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Woord vooraf

Het schrijven van je woord vooraf is het eindpunt van het schrijven van je doctoraat.

Licht aan het einde van de tunnel. Gedurende de jaren maakte idealisme plaats voor

realisme. Zo is een doctoraat een proces van vallen en opstaan waar je, in hoge mate,

alleen voor staat. Toch zou het eindresultaat onmogelijk zijn zonder de bijdrage van

andere personen, waarvoor ik oprecht dankbaar ben. Ik probeer het kort te houden.

Zo wil ik mijn promotoren, Marjan en Jeroen, bedanken om mij de kans te geven om

eigen ideëen te onderzoeken in een ongedwongen sfeer. Ik heb de voorbije jaren met

veel plezier onderzoek gedaan en een goede begeleiding is daarbij essentieel. Waar-

voor dank. Daarnaast is er de laatste jaren veel veranderd. De metabolic engineering

groep is onophoudelijk gegroeid tot een groep van gepassioneerde jonge onderzoekers.

Een continue zoektocht naar innovatie binnen de synthetische biologie (met bijhorende

hoge standaarden) gaat er hand in hand met een goede sfeer. Voor deze setting ben ik

dankbaar.

Eén iemand heeft daarbij een grote invloed gehad: Jo. Bedankt voor de jarenlange

begeleiding en ondersteuning, je vakkennis en perfectionisme hebben dit doctoraat naar

een hoger niveau gebracht. Verder hebben verschillende mensen binnen de MEMO

groep een invloed gehad op mijn doctoraat. In den beginne was er Hendrik, die al

snel zijn ervaringen als senior PhD student deelde. Tijdens mijn masterthesis startten

Frederik en Pieter aan hun persoonlijk avontuur, wat de basis zou vormen van de verdere

groei van de MEMO groep. Frederik, mijn officieuze thesisbegeleider, bezorgde me de

nodige wijsheden (mijn metje zegt altijd...) die me toelieten om de PhD tijd te over-

leven, zowel binnen het labo als daarbuiten. Pieter zorgde met zijn constante zoektocht

naar nieuwigheden (alles voor vijf jaar geleden is prehistorie...) voor de nodige impulsen

om innovatief, relevant en scherp te blijven. Tot zover de ‘oude’ garde, diegenen die

voor mij zijn gestart aan hun doctoraat. Het drietal Bob, Brecht en Thomas. Bob (de

speciale) verwonderde me telkens weer. De mifare saga, de NFC chip of de ‘ik heb de



3D printer in mijn slaapkamer gezet, anders worden de buren wakker van het geluid vrees

ik...’: het zijn maar enkele onvergetelijke voorbeelden. Brecht, altijd te vinden om voor

een gesprek, over wetenschap of thunder hooves rage. Ook bedankt voor de inhoudelijke

input rond biosensoren. Thomas die de synthetische biologie in gist op de kaart probeert

te zetten, immens respect voor het doorzettingsvermogen. En bedankt om te gidsen in

Heuvelland en Frans-Vlaanderen, doen we nog eens. Het volgende drietal, David, Van

Brempt en Tom. David, de Chuck Berry van de groep (nee, niet op alle vlakken), even

gepassioneerd door metabolic engineering als door rockabilly. Van Brempt, van comic

relief tot volwaardig wetenschapper, het ging snel. Goed voor een aantal uitspraken die

(zelfs) ik hier niet durf te herhalen. Tom, weinig woorden nodig, gewoon doordoen.

Ook de vreemde eend Mol mag niet ontbreken, bedankt. Na jaren dan toch die (door

Marjan verhoopte) vrouwelijke inbreng, Lien en Chiara. Veel succes in de toekomst,

genoeg goede mensen om alles in goede banen te leiden. Gedurende al die jaren kon ik

ook rekenen op Wouter en Dries D., de rotsen in de branding binnen de MEMO groep.

Wouter, bedankt voor alle hulp over al die jaren. Nooit was er iets teveel. En altijd

met diezelfde karakteristieke glimlach en met een voorbeeldige werkethiek. Daarnaast

bedankt voor de vele fijne momenten naast het labo. Als er iemand in staat is om een

feestje te bouwen ben jij het, en dat is nog heel voorzichtig omschreven. Dries D., jouw

hulp maakte het laatste jaar iets draaglijker. Merci voor alles. Bewonderenswaardig hoe

je moleculaire biologie verheft tot een echte competitie, die je altijd winnend afsluit.

De herinneringen aan de mindere momenten tijdens mijn doctoraat worden gelukkig

overvleugeld door de memorabele gebeurtenissen. Iedereen die ze heeft meegemaakt

weet waarover ik het heb. Talrijke muzieknummers zullen tot het einde der tijden herin-

neringen oproepen aan lang vervlogen tijden. Het motto ‘work hard, play hard’ kon je

nergens letterlijker waarnemen dan op het labo. Hiervoor ben ik bijzonder dankbaar.

De bureau van het klein labo zoals ik het me altijd zal herinneren: Gilles, Dries VH, Eric,

Maarten D en Catherine. Met veel te veel in een te kleine ruimte maar altijd bereid voor

een babbeltje of om de laatste laboperikelen op te lossen. Ook de glycodirect en biosurf

collegas mogen daarbij niet ontbreken. Met een bijzondere vermelding voor Verhaeghe

en Margo, bedankt voor de minder traditionele muzikale uitstapjes en interdisciplinaire

discussies. Ook Robin mag ik niet vergeten bedanken als onderdeel van de IWT lichting

van 2013. Steevast aanwezig op vrijdagavond en op de verkenningen in de Vlaamse

Ardennen. En bedankt om mee een afscheidsfeestje te organiseren, het werd unaniem

top bevonden. Sophie Roelants, bedankt voor het eeuwige enthousiasme. Sofie De Mae-

seneire, bedankt om ondanks alles het leven in het labo te proberen verbeteren. Verder



wil ik Joeri bedanken voor de begeleiding en alle hulp gedurende de jaren bij alle moge-

lijke wetenschappelijke problemen. Dat ik naast synthetische biologie ook vaardigheden

heb kunnen verwerven op andere gebieden heb ik ook te danken aan Gaspard. Die altijd

klaar stond om te helpen bij één of ander informatica probleem, ook zelden iemand zo

geamuseerd gezien bij het declareren van de variabele PATH in zowat mijn eerste bash

script. Classic. Wim wens ik te bedanken om tijdens zijn les dat 1,3-propaandiol verhaal

(met die triose fosfaat isomerase mutant) te vertellen, wat mijn interesse voor metabolic

engineering heeft gewekt.

Daarnaast wil ik mijn familie en vrienden bedanken. De laatste jaren heb ik veel ac-

tiviteiten links laten liggen, hopend op begrip. Bedankt voor alle steun en de kansen die

ik heb gekregen de voorbije, soms moeilijke, jaren.

Als laatste wil ik Magali bedanken. Of waar een summer school over de bio-economie

niet allemaal goed voor is. Bedankt voor alle steun en hulp. Als koppel ieder bezig zijn

met je eigen doctoraat en dat nog over exact dezelfde periode leek voor velen een bij-

zondere uitdaging. We hebben het toch maar mooi gedaan. Bedankt om een luisterend

oor te bieden op moeilijke momenten, al dan niet gerelateerd met mijn doctoraat. Ik

kan me een leven zonder jou niet meer voorstellen. Bedankt voor alles.

Zo, dat was het dan. Letterlijk de laatste woorden van mijn boekje. Einde van een zwaar

maar ook plezant hoofdstuk. Het was me een genoegen.

Gert

23 april 2017
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Chapter 1. Outline

Spurred by environmental and socio-economical concerns, there is a continuing strive

for a more sustainable society with environment-friendly technologies. An important

technology in this global challenge is industrial biotechnology, which uses microbial

cells or enzymes for the fabrication of industrially relevant products from renewable

resources. The possibilities of industrial biotechnology were greatly expanded at the

end of the 20th century with the emergence of metabolic engineering, allowing rewiring

the metabolism of the microbial cell factory to maximize the product yield. Several new

production processes were developed using metabolic engineering, allowing sustainable

production of an ever increasing number of both bulk and fine chemicals, previously

considered impossible to be produced in an economically feasible way1–5.

In order to achieve a maximal productivity the biosynthetic pathway needs to be opti-

mized by balancing the required enzymes to obtain a maximal flux towards the prod-

uct of interest. Typically, the production pathway is embedded in the native, heavily

regulated, metabolism of the host organism, causing a decrease in productivity due to

undesired biochemical conversions and native counterproductive regulation. Thus, the

creation of custom microbial cell factories is a daunting task, which heavily depends on

techniques to alter both the production pathway and the native metabolism of the host

organism. To this end, metabolic engineering traditionally relies on techniques based

on proteins, which are recently complemented with novel RNA-based parts to alter mi-

crobial metabolism.

Recently, synthetic biology, a research field that aims to systematically engineering biol-

ogy in a standardized way, has resulted in numerous emerged technologies that allow

effectively, rationally and predictably engineer biological systems6,7. Specifically, cut-

ting edge technologies allow fast and affordable DNA synthesis, improved methods for

DNA assembly, and high-throughput sequencing but applying these technologies to re-

liably engineer microbial cells in a custom way remains challenging8–10. As such, the

development of custom microbial cell factories still requires reliable and efficient tools

to rationally engineer gene expression in a predictable way, which improves the forward

engineering capacities in the field of metabolic engineering.

Hence, the main goal of this PhD dissertation is to develop and optimize metabolic en-

gineering tools, enabling forward engineering of microbial cell factories. To this end,

engineering principles for both RNA-based or protein-based tools and devices were de-

veloped, optimized and evaluated in view to ultimately rewire the metabolism of mi-

crobial cell factories in a custom way. The recently emerged RNA-based tools are still in

its infancy compared to the protein-based tools. To validate molecular detection using

18



Chapter 1. Outline

RNA devices, theophylline was used as a proof of concept molecule. This methylxanthine

drug, which was previously used to treat respiratory diseases, was one of the earliest to

be detectable using RNA.

The protein-based technology was validated by another proof of concept molecule: N-

acetylneuraminic acid (Neu5Ac), a vital sugar moiety with various roles in important

biological processes. As a result of its ubiquity in nature, Neu5Ac has numerous ap-

plications in pharmaceutical and food industries, which are currently hindered by the

limited production possibilities. The alternative production method via microbial cell

factories holds the promise to overcome the limitations for market exploration and en-

try of Neu5Ac in the lucrative life science market, i.e., cost-effective production and

sufficient amounts of Neu5Ac for bio-testing. An overview of this doctoral research is

depicted in Figure 1.1, showing the different approaches to enlarge the metabolic engi-

neering toolbox with methods allowing modulation of gene expression in a rational and

predictable way.

Development and optimization of various metabolic engineering tools to 
forward engineering of microbial cell factories

1) Development and optimization of tools for reliable and predictable engineering of gene 
expression using RNA parts. 

Chapter 3: Riboregulators

UU
UU

UU
UU

Chapter 4: Riboswitches

ligand absent ligand present

Chapter 6: General discussion and outlook

Chapter 5: Transcriptional biosensors

transcription factor

transcription factor
+ ligand

2) Development and optimization of tools for reliable and predictable engineering of gene 
expression using protein parts. 

Chapter 2: Review on tools to
modulate gene expression

Overview of all control levels of metabolic 
pathways in microbial cell factories

DNA

RNA

protein

Figure 1.1: An overview of the different chapters described in this PhD dissertation. The different
approaches to obtain the main objectives of this doctoral research: development and optimiza-
tion of metabolic engineering tools to forward engineer at (1) the transcriptional (red) and (2) the
translational level (orange).
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Since RNA is not longer viewed merely as data carrier, a paradigm shift is gradually

ongoing as the exploitation of RNA devices for metabolic engineering is steadily rising.

Its enormous potential as standardized, designable, composable and orthogonal device

is garnering interest due to its programmable nature. Chapter 2 gives an extensive

overview of the recently developed synthetic RNA devices, their advantages, current

limitation in designing and applying them and their emerging applications in the field

of metabolic engineering. Furthermore, these RNA based parts and tools are compared

to generally used DNA and protein based parts and tools to optimize microbial cell facto-

ries. These RNA devices are becoming the necessary armamentarium for contemporary

metabolic engineering. Despite several recent success stories the huge potential of RNA

devices in terms of speed, scalability, flexibility, orthogonality, portability, modularity,

etc. is not yet fully being exploited as several issues of experimental and theoretical

nature still persist.

One of these limitations is that no clear design principles exist to build pure RNA devices

to modulate translation due to the lack of knowledge on the functionality of these RNA

devices impeding their general applicability. To this end, in Chapter 3 repressing RNA

riboregulators are developed from scratch to overcome this lack of knowledge on their

functionality enabling forward engineering. More specific, a workflow is established for

the de novo design of pure repressing riboregulators, referred to as translation inhibit-

ing RNAs (tiRNAs), which repress gene expression by blocking translation initiation. In

a first approach, several structural and thermodynamic tiRNA features were evaluated

for their influence on the tiRNA functionality using an ordinary least squares regres-

sion model. Subsequently, to improve the reliability of de novo forward engineering

of repressing riboregulators, a sequence-function model was constructed to link tiRNA

functionality to the defined tiRNA features. Therefore, both structural and thermody-

namic tiRNA features were used in a partial least squares (PLS) regression model, which

was evaluated using an independent test set.

In Chapter 4, the RNA regulator toolbox is further broadened by an in silico approach

to create in vivo functioning riboswitches using in vitro selected aptamers. Traditionally,

ligand-responsive RNA devices heavily depend on screening combinatorial libraries and

expert knowledge, hindering predictable forward engineering. Moreover, these trial-

and-error approaches become impractical as the complexity of programmed biologi-

cal systems increases, emphasizing the need for automatically designable RNA devices.

Here, a computational workflow was created and optimized applying RNA bioinfor-

matics. More specific, the riboswitch characteristics of 5’ untranslated regions (UTRs)
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were evaluated using both structural and thermodynamical features. Subsequently, this

workflow was evaluated by testing several selected riboswitch candidates in vivo.

Monitoring cellular behavior and eventually properly adapting cellular processes is key

to handle the enormous complexity of todays metabolic engineering questions. In this

context, transcriptional biosensors bear the potential to augment and accelerate current

metabolic engineering strategies, catalyzing vital advances in industrial biotechnology.

The development of such transcriptional biosensors typically starts with exploring Na-

tures richness for ligand responsive transcription factors (TFs) which are subsequently

reengineered to control a specific reporter gene or actuator. However, as most biosensors

are largely composed of native sequences, techniques to engineer biosensors are miss-

ing, which makes tuning of the main characteristics of these (natural) transcriptional

biosensors, i.e. the response curve and ligand specificity, in view of specific industrial

biotechnology applications, challenging. In Chapter 5, various biosensor engineering

approaches to create biosensors responsive to Neu5Ac were explored based on a natu-

rally occurring TF. To evaluate the effectiveness of the developed biosensors, a Neu5Ac

producing strain was constructed.

In a final chapter (Chapter 6), the approaches followed in this doctoral research are as-

sessed and the different tools to optimize microbial cell factories are evaluated. Guide-

lines to further apply these tools in order to optimize the Neu5Ac production platform

and improve their industrial applicability are formulated.
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Abstract

Synthetic biology, in close concert with systems biology, is revolutionizing the field
of metabolic engineering by providing novel tools and technologies to rationally, in
a standardized way, reroute metabolism with a view to optimally converting renew-
able resources into a broad range of bio-products, bio-materials and bio-energy.
Increasingly, these novel synthetic biology tools are exploiting the extensive pro-
grammable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally
design standardized, composable, and orthogonal parts, which can be scaled and
tuned promptly and at will. This review gives an extensive overview of the recently
developed parts and tools for i) modulating gene expression ii) building genetic cir-
cuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA
nanostructures. These parts and tools are becoming necessary armamentarium
for contemporary metabolic engineering. Furthermore, the design criteria, techno-
logical challenges, and recent metabolic engineering success stories of the use of
RNA devices are highlighted. Finally, the future trends in transforming metabolism
through RNA engineering are critically evaluated and summarized.
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2.1 Introduction

Long after Crick 11 stated the central dogma of molecular biology, RNA has been viewed

merely as data carrier, required to translate genetic information encoded in DNA into

proteins. However, the complex role of RNA in the regulation of cellular metabolism

has gradually begun to unravel, as over the last decades numerous regulatory RNAs

were discovered, modulating cellular responses in various ways. For instance, small

RNA (sRNA) regulators modulate protein expression through base pairing, riboswitches

react to the availability of certain metabolites and clustered regularly interspaced short

palindromic repeats (CRISPR) serves as an immune system12–16.

Since these revelations, the large potential of RNA is increasingly being exploited spurred

by recent technological advances. These cutting edge technologies such as fast and af-

fordable DNA synthesis, improved methods for metabolic pathway assembly and high-

throughput sequencing enable harnessing the full potential of RNA in synthetic biol-

ogy8–10. The research field of synthetic biology aims at enabling the systematic engi-

neering of biology through combining standardized basic components6,7. This standard-

ization process allows automation and is considered critical to effectively, rationally and

predictably engineer these biological systems17–21. As a result, considerable efforts have

been invested in creating composable, tunable, scalable and reliable parts, which are ei-

ther stored in repositories (e.g., BioBricks registry22 and BIOFAB collection23,24) or ad

hoc designed (e.g., ribosome binding site (RBS) calculator25,26). The combination of

these concepts from synthetic biology with metabolic engineering and systems biology

has recently driven major advances in industrial biotechnology6,27–30.

Several new processes have been developed through metabolic engineering for the sus-

tainable production of an ever increasing number of both bulk and fine chemicals, previ-

ously considered impossible to be produced economically from renewable resources1–5.

The development of production hosts through metabolic engineering typically requires

massive tuning of the cellular metabolism in order to optimize the flux towards the de-

sired product. To this end, over the past decade numerous parts and tools have been

developed for both rationally and combinatorially i) altering the host’s native genome,

ii) optimizing the flux through de novo pathways, iii) controlling expression using ge-

netic circuits and iv) selecting optimal producers from vast libraries. However, whereas

most approaches in synthetic biology and metabolic engineering primarily utilized DNA

and protein parts to create complex biological systems for various applications31–37, a

paradigm shift is gradually ongoing as the use of RNA components for these purposes is
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steadily rising.

Exploiting the enormous potential of RNA is garnering interest due to its programmable

nature38,39. As such, the underlying structure function relationship makes RNA highly

designable, enabling reliable construction of standardized, composable, and orthogonal

parts, which can be scaled and tuned at will. Consequently, RNA regulators are effec-

tive tools to reprogram existing biological systems or to build completely new ones40–46.

For example, these RNA devices outperform protein regulators in rewiring cells due to

their designability and scalability47–50. After years of focusing on techniques to engi-

neer RNA devices with a desired function, this research field is mature enough to start

seeing applications becoming reality51–56. In this contribution, an overview is given of

the current advances in synthetic RNA devices, the current limitations in designing and

applying them, and their emerging applications in the field of biotechnological engi-

neering. These RNA parts are becoming necessary weaponry for contemporary meta-

bolic engineering. Furthermore, design principles, technological challenges, and recent

metabolic engineering successes of the use of RNA devices are highlighted. Finally, the

future trends in transforming microbial metabolism through RNA engineering are crit-

ically evaluated and summarized with a focus on metabolic engineering. In this field,

techniques are mainly developed in model organisms such as Escherichia coli and Saccha-

romyces cerevisiae but modern metabolic engineering efforts are increasingly exploiting

these technologies in more uncommon organisms with interesting characteristics.

2.2 Modulating gene expression using RNA

Over the years, most approaches in synthetic biology and metabolic engineering pri-

marily utilized DNA and protein parts to create complex biological systems for various

applications31–37. These earliest efforts mainly consist of modulating protein expression

through transcriptional regulators on the DNA level to achieve the desired phenotypic

behaviour. To properly construct these and more complex systems, such as genetic cir-

cuits and metabolic pathways, predictable and reliable techniques controlling protein

synthesis are needed. The primordial importance of these tools is clear as the ever in-

creasing complexity of genetic circuits and metabolic pathways makes a trial-and-error

approach infeasible25. In this context, forward engineering of protein-based transcrip-

tional regulators is challenging due to the complex DNA-protein interactions involved,

which are hard to predict because of the numerous degrees of freedom involved57. In

comparison, RNA serves as a great alternative building block with superior programma-
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bility and scalability. For instance, translation initiation is strongly linked to the RNA

structure in the translation initiation region, containing the RBS58. Additionally, intrin-

sic transcription termination is the result of the formation of a stem loop, which results

in the disruption of the binding between RNA and template DNA24,26.

Consequently, the ability to engineer gene expression largely depends on the knowl-

edge of the sequence-structure relationship. The RNA structure consists of secondary

and tertiary interactions, of which the former are thermodynamically more stable and

form much faster, leading to a sequential folding process59. This allows decoupling

of secondary and tertiary structure prediction, facilitating modelling efforts. These ap-

proaches are further supported by advanced RNA structure determination techniques,

which currently allow high-throughput native structure determination in vivo60,61. There-

fore, biophysical models are being developed with ever increasing detail, up until the re-

cent incorporation of the biologically relevant cotranscriptional RNA folding process62,63.

Consequently, RNA folding is one of the best modelled processes in biophysics, enabling

reliable prediction of RNA interactions64. As such, RNA secondary structure prediction

tools are used in forward engineering of various RNA parts25,26,49,65–67. This kind of

microbial engineering typically revolves around modulating specific gene expression to

attain precise goals.

In metabolic engineering, gene activity is typically removed or reduced to minimize

certain undesired biochemical conversions, hereby maximizing the production of value-

added compounds. To achieve maximal product formation, several genes related to the

biosynthetic pathway require optimization, which results in an efficient conversion of

substrates, intermediates and cofactors into the desired product28,29. Traditional strate-

gies rely on DNA modifications to modulate gene expression but RNA can serve as a

great alternative due to its modularity and programmable nature68–70. Over the years,

several RNA-based tools were developed to decrease or increase gene expression either

prior or posterior to transcription. Figure 2.1 compares protein-based gene expression

modulation with RNA-based technology, controlling transcription and translation. In the

sections below these various RNA devices which modulate expression on the different

controlling levels are discussed and compared in depth.
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Figure 2.1: Comparison between protein- and RNA-based gene expression modulation technolo-
gies to control translation and transcription. Protein-based technologies mainly comprise promoter
engineering71, zinc finger (ZF) & transcription activator-like effector activation72,73, ZF & transcrip-
tion activator-like effector nuclease (TALEN) repression72,74, and natural/hydrid transcription factors
(TFs)75,76. RNA-based technologies comprise clustered regularly interspaced short palindromic re-
peats (CRISPR) repression53,65,77, CRISPR activation53,77, terminator engineering24,26, ribosome
binding site (RBS) engineering23,25, small RNA (sRNA) repression70,78, tna translational to tran-
scriptional adaptor79, pT181 variants47, small transcription activating RNAs (STARs)80, RNA-IN-
RNA-OUT variants49, and toehold switches81. The quality attributes evaluated are programmabil-
ity (degree to which the function of the part is controllably adjustable), modularity (degree to which
components can be separated and recombined), portability (degree to which technology is inter-
changeable between different host organisms), dynamic response (obtainable expression range
convered by the technology), accessibility (degree to which the technology is easily applicable by
non-experts), orthogonality (degree to which parts of the same family are tuned to noninterference
while maintaining the same function).
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2.2.1 Translational repression using synthetic sRNAs

The ability to specifically reduce gene expression is an indispensable tool for microbial

engineering. A large group of naturally repressing sRNAs are trans-encoded, which are

expressed on another location than where they exert their function. This property, along

with the programmable nature of RNA, makes these an interesting target for synthetic

gene regulation.

Early gene silencing efforts focused on controlling post-transcriptional processes, more

specifically on designing RNA molecules which hybridize the translation initiation re-

gion. It is long known that the secondary structure in this region around the RBS heav-

ily influences translation efficiency58. The ease in designing hybridizing RNA molecules

drove several gene silencing efforts mainly comprising long antisense RNAs fully comple-

mentary to the target site82–84. Antisense RNA allows precise downregulation, hereby

redirecting metabolite fluxes towards the metabolic phenotype of interest78,85,86. Al-

though these approaches allow gene silencing, they generally lack applicable design

principles and have variable repression efficiencies. To improve the inhibitory efficiency

of synthetic trans-expressed sRNAs, several attempts employed the binding site of the

naturally occurring E. coli Hfq chaperone protein, which naturally facilitates base pair-

ing between sRNA and the target mRNA resulting in translational blockage or mRNA

decay87.

Man et al. 88 first described a semi-rational approach comprising an in silico screening

of sRNA candidates containing a target site, a Hfq binding site, and an intrinsic termi-

nator. After performing this computational analysis, in vivo assays showed that 4 out

of 16 sRNAs candidates repressed gene expression with more than 60 %. Further de-

velopments focused more on screening efforts by using various naturally occurring Hfq-

binding motifs to create combinatorial libraries. These libraries were subsequently used

to select sRNAs which effectively repress endogeneous genes employing a fluorescent

reporter gene translationally fused to the targeted mRNA. In contrast to the previously

mentioned efforts, Na et al. 70 reported a general methodology to rationally design syn-

thetic sRNAs which translationally modulate gene expression. To allow effective gene

repression, these synthetic sRNAs contain a naturally existing Hfq-binding scaffold and

a target-binding sequence complementary to the target site. Here, this target site com-

prises the translation initiation region with the aim of preventing ribosome binding.

Optimal design rules were developed hereby enabling forward engineering of efficient

trans-acting and Hfq-dependent synthetic sRNAs89. These artificial gene regulators form

an alternative to traditional DNA-based gene knockout experiments by allowing simple
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and fast gene knockdowns. In addition, this technique also allows downregulation of

genes essential for proper cell function, which is often impossible by gene deletion. An-

other advantage originates from the plasmid-based expression of these artificial sRNAs,

which allows high-throughput studies of knockdowns in various strains. As such, syn-

thetic sRNAs were first used to test multiple gene knockdowns in various E. coli strains for

improved tyrosine production (up to 2 g/L). Second, a sRNA-based strategy was used to

perform large-scale target identification (up to 130 genes) followed by gene expression

optimization to improve cadaverine production resulting in a 55 % increase in produc-

tion70. These proofs of concept show the advantage of using translational RNA regula-

tors over traditional, laborious and time-consuming genetic engineering strategies due

to the ease in design and implementation, which allows high-throughput experiments

on a shorter time scale. Moreover, in contrast to DNA-based gene knockouts, knock-

downs using synthetic sRNAs are inducible and reversible, showing the advantages of

these RNA regulators.

2.2.2 Programmable RNA-guided transcriptional modulation

Until recent, most RNA-based gene modulation efforts targeted the translational level,

however, this changed due to recent advances in genome engineering techniques90–92.

Various genome engineering methods are based on the naturally occurring CRISPR,

which spurred the development of more programmable gene silencing techniques on

the transcriptional level. CRISPR systems are a family of DNA repeats, which provide

acquired immunity against viruses and plasmids in most archaeal (∼ 90 %) and bacte-

rial (∼ 40 %) genomes16. Such specific immune systems are often adjacent to cas genes

(CRISPR-associated) typically encoding endonucleases, helicases, polymerases and po-

lynucleotide binding proteins. Depending on the type of CRISPR/Cas system, these Cas

proteins can form a complex, in various ways, with CRISPR RNA (crRNA) allowing spe-

cific target recognition16,90. These crRNAs need maturation which occurs differently in

the three existing types of CRISPR/Cas systems. Type I and III systems require special-

ized Cas endonucleases to process pre-crRNAs to mature crRNAs90. In contrast, type II

systems rely on trans-activating crRNA (tracrRNA) complementary to repeat sequences

in pre-crRNA to trigger RNase III processing to form mature crRNA90,93. Because this

mechanism mainly relies on RNA interactions, which can be easily predicted, repro-

gramming these type II systems for genome engineering or gene expression modulation

is straightforward. Therefore, type II CRISPR-Cas systems were used for site-specific

genome editing using various Cas9 endonucleases, hereby introducing permanent mod-
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ifications in various genomes90–92. This type of genome engineering provides a more

efficient and easier way to construct chromosomal alterations compared to traditional

protein-based techniques, i.e., ZFs and TALENs94.

To use type II CRISPR systems for custom gene silencing, an inactivated Cas9 endonu-

clease from Streptococcus pyogenes allows specific RNA-guided transcriptional blockage

by co-expression with a small guide RNA (sgRNA)65. This so called clustered regularly

interspaced short palindromic repeats interference (CRISPRi) system allows tunable and

efficient repression of specific genes without detectable off-target effects by interfering

with transcriptional elongation and RNA polymerase binding. In addition, CRISPRi al-

lows specific interference with TF binding sites65,95.

Similarly to CRISPRi, Bikard et al. 77 used an inactivated Cas9 protein (dCas9) to block

transcription of specific genes. In addition to transcriptional repression, genes can be

activated by translationally fusing the ω-unit of RNA polymerase to dCas9. After op-

timizing the distance between binding site and promoter, a dCas9-ω C-terminal fusion

protein showed up to 23-fold activation in E. coli77. Similar strategies using protein fu-

sion of dCas9 and effector domains also enabled gene activation or repression in eukary-

otic cells96,97. This approach using fusion proteins restricts modulation to one direction,

either increasing or decreasing gene expression. To allow distinct types of regulation on

multiple gene targets at once, Zalatan et al. 53 extended sgRNAs to include RNA scaf-

folds. These engineered RNA modules have distinct protein-docking sites which allow

the construction of protein architectures in vivo98. By combining these RNA motifs with

CRISPR sgRNA, modular RNA scaffolds can be created enabling custom targeting and

tunable regulation. These so called CRISPR RNA scaffolds were used to program the

metabolic flux in the branched violacein pathway53. The synthesis of the four pos-

sible end-products of this pathway is controlled by introducing two different control

points using desired regulation at specific loci. The CRISPR RNA scaffold regulation

platform exemplifies the modularity and programmability of RNA to engineer microbial

gene expression: chromosomal targets are recognized by sgRNA-DNA base pairing and

modular RNA scaffolds recruit specific proteins. In comparison to other targeted gene

regulation techniques, RNA-guided CRISPR gene modulation excels because of the easy

design and simple construction of sgRNAs allowing simultaneous modulation of several

targeted genes within a short timespan. Additionally, in comparison to traditional DNA-

based gene modification techniques, CRISPR-based regulators can be inducible and are

reversible, enabling dynamic control over gene expression. Recently, a combinatorial

assembly method containing CRISPR arrays was used to simultaneously downregulate
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multiple genes, resulting in improved production of malonyl-CoA-derived chemicals99.

Similarly, CRISPRi was used to increase poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

production by repressing multiple genes100.

However, CRISPR requires a specific protospacer adjacent motif (PAM) sequence for

each Cas9 which limits the availability of target sites. In addition, the 14-nt recognition

sequence is too short to obtain unique sequences in large genomes (for instance, the hu-

man genome)95. These drawbacks can be counteracted by employing Cas9 homologs

with different PAMs, which expands the number of possible target sequences91,95,101. To

further overcome this restriction, a set of fully orthogonal Cas9 proteins was character-

ized, which showed fewer PAM requirements for the N. meningitidis ortholog, making it a

suitable starting point for protein engineering efforts. The way towards engineering en-

hanced CRISPR technology was further paved by functional and structural studies on the

sgRNA, target DNA, and Cas9 complex102,103. Additionally, future efforts characterizing

additional Cas9 orthologs are expected to further expand engineering capabilities104.

2.2.3 Predictably tuning gene expression using RNA parts

Constructing custom made biological system calls for more engineering tools than tech-

nologies interfering with gene expression alone. For instance, creating microbial cell

factories requires precise optimization of gene expression to balance the production

pathway5,28,29,51,105,106. Here, traditional trial-and-error approaches become impracti-

cal as custom programmed cells execute increasingly complex functions25. To facilitate

the development of these systems, tools and parts allowing reliable forward engineering

are needed. A quantitative framework for the forward engineering of complex biolog-

ical systems requires a thorough knowledge on how gene expression is regulated from

DNA to protein. On the transcriptional level, various proteins, such as RNA polymerase

and TFs, play an essential role. This makes linking the promoter sequence to protein

production over a wide range of conditions very challenging due to the difficult physical

modelling of DNA-protein interactions, which is a result of the large number of degrees

of freedom involved57. Although several approaches successfully model this transcrip-

tional process to some extent, the complex nature of transcription remains hard for

forward engineering of promoter sequences57,107–109. As stated before, RNA can serve

as a versatile alternative, which allows accurate control of protein expression. Moreover,

RNA practically bridges DNA to protein, controlling intrinsic transcription termination

and translation initiation. The latter enables precise control of translation, the former

is required to reliably stop transcription.
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Predictably controlling intrinsic transcriptional termination

To avoid undesired transcriptional readthrough, absolute transcription termination is

essential for predictable microbial engineering, which requires strong terminators. To

this end, effective termination requires efficient dissociation of the transcription elonga-

tion complex, which mostly occurs using intrinsic terminators. In bacteria, this type of

termination comprises a short hairpin followed by a U-rich sequence, which in contrast

to Rho-dependent terminators do not require any assistance of proteins. As a conse-

quence, intrinsic terminators are much more designable, although details of the molec-

ular mechanism of Rho-independent termination, despite decades of research, remain

unknown110. The ever increasing size of custom biological systems demands however a

large set of available terminators. To enlarge this terminator collection, numerous natu-

ral and synthetic terminators were systematically characterized to quantify their design

constraints24,26. Using this data, biophysical models mainly comprising RNA thermody-

namics simulation, including simulations of co-transcriptional RNA folding dynamics,

were developed. This resulted in a substantial number of new strong terminators and

a better understanding of the sequence-function relationship, which enabled the more

reliable forward design of intrinsic terminators24,26.

