
University of Oviedo
Faculty of Sciences

Ghent University
Faculty of Bioscience Engineering

MONOTONICITY-BASED CONSENSUS

STATES FOR THE MONOMETRIC

RATIONALISATION OF RANKING RULES

WITH APPLICATION IN DECISION MAKING

Raúl Pérez–Fernández

Thesis submitted in fulfillment of the requirements for the degree of

Doctor by the University of Oviedo (Doctoral Program of Mathematics and Statistics)

Doctor of Applied Biological Sciences by Ghent University

Academic year 2016-2017

KERMIT



Supervisors:

Prof. dr. Bernard De Baets

Department of Mathematical Modelling, Statistics and Bioinformatics

Ghent University, Belgium

Prof. dr. Irene Dı́az

Department of Computer Science

University of Oviedo, Spain

Prof. dr. Susana Montes

Department of Statistics and O.R.

University of Oviedo, Spain

Examination board:

Prof. dr. Pedro Alonso

Prof. dr. Bernard De Baets
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A la sonrisa que alumbra mis mañanas. A los labios que soplan mis noches en vela. A la

mano que, con mimo, mece mi vida. A mi cita con la felicidad. A mi compañera de viaje.
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CHAPTER 1

Prologue

1.1 Preface

A genuine leader is not a searcher for

consensus but a molder of consensus.

Martin Luther King Jr.

From social to mathematical sciences, passing by computer, economical and biological

sciences, collective decision making is a problem setting that has been addressed systemat-

ically by the research community, covering a varied spectrum of scientific disciplines. When

a decision among several candidates concerns a large number of people, it is desirable to

choose the option that best benefits the group as a whole. This well-being of the entire

group is usually referred to as social welfare. As this social welfare is hardly measurable,

a voting procedure is commonly invoked to determine the best option to be taken. This

best option may either be a single candidate, a set of candidates or a ranking (with ties)

of the different candidates. In this dissertation, we mainly focus on the search for the best

option of the latter type.

The choice of this best ranking of the candidates is a difficult problem in itself, let aside

the fact that the voting procedure may easily be manipulated by strategic votes of some

dishonest voters. In general, there is no absolute truth and we can say that no method
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is truly best. In fact, as Arrow stated in his well-known impossibility theorem, among

all methods based on the search for the best ranking of the candidates, only dictatorship

satisfies the following two natural properties at the same time:

• If a candidate is preferred to another candidate by all the voters, then it should be

preferred to this other candidate in the best ranking.

• The relative position of two candidates in the best ranking should not depend on the

other candidates.

The consequences of Arrow’s impossibility theorem are despairing. Even worse, it is known

that all prominent methods may yield different winners given the same set of votes. One

then wonders if the best ranking is just the truly best in case all the power of decision is

given to an individual. Should we forget about democracy and surrender to an all powerful

leader? No, we just need to accept that a truly best candidate might not exist, that the

only truth is that we may need to compromise. The notion of consensus turns then out

to be a crucial concept that leads to the study of conditions under which the existence of

a truly best candidate can be assured. In this dissertation, we analyse different types of

consensus (states) and, turning a deaf ear to Martin Luther King Jr. and his introductory

quote to this chapter, we search for consensus in order to identify the best ranking of the

candidates. All these notions of consensus are centred on the property of monotonicity,

which is a common desired property in mathematical modelling exercises.

The property of monotonicity is an old acquaintance for scholars of social choice theory that

can easily be traced back to the early 1970s. This concept of monotonicity is different from

the one considered throughout this dissertation. Monotonicity, understood in this classical

sense, means that a candidate remains being the winning candidate in case he/she is raised

on some of the voters’ rankings. Although the consequences of the absence of this property

may seem paradoxical, several existing methods do not fulfill monotonicity. Indeed, social

choice theory is a field full of paradoxes. Among all the existing paradoxes of voting,

the one pointed out by Condorcet has managed to become known as ‘the’ voting paradox.

This relevant paradox states that the transitivity of the voters’ rankings does not imply the

transitivity of the majority rule (a candidate is said to defeat another candidate by simple

majority if the number of voters who prefer the first candidate to the second candidate is

greater than the number of voters who prefer the second candidate to the first candidate).

However, this majority rule disregards a considerable part of the information provided by
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the voters. The transitivity of the voters’ rankings is surprisingly ignored. Monotonicity,

now understood in the sense of this dissertation, will be again proved to be a key property

for social choice, this time by helping to avoid the inconvenient voting paradox.

1.2 Objectives

Motivated by the numerous potential applications in many fields of interest such as ecosys-

tem management, sustainability assessment and consumer preference analysis, this research

studies many aspects concerning the theory of social choice. Mainly, this dissertation fo-

cuses on the following objectives:

• In real-life problems, where voters rarely unanimously agree, the analysis of condi-

tions under which a consensus can be easily reached becomes of utmost importance.

In particular, we delve into the role of the monotonicity property in the definition of

natural consensus states, leading to an obvious consensus decision.

• Mainly due to the confrontation of several groups with opposing opinions or to the

usual presence of noise in real-life data, these newly-introduced monotonicity-based

consensus states may still not hold. The proposal of a methodology for facilitating the

decision making based on the search for these monotonicity-based consensus states

is the ultimate goal of this research.

1.3 Outline of this dissertation

The rest of this dissertation is divided in four clearly differentiated parts.

Part I consists of one chapter (Chapter 2) and is devoted to an exhaustive study of the most

prominent ranking rules in the theory of social choice. A knowledgeable reader, aware of

the current state of the art of the field, could skip this first part and go directly to Part II.

In Part II, which consists of seven chapters, we explain in detail all the theoretical devel-

opment addressed during this PhD research. The first chapter (Chapter 3) of this part

is devoted to the (mono)metric rationalisation of ranking rules, a branch of social choice
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theory that amounts to explaining ranking rules by the minimisation of the distance to

a consensus state for some appropriate (mono)metric. In Chapter 4, we analyse four dif-

ferent representations of votes used in the field of social choice theory. The property of

monotonicity of these representations of votes is studied in Chapter 5, leading to the intro-

duction of natural consensus states for the (mono)metric rationalisation of ranking rules.

The search for these consensus states is formulated as an optimization problem in Chap-

ter 6. In Chapter 7, we discuss some properties of the ranking rules based on the search

for a monotonicity-based consensus state and we prove that all proposed ranking rules are

independent with respect to each other. The more general setting where voters express

a ranking with ties instead of a ranking is analysed in Chapter 8. In the last chapter

(Chapter 9) of this part, we restrict our attention to the setting where the goal is to choose

the best candidate rather than the best ranking.

In Part III, we show some examples of application of this research to real-life problems.

We highlight three particular problems: an ecosystem management problem in the Lar

rangeland in Iran; an environmental decision making problem in the Argentinian province

of Corrientes; and a consumer preference analysis problem at the Laboratory of Food

Microbiology and Food Preservation at Ghent University, Belgium. All is here applied.

Finally, we end this dissertation with the closing Part IV, where a discussion on some

conclusions and open problems of this research is addressed.



PART I
THE STATE OF THE ART





CHAPTER 2

Introduction to social choice theory

In this chapter, we introduce the concepts of social choice theory that are necessary for a

correct understanding of this dissertation, together with a brief review of the most promi-

nent ranking rules. A reader aware of the current state of the art in the theory of social

choice may direct to Section 2.3 for an explanation of the ranking rule that was the starting

point of this dissertation.

2.1 Social choice theory

Social choice theory concerns the study of the conclusions that can be drawn from the

preferences expressed by several voters over a set of candidates. Throughout this disser-

tation, we consider the problem of ranking candidates, meaning we are dealing with the

social choice subdiscipline of ranking rules. The simplest and oldest ranking rule is the

plurality rule [153], which can be traced back to times of the Ancient Greece. This ranking

rule simply ranks candidates according to the number of voters who considered them as

their preferred choice. Although it is a really simple and naive proposal, it is still the most

frequently used ranking rule, for example, in national elections. Many ranking rules have

been proposed since the eighteenth century, when the works of Rousseau [139], Borda [18]

and Condorcet [35] laid the foundations of social choice theory. Already in the twentieth

century, the contributions of Arrow [3] and Fishburn [57, 58, 59] were fundamental in the

settling of social choice theory as a relevant research field. In the last fifty years, researchers

have focused on the analysis of strategies and strategy-proof ranking rules [68, 78, 79, 146].
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Several researchers, concerned about how, in some extreme cases, every ranking can be

elected winner when considering an appropriate ranking rule, called attention to the fact

that the choice of ranking rule is linked to a notion of consensus (or consensus state). In

this direction, Nitzan [106], Lerer and Nitzan [88] and Campbell and Nitzan [27] charac-

terized social choice rules (where, instead of a ranking, the winner is a subset of the set

of candidates) by means of a consensus state and a distance function. This characteri-

zation is known as metric rationalisation of social choice rules. In general, a profile of

rankings is said to be in a consensus state when determining a winning ranking is obvious.

A trivial consensus state is that of unanimity [80], where each voter expresses the exact

same ranking on the set of candidates. Another slightly more involved one is that of the

existence of a Condorcet ranking [35]. Meskanen and Nurmi [99] demonstrated that most

ranking rules can be characterized as minimizing the distance to a consensus state for

some appropriate distance function. A well-known method of this type is the method of

Kemeny [80], where the Kendall distance function [82] between rankings and the consen-

sus state of unanimity are considered. Other relevant proposals are due to Bogart [16, 17]

or Cook and Seiford [37, 38], where different distance functions are considered; or due

to Meskanen and Nurmi [99, 109], Rademaker and De Baets [133] or Pérez-Fernández et

al. [116, 121, 122, 124, 125], where different consensus states are considered.

There exist many ranking rules in social choice theory and, in some extreme cases, every

ranking can be elected winner considering an appropriate ranking rule. Unfortunately, the

choice of a best ranking rule is not an absolute truth as Arrow proved in his applauded work

“A difficulty in the concept of social welfare” [3]. Arrow’s impossibility theorem states that

there is no ranking rule satisfying, at the same time, three properties that can be considered

natural or desirable: non-dictatorship (there is no voter whose ranking always is elected

the winning ranking), unanimity (if a candidate is preferred to another candidate by all the

voters it should be ranked at a better position than this candidate in the winning ranking)

and independence of irrelevant alternatives (the order of two candidates in the winning

ranking does not depend on the rest of candidates). Arrow’s impossibility theorem leads

to the conclusion that the choice of an ‘appropriate’ ranking rule depends on the nature

of the problem and that, unfortunately, a truly best choice does not always exist.

In social choice theory, two different settings are normally considered when choosing a

winner. On the one hand, when the goal is to look for the winning candidate(s), one talks

about a social choice rule. On the other hand, when the goal is to look for the winning

ranking, one talks about a ranking rule. When the distinction between a social choice
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rule and a ranking rule does not matter, one talks about a voting rule. Note that a social

choice rule can be seen as a special case of ranking rule where all candidates following the

first-ranked one are not taken into account. Due to the nature of this dissertation, which

is centered on ranking rules and not on social choice rules, we present here an overview of

the most important ranking rules1 in social choice theory. A more exptensive review on

voting rules can be found in [6, 14].

2.2 Best-known ranking rules in social choice theory

Throughout this dissertation, we denote by C = {a1, . . . , ak} the considered set of k

candidates. Each of r voters expresses his/her preferences on the set of candidates in the

form of a strict linear order relation or ranking �j on C , i.e., the asymmetric part of a

total order relation �j on C . This list of r rankings is called a profile of rankings and is

denoted by R = (�j)rj=1. The set of all rankings on C is denoted by L(C ). The position

of a candidate a ∈ C in a ranking � is called the position or rank of the candidate a and

is denoted by P�(a) (for short, P�j
(a) is directly denoted by Pj(a)).

2.2.1 Plurality (first-past-the-post)

The simplest and most ancient ranking rule in social choice theory is plurality [153], which

is proved to be used at the latest in one of the city states of the Ancient Greece: Sparta.

When taking into account this ranking rule, candidates are ranked according to the number

of voters that considered this candidate to be their preferred option. Although it is a really

simple and naive proposal, it is still the most frequently used ranking rule, for example, in

national elections.

Plurality leads to a ranking rule where only the main choice of each voter is taken into

account and voters are not asked to provide a ranking on the set of candidates. This is one

of the reasons why, although it does not accurately represent the preferences of the voters,

it is still the most used ranking rule in national elections.

1Some of these ranking rules provide a ranking with ties instead of a ranking on the set of candidates.
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Example 2.1 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1.

# �i Ranking on C

6 c � b � a � d

5 a � d � b � c

3 b � a � d � c

Table 2.1: Profile of rankings on C given by fourteen voters.

First-place votes are the only votes taken into account when considering the plurality rank-

ing rule. Candidate c is the first choice six times, candidate a is the first choice five times,

candidate b is the first choice three times and candidate d is not the first choice for any of

the voters. Therefore, considering the plurality ranking rule, the winning ranking is:

c � a � b � d .

Unfortunately, plurality is really sensitive to manipulation, as can be understood by reading

the following extract of a paper by Tideman where he discusses how he manipulated a

treasurer election [157]: “When I was 12 years old I was nominated to be treasurer of my

class at school. A girl named Michelle was also nominated. I relished the prospect of being

treasurer, so I made a quick calculation and nominated Michelle’s best friend, Charlotte.

In the ensuing election I received 13 votes, Michelle received 12, and Charlotte received

11, so I became treasurer”.

2.2.2 Borda count

In 1770, Jean-Charles de Borda [18] proposed to the French Academy of Sciences his ideas

for reforming the election procedures in the academy itself [170]. He called attention to the

fact that the plurality rule can easily elect a candidate that is supported by only a small

minority of the electorate and suggested that each voter should provide his/her preferences

in the form of a ranking on the set of candidates. In that way, each candidate is rewarded a

point every time that another candidate is ranked at a worse position than him/her in the

profile of rankings given by the voters. Candidates are then sorted based on the number

of points obtained.
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Although his method only lasted about two decades as the academy official election proce-

dure, the Borda count undoubtedly is one of the best-known ranking rules in social choice

theory [96]. For more details concerning the history of the Borda count and preceding

similar procedures, we refer to [50].

Example 2.2 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1.

