistent 

and fails to capture the true DGP. In reality, our DGP, being a bio-economic model, is 

constrained by maximum feed intake capacity. Under CRS, several inputs can increase 

proportionally and indefinitely as long they maximise profit. Figure 3(1) shows that the MMD 

of this model is the largest of the three estimation methods. The CRS model overestimates 

input changes and is therefore biased and inconsistent. Under VRS some inputs cannot 

increase above the Non-Increasing Return to scale facet of the production frontier. In fact, the 

production frontier under VRS envelops more tightly the data and corresponds therefore 

better to the true DGP.  

Similar conclusions for the RLR can be drawn than for the Inverse DEA model under 

CRS. We do not observe any conclusive trend of the MMAD with an increase of the sample 

size. This means that the estimators for the inverse DEA under CRS and the RLR models are 

inconsistent. As mentioned earlier, our DGP is based on a linear objective function subject to 

inequality constraints. Consequently, explanatory variables are not continuously 

differentiable, meaning that for instance a change in feed inputs leads to a discontinuous 

change in input cost. Then, any parametric specifications of the production function are by 

design incorrect. Nevertheless it is generally assumed that a flexible specification of the 

production function such as the cubic specification is a good approximation. Here, we 

illustrate that even a flexible production function such as the cubic function, is not able to 

reveal the underlying DGP despite the fact that concavity and monotonicity have been 

imposed. Figure 3(1) confirms these findings showing that first the MMD is negative and so 

the model is biased. Second the variance is large showing the lack of efficiency and so the 

inconsistency of the model. 

Though Inverse DEA model under VRS seems to outperform any other estimation 

methods, such non parametric methods rely heavily on the dataset’s quality and are known to 

be sensitive to noise or outliers.  In the second step of the assessment of the model an 

endogenous error term is introduced in the specification of our DGP, allowing us to generate 

cross sectional data. To which extend individual observations differ of technologies depend 

on how large is the variance of the error component. We also test the impact of the 

introduction of an error term exogenously because also in reality the dataset may contain 

some measurement errors. The Figure 4 and 5 show on the first column the performance of 

the different estimation technics against the known DGP when an endogenous error term is 

included and progressively increases. The second column of Figure 4 and 5 shows the 

performance of the different models when an exogenous error term is included and 



progressively increases. In both situations the introduction of one error term excludes the 

other. 

 

 
Figure 4. MMAD and MMD of the different tested model from a DGP including an error component 



 
Figure 5. Variance of the MD of the different tested models from a DGP including an error component 

 

Figure 4 shows that the Inverse DEA model under VRS performs the best relative to the 

other, independently on how large is the variance of the error term. Yet, the MMAD of the 

Inverse DEA model tends to converge toward a value meaning that the model is consistent. 

However, its MMAD converge at a lower speed and the MMD becomes larger as the variance 

of the endogenous error term increases. The model is thus upward biased and becomes less 

efficient with increasing errors. Figure 5 shows that the variance increases along with an 

increase of the variance of the error term confirming that the Inverse DEA model under VRS 

is consistent, biased upwards and that its efficiency depends on the extend the technology of 

each observations differs from each other. Indeed, by introducing an error term with in the 

feed intake capacity constraint introduces variation in the stomach capacity. Therefore, we do 

not simulate the DGP of one cow but of different cows indicating that it rather mimics the 

situation of cross-sectional data. With a small variance of the error term the stomach capacity 

of cows are still very similar.  

In the situation where we introduce an exogenous error term, meaning that our DGP 

generates panel data and we introduce measurement bias, the Inverse DEA model under VRS 



performs reasonably good only for the smallest variance of the error term. The right column 

of Figure 4 shows that the MMAD on the Inverse DEA model under VRS is the smallest 

compare to other models. However, when the variance of the error term increases the MMD 

becomes more and more negative and the MMAD does not seems to converge to any value. 