Programmable control of translation initiation rate

In addition to being essential in transcription termination, RNA architecture plays a cru-

cial role in translation initiation. For years, research focused on elucidating important

factors influencing the translation initiation rate, showing that the region surrounding

the RBS is determinative for protein production. Translation initiation is mostly the

rate limiting step, which is influenced by the start codon, the affinity for 16S rRNA,

spacing between start codon and Shine-Dalgarno sequence and mRNA thermodynam-

ics58,111,112. This thorough knowledge of the working mechanism, allowed the devel-

opment of accurate biophysical models25,113,114. Pioneering work in this field showed

the predictive capabilities of thermodynamic models, mainly based on secondary struc-

ture predictions, allowing precise quantification of the translation initiation rate25. As

such, this mathematical framework enables forward design of RBSs, showing accurate

prediction within a factor of 2.3 over a range of 100,000-fold in protein expression25.

This approach was later extended using newly acquired insights in the working mech-

anism of ribosome binding upstream of the Shine-Dalgarno sequence115. Other mod-

elling approaches showed similar predictive power, further extending the capabilities

to rationally design synthetic RBSs113,114. However, using these RBSs in different ge-
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netic contexts results in different protein levels, emphasizing the need for ad hoc RBS

design25,114. To facilitate forward engineering, software implementations are available

enabling forward and reverse engineering25,114,116. In conclusion, these approaches to

model translation initiation allow forward engineering of RBS parts, although the pre-

dictability of these techniques is still limited25,115.

Aside from rational designs with a specific protein expression level, these tools success-

fully generate reliable RBS libraries for combinatorial metabolic engineering117. These

techniques were successfully used to combinatorially optimize pathways in various host

organisms118–120. By using these highly informative RBS libraries, the whole search

space in multi-protein optimization problems can be efficiently covered, avoiding a com-

binatorial explosion. Moreover, to effectively search through multi-protein expression

spaces with custom search parameters, an algorithm was developed to design sequences

based on RBS Library Calculator, which allows modelling the sequence-activity rela-

tionship of a biosynthetic pathway in various bacteria51. Subsequently, model predic-

tions were used to design new pathway variants with the aim of finding the expres-

sion optimum. As proof of concept, this approach was successfully used to balance

the neurosporene pathway, finding optimal protein expression levels hereby removing

metabolic bottlenecks51. In a similar approach, Ng et al. 121 constructed an improved

Entner-Doudoroff pathway by employing the RBS Library calculator to efficiently search

the 5-dimensional protein expression space. This combinatorial approach resulted in

a 25-fold increased NADH regeneration rate, which subsequently resulted in a 97 %

increased terpenoid titer121. These kind of effective and reliable search methods for

multi-protein systems, mainly based on RNA thermodynamics, play a primordial role in

modern microbial engineering to precisely balance gene expression levels5,28,29,105,106.

Mathematical modelling of translation initiation rates allows constructing reliable RBS

libraries. In contrast, forward engineering of RBS parts using these methods show lim-

ited predictability, a result of imperfect knowledge on the biophysical rules regarding

translation initiation25,115. Moreover, large scale analysis of common promoter and

RBS parts showed RNA and protein levels within twofold of the expectations in 80 %

and 64 % of the time, with larger deviations for the worst constructs18. The scale of this

approach enables screening genetic parts for desired behaviour but also emphasizes the

need for more predictive and composable parts to reduce the number of design-build-

test cycles. Various methods, employing RNA devices, aim to resolve this bottleneck,

hereby enabling a bottom-up approach to building complex genetic circuitry23,122,123.

To improve the predictability of gene expression, genetic elements can be physically sep-
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arated from their context by specifically cleaving mRNA. This physical separation was

accomplished using CRISPR and ribozymes122,123. The former comprises RNA-guided

cleavage of mRNA using CRISPR technology, while the latter autocatalytically cleaves

the mRNA, leading to predictable gene expression. However, these approaches do not

rule out the largest source of variability, namely interactions between the 5’ untrans-

lated region (UTR) and the gene of interest124. Consequently, Mutalik et al. 23 mainly

aimed to further increase the reliability of translation initiation by using bicistronic de-

signs. In this translationally coupled architecture, which overlaps the downstream gene

by 1 base pair, the ribosome synthesizes a short leader peptide by binding an upstream

RBS. Subsequently, translation is reinitiated by a second RBS, which is entirely encoded

in the coding DNA sequence (CDS) of the leader peptide, resulting in reliable protein

expression of the gene of interest. Among others, these bicistronic designs were used

to create various libraries of genetic elements controlling transcription and translation

initiation. Curation of these parts resulted in a set of genetic elements showing more

reliable protein expression across a 1,000 fold dynamic range. This particular collection

together with the previously mentioned technologies emphasize the indispensable role

of RNA in precisely tuning translation.

Rational engineering of mRNA stability

Besides being crucial in transcription termination and translation initiation, RNA archi-

tecture plays a vital role in mRNA stability. Early metabolic engineering efforts showed

that introducing hairpins in the 5’ UTR prolongs the half-life of mRNA125. Using this

finding, Carrier & Keasling 126 created 5’ UTR libraries, resulting in variable mRNA half-

lives, showing the importance of RNA structure on mRNA degradation. As such, RNase

cleavage sites were used in combination with other intergenic control mechanisms to

control gene expression. These libraries of tunable intergenic regions (TIGRs) vary over

a 100-fold range in expression and enabled the balancing of the mevalonate pathway,

resulting in a sevenfold increase in production106. State-of-the-art RBS designs incor-

porate various design factors to minimize mRNA stability changes, including shortening

unprotected mRNA regions and removal of potential RNase binding sites51. To con-

clude, RNA allows programmable control over protein expression, which is possible due

to the in-depth knowledge on transcriptional termination, translation initiation, and

mRNA stability.
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2.3 Towards building increasingly complex genetic circu-
itry using RNA parts

In addition to gene expression modulation, RNA serves as an ideal building block to

construct predictable biological circuits due to its programmable nature. These highly

specific RNA-RNA interactions enable the facile bottom-up construction of genetic cir-

cuits. Isaacs et al. 127 pioneered in the field of RNA genetic circuitry by creating engi-

neered riboregulators, comprising a cis repression module by inserting a complementary

sequence upstream of the RBS. The resulting stem loop structure requires trans expres-

sion of small noncoding RNAs to relief repression of the downstream gene. This early

approach shows the potential of RNA as a scalable component for building biological

systems. In addition, these kind of RNA devices encapsulate various properties required

to predictably construct biological systems17. Based on the pioneering work of Isaacs

et al. 127, cells were reprogrammed using RNA to count biological inputs. Here, synthetic

riboregulators were used to construct a genetic counter, which could be recorded using

recombinases48. To further elaborate the riboregulator technology, a programmable

platform was created, allowing orthogonal control of multiple genes in physiological

conditions. These RNA devices were used to tightly control expression of various pro-

teins, enabling the construction of various microbial behaviours128. The broad range

of applications of these synthetic riboregulators was shown among others, by building

a Boolean logic controlled kill-switch and a genetic switchboard, which regulates the

carbon flux through the three E. coli glucose catabolic pathways128,129. In addition, ri-

boregulators were used to develop a new biocontainment strategy with multilayered

safeguards, which tightly control multiple essential genes in E. coli, enabling safe use of

genetically modified organisms130.

Building increasingly complex biological systems requires an expansion of the number

of RNA regulators, which additionally need to be highly specific and unable to cross

react. To increase the amount of available orthogonal RNA regulators, Mutalik et al. 49

rationally created variants of the naturally occurring RNA-IN-RNA-OUT antisense sys-

tem of IS10 (see Figure 2.2D). This translational regulation comprises an antisense RNA

(RNA-OUT), which blocks the RBS on the RNA-IN mRNA, hereby repressing transposase

expression. In this study, 23 sense RNA-IN and 23 antisense RNA-OUT mutants were

constructed and subsequently tested. Subsequently, model predictions were successfully

used for the forward engineering of orthogonal riboregulators, hereby showing the abil-

ity to predictably build RNA devices using data-driven sequence-activity models49. De-
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spite the advantages of using RNA, the aforementioned conventional riboregulators have

a limited dynamic range in comparison to protein-based genetic switches131. This limi-

tation is predominantly caused by imposed sequence constraints in the design of these

riboregulators, which involves blocking the RBS by base pairing. These riboregulators

are required to contain a RBS sequence, which reduces the number of sequences suited

as orthogonal riboregulator. To overcome this limitation, Green et al. 81 reported a new

type of riboregulator, the toehold switch, which forms a stem in the 5’ UTR downstream

of the RBS, without involving the RBS (see Figure 2.2E). This alternative design ex-

pands the sequence space to obtain functional riboregulators, allowing the construction

of switches with improved orthogonality and activation. Moreover, a first-generation

library was analyzed to derive design features, enabling data-driven forward engineer-

ing of highly orthogonal toehold switches with dynamic ranges comparable to protein-

based transcriptional regulators. These RNA-based genetic switches were successfully

used to regulate endogeneous genes, to sense sRNAs and, to construct complex genetic

circuits52,81. In addition, toehold switches were used to create various programmable

in vitro diagnostics, such as glucose sensors and strain-specific Ebola virus sensors52,81.

Also, to facilitate field use of RNA regulators, a paper-based platform was developed

using commercially available cell-free systems, enabling distribution of synthetic biol-

ogy tools beyond laboratory environments52. In conclusion, the previously mentioned

efforts show the versatility of RNA regulated genetic circuits, which have the advantage

of programmability. RNA regulators can be simulated and designed in silico into func-

tional genetic circuits. Even without data-driven models, functional riboregulators can

be designed de novo using simple thermodynamic models. Moreover, using an objective

function composed of factors derived from literature, mainly formation and activation

energy involved in riboregulation, sufficed to computationally design functional RNA

devices132.

All previously mentioned riboregulators control translation through occlusion of the

RBS, hereby modulating the translation initiation process. A different type of riboreg-

ulators are hammerhead ribozymes, which control translation initiation through condi-

tional self-cleavage. These RNA regulators can be redesigned to control gene expression

depending on small trans expressed RNAs, which is important for the construction of

higher-order genetic circuits133. Shen et al. 134 developed a scalable automated method-

ology to design RNA-mediated signal transduction systems using so called regazymes,

comprising ribozymes and aptamers, capable of sensing both sRNAs and small mole-

cules. These de novo designed RNA devices are used in various complex gene circuits
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built for a custom purpose, once again showing the programmable capabilities of RNA

over protein parts.

Other types of RNA devices regulate transcriptional elongation, which, in contrast to

translational regulators, can control synthesis of multiple RNAs, coding or noncoding.

In addition, transcriptional regulators are inherently composable but difficult to engi-

neer due to the poorly understood mechanism of RNA polymerase interference79. To

eliminate this bottleneck, Liu et al. 79 developed an adaptor, which allows controlling

transcription using translational riboregulators. This conversion is accomplished using

the naturally occurring tna regulation, mainly comprising a leader peptide (tnaC). Full

translation of this peptide blocks a Rho factor binding site, allowing transcription of

the downstream genes in the operon. This mechanism was combined with translational

riboregulators, forming the adaptor from translational to transcriptional control. Subse-

quently, this adaptor successfully converted the previously described RNA-IN-RNA-OUT

translational riboregulators into transcriptional controllers49. Additionally, coupling

this system to an aptamer, an oligonucleotide sequence which binds a specific small

molecule, resulted in ligand dependent transcriptional regulation79. Another approach

designed orthogonal variants of the natural occurring antisense-mediated transcription

attenuation system from the pT181 plasmid (see Figure 2.2F), independently control-

ling transcription. These transcriptional riboregulators were used to create logic gates,

allowing the propagation of antisense RNA signals in complex genetic circuits47. In

order to increase the number of available orthogonal RNA transcriptional attenuators,

Takahashi & Lucks 135 fused RNA binding regions from naturally occurring antisense

regulated translational regulators to transcriptional attenuator from plasmid pT181. As

such, 11 transcription attenuators were created and tested, resulting in a maximum

of 7 × 7 mutually orthogonal riboregulators and design principles for these transcrip-

tional regulators135. Similarly, Chappell et al. 80 used naturally occurring transcriptional

attenuation systems to create STARs (see Figure 2.2G). Although there are no known

naturally occurring sRNAs that activate transcription, four highly orthogonal regulators

were engineered that disrupt intrinsic terminator formation. In addition, a sequence-

function model was derived from systematic sequence modification, enabling forward

engineered STARs to target terminators found on the E. coli genome for activation and

the construction of transcriptional logic gates80.

Various types of orthogonal riboregulators, controlling transcription or translation, were

used to construct larger genetic circuits, which include multiple types of Boolean logic

gates47,80,81,128,132. Besides these genetic circuits built from purely RNA regulators, the
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previously described CRISPR/Cas technology can also be programmed to perform the

same function. The potential of CRISPR/Cas transcription regulation was first shown

in human cells, enabling the construction of complex transcriptional cascades136. In

a similar strategy, tools using CRISPR/Cas were integrated with multiple RNA regula-

tory devices to construct programmable complex genetic circuits137. As a first real life

application of CRISPR/Cas genetic circuitry, Liu et al. 138 constructed a modular AND

gate to interpret cellular information from two promoters, hereby detecting bladder

cancer cells. Subsequently, a gene network was constructed to inhibit bladder cancer

cell growth, induce apoptosis and decrease cell motility138. After these early efforts in

human cells, Nielsen & Voigt 139 constructed the first complex genetic circuits in mi-

crobial cells by using five synthetic promoters, which are orthogonally repressed by

specifically designed sgRNAs. This enables up to 440-fold on-target repression, with mi-

nor off-target effects. Subsequently, these RNA-guided devices were used to construct

various logic gates, including the Boolean-complete NOR gate, which allows building

any computational device. As proof of concept, these basic components were used to

program more complex behaviour containing up to 3 Boolean gates139. To conclude,

the CRISPR/Cas and previously mentioned riboregulator technologies are indispensable

tools for the construction of ad hoc tunable genetic circuits by fully harnessing the pro-

grammable nature of RNA. These recent advances show RNA parts as a great alternative

to traditional protein-based genetic circuitry. Figure 2.2 shows a functionally complete

NOR gate constructed using RNA or protein parts. In addition, several previously dis-

cussed RNA components controlling transcription and translation are shown.

As outlined above, enormous progress has been booked in recent years on the devel-

opment of both orthogonal and complex/nonlinear regulators, tunable at will to obtain

the desired dose-response curves. These features are considered essential for the con-

struction of complex genetic circuits141. In this context, the development of RNA-based

nonlinear logic Boolean OR, NOT, AND, AND NOT and NOR gates has been of utmost

importance80,132. Such types of cooperative and/or complex RNA-based control have

also been achieved using, for example, tandem riboswitches142–144, despite the fact that

response curves of sRNAs tend to be linear145. Hence, increasingly complex regulatory

mechanisms are and will be designed by assembling RNA in a modular fashion to attain

nonlinearly responding circuit components. This will render the use of transcription fac-

tors for the construction of sophisticated genetic circuits superfluous142. It should how-

ever be mentioned that sRNAs and transcription factors can work seamlessly together in

hybrid synthetic circuits or that the differences in sRNA and transcription factor charac-
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teristics can be exploited to obtain the desired regulatory behaviour145. In addition, it

has been demonstrated that multiple RNA-based signals can be used simultaneously and

independently104,132,146–148, i.e., orthogonally, which is mandatory for large circuits as

they typically require multiple-input and multiple-output signals. Furthermore, meth-
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ods to fine-tune these circuit components with a view to obtaining biologically relevant

dose-response curves have been elaborated149,150. Hence, it is considered only a mat-

ter of time before more sophisticated (hybrid) RNA-based circuits will be constructed.

In this respect, such RNA-based feedback151,152 and feedforward loops153 constitute an

integral part of nature’s toolbox to regulate cellular processes.

However, as the complexity of these circuits increases, so does the need to rationally

design and fine-tune them with a view to obtaining the desired response. This will not

only require extensive model-based optimization to evaluate the dynamics of the genetic

circuit in vivo154, but also the collection of in vivo and in vitro omics measurements to

characterize the circuit and its various components in detail155 and to properly identify

the aforementioned models. For example, to this end, software tools such as AutoBio-

CAD20 have been developed, enabling the automated design of such genetic circuits.

2.4 Ligand-dependent gene expression using RNA

When control involves interaction with small molecules protein-based technologies are

currently typically used to engineer microbial systems. These technologies mostly com-

prise transcription-factor-based and Förster resonance energy transfer (FRET) biosen-

sors, which are constructed from naturally occurring binding domains156,157. Other

prime examples of molecule sensing RNA regulators are riboswitches. These genetic

switches are completely folded RNA molecules which control gene expression in re-

sponse to changes in metabolite concentrations15,158–160. In nature, riboswitches mostly

reside in the 5’ UTR of mRNAs and typically exert regulation in a cis configuration159,161.

These regulatory elements, controlling transcription or translation, comprise two struc-

turally linked domains: an aptamer and a gene expression platform. The highly con-

served aptamer domain selectively binds the target metabolite with high affinity. Gen-

erally, the aptamer part conformationally rearranges upon ligand binding leading to

RNA conformational changes in the expression platform which in turn modulate down-

stream events. This way of controlling gene expression is widespread in nature and a

broad range of riboswitch classes have been discovered over the years15,158,162. How-

ever, synthetic conditional gene expression systems were created several years before

the first reports on natural riboswitches163. These artificial riboswitches are typically

based on aptamers selected by systematic evolution of ligands by exponential enrich-

ment (SELEX)164,165. This generally applicable procedure shows the major advantage

of using RNA over protein-based technologies, which are limited by the availability of
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protein sequences that specifically bind the ligand156,157,166. In contrast, over the years,

SELEX has been employed to develop a wide range of oligonucleotides that bind to sev-

eral classes of molecules167–169. A number of these selected aptamers have been used

to control gene expression of which Werstuck & Green 170 first described a synthetic ri-

boswitch using an RNA aptamer that specifically binds a cell-permeable Hoechst dye.

This earliest description of synthetic RNA regulator marks the beginning of a new prac-

tice in synthetic biology where RNA is engineered to sense a molecule and subsequently

modulate gene expression41,42,163,171. The first described riboswitches were built by

trial and error, as such, various aptamers were inserted downstream the gene of interest

and subsequently tested170,172–175.

Until now, the lack of knowledge on the working mechanisms of riboswitches and the

complex nature of cellular processes makes fully rational designs challenging. Conse-

quently, the development of gene switches heavily depends on high-throughput screen-

ings of combinatorial libraries176–183. Buskirk et al. 184 pioneered with the in vivo evo-

lution of a RNA regulator to increase gene expression in S. cerevisiae. This approach

was later extended to find riboswitches through selection by fusing a RNA regulator to a

known tetramethylrosamine (TMR) aptamer176. The huge potential of genetic selection

systems for synthetic riboswitch development was again shown by Desai & Gallivan 177,

who used the theophylline aptamer185 to construct the first RNA gene switch in E. coli

using β -galactosidase, hereby enabling blue white screening. Subsequently, this selec-

tion was used to select an improved riboswitch from larger combinatorial libraries178.

The Gallivan lab later proposed several other selection procedures with higher through-

put based on cell motility (approximately 600,000 cells) and fluorescence activated cell

sorting (up to 109 cells per day)179,180. Nomura & Yokobayashi 181 developed and opti-

mized an alternative method relying on dual selection, which was used to create com-

plex riboswitches capable of sensing and responding to two small molecules according to

Boolean logics182,186. An entirely different screening approach reengineered a natural

riboswitch into several orthogonal selective riboswitches187. This technique was used to

tunably co-express two proteins in an orthogonal way and proved to function in several

organisms188,189. Most selection methods for in vivo riboswitches use aptamers either

found in nature or selected using SELEX. Although SELEX experiments are well estab-

lished, few methods exist that select aptamers with in vivo regulatory activities183,190.

To fill this void, Weigand et al. 183 combined in vitro selection and in vivo screening,

resulting in a riboswitch for neomycin.
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Although most riboswitches were developed using a selection procedure, an increasing

amount of effort is invested in rational approaches149,150,191,192. The first rationally con-

structed gene switch, which was based on a ligand-dependent one-nucleotide slipping

mechanism model, showed the potential of rationally designing riboswitches due to the

inherent programmable nature of RNA molecules191. Another rational approach de-

scribes a specific type of riboswitches, the antiswitches. These small trans-acting RNAs

are ligand-dependent riboregulators which can be designed to turn gene expression ‘on’

or ‘off’ when a ligand is available. The mode of regulation of an antiswitch is based

on conformational dynamics of the RNA structures. This enabled specific tuning of the

antiswitch by changing its thermodynamic properties, in particular the stability of two

stems (an aptamer and an antisense stem). Several forward engineering constructs fol-

lowed, showing that altered thermodynamical properties of riboswitches influences the

dynamic behaviour in a predictable way. Besides this predictability, the modularity of

the platform was shown using different aptamers and reporter genes149. In addition to

the antiswitch platform, Smolke and collaborators developed several other ligand de-

pendent RNA-based gene regulatory platforms. For instance, more ligand dependent

riboregulators were rationally created based on hammerhead ribozymes, RNA interfer-

ence and RNase III cleavage, showing the large variety of available ligand responsive

RNA devices150,193,194.

These early examples of rationally constructed riboswitches show the potential of pro-

gramming RNA to link metabolite concentrations to gene regulation. However, tuning

these specific RNA devices remains challenging. To overcome this limitation, Beisel

et al. 150 developed a mathematical framework by quantitatively modelling the kinet-

ics of riboswitch function. It was shown that riboswitch performance is dictated by

the competition between reversible and irreversible rate constants. The former reflect

conformational switching and ligand association while the latter comprise irreversible

processes such as mRNA degradation and destabilization192. These design principles

for riboswitches, in combination with recently unveiled mechanistic insights into the

structure-function relationship, spurs the de novo design of riboswitches178,180,195. Con-

sequently, recent approaches show the feasibility of building custom ligand binding RNA

devices from scratch66,196–198. As such, secondary structure predictions are used to cre-

ate functional riboswitches. For instance, an artificial translational riboswitch was de-

signed to modulate the internal ribosome entry site (IRES) in wheat germ extract. The

choice to modulate the IRES is due to its similarity with prokaryotic RBSs, which are

much better understood and thus more programmable. Translation is blocked by dis-
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rupting the functional conformation of the IRES when the ligand is unavailable which

disables ribosome binding and subsequent translation initiation. When the ligand be-

comes available, a stable loop is formed forcing the IRES in its functional structure. Var-

ious designs using several aptamers were built showing the modularity and versatility

of this approach196. Another approach rationally fuses naturally occurring trans-acting

non-coding RNAs (ncRNAs) to aptamers, hereby creating translational and transcrip-

tional riboswitches197. Therefore, design principles were described to fuse naturally oc-

curring translation (IS10) and transcriptional (pT181) ncRNAs with aptamers to form

a ligand sensing RNA device. To enable ligand dependent riboregulation, structural in-

teractions were designed between the ncRNA motif and the aptamer. These so called

pseudoknot interactions are disrupted when the specific ligand binds to the aptamer,

hereby altering transcription or translation197. Another, more advanced, method uses

an in silico pipeline to design de novo transcriptional riboswitches. Here, a sequence

library was constructed comprising an aptamer connected to a randomized spacer and

a sequence partially complementary to the aptamer. This library of riboswitch candi-

dates was computationally screened using folding simulations based on several crite-

ria relating to thermodynamics and riboswitch structure, which ultimately resulted in

multiple functional gene switches controlling transcription66. This last approach marks

the first promising computer assisted design of a functional riboswitch, which can be

improved by implementing more design parameters derived from characterization stud-

ies. A similar approach used RNAiFold, an inverse folding algorithm able to determine

RNA sequences satisfying certain structural constraints, to reliably construct functional

hammerhead ribozymes198. These recent examples of computationally designed ribo-

switches once again show the versatility of using the RNA aptamer technology to build

ligand responsive riboregulators. Figure 2.3 shows the different types of riboswitches

and how these RNA devices are developed.

As the technology to build custom riboswitches matures, an ever increasing number of

applications emerge. For instance, synthetic riboswitches can be used as high-throughput

screening systems, which typically are bottlenecks in both enzyme and metabolic engi-

neering105,156,199. Various ad hoc engineered riboregulators were used for noninvasive

in vivo detection of metabolite accumulation193. Analogously, Michener & Smolke 56

used a comparable RNA switch to screen a large enzyme library, which resulted in a 33

fold increase in caffeine demethylase activity, hereby showing the potential of ligand

dependent RNA switches in facilitating enzyme engineering. To resolve the same bottle-

neck related to high throughput screening, L-lysine and L-tryptophan riboswitches were
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Figure 2.3: Overview of the various approaches to create ligand-dependent gene expression using
RNA. Generally, these RNA devices are developed based on in vitro selected aptamers. As such, A)
transcriptional riboswitches can be computationally designed66, B) naturally occuring ncRNAs can
be engineered to control transcription and translation197 and C) various translational riboswitches
can be selected through high-througput screening efforts178–180,182,183.

selected from a combinatorial library using the previously mentioned tetA dual selec-

tion system. Subsequently, the L-lysine riboswitch was used to enrich a population with

pathway optimized strains, showing the potential of riboswitches in metabolic engineer-

ing54. In a similar effort, Eckdahl et al. 200 used a theophylline riboswitch to select the

best producing strains from a population of designed possible producers. The versatility

of using riboswitches as screening devices was shown again by using the natural glmS

ribozyme in yeast to select N-acetylglucosamine producing strains201.

Another potential application lies in dynamic pathway control in metabolic engineering.

Most cell factories are constructed using static control of gene expression, which leads

to productivity losses due to its susceptibility to environmental changes. In addition,

the biosynthetic pathways of most targets in metabolic engineering contain toxic inter-

mediates. Accumulation of these products imposes stress on the cell, compromising cell

growth and pathway productivity202. To resolve these issues, tailor made RNA devices

can be used to dynamically control biosynthetic pathways. As such, various aptazyme-
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regulated expression devices (aREDs) were programmed to quantitatively control gene

expression203. The potential of these aREDs to control the p-aminostyrene pathway

was later investigated using simulation analysis, which indicates that this kind of dy-

namic control can yield over 10 fold improvements over static control55. Besides this

simulation study, a L-lysine riboswitch was successfully used as dynamic control point,

resulting in an up to 63% increased L-lysine production204.

2.5 Reporting physiology using RNA

The discovery and development of fluorescent proteins as reporter genes revolutionized

the field of molecular biology205. Numerous fluorescent protein labels are used for

molecular imaging of live cells to unravel complex biological processes. However, using

protein tags reports gene expression on the protein level, but yields no information on

the increasingly important RNA level206,207. In addition, using RNA does not require

translation, resulting in faster response times, which is advantageous in time-dependent

studies (see figure 2.4)208,209.

To unravel the complex cellular functions of various RNAs, Paige et al. 209 developed RNA

mimics of green fluorescent protein (GFP). In GFP, a fluorophore, 4-hydroxybenzylidene

2,3-imidazolinone (HBI), is formed autocatalytical from three residues, enabling fluo-

rescence208,209. To mimic this fluorescence, various analogs of HBI were prepared, ex-

hibiting no toxicity nor fluorescence upon incubation with cells. By performing SELEX

on these HBI derivatives, aptamers were identified that bind and activate fluorescence

of these fluorophores. The resulting collection of RNA-fluorophore complexes, termed

Spinach, span a large fraction of the visible spectrum, which enables the use of RNA as

a fast fluorescent reporter with considerable resistance to photobleaching209. However,

the first developed generation of Spinach were dim when used to tag RNA in cells due

to thermal instability and misfolding. To overcome this limitation, Spinach2 was devel-

oped, which was used to unveil the dynamics of toxic CGG repeat-containing RNAs213.

Subsequently, the spectral properties of both Spinach and Spinach2 were further im-

proved by testing various novel fluorophores, which allowed the characterization of the

important structural features. As such, the spectral features of the RNA-fluorophore

complex can be tuned at will by using specific plug-and-play fluorophores214. The pre-

viously mentioned RNA-fluorophore complexes were merely selected on their in vitro

binding ability, which results in poor functionality in living cells190. To select better in

vivo functioning RNA-fluorophore complexes, Filonov et al. 190 developed a procedure
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Figure 2.4: Schematic overview of RNA reporters and riboregulators reporting RNA signatures. A)
A comparison between protein and RNA-based reporters on the transcriptional, translational and
post-translational level. As example, reporter systems using GFP205 and spinach209 are shown
with hypothetical fluorescence data. B) An overview of riboregulators capable of detecting en-
dogenous RNA. Toehold switches are shown, allowing in vivo monitoring of specific bacterial small
RNAs (sRNAs) due to their lack of sequence constraints81. In addition, a RNA-based circuit is
shown capable of detecting a specific miRNA expression profile characteristic for a specific cell
type. Moreover, based on the miRNA signature this circuit can discern between eukaryotic cells
based on the miRNA expression pattern210–212.

which involves the regular selection based on thermodynamic binding, followed by an in

vivo selection process using FACS. This selection approach resulted in several new RNA

reporters, termed Broccoli, showing robust folding in the presence of low magnesium

concentrations and increased fluorescence in comparison to Spinach2190. Elaborating

on these RNA reporters, Rogers et al. 215 developed a method to monitor RNA assem-

bly and processing by splitting the Spinach aptamer. The resulting two nonfunctional

halves can restore fluorescence once assembled, showing the potential for monitoring
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assembly of RNA.

Besides serving as pure reporters, RNA-fluorophore complexes can be used to sense

small molecules. Paige et al. 216 pioneered in this matter by coupling various aptamers

to Spinach, resulting in RNA-based sensors, which sense small molecules and subse-

quently exhibit fluorescence. In this approach, aptamers binding adenosine, adenosine

5’-diphosphate, S-adenosylmethionine, guanine, guanosine 5’-triphosphate were fused

to Spinach, using one of the three stem loops of this RNA reporter as an entry point. This

stem loop was replaced by various transducers, which link Spinach to the aptamers. Us-

ing this method, metabolite sensors were obtained exhibiting up to 32-fold activation

in fluorescence upon binding their respective ligand216. Similarly, other labs developed

Spinach based sensors for cyclic di-GMP and cyclic AMP-GMP using naturally occur-

ring riboswitch domains217,218. This latest advance in fluorescent imaging inside the

cell shows the designability of pure RNA sensors, which enables measuring metabo-

lites. Conventional metabolite sensing uses protein-based technologies, for instance,

FRET, for which there is no direct approach to design devices allowing real time sens-

ing of metabolites at high spatial resolution166,216. Overall, using FRET technology for

sensing metabolites is not universally applicable as it requires a protein that specifically

binds the molecule of interest219. Song et al. 206 expanded this technology by develop-

ing Spinach-based sensors for the detection of intracellular proteins, hereby enabling

the development of generalizable RNA-based sensors for the detection of metabolites

and proteins220. Recently, RNA reporters were combined with riboswitch technology,

replacing the expression platform of these gene switches with Spinach, which, upon

ligand binding, directly causes fluorescence221,222. Aside from the fluorophore-RNA

complex technology, several types of RNA switches enable reporting specific physiologi-

cal states81,210,211,223. For instance, the recently developed toehold switches technology

lacks sequence constraints, allowing detection of endogenous RNA in bacteria. Moni-

toring intracellular levels of the RyhB sRNA shows the potential of riboregulators for in

vivo detection of RNA signatures81. Furthermore, years of fundamental research on us-

ing RNA to process molecular information48,223–225 has resulted in several gene circuits

sensing endogeneous miRNAs210. Xie et al. 210 pioneered by constructing a synthetic

regulatory circuit which senses RNA expression levels, indicative of HeLa cells, allowing

specific identification of cancer cells. If the specific RNA signature matches, a cellular

response is triggered, resulting in specific apoptosis of cells, leaving non-cancerous cells

unharmed. This pioneering work shows the potential of using riboregulators reporting

RNA signatures as intelligent therapeutics. To facilitate the usage of RNA as therapeu-
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tic, various enabling technologies were developed to reduce undesired effects associ-

ated with traditional gene delivery methods211,212. For example, Wroblewska et al. 211

used RNA-binding proteins to create a simplified post-transcriptional only version of the

circuit constructed by Xie et al. 210, avoiding potentially harmful genomic integration.

These recent advances show the huge potential of RNA devices as next generation gene

therapy by detecting specific RNA signatures and subsequently act upon these signals.