Considering the Borda count, the respective score for each candidate is:

B(a) = 5 · 3 + 3 · 2 + 6 · 1 + 0 · 0 = 27 ,

B(b) = 3 · 3 + 6 · 2 + 5 · 1 + 0 · 0 = 26 ,

B(c) = 6 · 3 + 0 · 2 + 0 · 1 + 8 · 0 = 18 ,

B(d) = 0 · 3 + 5 · 2 + 3 · 1 + 6 · 0 = 13 .

A winning ranking on the set of candidates is defined by sorting the candidates according

to their respective score. Therefore, considering the Borda count, the winning ranking is:

a � b � c � d .

The Borda count also is really sensitive to manipulation. In fact, it was already criticized

in the eighteenth century by one of Borda’s contemporaries: Marquis de Condorcet. When

confronted with this criticism, Borda was merely moved to comment: “My scheme is only

intended for honorable men” [140].

2.2.3 Scoring ranking rules

Scoring ranking rules2 [32, 57, 67, 102, 104, 169] constitute a large family of ranking

rules based on positional information, with as most prominent examples plurality [153],

the Borda count [18], veto [7, 141] (also known as anti-plurality) and best-worst voting

systems [66]. A scoring ranking rule assigns a score to each of the k candidates based on

the positions at which the candidate is ranked by each voter. Each scoring ranking rule

2In case we are considering social choice rules instead of ranking rules, scoring ranking rules are just

referred to as ‘scoring rules’.
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has an associated vector of scores3 (α`)
k
`=1, where α` ≥ α`+1 ≥ 0 for any ` ∈ {1, . . . , k− 1}

and α1 > αk. For instance, the vector of scores corresponding to plurality is α1 = 1 and,

for any ` ∈ {2, . . . , k}, α` = 0; the vector of scores corresponding to the Borda count is

α` = k− `, for any ` ∈ {1, . . . , k}; the vector of scores corresponding to veto is αk = 0 and,

for any ` ∈ {1, . . . , k − 1}, α` = 1; the vector of scores corresponding to best-worst voting

systems is α1 = 1, αk = 0 and, for any ` ∈ {2, . . . , k − 1}, α` = α ∈ ]0, 1[.

Every candidate is assigned a score of α` every time that he/she is ranked at the `-th

position in one of the rankings in the profile. The total score s(ai) of each candidate

ai ∈ C , usually obtained as the sum of the received scores, can be used to define a weak

order relation4 on the set of candidates by sorting these total scores in decreasing order.

The asymmetric part of a weak order relation is referred to as a ranking with ties. As a

scoring ranking rule may define a ranking with ties, the notion of linear extension (also

known as refinement) of a ranking with ties must be introduced. A ranking � linearly

extends (is a linear extension of) a ranking with ties �′ if �′⊆�.

A relevant subfamily of scoring ranking rules, known as t-approval5 scoring ranking ru-

les [93], contains all scoring ranking rules where the first t ∈ {1, . . . , k−1} scores α1, . . . , αt

are equal to one and the last k− t scores αt+1, . . . , αk are equal to zero. t-approval scoring

ranking rules allow voters to divide the set of candidates in two subsets: the t candidates

that they approve and the k − t candidates that they refuse. Note that plurality and veto

belong to the family of t-approval scoring ranking rules, but the Borda count does not

belong to this family.

Another relevant subfamily of scoring ranking rules, known as convex scoring ranking

rules [154], contains all scoring ranking rules such that α` − α`+1 ≥ α`+1 − α`+2 for any

` ∈ {1, . . . , k− 2}. Convex scoring ranking rules reward first place votes over second place

votes more than second place votes over third place votes; second place votes over third

place votes more than third place votes over fourth place votes; etc. Note that plurality

and the Borda count are convex scoring ranking rules, but veto (and any t-approval scoring

ranking rule different from plurality) is not a convex scoring ranking rule.

3This vector of scores is unique up to a positive multiplicative constant.
4A weak order relation is a complete and transitive relation.
5Not to be confused with approval voting [20] where voters are able to freely choose the number of

candidates that they approve.
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Example 2.3 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings (with ties) given by the voters shown in Table 2.2.

# �i Ranking on C

6 a ∼ b ∼ c � d

5 a ∼ b ∼ d � c

3 a ∼ c ∼ d � b

Table 2.2: Profile of rankings (with ties) on C given by fourteen voters.

Note that, in the given profile of rankings (with ties), six voters have vetoed (ranked last)

candidate d, five voters have vetoed candidate c and three voters have vetoed candidate b.

Considering the veto ranking rule ((k−1)-approval), the respective score for each candidate

is:

s(a) = 14− 0 = 14 ,

s(b) = 14− 3 = 11 ,

s(c) = 14− 5 = 9 ,

s(d) = 14− 6 = 8 .

A winning ranking on the set of candidates is defined by sorting the candidates according

to their respective score. Therefore, considering the veto ranking rule, the winning ranking

is:

a � b � c � d .

2.2.4 Majority

The simple majority rule [54, 76, 95, 149] is one of the most widespread and studied

concepts in social choice theory. A candidate is said to defeat another candidate by simple

majority if the number of voters who prefer the first candidate to the second candidate is

greater than the number of voters who prefer the second candidate to the first candidate.

The simple majority rule has been proved [95] to be the unique solid and meaningful voting

rule when we are restricted to a set of two candidates6.

6May [95] proved that majority is the only social choice rule that is decisive (it leads to a unique choice

for an odd number of votes), egalitarian (it is anonymous), neutral (it does not favour any alternative)
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A closely related concept is that of the absolute majority, where a candidate is said to

defeat another candidate by absolute majority if the number of voters who prefer the first

candidate to the second candidate is greater than half of the number of voters. As in the

setting of this dissertation each voter provides his/her preferences in the form of a ranking

on the set of candidates, both simple and absolute majority coincide.

The strongest type of majority is that of the unanimous majority. A candidate is said to

defeat another candidate by unanimous majority if every voter prefers the first candidate to

the second candidate. Nevertheless, unanimous majority obviously is too strong a condition

that almost never holds in an election.

Another type of majority that lies in between the notions of absolute majority and unan-

imous majority are qualified majorities [51]. Qualified majorities require the number of

voters who prefer the first candidate to the second candidate to be greater than or equal to

a certain quota α r (where r equals the number of voters and α ∈ [0.5, 1]), fixed before the

election. Note that α = 0.5 corresponds to weak absolute majority and α = 1 corresponds

to unanimous majority. In the eighteenth century, Rousseau [139] already encouraged

the use of qualified majorities for important decisions: “The more the deliberations are

important and serious, the more the opinion that carries should approach unanimity.”

In the same way that qualified majorities lie in between absolute majority and unanimous

majority, there exists another type of majorities (majorities based on differences of votes)

that lie in between simple majority and unanimous majority. Qualified majorities and

majorities based on differences of votes become equivalent in the setting of this disserta-

tion, where each voter provides his/her preferences in the form of a ranking on the set of

candidates. For more details on all these types of majorities, we refer to [112].

Unfortunately, all these majority rules (except unanimous majority) might lead to the

well-known voting paradox [35] (also known as Condorcet’s paradox), where a candidate

defeats a second candidate, this second candidate defeats a third different candidate, which,

at the same time, defeats the first candidate. Furthermore, the given relation on the set of

candidates might not be complete. Therefore, majority rules are not considered ranking

rules.

and positively responsive (if a candidate is the winner of the election, then it should still be the winner if

a single voter changes its preference in a way favourable to this candidate) for a set of two candidates.
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Example 2.4 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1. Candidate b is preferred

to candidates a, c and d by more than half of the number of voters. At the same time,

candidate a is preferred to candidates c and d by more than half of the number of voters

and candidate d is preferred to candidate c by more than half of the number of voters.

Therefore, considering the simple majority rule, the winning ranking is:

b � a � d � c .

Unfortunately, the simple majority rule does not always lead to a ranking on the set of

candidates. Consider that, instead of the profile of rankings in Table 2.1, the profile of

rankings listed in Table 2.3 is provided.

# �i Ranking on C

6 c � b � a � d

5 a � d � c � b

3 b � a � d � c

Table 2.3: Profile of rankings on C given by fourteen voters.

Candidate a is preferred to candidate c by more than half of the number of voters, candidate

c is preferred to candidate b by more than half of the number of voters but, at the same

time, candidate b is preferred to candidate a by more than half of the number of voters.

This inconvenience is referred to as the voting paradox. Therefore, the simple majority rule

defines no ranking on the set of candidate for the profile of rankings given in Table 2.3.

For improving the performance of the simple majority rule, several authors have encouraged

the use of degrees of preferences in social choice theory [64, 123, 131]; quoting a well-known

phrase by Sen [150], “... the method of majority decision takes no account of intensities of

preference, and it is certainly arguable that what matters is not merely the number who

prefer x to y and the number who prefer y to x, but also by how much each prefers one

alternative to the other”.
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2.2.5 Condorcet

In 1785, Marie Jean Antoine Nicolas Caritat, mostly known as Marquis de Condorcet,

followed the direction started by Rousseau in his remarkable work ‘Du Contrat Social’ [139]

where he discusses about the ‘general will’: “When a law is proposed in the people’s

assembly, what is asked of them is not precisely whether they approve of the proposition

or reject it, but whether it is in conformity with the general will [...]”. In that way,

Condorcet [35] stated that it is not a compromise ranking what is searched, but an unknown

truth that remains hidden due to the fact that “voters sometimes make mistakes in their

judgements”. In order to identify this unknown truth, Condorcet proposed a probabilistic

model [170] for finding the ranking that is the “most likely to be best”.

In this same direction, Arrow [4] stated a couple of centuries later the following: “[...]

each individual has two orderings, one which governs him in his everyday actions, and one

which would be relevant under some ideal conditions and which is in some sense truer than

the first ordering. It is the latter which is considered relevant to social choice, and it is

assumed that there is complete unanimity with regard to the truer individual ordering”.

Nevertheless, Condorcet’s most important contribution to social choice theory is the notion

nowadays known as the Condorcet winner. He stated that if a candidate is preferred by

more than half of the voters to all the other candidates, then it is presumptively the best

and must be elected the winning candidate7. This candidate is commonly known as the

Condorcet winner. Analogously, a candidate such that every other candidate is preferred

to him/her by more than half of the voters is known as the Condorcet loser. Another term

related to Condorcet is that of the Condorcet ranking, which is a ranking such that every

candidate is preferred by more than half of the voters to all the candidates ranked at a

worse position than him/her.

One may note that a Condorcet winner/loser/ranking might not exist, but the uniqueness

(in case of existence) is always assured. When both a Condorcet winner (resp. loser)

and a Condorcet ranking exist, the first (resp. last) candidate of the Condorcet ranking

and the Condorcet winner (resp. loser) coincide. Any ranking (resp. social choice) rule

7Some authors consider that a Condorcet winner is one that satisfies that, the support of this candidate

over any other candidate is greater than the support of this other candidate over him/her. Note that both

definitions are equivalent in the setting considered in this dissertation where each voter expresses his/her

preferences in the form of a ranking on the set of candidates.
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always electing a Condorcet ranking (resp. winner), if it exists, as the winning ranking

(resp. candidate) is called a Condorcet ranking rule (resp. Condorcet method). A well-

known Condorcet method is the social choice rule introduced by Black [14], where, if there

is a Condorcet winner, then he/she should be chosen the winner and, otherwise, the Borda

winner should be considered.

A weaker definition of the Condorcet winner/loser/ranking can be found in the literature

when instead of ‘being preferred by more than half of the voters’ one requires ‘being

preferred by at least half of the voters’. In such a case, one talks about a weak Condorcet

winner/loser/ranking. The Condorcet winner/loser/ranking always is a weak Condorcet

winner/loser/ranking, but the converse is only true when the number of voters is odd.

Both the existence and the uniqueness of a weak Condorcet winner/loser/ranking are not

assured.

The fact that a Condorcet winner/ranking might not exist has led to the introduction of

many different ranking rules where the winning candidate/ranking is the one that is the

closest to being a Condorcet winner/ranking. Several ways of measuring such closeness have

been proposed. Here, we restrict our attention to the two most prominent ones: Dodgson’s

method [46] and Condorcet’s least-reversal method [99]. The former one addresses the

search for the closest Condorcet winner by means of the Kendall distance function between

rankings [82]. The latter one addresses the search for the closest Condorcet winner by

counting the minimum number of reversals in the voting matrix. For more details, we refer

to [99].

Example 2.5 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1.

Every profile of rankings is represented by a voting matrix (from now on referred to as

the votrix)8 V . This votrix is formed by the pairwise comparisons between each couple of

candidates. In that way, Vij denotes the number of voters that prefer the i-th candidate to

the j-th candidate (by convention, all diagonal elements are equal to zero).

V =


0 5 8 14

9 0 8 9

6 6 0 6

0 5 8 0

 .

8Later on in this dissertation, we will provide a more formal definition of the votrix.
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Candidate b is preferred to all the other candidates by more than half of the voters: nine

voters prefer candidate b to candidate a, eight voters prefer candidate b to candidate c

and nine voters prefer candidate b to candidate d. Therefore, candidate b is the Condorcet

winner. In addition, candidate a is preferred to candidate c by eight voters and to candidate

d by fourteen voters and candidate d is preferred to candidate c by eight voters. We conclude

that candidate c is the Condorcet loser and that the Condorcet ranking is:

b � a � d � c .

However, the existence of the Condorcet ranking is not assured for every profile of rankings.

In the following, we will consider the profile of rankings given in Table 2.4 in order to

illustrate the method of Dodgson [46].

# �i Ranking on C

6 a � b � c � d

5 b � c � a � d

3 c � d � a � b

Table 2.4: Profile of rankings on C given by fourteen voters.

The votrix V corresponding to this profile of rankings is:

V =


0 9 6 11

5 0 11 11

8 3 0 14

3 3 0 0

 .

There is no Condorcet winner (and therefore no Condorcet ranking) because candidate a

is preferred to candidate b by more than half of the voters (nine), candidate b is preferred

to candidate c by more than half of the voters (eleven) and candidate c is preferred to

candidate a by more than half of the voters (eight).

Note that we can reverse the preference of two voters w.r.t. candidates a and c and obtain

the profile of rankings in Table 2.5.
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# �i Ranking on C

6 a � b � c � d

3 b � c � a � d

3 c � d � a � b

2 b � a � c � d

Table 2.5: Profile of rankings on C given by fourteen voters.