Furthermore, Figure 5 indicates that the variance of MD increases drastically with the largest 

error term. In such setting the model is biased upward, inefficient and inconsistent. This 

represents an expected result. Indeed, the Inverse DEA model is a non-parametric 

deterministic model, and by nature fail to separate noise from the estimators. When noise 

prevails, the model is inaccurate and leads to inconsistent estimations. 

The RLR model applied on the DGP including an endogenous error term has a 

negativeand a large and increase variance with an increasing error term in the DGP. 

Moreover, the MMAD does not decrease along with an increase of the sample size, indicating 

that the model is upward biased, inefficient and inconsistent. Comparable conclusion can be 

drawn for the RLR model applied on a DGP including an exogenous error term. These results 

seem to go against the   common assumption that any analytic function converges to a Taylor 

polynomial approximation. However, there is no real contradiction because an analytic 

function is one that is infinitely differentiable. The bio-economic DGP is not an analytic 

function and can therefore also not be approximated by a flexible functional form as the third 

order Taylor polynomial. Actually, no analytic function exists of the bio-economic DGP and 

therefore the RLR model is biased and inconsistent.  

Overall, the Inverse DEA model under VRS performs better, but such models are very 

sensitive to the quality of the dataset and do not support significant noise. The RLR models 

are not able to capture the true behaviour of the DGP as by design they cannot account for 

binding constraints. 

In this experiment we chose a DGP that we run for a different set of prices in order to 

generate our production frontier. We saw that in the case where the DGP generates a cross 

sectional dataset, Inverse DEA model under VRS perform well only if the technologies 

among observations do not differ too much. We can wonder if it is feasible to use such type of 

methodologies on a dataset composed of individuals having their own DGP, for instance, a 

group of farmers having the same activities in one region. Despite that the group could be 

relatively homogeneous, each farmer has its own behaviour and rational. In other words, can 

we use cross sectional data to predict change of a single observation and assume that this 

observation will shift toward the particular “DGP” of another one? In this case, the use of 

grouping technics in order to identify observation with similar technologies and the use 

resampling techniques to correct for bias could be potential remedies. 

6. Conclusion  

One of the main challenges in the practice of ex-ante simulation is to construct the most 

accurate model that captures the underlying behavior of the DGP. Often researchers choose to 

parametrically estimate a functional form.  By adopting a functional form we often assume a 

continuous relationship among variables. The continuity of these relationships is rarely 

happening in the real world situation, but as researchers never know the true functional form, 

this approach seemed compelling enough to be chosen. The problem becomes even more 

complex as the number of possible functional forms is large. Indeed any parametric 

estimation is by design incorrect, biases may increase if a wrong functional form is chosen. In 

this paper we have tested a rather extreme situation where we have used a very flexible form 

of the production function. Choosing a cubic specification of the production allows for a great 

local flexibility, but in the context of economic optimization only a concave function permits 

to choose inputs level that maximize profit, for this reason we impose monotonicity and 



concavity. On the other hand, a non-parametric simulation model enables to maintain the 

underlying economic properties such as monotonicity and concavity while at the same not 

imposing any arbitrary choice of a functional form.  

The main contribution of the paper is the fact that it is one of the few attempts in policy 

modelling to test or validate methods. Indeed, validation of policy models is very complex 

because there is no possibility to do a real world experimental design. In addition, the DGP 

that are described are never truly known. Therefore, this paper attempts to compare methods 

based on simulations with different known DGPs. The findings from this validation attempt 

are a real eye-opener. In general Inverse DEA under CRS and the RLR model performs very 

poorly given the fact that we have generated a panel dataset of 1000 observations with 

different prices and free of any measurement or sampling bias. This amount of data is far 

beyond the real world policy simulation where often not more than 20 observations per farm 

are available and the amount of price variation is limited. In addition, in real world situations 

the DGP of a farm is likely to change during 20 years.  

Further research could be conducted at a DGP at a higher level analysis such as farm 

level.  Farms exhibit more variation in their technology and may change behaviour more 

gradually.  Such model would also predict structural changes. Besides, an adjustment of the 

model to correct for bias and improve its efficiency will add value.  
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