2.6 RNA scaffolds

Molecular crowding in the cytoplasm slows down diffusion processes considerably, hereby

limiting translation and subsequently, growth physiology226. Hence, in order to op-

timize the flux through a metabolic pathway co-localization of biochemical reactions

can be advantageous227. To this end, metabolons have evolved in nature, which al-

low efficient channeling of pathway intermediates between consecutive enzymatic re-

actions. Besides these metabolons, cellular localization can also be achieved by eu-

karyotic organelles and various bacterial protein-based compartments, e.g., bacterial

microcompartments (BMCs)228–230. These metabolons are temporary complexes of se-

quential enzymes in a metabolic pathway, which perform multiple conversion steps

without complete equilibration with the bulk cellular fluids231, hereby locally increas-

ing metabolite concentrations. The latter is particularly beneficial when it concerns

cytotoxic, unstable intermediates, and metabolites exerting feedback regulation. To

mimic these metabolons, protein fusions were initially developed. For example, Zhai

et al. 234 developed a nahK-trglmU fusion protein for the efficient production of UDP-

N-acetylglucosamine in vitro with a yield of 88% from N-acetylglucosamine, ATP and

UTP. However, despite some successful examples these protein fusions are utterly in-

adequate in terms of flexibility, as degrees of freedom like stoichiometry and distance

and orientation between proteins catalyzing consecutive reactions and the potential of

larger multidimensional scaffolds cannot fully be exploited. In this respect, RNA and to a

lesser extent DNA scaffolds offer clear advantages over protein scaffolds. Not only, since

over time a vast library of aptamers has been created235, but more importantly since

RNA scaffolds exhibit the required structural flexibility and can be (more) rationally de-

signed236. These features are considered essential to further advance these emerging

applications. Additionally, in eukaryotes, DNA scaffolds can only be used in the nu-

cleus, a limitation that RNA scaffolds do no have232. Moreover, figure 2.5 compares the

various types of techniques to create metabolons. These RNA scaffolds can be either
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Figure 2.5: Overview of the available techniques to create synthetic metabolons, hereby facilitat-
ing biochemical conversion. As such, various scaffold techniques, on the DNA232, RNA233 and
protein228 level, are compared. The quality attributes evaluated are predictability (degree to which
the part functionality can be estimated), availability (estimation of the technology available to build a
metabolon), localization (degree to which the location of the metabolon is adjustable), response time
(maturation time needed to obtain functional metabolon), tunability (degree to which the function
can be controllably adjusted), enzyme interaction (degree to which the enzyme interact with other
parts of the metabolon system), metabolism interaction (degree to which the metabolon interacts
with the metabolism of the host organism).

discrete or more complex236. The former consist of a non-coding RNA which contains

multiple copies of the chosen aptamers. The number of, the distance between, and ori-

entation of the folded aptamers are tunable. While, the latter are composed of typically

short (cross)-polymerizable RNA molecules. Extended multidimensional structures can

be formed merely by using a limited set of different palindromic sequences236.
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Using these RNA scaffolds considerable production increases have yet been obtained,

e.g., Sachdeva et al. 237 obtained a 80% production increase of a two-enzyme pentade-

cane pathway by reorienting the acyl-ACP reductase fusion, clearly indicating that suc-

cess strongly depends on the scaffold’s geometry as certain aptamer conformations ren-

dered the transfer of certain metabolic intermediates less favourable. Hence, it should

be clear that RNA and protein modeling software is indispensable to more rationally

and successfully design these scaffolds236 and extensive characterization to evaluate

the scaffold’s outcome is mandatory98. To this end, techniques like fluorescence com-

plementation, which allows to visualize interactions among multiple proteins in vivo,

and atomic force microscopy and transmission electron microscopy98. Other applica-

tions include, among others, enhanced solubilization of heterologously hard to express

proteins, by fusing chaperonne proteins, such as DnaJ, to a RNA binding domain that

specifically targets a RNA sequence in the 3’ UTR region of the mRNA coding for the

heterologous protein238 and CRISPR-associated RNA scaffolds53, as was previously dis-

cussed.
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2.7 Conclusion

Empowered by the recent advances in synthetic biology, systems biology and protein en-

gineering, metabolic engineering is tackling ever-increasing complex optimization prob-

lems, often considered not resolvable hitherto. To properly address these multivariate

and non-linear optimization questions second generation RNA-based parts and tools are

being designed to create tailor made cells applicable in biotechnology and biomedicine.

More specifically, these RNA devices are used to optimally reroute metabolism by mod-

ulating gene expression, building genetic circuits, building scaffolds and to detect mol-

ecules and report cellular processes, which outperform contemporary alternatives. The

translation of the fundamental knowledge on RNA, e.g. folding hybridization results

in the creation of a set of second generation RNA tools with improved reliability, pro-

grammability, etc. outperforming the pioneering work on riboregulators.

These second generation tools are considered essential to deal with the enormous com-

plexity encountered, as they typically contribute to diminishing the vast search space or

speeding-up its exploration. For example, increasingly complex self-regulating cyber-

netic components, which control metabolism in response to various cellular signals, are

applied for the creation of so called smart (combinatorial) systems and libraries, as flux

distributions leading to a priori non-optimally performing phenotypes are ruled out.

However, with this increase in complexity so harshen the requirements for these novel

parts and tools in terms of of speed, scalability, flexibility, designability, cost-efficiency,

orthogonality, portability, etc. In view of the almost perfect match with the features of

RNA, its engineering is developing from an academic fiddling into an essential metabolic

engineering tool. At an amazing pace, the fundamental knowledge on RNA folding,

stability, etc. and its pivotal role in controlling cellular processes is being translated into

real-life applications. Where it took decades to establish and optimize gene modulation

tools based on DNA devices such as promoter libraries and subsequently transfer them

to other organisms, its remarkable how fast these RNA-based tools are being developed

and transferred form one host to another, e.g. CRISPR based tools are yet available for

all domains of life (archaea, bacteria, plant, human cells).

However, despite several recent success stories the potential of RNA use is not yet fully

being exploited as several issues of experimental and theoretical nature still persist. In

this respect, RNA engineering is expected to profit greatly from the dedicated collection

of data. Compared to the other engineering devices based on DNA or protein, rela-

tively few examples exist of detailed characterization studies. Such mustered data will
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contribute to a further standardization of RNA components enabling more predictable

engineering. Merely one example, the impact of translation and codon usage on RNA

stability should be mapped in detail.

These efforts will also result in a better understanding of the predominant processes

affecting RNA device performance and consequently to more reliable software tools.

Though helpful in silico tools have already been developed, e.g., RBS calculator25, most

of them still suffer from imperfect knowledge on key processes affecting RNA device

performance. In this respect evolutions in the field of computer sciences, e.g., big data

analysis and parallel computing and in the field of RNA quantification, e.g., RNA-seq,

will help to elucidate the functioning of RNA.
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Chapter 3. Exploration of the feature space of de novo developed
post-transcriptional riboregulators

Abstract

Metabolic engineering increasingly depends upon RNA technology to customely
rewire the metabolism to maximize production. To this end, pure riboregulators allow
dynamic gene repression without the need of a potentially burdensome coexpressed
protein like typical Hfq binding small RNAs and clustered regularly interspaced short
palindromic repeats technology. Despite this clear advantage, no clear general de-
sign principles are available to de novo develop repressing riboregulators, limiting
the availability and the reliable development of these type of riboregulators. Here,
to overcome this lack of knowledge on the functionality of repressing riboregula-
tors, translation inhibiting RNAs are developed from scratch. These de novo de-
veloped riboregulators explore features related to thermodynamical and structural
factors previously attributed to translation initiation modulation. In total, 12 struc-
tural and thermodynamic features were defined of which six features were retained
after removing correlations from an in silico generated riboregulator library. From
this translation inhibiting RNA library, 18 riboregulators were selected using a ex-
perimental design and subsequently constructed and co-expressed with two target
untranslated regions to link the translation inhibiting RNA features to functionality.
The pure riboregulators in the design of experiments showed repression up to 6 %
of the original protein expression levels, which could only be partially explained by
a ordinary least squares regression model. To allow reliable forward engineering,
a partial least squares regression model was constructed and validated to link the
properties of translation inhibiting RNA riboregulators to gene repression. In this
model both structural and thermodynamic features were important for efficient gene
repression by pure riboregulators. This approach enables a more reliable de novo

forward engineering of effective pure riboregulators, which further expands the RNA
toolbox for gene expression modulation.
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3.1 Introduction

Over the last decade, synthetic biology and systems biology spurred major advances

in metabolic engineering, resulting in several economically competitive production pro-

cesses for both bulk and fine chemicals from renewable resources, revolutionizing indus-

trial biotechnology1–5. In this context, interfering with the native metabolism of the pro-

duction host is a necessity to redirect the metabolic flux towards the product of interest

with a view to maximizing productivity28,29. Traditionally, tuning the cellular metabol-

ism has been done through gene deletions, which is impossible for numerous essential

genes often related to various biosynthetic pathways70,239. As such, maximizing various

production pathways requires tools able to specifically reduce gene expression. To this

end, zinc fingers and transcription activator-like effectors were engineered to dynami-

cally control transcription of a specific gene through DNA-binding proteins72,74. These

custom gene expression regulators are outperformed by recently emerged clustered reg-

ularly interspaced short palindromic repeats interference (CRISPRi), an adaptation of

the type II clustered regularly interspaced short palindromic repeats (CRISPR) system

controlling transcription through reversible binding of a RNA-guided deactivated Cas9

nuclease to DNA65. Various metabolic engineering efforts in multiple organisms used

this CRISPRi technology to successfully repress a series of specific genes in a dynamic

way, hereby ameliorating the desired product formation99,100,240.

Alternative approaches to control gene expression on the translational level employ

small RNAs (sRNAs) to repress protein production by blocking translational initiation,

enabling metabolic flux redirection at will70,88,241,242. Similar to the CRISPRi technol-

ogy, which requires a small guide RNA (sgRNA) able to bind to the dCas9 protein,

these types of sRNAs also require a protein binding RNA motif as they rely on the sta-

bilizing Hfq protein. This dependence on coexpressed proteins might cause increased

metabolic burden, which can lead to long term genetic instability and unexpected be-

haviour100,243,244. To reduce these undesired effects, gene expression modulation sys-

tems are preferred that solely rely on RNA245. These pure riboregulators require less

cellular resources by avoiding the extra translation step, hereby lowering metabolic bur-

den245. For example, riboregulator technology is successfully used to precisely down-

regulate specific genes, hereby redirecting metabolite fluxes towards the phenotype of

interest78,85,86. Also, pure riboregulators, which do not require proteins, harness large

potential for the construction of fast responding RNA circuitery49,128,241,246.

Early pure riboregulators were designed to hybridize the translation initiation region.
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The RNA architecture in this region plays a pivotal role in the translation initiation pro-

cess, enabling gene expression through RNA-RNA interactions58. This apparent link

between RNA structure and biological function, in combination with the ease and relia-

bility of RNA secondary structure prediction, drove several gene silencing efforts solely

using RNA. However, successful attempts to modulate gene expression using solely trans

expressed RNA employed a variety of features82–84. As such, interfering with translation

initiation using solely RNA-RNA interactions has been attributed to various features of

the trans expressed RNA molecule49,82,83,127,132,247,248.

These features are classified as either structural or thermodynamic features. Several

structural features of riboregulators modulating translation initiation through RNA-RNA

interactions include post-transcriptional ribosome binding site (RBS) occlusion127,132,

formation of paired termini structures247, and manipulation of the structural accessi-

bility of the target site82,248. Besides structural constraints, various thermodynamic

features were previously used to design and optimize translation interfering riboreg-

ulators, mainly comprising formation and activation energies49,132. Formation energies

are typically obtained by estimating the minimum free energy (MFE)132. Despite the

importance of activation energy, various estimation methods for the activation energy

were previously used to create functional riboregulators49,132. These methods rely on

the initial monomeric structures and are based on the assumption that the unbound

nucleotides in this state initiates the RNA-RNA complex formation49,132.

This broad range of employed features indicates the lack of consensus in literature,

which limits the general applicability of the current design rules for pure riboregulators

(without using coexpressed proteins). For instance, simply expressing the antisense

strand does not fully repress gene expression on the post-transcriptional level78,85. As

such, various types of riboregulators suitable for metabolic engineering purposes were

created using a number of different riboregulator design features, once again indicating

the lack of consensus in literature on the development of riboregulators49,81,132. Overall,

these riboregulators are either developed from a natural existing RNA regulator chassis

or created de novo, the latter being the most interesting as this enables forward engineer-

ing in a broader context81,132. Moreover, only activating riboregulators were created de

novo, which limits the construction of genetic circuitery using solely RNA.

Here, we propose a framework for the de novo design of pure riboregulators, referred

to as translation inhibiting RNAs (tiRNAs), which repress gene expression by blocking

translation initiation. To develop this predictive framework, the influence of all features

previously attributed to post-transcriptional gene modulation were analyzed in a de-
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sign of experiments (DOE). This experimental design allows exploration of the feature

landscape and evaluation of their influence on gene repression. First, using a library of

tiRNA, all features were analyzed in silico to create a collection of features with maximal

information content. Next, the performance of de novo designed tiRNAs was evaluated

in vivo, and used to construct an ordinary least squares (OLS) and a partial least squares

(PLS) model which links riboregulator features to gene repression.
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3.2 Methods

3.2.1 Strains and growth conditions

E. coli strain DH10B (Invitrogen) was used for both plasmid construction and fluores-

cence measurement purposes. Unless otherwise stated, all products were purchased

from Sigma-Aldrich (Diegem, Belgium). For plasmid construction and fluorescence

measurements strains were grown in lysogeny broth (LB) and MOPS EZ rich medium

(Teknova, Bioquote, York, United Kingdom) at pH 7.4, respectively at 37°C with shak-

ing. LB was composed of 1 % tryptone-peptone (Difco, Erembodegem, Belgium), 0.5 %

yeast extract (Difco) and 1 % sodium chloride (VWR, Leuven, Belgium). LB agar (LBA)

plates contain the same components as LB with the addition of 1 % agar. If required,

medium was supplemented with 100 μg ml-1 ampicillin and 50 μg ml-1 kanamycin.

3.2.2 Plasmids

pTarget plasmids were medium-copy vectors (pBR322 origin of replication (ori) and

ampicillin resistance marker, originating from pSB6A1249) with proD250 as promoter

and BBa_B100624 as terminator for tiRNA expression (see Supplementary Figure A.1 for

more details), and pSilence plasmids were low-copy vectors (pSC101 ori and kanamycin

resistance marker, originating from pCL1920251) with proB250 as promoter, mKate2252

as reporter gene, rnpB T124 as terminator, and the target 5’ untranslated region (UTR)

(see Supplementary Figure A.2 for more details). The reporter mKate2 was used due to

its low background and good fluorescent protein properties (brightness and maturation

time)252. A schematic overview of the two plasmid types used in this study (pSilence

and pTarget) is shown in Supplementary Figure A.3.

The control plasmids used in this study were pBlank1 and pBlank2, which are the same

vectors as the pSilence and pTarget plasmids, respectively. The pBlank1 plasmid com-

prises only the vector backbone and pBlank2 contains the mKate2 open reading frame

(ORF) and rnpB T124 as terminator, thus without promoter and UTRs. All plasmids

used in this study were constructed using Golden Gate253 and CPEC254 assembly. DNA

oligonucleotides were commercially ordered from IDT (Leuven, Belgium) and DNA se-

quences of every constructed plasmid were verified using sequencing services (Macrogen

Inc., Amsterdam, The Netherlands). All tiRNA sequences used in this study are listed in

Supplementary Table A.1. Details of the plasmids and DNA sequences used in this study

are listed in Supplementary Table A.2 and A.3, respectively.
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3.2.3 In vivo fluorescence and optical density (OD) measurements

For in vivo assessment of translational inhibition, strains were plated on LBA plates con-

taining 100μg ml-1 ampicillin and 50 μg ml-1 kanamycin. After overnight incubation,

three colonies were inoculated in 150μl MOPS EZ rich medium, covered by a Breathe-

Easy sealing membrane (Sigma-Aldrich), and grown overnight on a Compact Digital Mi-

croplate Shaker (Thermo Scientific) at 800 rpm and 37°C. Subsequently, these cultures

were 1:100 diluted in 150μl of fresh MOPS EZ rich medium and grown on a Compact

Digital Microplate Shaker until late log phase (6 h) at 800 rpm and 37°C. Subsequently,

fluorescence and OD were measured using a Tecan M200 pro microplate reader. Precul-

tures were grown in Greiner bio-one (Vilvoorde, Belgium) polystyrene F-bottom 96 well

plates. Fluorescence and OD measurements were performed after growth in Greiner

bio-one (Vilvoorde, Belgium) black μclear 96 well plates. For measuring mKate2 ex-

pression an excitation wavelength and an emission wavelength of 588 nm and 633 nm

were used, respectively. OD was measured at a wavelength of 700 nm to reduce bias in

estimates of cell abundance255.

3.2.4 Fluorescence data analysis

For fluorescence measurements, two types of controls were used on every 96-well mi-

crotiter plate, i.e., a MOPS EZ rich medium blank and E. coli DH10B cells without flu-

orescent protein expression (contains pBlank1 and pBlank2 plasmids). The medium

blank was used to correct the background OD (ODbg) of the medium. The fluorescence

of the strain without fluorescent protein expression (FPbg) was used to correct for the

background fluorescence of E. coli. For all strains fluorescence per OD was calculated as

follows: �
FP
OD

�
corrected

=
FP− FPbg

OD−ODbg
(3.1)

The relative protein expression was defined as follows:

Relative protein expression (%) =

� FP
OD

�
corrected with riboregulator� FP

OD

�
corrected without riboregulator

× 100 (3.2)

3.2.5 Feature quantification using RNA bioinformatics

For each tiRNA candidate 12 features were calculated (see Table 3.1 for detailed defi-

nitions and Supplementary Figure A.4), which were determined based on various pre-

vious riboregulator efforts described in literature49,82,127,132,132,248. The tiRNA features

64



Chapter 3. Exploration of the feature space of de novo developed
post-transcriptional riboregulators

are classified in two main groups: thermodynamic properties and structural constraints.

All intra- and intermolecular interactions between RNA molecules were predicted using

RNAfold256 and RNAcofold257, respectively. Both RNA secondary structure prediction

algorithms were available through the Vienna RNA package258 and were used with only

the options –noLP -d2 and an accuracy of 10-100, all other settings are set to the default

setting. Suboptimal structures of RNA molecules are drawn with probabilities equal

to their Boltzmann weights using RNAsubopt259. The intermolecular binding between

the unbound part of the tiRNA and the UTR is estimated by the RNAup algorithm260.

All calculations were done using Python scripting on an Intel Xeon E5-2670 (2.60GHz)

Linux (Debian) server. Details on the quantification of thermodynamic and structural

properties of tiRNA molecules are available in Supplementary Methods A.1.1.

3.2.6 Statistical calculations and experimental design

All statistical calculations and analyses were performed in R. Unless otherwise stated,

error bars represent the standard deviation (n=3). All coefficient of determinations

(R2s) were calculated using the hydroGOF package in R.

Experimental design

The 26-2 fractional factorial design, which comprises solely UTR1, was generated using

the R package FrF2261. In the DOE, the -1 and 1 state of the factors were defined as

the 0.1 and 0.9 p-quantiles of the original feature distribution, respectively. The center

points are designed to be [0,0,0,0,0,0], where 0 represents the average of the absolute

values of the tiRNA features in the initial library of 1,500,000 possible tiRNA candidates.

For each feature in the experimental design all data points (Xi) were centered and scaled

based on the 0.1 and 0.9 p-quantiles (qX,0.1 and qX,0.9) of the original distribution of

feature X (Equation 3.3).

X̃ i =
X i − (qX,0.9 + qX,0.1)/2

(qX,0.9 − qX,0.1)/2
(3.3)

The centered features X̃ were only used in the analysis of the DOE. All data points of the

26-2 fractional factorial design are shown in Supplementary Table A.4. The features FAB

and EIS were multiplied by -1 to obtain positive regression coefficients as these were

expected to be negatively correlated with tiRNA performance.
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Table 3.1: Detailed definitions of all features (free energy of the tiRNA monomer (EA), free energy
of the tiRNA-tiRNA dimer (EAA), free energy of the tiRNA-UTR dimer (EAB), formation energy of the
tiRNA-tiRNA dimer (FAA), formation energy of the tiRNA-UTR dimer (FAB), total seed energy (ETS),
intermolecular binding seed energy (EIS), probability availability of UTR (PAU), RBS coverage of
length 5 (RBS5), RBS coverage of length 11 (RBS11), paired termini (PT), and the length of the
translation inhibiting RNA (tiRNA) (L)) used in the initial in silico screening of the tiRNA library for
repression of a target untranslated region (UTR). This UTR contains a ribosome binding site (RBS)
and controls the coding DNA sequence (CDS) of the reporter protein. All binding probabilities of
monomers and dimers are respectively derived from base pairing probability matrices estimated by
RNAfold256 and RNAcofold257.

Name Definition of the tiRNA feature

EA ΔGtiRNA; free energy of the tiRNA monomer, calculated using RNAfold256.
EAA ΔGtiRNA-tiRNA; free energy of the tiRNA-tiRNA dimer, calculated using RNAcofold257.
EAB ΔGtiRNA-UTR; free energy of the tiRNA-UTR dimer, calculated using RNAcofold257.
FAA Formation energy of the tiRNA-tiRNA dimer; ΔGtiRNA-tiRNA - 2 ΔGtiRNA.
FAB Formation energy of the tiRNA-UTR dimer; ΔGtiRNA-UTR - ΔGtiRNA - ΔGUTR. With

ΔGUTR defined as free energy of the UTR (including first 50 nucleotides of the CDS
RNA), calculated using RNAfold256.

ETS Average minimal total energy (gains from intermolecular binding and needs to open
the binding site) for the binding of unbound parts of the tiRNA monomer to the tar-
get UTR, calculated using RNAup260 for 100 suboptimal structures randomly drawn
from Boltzmann ensemble259

EIS Average minimal energy gained from intermolecular binding of unbound parts of the
tiRNA monomer to the target UTR, calculated using RNAup260 for 100 suboptimal
structures randomly drawn from Boltzmann ensemble259

PAU Weighted average of the relative number of unbound nucleotides in the UTR
monomer with the relative number of nucleotides bound by the tiRNA molecule
in the tiRNA-UTR dimer complex as weights.

RBS5 The RBS coverage (relative number of bound nucleotides) in the region CRBS−2 to
CRBS+2, where CRBS is defined as the weighted average of the nucleotides in the
UTR bound by the 16S rRNA.

RBS11 The RBS coverage (relative number of bound nucleotides) in the region CRBS−5 to
CRBS+5, where CRBS is defined as the weighted average of the nucleotides in the
UTR bound by the 16S rRNA.

PT Average number of bound nucleotides between the first and the second half of the
a tiRNA sequence calculated for 100 suboptimal structures randomly drawn from
Boltzmann ensemble259.

L The length of the tiRNA (nt)
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Regression models

Ordinary least squares (OLS) regression The OLS regression was done in R. The

OLS regression model was calibrated using the absolute (unprocessed) values of FAB for

all data points, including data from target UTR2. Eq. 3.4 depicts the linear relationship

obtained from the OLS regression, where Yj is the relative protein expression when

tiRNA j is present, Xj,1 is feature FAB of tiRNA j, β0 and β1 are regression coefficients

and εj is an error term.

log10(Yj) = β0 + β1X j,1 + εj (3.4)

Partial least squares (PLS) regression The PLS regression was done in R with the

package pls262. The PLS model was validated by splitting the data set from UTR1 and

UTR2 in a training set and validation set (5:1 ratio). Subsequently, the training set

was used to create the model by leave-one-out cross validation where predictors were

scaled prior to regression (by dividing each variable the sample standard deviation). In

PLS regression the matrix of predictors X is decomposed into orthogonal score matrix

T (projection of X) and loadings matrix P, circumventing potential collinearities in the

data set:

X = T P (3.5)

Subsequently, Y is regressed on the scores T (and not X). The specific PLS algorithm

used is kernel PLS, which was described by Dayal et al. 263.
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3.3 Results and Discussion

The trans expressed tiRNAs are de novo designed to inhibit translation initiation of a

gene of interest, the rate-limiting step in translation264, as depicted in Figure 3.1A.

Contrary to previous efforts to construct repressing riboregulators, these RNA devices

are constructed from scratch without a functional chassis, which is often based on a

natural occurring RNA regulation device47,49,79. To enable reliable forward engineering

of tiRNAs, a workflow to improve the de novo development of repressing riboregulators

through DOE guided exploration of the sequence space was developed and optimized

(see Figure 3.1B-D). First, possibly important features for translational inhibiting ri-

boregulators are derived from literature. Secondly, the number of features are reduced

by removing correlations. Subsequently, this reduced set of tiRNA properties is used in

an experiment designed to unravel design principles to build effective tiRNA molecules.

In the DOE, tiRNAs are constructed that explore the feature space in an intelligent way.

Ultimately, thoroughly analyzing the performance of the constructed tiRNAs with vary-

ing features can improve the knowledge on the structure-function relationship, which

correlates to better predictability of de novo created riboregulators49,81,132.

3.3.1 Identification of determinative features of repressing riboregu-
lators

In total, 12 potentially determinative features of efficient tiRNA were identified and

derived from literature (see Figure A.4 and Table 3.1 for more details). These 12 features

represent all design principles previously used in riboregulator construction. Five out

of the 12 indentified features are based on structural properties. Namely, two features

are defined to quantify RBS coverage, i.e. RBS5 and RBS11, which is the average base

pairing probability in the region of the RBS with length 5 and 11, respectively. The third

feature quantifies the amount of paired termini (PT) and the availability of the UTR is

evaluated by the PAU property. The last structural feature is determined by the length of

the tiRNA (L). The remaining seven defined features are based on properties relating to

thermodynamics. The energy required for the formation of the tiRNA-tiRNA dimer and

the tiRNA-UTR dimer are defined as FAA and FAB, respectively. These formation energies

are calculated based on the estimated Gibbs free energy of the final dimer and both

initial monomer states, which are described by the EA, the EAA, and the EAB features.

In addition, two features describe the activation energy: the intermolecular binding seed

energy (EIS) and the total seed energy (ETS). Noteworthy, most previous approaches

to specify design rules for riboregulators only take the MFE structures into account,
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Figure 3.1: A) Schematic overview of the translation inhibiting RNA (tiRNA) working mechanism
B) Workflow for the in silico selection of the tiRNAs comprising the design of experiments (DOE)
to unravel design principles. The defined tiRNA features (free energy of the tiRNA monomer (EA),
free energy of the tiRNA-tiRNA dimer (EAA), free energy of the tiRNA-UTR dimer (EAB), formation
energy of the tiRNA-tiRNA dimer (FAA), formation energy of the tiRNA-UTR dimer (FAB), total seed
energy (ETS), intermolecular binding seed energy (EIS), probability availability of UTR (PAU), RBS
coverage of length 5 (RBS5), RBS coverage of length 11 (RBS11), paired termini (PT), and the
tiRNA length (L)) are calculated for a tiRNA library created based on a specific target 5’ untranslated
region (UTR). C) In vivo assessment of the tiRNAs in the designed experiment D) Linking features
to tiRNA performance through modeling.
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simplifying the Boltzmann ensemble of RNA secondary structures and the corresponding

complex dynamic energy landscape of regulatory RNAs265. The workflow followed here

to improve the de novo development of repressing riboregulator through DOE guided

exploration of the sequence space is depicted in Figure 3.1B. Here, simplifications were

minimized by taking the Boltzmann ensemble into account as much as possible.

3.3.2 Feature space reduction using correlation analysis

A library of 1,500,000 unique possible tiRNAs with length 20, 30 or 40 nucleotides

(nt) was created in silico based on UTR1 (see Supplementary Table A.5). To this end,

sequences were generated by successively combining different randomly chosen parts

(length>= 2 nt) of the reverse complement of UTR1, as effective riboregulators typically

contain parts of the reverse complement of the target UTR.

The amount of correlations between the various features was reduced by analyzing ex-

isting correlations between all features, and subsequently removing correlations above

a set threshold of 0.75. This was done by calculating the Pearson correlation coeffi-

cients (PCCs) (see Figure 3.2). The correlations between FAA, EA, and EAA, between

FAB and EAB, and between EIS and ETS are caused by one or more features being used

in the calculation of another feature. Also, RBS5 and RBS11 are correlated, which can

be explained by the fact that the RBS region covered by RBS5 is also covered by RBS11.

Finally, the length of tiRNA (L) is correlated with EAB as the stability of the tiRNA-UTR

complex increases (lower Gibbs free energy) with the tiRNA length. The feature space

was reduced, while minimizing information loss, by removing correlations between var-

ious features. To this end, one feature of a set of correlated features was selected (|PCC|

> 0.75). The reduced set of the tiRNA features Xi with limited correlations, i.e. FAA,

FAB, EIS, PAU, RBS11, and PT, was used in a DOE to unravel the features with the most

influence on the repression efficiency of these pure riboregulators (see Figure 3.1B).

More specifically, a fractional factorial 2-level design was used with a resolution of IV

(26-2 design), comprising two center points and 16 factorial points. After rescaling all

features (see Section 3.2.6 and Supplementary Table A.4 for details), the 18 best suiting

data points were selected from the library of 1,500,000 tiRNA candidates. The density of

all tiRNA features of the complete constructed library with the 0.1 and 0.9 p-quantiles is

depicted in Supplementary Figure A.5. Because the features are calculated based on the

sequence of a generated tiRNA candidate, the factors cannot be set to a specific value.

Instead, suitable sequences were selected from the tiRNA candidate library based on the

residual sum of squares (RSS) between the real data point of the experimental design
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Figure 3.2: Heatmap of the Pearson correlation coefficients (PCCs) between all features of the
translation inhibiting RNA (tiRNA) library, with L = length, EA = free energy of the tiRNA monomer,
EAA = free energy of the tiRNA-tiRNA dimer, EAB = free energy of the tiRNA-UTR dimer, FAA =
formation energy of the tiRNA-tiRNA dimer, FAB = formation energy of the tiRNA-UTR dimer, ETS =
total seed energy, EIS = intermolecular binding seed energy, PAU = probability availability of UTR,
RBS5 = RBS coverage of length 5, RBS11 = RBS coverage of length 11, and PT = paired termini
(see Table 3.1 and Supplementary Figure A.4).

and the actual features a this specific candidate (overall, average RSS is 0.59). The se-

lected tiRNA sequences (one feature was selected from features with a PCC| above 0.75)

with their corresponding theoretical data point are depicted in Supplementary Table A.1

and Figure 3.3A, respectively.

3.3.3 In vivo analysis of tiRNA performance

Subsequently, the performance of these 18 tiRNAs in the DOE was evaluated in vivo as

depicted in Figure 3.3A. In this experimental setup, the tiRNA molecules are expressed

from pSilence plasmids carrying the pBR322 ori, which have an approximately fourfold

higher copy number compared to the pSC101 ori of the pTarget plasmids utilized for

UTR expression249, and are under the control of the proD promoter, which showed

8.4 fold higher transcriptional activity compared to the proB promoter used for UTR
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expression250. The overall higher relative tiRNA expression (compared to its target

UTR) was chosen based on the fact that trans acting sRNAs typically require relatively

higher expression of the sRNA compared to its target, in both natural and synthetic sRNA

regulation systems266,267.

To enlarge the data set, the pSilence plasmids were co-transformed with the pTarget

plasmid containing UTR1 or UTR2 (a truncated version of UTR1, see Supplementary

Table A.5), respectively, evaluating the repression efficiency of the tiRNAs in the DOE.

Compared to UTR1, UTR2 results in 3.3 times less production of fluorescent protein in ab-

sence of any riboregulator (see Supplementary Figure A.6) although the thermodynamic

stability of UTR1 is much higher than UTR2 (-27.6 and -17.3 kcal/mol, respectively),

which is in contrast to previous studies inversely relating translation to the Gibbs free

energy of the UTR25,268. Moreover, the UTR2 forms much less base pairs in the region

around the Shine-Dalgarno (SD) sequence (see Supplementary Figure A.6), making the

RBS possibly more accessible.

The outcome of the designed experiment is depicted in Figure 3.3C. The activity of the

de novo designed riboregulators shows that almost all tiRNAs were active. Specifically,

eight of the 18 tiRNAs targetting UTR1 inhibit the translation initiation of UTR1 with

more than 75 %. The most repressing tiRNAs reduce protein expression of UTR1 to

about 6 % of the original expression level. The highest dynamic range of translation

repression among all data points is 16, which is higher than previously described re-

pressing riboregulators49. Moreover, these tiRNA are created de novo, without using a

naturally occurring functional chassis.

Overall, the repression levels on UTR2 are comparable to those of UTR1, indicating that

the truncated part distal to the RBS BBa_B0032 is less important for riboregulator activ-

ity. There is a clear difference in repression efficiency between tiRNA1 ([-1,-1,-1,-1,-1,-

1]) and tiRNA16 ([1,1,1,1,1,1]), showing the importance of at least one of the selected

features for translational inhibition. Another interesting fact is the high repression rate

of tiRNA17 and tiRNA18, which are the center points of the DOE. The good performance

of these center points indicate that choosing less extreme values can also result in effec-

tive translational repression.
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Figure 3.3: The results from the designed experiment to unravel the principles for translation in-
hibiting RNA (tiRNA) design. (A) The practical execution of the design of experiments (DOE). All
tiRNAs, representing a data point in the DOE, are coexpressed with the target untranslated region
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expressed in relative protein expression, where lower expression represents more effective tiRNAs.
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represents the protein expression in absence of the tiRNA. Error bars represent standard deviation
(n=3).
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3.3.4 Linking features to tiRNA activity

To unravel underlying design principles of repressing tiRNAs, a OLS linear regression

analysis was performed in a first approach. To this end, a linear regression model was

applied using all data points in the experimental design. All relative expression percent-

ages from all data points of the experimental design are plotted against all normalized

features (with only UTR1 as target) in Supplementary Figure A.7. Relative expression

percentages plotted against all absolute features for all data (including the repression

percentages of UTR2) are depicted in Supplementary Figure A.8. Only two factors in

the linear model had a significant influence, namely FAB (p < 0.05) and PT (p < 0.1).

Factors FAB and PT also had significant influence on several other reported riboregula-

tor systems with or without the aid of Hfq49,70,81,132,242,247. When using only these two

features in a linear regression model, only the factor FAB was significant (p < 0.05),

while factor PT turned out to be not significant (p > 0.1). As the factor FAB is based on

thermodynamic properties, it was hypothesized that the relation between FAB and the

relative protein expression is exponential. Therefore, a linear model was used to relate

the logarithmic of relative protein expression percentage to the tiRNA feature FAB (see

Equation 3.4). The outcome of this OLS regression is depicted in Figure 3.4. Despite

the significant influence of FAB in the DOE, this basic model is still unable to explain all

tiRNA functionality which is reflected by the fact that the majority of the data points are

not within the 95 % confidence interval of the OLS model.

Data driven approaches using regression methods have previously been successful in

biological engineering107,269 and, more specifically, forward design of various RNA de-

vices49,81,270. Therefore, in a second approach, PLS regression was performed. To max-

imize the information possibly linked to tiRNA activity, the 12 defined features were

included.