The votrix V ′ corresponding to this profile of rankings is:

V ′ =


0 9 8 11

5 0 11 11

6 3 0 14

3 3 0 0


Now, the Condorcet winner, a, and the Condorcet ranking, a � b � c � d, exist. In Ta-

ble 2.6, the number of reversals needed to turn each possible ranking on C into a Condorcet

ranking is shown.

Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

a � b � c � d 2 b � a � c � d 5 c � a � b � d 5 d � a � b � c 20

a � b � d � c 10 b � a � d � c 13 c � a � d � b 10 d � a � c � b 25

a � c � b � d 7 b � c � a � d 3 c � b � a � d 8 d � b � a � c 23

a � c � d � b 12 b � c � d � a 8 c � b � d � a 13 d � b � c � a 21

a � d � b � c 15 b � d � a � c 18 c � d � a � b 15 d � c � a � b 23

a � d � c � b 20 b � d � c � a 16 c � d � b � a 18 d � c � b � a 26

Table 2.6: Number of reversals needed to make each ranking the Condorcet

ranking.

Therefore, considering the method of Dodgson, the winning candidate is a. Extending the

method of Dodgson to the search for the Condorcet ranking we obtain the following winning

ranking:

a � b � c � d .

The work of Condorcet [35] undoubtedly is one of the most important contributions to

social choice theory. Condorcet’s proposal has suffered criticism among the research com-

munity, especially due to the fact that it is easy to find profiles of rankings for which
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the Condorcet winner is a more than questionable winner [120]. As an example of such

received criticism, we refer to a brief reflection by Saari [142]: “the combination of the

pairwise vote with the Condorcet terms loses the crucial fact that voters have transitive

preferences. [...] An equally surprising assertion is that rather than being the standard,

the Condorcet winner must be held suspect”.

2.2.6 Kemeny (Kemeny-Young)

The method of Kemeny [80] is a ranking rule where the winning ranking is the one that

minimizes the sum of the Kendall distances [82] to the given profile of rankings. The

Kendall distance function between two rankings �1 and �2 is defined as:

K(�1,�2) = #{(a, b) ∈ C 2 | a 6= b ∧ a �1 b ∧ b �2 a} .

Intuitively, the winning ranking according to the method of Kemeny is the one that can

become unanimous in the profile of rankings with the least number of reversals.

Under the assumption that: (i) each voter will choose the best candidate with some fixed

probability p, where 0.5 < p < 1 and p is the same for all voters; (ii) every voter’s judgement

on every pair of candidates is independent on every other pair; (iii) each voter’s judgement

is independent of the other voters’ judgements; Young [171] proved that the ranking that

has the maximum likelihood coincides with the winning ranking according to the method

of Kemeny. Due to this result, the method of Kemeny is also known as the maximum

likelihood method.

A common criticism against the method of Kemeny concerns the fact that it is NP-hard

to compute its winning ranking [9]. Some researchers have focused on the search for

approximate methods that can be executed in polynomial time. Nevertheless, quoting

Conitzer et al. [36], “an approximation algorithm for a voting rule is, in effect, a different

voting rule; and in real-world elections, voters may feel deceived if a different voting rule

is used than the one that was promised to them”.

Example 2.6 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.4.

The Kendall distance between two rankings is the minimum number of reversals we need

to do in one of them in order to obtain the other one. For instance, K(b � c � a � d, a �
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b � c � d) = 2, as we can reverse c � a to a � c in the ranking b � c � a � d and we will

obtain b � a � c � d. Then we can reverse b � a to a � b and we will obtain the ranking

a � b � c � d. The Kendall distances of all the rankings in the profile to the ranking

a � b � c � d are the following:

K(a � b � c � d, a � b � c � d) = 0 ,

K(b � c � a � d, a � b � c � d) = 2 ,

K(c � d � a � b, a � b � c � d) = 4 .

Therefore, the Kendall distance between the profile of rankings in Table 2.4 and the profile

of rankings where all voters have expressed the ranking a � b � c � d equals

14∑
j=1

K(�j, a � b � c � d) = 6 · 0 + 5 · 2 + 3 · 4 = 22 .

In Table 2.7, the number of reversals needed to make each ranking the unanimous ranking

(measured my the Kendall distance function) is shown.

Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

a � b � c � d 22 b � a � c � d 26 c � a � b � d 28 d � a � b � c 52

a � b � d � c 36 b � a � d � c 40 c � a � d � b 36 d � a � c � b 60

a � c � b � d 30 b � c � a � d 24 c � b � a � d 32 d � b � a � c 56

a � c � d � b 38 b � c � d � a 32 c � b � d � a 40 d � b � c � a 54

a � d � b � c 44 b � d � a � c 48 c � d � a � b 44 d � c � a � b 58

a � d � c � b 52 b � d � c � a 46 c � d � b � a 48 d � c � b � a 62

Table 2.7: Number of reversals needed to make each ranking the unanimous

ranking.

Therefore, considering the method of Kemeny, the winning ranking, which minimizes the

costs in Table 2.7, is:

a � b � c � d .

As previously discussed, Condorcet [35] proposed a probabilistic approach [170] for finding

the ranking that is the “most likely to be best”. Actually, Condorcet formalized the prob-

abilistic approach for the case where the set of candidates only consists of three candidates
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and what he meant to do for a set of candidates of bigger cardinality is unclear. Quoting

Nanson [14, 105, 170]: “the general rules for the case of any number of candidates as given

by Condorcet are stated so briefly as to be hardly intelligible [...] and as no examples are

given it is quite hopeless to find out what Condorcet meant”.

Young declares in [170] that the method of Kemeny is what Condorcet [35] really had

in mind: “Condorcet’s overall intention is quite clear. It is to find the most probable

combination of opinions. In describing his method he seems to have used the term ‘succes-

sively deletes’ rather loosely as a heuristic for computing the solution. (He may also have

believed, mistakenly, that successive deletion always does give the most probable combi-

nation.) But there appears to be little doubt about his objective. [...] It seems reasonably

likely that this is what Condorcet meant to say. In any case, it is the only interpretation

that is consistent with his goal of finding the ranking that is most likely to be correct”.

2.2.7 Litvak

The method of Litvak [108] follows similar principles as the method of Kemeny [80]. Instead

of selecting the ranking that minimizes the sum of the Kendall distances [82] to the given

profile of rankings, the method of Litvak selects the ranking that minimizes the Litvak

sum. Given the profile R = (�i)ri=1, the Litvak sum of a ranking � is defined as:

k∑
i=1

s(ai) =
k∑
i=1

r∑
j=1

|P�(ai)− Pj(ai)| .

The winning ranking according to the method of Litvak is sometimes referred to as the

Litvak median.

Example 2.7 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.4.

For the ranking a � b � c � d, we see that candidate a is ranked at the first position, which

leads to a coincidence with the ranking a � b � c � d and to a difference of two positions

with respect to the rankings b � c � a � d and c � d � a � b. This leads to a score for

candidate a of

s(a) =
r∑
j=1

|P�(a)− Pj(a)| = 6× 0 + 5× 2 + 3× 2 = 16 .
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Analogously, the scores for the other candidates are given by:

s(b) =
r∑
j=1

|P�(b)− Pj(b)| = 6× 0 + 5× 1 + 3× 2 = 11 ,

s(c) =
r∑
j=1

|P�(c)− Pj(c)| = 6× 0 + 5× 1 + 3× 2 = 11 ,

s(d) =
r∑
j=1

|P�(d)− Pj(d)| = 6× 0 + 5× 0 + 3× 2 = 6 .

Therefore, the Litvak sum of the ranking a � b � c � d equals 44. In Table 2.8, the Litvak

sum of each the rankings is shown.

Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

a � b � c � d 44 b � a � c � d 46 c � a � b � d 56 d � a � b � c 94

a � b � d � c 66 b � a � d � c 68 c � a � d � b 72 d � a � c � b 88

a � c � b � d 50 b � c � a � d 42 c � b � a � d 46 d � b � a � c 84

a � c � d � b 66 b � c � d � a 64 c � b � d � a 68 d � b � c � a 84

a � d � b � c 82 b � d � a � c 74 c � d � a � b 78 d � c � a � b 84

a � d � c � b 76 b � d � c � a 74 c � d � b � a 84 d � c � b � a 90

Table 2.8: Litvak sum of each ranking.

Therefore, considering the method of Litvak, the winning ranking, which leads to a Litvak

sum of 42, is:

b � c � a � d .

2.2.8 Bucklin

The term Bucklin voting refers to the process of considering the comparisons in the profile

of rankings that are above some threshold and then adjusting that threshold down until a

majority is reached. In particular, Bucklin [23] introduced a ranking rule that consists of

looking for a majority of more than half of the voters supporting some candidate starting

from the first-place choices. If there is no candidate with a majority of first-place choices,

then second-place choices are included and the search for a majority is addressed consider-

ing both first-place and second-place choices. The procedure continues until the smallest
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n ∈ N is reached such that one or more candidates are supported by more than half of the

voters taking the n-first-place choices into account9. All candidates obtaining a majority

considering the n-first-place choices are then ordered according to the number of times that

they are considered in the n-first-place choices by a voter10. In case of tie, Bucklin specified

that first-place choices are used, but no further tie-breaking rule is explicitly mentioned

in [23].

Example 2.8 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1.

First-place choices are firstly taken into account when considering the method of Bucklin.

Candidate c appears six times, candidate a appears five times, candidate b appears three

times and candidate d does not appear any time. As there is no candidate with at least

seven appearances as a first-place choice, the consideration of second-place choices needs

to be addressed.

Considering both first-place and second-place choices, candidate b appears nine times, can-

didate a appears eight times, candidate c appears six times and candidate d appears five

times. Now, both candidate a and candidate b reach more than half of the first and second-

place choices. Then, as candidate b appears more times as a first or second-place choice

than candidate a, candidate b is elected the Bucklin winner.

In order to obtain a winning ranking on the set of candidates, we continue with the procedure

considering also third-place votes. Note that candidate d appears eight times as a first-place,

second-place or third-place choice, so it reaches a majority. However, candidate c appears

only six times and it will not reach a majority without additionally considering the fourth-

place choices. Therefore, considering the method of Bucklin, the winning ranking is:

b � a � d � c .

9Although he mentions the variation of omitting “the scheme of dropping the lowest candidate”, Buck-

lin [23] actually states that the candidate with the lowest score should be dropped after each step.
10Bucklin actually proposed his method as a social choice rule and how to order the candidates that

do not reach a majority in the n-th step is not explicitly addressed. We propose to continue with his

procedure until every candidate reaches a majority.
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2.2.9 Copeland

Copeland [40] is a Condorcet ranking rule measuring the number of victories, ties and

defeats of each candidate with respect to the other candidates. There are many equivalent

definitions of this ranking rule considering different score assessments. In this dissertation,

we are going to consider the following score assessment:

(i) 1 point per victory.

(ii) 1
2

point per tie.

(iii) 0 points per defeat.

The candidate with the highest score is considered the winner and the winning ranking is

given by decreasingly sorting these scores.

Example 2.9 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.9.

# �i Ranking on C

6 a � b � c � d

4 b � c � a � d

3 c � d � a � b

1 a � c � d � b

Table 2.9: Profile of rankings on C given by fourteen voters.

When considering the method of Copeland, we need to calculate the pairwise confrontation

between each two candidates. Candidate a beats candidate b (10 voters out of 14 prefer

candidate a to candidate b) and candidate d (11/14) and ties with candidate c (7/14),

candidate b beats candidate c (10/14) and candidate d (10/14) and, finally, candidate d
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beats candidate c (14/14). The scores corresponding to each candidate are then given by:

s(a) = 2 · 1 + 1 · 1

2
+ 0 · 0 =

5

2
,

s(b) = 2 · 1 + 0 · 1

2
+ 1 · 0 = 2 ,

s(c) = 0 · 1 + 1 · 1

2
+ 2 · 0 =

1

2
,

s(d) = 1 · 1 + 0 · 1

2
+ 2 · 0 = 1 .

Therefore, considering the method of Copeland, the winning ranking is:

a � b � d � c .

2.2.10 Simpson (Simpson-Kramer, Minimax, Maximin)

The method of Simpson [85, 151] is a Condorcet method11 that ranks candidates according

to their maximum defeat. In that way, the best ranked candidates are the ones that are

not clearly defeated by any other candidate. A relevant (and unintuitive) property of this

method is that, although it is a Condorcet method (if there is a Condorcet winner it is

elected winner), a Condorcet loser might be elected winner.

Example 2.10 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.10.

# �i Ranking on C

4 a � d � b � c

4 c � a � b � d

4 b � c � d � a

1 d � a � b � c

1 d � c � a � b

Table 2.10: Profile of rankings on C given by fourteen voters.

11The method of Simpson is not a Condorcet ranking rule.
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When considering the method of Simpson, we need to obtain the biggest defeat of each

candidate. Firstly, we obtain the votrix V corresponding to the given profile:

V =


0 10 5 8

4 0 9 8

9 5 0 8

6 6 6 0

 .

The biggest defeat of candidate a is against candidate c (five against nine), the biggest defeat

of candidate b is against candidate a (four against ten), the biggest defeat of candidate c

is against candidate b (five against nine) and the biggest defeat of candidate d is against

either candidate a, candidate b or candidate c (six against eight). Note that candidate d

is a Condorcet loser, but it is the winner considering the method of Simpson due to the

fact that all his/her defeats are by a small margin. Therefore, considering the method of

Simpson, the winning ranking is:

d � a ∼ c � b .

2.2.11 Tideman (ranked pairs)

The method of Tideman [157] is a Condorcet ranking rule that consists of two steps. Firstly,

all couples of candidates are sorted from stronger to weaker. Secondly, these couples of

candidates are locked by order (ignoring those that contradict stronger victories) until an

order on the set of candidates is decided. Although in social choice theory normally there

are a huge number of voters and the probability of a tie is low, a tie breaking rule needs

to be defined when two or more couples of candidates have the same strength. The most

adopted tie breaking rule [172] consists of randomly12 selecting a voter and use his/her

personal ranking to break the ties13.

Example 2.11 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.10.

12This selection is usually made by means of a discrete uniform distribution on the set of voters.
13The order on the set of couples of candidates induced by a ranking on the set of candidates is given

by firstly ordering by the best ranked candidate of the couple, secondly ordering by the worst ranked

candidate of the couple and, finally, the two couples of candidates involving the same two candidates are

ranked according to the candidate that appears the first in the couple.
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When considering the method of Tideman, we need to rank all the couples of candidates.

A random ranking14 b � c � d � a given by a voter was selected in order to act as a

tie-breaking rule. We firstly recall that the votrix V corresponding to this profile is the

following:

V =


0 10 5 8

4 0 9 8

9 5 0 8

6 6 6 0

 .

The couples of candidates are then sorted in the following way:

1. a � b (10),

2. b � c (9), c � a (9),

4. a � d (8), b � d (8), c � d (8),

7. d � a (6), d � b (6), d � c (6),

10. c � b (5), a � c (5),

12. b � a (4).

We should apply the tie-breaking rule in each group. For instance, between b � c and c � a,

as the randomly selected ballot was b � c � d � a, the couple b � c should be ranked first

as it involves the first candidate of b � c � d � a. In that way, the resulting order on the

preferences is:

1. a � b (10),

2. b � c (9),

3. c � a (9),

4. b � d (8),

5. c � d (8),

6. a � d (8),

7. d � b (6),

8. d � c (6),

9. d � a (6),

10. c � b (5),

11. a � c (5),

12. b � a (4).

14This random ranking should be changed after each comparison but, in order to ease the illustration of

the method, we will work with this first ranking all the time.
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We will proceed to construct the winning ranking locking these preferences and ignoring the

contradictory ones until a ranking is established. Firstly, we lock a � b. Secondly, b � c

is locked providing a � b � c. Thirdly, c � a is ignored as it contradicts the current order

a � b � c. Fourthly, b � d is introduced so the winning ranking will either be a � b � c � d

or a � b � d � c. Finally, c � d is locked and the winning ranking, considering the method

of Tideman, is:

a � b � c � d .

The method of Tideman, sometimes referred to as the ranked pairs rule, has been proved

to be one of the few ranking rules that is independent of clones. Two candidates are said to

be clones if they are ranked at consecutive positions by every voter. Intuitively, a ranking

rule is said to be independent of clones if adding one (or more) candidate to the election

that is a clone of an existing candidate does not affect the outcome of the election.

The study of the notion of clone is not exclusive of the field of social choice theory. For

instance, De Baets et al. [42] analysed the clone relation of a (partial) order relation and

Bouremel et al. [19] extended this notion to any binary relation.

2.2.12 Schulze

The method of Schulze was developed in 1997 and it was first discussed in public mailing

lists. Due to the increasing success of the method, which has been used by several private

organizations, such as the Wikimedia Foundation, The Pirate Party of Sweden and the

Pirate Party of Germany, Schulze decided to publish his method in a well-known academic

journal in 2011 [147].

The method of Schulze is based on the notion of a beatpath. A path from a candidate

ai1 to a candidate ai2 , denoted by ai1 → ai2 , is a list of couples
(
(ai, ai+1)

)n
i=1

such that

a1 = ai1 , a
n+1 = ai2 and (a1, . . . , an+1) are pairwisely different. The weakest link of a

path
(
(ai, ai+1)

)n
i=1

from ai1 to ai2 is the couple (ai, ai+1) such that the number of voters

preferring ai to ai+1 (called the strength of the weakest link) is the minimum among all

the couples in
(
(ai, ai+1)

)n
i=1

. A path from ai1 to ai2 that maximizes the strength of the

weakest link is called a beatpath from ai1 to ai2 .
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Finally, the strength of all the beatpaths are gathered in a beatpath matrix B, where the

element Bij at the i-th row and j-th column equals the strength of the beatpath from the

i-th candidate to the j-th candidate. The relation defined by aiRaj if Bij ≥ Bji or i = j

turns out to be a weak order relation on the set of candidates.

Example 2.12 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1.

In a set of four candidates, there are five different paths from a candidate ai1 to a candidate

ai2. For instance, for going from candidate a to candidate b, there are the following five

possible paths: (
(a, b)

)
leading to min(5) = 5 ,(

(a, c), (c, b)
)

leading to min(8, 6) = 6 ,(
(a, d), (d, b)

)
leading to min(14, 5) = 5 ,(

(a, c), (c, d), (d, b)
)

leading to min(8, 6, 5) = 5 ,(
(a, d), (d, c), (c, b)

)
leading to min(14, 8, 6) = 6 .

The paths maximizing the strength of the weakest link, leading to a value of six, are(
(a, c), (c, b)

)
and

(
(a, d), (d, c), (c, b)

)
. Therefore, the element of the beatpath matrix cor-

responding to (a, b) equals six. The beatpath matrix is the following:

B =


− 6 8 14

9 − 8 9

6 6 − 6

6 6 8 −

 .

Therefore, considering the method of Schulze, the winning ranking is:

b � a � d � c .

2.2.13 WVM and EWVM

The Weighted Voting Method (WVM) [74] is a natural voting procedure that considers

the proportion of victories/defeats of each candidate for each couple of candidates and it

assigns to each candidate a score based on the aggregation of all the proportions of victories
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and ranks the candidates according to this score. It must be remarked that this method

comes from the field of group decision making [33].

A natural extension of this Weighted Voting Method, known as the Extended Weighted

Voting Method (EWVM) [113, 114, 115], introduces a parameter α allowing to model the

importance of ‘beating other candidates’ or ‘not being defeated by other candidates’.

We consider the matrix P of proportions of victories/defeats where Pij is the proportion

of times that candidate ai is preferred to candidate aj, for any i 6= j, and Pii = 0.5. The

victories and the defeats are separated in two matrices P+ and P−:

P+
ij = max{0, pij − 0.5} ,
P−ij = min{0, pij − 0.5} .

The weighted matrix Pα is constructed as

Pα = α · P+ + (1− α) · P− .

Therefore, for each candidate ai ∈ C , we calculate the score:

s(ai) = A(Pα
i1, . . . , P

α
ik) ,

where A is an aggregation function [11, 71], usually the arithmetic mean. Finally, candi-

dates are ranked according to this score.

Note that the EWVM coincides with the WVM in case α = 1
2
. Different combinations

of aggregation functions and different values of the parameter α may lead to well-known

ranking rules. For instance, when the aggregation function is the arithmetic mean and the

considered value of the parameter α is 1
2
, the EWVM coincides with the Borda count. On

the other hand, when the aggregation function is the minimum and the considered value

of the parameter α is 0, the EWVM coincides with the method of Simpson.

Example 2.13 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.11.

The votrix V corresponding to this profile of rankings is the following:

V =


0 7 8 8

7 0 5 11

6 9 0 9

6 3 5 0

 .
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# �i Ranking on C

5 a � c � b � d

3 b � d � a � c

2 c � a � b � d

2 d � b � c � a

1 c � b � a � d

1 c � d � b � a

Table 2.11: Profile of rankings on C given by fourteen voters.

The matrix P of proportions of victories/defeats:

P =


1
2

1
2

4
7

4
7

1
2

1
2

5
14

11
14

3
7

9
14

1
2

9
14

3
7

3
14

5
14

1
2

 .

When considering the Weighted Voting Method, the score for each candidate (considering

the arithmetic mean) is:

s(a) =
1

4

(
1

2
+

1

2
+

4

7
+

4

7

)
=

30

48
,

s(b) =
1

4

(
1

2
+

1

2
+

5

14
+

11

14

)
=

30

48
,

s(c) =
1

4

(
3

7
+

9

14
+

1

2
+

9

14

)
=

31

48
,

s(d) =
1

4

(
3

7
+

3

14
+

5

14
+

1

2

)
=

21

48
.

Therefore, considering the Weighted Voting Method, the winning ranking is

c � a ∼ b � d .

If we consider the Extended Weighted Voting Method, then we need to define the matrices

P+ and P−:

P+ =


0 0 1

14
1
14

0 0 0 2
7

0 1
7

0 1
7

0 0 0 0

 , P− =


0 0 0 0

0 0 −1
7

0
−1
14

0 0 0
−1
14

−2
7

−1
7

0

 .
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Therefore, for any α ∈ [0, 1], Pα is given by:

Pα =


0 0 α

14
α
14

0 0 α−1
7

2α
7

α−1
14

α
7

0 α
7

α−1
14

2α−2
7

α−1
7

0

 .

When considering the Weighted Voting Method, the score for each candidate (considering

the arithmetic mean) is:

s(a) =
1

4

(
0 + 0 +

α

14
+
α

14

)
=

2α

48
,

s(b) =
1

4

(
0 + 0 +

α− 1

7
+

2α

7

)
=

6α− 2

48
,

s(c) =
1

4

(
α− 1

14
+
α

7
+ 0 +

α

7

)
=

5α− 1

48
,

s(d) =
1

4

(
α− 1

14
+

2α− 2

7
+
α− 1

7
+ 0

)
=

7α− 7

48
.

Therefore, considering the Extended Weighted Voting Method, the winning ranking is

a � c � b � d , if α ∈ [0, 1
3
[ ,

a ∼ c � b � d , if α = 1
3
,

c � a � b � d , if α ∈]1
3
, 1

2
[ ,

c � a ∼ b � d , if α = 1
2
,

c � b � a � d , if α ∈]1
2
, 1[ ,

c ∼ b � a � d , if α = 1 .

Note that, as expected, the winning ranking according to the WVM coincides with the

winning ranking according to the EWVM when α =
1

2
.

2.2.14 Elimination methods

Although an elimination method is not a ranking rule by itself, it can be combined with any

ranking rule to define a new ranking rule. Elimination methods [5, 59, 137, 152] consist of a

multi-stage voting procedure based on iteratively eliminating the worst candidates until the

winning candidate is obtained. An important family of elimination methods contains the
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ones with only two steps where the two best candidates (according to the chosen ranking

rule) are finally compared and the one that is preferred by the highest number of voters

is elected the winning candidate. Here, we are interested in elimination methods based on

a scoring ranking rule [60]. Relevant elimination methods based on a scoring ranking rule

are plurality with run-off [137], the method of Nanson [105] or the method of Coombs [39].

Example 2.14 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.12. In the following, we

will analyse how different elimination methods may change the winning ranking considering

the same ranking rule. For instance, we will consider plurality combined with different

elimination procedures.

# �i Ranking on C

5 a � c � b � d

4 b � c � a � d

3 c � d � b � a

2 d � c � b � a

Table 2.12: Profile of rankings on C given by fourteen voters.

When considering the plurality ranking rule, first-place votes are the only votes taken into

account. Only considering these votes, candidate a is the main choice five times, candidate

b is the main choice four times, candidate c is the main choice three times and candidate d

is the main choice two times. Therefore, considering the plurality ranking rule, the winning

ranking is:

a � b � c � d .

Nevertheless, if we consider a three-step elimination method, then we will firstly eliminate

candidate d as it is the one which is the main choice for the least number of voters. Only

taking candidates a, b and c into account, candidate a is the main choice five times, can-

didate b is the main choice four times and candidate c now is the main choice five times

(the original three and the two cases where candidate d was the main choice). Therefore,

candidate b is eliminated and candidates a and c are the only two candidates taken into

account in the last step. Finally, candidate a is the main choice five times and candidate

c is the main choice nine times. Therefore, considering a three-step elimination procedure,

the winning ranking is:

c � a � b � d .
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Finally, if we consider plurality with run-off, then we will eliminate candidates c and d as

they are the ones that are the main choice for the least number of voters. Only taking into

account candidates a and b, candidate a is the main choice five times and candidate b is the

main choice nine times. Therefore, considering plurality with run-off, the winning ranking

is:

b � a � c � d .

Note that the same ranking rule combined with three different elimination methods leads to

three totally different winning rankings.

2.3 A ranking rule based on monotonicity

Monotonicity is a common desired property in mathematical modelling exercises, and its

importance has been acknowledged in several disciplines, e.g. in machine learning [12, 28,

90] and fuzzy modelling [128, 155, 161]. However, real-life data is often imperfect and

does not fully comply with the monotonicity hypothesis. One option then is to (mini-

mally) adjust the data set restoring the monotonicity [132, 134, 135]. This is particularly

important as, for instance, in machine learning, some algorithms cannot be trained with

non-monotone datasets [134].

Returning to the field of social choice theory, several ranking rules centered on this mono-

tonicity property have already been proposed. Rademaker and De Baets [133] advocated

that, for a ranking a � b � c, monotonicity implies that the number of voters preferring a

to c should not be less than both the number of voters preferring a to b and the number

of voters preferring b to c15.

More formally, each ranking � on the set of candidates defines a strict order relation A�
between couples of candidates (ai1 , aj1), (ai2 , aj2) ∈ C 2:

(ai1 � aj1) ∧ (aj2 � ai2) ∧ (ai1 � aj1 ∨ aj2 � ai2) .

This relation is represented in Figure 2.1 for an example of a set of four candidates.

According to the proposal of Rademaker and De Baets, if the strength of support (number

of times that the first candidate of the couple is preferred to the second candidate of

15This intuitive notion is closely related to the property of strong stochastic transitivity [138].
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(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

(b, a) (c, b) (d, c)

(d, a)

(c, a) (d, b)

Figure 2.1: Hasse diagram of the order relation A� for the ranking a � b �
c � d.

the couple) is monotone decreasing on the Hasse diagram of the order relation A� for a

ranking �, then � should be elected the winning ranking. If there is no such ranking,

then the costs of imposing monotonicity w.r.t. each possible ranking are obtained. These

costs are measured in the same way that they are measured in Condorcet’s least reversals

method [99], by counting the minimum number of reversals of pairwise comparisons.

Example 2.15 Let us consider a set of four candidates C = {a, b, c, d} and the profile R =

(�i)14
i=1 of fourteen rankings given by the voters shown in Table 2.1. This profile of rankings

is not monotone w.r.t. any ranking on C . However, we can see in Figure 2.2 that, with a

small number of reversals (three), we can impose monotonicity w.r.t. the ranking a � b �
c � d.

Of course, the number of changes needed in order to impose monotonicity totally depends

on the chosen ranking. For instance, the cost of imposing monotonicity w.r.t. the ranking

d � c � b � a (fourteen) is much larger than the cost of imposing monotonicity w.r.t. to

the ranking a � b � c � d (three). The number of reversals needed in order to impose

monotonicity w.r.t. the ranking d � c � b � a can be seen in Figure 2.3.