To perform the PLS regression, all data points from UTR1 and UTR2 were split into two

subsets: one set used for model calibration, i.e. training set, and one independent set

used for model validation, i.e. test set. The latter set was selected by randomly picking

tiRNAs from three groups which are ordered based on the averaged gene expression of

both UTR1 and UTR2. Before regression, the absolute values of the tiRNA features were

scaled through division by the sample standard deviation. Model calibration was done

using all 30 data points from the training set and uses 12 features (k = 12) describing

tiRNA performance. The final model contained 4 latent variables and was selected based

on the root mean squared error of prediction and the explained Y variance. By using the

training set, a final PLS model contains 63.9 % of the X variance, which explained 50.4 %
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Figure 3.4: Plot of the ordinary least squares (OLS) regression of the linear model, linking log10 of
the relative protein expression to the translation inhibiting RNA (tiRNA) feature formation energy of
the tiRNA-UTR dimer (FAB). All data points were used, including the effect of the tiRNAs on both
untranslated region 1 (UTR1) and UTR2. The gray area depicts the 95 % confidence interval of the
OLS linear regression. Error bars represent the standard deviation (n=3).

variance of the response variable and a R2 (describing the model efficiency) of 0.50 (see

Figure 3.5). To validate this PLS model, the independent validation set was used to

assess the quality of the PLS model. The R2 of this validation set was 0.69, indicating that

the model successfully explains tiRNA activity. To identify the most important factors

in the PLS regression model, all estimated regression coefficients are calculated. The

regression coefficients of the 12 tiRNA features are shown in Supplementary Figure A.9.

The cumulative loadings of the 4 components and the biplot of the first two components

are depicted in Supplementary Figure A.10 and A.11, respectively. From these estimates

the formation energy of the UTR-tiRNA complex is again inversely correlated to the final

protein expression as both regression coefficients of EAB and FAB are positive. This link

between dimer stability and riboregulator performance was also previously observed
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in other RNA devices49,132. Other observations are the negative relation between FAA

and protein expression, indicating that a stable tiRNA-tiRNA dimer complex decreases

tiRNA efficiency. Besides these thermodynamic factors, structural features PAU and PT

are inversely correlated to protein expression. Thus, as described in literature, target

nucleotide availability and the number of paired termini in the riboregulator monomer

is important for repression efficiency82,247,248. Contrary to previous studies, activation

energy and total RBS occlusion has a rather limited influence on gene repression.

Overall, the PLS modelling approach employed here successfully predicts tiRNA activ-

ity based on the described 12 features, which were defined based on literature. How-

ever, various features used in previously described efforts were quantified using differ-

ent methods49,132. This lack of standardized methods to determine thermodynamic and

structural features of riboregulators complicates forward engineering of riboregulators.

Also, the diverse range of features required to explain tiRNA functionality is an indi-

cation of the complex nature of the regulatory mechanism of riboregulation. As such,

RNA regulation might require properties unknown today, which might be discovered

using recently developed technologies allows detailed structural analysis of riboregula-

tors with a high-throughput. For instance, SHAPE-Seq allows in vivo characterization of

RNA structure by coupling chemical probing techniques to next-generation sequencing

technology271,272.
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Figure 3.5: Validation of partial least squares (PLS) regression model predicting relative protein
expression from 12 predictors (features of translation inhibiting RNA (tiRNA)). Plot of experimental
versus predicted relative protein expression via PLS model for the training set (used for model
calibration) and the validation set (used to test the model efficiency; coefficient of determination
(R2) equal to 0.69). Error bars represent the standard deviation (n=3).
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3.4 Conclusions

The developed approach allows de novo design of translation inhibiting riboregulators,

which further broadens the RNA regulator toolbox. From the 18 constructed tiRNAs

molecules designed in the DOE eight tiRNAs repressed protein production with more

than 75 %. In contrast to all previously described pure riboregulator efforts for trans-

lation inhibition, these riboregulators are not derived from a naturally functional sRNA

chassis, which indicates the broad applicability of the findings of this study. To fur-

ther improve riboregulator design several basic modelling approaches were employed.

However, these basic efforts were unable to fully explain tiRNA performance, indicating

the complexity of riboregulator repression. Previous efforts often rely on several cri-

teria to engineer riboregulators of various types with varying success49,80,81,132. Based

on these efforts, 12 features were defined and used in a DOE to explore the tiRNA

feature space. Subsequently, to improve the reliability of de novo forward engineering

of repressing riboregulators, a sequence-function model was constructed to link tiRNA

functionality to the defined tiRNA features. To this end, both structural and thermody-

namic tiRNA features were used in a PLS regression model, which was evaluated using

an independent test set (R2 equal to 0.69). The success of this data driven approach

indicates the importance of machine learning techniques in modern synthetic biology

to grasp the ever increasing complexity of biological design. Furthermore, the complex

nature of riboregulation and the limited knowledge of the underlying working mecha-

nisms makes engineering RNA devices challenging. To this end, novel technologies (for

instance SHAPE-Seq) enable high-throughput study of the structure-function relation-

ship of various types of riboregulators in detail by combining RNA structural probing

techniques and next-generation sequencing technology, allowing better prediction of

riboregulator performance271,272.
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Chapter 4. Computer-aided development of ligand-responsive RNA devices

Abstract

Technologies to precisely modulate gene expression in response to ligand concen-
trations form indispensable tools in biotechnology. In this context, recently emerged
ligand responsive riboregulators, more specifically riboswitches, are an attractive
alternative to the traditional protein regulators. However, the development of these
regulators heavily relies on high-throughput screening, which makes the develop-
ment process of these riboswitches very laborious. To overcome this limitation, an in

silico approach was developed to help create in vivo functioning riboswitches from in

vitro selected aptamers. First, design principles were derived from exisiting riboswit-
ches, which forms the basis of the used objective function. This objective function
quantifies potential riboswitch activity using RNA structural and thermodynamical
predictions, which enables in silico screening for riboswitches with these proper-
ties. To estimate the effectiveness of this method, 29 potential riboswitches were
computationally selected with various characteristics, which were subsequently con-
structed and evaluated in vivo. As a proof of concept, a theophylline aptamer was
used to create in vivo functional riboswitches. The vast majority of the created ribo-
switches were functional out of the box (12 out of the 29 created riboswitches have
an activation ratio (AR) above five) with ARs comparable to riboswitches developed
trough the laborious screening procedures. Despite the fact that the algorithm devel-
oped here allows the design of functional riboswitches with a reasonable chance,
globally linking the AR of the created riboswitch to structural and thermodynamic
properties remains challenging.
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4.1 Introduction

Over the past few years, tremendous progress in the field of synthetic biology spurred nu-

merous breakthroughs in metabolic engineering, cell therapy, disease control and diag-

nostics30,52,273,274. These efforts are mainly supported by technologies to precisely engi-

neer gene expression in response to various types of input signals. In this context, ligand

responsive devices, capable of specifically sensing small molecules and subsequently al-

tering gene expression, form indispensable tools in various research fields. For instance,

biosensors capable of measuring intracellular metabolites facilitate efficient strain devel-

opment by enabling selection of good producers from mutant libraries156. Also, ligand

responsive devices allow the construction of complex genetic circuits dynamically con-

trolling cellular metabolism for biomedical or metabolic engineering purposes202,275.

The majority of available biosensors are based on naturally occurring transcription fac-

tors, either used with their natural ligand or expanded to non-native ligands through

protein engineering157,276,277.

Recently, synthetic RNA devices have emerged as a versatile alternative to these tra-

ditional protein based biosensors for various biotechnological purposes241. Regulating

gene expression by RNA is particularly attractive due to the advanced state of RNA

folding algorithms and the relatively clear relationship between structure and biolog-

ical function. Additionally, RNA regulators control expression on the transcriptional

and translational level, in various configurations, and by various regulatory mecha-

nisms which enables construction of a wide range of synthetic devices for numerous

purposes. One of these types of regulation are riboswitches, which are naturally occur-

ring RNA molecules controlling gene expression in response to specific small molecules

(ligands)15,158. These types of ligand responsive RNA devices rely on an aptamer part

to specifically interact with small molecules. These aptamers, either naturally occurring

or developed synthetically through the SELEX procedure, can be used to develop gene

switches on one transcript, in cis, or in trans when expressed elsewhere79,149,180,182,197.

However, the development of these ligand sensing RNA devices heavily depends on

screening combinatorial libraries and expert knowledge, hindering predictable forward

engineering of genetic circuitry. Moreover, these trial-and-error approaches become im-

practical as the complexity of programmed biological systems increases, emphasising

the need for automatically designable RNA devices25.

One interesting group of riboswitches are translational riboswitches, regulatory seg-

ments of the 5’ untranslated region (UTR) containing a sensing domain (aptamer) for
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ligand interaction. The supposed working mechanism of translational (activating) ribo-

switches, which is derived from literature, is depicted in Figure 4.1178,180,195,278. Upon

transcription, the ligand binds to the aptamer and the mRNA gets trapped in an open

(ON) configuration, which has an accessible ribosome binding site (RBS) hereby allow-

ing translation. When the ligand is absent, the closed (OFF) configuration forms and

the RBS gets occluded, blocking ribosome binding and translation.

ON

OFF

RBS (accessible)

RBS (blocked)

ligand

Figure 4.1: Schematic overview of the working mechanism of translational riboswitches used in the
design algorithm. The translational riboswitch functions as followed: the mRNA is transcribed and
the riboswitch ends up in the ON or OFF state depending on the availability of the specific ligand.
When the specific ligand is available, its binding to the aptamer makes the ribosome binding site
(RBS) accessible for ribosome binding. Contrary, when the ligand is unavailable, the riboswitch
ends up in the minimum free energy (MFE) structure, which blocks the RBS from ribosome binding.

Various efforts have shown the potential of automated de novo design of functional ri-

boregulators to build complex genetic circuits49,81,132. Related to riboswitches, both

translational and transcriptional riboswitches have been developed using computer aided

design. Both approaches use thermodynamic models to select functional riboswitches in

silico from in vitro selected aptamers66,279. However, reliable computational design of

effective RNA devices capable of detecting small molecule remains challenging66,198,279.

Details on the exact working mechanisms of the diverse group of translational riboswit-

ches are rarely clear, making forward design of riboswitches challenging178,180,195,278.

As such, synthetic riboswitch mechanisms have been attributed to both kinetic and ther-

modynamic models178,180,195,279. Apart from the riboswitch mechanism, ligand induced

RBS occlusion also plays an important role in the gene expression modulation of various

riboswitches178,180,195.

In this work, we developed a computational method to aid in the design of in vivo func-

85



Chapter 4. Computer-aided development of ligand-responsive RNA devices

tional translational riboswitches from in vitro selected aptamers. To this end, a com-

putational workflow was created using RNA bioinformatics to evaluate the riboswitch

characteristics of UTRs, which comprises both structural and thermodynamical features.

Subsequently, this workflow was evaluated by testing several selected riboswitch candi-

dates in vivo. As proof of concept, various riboswitches were selected using the previ-

ously in vitro selected theophylline aptamer185. To improve the predictability of the de-

veloped method, various riboswitch properties used in the computational design phase

were evaluated to explain riboswitch performance.
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4.2 Methods

4.2.1 In silico design of translational riboswitches

For the automated design of translational riboswitches a search algorithm was used to

find the global minimum of a defined objective function (see 4.3.1), which comprises

both thermodynamic and structural terms derived from RNA secondary structure pre-

dictions. The initial riboswitch candidate contains completely randomized nucleotides

for all regions except the fixed sequence constraints. Every new candidate is created

by mutating 1 to all (randomly chosen) possible mutable (defined in the sequence con-

straints) nucleotides. The riboswitch performance of mutated candidates are quantified

using the objective function and subsequently, evaluated using a Metropolis Monte Carlo

simulated annealing algorithm280.

Details on the search algorithm are available in Supplementary Methods (see section

B.1.1). All RNA thermodynamics were predicted using RNAfold256 from the Vienna

RNA package258 with the options –noLP -d2 and the accuracy was set to 10-100, all

other settings are set to the default setting. Gibbs free energies mentioned in this study

are ensemble free energies. All calculations were done using Python scripting on a Intel

Xeon E5-2670 (2.60GHz) Linux (Debian) server.

4.2.2 Strains, plasmids and growth conditions

Unless otherwise stated, all products were purchased from Sigma-Aldrich (Diegem, Bel-

gium). E. coli strain DH10B (Invitrogen) was used for both plasmid construction and flu-

orescence measurement purposes. For plasmid construction and fluorescence measure-

ments strains were grown in lysogeny broth (LB) and MOPS EZ rich medium (Teknova,

Bioquote, York, United Kingdom) at pH 7.4, respectively at 37°C with shaking. LB was

composed of 1 % tryptone-peptone (Difco, Erembodegem, Belgium), 0.5 % yeast extract

(Difco, Erembodegem, Belgium) and 1 % sodium chloride (VWR, Leuven, Belgium). LB

agar (LBA) plates contain the same components as LB with the addition of 1 % agar. As

required, medium was supplemented with 100 μg ml-1 ampicillin.

Details of the constructed plasmids are presented in Supplementary Figure B.1 and Sup-

plementary Figure B.2. All plasmids used in this study were constructed using CPEC254

assembly. All translational riboswitches were constitutively expressed from a medium-

copy vector (pBR322 origin of replication and ampicillin resistance marker, originating

from pSB6A1249) using pFAB3923 as promoter, mKate2252 as reporter gene, and rnpB1

87



Chapter 4. Computer-aided development of ligand-responsive RNA devices

T1 as terminator24. The reporter mKate2 was used due to its low background and good

fluorescent protein properties (brightness and maturation time)252. Between this pro-

moter and the reporter gene riboswitch sequences were inserted seamlessly using single

stranded DNA assembly117. Details of the plasmids and important DNA sequences used

in this study are listed in Supplementary Table B.1 and B.2, respectively. DNA oligonu-

cleotides were commercially ordered from IDT (Leuven, Belgium) and DNA sequences

of every constructed plasmid were verified using sequencing services (Macrogen Inc.,

Amsterdam, The Netherlands).

4.2.3 In vivo fluorescence and optical density (OD) measurements of
riboswitches

For in vivo assessment of translational riboswitches, strains were plated on LBA plates

containing 100μg ml-1 ampicillin and incubated overnight at 37°C. From each strain

three colonies were inoculated in 150μl MOPS EZ rich medium containing ampicillin

and grown overnight on a Compact Digital Microplate Shaker (Thermo Scientific) at

800 rpm. Subsequently, these cultures were 1:300 diluted in 150μl of fresh MOPS EZ

rich medium in absence and presence (2 mM) of theophylline and grown until stationary

phase (12 h) on a Compact Digital Microplate Shaker (Thermo Scientific) at 800 rpm.

Finally, fluorescence and OD measurements were performed using a Tecan m200 pro mi-

croplate reader (for mKate2: excitation 588 nm and emission 633 nm). Precultures were

grown in Greiner bio-one (Vilvoorde, Belgium) polystyrene F-bottom 96 well plates.

For all growth experiments sterile 96-well flat-bottomed microtiter plates (Greiner, Leu-

ven, Belgium) were used, which were covered using a breathe-easy sealing membrane

(Sigma-Aldrich). Fluorescence and OD measurements were performed after growth in

Greiner bio-one (Vilvoorde, Belgium) black μclear 96 well plates. All microtiter plates

contained a control without fluorescent protein expression for background correction.

4.2.4 Fluorescence data analysis

First, fluorescence measurements were normalized through division by OD at 600 nm

(FP/OD). On every 96-well microtiter plate E. coli DH10B cells without fluorescent pro-

tein expression (contains pBlank) were grown in MOPS EZ rich medium. The fluo-

rescence of this strain without fluorescent protein expression (FPbg/ODbg) was used to

correct for the background fluorescence of E. coli. For all strains fluorescence per OD
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(arbitrary units) was calculated relative to the blank as shown in Equation 4.1.

�
FP
OD

�
relative

=
FP/OD

FPbg/ODbg
(4.1)

From the FP/ODrelative in the presence of 0 mM and 2 mM theophylline the activation

ratio (AR) is calculated:

AR=
(FP/OD)relative with 2 mM theophylline
(FP/OD)relative with 0 mM theophylline

(4.2)
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4.3 Results and Discussion

Translational riboswitches are post-transcriptional RNA regulators, which control gene

expression on the RNA level based on specific binding of the molecule of interest to the

aptamer part of the riboswitch. The algorithm developed creates an in vivo functional

riboswitch by designing the nucleotide regions up- and downstream of the aptamer se-

quence, enabling translation when the ligand is available and RBS occlusion when the

ligand is absent. The search for a translational riboswitch modifies all nucleotides in the

nucleotide regions that are designed by the algorithm until a suitable solution is found

(see Figure 4.2). These designed regions are both located in the 5’ UTR and linked by

the aptamer sequence, which is fixed and based on a previously developed aptamer. As

a proof of concept, the theophylline aptamer, an aptamer previously employed to create

in vivo riboswitches, was used to create in vivo functional riboswitches178,180,185,195.

pFAB39 aptamer mKate2 rnpB T1

designed designed

untranslated region

Figure 4.2: The designed part of the translational riboswitch, depicted in DNA. The UTR is designed
during the search for a functional riboswitch, comprising both up- and downstream regions of a fixed
aptamer region. This designed riboswitch is subsequently expressed using the pFAB39 promoter23,
mKate2 gene252, and the rnpB T1 terminator24

The computational method to design translational riboswitches comprises an objective

function and a search algorithm. The objective function is used to estimate the perfor-

mance of a certain riboswitch candidate, which was used to evaluate possible riboswitch

activity of a specific UTR in silico. The objective function used here to evaluate potential

riboswitch activity was defined using prior knowledge on the working mechanisms of

synthetic riboswitches178,180,182,195,279, comprising both thermodynamical factors and

structural properties. Next, a search algorithm based on simulated annealing is used

to efficiently search the large sequence space to find a minimum of the objective func-

tion280.

To this end, nucleotide sequences were de novo designed up- and downstream of the in

vitro selected aptamer sequence (see Figure 4.3A). Within these sequence constraints,

the simulated annealing algorithm searches for the best possible riboswitch candidate
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(comprising the whole UTR) according to the objective function (see Figure 4.3B). These

designed sequences perform best as riboswitch, according to the objective function. Fi-

nally, these potential riboswitches are expressed in vivo and evaluated by determining

the activation ratio (AR), which is defined as the ratio of the OD normalized fluorescence

in the presence (2 mM) and absence of theophylline (see Figure 4.3C).

4.3.1 Development of the objective function

Similar strategies to automatically design RNA devices de novo based on an objective

function containing thermodynamic and structural properties were previously success-

fully applied to activating riboregulators and transcriptional riboswitches66,132. How-

ever, contrary to the numerous applications of translational riboswitches in biotechnol-

ogy, the computer-aided design of translational riboswitches to speed up the develop-

ment of these riboswitches is still in an infant state.

To determine the relevance of thermodynamic and structural properties used in the ob-

jective function, design principles were derived from literature and data on various pre-

viously described riboswitched efforts was used to evaluate these design criteria. The

relation between riboswitch performance and thermodynamic features of UTRs was ver-

ified by analyzing previously described riboswitches in silico195. First, the MFE structure

(theoretically the most abundant structure in the Boltzmann ensemble) was predicted

along with the corresponding Gibbs free energy (ΔGMFE). Second, the Gibbs free en-

ergy is determined with the aptamer part of the riboswitch constrained to the secondary

structure which allows ligand binding (ΔGCONSTRAINED). During these calculations the

first nucleotides of the CDS is taken into account, which is important since these nu-

cleotides of the CDS have a significant influence on translation initiation25. Next, the

difference in Gibbs free energy was calculated and plotted against the AR observed by

Mishler & Gallivan 195, which were determined using a different reporter gene than that

used in this study. The estimated difference in Gibbs free energy (ΔΔG) is related to

the AR, as shown in Supplementary Figure B.3.

Because of this important role of thermodynamics in the riboswitch functionality, ther-

modynamic properties ΔGMFE and ΔGCONSTRAINED were included in the objective func-

tion for translational riboswitch design (see Supplementary Figure B.4A). For the calcu-

lation ofΔGCONSTRAINED the constrained aptamer part of the riboswitch is defined as the

secondary structure of this aptamer part that allows ligand binding. The thermodynamic
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Figure 4.3: A) Schematic overview of the criteria derived from previously described riboswit-
ches178,180,182,195,279, which form the core of the objective function for automated riboswitch design.
These criteria comprise thermodynamic properties like ΔΔG, the difference between Gibbs free
energy in the minimum free energy (MFE) configuration and the Gibbs free energy in the aptamer
constrained configuration and structural properties like untranslated region (UTR) base pairing prob-
abilities in the constrained (pCONSTRAINED) and the MFE (pMFE) configuration. B) Representation of
the workflow to find riboswitch candidate controlling a coding DNA sequence (CDS) of interest by
efficiently searching the sequence space, which best suite the desired objectives. Candidates gen-
erated based on the defined sequence constraints are evaluated by an objective function, which
is based on user defined design settings, and subsequently evaluated by the simulated annealing
algorithm, ultimately resulting in a suitable candidate. C) Overview of the plasmids constructed and
the in vivo evaluation of the riboswitch performance of the in silico selected candidates.
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property for the design of translational riboswitches is defined as followed:

ΔΔG=ΔGMFE −ΔGCONSTRAINED (4.3)

During the design phase, the thermodynamic score (scoreΔΔG) is calculated as followed:

scoreΔΔG = |ΔΔGtarget −ΔΔGestimated| (4.4)

Where ΔΔGtarget is the target ΔΔG set for the design of riboswitches and ΔΔGestimated

is the estimated ΔΔG for a specific UTR.

Besides thermodynamical properties, riboregulation typically relies on structural changes,

which subsequently alter gene expression post-transcriptionally and translation initia-

tion127,132. Structural fluctuations involve changes in base pairing probabilities, which

are estimated using RNA bioinformatics tools256,257. Here, the switching ability of previ-

ously described riboswitches is analyzed by calculating the base pairing probabilities in

the MFE (pMFE) and in the aptamer constrained secondary structure (pCONSTRAINED). The

constrained structure contains the structure of the aptamer part, which is constrained

to the structure that allows binding to the corresponding ligand.

To verify the influence of structural changes, all base pairing probabilities were calcu-

lated for both the MFE and the constrained configuration of previously described ribo-

switches (see Supplementary Figure B.5)195. There is a clear difference in base pairing

probabilities between the MFE and constrained configuration in the nucleotide region

downstream of the aptamer region with less base pairing in the constrained configura-

tion. The upstream region of the aptamer region locally interacts with the 5’ part of the

aptamer region in the MFE configuration. In the constrained configuration there are in-

teractions between the fixed up- and variable downstream regions of the aptamer region

(see Supplementary Figure B.5). Besides the defined switching region in the riboswitch,

the objective function also comprises a structural term to prevent undesired interactions

between the CDS and the riboswitch, which would possibly limit the modularity of the

riboswitch. Namely, the nunpaired region is defined as the first nucleotides of the CDS of

the downstream gene.

Overall, the structural properties in the objective function are base pairing probabilities

of the total ensemble in both the constrained (pCONSTRAINED) and the MFE state (pMFE)

(see Supplementary Figure B.4B). For the design of translational riboswitches two re-

gions of target nucleotides are defined (nswitching and nunpaired), which are the nucleotide

regions that are involved in the switching motion and are unpaired in the MFE configu-
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ration, respectively:

nswitching : nucleotides of UTR with p == 0 in the constrained state

and p == 1 in the MFE state.

nunpaired : nucleotides of UTR with p == 0 in the MFE state.

The scoreswitching is defined as:

scoreswitching =

nswitching∑
i=1

1− pMFE + pCONSTRAINED

nswitching
(4.5)

The scoreunpaired is defined as:

scoreunpaired =

nunpaired∑
i=1

pMFE

nunpaired
(4.6)

Overall the objective function is defined as followed:

scoretotal = scoreΔΔGw1 + scoreswitchingw2 + scoreunpairedw3 (4.7)

Where w1, w2, and w3 are weights equal to 1, 1 and 0.5 respectively. These weights were

assigned because preventing the CDS from interacting with the riboswitch was consid-

ered a secondary goal, besides the primary goal of designing a functional riboswitch. All

scores were normalized to 5 (arbitrary chosen) before calculating scoretotal

4.3.2 Design of riboswitch candidates

To verify the performance of this computer-aided design strategy, various design tar-

gets were chosen, based on these design settings riboswitches were selected and sub-

sequently tested in vivo (see Figure 4.3C). As a proof of concept, riboswitches are de-

signed based on the in vitro selected theophylline aptamer (GGUGAUACCAGCAUCGU-

CUUGAUGCCCUUGGCAGCACC)185, which is an aptamer that has previously been used

to create in vivo functional riboswitches178,180,195. To evaluate riboswitch activation,

2 mM theophylline is added to the medium, which represents a much lower intracel-

lular concentration. Previous research on theophylline uptake showed that a external

concentration of 10μM results in an intracellular concentration of 7 nM, which increases
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linearly until an extracellular concentration of 5 mM177,281. The required input settings

for riboswitch design are ΔΔGtarget and the nucleotide regions where the riboswitch

switches between the bound and the unbound state (nswitching). Another input setting,

the nucleotide region where the MFE configuration (OFF state) should be unbound

(nunpaired), is fixed to the first 12 nucleotides of the CDS. Details of all input settings

used for the designed riboswitches are shown in Supplementary Table B.5.

First, the effectiveness of the search algorithm was evaluated. The evolution of the ac-

cepted score during the search for a minimum in the objective function are shown in

Supplementary Figure B.6 for four randomly chosen designs, showing the convergence

of the algorithm and the ability of this algorithm to effectively find a minimum of the

objective function. Riboswitches RS1 to RS29 are designed using these different input

settings, these riboswitches are labeled "designed". To enlarge the explored riboswitch

sequence space, various nucleotide sequences up- and downstream of the aptamer re-

gion were shuffled in new riboswitch designs (RS30 to RS38), these riboswitches are

labeled "reshuffled" (see Supplementary Figure B.6).

For all the designed riboswitches the scoretotal, scoreΔΔG, scoreswitching, and scoreunpaired

are pairewise plotted in Supplementary Figure B.7. This analysis shows that the en-

ergy criterium (scoreΔΔG) is generally easier to satisfy than the base pairing criterium,

meaning that obtaining a base pairing switch in 100 % of the structures in the Boltzmann

criteria is harder than obtaining an exact difference inΔG between the ON (constrained)

and OFF (MFE) state (ΔΔGestimated). Consequently, the degree of base pairing switch

determines the absolute value of the minimal scoretotal. A 3D scatterplot of all three

scores of the designed riboswitches does not show any correlation between these scores

and the ARs (see Supplementary Figure B.8).

4.3.3 In vivo riboswitch expression system

To evaluate the performance of the algorithm for translational riboswitch design, first

an expression system was established to effectively assess riboswitch performance. This

system requires both high and stable expression of riboswitches to sensitively detect the

quality of the designed riboswitch. To this end, ARs are maximized using a strong con-

stitutive transcriptional promoter to allow sensitive detection of functional riboswitches.

More specifically, the promoter used for riboswitch expression is pFAB39 from the Bio-

FAB promoter library, which previously showed high transcriptional activity23. Another

important factor is the reporter gene, which needs to be easily detectable and sensitive.

The reporter gene of choice is mKate2, encoding a far-red fluorescent protein, which has
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a fluorescent spectrum with little interference of the host background252. Also, the ri-

boswitch expression system comprises the medium copy pSB6A1 vector with the pBR322

origin of replication (ori), which is heavily regulated to guarantee stable protein expres-

sion282. This system was validated by expression of the previously described riboswitch

D for theophylline195, which has a AR of 157 ± 3 in this expression system, which is

higher than the AR reported using the luciferase reporter system, showing the required

sensitivity of this novel riboswitch expression system comprising several synthetic bio-

logical parts195. This riboswitch expression system was used for the in vivo evaluation

of all riboswitches described in this study.

4.3.4 Evaluation of the developed in silico workflow

All designed and reshuffled riboswitches were constructed and tested in vivo along with

various previously described riboswitches195,283; the ARs are shown in Figure 4.4. The

observed fluorescence in the presence of 0 mM and 2 mM theophylline is depicted in

Supplementary Figure B.9.

The designed and reshuffled riboswitches almost all activate translation, as only three

constructed riboswitches have ARs not significantly higher than one (p= 0.05). All other

riboswitches have ARs significantly higher than one. Moreover, 12 out of 29 designed

riboswitches (41 %) have ratios above five, which is approximately the minimum AR of

the riboswitches selected from literature and thus serves as a criterium for riboswitch

performance. . Riboswitches design RS1 and RS2 have the same upstream sequence

as the previously described riboswitches, which resulted in good ARs, comparable to

riboswitches from literature (both above 50). These riboswitches (RS1 and RS2) are the

only designs that contain a spacer upstream of the fixed theophylline part, indicating

the importance of a good designed spacer between transcription start site and the ap-

tamer part of a riboswitch. The best de novo developed riboswitch is RS32, a reshuffled

riboswitch, which has a AR of 86, higher than most of the previously described manually

optimized riboswitches. The reshuffled RS32 contains the up- and downstream region

of the aptamer part of RS20 and RS23, respectively. Remarkably, both RS20 and RS23

have an AR below five, once again indicating the complex sequence-structure-function

relationship of translational riboswitches.

4.3.5 Comparison with published riboswitches

Most de novo developed riboswitches have ARs that are much lower than those observed

from riboswitches derived in literature. Despite the lower performance of the automati-
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Figure 4.4: Barplot of the activation ratios of the riboswitches that were designed, reshuffled or
defined in literature. All automated designed riboswitches are displayed on the left and previously
described riboswitches are shown on the right. The riboswitches in the middle are constructed
by reshuffling the regions up- and downstream of the aptamer of designed riboswitches. Both
the designed, reshuffled, and the previously described riboswitches are expressed as depicted in
Figure 4.3C. The horizontal line indicates a AR of 5. RS1 and RS2 have the same fixed spacer
region upstream of the theophylline aptamer (*).

cally designed riboswitches here, it is important to note that the riboswitches from liter-

ature are developed through several rounds of high-throughput screening and manual

optimization (largely dependent on trial and error approaches)178,180,195,283. In con-

trast to these laborious techniques, the riboswitches de novo designed in this study were

created in a few days of computation and cloning, without any further optimization.

To explain the lower ARs, the AR were plotted against the fluorescence emitted in the
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ON and OFF state of the designed riboswitches, see Supplementary Figure B.10 and

Supplementary Figure B.11, respectively. When comparing the fluorescence emitted in

the ON state, the de novo designed riboswitches span a broader range of fluorescence

compared to the riboswitches from literature. Thus, several designed riboswitches reach

much higher levels of translation initiation while showing much lower ARs. This contra-

diction is explained by the fluorescence emitted in the OFF state, which is much lower

for the riboswitches from literature than the designed riboswitches (see Supplementary

Figure B.11). These designed riboswitches show high conditional protein translation,

which is useful in several biotechnology fields. This aspect of riboswitch design is often

neglected as the typically used evaluation criterium is the AR. The lower basal expres-

sion of the riboswitches from literature indicates a strict regulation when there is no

ligand present. However, the fluorescence emitted in the OFF state is not correlated to

the Gibbs free energy of the MFE configuration nor to the hybridization energy between

3’ part of the 16S rRNA (ACCUCCUUA), ΔΔG and ΔΔG16S rRNA.

To unravel design principles, several thermodynamic features were calculated for the

expressed riboswitches, both automated designed and from literature. Among these fea-

tures the previously mentioned ensemble free energies in the MFE and the constrained

conformation, ΔGMFE and ΔGCONSTRAINED, respectively. But also the hybridization en-

ergy (estimated using RNAcofold257) of the MFE and the constrained configuration with

the 3’ end of the 16S rRNA (ΔG16S,MFE and ΔG16S rRNA,CONSTRAINED), which has been

linked to translation initiation rate25,279. Also the differences between the free ener-

gies of the two configuration states is considered for both the ensemble free energies

and the hybridization energy between 3’ part of the 16S rRNA (ACCUCCUUA), ΔΔG

and ΔΔG16S rRNA, respectively. These six features are plotted against the AR of both de-

signed riboswitches and riboswitches from literature (see Supplementary Figure B.12).

Although there is no clear correlation between the observed AR and any of the features,

it is clear that functional riboswitches have certain characteristics. For instance, all ri-

boswitches have a ΔΔG below -6 kcal/mol. However, this threshold does not guaran-

tee good riboswitch performance as several other determinative factors remain unclear.

Remarkably, the previously reported link between ΔΔG and riboswitch performance,

which is also shown in Supplementary Figure B.3, does not always apply. More specif-

ically, using the expression system described here, it does not apply for all previously

reported theophylline riboswitches, which is in contrast with the results depicted in Sup-

plementary Figure B.3195,283.