In Table 2.13, the number of changes needed to impose monotonicity w.r.t. each possible

ranking is shown.
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(a, d) 14

(a, c) 8 (b, d) 9

(a, b) �5 7 (b, c) 8 (c, d) �6 7

(b, a) �9 7 (c, b) 6 (d, c) �8 7

(d, a) 0

(c, a) 6 (d, b) 5

Figure 2.2: Minimum number of reversals needed for imposing monotonicity

w.r.t. the ranking a � b � c � d.

(d, a) �0 7

(c, a) �6 7 (d, b) �5 7

(b, a) �9 7 (c, b) �6 7 (d, c) �8 7

(a, b) �5 7 (b, c) �8 7 (c, d) �6 7

(a, d)��14 7

(a, c) �8 7 (b, d) �9 7

Figure 2.3: Minimum number of reversals needed for imposing monotonicity

w.r.t. the ranking d � c � b � a.

Therefore, considering the ranking rule proposed by Rademaker and De Baets, the winning

ranking is:

a � b � c � d .

This simple and intuitive ranking rule was the starting point of this research. The natural

property of monotonicity turns out to be a cornerstone of social choice theory, and it is only

in case this property is not fulfilled that the need of making a decision arises. Therefore,
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Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

a � b � c � d 3 b � a � c � d 7 c � a � b � d 12 d � a � b � c 11

a � b � d � c 9 b � a � d � c 7 c � a � d � b 14 d � a � c � b 14

a � c � b � d 7 b � c � a � d 9 c � b � a � d 12 d � b � a � c 11

a � c � d � b 13 b � c � d � a 9 c � b � d � a 14 d � b � c � a 12

a � d � b � c 11 b � d � a � c 8 c � d � a � b 14 d � c � a � b 14

a � d � c � b 13 b � d � c � a 10 c � d � b � a 14 d � c � b � a 14

Table 2.13: Cost imposing monotonicity w.r.t. each ranking on C .

we advocate for exploiting the search for this monotonicity property for the introduction

of new ranking rules.
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CHAPTER 3

Rationalisation of ranking rules

3.1 Metric rationalisation of ranking rules

One of the most well-known methods for the aggregation of rankings is that of Kemeny [80].

According to Kemeny, we select as the winning ranking the one that minimizes the sum of

the Kendall distances to the profile of rankings given by the voters. Note that this ranking

rule can be seen as the search for the ‘closest’ unanimous profile of rankings in the sense

of minimizing the sum of the Kendall distances, i.e., considering the following distance

function between profiles of rankings:

d(R1,R2) =
r∑
i=1

K
(
�1
i ,�2

i

)
.

However, requiring a profile of rankings to be unanimous is a very restrictive property.

Therefore, in social choice theory, another less restrictive property is commonly accepted.

According to Condorcet [35], if it exists, the Condorcet ranking should be the winning

ranking.

In the same way that a profile of rankings does not need to be unanimous, a Condorcet

ranking might not exist either. The method of Dodgson [46] and Condorcet’s least reversals

method [109] look for the minimum number of reversals that need to be made in order to

find a Condorcet ranking.
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Rademaker and De Baets [133] proposed a ranking rule based on the search for mono-

tonicity in the strength of support. According to their proposal, for a ranking a � b � c,

monotonicity implies that the strength with which a � c is supported (number of rankings

where a is ranked before c) should not be less than both the strength with which a � b and

the strength with which b � c are supported. They advocated that the winning ranking

should be the one that is the ‘closest’ to satisfying this assumption. This ‘closeness’ was

measured in terms of the minimum number of reversals.

There is a common pattern between these methods. In each of these ranking rules, a

condition is imposed on the profile of rankings in order to decide which ranking is the

winner. As they allow to undoubtedly decide the winning ranking, these important condi-

tions are called consensus states. A consensus state satisfies the following three properties:

anonymity (reassigning the rankings over the voters does not affect the belonging to the

consensus state), neutrality (if some permutation of candidates is applied to each voter’s

ranking, the same permutation should be observed in the consensus state) and unanimity

(if every voter provides the same ranking, then it belongs to the consensus state).

In the following definition, we consider the following notations. For any set X, P(X)

denotes the power set of A. For any permutation σ of {1, . . . , r}, σ(R) represents the

profile (�j)σ(r)
j=σ(1) obtained by permuting the order of the voters. For any permutation σ

of {1, . . . , k}, Rσ represents the profile (σ(�j))rj=1 obtained by permuting the order of the

candidates.

Definition 3.1 Let C be a set of k candidates and r be the number of voters. A consensus

state is a couple (X ,F ) where X ⊆ L(C )r is a set of profiles of r rankings and F : X →
P(L(C )) is a function satisfying the following three properties:

(i) Anonymity: for any R ∈ L(C )r, any (ai1 , ai2) ∈ C 2 such that ai1 6= ai2 and any

permutation σ of {1, . . . , r}, it holds that(
R ∈X ⇔ σ(R) ∈X

)
∧
(
F (R) = F (σ(R))

)
.

(ii) Neutrality: for any R ∈ L(C )r, any (ai1 , ai2) ∈ C 2 such that ai1 6= ai2 and any

permutation σ of {1, . . . , k}, it holds that(
R ∈X ⇔ Rσ ∈X

)
∧
(
σ(F (R)) = F (Rσ)

)
.
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(iii) Unanimity: for any �∈ L(C ), it holds that(
�r∈X

)
∧
(
F (�r) = �

)
.

The two most common consensus states in the rationalisation of ranking rules are una-

nimity, which holds when every voter expresses the same ranking on the set of candidates,

and presence of a (weak) Condorcet ranking, which holds when there exists a ranking such

that every candidate is preferred by more than (resp. at least) half of the number voters

to all candidates ranked at a worse position.

Note that a consensus state is usually quite restrictive and it is not satisfied by every profile

of rankings. Therefore, when aggregating a profile of rankings, the search for the ‘closest’

profile of rankings in the chosen consensus state needs to be addressed.

Several authors, such as Nitzan [106], Lerer and Nitzan [88], Campbell and Nitzan [27],

Meskanen and Nurmi [99, 100], Andjiga et al. [2] and Elkind et al. [49], have advocated

that (most) ranking rules can be characterized as minimizing the distance to a consensus

state for some appropriate distance function. This characterization is known as metric

rationalisation of ranking rules.

In that way, all these ranking rules based on a consensus state can be seen as a two-step

procedure:

(i) Search for R ′, the ‘closest’ profile of rankings in the chosen consensus state by means

of a distance function or metric.

(ii) Analysis of the consensus state to obtain the winning ranking �.

In Figure 3.1, this two-step procedure is illustrated for the method of Kemeny.

Many ranking rules, such as plurality [6] or the Borda count [18], apparently do not require

any specific consensus state. However, as they determine the winning ranking by ordering

based on the total score awarded to each candidate, all scoring ranking rules [57, 102, 104,

169] (in particular plurality or the Borda count) can be characterized by the distance to the

set of profiles of rankings where the first-ranked candidate coincides for all rankings [99,

100].
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(1, 2, 3, 4)

(1,2,3,4)

(1,2,3,4)

(1,2,3,4)

(1,2,3,4)

(1,2,3,4)

(1,2,3,4)

(1,2,3,4)

...

(1,2,3,4)

(2,1,3,4)

(1,2,3,4)

(4,3,2,1)

(1,2,4,3)

(1,3,2,4)

(1,4,3,2)

...

R R ′

�
(i) (ii)

Figure 3.1: Diagram of the two-step procedure.

3.2 Monometrics

In this section, we introduce the concept of a monometric [126], which is closely related to

that of a distance function or metric. Like a distance function, a monometric satisfies the

axioms of non-negativity and coincidence, but a monometric requires compatibility with a

given betweenness relation [111] and does not impose symmetry nor the triangle inequality.

3.2.1 General case

The notion of a distance function or metric is a well-known concept in mathematics.

Definition 3.2 A function d : A × A → R is called a distance function (on the set A) if

it satisfies the following four properties:

(i) Non-negativity: for any a, b ∈ A, it holds that

d(a, b) ≥ 0 .

(ii) Coincidence: for any a, b ∈ A, it holds that

d(a, b) = 0 ⇔ a = b .
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(iii) Symmetry: for any a, b ∈ A, it holds that

d(a, b) = d(b, a) .

(iv) Triangle inequality: for any a, b, c ∈ A, it holds that

d(a, c) ≤ d(a, b) + d(b, c) .

A betweenness relation is a ternary relation, introduced by Pasch [111] and further de-

veloped by Huntington and Kline [75], that describes when an element is in between two

other ones. In what follows, we adhere to the formal relaxed definition given by Pitcher

and Smiley [130], requiring a minimal set of axioms. Actually, they also proposed addi-

tional axioms concerning transitivity. Further additional axioms have been proposed in

literature [55, 75, 111].

Definition 3.3 A ternary relation R on a set A is called a betweenness relation if it

satisfies the following two properties:

(i) Symmetry in the end points: for any a, b, c ∈ A, it holds that

(a, b, c) ∈ R ⇔ (c, b, a) ∈ R .

(ii) Closure: for any a, b, c ∈ A, it holds that(
(a, b, c) ∈ R ∧ (a, c, b) ∈ R

)
⇔ b = c .

Remark 3.4 Note that, for any a, b ∈ A, (a, b, a) ∈ R implies that a = b. It suffices to see

that it always holds that (b, a, a) ∈ R due to the closure axiom and, therefore, (a, a, b) ∈ R
due to the symmetry in the end points. As it always holds that (a, a, b) ∈ R, due to the

closure axiom we conclude that, if it holds that (a, b, a) ∈ R, then a = b.

The formula ‘(a, b, c) ∈ R’ is read as ‘b is in between a and c’ and is denoted as [a, b, c]

when no confusion is possible.

Although no transitivity axioms are required here, they are necessary conditions in order

to guarantee the existence of an order relation ≤ that agrees with R, i.e., for which it holds
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that (a, b, c) ∈ R if and only if a = b or b = c or a ≤ b ≤ c or c ≤ b ≤ a. For further details

about the relationship between order relations and betweenness relations, we refer to [55].

After fixing a betweenness relation, monometrics can be introduced, which are functions

satisfying the non-negativity and coincidence axioms of a distance function, while preserv-

ing the given betweenness relation.

Definition 3.5 Let A and B be two sets such that A ⊆ B and let R be a betweenness

relation on B. A function M : A×B → R is called a monometric (w.r.t. R) if it satisfies

the following three properties:

(i) Non-negativity: for any a ∈ A and any b ∈ B, it holds that

M(a, b) ≥ 0 .

(ii) Coincidence: for any a ∈ A and any b ∈ B, it holds that

M(a, b) = 0 ⇔ a = b .

(iii) Compatibility: for any a ∈ A and any b, c ∈ B such that [a, b, c], it holds that

M(a, b) ≤M(a, c) .

In case the sets A and B coincide, we say that M is a monometric on A.

For any a ∈ A and any b ∈ B, M(a, b) is called the cost of changing a into b. The set A is

called the set of observable elements and the set B is called the set of reachable elements.

Note that, by considering an appropriate betweenness relation, every distance function can

be considered a monometric. In the following example, three generic betweenness relations

are proposed w.r.t. which every distance function is a monometric.

Proposition 3.6 A distance function d : A × A → R (on the set A) is a monometric

w.r.t. the three following betweenness relations:

(i) R1 = {(a, b, c) ∈ A3 | a = b ∨ b = c};
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(ii) R2 = {(a, b, c) ∈ A3 | d(a, c) = d(a, b) + d(b, c)};

(iii) R3 = R1 ∪ {(a, b, c) ∈ A3 | d(a, b) < d(a, c) ∧ d(c, b) < d(c, a)}.

Proof: We first prove that R1, R2 and R3 satisfy the two axioms of a betweenness relation

(on A).

Symmetry in the end points: for any a, b, c ∈ A, it holds that

(a, b, c) ∈ R1 ⇔ (a = b) ∨ (b = c)

⇔ (c = b) ∨ (b = a)

⇔ (c, b, a) ∈ R1 ,

and

(a, b, c) ∈ R2 ⇔ d(a, c) = d(a, b) + d(b, c)

⇔ d(c, a) = d(b, a) + d(c, b)

⇔ (c, b, a) ∈ R2 ,

due to the symmetry of d, and

(a, b, c) ∈ R3 ⇔ (d(a, b) < d(a, c) ∧ d(c, b) < d(c, a)) ∨ (a = b ∨ b = c)

⇔ (d(c, b) < d(c, a) ∧ d(a, b) < d(a, c)) ∨ (c = b ∨ b = a)

⇔ (c, b, a) ∈ R3 .

Closure: for any a, b, c ∈ A, it holds that(
(a, b, c) ∈ R1

)
∧
(
(a, c, b) ∈ R1

)
⇔ (a = b ∨ b = c) ∧ (a = c ∨ b = c)

⇔ b = c ,

and (
(a, b, c) ∈ R2

)
∧
(
(a, c, b) ∈ R2

)
⇔ d(a, c) = d(a, b) + d(b, c) ∧ d(a, b) = d(a, c) + d(c, b)

⇔ d(b, c) = 0

⇔ b = c ,
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and (
(a, b, c) ∈ R3

)
∧
(
(a, c, b) ∈ R3

)
⇔
(

(d(a, b) < d(a, c) ∧ d(c, b) < d(c, a)) ∨ (a = b ∨ b = c)
)

∧
(

(d(a, c) < d(a, b) ∧ d(b, c) < d(b, a)) ∨ (a = c ∨ c = b)
)

⇔
(
d(a, b) < d(a, c) ∧ d(c, b) < d(c, a) ∧ d(a, c) < d(a, b) ∧ d(b, c) < d(b, a)

)
∨
(
d(a, b) < d(a, c) ∧ d(c, b) < d(c, a) ∧ (a = c ∨ c = b)

)
∨
(

(a = b ∨ b = c) ∧ d(a, c) < d(a, b) ∧ d(b, c) < d(b, a)
)

∨
(

(a = b ∨ b = c) ∧ (a = c ∨ c = b)
)

⇔ (a = b ∨ b = c) ∧ (a = c ∨ c = b)

⇔ b = c .

Next, we prove that d satisfies the three axioms of a monometric (on A) w.r.t. R1, R2 and

R3. The non-negativity and coincidence axioms are trivially satisfied since d is a distance

function. We only need to prove the compatibility axiom.

Firstly, we prove it for R1. Let a, b, c ∈ A be such that (a, b, c) ∈ R1, then a = b or b = c.

Therefore, d(a, b) = 0 or d(a, b) = d(a, c). Hence,

d(a, b) ≤ max
(
0, d(a, c)

)
= d(a, c) .

Secondly, we prove it for R2. Let a, b, c ∈ A be such that (a, b, c) ∈ R2, then d(a, c) =

d(a, b) + d(b, c). Therefore,

d(a, b) = d(a, c)− d(b, c) ≤ d(a, c) .

Thirdly, we prove it for R3. Let a, b, c ∈ A be such that (a, b, c) ∈ R3, then d(a, b) < d(a, c)

or a = b or b = c. Therefore,

d(a, b) ≤ d(a, c) .

Thus, d is a monometric (on A) w.r.t. R1, R2 and R3. �

Note that the introduction of monometrics does not imply a rejection of the symmetry

property or the triangle inequality, but a call for attention to the fact that both properties

are not indispensable in the aggregation of rankings (although these properties are satisfied

by the most widespread monometrics used in the aggregation of rankings). Furthermore,

although any distance function can be seen as a monometric due to Propositon 3.6, it
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must be noted that requiring compatibility with a betweenness relation fixes a notion

of ‘closeness’ that needs to be preserved. After fixing a betweenness relation, not every

distance function can be seen as a monometric w.r.t. the fixed betweenness relation.

Different transformations of distance functions have called the attention of the scientific

community [44]. Here, we consider a natural transformation that takes the value of the

original function whenever this value does not exceed a fixed lower bound, but is penalized

and set to a fixed upper bound when it does.

Definition 3.7 For any function f : A × B → R and any two constants 0 < l ≤ u, the

function fl,u : A×B → R, defined as

fl,u(a, b) =

f(a, b) , if f(a, b) ≤ l,

u , otherwise,

is called the (l, u)-penalized version of f .

Truncation [44] is a common transformation of a distance function, resulting in a so-called

truncated distance function, which can be been as an (l, l)-penalized distance function.

We are interested in fixing a maximum admissible disagreement. Therefore, we measure

the distance between elements, penalizing this measurement if this maximum admissible

disagreement is reached. In order to do so, we set the lower bound l and the upper

bound u such that l ≤ supa∈A,b∈B d(a, b) ≤ u. This penalized distance function might not

satisfy the triangle inequality, but still is a monometric if the original distance function

was. In general, we prove in the following proposition that any (l, u)-penalized version of

a monometric still is a monometric.

Proposition 3.8 Let A and B be two sets such that A ⊆ B and let R be a betweenness

relation on B. For any monometric M : A × B → R (w.r.t. R) and any two constants

0 < l ≤ u, the (l, u)-penalized version of Ml,u : A × B → R of M is a monometric

(w.r.t. R).

Proof: We prove that Ml,u satisfies the three axioms of a monometric w.r.t. R.

Non-negativity: for any a ∈ A and any b ∈ B, it holds that Ml,u(a, b) ∈ {M(a, b), u} and,

therefore, Ml,u(a, b) ≥ 0.
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Coincidence: for any a ∈ A and any b ∈ B, it holds that Ml,u(a, b) = 0 if and only if

M(a, b) = 0. Therefore, it holds that Ml,u(a, b) = 0 if and only if a = b.

Compatibility: for any a ∈ A and any b, c ∈ B such that (a, b, c) ∈ R, it holds that

M(a, b) ≤M(a, c). We distinguish four cases:

(i) Ml,u(a, b) = M(a, b) and Ml,u(a, c) = M(a, c). It holds that Ml,u(a, b) = M(a, b) ≤
M(a, c) = Ml,u(a, c).

(ii) Ml,u(a, b) = M(a, b) and Ml,u(a, c) = u. By definition, it holds that Ml,u(a, b) =

M(a, b) ≤ l ≤ u = Ml,u(a, c).

(iii) Ml,u(a, b) = u and Ml,u(a, c) = M(a, c). Note that this implies that (M(a, b) > l

or M(a, b) = l = u) and M(a, c) ≤ l. Note that (M(a, b) > l and M(a, c) ≤ l)

leads to an impossible case (M(a, b) ≤ M(a, c) ≤ l < M(a, b), a contraction) and

(M(a, b) = l = u and M(a, c) ≤ l) trivially implies that Ml,u(a, b) ≤Ml,u(a, c).

(iv) Ml,u(a, b) = u and Ml,u(a, c) = u. It trivially holds that Ml,u(a, b) ≤Ml,u(a, c).

Thus, Ml,u is a monometric w.r.t. R. �

3.2.2 Monometrics on L(C )

First of all, we clarify the notation that we will use from now on. Curly brackets {}
are used for representing a set of elements without considering a specific order among

them and parentheses () are used for representing an ordered list. Multi-sets, which are

sets of elements where duplicated elements are allowed, are denoted with double curly

brackets {{}}.

Distance functions on a set of rankings have been deeply studied in literature. Some

of the most well-known ones are the Kendall distance [82], the Hamming distance [73]

and the Cayley distance [29]. For the aggregation of rankings, these distance functions

have been used in order to look for the ‘closest’ profile of rankings satisfying some given

properties. However, distance functions are not the most appropriate type of functions for

this problem. Rather, our newly introduced concept of monometric turns out to be better

suited to represent the cost of changing a ranking into another one, as will be thoroughly

discussed in Section 3.5.
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Betweenness relations on L(C ) have been deeply studied [37, 80, 81]. In practical problems,

especially in social choice theory, Kemeny’s proposal [80], which is based on the Kendall

distance function between rankings, is the one that best preserves the preferences given by

the voters. Basically, the Kendall distance between two rankings �1 and �2 counts the

minimum number of consecutive candidates that need to be swapped in order to obtain

�2 starting from �1 (or vice versa). The swap of two consecutive candidates in a ranking

is called a reversal.

Definition 3.9 Let C be a set of k candidates. The number of pairwise discordances be-

tween two rankings �,�′∈ L(C ) is measured by means of the Kendall distance function K:

K(�,�′) = #{(ai1 , ai2) ∈ C 2 | ai1 6= ai2 ∧ P�(ai1) < P�(ai2) ∧ P�′(ai1) > P�′(ai2)} .

Kemeny [80] proposed a related betweenness relation on L(C ). Basically, it says that a

ranking �2 is in between two rankings �1 and �3 if there exists a way of going from �1

to �3 with the fewest number of reversals that passes by �2.

Proposition 3.10 Let C be a set of k candidates. The ternary relation w on L(C ) defined

as

w =
{

(�1,�2,�3) ∈ L(C )3 | K(�1,�3) = K(�1,�2) +K(�2,�3)
}

is a betweenness relation.

Proving that w is a betweenness relation is straightforward as the Kendall distance function

is a distance function and, therefore, it is symmetric and satisfies that two rankings are at

Kendall distance zero if and only if they coincide. A more formal proof can be found in

Proposition 3.6. For this particular betweenness relation, additional axioms of transitivity

are satisfied [55].

Figure 3.2 illustrates the elements that are in between the rankings a � b � c � d and

d � b � a � c according to the betweenness relation w. These rankings are a � b � d � c,

a � d � b � c, b � a � c � d, b � a � d � c, b � d � a � c and d � a � b � c.

Fixing a betweenness relation determines how ‘closeness’ is measured. After fixing a be-

tweenness relation on L(C ), if a ranking �2 is in between two rankings �1 and �3, then

the cost of changing �1 into �2 should not be larger than the cost of changing �1 into �3.

The cost of changing these rankings is measured by means of a monometric on L(C ).
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a�b�c�d

b�a�c�d a�c�b�d a�b�d�c

b�c�a�d c�a�b�d b�a�d�c a�c�d�b a�d�b�c

c�b�a�d b�c�d�a b�d�a�c c�a�d�b a�d�c�b d�a�b�c

c�b�d�a b�d�c�a c�d�a�b d�b�a�c d�a�c�b

c�d�b�a d�b�c�a d�c�a�b

d�c�b�a

Figure 3.2: Graphical representation of w.

We have seen in Proposition 3.6 that, when considering an appropriate betweenness re-

lation, every distance function can be seen as a monometric. The goal is to choose a

meaningful betweenness relation determining our notion of ‘closeness’.

Any monometric defined w.r.t. Kemeny’s betweenness relation will be called a reversal-

based monometric. These monometrics are the most interesting ones in social choice theory

as they prevent from changing distant candidates in a ranking without changing close

candidates first. Some relevant reversal-based monometrics are:

(i) m1(�1,�2) = K(�1,�2). The monometric m1 counts the number of reversals needed

in order to go from a ranking to another one.
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(ii) m2(�1,�2) = 1 − δ(�1,�2) = 1�1 6=�2 , where δ is the Kronecker delta that equals

one in case the variables are equal and zero otherwise. The monometric m2 is the

common zero-one distance function that equals zero if and only if both elements

coincide.

(iii) m3(�1,�2) = 2−p (with m3(�,�) = 0 for any ranking�), where p is the first position

at which both rankings differ. The monometric m3 counts the number of high-ranked

candidates that need to be changed in order to go from a ranking to another one.

(iv) m4(�1,�2) = K(�1,�2)2. The monometric m4 computes the squared number of

reversals.

(v) m5(�1,�2) = K
l,

k(k−1)
2

(�1,�2), where l ∈ {1, . . . , k(k−1)
2
}. The monometric m5 fixes

a maximum admissible disagreement between rankings and counts the number of

reversals needed in order to go from a ranking to another one, penalizing this count

if this maximum admissible disagreement is reached.

Remark 3.11 Although m1, m2 and m3 are distance functions (m3 is even an ultramet-

ric1), not every monometric is a distance function. For instance, m4 and m5 are two

examples of a monometric that are not a distance function because they do not satisfy the

triangle inequality.

Two interesting examples of monometrics that are not reversal-based are the Hamming

distance function [73] and the Cayley distance function [29].

In the following example, monometrics on L(C ) are illustrated.

Example 3.12 Let �1: a � b � c � d and �2: b � a � d � c be two rankings on

C = {a, b, c, d}. Candidates a and b lead to a pairwise discordance between both rankings;

so do c and d. Hence,

{(u, v) ∈ C 2 | u 6= v ∧ P�1(u) < P�1(v) ∧ P�2(u) > P�2(v)} = {(a, b), (c, d)} .

Therefore,

K(�1,�2) = #{(a, b), (c, d)} = 2 .

1An ultrametric d (on a set A) is a distance function (on A) that satisfies the additional axiom d(a, c) ≤
max (d(a, b), d(b, c)), for any a, b, c ∈ A.
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Hence, the minimum number of reversals needed in order to go from �1 to �2 is two.

Let us denote by �3: b � a � c � d and �4: a � b � d � c. There are two possible ways of

going from �1 to �2 with the least number of reversals (two):

C1 : �1→�3→�2 ,

C2 : �1→�4→�2 ,

where �→�′ represents that � is changed into �′ by means of a unique reversal (K(�
,�′ ) = 1).

It holds that [�1,�1,�2], [�1,�2,�2], [�1,�3,�2] and [�1,�4,�2] considering Kemeny’s

betweenness relation. On the other hand, there exists no �∈ L(C ) such that [�1,�,�2]

and, at the same time, �6∈ {�1,�2,�3,�4}.

Note that m1(�1,�2) = K(�1,�2) = 2 is the cost of changing �1 into �2 in terms of the

number of reversals.

Analogously, m2(�1,�2) = 1 − δ(�1,�2) = 1 represents the cost of changing �1 into

�2 in terms of the number of rankings changed. This monometric will be of interest when

minimizing the number of rankings that need to be changed between two profiles of rankings.

As �1 and �2 do not coincide in their first ranked candidate, it holds that m3(�1,�2)

= 2−p = 2−1. This monometric is useful when the goal is to minimize the number of

high-ranked candidates that need to be changed in order to go from a ranking to another

one.

The cost of changing �1 into �2 in terms of the squared number of reversals equals m4(�1

,�2) = K(�1,�2)2 = 4.

Finally, m5 counts the number of reversals needed in order to go from a ranking to another

one, penalizing this count if a maximum admissible disagreement is reached. For l ≤ 2, it

holds that m5(�1,�2) = K(�1,�2) = 2 and, for l > 2, it holds that m5(�1,�2) = k(k−1)
2

=

6.
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3.2.3 Monometrics on L(C )r

When dealing with the aggregation of rankings, it is common to work with profiles of

rankings instead of single rankings. A profile is denoted by R and, when n ∈ N profiles of

rankings of the same size r ∈ N are considered, they are denoted by R1, . . . ,Rn. For any

j ∈ {1, . . . , n}, we will denote by (�ji )ri=1 the corresponding r rankings in Rj.

Some ranking rules require the given profile of rankings to satisfy some specific properties.

However, these properties are not always satisfied and the search for the ‘closest’ profile of

rankings satisfying these properties is addressed. This ‘closeness’ is measured by means of

monometrics on L(C )r. Note that any monometric on L(C ) obviously is a monometric on

L(C )r with r = 1.

Extending a betweenness relation on L(C ) to a betweenness relation on L(C )r can be

realised by comparing the elements of both profiles one to one.

Proposition 3.13 Let C be a set of k candidates, r be the number of voters and w be a

betweenness relation on L(C ). The ternary relation W on L(C )r defined as

W =
{

(R1,R2,R3) ∈ L(C )r |
(
∀i ∈ {1, . . . , r}

)(
(�1

i ,�2
i ,�3

i ) ∈ w
)}

is a betweenness relation.

Proof: We prove that W satisfies the two axioms of a betweenness relation on L(C )r.

Symmetry in the end points: for any R1,R2,R3 ∈ L(C )r, it holds that

(R1,R2,R3) ∈ W ⇔
(
∀i ∈ {1, . . . , r}

)(
(�1

i ,�2
i ,�3

i ) ∈ w
)

⇔
(
∀i ∈ {1, . . . , r}

)(
(�3

i ,�2
i ,�1

i ) ∈ w
)

⇔ (R3,R2,R1) ∈ W .