Moreover, another developed thermodynamic model attempts to quantify the AR of ri-
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boswitches using only thermodynamic factors based on the RBS calculator25. In com-

parison to the algorithm described here, which serves as an in silico screening method

for translational riboswitches, the model described by Borujeni et al. 279 attempts to

accurately quantify the AR of a riboswitch. However, this model for the prediction of

translational riboswitch function is unable to accurately predict the ARs observed in this

study (see Supplementary Figure B.13). This once again illustrates the complexity of

translational riboswitches and the infant state of the knowledge on these regulators, hin-

dering the forward engineering capacity. For instance, cotranscriptional folding plays an

important role in in vivo RNA structure formation, which is always ignored in the for-

ward engineering of RNA riboregulators. In this context, recently emerged cotranscrip-

tional SHAPE-seq technology enables elucidating cotranscriptional folding pathways of

riboswitches, which was shown for the Bacillus cereus crcB fluoride riboswitch284. This

technology is a complementary extension of the regular SHAPE-seq technique, which is

an advanced next-generation sequencing technology that allows high-throughput RNA

structural probing, enabling detailed characterization of the structure-function relation-

ship in vivo271. At the moment, the sequence space of previously described riboswit-

ches is small due to the small differences between all riboswitches, which leads to a

rather narrowly applicable design rules. Using these techniques allows characterization

of larger data sets, which enables the construction of a generally applicable sequence-

function model. A larger data set can improve the forward engineering capabilities by

expanding the sequence space explored in developed riboswitches.
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4.4 Conclusions

The created riboswitches were all functional out of the box with several designed ri-

boregulators with ARs comparable to previously described riboswitches. Compared to

these riboswitches, this method had the advantage of speed. It only takes several days

to create these de novo designed riboswitches, whereas the riboswitches from literature

were developed trough numerous cycles of laborious optimization procedures. More-

over, the designed riboswitches show lower ARs mainly because of their higher basal

expression. Despite these limitations, these type of automated design methods show

great potential to aid the development of riboswitches. Overall, taking the results from

this study into account it remains challenging to explain riboswitch performance. Even

the most advanced physicochemical models are unable to accurately predict the AR of all

translational riboswitches279. Here, the developed automated design method allows in

silico selection of riboswitch candidates with a high probability to have a good riboswitch

performance. To increase the reliability of this algorithm, recently developed RNA struc-

tural probing techniques allow high-throughput analysis of translational riboswitches,

enabling unraveling more details on their working mechanism.
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Chapter 5. Development of Neu5Ac-responsive biosensors based on the
transcriptional regulator NanR

Abstract

Biosensors, controlling transcription in response to specific compounds, have var-
ious applications in metabolic engineering, including the construction of dynamic
pathway regulation and high-throughput screening of combinatorial strain libraries.
Various biosensors were previously created from naturally occurring transcription
factors (TFs), which are largely composed of native sequences without the possibil-
ity to modularely optimize the response curve. This lack of design and engineering
techniques hinders the development of custom biosensors. Here, novel biosen-
sors were created that respond to N-acetylneuraminic acid (Neu5Ac), an important
sugar moiety with various biological functions, by employing native and engineered
promoters that interact with the TF NanR. To evaluate the effectiveness of the de-
veloped biosensors, a Neu5Ac producing strain was constructed. This strain was
used to examine the response of the created biosensors to Neu5Ac, showing that
seven out of eight created biosensors were functional and exhibited a different re-
sponse. Moreover, three of these were successfully developed using a novel ap-
proach that inserts the NanR binding site in a constitutive promoter, resulting in
functional biosensors comprising various modular defined parts without the inter-
ference of other TFs. This novel technique to obtain functional biosensors paves
the way to modular biosensor optimization, enabling more reliable engineering of
response curve characteristics. Overall, the repertoire of biosensors is expanded
with seven functional biosensors capable of detecting Neu5Ac and it was shown
that these transcriptional biosensors were obtained by combining different defined
parts. Moreover, the modular composition of the engineered biosensors enabled
modulating the response curve by changing the ribosome binding site (RBS) con-
trolling NanR translation, which resulted in increased repression and activation in
the absence and presence of intracellular Neu5Ac, respectively. Finally, the linear
response of three created biosensors to an increasing amount of Neu5Ac production
was shown, enabling the use of these biosensors for various metabolic engineering
purposes.
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5.1 Introduction

Over the last decades, biobased chemicals were introduced, driven by environmental

concerns, energy security, and competitiveness of the chemical industry285. This re-

cent paradigm shift regarding chemical synthesis is largely supported by metabolic en-

gineering, which enables ad hoc rewiring of cellular metabolism to produce molecules

of interest286. Recent advances in synthetic biology drove the development of several

new microbial cell factories for molecules which were previously impossible to produce

economically efficient1–5. These success stories largely depend on novel technologies

relating to DNA synthesis, DNA assembly and combinatorial pathway optimization. In

this context, the optimization of biosynthetic pathways by reducing flux imbalances, i.e.

eliminating excessive intermediate production, is crucial to achieve maximal productivi-

ties29. Moreover, an optimal pathway flux requires optimal usage of cellular components

to minimize metabolic burden and the related productivity losses245. Today, numerous

techniques are available to combinatorially optimize production pathways by varying

the expression of specific pathway genes, which results in different production efficien-

cies28. However, this combinatorial approach to strain optimization heavily relies on

the availability of high-throughput screening techniques29. To overcome this limitation,

various biosensors were created to detect a wide range of molecular specificities, allow-

ing high-throughput screening of large strain libraries in search of mutants that produce

the molecule of interest. Besides applications as high-throughput screening, biosensors

also enable dynamic pathway regulation and adaptive laboratory evolution to improve

product yields202,287.

Over the last few years, biosensors for a range of molecules were created from naturally

available TFs and subsequently applied in metabolic engineering strategies156,157,288.

However, as most transcriptional biosensors are largely composed of native sequences,

techniques to engineer these biosensors are missing, which makes obtaining optimal

biosensor behaviour challenging. For instance, naturally occurring TF regulation is typi-

cally controlled by both local and global regulators, which causes unwanted interference

in specific physiological conditions. This infant state of the transcriptional biosensor en-

gineering field substantially hinders its applicability in metabolic engineering289. Also,

despite the recent efforts to create transcriptional biosensors with various specificities,

the availability of custom biosensors to sensitively detect a particular molecule of inter-

est remains limited157,288.

For instance, the number of transcriptional biosensors capable of detecting sugar moi-
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eties are limited290,291. One such interesting group of sugar molecules with various ap-

plications are sialic acids, which are a group of neuraminic acid derivatives, a family of

nine-carbon carboxylated monosaccharides. In this group of sugar derivatives, Neu5Ac

is the predominant sialic acid found in mammalian cells, where it plays a vital role in

various biological processes as the terminal ends of numerous glycoproteins and gly-

colipids292. These processes include binding of infectious microorganisms, tumor pro-

gression, metastasis formation, immune response regulation, and infant brain develop-

ment292–295. This broad range of biological functions makes Neu5Ac an interesting tar-

get molecule for numerous applications in the pharmaceutical and food industry296–299.

For instance, a Neu5Ac analogue was developed as a potent inhibitor of influenza, which

is marketed as Zanamivir296,297. Also, Neu5Ac and its derivatives have potential for drug

delivery and drug targetting applications298. Next to these applications, Neu5Ac and the

related sialylated oligosaccharides are important nutrients294,299,300.

Numerous TFs are known regulators of sugar degradation pathways, which might serve

as a basis for biosensor development301. As such, there are several TF families known

to regulate Neu5Ac degradation pathways in various phyla302. Among these regulators

the best known TF NanR originates from Enterobacteriaceae, which regulates Neu5Ac

related operons. In E. coli, the nanATEK operon, which is the primary degradation route

by converting Neu5Ac in N-acetylglucosamine 6-phosphate (GlcNAc6P), is regulated by

NanR303,304. This helix-turn-helix (HTH) based TF from the FadR/GntR family represses

the nanATEK-yhcH, nanCMS, and yjhBC operons when Neu5Ac is not present304.

Here, various biosensor engineering approaches to create transcriptional biosensors re-

sponsive to Neu5Ac were explored based on a naturally occurring TF. Several native

promoters were used to construct novel transcriptional biosensors, which contain a flu-

orescent reporter gene. Subsequently, the native regulatory circuits were deconstructed

in defined parts, enabling a more modular biosensor optimization. To obtain tran-

scriptional biosensors with changed response curve characteristics and to remove un-

wanted interference of other regulators, several engineered biosensors were constructed

by a top-down approach (through truncation) and by a bottom-up approach (modular

biosensor construction). The latter approach paves the way for modular biosensor op-

timization of these biosensors by changing the position, multiplicity, and/or sequence

of the TF binding site289. Furthermore, the optimization possibilities of these modular

biosensors and the general applicability of the created biosensors are further explored.
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5.2 Methods

5.2.1 Strains

E. coli strain K-12 MG1655 (ATCC) was used as the parent strain for all strain engineer-

ing experiments and plasmid construction. All DNA manipulations were performed fol-

lowing standard molecular cloning protocols. Site-directed chromosomal gene deletion

was accomplished by homologous recombination using λ-Red recombinase (induced

from pKD46)305. Linear DNA for recombination containing FRT-flanked antibiotic resis-

tance casettes was generated by PCR amplification from pKD3 or pKD4 using primers to

build in site-specific homologies towards the targeted loci. DNA oligonucleotides were

purchased from IDT (Leuven, Belgium). Positive transformants were cured from the

antibiotic resistance casette through FLP recombinase (expressed on pCP20) induced

recombination of FRT sites. All chromosomal deletions were verified by colony PCR

and DNA sequencing (Macrogen Inc., Amsterdam, The Netherlands). The strains con-

structed were E. coli K-12 MG1655 ΔnanRATEK and E. coli K-12 MG1655 ΔnanR. The

primers used for gene deletions are described in Supplementary Table C.1.

5.2.2 Growth conditions

Unless otherwise stated, all products were purchased from Sigma-Aldrich (Diegem, Bel-

gium). For strain engineering and plasmid construction strains were grown in lysogeny

broth (LB) at 30°C with shaking. LB was composed of 1 % tryptone-peptone (Difco,

Erembodegem, Belgium), 0.5 % yeast extract (Difco) and 1 % sodium chloride (VWR,

Leuven, Belgium). LB agar (LBA) plates contain the same components as LB with the

addition of 1 % agar.

For growth experiments a defined medium was used. This defined medium contained

2 g/L NH4Cl, 5 g/L (NH4)2SO4, 3 g/L KH2PO4, 7.3 g/L K2HPO4, 8.4 g/L MOPS, 0.5 g/L

NaCl, 0.5 g/L MgSO4 ·7 H2O, and 16.5 g/L glucose ·H2O, 1 ml/L trace element solu-

tion and 100 μL/L molybdate solution. Trace element solution used contained 3.6 g/L

FeCl2 ·4 H2O, 5 g/L CaCl2 ·2 H2O, 1.3 g/L MnCl2 ·2 H2O, 0.38 g/L CuCl2 ·2 H2O, 0.5 g/L

CoCl2 · 6H2O, 0.94 g/L ZnCl2, 0.0311 g/L H3BO4, 0.4 g/L Na2EDTA·2 H2O, 1.01 g/L thi-

amine ·HCl and was sterilized with a bottle top filter (Corning PTFE filter, 0.22μm).

Molybdate solution (0.967 g/L Na2MoO4 ·2 H2O) was sterilized with a bottle top filter

(Corning PTFE filter, 0.22μm). Carbon source and MgSO4 were dissolved in 200 ml

H2O and autoclaved separately to avoid Maillard reaction. All other components (ex-

cept trace element and molybdate solution) were dissolved in 800 ml H2O and set to
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pH 7 with KOH. After autoclaving, the sterile trace element and molybdate solution

were added. If required, medium was supplemented with 100 μg ml-1 ampicillin and

25 μg ml-1 chloramphenicol. For all growth experiments longer than 24 h medium was

supplemented with 100 μg ml-1 carbenicillin instead of 100 μg ml-1 ampicillin.

For flask experiments, precultures were grown in 50 ml centrifuge tubes containing

10 ml LB medium with the necessary antibiotic for selection pressure. Pre-cultures were

grown overnight (16h) at 30 °C and 200 rpm (LS-X AppliTek orbital shaker, Nazareth,

Belgium) and subsequently, used for 1 % inoculation of 100 ml glucose or glycerol de-

fined medium in 500 ml shake flasks and grown at 30 °C and 200 rpm (LS-X AppliTek or-

bital shaker, Nazareth, Belgium). At regular intervals, samples for extracellular metabo-

lites analysis were collected and optical density (OD) at 600 nm is determined. For 24-

well deep well plates (DWP) experiments, precultures were grown in 50 ml centrifuge

tubes containing 10 ml LB medium with the necessary antibiotic for selection pressure.

Pre-cultures were grown overnight (16h) 30 °C and 200 rpm (LS-X AppliTek orbital

shaker, Nazareth, Belgium) and subsequently, used for 1 % inoculation of 3 ml glucose

or glycerol defined medium in 24-well DWP plates with sandwich covers (EnzyScreen,

Heemstede, The Netherlands) and grown at 30 °C and 200 rpm (LS-X AppliTek orbital

shaker, Nazareth, Belgium). In 24-well DWPs, cultures were sampled at regular inter-

vals for extracellular metabolite analysis and OD measurement. OD was measured at

600 nm using a Jasco V-630Bio spectrophotometer (Easton, UK).

5.2.3 High-performance liquid chromatography (HPLC) analysis

Extracellular metabolite concentrations were determined through HPLC analysis (Prostar

230, Varian, Sint-Katelijne-Waver, Belgium) equipped with a refractive index detec-

tor. All metabolites, i.e. glucose, glycerol, acetate, Neu5Ac, N-acetylmannosamine

(ManNAc), and, N-acetylglucosamine (GlcNAc), were separated on a Aminex HPX-87H

column (Bio-rad, Temse, Belgium) with 25 mM H2SO4 as mobile phase at 80 °C and a

flow rate of 0.5 ml/min.

5.2.4 Neu5Ac biosensor and pathway constructs

A schematic overview of all plasmid types used is depicted in Supplementary Figure C.1.

All plasmids used were constructed using CPEC254 assembly. Details of the plasmids con-

structed are listed in Supplementary Table C.2. The DNA sequences of every constructed

plasmid was verified using sequencing services (Macrogen Inc., Amsterdam, The Nether-
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lands). Details of all regulatory DNA sequences and all coding DNA sequences (CDSs)

are listed in Supplementary Table C.3 and C.4, respectively.

Biosensor plasmids

Native biosensor (pNB) plasmids and engineered biosensor (pEB) plasmids (see Supple-

mentary Figure C.2) are medium-copy vectors (p15A origin of replication and chloram-

phenicol resistance marker, originating from pACYCDuet306), which are used to express

the TF NanR307 and the reporter gene mKate2252. The reporter mKate2 was used due to

its low background and good fluorescent protein properties (brightness and maturation

time)252. pNB1 contains the native nanR operon (the native intergenic region upstream

of nanR and the nanR CDS) and its downstream region, i.e., the intergenic region up-

stream of nanA (see Supplementary Figure C.3 for more details). On pNB2 through

pNB4 and pEB1 through pEB4, NanR was expressed using BBa_J23114308 as promoter,

BBa_B0031308 as RBS, and rnpB T124 as terminator and mKate was expressed using

various promoters and the rnpB T124 terminator. Plasmids pNB2 through pNB4 con-

tain native intergenic regions, i.e. native promoters and untranslated regions (UTRs)

reported to contain NanR operators (nanA, yjhB, nanC, respectively) for mKate2 ex-

pression (see Supplementary Figure C.2A and C.4 for more details). Plasmids pEB1

through pEB4 contain engineered promoters (containing NanR operators) and UTRs for

mKate2 expression (see Supplementary Figure C.2B and C.5 for more details). On all

pEB plasmids and all pNB plasmids, except pNB1, NanR and mKate2 were expressed

in the opposite direction. All pO plasmids have the same content as their pNB or pEB

counterpart, without the expression of NanR.

The three pEB2 variants were constructed by replacing the BB_B0031 RBS with three dif-

ferent RBSs. As such, the pEB2,1, pEB2,2, and pEB2,3 plasmids contain the BB_B0032308,

BB_B0030308, and BB_B0034308, respectively.

Pathway plasmids

The pPathwaymedium plasmid is a medium-copy vector (pBR322 origin of replication and

ampicillin resistance marker, originating from pET22B (Merck Millipore, Overijse, Bel-

gium)) used for the expression of the biosynthetic pathway of Neu5Ac. This pathway

contains two enzymes (UDP-N-acetylglucosamine 2-epimerase and N-acetylneuraminic

acid synthase), encoded by the neuC and neuB1 gene, respectively309. The expression of

these two genes was done polycistronicly, controlled by the (medium) promoter p14107

and the rnpB T1 terminator24 . The translation of the NeuB1 and the NeuC protein
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is controlled by the T7 RBS310 and the in-house designed intergenic region306, respec-

tively. The CDSs were designed for expression in E. coli K-12 MG1655 using the COOL

algorithm311. All details of the pPathwaymedium plasmid are depicted in Supplementary

Figure C.6 and C.7. Two variants of the pPathwaymedium plasmid were created by re-

placing the p14 promoter with the pFAB46* (mutated form of the pFAB46 promoter23)

and pJ23105308 promoters, resulting in the pPathwayhigh and pPathwaylow, respectively.

The pBlank plasmid is the same medium-copy vector as pPathway plasmids (pBR322

origin of replication and ampicillin resistance marker, originating from pET22B (Merck

Millipore, Overijse, Belgium)), without any DNA insert.

5.2.5 In vivo fluorescence and OD measurements

For in vivo assessment of the various transcriptional biosensors, strains were plated on

LBA plates containing 100μg ml-1 ampicillin and 25 μg ml-1 chloramphenicol if re-

quired. After overnight incubation, strains were inoculated in 150μL LB and grown

overnight on a Compact Digital Microplate Shaker (Thermo Scientific) at 800 rpm and

30 °C. Subsequently, these cultures were 1:120 diluted in 150μl of fresh defined medium

and grown on a Compact Digital Microplate Shaker until stationary phase (24 h) at

800 rpm and 30 °C. Subsequently, fluorescence and OD were measured using a Tecan

M200 pro microplate reader. Precultures were grown in Greiner bio-one (Vilvoorde,

Belgium) polystyrene F-bottom 96 well plates. For all growth experiments sterile 96-

well flat-bottomed microtiter plates (Greiner, Leuven, Belgium) were used, which were

covered using a breathe-easy sealing membrane (Sigma-Aldrich). Fluorescence and OD

measurements were performed after growth in Greiner bio-one (Vilvoorde, Belgium)

black μclear 96 well plates. For measuring mKate2 expression an excitation wavelength

and emission wavelength of 588 nm and 633 nm were used, respectively. OD was mea-

sured at a wavelength of 700 nm to reduce bias in estimates of cell abundance255.

5.2.6 Fluorescence data analysis

For fluorescence measurements, two types of controls were used on every 96-well mi-

crotiter plate: a defined medium blank and E. coli K-12 MG1655 cells blank. The medium

blank was used to correct the background OD (ODbg) of the medium. The fluorescence

of the strain without fluorescent protein expression (FPbg) was used to correct for the

background fluorescence of E. coli. For all strains fluorescence per OD was calculated as

111



Chapter 5. Development of Neu5Ac-responsive biosensors based on the
transcriptional regulator NanR

follows: �
FP
OD

�
corrected

=
FP− FPbg

OD−ODbg
(5.1)
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5.3 Results and Discussion

The biosensors for the detection of Neu5Ac developed here are based on the regulatory

action of the TF NanR, which controls the nanATEK-yhcH, nanCMS, and yjhBC operons

in E. coli (see Figure 5.1)304. These gene clusters relate to the degradation of various

sialic acids, including the most abundant mammalian sialic acid, Neu5Ac. The most

important operon for Neu5Ac degradation is the nanATEK-yhcH cluster, which contains

genes encoding for an aldolase (nanA), a permease (nanT), an epimerase (nanE), and

a kinase (nanK)303,304. These genes are responsible for the uptake of Neu5Ac into the

cytosol and the subsequent conversion into GlcNAc6P, which is further processed into

the central metabolite fructose 6-phosphate (Fru6P) by NagA and NagB. The biological

function of the last gene in the nanATEK-yhcH operon, (yhcH) is still unknown. The other

clusters controlled by NanR are the nanCMS and yjhBC operons, which contain several

genes with an unknown function. These genes are possibly involved in the conversion

of less common sialic acids to Neu5Ac304,312–314. For instance, nanS encodes for an

esterase required for growth of E. coli on O-acetylated sialic acids314.

nanR nanA nanT nanE nanK yhcH

yjhB yjhC

nanC nanM nanS

Figure 5.1: Schematic overview of the genetic organization of the sialoregulon, which is negatively
regulated by the transcription factor (TF) NanR304. The sialoregulon comprises the nanATEK-yhcH,
nanCMS, and yjhBC operons, which all relate, to a certain degree, to the degradation of sialic
acids304,312–314.

All these gene clusters are involved in N-acetylneuraminic acid (Neu5Ac) degradation

and are repressed in trans by NanR, which is a TF from the FadR/GntR family of HTH

regulators. The underlying binding mechanism of NanR was unraveled by Kalivoda

et al. 307, who identified the TF operator region. This DNA binding region of NanR (the
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nan box) contains three tandem repeats of a hexameric sequence GGTATA307. Further

details were revealed through transcriptome, genetic, and biochemical analyses, show-

ing the induction of the nanATEK-yhcH, nanCMS, and yjhBC operons by Neu5Ac. Critical

nucleotides in the operator sequences were identified, which are required for binding

to the HTH domain of NanR304. Also, translational fusions of lacZ to nanA, yjhC and,

nanS showed increased β -galactosidase activity when Neu5Ac was present304.

5.3.1 Biosensor design using native promoters

Biosensors were constructed to link the intracellular concentration of Neu5Ac to a fast

and easily readable output signal without interference of the host organisms background.

To this end, the fast maturing fluorescent protein mKate2 was used, which has a fluo-

rescent spectrum with little interference of the host (E. coli MG1655) background252.

Fluorescent proteins allow linking fluorescence to protein production and are typically

used to characterize transcriptional biosensors in a sensitive way156. To link the pro-

duction of the fluorescent protein to the intracellular concentration of Neu5Ac, various

promoters and UTRs that contain NanR binding sites were tested to control mKate2

expression. The general mechanism of the constructed biosensor is depicted in Figure

5.2A. A schematic overview of mKate2 expression using the NanR-responsive promoters

(without NanR expression) is depicted in Figure 5.2B.

The first biosensor (pNB1) was constructed using the nanA intergenic region (including

the first 36 nucleotides of the nanA CDS), containing the NanR operator sequence, CDS,

and the native NanR promoter. In a second set of biosensor plasmids (pNB2 through

pNB4), three native intergenic regions upstream of the nanA, yjhB, and nanC genes

were used as transcriptional promoters and UTRs. To ensure all native NanR regulation

is maintained in the biosensor, a translational fusion protein is used. This is achieved by

coupling the first 36 nucleotides of the gene downstream of the used native intergenic

region to mKate2. Contrary to pNB1, NanR is expressed on pNB2, pNB3 and, pNB4 using

the BBa_J23114 promoter and the BBa_B0031 RBS, which both have a relatively low

activity308. In contrast to the pNB1 plasmid, where NanR and mKate2 are expressed in

same direction, NanR and mKate2 (with the first 13 residues of NanA) are expressed in

the opposite direction on plasmids pNB2 through pNB4 (see Supplementary Figure C.2A

for details on pNB1 through pNB4).
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Figure 5.2: A) Schematic overview of the working mechanism of a biosensor based on the re-
pressing transcription factor (TF) NanR for the detection of N-acetylneuraminic acid (Neu5Ac). In
absence of Neu5Ac, the expression of NanR allows the repressor to bind to the nan box contain-
ing promoter304, which hinders transcription and therefore mKate2252 expression. When Neu5Ac
is present, it binds to NanR, allowing transcription of mKate2 and subsequent fluorescence detec-
tion. B) Schematic overview of working mechanism of a NanR-responsive without the expression
of NanR.

5.3.2 Engineered promoters for improved Neu5Ac detection

Besides using three native promoter variants to generate three Neu5Ac biosensors with

different properties, various engineered promoters were developed to modulate the per-

formance of these biosensors. In addition, by deconstructing such a native biosensor

circuit into defined parts, more modular biosensor optimization is enabled by varying

the core promoter and/or RBS strength and position, multiplicity and/or sequence of

the nan box289. Furthermore, as such, potentially unwanted regulatory interference is

removed, which could broaden the applicability of the biosensor to various physiological

conditions. For instance, the best studied promoter with the largest observed Neu5Ac
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induction contains a cAMP receptor protein (CRP) binding site304,307, which is a regu-

latory protein involved in catabolite repression315. Two approaches were used to create

NanR-responsive promoters for improved Neu5Ac detection, a bottom-up and top-down

design approach.

The top-down approach was applied to the nanA promoter by truncating the promoter

based on the available information on the TF operator sites present in this promoter. The

NanR binding site (the nan box) was shown to coincide with the transcription start site

(spanning from -15 to +9), which indicates that NanR binds on the first part of the UTR

of nanA307. To remove transferring undesired native regulation, only the core element

of the nanA promoter pNanA, which contains the NanR binding site without the CRP

binding site, was used in plasmid pEB1 (see Figure 5.3A).

The three other NanR-responsive promoters were created using a bottom-up approach,

which was based on a previously described effort where TetR repressed promoters were

created by integrating operator sites of their cognate repressor75. This approach used

an in vitro method to identify the operator sites of a set of TetR repressors, which were

subsequently incorporated in the strong constitutive promoter BBa_J23119308 to gener-

ate repressor-promoter sets, which were then screened for cross-reactions75. Similarly,

three NanR-responsive synthetic promoters were created by aligning the NanR binding

site with the -10 and -35 element of the constitutive promoter BBa_J23119. To this end,

the E. coli nan box307, which was obtained from the nanATEK-yhcH operon of E. coli,

and the consensus nan box from several NanR orthologs of different origin304 were used.

The E. coli and the consensus nan boxes were aligned with both the -10 and the -35 box

of BBa_J23119, creating the three engineered promoters with integrated nan boxes (see

Figure 5.3B).

For the nan boxes aligned to the -35 box of the pJ23119 promoter, two promoters were

created (pJ23119H35,1 and pJ23119H35,2), which differ in only one nucleotide in the -35

box. Moreover, pJ23119H35,1 fully contains the nan box and pJ23119H35,2 contains the

original -35 box to ensure effective transcriptional initiation. The engineered promoters

pJ23119H10, pJ23119H35,1 and, pJ23119H35,2 form the basis of the biosensor plasmids

pEB2, pEB3, and pEB4, respectively (see Supplementary Figure C.2B).

5.3.3 Evaluation of the constructed biosensors

First, the strength of the NanR-responsive promoters was evaluated without NanR ex-

pression using the corresponding pOperator plasmids. To this end, an E. coli MG1655

116



Chapter 5. Development of Neu5Ac-responsive biosensors based on the
transcriptional regulator NanR

AGCTTTCTGT ATGGGG TGTTGCTTAATTGATCTGG TATAAC AGGTATAAAGGTATATCGTTTA

                             TCTGG TATAAC AGGTATAAAGGTATATCGTTT

pNanA ATGGGG

E. coli nan box

-35 box -10 box

nan box
(NanR binding site)CAP binding site

-35 -10

pNanA promoter
elements nanA

native intergenic
region between 
nanR and nanA

    TCTGGT ATAACA GGTATAAAGGTATATCG TTT

gattcgtTCTGGT ATAACA GGTATAAAGGTActagg tataat gctagctactaga

   nnTGGT ATAACA GGTATAnAGnTAnnnnn Tnn

gattcgttaccaa ttgaca gctagctcagtcctagg tataat gctagctactaga

gattcgtTCTGGT ATgACA GGTATAAAGGTActagg tataat gctagctactaga

E. coli nan box
consensus nan box

BBa_J23119

pJ23119H35,1

pJ23119H35,2

-35 box -10 box

-35 -10

original BBa_J23119 
constitutive promoter

-35 -10

hybrid BBa_J23119 with 
integrated nan box at the -35 box

B

A

E. coli nan box
consensus nan box

BBa_J23119

pJ23119H10

                      CTGGTATAACAGG TATAAA GGTATATCGTTT   

gattcgttaccaa ttgaca gctagctcagtcctagg tataat gctagctactaga

gattcgttaccaa ttgaca gctaCTGGTATAACAGG TATAAA GGTAgctactaga

                T TnannTGGTATAACAGG TATAnA GnTAnnnnnTnn   

-35 box -10 box

-35 -10-35 -10

original BBa_J23119 
constitutive promoter

hybrid BBa_J23119 with 
integrated nan box at the -10 box

C

Figure 5.3: Schematic overview of the creation of the engineered promoters. A) Detailed overview
of the development of pNanA, which is a truncated version of the native intergenic region between
nanR and nanA. pNanA (basis of the biosensor of plasmid pEB1) comprises the core elements (the
-10 and the -35 box) of the nanA promoter, including the nan box required for NanR binding but
without the CRP binding site. B) The development of the three engineered promoters by integrating
the nan box for NanR binding at the position of the -10 and the -35 elements.

without endogenous NanR expression (E. coli MG1655 ΔnanR) was created. The flu-

orescence emitted by ΔnanR strains containing the various promoters with a nan box

are depicted in Figure 5.3. From all tested promoters containing a NanR operator the

native nanA promoter (pO1 and pO2) has the strongest mKate2 expression. The trunca-

117



Chapter 5. Development of Neu5Ac-responsive biosensors based on the
transcriptional regulator NanR

tion of the nanA promoter and substitution of the native nanA RBS resulted in a lowered

protein expression (pO5). The lower expression of the truncated nanA promoter (pO5)

compared to the native nanA promoter (pO1) could be related to the removal of various

regulation mechanisms, for instance a CRP binding site, which activates the nanATEK

operon in low glucose conditions304,315. Overall, all tested promoters with a nan box,

except for nanC (p03), result in high fluorescent protein expression in the absence of

the TF NanR.
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Figure 5.4: Barplot of fluorescence emitted by the eight created promoters, which all contain NanR
binding sites. These plasmids contain the previously described promoters upstream of mKate2
without NanR expression (see Supplementary Figure C.1).
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Next, the repression of the native and engineered promoters by the TF NanR was eval-

uated. This was done by comparing the strains containing pOperator to the strains

containing the pBiosensor and pBlank plasmids. All constructed promoters were suc-

cessfully repressed by the level of NanR expression obtained from the BBa_J23114 pro-

moter and the BBa_B0031 RBS on the pBiosensor plasmids. This observation indicates

that the repressor NanR is able to bind to all constructed pBiosensor plasmids, hereby

blocking transcription of the gene downstream of the native and engineered promoters.

In functional biosensors, this blockage should be relieved when the ligand, in this case

Neu5Ac, is present. To evaluate the response of the constructed biosensors on Neu5Ac,

the fluorescence emitted by a Neu5Ac producing strain was compared to a wild-type

strain, which does not produce Neu5Ac. To this end, the operon responsible for the

degradation of Neu5Ac was deleted (nanATEK). This operon comprises the nanA gene

(Neu5Ac aldolase), the nanT gene (sialic acid transporter), the nanE gene (GlcNAc6P

epimerase) and, the nanK gene (ManNAc kinase)303,316. Subsequently, since the con-

structed strain does not accumulate Neu5Ac naturally under normal physiological con-

ditions303,316, a heterologous pathway was introduced to enable Neu5Ac production.

This pathway comprises the neuB1 and neuC genes originating from Campylobacter je-

juni, which encode a Neu5Ac synthase and a GlcNAc6P 2-epimerase, respectively. The

engineered pathway of Neu5Ac and the operon comprising the heterologous genes intro-

duced are depicted in Supplementary Figure C.7A and C.7B, respectively. This Neu5Ac

production strain is capable to produce Neu5Ac with titers of 1.39 ± 0.06 g/l in a 24

well DWP, which is comparable to titers obtained by other production strains316. De-

tails on Neu5Ac production on DWP scale are depicted in Supplementary Figure C.8.

The fluorescence emitted by E. coliΔnanRATEK strains containing the eight constructed

biosensor (both pNB and pEB) plasmids in the presence and absence of intracellular

Neu5Ac (with the plasmids pPathwaymedium and pBlank, respectively) is shown in Fig-

ure 5.5.
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Figure 5.5: Barplot of fluorescence emitted by the eight created promoters, which all contain NanR
binding sites. The effectiveness of the pBiosensor plasmids was evaluated by comparing the fluo-
rescence emitted by a Neu5Ac producing (pPathwaymedium containing strain) and a wild-type E. coli

strain (containing pBlank), which does not produce Neu5Ac. To evaluate the maximal fluorescence
emitted by the constructed promoters, the fluorescence emitted by the pOperator plasmids was
evaluated. Error bars represent standard deviations (n=3).

All biosensor plasmids except pNB2 and pNB4, are derepressed when Neu5Ac is present.

One of the non-functional biosensors (p=0.99) contains the native nanC promoter. This

promoter, compared to all other biosensor constructs, also emits lower fluorescence lev-

els without NanR expression. Also the biosensor with non-native expression of NanR and

the native nanA promoter is not derepressed significantly (p>0.05), which is remarkable

since pNB1 contains the same operator sequence. This could be explained by a higher

expression of the TF, which makes derepression require a higher Neu5Ac concentration.
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All other strains containing a functional pBiosensor (p<0.05) and the pPathwaymedium

plasmid emit a fraction of the fluorescence emitted when there is no NanR expression

(strains with the pOperator plasmids, see Figure 5.4). Compared to the native biosen-

sors, the engineered promoters exhibit higher protein expression in the presence of in-

tracellular Neu5Ac. However, the strongest engineered promoter shows a large variance

on the protein expression level (see pEB2). Overall, the engineered biosensors show the

feasibility of complex engineering of TF-responsive promoters. More specifically, engi-

neering NanR-responsive promoters, further broadening the engineering capabilities for

biosensor development289. Contrary to the native biosensors, the engineered biosensors

are composed of defined parts, enabling modular optimization of the response curve by

adjusting the position, multiplicity, and sequence of the binding site in the core pro-

moter289.

One biosensor (pEB2) exhibits a higher level of activation than all other biosensors, in-

dicating the high sensitivity of this promoter. All other biosensors show similar absolute

levels of fluorescence activation in the presence of Neu5Ac. However, the applicability

of all created Neu5Ac responsive biosensors depends on the response curve, of which

only one point is available here. One important factor is sensitivity with one particu-

lar Neu5Ac biosensor showing high sensitivity: pEB2. Another important property of a

biosensor response curve is the saturation level, which is impossible to determine here.

For instance, it is impossible to say whether these created biosensors already reached

their saturation level in the Neu5Ac producing strain.

5.3.4 Engineering biosensor response

Based on the Neu5Ac biosensor with the highest sensitivity (pEB2), three variants were

constructed with a different RBS to control the translation initiation of NanR. The biosen-

sors variants pEB2,1, pEB2,2, and pEB2,3, which contain BBa_B0032, BBa_B0030, and

BBa_B0034 as RBS, respectively. These biosensor variants were evaluated using the

same experimental workflow as all other constructed biosensors, using a Neu5Ac pro-

ducing (pPathwaymedium) and non-producing strain (pBlank). The fluorescence emitted

by the pEB2 biosensors and its three variants (pEB2,1, pEB2,2, and pEB2,3) in the presence

and absence of intracellular Neu5Ac is depicted in Figure 5.6.