Closure: for any R1,R2,R3 ∈ L(C )r, it holds that(
(R1,R2,R3) ∈ W

)
∧
(
(R1,R3,R2) ∈ W

)
⇔

(
∀i ∈ {1, . . . , r}

)((
(�1

i ,�2
i ,�3

i ) ∈ w
)
∧
(
(�1

i ,�3
i ,�2

i ) ∈ w
))

⇔
(
∀i ∈ {1, . . . , r}

)(
�2
i=�3

i

)
⇔ R2 = R3 .
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Thus, W is a betweenness relation on L(C )r. �

W is called a ‘betweenness relation on L(C )r induced by w’. The formula ‘(R1,R2,R3) ∈
W ’ is read ‘R2 is in between R1 and R3’ and is denoted as [R1,R2,R3].

Since a ranking is a profile with just one element and both definitions coincide for r = 1,

using the same notation for a betweenness relation on L(C )r and a betweenness relation

on L(C ) is justified.

Given a monometric on L(C ), a monometric on L(C )r can be constructed through the use

of an ‘aggregation’ function.

Proposition 3.14 Let C be a set of k candidates, r be the number of voters, m : L(C )×
L(C )→ R be a monometric on L(C ) (w.r.t. a betweenness relation w on L(C )) and W be

the betweenness relation on L(C )r induced by w. For any r-ary strictly increasing function

A : (R+)r → R+ such that A(0, . . . , 0) = 0, it holds that the function M : L(C )r×L(C )r →
R defined by

M(R1,R2) =
r

A
i=1

(
m(�1

i ,�2
i )
)
,

where
r

A
i=1

(xi) is a shorthand for A(x1, . . . , xr), is a monometric on L(C )r w.r.t. W

Proof: We prove that M satisfies the three axioms of a monometric on L(C )r w.r.t. W .

Non-negativity: immediate.

Coincidence: for any R1,R2 ∈ L(C )r, as A(x1, . . . , xr) = 0 if and only if
(
∀i ∈ {1, . . . , r}

)(
xi = 0

)
and m is a monometric on L(C ), it holds that

M(R1,R2) :=
r

A
i=1

(
m(�1

i ,�2
i )
)

= 0

⇔
(
∀i ∈ {1, . . . , r}

)(
m(�1

i ,�2
i ) = 0

)
⇔

(
∀i ∈ {1, . . . , r}

)(
�1
i=�2

i

)
⇔ R1 = R2 .

Compatibility: for any R1,R2,R3 ∈ L(C )r such that [R1,R2,R3], as A is increasing and

m is a monometric on L(C ), it holds that

M(R1,R2) =
r

A
i=1

(
m(�1

i ,�2
i )
)
≤

r

A
i=1

(
m(�1

i ,�3
i )
)

= M(R1,R3) .
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Thus, M is a monometric on L(C )r w.r.t. W . �

In particular, the addition defines a monometric on L(C )r.

Corollary 3.15 Let C be a set of k candidates, r be the number of voters, m : L(C ) ×
L(C )→ R be a monometric on L(C ) (w.r.t. a betweenness relation w on L(C )) and W be

the betweenness relation on L(C )r induced by w. The function M : L(C )r × L(C )r → R
defined as

M(R1,R2) =
r∑
i=1

m(�1
i ,�2

i )

is a monometric on L(C )r w.r.t. W .

Considering the monometrics on L(C ) introduced in Subsection 3.2.2, we obtain the fol-

lowing monometrics on L(C )r:

(i) M1

(
R1,R2

)
=

r∑
i=1

K
(
�1
i ,�2

i

)
. The monometric M1 counts the number of reversals

needed in order to go from a profile of rankings to another one.

(ii) M2

(
R1,R2

)
=

r∑
i=1

1−δ
(
�1
i ,�2

i

)
. The monometric M2 counts the number of rankings

that differ from a profile of rankings to another one.

(iii) M3

(
R1,R2

)
=

r∑
i=1

m3

(
�1
i ,�2

i

)
. The monometric M3 counts the number of high-

ranked candidates that need to be changed in order to go from a profile of rankings

to another one.

(iv) M4

(
R1,R2

)
=

r∑
i=1

K
(
�1
i ,�2

i

)2
. The monometric M4 computes the squared number

of reversals.

(v) M5

(
R1,R2

)
=

r∑
i=1

K
l,

k(k−1)
2

(
�1
i ,�2

i

)
(with l ∈ {1, . . . , k(k−1)

2
}). The monometric M5

fixes a maximum admissible disagreement between rankings and counts the number

of reversals needed in order to go from a profile of rankings to another one, penalizing

this count each time that this maximum admissible disagreement is reached.
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(vi) M6

(
R1,R2

)
= 1− δ(R1,R2). The monometric M6 only takes into account whether

or not two profiles of rankings differ. It must be noted that M6 is a monometric on

L(C )r that is not defined by means of a monometric on L(C ).

In the following example, these monometrics on L(C )r are illustrated.

Example 3.16 Let R1, R2 and R3 be the following profiles of rankings on C = {a, b, c, d}:

R1 = (�1
1,�1

2,�1
3,�1

4) =
(
a � b � c � d, a � b � d � c, d � c � a � b, d � c � b � a

)
,

R2 = (�2
1,�2

2,�2
3,�2

4) =
(
a � b � d � c, d � c � a � b, d � c � b � a, d � c � b � a

)
,

R3 = (�3
1,�3

2,�3
3,�3

4) =
(
a � b � d � c, d � c � b � a, d � c � b � a, a � b � c � d

)
.

It is easy to see that, considering Kemeny’s betweenness relation on L(C ), [�1
i ,�2

i ,�3
i ]

for any i ∈ {1, . . . , 4}. Therefore, it holds that [R1,R2,R3] considering the betweenness

relation on L(C )r induced by Kemeny’s betweenness relation on L(C ).

Furthermore,

M1(R1,R2) =
4∑
i=1

K(�1
i ,�2

i ) = 1 + 4 + 1 + 0 = 6 ,

M1(R1,R3) =
4∑
i=1

K(�1
i ,�3

i ) = 1 + 5 + 1 + 6 = 13 .

Note that it indeed holds that

M1(R1,R2) = 6 ≤ 13 = M1(R1,R3) .



CHAPTER 3 RATIONALISATION OF RANKING RULES 59

Other possible monometrics lead to2:

M2(R1,R2) =
4∑
i=1

1− δ(�1
i ,�2

i ) = 3 ,

M2(R1,R3) =
4∑
i=1

1− δ(�1
i ,�3

i ) = 4 ,

M3(R1,R2) =
4∑
i=1

m3

(
�1
i ,�2

i

)
=

3

4
,

M3(R1,R3) =
4∑
i=1

m3

(
�1
i ,�3

i

)
=

5

4
,

M4(R1,R2) =
4∑
i=1

K(�1
i ,�2

i )
2 = 18 ,

M4(R1,R3) =
4∑
i=1

K(�1
i ,�3

i )
2 = 63 ,

M5(R1,R2) =
4∑
i=1

K3,6

(
�1
i ,�2

i

)
= 8 ,

M5(R1,R3) =
4∑
i=1

K3,6

(
�1
i ,�3

i

)
= 14 ,

M6(R1,R2) = 1− δ(R1,R2) = 1 ,

M6(R1,R3) = 1− δ(R1,R3) = 1 .

The relationship between the costs of changing R1 into R2 and R1 into R3 are, of course,

still satisfied:

M2(R1,R2) = 3 ≤ 4 = M2(R1,R3) ,

M3(R1,R2) =
3

4
≤ 5

4
= M3(R1,R3) ,

M4(R1,R2) = 18 ≤ 63 = M4(R1,R3) ,

M5(R1,R2) = 8 ≤ 14 = M5(R1,R3) ,

M6(R1,R2) = 1 ≤ 1 = M6(R1,R3) .

2For the monometric M5, the maximum admissible disagreement is set to l = 3.
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3.2.4 Monometrics onMr(L(C ))

In some cases, a profile of rankings is given in the form of a multi-set where voters cannot

be related with their respective votes in order to preserve their privacy. These multi-

sets of rankings are called anonymised profiles of rankings. An anonymised profile is

denoted by Y and, when n ∈ N anonymised profiles of rankings of the same size r ∈ N
are considered, they are denoted by Y1, . . . ,Yn. The set of all anonymised profiles of r

rankings on C is denoted byMr(L(C )). Although no order is defined between the rankings

in an anonymised profile of rankings, we will assign a label to each ranking in order to

ease notations. For any j ∈ {1, . . . , n}, we will denote by {{�ji}}ri=1 the corresponding r

rankings in Yj. For a permutation σ ∈ Πr, where Πr = L({1, . . . , r}) denotes the set

of permutations of {1, . . . , r}, we will denote by σ(Y ) the profile of rankings where each

ranking of the anonymised profile of rankings Y is in the position given by σ.

After choosing a monometric, the notion of an optimal permutation triplet can be defined.

Intuitively, a permutation triplet is optimal if there are no other ways of re-ordering the

anonymised profiles leading to a lower cost considering the chosen monometric on L(C )r.

More formally, we introduce optimal permutation triplets in the following definition.

Definition 3.17 Let C be a set of k candidates, r be the number of voters, Y1,Y2,Y3 ∈
Mr(L(C )) be three anonymised profiles and M be a monometric on L(C )r (w.r.t. a be-

tweenness relation on L(C )r). A permutation triplet (σ1, σ2, σ3) ∈ Π3
r is called optimal

if 
M
(
σ1(Y1), σ2(Y2)

)
= min

σ,σ′∈Πr

M
(
σ(Y1), σ′(Y2)

)
,

M
(
σ1(Y1), σ3(Y3)

)
= min

σ,σ′∈Πr

M
(
σ(Y1), σ′(Y3)

)
,

M
(
σ2(Y2), σ3(Y3)

)
= min

σ,σ′∈Πr

M
(
σ(Y2), σ′(Y3)

)
.

The set of all optimal permutation triplets is denoted by ΘM
r (Y1,Y2,Y3).

Although it may be non-intuitive at first sight, a betweenness relation on Mr(L(C )) de-

pends on a monometric on L(C )r. In the following example, the need of introducing

optimal permutation triplets for constructing a betweenness relation on Mr(L(C )) is il-

lustrated.
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Example 3.18 Let Y1, Y2 and Y3 be the following anonymised profiles of rankings on

C = {a, b, c, d}:

Y1 = {{�1
1,�1

2}} = {{a � b � c � d, d � c � b � a}} ,
Y2 = {{�2

1,�2
2}} = {{a � c � b � d, a � c � b � d}} ,

Y3 = {{�3
1,�3

2}} = {{a � b � c � d, d � c � b � a}} .

In case r = 2, it holds that Πr = {σI , σR}, with σI = (1, 2) and σR = (2, 1). We identify a

triplet of permutations (σI , σI , σR) ∈ Π3
r such that

(
σI(Y1), σI(Y2), σR(Y1)

)
∈ W , where W

is the betweenness relation on L(C )r induced by Kemeny’s betweenness relation on L(C ).

This would contradict the closure axiom of a betweenness relation onMr(L(C )). One may

note that this non-intuitive result is due to the fact that (σI , σI , σR) may not be an optimal

permutation triplet (due to the coincidence axiom of a monometric).

Therefore, extending a betweenness relation on L(C )r to a betweenness relation on Mr

(L(C )) depends on the chosen monometric on L(C )r. In particular, we are interested in a

particular kind of monometrics on L(C )r.

Definition 3.19 Let C be a set of k candidates and r be the number of voters. A mono-

metric M on L(C )r (w.r.t. a betweenness relation on L(C )r) is called order-invariant if,

for any three anonymised profiles Y1,Y2,Y3 ∈ Mr(L(C )), the following two statements

are equivalent:

(i) (σ1, σ2, σ3) ∈ ΘM
r (Y1,Y2,Y3);

(ii)
(
∀ε ∈ Π3

)(
(σε(1), σε(2), σε(3)) ∈ ΘM

r (Yε(1),Yε(2),Yε(3))
)
.

Remark 3.20 In order to prove that a monometric is order invariant, it is sufficient to

prove that the following statements are equivalent:

(i) (σ1, σ2, σ3) ∈ ΘM
r (Y1,Y2,Y3);

(ii) (σ2, σ3, σ1) ∈ ΘM
r (Y2,Y3,Y1);

(iii) (σ3, σ1, σ2) ∈ ΘM
r (Y3,Y1,Y2).
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Remark 3.21 Any symmetric monometric is, by definition of optimal permutation triplet,

order invariant. In particular, all the monometrics introduced in Subsection 3.2.3 are order

invariant.

The notion of an optimal permutation triplet defined by an order-invariant monometric on

L(C )r allows us to introduce a betweenness relation on Mr(L(C )). Obviously, different

monometrics on L(C )r may yield different betweenness relations on Mr(L(C )).

Proposition 3.22 Let C be a set of k candidates, r be the number of voters, W be a be-

tweenness relation on L(C )r and M be an order-invariant monometric on L(C )r w.r.t. W .

The ternary relation W on Mr(L(C )) defined as

W =

(Y1,Y2,Y3

)
∈Mr(L(C ))3

∣∣∣∣∣∣∣
ΘM
r (Y1,Y2,Y3) 6= ∅
∧
(
∀(σ1, σ2, σ3) ∈ ΘM

r (Y1,Y2,Y3)
)((

σ1(Y1), σ2(Y2), σ3(Y3)
)
∈ W

)


is a betweenness relation.

Proof: We prove that W satisfies the two axioms of a betweenness relation onMr(L(C )).