The RBS used to control NanR has a clear influence on the response of the biosensors

in the presence of Neu5Ac, which increases as the strength of the RBS increases (see

Supplementary Figure C.9). However, as the signal increases so does the variance on

the biosensor response, indicative of a possible decrease in TF stability as a result of
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Figure 5.6: Barplot of fluorescence emitted by the three pEB2 variants pEB2,1, pEB2,2, and pEB2,3,
which all contain NanR binding sites. The four biosensors are ordered based on the previ-
ously described strength of the RBSs used for NanR expression308. The effectiveness of the
pBiosensor plasmids was evaluated by comparing the fluorescence emitted by a Neu5Ac producing
(pPathwaymedium containing strain) and a wild-type E. coli strain (containing pBlank), which does not
produce Neu5Ac. Error bars represent standard deviations (n=3).

metabolic burden. Another observation is the increased level of repression as the RBS

strength increases, which is shown in Supplementary Figure C.9. This is an indication

of an increased amount of available NanR molecules in the dimeric form, the form that

allows binding to the NanR binding site and subsequently allows repression304. In con-

trast to the increased repression when the RBS strength is increased, the related rise in

fluorescence in the presence of Neu5Ac is hard to explain. It is possible that the imposed

burden of the NanR expression and the heterologous pathway has an effect but the logic
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behind the response curve modulation remains unclear, quantifying metabolic burden

would be required to assess this influence245.

5.3.5 Neu5Ac production evaluation using biosensors

A typical application of biosensors in metabolic engineering is linking intracellular con-

centration of a specific metabolite to a measurable signal, which is fluorescence in this

case. To assess the ability of the created Neu5Ac biosensors to link metabolite con-

centration to fluorescence, two mutants of the production strain were created, con-

taining variants of the Neu5Ac production pathway plasmid. The pathway plasmids

pPathwayhigh and pPathwaylow were created by changing the p14 promoter with the

pFAB46* (mutated form of the pFAB46 promoter23) and the pJ23105308, respectively.

First, the Neu5Ac production capacities of these pPathway plasmids were evaluated in

ΔnanATEKR strains using a shake flask experiment (measured after 48 h). The amounts

of Neu5Ac and acetic acid, the only detectable metabolites, produced by strains con-

taining the three constructed pPathway plasmids are depicted in Supplementary Figure

C.11.

To determine the relation between the genotype and the observed phenotype, mainly the

Neu5Ac production, the strength of the promoters used is compared to the Neu5Ac pro-

duction. The relative strength of these promoters was previously determined in-house,

which was 1.91, 8.77 and 0.34 for the p14, the pFAB46*, and the pJ23105 promoters,

respectively. The amount of extracellular Neu5Ac produced is related to the relative

strength of the promoter used (see Supplementary Figure C.10). Also, the amount of

acetic acid produced decreases as Neu5Ac production increases (see Supplementary Fig-

ure C.11), but there is still acetic acid produced, which shows the remaining potential

to increase Neu5Ac production.

The applicability of the created biosensors to detect high Neu5Ac producers from a com-

binatorial library requires a proportional relationship between the amount of Neu5Ac

production and the fluorescence produced by the biosensor. The plasmids pPathwaylow,

pPathwaymedium, and pPathwayhigh, enabling 0.06 ± 0.03 g/L, 0.42 ± 0.07 g/L, and 1.4

± 0.4 g/L extracellular production of Neu5Ac in a shake flask, respectively, were com-

bined with the previously described pNB1, pEB2, and pEB4 in a E. coliΔnanATEKR strain.

The fluorescence emitted by these strains (ordered based on the Neu5Ac production) is

depicted in Figure 5.7, which increases as the amount of Neu5Ac increases.
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Figure 5.7: Bar plot (log scale used) of the fluorescence emitted by three created biosensor plas-
mids (pNB1, pEB2, and pEB4) combined with three pathway variants (pPathwaylow, pPathwaymedium,
and pPathwayhigh). The bar plots are ordered based on the amount of extracellular Neu5Ac pro-
duced. As a control a non-producing strain (containing pBlank) was used. Error bars represent
standard deviation (n=3).
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The observed increase as the amount of Neu5Ac produced increases confirms the propor-

tional operating range of these biosensors, indicating the applicability of these biosen-

sors as a high-throughput screening tool to select the best producers from a combinato-

rial mutant library. However, it remains unclear whether the biosensors used here are

saturated by the levels of Neu5Ac present in the strains containing pPathwayhigh. More-

over, when comparing the extracellular concentration of Neu5Ac in shake flask using the

pathway variants to the fluorescence emitted, biosensor plasmids pNB1 and pEB4 are

closer to saturation compared to biosensor pEB2 (see Figure 5.8). This is confirmed by

the increase in the fluorescence emitted between the pPathwaymedium and pPathwayhigh,

which is much higher for pEB2 than the two other biosensors tested.

●
●

●

●

●

●

●
●

●

●

●

●

100

10000

0 1 2
Neu5Ac production (g/L)

Fl
uo

re
sc

en
ce

 e
m

itt
ed

 (R
FU

O
D

70
0)

plasmid1
●

●

●

pEB2

pEB4

pNB1

Figure 5.8: Plot of the fluorescence emitted against the amount of extracellular N-acetylneuraminic
acid (Neu5Ac) produced by strains containing pathway variants (log scale used). Three cre-
ated biosensor plasmids (pNB1, pEB2, and pEB4) were combined with three pathway variants
(pPathwaylow, pPathwaymedium, and pPathwayhigh).
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5.4 Conclusions

Various biosensors were constructed using either native or engineered promoters, which

contain binding sites of the TF NanR. This regulator naturally represses the nanATEK-

yhcH, nanCMS, and yjhBC operons, which are all related to the degradation of various

sialic acids. When Neu5Ac, the most abundant sialic acid, is present the repression

by NanR is relieved. This mode of regulation was used to create several novel biosen-

sors which link the expression of a fluorescent protein to the presence of Neu5Ac. All

created (native and engineered) promoters were functional and all were successfully

repressed by NanR expression. To examine the Neu5Ac responsiveness of the created

biosensors a Neu5Ac producing strain was created and evaluated. Seven out of the eight

created biosensors were able to discriminate between the Neu5Ac producing strain and

the wild-type strain based on the emitted fluorescence, showing the desired biosensor

functionality. More specifically, all four engineered biosensors are functional and exhibit

a varying response to the Neu5Ac present in the production strain. Three out of the four

engineered biosensors are created by inserting the NanR binding site in a known consti-

tutive promoter, which, contrary to the native biosensors, results in modular biosensors

composed of defined parts without undesired interference of other TFs. This approach

deconstructs the native biosensors into well characterized modules, enabling modular

biosensor optimization to change response curve characteristics by adjusting the pro-

moter, the RBS strength, and the position, multiplicity, and sequence of the NanR bind-

ing site. To show the engineering capacities created by the biosensor deconstruction,

the response of pEB2 was modulated by changing the RBS controlling the NanR ex-

pression, which resulted in a decrease and increase in fluorescence in the absence and

presence of Neu5Ac, respectively. Finally, the applicability of three created biosensors

as a high-throughput screening was proven by combining these biosensors with vari-

ous pathway plasmid variants, which allow producing up to 1.4 ± 0.4 g/L extracellular

Neu5Ac. Moreover, all three biosensors showed a proportional relation to the amount

of Neu5Ac produced extracellularly, a critical property of transcriptional biosensors for

various applications in metabolic engineering.
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RNA as a versatile alternative to traditional protein technology

The main goal of this PhD dissertation was to develop and optimize metabolic engi-

neering tools, enabling forward engineering of microbial cell factories. To this end,

engineering principles for both RNA-based or protein-based tools and devices were de-

veloped, optimized and evaluated in view of rewiring the metabolism of microbial cell

factories in a custom way. This helps to engineer biology in a standardized way, allow-

ing automated strain development, which is considered critical to shorten development

time of production strains. To this end, previous efforts focused on creating compos-

able, tunable, scalable and reliable biological parts, allowing the construction of com-

plex biological systems with custom behaviour. Traditionally, these systems are built and

reengineered using protein components, which function typically rely on protein-DNA

or protein-protein interactions that are hard to predict. This limited programmability

is a major disadvantage of protein-based parts, which is a major driving force for the

recent development of RNA parts for synthetic biology. Despite the great interest in the

last few years, RNA synthetic biology is still in its infancy compared to their protein

counterparts. However, RNA has an advantage in programmability due to its function

being related to their structure, which is easily predictable de novo compared to pro-

teins. In contrast to RNA regulators, synthetic biology has traditionally used protein

parts due to the large availability of protein parts and knowledge available on protein

regulators. This is a result of the recent discovery of abundant RNA regulation, which is

much harder to unravel than protein parts. For instance, protein regulators are encoded

in an open reading frame (ORF), which are hard to ignore, whereas RNA is encoded

in non-coding regions, which were largely overlooked in the past. Also, transcriptional

regulators are well known compared to RNA regulation, making them perfect targets to

link gene expression to the availability of a specific molecule. For instance, the pro-

grammable nature of RNA especially allows predictable control of transcription termi-

nation and particularly translation initiation rate, an indispensable tool for production

pathway balancing in metabolic engineering.

In this context, pioneering efforts rely on thermodynamic models to design custom RBSs

with the desired strength. To increase the accuracy of these tools, a machine learning

approach was employed by combining fluorescence activated cell sorting (FACS) with

next-generation sequencing, which drastically increases the throughput and the subse-

quent amount of data. Through machine learning, this resulted in forward engineering

tools for RBS with increased accuracy and precision270. Recently, the democratization

and throughput of enabling technologies such as flow cytometry, DNA synthesis, and,
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next-generation sequencing allow the generation of large amounts of data, requiring

big data analysis through machine learning, which increases the predictability of for-

ward engineering tools. This is a recent trend observed throughout the whole field of

metabolic engineering, which increasingly embraces the novel synthesis and sequencing

technologies to decrease development times of microbial cell factories. Another factor

in strain development is the continuing expansion of the metabolic engineering toolbox,

which increasingly employs various types of recently discovered RNA devices.

In Chapter 2 an extensive overview is given of the recently emerged RNA technology to

modulate gene expression, build genetic circuitry, sense molecules, report physiological

processes, and build nanostructures. In comparison to their protein counterparts, RNA

tools are good alternatives due to their superior progammability and scalability. How-

ever, overall, the field of RNA synthetic biology is still in an infant state and still making a

transition from development through trial and error to development increasingly based

on forward engineering, resulting in devices with improved properties. Moreover, the

previously mentioned novel sequencing and synthesis technologies are increasingly be-

ing exploited to increase designability. One specific development with huge impact on

biotechnology in general the last few years is the birth of RNA-guided gene expression

modulation on both the transcriptional and the translational level, which are facilitated

by dCas9 and Hfq proteins. These techniques have clear advantages over traditional

DNA-based gene knockouts, as they allow inducible and reversible knockdowns, which

expands the metabolic engineering toolbox, allowing strain engineering strategies previ-

ously impossible. However, the dependence on protein parts for proper gene expression

modulation might cause an undesirable stress effect (metabolic burden)245. Moreover,

the use of RNA-guided protein parts also requires specific complex design constraints to

allow the necessary RNA-protein interactions and proper functionality, which limits the

inherent programmability of RNA65,242.

Towards forward engineering of RNA genetic circuitry

To bypass the need for coexpressed protein parts and the burdensome and relatively

slow translation step, various novel riboregulator parts were developed that allow the

construction of genetic circuitry using solely RNA. Despite the fact that several types of

regulators are available, activating or repressing on the translational or the transcrip-

tional level (see Chapter 2 for details), the dynamic range and availability of these

riboregulators remains limited. Moreover, various riboregulators are reengineered us-

ing a natural existing chassis, limiting the applicability. To overcome these limitations,
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repressing riboregulators were developed de novo in Chapter 3 by efficiently explor-

ing possibly important properties through a design of experiments (DOE). This appro-

ach yielded several functional riboregulators with dynamic ranges comparable or better

than previous efforts, making these RNA regulators interesting parts to construct RNA

only circuitry. These possibly important riboregulator features were defined based on

previously described efforts, which used these different properties as design principles.

This broad range of previously used design principles for riboregulators hinders the ap-

plication of this technology for non-experts. To elucidate the importance of these design

criteria, the in vivo performance of all riboregulators was used to build a partial least

squares (PLS) model, linking various riboregulator features to their repression efficiency.

This enables to identify the important factors from the less important factors but also

shows the applicability of big data analysis to further improve riboregulator designs.

Moreover, the fact that basic regression techniques do not allow linking features to ri-

boregulator performs shows the complex nature of riboregulation, which could not be

sufficiently explained using regular ordinary least squares (OLS) regression.

The developed model is suitable for de novo forward engineering of repressing riboreg-

ulators, which has never been described before (previous efforts either described acti-

vating riboregulators or use a naturally occurring chassis for repressing riboregulator

development). However, this model was verified for two (related) UTRs and the gen-

eral applicability of the PLS model for completely different UTRs should be assessed. An

interesting future perspective of this riboregulator technology and its sequence-function

model is the creation of orthogonal families of riboregulators. This could be done by

creating orthogonal riboregulator-UTR pairs, containing a riboregulator that specifically

represses an UTR without interacting with any other UTR. However, Chapter 3 shows

the potential of advanced data analysis techniques in synthetic biology but the forward

engineering capacities might not reach far beyond the data used in the model. Ob-

taining generally applicable models requires high-throughput data generation, which is

enabled by recently developed techniques. For instance, the recently developed SHAPE-

Seq technique combines in vivo RNA structural probing and next-generation sequencing

technology, allowing high-throughput interrogation to further elucidate the sequence-

structure-function relationship of riboregulators271,272. Combining this technology with

FACS to analyze large strain libraries could yield sufficient data to build models with a

broader applicability and better accuracy. In addition, the recently emerged sequencing

and gene synthesis technologies with a huge throughput lift the possibilities of metabolic

engineering to unprecedented heights. However, these technologies remain largely un-
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used, indicating the need for further investments. Another aspect to this paradigm shift

in metabolic engineering is coping with these large amounts of data, which could reach

much larger proportions than ever seen before.

Improving riboswitch development through bioinformatics

Another type of RNA regulator with great potential are riboswitches, which link gene

expression to the availability of specific ligands (see Chapter 2 for more information).

One type of riboswitches are translational riboswitches, which are typically located in

the 5’UTR and include an aptamer region to allow ligand interaction. Curiously, before

discovering naturally occurring translational riboswitches, various synthetic riboswit-

ches were created from in vitro selected aptamers, which were selected from a combi-

natorial library through systematic evolution of ligands by exponential enrichment (SE-

LEX). This transition from in vitro selected aptamer to in vivo functional riboswitches

has been challenging ever since, mainly relying on in vivo selection such as FACS. To

facilitate the development of translational riboswitches, Chapter 4 describes an in silico

workflow that was created and evaluated for the computer-aided design of translational

riboswitches. This algorithm is able to design translational riboswitches with a high

probability of activating translation initiation in the presence of the ligand of interest,

which was theophylline as a proof of concept. Yet, despite the newly developed transla-

tional riboswitches, linking riboswitch activity to structural or thermodynamic features

remains challenging. Moreover, the riboswitch with the highest activation ratio (AR)

was created by reshuffling regions from two different riboswitches, indicating the com-

plex nature of translational riboswitch that is still largely unknown. The observed ARs

of the designed riboswitches are much lower than those of the riboswitches described in

literature, indicating the limitations of the automated design algorithm. However, the

obtained absolute expression levels in the ON state are much higher for the designed ri-

boswitches, showing that the observed ARs is largely determined by the expression level

in the OFF state. Moreover, the riboswitches described in literature are the result of a

laborious optimization that requires numerous resources compared to the automated

design algorithm that can be obtained in a few days. Yet, the in silico approach is still in

an infant state and requires several improvements to increase predictability of the algo-

rithm. For instance, a recently published study on the applicability of the computational

design of transcriptional riboswitches showed that only aptamers adopting a minimum

free energy (MFE) structure are suitable for riboswitch design approaches using RNA

bioinformatics, showing the complexity of automated riboswitch design and the need
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for improvements317. Expanding the model to include previously unknown physiolog-

ical processes can also improve the reliability of the design algorithms. For instance,

recently emerged cotranscriptional SHAPE-seq technology allows discovering RNA fold-

ing pathways, which were shown to be important for proper riboswitch performance284.

Overall, the in silico selection approach developed in Chapter 4 is much less laborious

than the typical manual screening and optimization of riboswitches.

Another factor determining the precision of the riboswitch design algorithms are the

simplification that are made, as only the secondary structures are considered during

the design process due to technical feasibility. A democratization of advanced molec-

ular dynamics techniques could be useful here, as riboswitches form flexible tertiary

structures that interact in 3D with their specific ligand. As such, cutting edge RNA 3D

structure predictions and docking algorithms could be used, similarly to the use of pro-

tein 3D structures and docking algorithms in protein engineering. For instance, one of

the best algorithms (included in the ROSETTA software suite), fragment assembly of

RNA with full atom refinement (FARFAR), allows accurate de novo prediction of the 3D

RNA structure318,319. However, the length of the accurately predicted RNA sequences is

short (<20 nucleotides) and the computational resources required are significant, mak-

ing high-throughput infeasible. Besides modelling the 3D structure of riboswitches, the

interaction with the ligand needs to be simulated, which is possible using docking al-

gorithms. Specifically, the latest version of the DOCK, DOCK 6.0, include techniques

to simulate RNA-small molecule complexes320. Generally, most molecular dynamics

techniques are historically focused on more rigid proteins, although several algorithms

are gradually including force fields specific for RNA. Despite the limited development

of RNA molecular dynamics, the potential of molecular dynamics for in silico aptamer

selection was previously shown as a proof of concept321. Overall, advances in RNA

molecular dynamics and the democratization of computational resources are undoubt-

edly a major opportunity for RNA synthetic biology. Still, similarly to the contribution

of bioinformatics tools to protein engineering, a very advanced research field with years

of evolution in molecular dynamics and related technology, the use of algorithms will

facilitate molecular design but will always require wet lab work to test the obtained

molecular devices. Over the years algorithms to design RNA devices can improve but

will, similarly to protein engineering, rarely be able to perfectly predict the performance

of biological devices. Yet, bioinformatics tools are indispensible in RNA synthetic biology

but are still in an infant state compared to protein bioinformatics techniques.
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Biosensors as an enabling technology in metabolic engineering

Similarly to translational riboswitches, transcriptional biosensors employ proteins to link

small molecule concentration to gene expression. Therefore, biosensors are useful tools

as sensor or genetic switch in metabolic engineering. To this end, various biosensors

were developed using naturally occurring TFs to allow detection of a range of mole-

cules. However, the number of available biosensors remains limited and the biosen-

sor engineering principles are small, hindering response curve engineering possibilities.

One interesting group of molecules are sialic acids, a family of nine-carbon carboxylated

monosaccharides with Neu5Ac as most important member with numerous applications

in pharmaceutical and food industry. To detect Neu5Ac, various biosensors were devel-

oped in Chapter 5 based on native NanR responsive promoters and by deconstructing

these native promoter in defined parts. These biosensors created using a bottom-up ap-

proach allows modular biosensor optimization, further expanding the engineering tools

to obtain desired response curves. More specifically, the feasibility of TF binding site

insertions in a constitutive promoter was shown, which paves the way for changing the

position, multiplicity, and/or sequence and the subsequent changes in response curve.

Combining these findings with in vitro binding site identification techniques, further ex-

pands the possibilities to create new biosensors with custom response curves75. Biosen-

sor engineering remains limited to what is available in nature. Luckily, a large number

of regulatory systems are widely available for a huge number of molecules. The main

requirement here is that molecules are available in nature. However, developing reg-

ulators for new-to-nature molecules would require advanced protein engineering tech-

niques. To this end, compared to the field of RNA synthetic biology, bioinformatic tools

play a more prominent role in the field of biosensors due to the mature state of protein

molecular dynamics. This was shown by a recent effort that used computational protein

design to reengineer the inducer specificity of the allosteric TF LacI to respond to new

inducer molecules277. Moreover, the biosensor engineering possibilities can be further

expanded by databases such as the recently created AlloRep, which collect information

on the data on (mutated) regulators322.

Regarding Neu5Ac, the applications of this sugar moiety are hindered by its limited avail-

ability due to insufficient production technologies, an effective microbial cell factory

removes this hurdle. The newly created biosensor for Neu5Ac could be used as a high-

throughput screening method or as a regulator in a dynamically regulated biosynthetic

pathway. Both these metabolic engineering strategies could improve the productivity of

the created microbial cell factories, which produced up to 2.8 ± 0.8 g/L extracellular
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Neu5Ac without any further optimization. It was shown that the biosensors for Neu5Ac

could serve as an initial screen for combinatorial libraries of the production pathway to

obtain better Neu5Ac producers. Another important facet besides strain engineering is

the optimization of the microbial production process, which could also improve the per-

formance of a specific strain. Moreover, an interesting evolution in the field of metabolic

engineering is the combination of genetic elements and growth conditions in one DOE

to optimize microbial production, indicating the importance of optimizing both strain

properties and growth conditions simultaneously323,324.

In general, various strategies are possible in strain engineering, which typically range

from a rational to a combinatorial approach. Since DNA assembly is no longer a bottle-

neck, the ideal strategy depends on the knowledge and resources available. For instance,

when a protein regulator is available for the molecule of interest a combinatorial appro-

ach is more feasible than when no regulator was available. On the other hand, a rational

approach requires a high degree of knowledge, which is typically unavailable (even for

model organisms). In case there is a protein regulator described for a specific molecule,

protein parts have a clear advantage over RNA to form a biosensor. Yet, in case no such

regulator is available, RNA has the advantage to create a biosensor, for instance, based

on translational riboswitches, which have a relatively simple working mechanism. How-

ever, the development of in vivo functional riboswitches for a molecule of choice remains

challenging, with bottlenecks that are present all over the development process. For in-

stance, the number of available aptamers that function in vivo is limited, which shows

that a specific SELEX procedure for fast generation of aptamers that could function in

vivo are needed. At the in vivo end of development, rapidly turning in vitro functional

aptamers into in vivo functional riboswitches remains laborious despite the development

of recent bioinformatics technology. Overall, RNA technology for the construction of mi-

crobial cell factories has the intrinsic advantage over their protein counterparts that RNA

does not require the burdensome translation process. This is particularly important as

the field of metabolic engineering tackles increasingly complex production pathways, an

irreversible evolution that is further supported by state of the art synthesis and sequenc-

ing technologies. In general, metabolic engineering is undergoing a shift in speed as

these novel technologies are increasingly embraced, which, along with advanced tools

like those developed in this doctoral research, significantly reduces development times

of production strains.
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A.1 Supplementary Methods

A.1.1 Quantification of thermodynamic properties

In general, complex formation energy ΔGij
form can be calculated as follows:

ΔGij
form =ΔGij

dimer − (ΔGi
monomer +ΔGj

monomer) (A.1)

Where ΔGij
dimer, ΔGi

monomer and ΔGj
monomer are the estimated Gibbs free energy of

the final dimer, and both initial monomer states, respectively. The features describing

thermodynamic properties of translation inhibiting RNA (tiRNA) are free energy of the

tiRNA monomer (EA), free energy of the tiRNA-tiRNA dimer (EAA), free energy of the

tiRNA-UTR dimer (EAB), formation energy of the tiRNA-tiRNA dimer (FAA) and forma-

tion energy of the tiRNA-UTR dimer (FAB) (see Table 3.1).

A.1.2 Quantification of activation energy

The activation energy is estimated by the hybridization energy of consecutively unbound

nucleotides of the tiRNA complex, the seed region, with the UTR. To get a good repre-

sentation of the Boltzmann ensemble a random sample of 100 suboptimal structures of

the tiRNA molecule are drawn with probabilities equal to their Boltzmann weights using

the RNAsubopt algorithm259. This is done via stochastic backtracking in the partition

function using RNAsubopt259. The intermolecular binding between the unbound part of

the antisense and the UTR is estimated using the RNAup algorithm, which first calculates

the energy requires to ‘open’ the binding site and subsequently calculates the minimal

energy gained from intermolecular binding260. This is done for all possible unbound

sequences with a length between two and six nucleotides of the tiRNA monomer. Two

features are calculated for each of the 100 suboptimal structures: EIS and ETS. To get

a general feature for a tiRNA molecule the average is calculated of the minimal inter-

molecular binding seed energy (EIS) and total seed energy (ETS) of the 100 structures.

A.1.3 Calculation of structural tiRNA features

Besides these previously mentioned thermodynamic features, some structural properties

were previously described to improve translation initiation repression using solely RNA

interactions.
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UTR availability One possible determinative feature relates to the availability of the

target region in the mRNA, which was previously used as design principle for silenc-

ing small RNAs (sRNAs) as the mRNA is not in a constant state but rather in a state

of constant structural fluctuation near MFE structures248,325–327. To account for a cer-

tain volatility of regions in the mRNA, Johnson & Srivastava 248 analyzed suboptimal

mRNA structures to find regions which alter their structure without significantly chang-

ing the Gibbs free energy of the global structure. These regions are assumed to be more

accessible and matched naturally occurring antisense target sites248. In the DOE the

availability of the UTR nucleotides are accounted for by the Pavailability term, probabil-

ity availability of UTR (PAU), which is calculated based on the partition function of the

tiRNA-UTR dimer and the UTR monomer. For each nucleotide of the UTR the availability

(relative number of unbound nucleotides) in the UTR monomer complex (PUTR,available)

and the coverage (relative number of nucleotides bound by the antisense molecule) in

the tiRNA-UTR dimer complex (PUTR,tiRNA-coverage) is determined. Based on these two

terms the overall availability term (PAU; Pavailability) is determined (weighted average of

PUTR,available with PUTR,tiRNA-coverage as weights).

Pavailability =

∑nUTR
0 PUTR,available × PUTR,tiRNA-coverage∑nUTR

0 PUTR,tiRNA-coverage

(A.2)

RBS coverage To quantify the RBS coverage, two features were defined (RBS cover-

age of length 5 (RBS5) and RBS coverage of length 11 (RBS11)) as the base pairing

probability in the region of the RBS. For the calculation of both features the weighted

average of the nucleotides in the UTR bound by the 16S rRNA forms the center of the

RBS region. Based on this center the RBS coverage in the regions CRBS−5 to CRBS+5

(RBS11) and from CRBS−2 to CRBS+2 (RBS5) is calculated based on the partition func-

tion estimated by RNAfold256.

Paired termini (PT) Another structural feature improving translational repression is

the presence of paired termini in the silencing RNA molecule, which is strongly related to

its thermodynamical stability, resulting in efficient gene silencing84,247. The feature PT is

calculated by again drawing a random sample of 100 suboptimal structures of the tiRNA

molecule with probabilities equal to their Boltzmann weights (using RNAsubopt259).

From these 100 structures the average number of bound nucleotides between the first

and the second half of the tiRNA sequence is calculated.
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A.2 Supplementary Figures
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Figure A.1: Overview of a DNA construct for translation inhibiting RNA (tiRNA) expression. As an
example, the insert of pSilence1 is displayed with the proD promoter250, tiRNA1 riboregulator, and
BB_B1006 terminator24.
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Figure A.2: Overview of a DNA construct for untranslated region (UTR) expression. As an example,
the insert of pTarget1 is displayed with the proB promoter250, UTR1

250, mKate2 reporter gene252,
and rnpB T1 terminator24.
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proB UTR mKate2

KanRpSC101

rnpB T1proD

AmpRpBR322

BBa_B1006

pTargetpSilence

tiRNA

Figure A.3: Schematic overview of the two plasmid types used in this study. The plasmids pSi-
lence and pTarget are used to respectively express translation inhibiting RNAs (tiRNAs) and the
target untranslated regions (UTRs) upstream of the reporter gene mKate2 252. pSilence comprises
a medium-copy vector (pBR322 origin of replication and ampicillin resistance marker, originating
from pSB6A1308) using proD250 as promoter and BBa_B100624 as terminator. pTarget comprises
a low-copy vector (pSC101 origin of replication and kanamycin resistance marker) with proB250 as
promoter, mKate2 252 as reporter gene, and rnpB T124 as terminator. Details of all tiRNAs, plasmids
and important DNA sequences used in this study are listed in Supplementary Table A.1, A.2 and
A.3, respectively.
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Figure A.4: Schematic overview of all potentially determinative features of translation inhibiting
RNAs (tiRNAs): 1) free energy of the tiRNA monomer (EA), 2) free energy of the tiRNA-UTR dimer
(EAB), 3) free energy of the tiRNA-tiRNA dimer (EAA), 4) formation energy of the tiRNA-UTR dimer
(FAB), 5) formation energy of the tiRNA-tiRNA dimer (FAA), 6) intermolecular binding seed energy
(EIS), 7) total seed energy (ETS), 8) RBS coverage of length 5 (RBS5), 9) RBS coverage of length
11 (RBS11), 10) probability availability of UTR (PAU), 11) paired termini (PT), and 12) tiRNA length
(L).

143



Appendix A. Exploration of the feature space of de novo developed
post-transcriptional riboregulators

EIS FAA FAB

PAU PT RBS11

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.00

0.02

0.04

0.06

0.08

0

1

2

3

4

0.00

0.05

0.10

0.15

0.20

0

1

2

3

−10.0 −7.5 −5.0 −2.5 0.0 −5 0 5 10 −30 −20 −10 0

0.00 0.25 0.50 0.75 1.00 0 5 10 15 0.00 0.25 0.50 0.75 1.00
absolute value

de
ns

ity

Figure A.5: Density of all features of tiRNA with the 0.1 (-1 level) and 0.9 p-quantiles (+1 level)
indicated as vertical stripped lines.
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Figure A.6: Predicted minimum free energy (MFE) structures of the two mRNAs used in this study,
comprising the untranslated region (UTR) and the coding DNA sequence (CDS) part. Both UTRs
contain the ribosome binding site (RBS) BBa_B0032. The predicted Gibbs free energy (ΔG) is
depicted (top right) along with the experimentally determined fluorescence (FP/OD700)corrected for
both UTR1 and UTR2.
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Figure A.7: Plot of the percentage relative expression of all data points in the experimental design
(comprising solely UTR1) against the normalized translation inhibiting RNA (tiRNA) features of the
reduced feature set. The six factors used in the design of experiments (DOE) are the features in
the reduced feature set (formation energy of the tiRNA-tiRNA dimer (FAA), formation energy of the
tiRNA-UTR dimer (FAB), intermolecular binding seed energy (EIS), probability availability of UTR
(PAU), RBS coverage of length 11 (RBS11), and paired termini (PT)). The gray area depicts the
95 % confidence interval of the linear regression between the relative protein expression and each
normalized feature value. Error bars represent standard deviation (n=3).
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Figure A.8: Plot of the percentage relative expression of all data points against the absolute trans-
lation inhibiting RNA (tiRNA) features of the reduced feature set. The six factors used in the design
of experiments (DOE) are the features in the reduced feature set (formation energy of the tiRNA-
tiRNA dimer (FAA), formation energy of the tiRNA-UTR dimer (FAB), intermolecular binding seed
energy (EIS), probability availability of UTR (PAU), RBS coverage of length 11 (RBS11), and paired
termini (PT)). The gray area depicts the 95 % confidence interval of the linear regression between
the relative protein expression and each absolute feature value. Error bars represent standard
deviation (n=3).
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Figure A.9: The estimated PLS regression coefficients of the eleven identified translation inhibiting
RNA (tiRNA) features. Detailed definitions of all features (free energy of the tiRNA monomer (EA),
free energy of the tiRNA-tiRNA dimer (EAA), free energy of the tiRNA-UTR dimer (EAB), formation
energy of the tiRNA-tiRNA dimer (FAA), formation energy of the tiRNA-UTR dimer (FAB), total seed
energy (ETS), intermolecular binding seed energy (EIS), probability availability of UTR (PAU), RBS
coverage of length 5 (RBS5), RBS coverage of length 11 (RBS11), paired termini (PT), and tiRNA
length (L)) are available in Table 3.1.
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Figure A.10: Cumulative loadings of the four components used in the PLS model. Detailed def-
initions of all features (EA, EAA, EAB, FAA, FAB, ETS, EIS, PAU, RBS5, RBS11, PT, and tiRNA
length (L)) are available in Table 3.1.

149



Appendix A. Exploration of the feature space of de novo developed
post-transcriptional riboregulators

−2 −1 0 1 2 3 4

−2
−1

0
1

2
3

4

X scores and X loadings

Comp 1

C
om

p 
2

1 2

3
4

5

6

7

8

9
10

11

12

13
14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

−0.5 0.0 0.5

−0
.5

0.
0

0.
5

EA

EAB

EAA

FAB

FAA

ETS
EIS

PAURBS5
RBS11

PT

L

Figure A.11: Biplot of the first two components of the PLS regression model. Detailed definitions
of all features (EA, EAA, EAB, FAA, FAB, ETS, EIS, PAU, RBS5, RBS11, PT, and tiRNA length (L))
are available in Table 3.1.
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A.3 Supplementary Tables

Table A.1: Overview of all translation inhibiting RNA (tiRNA) molecules, comprising the experimen-
tal design to discover design rules for gene silencing using solely RNA.

Name RNA sequence (5’→3’)

tiRNA1 UAGUCUUUAGAAAGUUAAAAUUAUUAAGGGAAACCUGCCU
tiRNA2 GUACCUGUGUGGUAAAAGUUAAACAAUAUCCGUUGUGGUC
tiRNA3 ACUUCCUGUAGUAAAAGUAUUGUGGUGUCU
tiRNA4 AGUAAAGUUAAGAGGGAAACGUUGUGGUC
tiRNA5 UUCUGUGUAGCAAAUUGUCCGUGUGGUCUC
tiRNA6 UCUAGCCUGUUAAACAAAAUUAUUUGUGAGGGAAACUCCC
tiRNA7 AUCUACUCUAGUAAAGUGGU
tiRNA8 CCUGUGUUAAAAGUUAAACAAAAUUAUUGU
tiRNA9 UUUACUCUAGUUAAAAUAGAGGGAAACCUG
tiRNA10 UACUUUCGUGGUAAAAUAAUGUAGAGGGAAACCGUUGUGG
tiRNA11 GUACUUUUGUGCGUCUCCCU
tiRNA12 CAUCUAGUACUAAAAAAUUAUUUGUAGAGU
tiRNA13 UCCUGUGUCUUUAUUGUGGGAAACCUGGUC
tiRNA14 UAGUACCUAGUAAUUAAACAUGUAGAGGGAAACCGUUGUG
tiRNA15 CUACUCUAGUACCGUUGGUC
tiRNA16 CCUGUGUGACUCUUAUUUGUAGAUUGUGGU
tiRNA17 UCUAGUUUUCCUAGUAAAAUUAAACAAAAUUAAACUCCCU
tiRNA18 AGUACUGUGUCUCUAGUAUAAGAUCUCCCU

Table A.2: Overview of all plasmids used in this study.

Name Content (5’→3’) Backbone

pSilence1 proD - tiRNA1 - BBa_B1006 pBR322
pSilence2 proD - tiRNA2 - BBa_B1006 pBR322
pSilence3 proD - tiRNA3 - BBa_B1006 pBR322
pSilence4 proD - tiRNA4 - BBa_B1006 pBR322
pSilence5 proD - tiRNA5 - BBa_B1006 pBR322
pSilence6 proD - tiRNA6 - BBa_B1006 pBR322
pSilence7 proD - tiRNA7 - BBa_B1006 pBR322
pSilence8 proD - tiRNA8 - BBa_B1006 pBR322
pSilence9 proD - tiRNA9 - BBa_B1006 pBR322
pSilence10 proD - tiRNA10 - BBa_B1006 pBR322
pSilence11 proD - tiRNA11 - BBa_B1006 pBR322
pSilence12 proD - tiRNA12 - BBa_B1006 pBR322
pSilence13 proD - tiRNA13 - BBa_B1006 pBR322
pSilence14 proD - tiRNA14 - BBa_B1006 pBR322
pSilence15 proD - tiRNA15 - BBa_B1006 pBR322
pSilence16 proD - tiRNA16 - BBa_B1006 pBR322
pSilence17 proD - tiRNA17 - BBa_B1006 pBR322
pSilence18 proD - tiRNA18 - BBa_B1006 pBR322
pTarget1 proB - UTR1 - mKate2 - rnpB T1 pSC101
pTarget2 proB - UTR2 - mKate2 - rnpB T1 pSC101
pBlank1 / pBR322
pBlank2 mKate2 - rnpB T1 pSC101
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Table A.3: Overview of all important DNA sequences

Name Sequence (5’→3’) Reference

mKate2 ATGGTTAGCGAGCTGATCAAAGAAAACATGCACATGAAAGCTGATCAAAGAAAACATG
CACATGAAACTGTATATGGAAGGCACCGTGAATAACCACCACTTTAAATGTACCAGCG
AAGGTGAAAGCTGATCAAAGAAAACATGCACATGAAACTGTATATGGAAGGCACCGTG
AATAACCACCACTTTAAATGTACCAGCGAAGGTGAAGGTAAACCGTATGAAGGCACCC
AGACCATGCGTATTAAAGCAGTTGAAGGTGGTCCGCTGCCGTTTGCATTTGATATTCT
GGCAACCAGCTTTATGTATGGCAGCAAAACCTTTATTAACCATACCCAGGGTATCCCG
GATTTTTTCAAACAGAGCTTTCCGGAAGGTTTTACCTGGGAACGTGTTACCACCTATGA
AGATGGTGGTGTTCTGACCGCAACCCAGGATACCAGTCTGCAGGATGGTTGTCTGATT
TATAATGTGAAAATTCGCGGTGTGAACTTTCCGAGCAATGGTCCGGTTATGCAGAAAA
AAACCCTGGGTTGGGAAGCAAGCACCGAAACCCTGTATCCGGCAGATGGTGGTCTGG
AAGGTCGTGCAGATATGGCACTGAAACTGGTTGGTGGTGGTCATCTGATTTGCAATCT
GAAAACCACCTATCGTAGCAAAAAACCGGCAAAAAATCTGAAAATGCCTGGCGTGTAT
TATGTTGATCGTCGTCTGGAACGTATTAAAGAGGCAGATAAAGAAACCTATGTGGAAC
AGCATGAAGTTGCAGTTGCACGTTATTGTGATCTGCCGAGCAAACTGGGTCACCGCTG
ATAA

252

proB CTAGAGCACAGCTAACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGTGGTT
GCTGGATAACTTTACGGGCATGCATAAGGCTCGTAATATATATTC

250

proD CTAGAGCACAGCTAACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGTGGTT
GCTGGATAACTTTACGGGCATGCATAAGGCTCGTATAATATATTC

250

rnpB T1 TCGGTCAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAG
GGGCAGAAAGATGAATGACTGTC

24

BBa_B1006 AAAAAAAAACCCCGCCCCTGACAGGGCGGGGTTTTTTTT 24

UTR1 AGGGAGACCACAACGGTTTCCCTCTACAAATAATTTTGTTTAACTTTTACTAGAGTCAC
ACAGGAAAGTACTAG

250

UTR2 AGGGAGATTGACTTTTACTAGAGTCACACAGGAAAGTACTAG this work
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Table A.4: Detailed description of the 26-2 fractional factorial design to unravel translation inhibiting
RNA (tiRNA) design principles. This experimental design for six 2-level factors comprises 16 regular
runs (tiRNA1-16) and two center points (tiRNA17 and tiRNA18). The six factors used in the design of
experiments (DOE) are the features in the reduced feature set (formation energy of the tiRNA-tiRNA
dimer (FAA), formation energy of the tiRNA-UTR dimer (FAB), intermolecular binding seed energy
(EIS), probability availability of UTR (PAU), RBS coverage of length 11 (RBS11), and paired termini
(PT)).

FAB FAA EIS PAU RBS11 PT

tiRNA1 -1 -1 -1 -1 -1 -1
tiRNA2 1 -1 -1 -1 1 1
tiRNA3 -1 1 -1 -1 1 1
tiRNA4 1 1 -1 -1 -1 -1
tiRNA5 -1 -1 1 -1 1 -1
tiRNA6 1 -1 1 -1 -1 1
tiRNA7 -1 1 1 -1 -1 1
tiRNA8 1 1 1 -1 1 -1
tiRNA9 -1 -1 -1 1 -1 1
tiRNA10 1 -1 -1 1 1 -1
tiRNA11 -1 1 -1 1 1 -1
tiRNA12 1 1 -1 1 -1 1
tiRNA13 -1 -1 1 1 1 1
tiRNA14 1 -1 1 1 -1 -1
tiRNA15 -1 1 1 1 -1 -1
tiRNA16 1 1 1 1 1 1
tiRNA17 0 0 0 0 0 0
tiRNA18 0 0 0 0 0 0

Table A.5: Untranslated regions (UTRs) used in this study

Name Sequence (5’→3’)

UTR1 AGGGAGACCACAACGGUUUCCCUCUACAAAUAAUUUUGUUUAACUUUUACUAGA
GUCACACAGGAAAGUACUAG

UTR2 AGGGAGAUUGACUUUUACTAGAGTCACACAGGAAAGUACUAG

153





Appendix B

Computer-aided development of
ligand-responsive RNA devices
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B.1 Supplementary Methods

B.1.1 Search algorithm

The search algorithm used to efficiently find a global minimum of the objective func-

tion is a Metropolis Monte Carlo simulated annealing algorithm (see Algorithm 1 for

pseudocode).

Define E(x); mutate(x); random(x) with x = riboswitch sequence;
Define scoremax; paccept,initial; iterations; Tinitial; Tfinal; slope;
begin

T = Tinitial;
sequenceaccepted = random(sequence constraints);
scoreaccepted = E(sequenceaccepted);
for iterations - 1 do

sequencemutated = mutate(sequenceaccepted);
scoremutated = E(sequencemutated);
if scoremutated < scoreaccepted then

sequenceaccepted = sequencemutated;
scoreaccepted = scoremutated;

else
ΔE = scoremutated - scoreaccepted;
p = min(1, exp(-ΔE/T));
random_float = random.uniform(0,1);
if random_float <= p then

sequenceaccepted = sequencemutated;
scoreaccepted = scoremutated;

end
end
T = T*slope

end
end

Algorithm 1: Pseudocode describing the Metropolis Monte Carlo simulated anneal-
ing algorithm used to find sequences with minimum in the defined objective func-
tion. Definitions functions (with x a riboswitch sequence): E(x) = riboswitch objec-
tive function; mutate(x) = sequence mutation function; random(x) = random nu-
cleotide selection. Definitions parameters: scoremax = maximal score; paccept,initial =
initial acceptance probability if ΔE == 10% of scoremax; iterations = number of it-
erations (50,000); Tinitial = -(scoremax*0.1)/log(paccept,initial); Tfinal = 0.01; slope =
(Tfinal/Tinitial)**(1/iterations).
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This algorithm simulates the metallurgic annealing process where controlled cooling

maximized crystal size and minimizes defect formation. Overall, solutions are accepted

if their score (scoremutated) is lower (better) than the previously accepted solution (scoreaccepted).

If the scoremutated is higher (worse) than scoreaccepted, the new (mutated) solution is ac-

cepted with following probability:

paccept = e
−ΔE

T (B.1)

Where ΔE is equal to scoremutated - scoreaccepted and T is equal to the temperature. The

initial acceptance probability of aΔE equal to 1 was set to 0.2. Thus Tinitial is caluclated

as follows:

Tinitial = − 1
log(0.2)

(B.2)

The cooling scheme is logarithmic from the initial temperature to 0.01 (Tfinal). Temper-

ature profile is calculated as follows:

Ti+1 = Ti × slope (B.3)

Where slope is calculated as follows:

slope=
�

Tfinal

Tinitial

� 1
iterations

(B.4)

Where iterations are the number of iterations of simulated annealing. By default, itera-

tions were set to 50.000.

B.1.2 Other settings

Riboswitch candidates where transcription of the random part downstream of the ap-

tamer part interferes with the formation of the constrained aptamer secondary structure

are not accepted (simulated by folding in steps of four nucleotides). Also, nucleotide

repeats longer than four are not allowed in candidate sequences. Overall, the input

settings were sequence constraints (fixed parts comprise the aptamer part and the first

12 nucleotides of the CDS), the thermodynamic property ΔΔGtarget (Eq. 4.4), and the

nucleotide regions nswitching and nunpaired, which are involved in the switching motion

and are unpaired in the MFE configuration, respectively.
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B.2 Supplementary Figures

pFAB39

AmpRpBR322

mKate2 rnpB T1

pRS

RS

Figure B.1: Schematic overview of the plasmid type pRS used for the expression of riboswitches
in this study. The plasmid (pBR322 vector282) uses pFAB3923 as promoter, mKate2 252 as reporter
gene and rnpB T124 as terminator. Riboswitches were cloned seamlessly between pFAB39 and
mKate2.
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Figure B.2: Overview of a DNA construct for riboswitch expression. As an example, the in-
sert of pRS1 is displayed with the pFAB39 promoter, RS1 riboswitch, mKate2 reporter gene, and
rnpB T1 terminator.
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Figure B.3: Plot of ΔΔG (difference between predicted ΔGMFE and predicted ΔGCONSTRAINED)
against the activation ratio of previously described riboswitches195. Activation ratios displayed were
defined and determined in Mishler & Gallivan 195 .
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B) STRUCTURAL CONSTRAINT SCORING
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Figure B.4: Schematic overview of the objective function used for the automated design of cis en-
coded translational riboswitches. This objective function comprises both thermodynamical factors
and structural properties.
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Figure B.5: Plot of the predicted base pairing probability in the minimum free energy (MFE) and
the constrained form of previously described riboswitches195. The fixed aptamer region and the
coding DNA sequence (CDS) is indicated above the plot.
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Figure B.6: Plot of the score of the accepted solution versus the iteration of the simulated annealing
algorithm for 4 randomly chosen riboswitch designs (as an example).
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Figure B.7: Pairwise plot of the scoretotal, scoreΔΔG, scoreswitching, and scoreunpaired of all designed
riboswitches in this study.
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Figure B.8: 3D scatter plot of the scoreΔΔG, scoreswitching, and scoreunpaired of all designed ribo-
switches in this study. The size of the circles indicates the activation ratio (AR) of the designed
riboswitches.
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Figure B.9: Barplot of the gene expression modulation of the constructed riboswitches by measur-
ing fluorescence emitted in the presence of theophylline (0 mM and 2 mM). All automated designed
riboswitches are displayed on the left and previously described riboswitches are shown on the right.
The riboswitches in the middle are constructed by reshuffling the regions up- and downstream of
the aptamer of designed riboswitches. Both the designed, reshuffled, and the previously described
riboswitches are expressed as depicted in Figure 4.3c. See Figure 4.4 for the activation ratios (ARs)
of the constructed riboswitches.
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Figure B.10: Plot of the activation ratio (AR) of all riboswitches against the fluorescence emitted
(RFP/OD600) in the ON state (in the presence of 2 mM theophylline).
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Figure B.11: Plot of the activation ratio (AR) of all riboswitches against the fluorescence emitted
(RFP/OD600) in the OFF state (in the absence of theophylline).
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Figure B.12: Plot of the activation ratio (AR) of all riboswitches against the absolute values of 6
riboswitch features. dG_MFE and dG_CONSTRAINED represent the ensemble free energy of the
minimum free energy (MFE) and constrained configuration respectively. ddG is the difference be-
tween dG_MFE and dG_CONSTRAINED. The ensemble free energy of the hybridization of the 16S
rRNA to the riboswitch in the MFE and the constrained configuration (represented by dG_16S_MFE
and dG_16S_CONSTRAINED respectively). The thermodynamics of this dimer complex was cal-
culated using RNAcofold257. ddG_16S_rRNA is defined as the difference between dG_16S_MFE
and dG_16S_CONSTRAINED.
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Figure B.13: Plot of the activation ratio (AR) of all riboswitches against maximal AR predicted by
Borujeni et al. 279 .
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B.3 Supplementary Tables

Table B.1: Overview of all plasmids used in this study.

Name Content (5’→3’) Backbone

pBlank - pSB6A1

pRS1 pFAB39 - RS1 - mKate2 - rnpB T1 pSB6A1

pRS2 pFAB39 - RS2 - mKate2 - rnpB T1 pSB6A1

pRS3 pFAB39 - RS3 - mKate2 - rnpB T1 pSB6A1

pRS4 pFAB39 - RS4 - mKate2 - rnpB T1 pSB6A1

pRS5 pFAB39 - RS5 - mKate2 - rnpB T1 pSB6A1

pRS6 pFAB39 - RS6 - mKate2 - rnpB T1 pSB6A1

pRS7 pFAB39 - RS7 - mKate2 - rnpB T1 pSB6A1

pRS8 pFAB39 - RS8 - mKate2 - rnpB T1 pSB6A1

pRS9 pFAB39 - RS9 - mKate2 - rnpB T1 pSB6A1

pRS10 pFAB39 - RS10 - mKate2 - rnpB T1 pSB6A1

pRS11 pFAB39 - RS11 - mKate2 - rnpB T1 pSB6A1

pRS12 pFAB39 - RS12 - mKate2 - rnpB T1 pSB6A1

pRS13 pFAB39 - RS13 - mKate2 - rnpB T1 pSB6A1

pRS14 pFAB39 - RS14 - mKate2 - rnpB T1 pSB6A1

pRS15 pFAB39 - RS15 - mKate2 - rnpB T1 pSB6A1

pRS16 pFAB39 - RS16 - mKate2 - rnpB T1 pSB6A1

pRS17 pFAB39 - RS17 - mKate2 - rnpB T1 pSB6A1

pRS18 pFAB39 - RS18 - mKate2 - rnpB T1 pSB6A1

pRS19 pFAB39 - RS19 - mKate2 - rnpB T1 pSB6A1

pRS20 pFAB39 - RS20 - mKate2 - rnpB T1 pSB6A1

pRS21 pFAB39 - RS21 - mKate2 - rnpB T1 pSB6A1

pRS22 pFAB39 - RS22 - mKate2 - rnpB T1 pSB6A1

pRS23 pFAB39 - RS23 - mKate2 - rnpB T1 pSB6A1

pRS24 pFAB39 - RS24 - mKate2 - rnpB T1 pSB6A1

pRS25 pFAB39 - RS25 - mKate2 - rnpB T1 pSB6A1

pRS26 pFAB39 - RS26 - mKate2 - rnpB T1 pSB6A1

pRS27 pFAB39 - RS27 - mKate2 - rnpB T1 pSB6A1

pRS28 pFAB39 - RS28 - mKate2 - rnpB T1 pSB6A1

pRS29 pFAB39 - RS29 - mKate2 - rnpB T1 pSB6A1

pRS30 pFAB39 - RS30 - mKate2 - rnpB T1 pSB6A1

pRS31 pFAB39 - RS31 - mKate2 - rnpB T1 pSB6A1

pRS32 pFAB39 - RS32 - mKate2 - rnpB T1 pSB6A1

pRS33 pFAB39 - RS33 - mKate2 - rnpB T1 pSB6A1

pRS34 pFAB39 - RS34 - mKate2 - rnpB T1 pSB6A1

pRS35 pFAB39 - RS35 - mKate2 - rnpB T1 pSB6A1

pRS36 pFAB39 - RS36 - mKate2 - rnpB T1 pSB6A1

pRS37 pFAB39 - RS37 - mKate2 - rnpB T1 pSB6A1
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pRS38 pFAB39 - RS38 - mKate2 - rnpB T1 pSB6A1

pRSA2 pFAB39 - RSA2 - mKate2 - rnpB T1 pSB6A1

pRSB pFAB39 - RSB - mKate2 - rnpB T1 pSB6A1

pRSC pFAB39 - RSC - mKate2 - rnpB T1 pSB6A1

pRSD2 pFAB39 - RSD2 - mKate2 - rnpB T1 pSB6A1

pRSE pFAB39 - RSE - mKate2 - rnpB T1 pSB6A1

pRSE* pFAB39 - RSE* - mKate2 - rnpB T1 pSB6A1

pRSA pFAB39 - RSA - mKate2 - rnpB T1 pSB6A1

pRSD pFAB39 - RSD - mKate2 - rnpB T1 pSB6A1

pRS602B pFAB39 - RS602B - mKate2 - rnpB T1 pSB6A1

pRS615 pFAB39 - RS615 - mKate2 - rnpB T1 pSB6A1

pRS611 pFAB39 - RS611 - mKate2 - rnpB T1 pSB6A1

pRS612B pFAB39 - RS612B - mKate2 - rnpB T1 pSB6A1

pRS602A pFAB39 - RS602A - mKate2 - rnpB T1 pSB6A1

pRS607 pFAB39 - RS607 - mKate2 - rnpB T1 pSB6A1

pRS609 pFAB39 - RS609 - mKate2 - rnpB T1 pSB6A1

Table B.2: Overview of important DNA sequences

Name Sequence (5’→3’) Ref.

pFAB39 AAAAAGAGTATTGACTTCAGGAAAATTTTTCTGATACTTACAGCCAT 23

mKate2 ATGGTTAGCGAGCTGATCAAAGAAAACATGCACATGAAAGCTGATCAAAGAAAACATGCACATGA
AACTGTATATGGAAGGCACCGTGAATAACCACCACTTTAAATGTACCAGCGAAGGTGAAAGCTGA
TCAAAGAAAACATGCACATGAAACTGTATATGGAAGGCACCGTGAATAACCACCACTTTAAATGT
ACCAGCGAAGGTGAAGGTAAACCGTATGAAGGCACCCAGACCATGCGTATTAAAGCAGTTGAAG
GTGGTCCGCTGCCGTTTGCATTTGATATTCTGGCAACCAGCTTTATGTATGGCAGCAAAACCTTT
ATTAACCATACCCAGGGTATCCCGGATTTTTTCAAACAGAGCTTTCCGGAAGGTTTTACCTGGGA
ACGTGTTACCACCTATGAAGATGGTGGTGTTCTGACCGCAACCCAGGATACCAGTCTGCAGGATG
GTTGTCTGATTTATAATGTGAAAATTCGCGGTGTGAACTTTCCGAGCAATGGTCCGGTTATGCAG
AAAAAAACCCTGGGTTGGGAAGCAAGCACCGAAACCCTGTATCCGGCAGATGGTGGTCTGGAAG
GTCGTGCAGATATGGCACTGAAACTGGTTGGTGGTGGTCATCTGATTTGCAATCTGAAAACCACC
TATCGTAGCAAAAAACCGGCAAAAAATCTGAAAATGCCTGGCGTGTATTATGTTGATCGTCGTCT
GGAACGTATTAAAGAGGCAGATAAAGAAACCTATGTGGAACAGCATGAAGTTGCAGTTGCACGTT
ATTGTGATCTGCCGAGCAAACTGGGTCACCGCTGATAA

252

rnpB T1 TCGGTCAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAG
AAAGATGAATGACTGTC

24
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Table B.3: Overview of all de novo designed riboswitches.

Name Sequence (5’→3’)

RS1 GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTC

GCTCAACGGGCAACAAG

RS2 GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCAG

CTGACGAGGACAACAAG

RS3 AGGAAACCTTAATGCGTGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTC

ATGCTGACGGCAACAAG

RS4 ACCCCTTCAGGGAAACTGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTC

GCAACAACGGCAACAAG

RS5 CTGGTGGGGAACATTTAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTA

GGCCAGAGGACAAGATG

RS6 CCGAGGAGAGATCGGTGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGA

AAGAAAAGGACAAGATG

RS7 GCTGTAGAGCACTCAAAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTA

ACTAGCACGGCGTCAAG

RS8 GTGGGAAACTTGATGGAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCAG

ATCAATGGGTAGAGATG

RS9 GGCGGATGAGCCTCCATGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCAA

GGCATCATATGCATTACC

RS10 CAGCTGGAGAATTATAGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCT

CGGCTGGAAGGGATTAAG

RS11 TTCCAAGACTGGGAGAAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCAA

CACATGAGGGTATAGATG

RS12 GATCCATCTATTTATCAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTAG

TAGCCGGCATACAGACG

RS13 GGGAAACCCGAGTTGTTGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGG

ATTAATGTTTCCCGGGGTACAAG

RS14 AAGTGTTGGGTGGATTTGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGA

AGGAGAGGGACAAAGGTATTAGG

RS15 AGTAAGTGGTACTATTGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTTT

TAAACGCAAACGGGGTATTGAG

RS16 TCTCACTGTGAGCAACGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCA

TTCACCTTCCGAGGGTATGCAGG

RS17 AAATCCTGTCAGGTTATGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCATT

TCGTAACGGAGTTCGAA

RS18 AGGATCAAGCTATAAAAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGC

TGTGATCGAGGTATTAAG

RS19 TATTTTGGTAGTCCCCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGC

TATTATCAGCACAGGACG

RS20 CGAGAAGTCTAATTATCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGG

AGCTGTGGCAAGATGATA

RS21 TACTTATACGCCCGTGTGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGAT

GGGAACGCAACGACGACACCAC

RS22 AGGCCACACTACAAAAGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTA

CTACCAATCAACGGCTCAAGATG

RS23 CACTGATATCTCTGATAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTTG

CGGAGGGCAGTGAGATG
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RS24 TAACAAAAGACCGCCGTGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCC

TAGGGTGTCTGGATTATC

RS25 GAACCCATATTTGTTAGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCGA

CTGTTCGGGTGTATTAGG

RS26 CAATTTCCATCGAGTGAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTTA

CTGGTGTCCCTTATTTG

RS27 GGTTGTCATGCGTAGCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCG

CGCGTCGCGGCAGGGGTATTAGG

RS28 GAGGAATAACGCCTCCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCC

TTCTGCTAAATCAGCACAAGACG

RS29 GCCGATGACAAGACCACGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTG

ACATAACACCCAAGAAGCACAAG

RS30 CGAGAAGTCTAATTATCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTAC

TACCAATCAACGGCTCAAGATG

RS31 GGTTGTCATGCGTAGCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTG

ACATAACACCCAAGAAGCACAAG

RS32 CGAGAAGTCTAATTATCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTT

GCGGAGGGCAGTGAGATG

RS33 CACTGATATCTCTGATAGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCAT

TCACCTTCCGAGGGTATGCAGG

RS34 GAGGAATAACGCCTCCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCT

ATGGACCCAAGGGGCTTAAGATG

RS35 TATTTTGGTAGTCCCCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTTG

CGGAGGGCAGTGAGATG

RS36 TATTTTGGTAGTCCCCGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCG

CGCGTCGCGGCAGGGGTATTAGG

RS37 GGCGGATGAGCCTCCATGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCT

ATGGACCCAAGGGGCTTAAGATG

RS38 AGTAAGTGGTACTATTGGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCT

ATGGACCCAAGGGGCTTAAGATG
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Table B.4: Overview of all previously developed riboswitches.

Name Sequence (5’→3’) Ref.

RSA2 ATACGACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGAGAA
GGGGCAACAAG

283

RSB ATACGACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCGCTGCG
CAGGGGGTATCAACAAG

283

RSC ATACGACTCACTATAGGTACCTGATAAGATAGGGGTGATACCAGCATCGTCTTGATGCCCTTGGCA
GCACCAAGGGACAACAAG

283

RSD2 ATACGACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTAA
GGTAACAACAAG

283

RSE ATACGACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTAA
GGAGGTAACAACAAG

283

RSE* ATACGACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTAA
GGAGGCAACAAG

283

RSA GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGAGAAGGG
GCAACAAG

195

RSD GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTAAGGTA
ACAACAAG

195

RS602B GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCGAAGATG
GCAACAAG

195

RS615 GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCCACTTCT
ACAACAAG

195

RS611 GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCGGGCGCA
GCAACAAG

195

RS612B GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTGGGACA
ACAACAAG

195

RS602A GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCAAAGGAT
GCAACAAG

195

RS607 GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTATGATG
GCAACAAG

195

RS609 GACTCACTATAGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCCGGGCG
GGCAACAAG

195
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Table B.5: Overview of all inputs for the automated design of translational riboswitches. The
������ in the sequence constraint represents the place for the aptamer sequence, which is the
theophylline aptamer (GGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACC)185.

Name Sequence constraints (5’→3’) ΔΔG
nswitching (�) and nunpaired (�) constraints

RS1 �������������������������������������������������������������������������������������� -8
																																																																			��	����������������

RS2 �������������������������������������������������������������������������������������� -8
																																																																			��	����������������

RS3 �������������������������������������������������������������������������������������� -8
																																																																			��	����������������

RS4 �������������������������������������������������������������������������������������� -8
																																																																			��	����������������

RS5 �������������������������������������������������������������������������������������� -6
																																																																			�������������������

RS6 �������������������������������������������������������������������������������������� -6
																																																																			�������������������

RS7 �������������������������������������������������������������������������������������� -8
																																																																		��������			���������

RS8 �������������������������������������������������������������������������������������� -8
																																																																		��������			���������

RS9 ��������������������������������������������������������������������������������������� -6
																																																																						�����������������

RS10 ��������������������������������������������������������������������������������������� -6
																																																																						�����������������

RS11 ��������������������������������������������������������������������������������������� -6
																																																																	��������					���������

RS12 ��������������������������������������������������������������������������������������� -6
																																																													������������					���������

RS13 �������������������������������������������������������������������������������������������� -6
																																																																											�����������������

RS14 �������������������������������������������������������������������������������������������� -6
																																																																							���������������������

RS15 �������������������������������������������������������������������������������������������� -6
																																																																						��������					���������

RS16 �������������������������������������������������������������������������������������������� -6
																																																																		������������					���������

RS17 ��������������������������������������������������������������������������������������� -8
																																																																						�����������������

RS18 ��������������������������������������������������������������������������������������� -8
																																																																		���������������������

RS19 ��������������������������������������������������������������������������������������� -8
																																																																	��������					���������

RS20 ��������������������������������������������������������������������������������������� -8
																																																													������������					���������

RS21 �������������������������������������������������������������������������������������������� -8
																																																																							���������������������

RS22 �������������������������������������������������������������������������������������������� -8
																																																																						��������					���������

RS23 ��������������������������������������������������������������������������������������� -10
																																																																						�����������������

RS24 ��������������������������������������������������������������������������������������� -10
																																																																		���������������������

RS25 ��������������������������������������������������������������������������������������� -10
																																																																	��������					���������

RS26 ��������������������������������������������������������������������������������������� -10
																																																													������������					���������

RS27 �������������������������������������������������������������������������������������������� -10
																																																																							���������������������

RS28 �������������������������������������������������������������������������������������������� -10
																																																																						��������					���������

RS29 �������������������������������������������������������������������������������������������� -10
																																																																		������������					���������
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Table B.6: Overview of the reshuffled riboswitches (RS30 through RS38) with the origin of
the up- and downstream part of the fixed aptamer region (the theophylline aptamer (GGU-
GAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACC)185). Three downstream regions (indi-
cated with a *) originate from a riboswitch that was only designed in silico and that was not con-
structed due to technical difficulties in the cloning of the plasmid.

Name Upstream of aptamer Downstream of aptamer

RS30 RS20 RS22
RS31 RS27 RS29
RS32 RS20 RS23
RS33 RS23 RS16
RS34 RS28 *
RS35 RS19 RS23
RS36 RS19 RS27
RS37 RS9 *
RS38 RS15 *

*RS only designed, not constructed due to technical difficulties
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C.1 Supplementary Figures

ChlRp15A

AmpRpBR322

pBiosensor/pOperator

pPathway

neuB1 neuC

nanR mKate2

Figure C.1: Schematic overview of the plasmid types used in this study. The pBiosensor (pNB1-
pNB4 and pEB1-pEB4) and pOperator (pO1-pO8) plasmids (p15A origin of replication and chlo-
ramphenicol resistance marker, originating from pACYCDuet306), are used for mKate2252 expres-
sion with and without NanR expression, respectively. The pOperator plasmids do not contain the
part between the dotted rectangle. The pPathway plasmids (pPathwaylow, pPathwaymedium, and
pPathwayhigh) comprise a medium-copy vector (pBR322 origin of replication and ampicillin resis-
tance marker, originating from pSB6A1249) used for the expression of the biosynthetic pathway of
Neu5Ac.
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pNB2

pYjhB YjhB
UTR mKate2 rnpB T1BBa_J23114BBa_B0031nanRrnpB T1 yjhB13AA

pNB3

pNanC NanC
UTR mKate2 rnpB T1BBa_J23114BBa_B0031nanRrnpB T1 nanC13AA

pNB4

pNanA mKate2 rnpB T1NanA
UTR

nanA13AApNanR NanR
UTR

nanR

pNanA NanA
UTR mKate2 rnpB T1BBa_J23114BBa_B0031nanRrnpB T1 nanA13AA

pNB1

pHB1

mKate2 rnpB T1nanRrnpB T1 pNanA BBa_B0034BBa_J23114BBa_B0031

pHB2

mKate2 rnpB T1nanRrnpB T1 pJ23119H10 BBa_B0034BBa_J23114BBa_B0031

pHB3

mKate2 rnpB T1nanRrnpB T1 pJ23119H35,1 BBa_B0034BBa_J23114BBa_B0031

pHB4

mKate2 rnpB T1nanRrnpB T1 pJ23119H35,2 BBa_B0034BBa_J23114BBa_B0031

A

B

Figure C.2: Schematic overview of the biosensor constructs used in this study on a medium-
copy vector (p15A origin of replication and chloramphenicol resistance marker, originating from
pACYCDuet(Novagen)). These plasmids were used to express the transcription factor (TF) NanR307

and the reporter gene mKate2 252. On all biosensor plasmids except pNB1, NanR was expressed
using BBa_J23114308 as promoter, BBa_B0031308 as ribosome binding site (RBS), and rnpB T124

as terminator and mKate was expressed using various promoters and the rnpB T124 terminator.
A) Plasmids pNB1 through pNB4 contain native intergenic regions for mKate2 expression. pNB1
contains the native NanR cluster of E. coli (including the first 13 residues of NanA) as depicted in
Figure 5.2. B) Plasmids pEB1 through pEB4 contains engineered promoters and UTRs for mKate2
expression. Details of all regulatory DNA sequences depicted here are listed in Supplementary
Table C.3. Details on all coding DNA sequences (CDSs) are listed in Supplementary Table C.4.
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Figure C.3: Detailed overview of pNB1 with the pNanR + untranslated region (UTR),
NanR coding DNA sequence (CDS), pNanA + NanA UTR, nanA13AA (first 13 residues of nanA CDS),
mKate2 252 CDS and, rnpB T1 terminator.
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Figure C.4: Detailed overview of a DNA construct using native promoters (with
untranslated region (UTR)) containing NanR operators (pNB2 through pNB4).
As an example, the insert of pNB2 is displayed with the rnpB T1 terminator,
NanR coding DNA sequence (CDS), BBa_B0031308 ribosome binding site (RBS),
pNanA + NanA UTR, nanA13AA (first 13 residues of nanA CDS) and, mKate2 252 CDS.
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Figure C.5: Detailed overview of a DNA construct using engineered promoters
containing NanR operators (pEB1 through pEB4). As an example, the insert of
pEB1 is displayed with the rnpB T1 terminator, NanR coding DNA sequence (CDS),
BBa_B0031308 ribosome binding site (RBS), BBa_J23114 promoter308, pNanA promoter,
BBa_B0034308 RBS, and, mKate2 252 CDS.
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Figure C.6: Detailed overview of pPathway (pPathwaymedium as an ex-
ample) with the p14 promoter107, the T7 ribosome binding site (RBS)310, the
neuB1 coding DNA sequence (CDS)309,311, the designed intergenic region306, the
neuC CDS309,311 and, rrnB T1 terminator24.
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Figure C.7: Schematic overview of the N-acetylneuraminic acid (Neu5Ac) pathway. A) An overview
of the introduced metabolic pathway (in bold) for the production of Neu5Ac and the gene deletions
performed to prevent Neu5Ac degradation. B) The genetic organisation of the genes neuB1 and
neuC, expressed on the pPathwaymedium in a single operon, which was controlled by the promoter
p14107. The translation of the NeuB1 and the NeuC protein is controlled by the T7 RBS and the
intergenic RBS, respectively.
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Figure C.8: Plot of optical density (OD) and product (acetic acid and N-acetylneuraminic acid
(Neu5Ac)) concentration over time during 24-well DWP cultivation of E. coli K-12 MG1655
ΔnanATEK containing the pPathwaymedium plasmid, which used defined medium with glucose as
sole carbon source. The pPathwaymedium plasmid encodes the biosynthetic pathway from UDP-N-
acetylglucosamine (UDP-GlcNAc) to Neu5Ac.
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Figure C.9: Plot of the fluorescence emitted by the pEB2 variants in the absence (pBlank) and the
presence (pPathwaymedium) of Neu5Ac against the previously reported strength of the RBS used for
NanR expression308. Error bars represent standard deviation (n=3).
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Figure C.10: Plot of the amount of extracellular N-acetylneuraminic acid (Neu5Ac) produced (in
shake flask) against the relative strength of the promoter used to control the Neu5Ac producing
operon. The pPathway plasmids used are pPathwaylow, pPathwaymedium, and pPathwayhigh, which
contain the promoters p14, pFAB46* and pJ23105, respectively. These promoters have a relative
strength of 1.91, 8.77, and 0.34, respectively. Error bars represent standard deviation (n=3).
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Figure C.11: Bar plot of the N-acetylneuraminic acid (Neu5Ac) and acetic acid production of the
three constructed pPathway plasmids (pPathwaylow, pPathwaymedium, and pPathwayhigh) in E. coli K-
12 MG1655 ΔnanATEKR. Neu5Ac and acetic acid were the only detectable metabolites produced.
Error bars represent standard deviation (n=3).
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C.2 Supplementary Tables

Table C.1: Overview of all primers used for gene deletions

Name Sequence (5’→3’)

Fw_nanATEK_homology TAATGCGCCGCCAGTAAATCAACATGAAATGCCGCTGGCTCCGTGGCAGTGTAGGCTG
GAGCTGCTTC

Rv_nanATEK_homology CCAACAACAAGCACTGGATAAAGCGAGTCTGCGTCGCCTGGTTCAGTTCACATATGAA
TATCCTCCTTAG

Fw_nanATEK_control GTCGCCCTGTAATTCGTAAC
Rv_nanATEK_control CTTTCGGTCAGACCACCAAC
Fw_nanR_homology CAACACCCCATACAGAAAGCTTATAATGCGATCTGCTTCACTAAAGTGGCAGTGTAGG

CTGGAGCTGCTTC
Rv_nanR_homology CAATCCTGTGATAGGATGTCACTGATGATGTTAATCACACTGACCTTACAGACATATGA

ATATCCTCCTTAG
Fw_nanR_control CGATGCCCTGCTGAATATTG
Rv_nanR_control TTTATGGTGCGGATGTCGTG
Fw_nanRATEK_homology TAATGCGCCGCCAGTAAATCAACATGAAATGCCGCTGGCTCCGTGTAGGCTGGAGCTG

CTTC
Rv_nanRATEK_homology CAATCCTGTGATAGGATGTCACTGATGATGTTAATCACACTGACCTTACAGACATATGA

ATATCCTCCTTAG
Fw_nanRATEK_control CGATGCCCTGCTGAATATTG
Rv_nanRATEK_control TTTATGGTGCGGATGTCGTG
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Table C.2: Overview of all plasmids used in this study

Name Content (5’→3’) Backbone

pBiosensors
pNB1 pNanR - nanR - pNanA + NanA UTR - nanA13AA - mKate2 - rnpB T1 p15A
pNB2 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pNanA + NanA UTR - nanA13AA - mKate2 - rnpB T1 p15A
pNB3 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pYjhB + YjhB UTR - yjhB13AA - mKate2 - rnpB T1 p15A
pNB4 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pNanC + NanC UTR - nanC13AA - mKate2 - rnpB T1 p15A
pEB1 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pNanA - BBa_B0034 - mKate2 - rnpB T1 p15A
pEB2 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pJ23119H10 - BBa_B0034 - mKate2 - rnpB T1 p15A
pEB2,1 (BBa_J23114 - BBa_B0032 - nanR - rnpB T1)reversed -

pJ23119H10 - BBa_B0034 - mKate2 - rnpB T1 p15A
pEB2,2 (BBa_J23114 - BBa_B0030 - nanR - rnpB T1)reversed -

pJ23119H10 - BBa_B0034 - mKate2 - rnpB T1 p15A
pEB2,3 (BBa_J23114 - BBa_B0034 - nanR - rnpB T1)reversed -

pJ23119H10 - BBa_B0034 - mKate2 - rnpB T1 p15A
pEB3 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pJ23119H35,1 - BBa_B0034 - mKate2 - rnpB T1 p15A
pEB4 (BBa_J23114 - BBa_B0031 - nanR - rnpB T1)reversed -

pJ23119H35,2 - BBa_B0034 - mKate2 - rnpB T1 p15A
pOperators

pO1 pNanA + NanA UTR - nanA13AA - mKate2 - rnpB T1 p15A
pO2 pYjhB + YjhB UTR - yjhB13AA - mKate2 - rnpB T1 p15A
pO3 pNanC + NanC UTR - nanC13AA - mKate2 - rnpB T1 p15A
pO5 pNanA - BBa_B0034 - mKate2 - rnpB T1 p15A
pO6 pJ23119H10 - BBa_B0034 - mKate2 - rnpB T1 p15A
pO7 pJ23119H35,1 - BBa_B0034 - mKate2 - rnpB T1 p15A
pO8 pJ23119H35,2 - BBa_B0034 - mKate2 - rnpB T1 p15A

Other
pPathwaylow pJ23105 - T7 RBS - neuB1 - intergenic RBS - neuC - rrnB T1 pBR322
pPathwaymedium p14 - T7 RBS - neuB1 - intergenic RBS - neuC - rrnB T1 pBR322
pPathwayhigh pFAB46* - T7 RBS - neuB1 - intergenic RBS - neuC - rrnB T1 pBR322
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Table C.3: Overview of all regulatory DNA sequences

Name Sequence (5’→3’) Reference

BBa_B0030 ATTAAAGAGGAGAAA 308

BBa_B0031 TCACACAGGAAACC 308

BBa_B0032 TCACACAGGAAAG 308

BBa_B0034 AAAGAGGAGAAA 308

BBa_J23114 TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGC 308

p14 CTTCATTCTATAAGTTTCTTGACATCTTGGCCGGCATATGGTATAATAGGG 107

pJ23119H10 GATTCGTTACCAATTGACAGCTACTGGTATAACAGGTATAAAGGTAGC This study
pJ23119H35,1 GATTCGTTCTGGTATAACAGGTATAAAGGTACTAGGTATAATGCTAGC This study
pJ23119H35,2 GATTCGTTCTGGTATGACAGGTATAAAGGTACTAGGTATAATGCTAGC This study
pNanA AGCTTTCTGTATGGGGTGTTGCTTAATTGATCTGGTATAACAGGTATAAAGGTATATCGTTTA 301

pNanA + UTR TGCCACTTTAGTGAAGCAGATCGCATTATAAGCTTTCTGTATGGGGTGTTGCTTAATTGATCTGGTATAACAGGTATAA
AGGTATATCGTTTATCAGACAAGCATCACTTCAGAGGTATTT

301

pNanC + UTR CGTTTTTCCCTTATAATTACAGACGCGCACTAGCTGTGCTGGGTTAGCAATAATCCAACATTTTTATCCTGATTATGTTT
ATAAAAGCGAACGTTTGCTTAATAACTAACGTAAGTGGACCAGTTCTTCTGAGTGAACTTAAATGGAGTAGCAACTGTT
AATTATAATAACGTTGCCATACAAACGCCATGCTCTTGCATGCTATGTACCTTTATATATTTATCAATCGGATACGAATC
TAATAATAACCCTCATCATTAATGCAACTAATCTTATCTATATATCATGTGATATGTTCTGTAACAAGTAAAATCAACATA
AAAAATTCAGCAAAATTTAATATTCGTTCAACTAGCCGTCTCACATATGACATTATTAGTCAACTCCATTTGCCACAAAA
TGGCTATTTCATGGAGCGCAGTAATTTCTTAGTGGCTATTATCATGCTAATTCTTAGGTCCCTAGCGATTATTCCTGCTG
ATTCGTCAGCTTACGCCATGAGATTGTTACATTCCTTTTTATCCTAGAGATATGGGGGAACGCAGGAGATGATTTTTTCA
TCTACATTCGTTGGTAAATATAGCTTTGGTCACTACGACTTAAACCTTCCTCAATCACAGCCATTCGCCGGGCGATACGG
CAAACAAACTAAGTGAAACATCATCCTGAAAACACCAACATCAACAAGCCTCTCCAGATCGACTTCAGAAGTGACCAGT
TACAAGCCACAAACCAGGAAACATATTTCATGATGAGAATTATGCTCAGCCTGATGGCGGGTAAACACTGATTTTCACC
AAGCTCACTGAGTTAGCTTGCAAAGCTCCCCTTGTTTAGACTCTTAATAAATTATTTATAAAACAAATAGTTAAACTAAG
ATCTTTAGTTTTTGATGACCACCGCAAGTGTTCGTCTGGCTTCACATGGCATCTTCCTCTTAGAAAAAGATCGACATATT
TTGTGACACGAATTGCAAATCTGGTTTTGTTGTATGGATTGCGTGATTTTTGATCTGGTATAACAGGTATAAAGGTGCA
CCAAGATAGTCAATGAGACAGGGCATCTCGCAATCTATGGCAAACATCACTTCAGTTCTTTCTCATCGGGTGATGAAAA
CGCACTTCAGTCTGAAAGGAATATGAAAATGAGATCAACAGACATTCTATTTTATGACTCTGGGTAAAATGGATTGAGT
AAGTGATATAGCTTACGAACATTCAAATCAATTAAACATCAGAAGAGATTTTATACTCAGGTATTTAATCTGGATCTCTG
TTTATTTAAATAATGTGAAAAGAGATTTTTCACAGGAGACCTTATACAAAAAAATATAAAATACAGCTACCGGTTGCCAA
AGACACTATAAGCCTGGCAAAAAAATATTACACAACATAAATGCTAATTGTTTATGCGGGCTTTGTATTGCTTTCTGTAT
CCTACAAATGAGTGAAATTT

301

pNanR + UTR TGTTGAACTCCGTGTCAAAAGAAAACGGTCAATCCCATAAACGGCAGATTGAAAACAACGATGTTATATTTTTTGCAAG
GCTATTTATGGTGCGGATGTCGTGTTTTTAATTGTAGGTGAGGTGATTTTTCATTAAAAAATATGCGCTTATGATTATTT
TGTAAGAACACATTCATAATATTCATAATGCTCGTGAATAGTCTTATAAATAATTCAAACGGGATGTTTTTATCTGCGTT
ACATTAATTTTTCGCAATAGTTAATTATTCCGTTAATTATGGTAATGATGAGGCACAAAGAGAAAACCCTGCCATTTTCC
CCTACTTTCAATCCTGTGATAGGATGTCACTGATGATGTTAATCACACTGACCTTACAGA

301

pYjhB + UTR CCGGAAACAAGTGAGCGTTTCCGGATTCTTACACAGCCACTTGATCGGTCAACTGATCCTTAACTGATCGGCATTAATC
TTGGTTCTGGTGTTTGTAACAAACTATCAGCTACAAAAATATGCTCAATTTGTGACATCAGTAACAAAACGCGTTTTGTT
ATGTGGATTGCTTGTTTTTTGATCTGGTATAACAGGTATAAAGGTATACAGAAAAGCAAAGAAATACTGCAAAGGAAAA
CAGCTATAACGTAAGCTAAAGTAATAACCTCTCAGTCTTTCCTCATTTGACGAAGGGAGTTTTATTCAACCTGAACGGAC
TACGAAAATGAGCACAATGAATAAGTCAATTTTTGAAGCAGGGTTGAACTGTGCCAGTGGTGGAATATCTGGCGAACAT
TGTTTTTTGTTGGTGACCCAAAACTGTAGGTGGGTATCAGTTTTATCTTTCATAGAGTGAAATATGTTAAGAAGAAATG
GAGGAAAAGATTGTACTGATTAGGTATTGATAACAATCAATAGTACTGGCGTATTTGAAGACAATATAATTATTTCTGG
ATATTGTTGAGGCTCCCTAATATTTACTTTAAGGGCTATATTAGAATAACACAGGAAACAAAT

301

rrnB T1 GGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTG
AACGCTCTCCTG

24

rnpB T1 TCGGTCAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACT
GTC

24

T7 RBS CCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATA 310

intergenic region GAATTCGTTTAGAGCTCTAAATAAGGAGGAATAACC 306
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Table C.4: Overview of all coding DNA sequences used. The NeuB1 and NeuC CDSs were de-
signed for expression in E. coli K-12 MG1655 using the COOL algorithm 311.

Name Sequence (5’→3’) Ref.

nanA13AA ATGGCAACGAATTTACGTGGCGTAATGGCTGCACTCCTG 301

nanC13AA ATGAAAAAGGCTAAAATACTTTCTGGCGTATTATTACTG 301

nanR ATGGGCCTTATGAACGCATTTGATTCGCAAACCGAAGATTCTTCACCTGCAATTGGTCGCAACTTGCGTAGCCGCCCGCTGGCGCG
TAAAAAACTCTCCGAAATGGTGGAAGAAGAGCTGGAACAGATGATCCGCCGTCGTGAATTTGGCGAAGGTGAACAATTACCGTCT
GAACGCGAACTGATGGCGTTCTTTAACGTCGGGCGTCCTTCGGTGCGTGAAGCGCTGGCAGCGTTAAAACGCAAAGGTCTGGTGC
AAATAAACAACGGCGAACGCGCTCGCGTCTCGCGTCCTTCTGCGGACACTATCATCGGTGAGCTTTCCGGCATGGCGAAAGATTTC
CTTTCTCATCCCGGTGGGATTGCCCATTTCGAACAATTACGTCTGTTCTTTGAATCCAGTCTGGTGCGCTATGCGGCTGAACATGCC
ACCGATGAGCAAATCGATTTGCTGGCAAAAGCACTGGAAATCAACAGTCAGTCGCTGGATAACAACGCGGCATTCATTCGTTCAGA
CGTTGATTTCCACCGCGTGCTGGCGGAGATCCCCGGTAACCCAATCTTCATGGCGATCCACGTTGCCCTGCTCGACTGGCTTATTG
CCGCACGCCCAACGGTTACCGATCAGGCACTGCACGAACATAACAACGTTAGTTATCAACAGCATATTGCGATCGTTGATGCGATC
CGCCGTCATGATCCTGACGAAGCCGATCGTGCGTTGCAATCGCATCTCAACAGCGTCTCTGCTACCTGGCACGCTTTCGGTCAGAC
CACCAACAAAAAGAAATAA

301

neuB1 ATGAAAGAGATTAAGATCCAGAATATTATCATCAGCGAAGAGAAAGCGCCGCTGGTGGTGCCGGAAATTGGCATTAACCACAACG
GCAGCCTGGAACTGGCTAAGATTATGGTGGATGCCGCGTTCAGCGCCGGTGCGAAGATCATTAAACATCAGACGCATATCGTTGA
AGATGAGATGAGCAAGGCGGCGAAGAAGGTGATTCCTGGCAACGCCAAGATTAGCATCTATGAGATCATGCAGAAATGCGCGCTT
GATTATAAAGATGAACTGGCGCTGAAAGAATATACCGAGAAGTTAGGTCTGGTCTATCTGTCGACGCCATTCTCGCGCGCAGGTGC
CAACCGTCTGGAAGATATGGGCGTGTCTGCCTTCAAGATTGGTTCCGGTGAATGTAATAATTATCCACTGATCAAGCATATTGCCG
CATTCAAGAAGCCGATGATTGTCAGCACCGGCATGAACAGCATTGAATCTATCAAACCGACCGTTAAGATTCTGCTGGATAATGAG
ATTCCGTTCGTTCTGATGCACACCACCAATCTGTATCCGACGCCGCATAACCTGGTTCGCCTGAACGCGATGCTGGAGCTGAAGAA
GGAGTTCTCCTGTATGGTTGGCCTGAGCGATCATACCACCGATAACCTCGCCTGTCTTGGCGCGGTGGTTCTCGGCGCATGCGTGC
TTGAACGTCACTTCACCGACAGCATGCATCGCAGCGGTCCGGATATCGTCTGCTCGATGGATACCAAGGCACTGAAGGAACTGATT
ATTCAGAGCGAGCAGATGGCGATTATTCGCGGCAATAACGAATCCAAGAAGGCCGCCAAGCAGGAACAGGTGACCATCGACTTCG
CGTTCGCTTCGGTGGTCAGTATTAAGGACATCAAGAAAGGCGAAGTGCTGTCAATGGACAACATCTGGGTGAAGCGTCCAGGCTT
AGGCGGCATCAGTGCGGCAGAATTCGAGAACATTCTCGGTAAGAAGGCTCTGCGCGATATTGAGAATGATGCGCAGCTGAGCTAT
GAAGACTTCGCCTGA

309,311

neuC ATGGTGAAGAAGATCCTGTTCATTACCGGCTCCCGCGCCGACTACAGCAAAATTAAATCGCTGATGTATCGCGTGCAGAATAGCAG
CGAGTTTGAGCTCTATATCTTCGCCACCGGGATGCACCTGTCGAAAAACTTCGGCTACACCGTGAAGGAGCTGTATAAAAATGGCT
TTAAAAACATCTACGAGTTCATTAACTACGATAAATATTATCAGACCGACAAAGCGCTGGCGACCACCATTGATGGCTTCTCGCGCT
ATGCCAACGAACTGAAACCGGATCTGATCGTGGTGCACGGCGATCGCATTGAACCGCTGGCAGCGGCGATTGTCGGCGCGCTGAA
TAATATCCTGGTGGCGCACATCGAAGGCGGCGAGATTTCCGGCACCATCGACGATAGCCTCCGCCACGCCATCAGCAAGCTCGCG
CATATTCATCTGGTTAACGATGAATTTGCCAAACGCCGCCTGATGCAGCTGGGCGAAGATGAGAAAAGCATTTTTATTATTGGCTC
GCCGGACCTGGAACTGCTGAACGACAATAAAATCTCCCTGAGCGAAGCGAAGAAATACTACGACATCAATTACGAAAACTACGCCC
TGTTGATGTTCCATCCGGTGACGACCGAAATCACCAGCATCAAGAATCAGGCGGATAACCTGGTCAAAGCCCTGATTCAGTCGAAC
AAAAACTATATTGTGATTTATCCGAACAATGATCTCGGTTTTGAATTGATTCTGCAAAGCTATGAAGAATTCAAAAATAACCCGCGC
TTTAAGCTGTTCCCGAGCCTGCGCTTCGAGTATTTCATCACGCTGCTCAAGAACGCCGATTTTATCATCGGCAACAGCTCCTGCATT
CTGAAAGAGGCGCTGTACCTGAAAACCGCGGGCATTCTGGTGGGCAGCCGCCAGAACGGCCGCCTCGGCAATGAAAATACCCTGA
AGGTGAACGCGAACTCCGACGAAATTCTCAAAGCAATCAACACCATCCATAAAAAACAGGATTTGTTCAGCGCGAAACTGGAGATC
CTCGACAGCAGTAAACTCTTCTTTGAATATCTGCAGAGCGGCGACTTCTTCAAACTGTCCACCCAGAAAGTGTTCAAGGACATCAA
GTGA

309,311

mKate2 ATGGTTAGCGAGCTGATCAAAGAAAACATGCACATGAAAGCTGATCAAAGAAAACATGCACATGAAACTGTATATGGAAGGCACCG
TGAATAACCACCACTTTAAATGTACCAGCGAAGGTGAAAGCTGATCAAAGAAAACATGCACATGAAACTGTATATGGAAGGCACCG
TGAATAACCACCACTTTAAATGTACCAGCGAAGGTGAAGGTAAACCGTATGAAGGCACCCAGACCATGCGTATTAAAGCAGTTGAA
GGTGGTCCGCTGCCGTTTGCATTTGATATTCTGGCAACCAGCTTTATGTATGGCAGCAAAACCTTTATTAACCATACCCAGGGTATC
CCGGATTTTTTCAAACAGAGCTTTCCGGAAGGTTTTACCTGGGAACGTGTTACCACCTATGAAGATGGTGGTGTTCTGACCGCAAC
CCAGGATACCAGTCTGCAGGATGGTTGTCTGATTTATAATGTGAAAATTCGCGGTGTGAACTTTCCGAGCAATGGTCCGGTTATGC
AGAAAAAAACCCTGGGTTGGGAAGCAAGCACCGAAACCCTGTATCCGGCAGATGGTGGTCTGGAAGGTCGTGCAGATATGGCACT
GAAACTGGTTGGTGGTGGTCATCTGATTTGCAATCTGAAAACCACCTATCGTAGCAAAAAACCGGCAAAAAATCTGAAAATGCCTG
GCGTGTATTATGTTGATCGTCGTCTGGAACGTATTAAAGAGGCAGATAAAGAAACCTATGTGGAACAGCATGAAGTTGCAGTTGCA
CGTTATTGTGATCTGCCGAGCAAACTGGGTCACCGCTGATAA

252

yjhB13AA ATGGCAACAGCATGGTATAAACAAGTTAATCCACCACAA 301
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Summary

Spurred by environmental motives and the limited supply of fossil fuels, chemical in-

dustry increasingly relies on microbial engineering to create economically feasible pro-

duction processes from renewable sources. Several successful metabolic engineering

efforts were driven by enabling technologies from synthetic biology, which allow the

development of new microbial cell factories for the production of a molecule of inter-

est. One such interesting molecule is N-acetylneuraminic acid (Neu5Ac), a sugar moiety

with a vital role in various physiological processes, such as, tumor progression, bacterial

infection, infant brain development and, immune responses, which results in various

applications in pharmaceutical and food industry. However, the development of these

applications is hindered by the limited availability of Neu5Ac due to the lack of suffi-

cient production technologies. This shortage could be solved by metabolic engineering

which allow ad hoc rewiring the metabolism of microbes to obtain an optimized biosyn-

thetic pathway for the with maximal productivity. This is a daunting task that requires

various tools to modulate gene expression, build genetic circuitery, specifically detect

molecules throughout the cell. Therefore, the main objective of this PhD research was

the development of advanced enabling technologies for metabolic engineering, allowing

the construction of genetic circuitry and detection of small molecules.

Recently, the programmable nature of RNA spurred the development of various novel

tools based on RNA regulators, which are increasingly employed for various metabolic

engineering strategies to maximize productivity. One interesting type of RNA devices

to build complex biological systems are riboregulators, which allow rapid control of

translation without the need of coexpressed burdensome proteins. However, these de-

vices are limited by the lack of clear design principles, hindering their applicability in

metabolic engineering. To address this problem, so called translation inhibiting RNAs

(tiRNAs) were developed, which are riboregulators that allow programmable control of

protein expression on a post-transcriptional level. These tiRNA devices were created

by exploring possibly important features using a design of experiments (DOE). The de

novo developed riboregulators repressed translation up to 6 % of the original protein

expression levels, outperforming the dynamic range of previously described riboregu-

lators. Moreover, compared to previous efforts, the tiRNA regulators created here are

designed from scratch and do not require any naturally occurring chassis to function.

To link the properties of tiRNA riboregulators to its performance, a partial least squares

(PLS) regression model was constructed, further increasing the programmability of the

riboregulator.

Besides gene expression modulation, RNA technology also allows controlling gene ex-
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pression based on the presence of small molecules. Recently, various ligand responsive

RNA devices, more specifically riboswitches, were previously used in various metabolic

engineering strategies as an attractive alternative to their traditional protein counter-

parts. However, the creation of these riboswitches from in vitro selected aptamers typ-

ically involves laborious high-throughput screening efforts. To remove this hurdle in

metabolic engineering, a computer-aided design approach was developed, allowing the

in silico screening of riboswitches. To quantify the riboswitch capacities of a specific

untranslated region (UTR), an objective function was defined based on previously de-

scribed riboswitches. Using this objective function, 29 potential riboswitches were com-

putationally designed using a simulated annealing algorithm. Subsequently, these ri-

boswitches were evaluated in vivo, yielding functional riboswitches out of the box with

12 out of the 29 created riboswitches activating gene expression more than five fold.

However, despite the high probability of yielding functional riboswitches, linking per-

formance to structural or thermodynamic properties remains challenging. Overall, the

developed algorithm can help reducing the development times of translational riboswit-

ches, improving their applicability.

The natural complex regulation of the microbial metabolism spurred the development

of various metabolic engineering strategies, which often require intracellular detection

of small molecules. To this end, various biosensors were created based on naturally

occurring transcription factors (TFs), typically having limited possibilities to engineer

the desired response curve. As a proof of concept, novel biosensors were created that

respond to Neu5Ac based on native and engineered promoters that interact with the

TF NanR, which were evaluated using a engineered Neu5Ac producing strain. To allow

modular biosensor optimization, a NanR binding site was inserted in a constitutive pro-

moter, which resulted in biosensors composed of defined parts. This enables more reli-

able engineering of the response curve, further expanding the applicability in metabolic

engineering. The increased engineering capabilities by the modular design of biosensors

was shown by modulating the response of one of the created biosensors by solely chang-

ing the ribosome binding site (RBS) used for NanR expression. Also, when exposed to

varying Neu5Ac production levels (up to 1.4 ± 0.4 g/L extracellular Neu5Ac produced)

three biosensors emit fluorescence proportional to amount of Neu5Ac produced. This

indicates the broad operating range of these biosensors, a critical property of biosen-

sors for various applications in metabolic engineering. Overall, the range of biosensors

was further expanded with various functional biosensors capable of detecting Neu5Ac,

which can be applied in various metabolic engineering approaches to produce Neu5Ac
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with maximal productivity.

Overall, various tools were developed in this doctoral research that enable the reliable

optimization of microbial cell factories. Specifically, the forward engineering capacity

of translation inhibiting riboregulators and translational riboswitches was improved,

which further improves the applicability of the various tools originating from the field

of RNA synthetic biology. Additionaly, a various techniques were used to create modular

biosensors composed of defined parts, which allows reliable response curve engineering.

Moreover, various biosensors were creating to detect Neu5Ac in vivo, which was previ-

ously impossible and paves the way for various novel metabolic engineering strategies.
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Samenvatting

Onder invloed van ecologische bezorgdheden en de beperkte hoeveelheid fossiele brand-

stoffen gebruikt de chemische industrie meer en meer microbiële technologie voor de

economisch rendabele productie van diverse moleculen uit hernieuwbare bronnen. Ver-

schillende van dergelijke metabolic engineering strategieën worden ondersteund door

technieken uit de synthische biologie wat de ontwikkeling van nieuwe microbiële celfab-

rieken voor een bepaalde molecule mogelijk maakt.

Eén van dergelijke interessante moleculen is N-acetylneuraminezuur, een suikermolcule

met een essentiële rol in verschillende fysiologische processen zoals tumor groei, bac-

teriële infecties, hersenontwikkeling en immuniteit, waardoor het diverse toepassingen

heeft in de farmaceutische en de voedingsindustrie. De ontwikkeling van deze toepassin-

gen wordt echter verhinderd door de beperkte beschikbaarheid van N-acetylneuraminezuur

wat een gevolg is van een tekort aan afdoende productie technologieën. Deze beperking

kan worden opgeheven door gebruik te maken van metabolic engineering wat toelaat

om het metabolisme ad hoc aan te passen om zo een organisme te bekomen met een

geoptimaliseerde biosynthetische pathway met een maximale productiviteit. Dergelijke

optimalisatie is echter een arbeidsintensief proces dat verschillende technieken vereist

om gen expressie aan te passen, genetische ciruits te bouwen en specifieke moleculen te

detecteren in de cel. Hierdoor was het hoofddoelstelling van dit doctoraatsonderzoek de

ontwikkeling van verschillende ondersteunde technologieën voor metabolic engineering

welke toelaten om genetische circuits te bouwen en kleine moleculen te detecteren.

De laatste jaren heeft de programmeerbaarheid van RNA de ontwikkeling van diverse

nieuwe riboregulator gebaseerde technieken gestimuleerd. Deze technologie wordt

meer en meer gebruikt in metabolic engineering om de productiviteit te maximaliseren.

Eén interessant type van RNA regulatoren zijn riboregulatoren, welke toelaten om trans-

latie te controleren zonder de nood voor coexpressie van stress veroorzakende eiwitten.

De ontwikkeling van deze riboregulatoren wordt echter gehinderd door een gebrek aan

duidelijke design regels, wat de toepasbaarheid in metabolic engineering beperkt. Om dit

probleem op te lossen werden zo genaamde tiRNAs ontwikkeld. Deze riboregulatoren

laten toe om controleerbaar eiwitexpressie op het translationele niveau te regelen. Deze

tiRNA moleculen werden ontwikkeld via een systematische zoektocht door mogelijk in-

teressante eigenschappen via een experimenteel design. Deze de novo ontwikkelde ri-

boregulatoren onderdrukken translatie tot 6 % van de originele eiwitexpressieniveaus,

wat een verbetering is van de dynamisch gebied van dergelijke riboregulatoren die

vroeger werden beschreven. In contrast met deze vorige studies, zijn de tiRNA reg-

ulatoren volledig van niets ontworpen en ze dus geen natuurlijk voorkomend chassis
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nodig hebben om te functioneren. Om de eigenschappen van de tiRNA riboregulatoren

te linken aan hun efficiëntie werd een PLS model ontwikkeld, wat de programmeer-

baarheid van deze riboregulatoren verder uitbereidt.

Naast aanpassingen van gen expressie laat RNA technologie ook toe om gen expressie

te regelen op basis van de aanwezigheid van kleine moleculen. De laatste jaren zijn

dergelijke RNA tools die reageren op kleine moleculen, meer specifiek riboswitches, ge-

bruikt in verschillende metabolic engineering strategieën als alternatief voor hun tradi-

tionele eiwittegenhangers. Echter, de ontwikkeling van riboswitches op basis van in vitro

geselecteerde aptameren vereist typisch arbeidsintensieve screening, wat hun toepas-

baarheid sterk limiteert. Om deze hinderpaal in metabolic engineering te verwijderen

werd een computationeel design algoritme ontwikkeld wat toelaat om in silico te scree-

nen voor riboswitches. Om de riboswitch capaciteiten van een UTR te kwantificeren

werd een doelfunctie opgesteld op basis van vroeger beschreven riboswitches. Gebruik

makend van deze doelfunctie werden 29 potentiële riboswitches computationeel ontwor-

pen gebruik makend van een zoekalgoritme. Vervolgens werden deze riboswitches in vivo

geëvalueerd, waaruit bleek dat 12 van de 29 ontwikkelde riboswitches een activatie ratio

hadden van meer dan vijf. Echter, ondanks de hoge waarschijnlijkheid om werkende ri-

boswitches te ontwerpen, was het onmogelijk om de riboswitch functionaliteit te linken

aan structurele of thermodynamische eigenschappen. Het ontwikkelde algoritme kan

helpen om de ontwikkelingstijden te verkorten van translationele riboswitches, wat hun

toepasbaarheid kan vergroten.

De complexe natuurlijke regulatie van het microbiële metabolisme laat toe om ver-

schillende metabolic engineering strategieën te ontwikkelen, welke dikwijls intracellu-

laire detectie van specifieke moleculen vereisen. Om dit te bekomen werden verschil-

lende biosensoren ontwikkeld gebaseerd op natuurlijk voorkomende transcriptiefac-

toren, wat typisch de mogelijkheden tot ad hoc optimalisatie van de responsecurve

beperkt. Als een proof of concept werden er verschillende nieuwe biosensoren voor de de-

tectie van N-acetylneuraminezuur, gebaseerd op natieve of aangepaste transcriptionele

promotoren die interageren met de transcriptiefactor NanR. Vervolgens werden deze

ontwikkelde biosensoren geëvalueerd gebruik makende van een N-acetylneuraminezuur

producerende stam. Om de ontwikkelde biosensoren op een modulaire manier te opti-

maliseren werd een NanR binding site in een constitutieve promoter geplaatst, wat resul-

teerde in biosensoren die uit verschillende gedefinieerde onderdelen bestaan. Dergeli-

jke manier van biosensoren ontwikkeling laat toe om op een meer betrouwbare manier

de responsecurve aan te passen, wat de toepassingsmogelijkheden van biosensoren in
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metabolic engineering verder vergroot. De vergrote mogelijkheden om de responsecurve

aan te passen werden aangetoond door de response van één van de ontwikkelde biosen-

soren aan te passen via het vervangen van de ribosoom binding site die instaat voor de

translatie initiatie van NanR. Daarnaast werden drie biosensoren gecombineerd met

verschillende productieniveaus van N-acetylneuraminezuur (tot 1.4 ± 0.4 g/L extra-

cellulair) waarbij werd aangetoond dat de waargenomen fluorescentie evenredig was

met het productieniveau. Dit toont aan dat de biosensoren een brede operationele re-

gio bevatten, een belangrijke eigenschap van biosensoren waardoor ze verschillende

toepassingen hebben in metabolic engineering. Algemeen werd het aantal beschikbare

biosensoren uitgebreid met verschillende functionele biosensoren die intracellulair N-

acetylneuraminezuur kunnen meten, waardoor ze kunnen helpen bij diverse metabolic

engineering strategieën om een maximale productie te bereiken.

Algemeen werden er in dit doctoraatsonderzoek verschillende technieken ontwikkeld

die een meer betrouwbare optimalisatie van microbiële celfabrieken toe laten. Meer

specifiek werden de mogelijkheden verbeterd om translatie inhiberende riboregulatoren

en translationele riboswitches te ontwerpen, wat de toepasbaarheid van verschillende

technieken uit de RNA synthetische biologie vergroot. Daarnaast werden verschillende

technieken gebruikt om modulaire biosensoren met vergrootte engineering mogelijkhe-

den te ontwikkelen. Bovendien werden biosensoren voor N-acetylneuraminezuur ont-

wikkeld die de vereiste eigenschappen bevatten die toelaten om verschillende nieuwe

metabolic engineering strategieën toe te passen die vroeger onmogelijk waren.
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