Symmetry in the end points: for any Y1,Y2,Y3 ∈Mr(L(C )), it holds that(
Y1,Y2,Y3

)
∈W

⇔

ΘM
r (Y1,Y2,Y3) 6= ∅(
∀(σ1, σ2, σ3) ∈ ΘM

r (Y1,Y2,Y3)
)((

σ1(Y1), σ2(Y2), σ3(Y3)
)
∈ W

)
⇔

ΘM
r (Y1,Y2,Y3) 6= ∅(
∀(σ1, σ2, σ3) ∈ ΘM

r (Y1,Y2,Y3)
)((

σ3(Y3), σ2(Y2), σ1(Y1)
)
∈ W

)
⇔
(∗)

ΘM
r (Y1,Y2,Y3) 6= ∅(
∀(σ3, σ2, σ1) ∈ ΘM

r (Y3,Y2,Y1)
)((

σ3(Y3), σ2(Y2), σ1(Y1)
)
∈ W

)
⇔

(
Y3,Y2,Y1

)
∈W ,

(∗) as M is order invariant.
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Closure: for any Y1,Y2,Y3 ∈Mr(L(C )), it holds that(
(Y1,Y2,Y3) ∈W

)
∧
(
(Y1,Y3,Y2) ∈W

)

⇔



ΘM
r (Y1,Y2,Y3) 6= ∅(
∀(σ1, σ2, σ3) ∈ ΘM

r (Y1,Y2,Y3)
)((

σ1(Y1), σ2(Y2), σ3(Y3)
)
∈ W

)ΘM
r (Y1,Y3,Y2) 6= ∅(
∀(σ′1, σ′3, σ′2) ∈ ΘM

r (Y1,Y3,Y2)
)((

σ′1(Y1), σ′3(Y3), σ′2(Y2)
)
∈ W

)

⇔
(∗)


ΘM
r (Y1,Y2,Y3) 6= ∅(
∀(σ1, σ2, σ3) ∈ ΘM

r (Y1,Y2,Y3)
)((

σ1(Y1), σ2(Y2), σ3(Y3)
)
∈ W ∧

(
σ1(Y1), σ3(Y3), σ2(Y2)

)
∈ W

)
⇔

ΘM
r (Y1,Y2,Y3) 6= ∅(
∀(σ1, σ2, σ3) ∈ ΘM

r (Y1,Y2,Y3)
)(
σ2(Y2) = σ3(Y3)

)
⇔ Y2 = Y3 ,

(∗) as M is order invariant.

Thus, W is a betweenness relation on Mr(L(C )). �

W is called a ‘betweenness relation on Mr(L(C )) induced by W and M ’. The formula

‘(Y1,Y2,Y3) ∈W’ is read ‘Y2 is in between Y1 and Y3’ and is denoted as [Y1,Y2,Y3].

Given a monometric on L(C )r, we can construct a monometric on Mr(L(C )).

Proposition 3.23 Let C be a set of k candidates, r be the number of voters, W be a

betweenness relation on L(C )r and M : L(C )r ×L(C )r → R be an order-invariant mono-

metric on L(C )r w.r.t. W . The function M :Mr(L(C ))×Mr(L(C ))→ R defined by

M(Y1,Y2) = min
σ,σ′∈Πr

M
(
σ(Y1), σ′(Y2)

)
is a monometric on Mr(L(C )) w.r.t. W, the betweenness relation on Mr(L(C )) induced

by W and M .

Proof: We prove that M satisfies the three axioms of a monometric on Mr(L(C ))

w.r.t. W.
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Non-negativity: immediate.

Coincidence: for any Y1,Y2 ∈Mr(L(C )), it holds that

M(Y1,Y2) := min
σ,σ′∈Πr

M
(
σ(Y1), σ′(Y2)

)
= 0

⇔
(
∃σ1, σ2 ∈ Πr

)(
M
(
σ1(Y1), σ2(Y2)

)
= 0
)

⇔
(
∃σ1, σ2 ∈ Πr

)(
σ1(Y1) = σ2(Y2)

)
⇔ Y1 = Y2 .

Compatibility: for any Y1,Y2,Y3 ∈ Mr(L(C )) such that (Y1,Y2,Y3) ∈ W, it holds by

definition for any (σ1, σ2, σ3) ∈ ΘM
r (Y1,Y2,Y3) that(

σ1(Y1), σ2(Y2), σ3(Y3)
)
∈W .

Hence,

M(Y1,Y2) = min
σ,σ′∈Πr

M
(
σ(Y1), σ′(Y2)

)
= M

(
σ1(Y1), σ2(Y2)

)
≤M

(
σ1(Y1), σ3(Y3)

)
= min

σ,σ′∈Πr

M
(
σ(Y1), σ′(Y3)

)
= M(Y1,Y3) .

Thus, M is a monometric on Mr(L(C )) w.r.t. W. �

The following corollary shows how any monometric on L(C ) naturally leads to a mono-

metric on Mr(L(C )).

Corollary 3.24 Let C be a set of k candidates, r be the number of voters, w be a between-

ness relation on L(C ) and m : L(C ) × L(C ) → R be an order-invariant monometric on

L(C ) w.r.t. w. The function M :Mr(L(C ))×Mr(L(C ))→ R defined by

M(Y1,Y2) = min
σ∈Πr

r∑
i=1

m
(
�1
i ,�2

σ(i)

)
is a monometric on Mr(L(C )) w.r.t. W, the betweenness relation on Mr(L(C )) induced

by W (the betweenness relation on L(C ) induced by w) and M (the monometric on L(C )

induced by the addition).

Considering the monometrics on L(C ) introduced in Subsection 3.2.2, we obtain the fol-

lowing monometrics on Mr(L(C )):
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(i) M1

(
Y1,Y2

)
= min

σ∈Πr

r∑
i=1

K
(
�1
i ,�2

σ(i)

)
. The monometric M1 counts the number of

reversals needed in order to go from an anonymised profile of rankings to another

one.

(ii) M2

(
Y1,Y2

)
= min

σ∈Πr

r∑
i=1

1− δ
(
�1
i ,�2

σ(i)

)
. The monometric M2 counts the number of

rankings that differ from an anonymised profile of rankings to another one.

(iii) M3

(
Y1,Y2

)
= min

σ∈Πr

r∑
i=1

m3

(
�1
i ,�2

σ(i)

)
. The monometric M3 counts the number of

high-ranked candidates that need to be changed in order to go from an anonymised

profile of rankings to another one.

(iv) M4

(
Y1,Y2

)
= min

σ∈Πr

r∑
i=1

K
(
�1
i ,�2

σ(i)

)2
. The monometric M4 computes the the

squared number of reversals needed in order to go from an anonymised profile of

rankings to another one.

(v) M5

(
Y1,Y2

)
= min

σ∈Πr

r∑
i=1

K
l,

k(k−1)
2

(
�1
i ,�2

σ(i)

)
(with l ∈ {1, . . . , k(k−1)

2
}). The mono-

metric M5 fixes a maximum admissible disagreement between rankings and counts

the number of reversals needed in order to go from an anonymised profile of rank-

ings to another one, penalizing this count each time that this maximum admissible

disagreement is reached.

(vi) M6

(
Y1,Y2

)
= 1 − δ(Y1,Y2). The monometric M6 only takes into account whether

or not two anonymised profiles of rankings differ. It must be noted that M6 is a

monometric on Mr(L(C )) that is not defined by means of a monometric on L(C ).

Remark 3.25 As the addition is commutative, permutations of the first anonymised pro-

file are not needed.

In the following example, these concepts are illustrated.
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Example 3.26 Let Y1, Y2 and Y3 be the following anonymised profiles of rankings on

C = {a, b, c, d}:

Y1 = {{�1
1,�1

2}} = {{a � b � c � d, d � c � b � a}} ,
Y2 = {{�2

1,�2
2}} = {{a � d � b � c, d � c � b � a}} ,

Y3 = {{�3
1,�3

2}} = {{d � a � b � c, c � d � b � a}} .

In this example, we will consider W to be the betweenness relation on L(C )r induced by

Kemeny’s betweenness relation w on L(C ).

As was stated in Proposition 3.22, in case the monometric M1 (w.r.t. W ) on L(C )r given

by the sum of the Kendall distances is considered, a betweenness relation W1 onMr(L(C ))

is induced by W and M1.

In case r = 2, it holds that Πr = {σI , σR}, with σI = (1, 2) and σR = (2, 1). Con-

sidering M1, only (σI , σI) and (σR, σR) minimize M1

(
σ(Y1), σ′(Y2)

)
. Analogously, only

(σI , σI) and (σR, σR) minimize M1

(
σ(Y1), σ′(Y3)

)
and only (σI , σI) and (σR, σR) minimize

M1

(
σ(Y2), σ′(Y3)

)
. Therefore, there are only two optimal permutation triplets (σ1, σ2, σ3) ∈

ΘM
r (Y1,Y2,Y3): (σI , σI , σI) and (σR, σR, σR).

Firstly, considering (σ1, σ2, σ3) = (σI , σI , σI), it holds that(
�1
σI(1),�2

σI(1),�3
σI(1)

)
=
(
�1

1,�2
1,�3

1

)
=
(
a� b� c� d, a� d� b� c, d� a� b� c

)
∈ w(

�1
σI(2),�2

σI(2),�3
σI(2)

)
=
(
�1

2,�2
2,�3

2

)
=
(
d� c� a� b, d� c� b� a, c� d� b� a

)
∈ w

and, therefore,
(
σI(Y1), σI(Y2), σI(Y3)

)
∈ W . Analogously, considering (σ1, σ2, σ3) =

(σR, σR, σR), it holds that(
�1
σR(1),�2

σR(1),�3
σR(1)

)
=
(
�1

2,�2
2,�3

2

)
=
(
d� c� a� b, d� c� b� a, c� d� b� a

)
∈ w(

�1
σR(2),�2

σR(2),�3
σR(2)

)
=
(
�1

1,�2
1,�3

1

)
=
(
a� b� c� d, a� d� b� c, d� a� b� c

)
∈ w

Therefore,
(
σR(Y1), σR(Y2), σR(Y3)

)
∈ W . Finally, as every optimal permutation triplet

belongs to W , it holds that (Y1,Y2,Y3) ∈W1.

Note that, in case the monometric M1 on Mr(L(C )) (w.r.t. W1) defined as

M1(Y ,Y ′) = min
σ,σ′∈Πr

M1

(
σ(Y ), σ′(Y ′)

)
,
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is considered, it holds that

M1(Y1,Y2) = min
σ,σ′∈Πr

M1

(
σ(Y1), σ′(Y2)

)
= min

(
M1

(
σI(Y1), σI(Y2)

)
,M1

(
σI(Y1), σR(Y2)

)
,

M1

(
σR(Y1), σR(Y2)

)
,M1

(
σR(Y1), σI(Y2)

))
= min(3, 9, 3, 9) = 3 .

Analogously,

M1(Y1,Y3) = min
σ,σ′∈Πr

M1

(
σ(Y1), σ′(Y3)

)
= min

(
M1

(
σI(Y1), σI(Y3)

)
,M1

(
σI(Y1), σR(Y3)

)
,

M1

(
σR(Y1), σR(Y3)

)
,M1

(
σR(Y1), σI(Y3)

))
= min(5, 7, 5, 7) = 5 .

Therefore, as expected due to (Y1,Y2,Y3) ∈W1, it holds that

M1(Y1,Y2) = 3 ≤ 5 = M1(Y1,Y3) .

On the other hand, in case the monometric M2 (w.r.t. W ) on L(C )r given by the sum

of the zero-one comparisons between rankings is considered, a betweenness relation W2 on

Mr(L(C )), is also induced by W and M2, as was stated in Proposition 3.22.

Now, considering M2, any couple of permutations minimizes M2

(
σ(Y1), σ′(Y2)

)
. Analo-

gously, any couple of permutations minimizes M2

(
σ(Y1), σ′(Y3)

)
and M2

(
σ(Y2), σ′(Y3)

)
.

Therefore, considering, for instance, (σI , σR, σI), it holds that
M2

(
σI(Y1), σR(Y2)

)
= min

σ,σ′∈Πr

M2

(
σ(Y1), σ′(Y2)

)
,

M2

(
σI(Y1), σI(Y3)

)
= min

σ,σ′∈Πr

M2

(
σ(Y1), σ′(Y3)

)
,

M2

(
σR(Y2), σI(Y3)

)
= min

σ,σ′∈Πr

M2

(
σ(Y2), σ′(Y3)

)
,

i.e., it is an optimal permutation triplet. However, as(
�1
σI(1),�2

σR(1),�3
σI(1)

)
=
(
�1

1,�2
2,�3

1

)
=
(
a� b� c� d, d� c� b� a, d� a� b� c

)
6∈ w ,(

�1
σI(2),�2

σR(2),�3
σI(2)

)
=
(
�1

2,�2
1,�3

2

)
=
(
d� c� a� b, a� d� b� c, c� d� b� a

)
6∈ w ,

it holds that
(
σI(Y1), σR(Y2), σI(Y3)

)
6∈ W .

Thus, (Y1,Y2,Y3) 6∈W2 (even though (Y1,Y2,Y3) ∈W1).
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3.3 Cost calculation as an optimization problem

Many problems related with monometrics can be formulated as optimization problems. In

this section, two particular problems are analysed: the calculation of the cost of changing an

anonymised profile of rankings into another one and the search for a ‘closest’ (anonymised)

profile of rankings satisfying a certain property.

3.3.1 Calculating the cost of changing an anonymised profile of rankings into
another one

Calculating the cost of changing a profile into another one considering a monometric on

L(C )r of the form

M
(
R1,R2

)
=

r∑
i=1

m
(
�1
i ,�2

i

)
,

where m is a monometric on L(C ), is a trivial problem.

However, calculating the cost of changing an anonymised profile into another one consid-

ering a monometric on Mr(L(C )) of the form

M
(
Y1,Y2

)
= min

σ

r∑
i=1

m
(
�1
i ,�2

σ(i)

)
,

where m is a monometric on L(C ), is not trivial as the best matching needs to be found.

The search for this best matching can be seen as an assignment problem [110], which is a

particular case of Integer Linear Programming (ILP).

In an assignment problem, there are a number of agents and the same number of tasks.

Each agent has an associated cost for performing each of the tasks. The goal of an assign-

ment problem is to search for a distribution of tasks with the minimum possible total cost

such that every agent performs one and exactly one task.

In our particular setting, we have two anonymised profiles Y1 and Y2 consisting of r

rankings. For solving the problem, we will define r2 variables xij taking values in {0, 1}.
For any i, j ∈ {1, . . . , r}, xij = 1 means that the i-th ranking in Y1 is assigned to the j-th

ranking in Y2. Analogously, xij = 0 means that the i-th ranking in Y1 is not assigned to

the j-th ranking in Y2. As the assignment needs to be a bijection, the sums of the xij for
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either i’s or j’s needs to be equal to one. Also a matrix of costs C needs to be defined,

where the element Cij represents the cost of changing the i-th ranking in Y1 into the j-th

ranking in Y2.

The mathematical formulation of the problem is:

Minimize
r∑
i=1

r∑
j=1

Cijxij w.r.t. {xij}ri,j=1

s.t.
r∑
i=1

xij = 1, for any j ∈ {1, . . . , r} ,
r∑
j=1

xij = 1, for any i ∈ {1, . . . , r} ,

xij ≥ 0, for any i, j ∈ {1, . . . , r} ,
xij ∈ Z, for any i, j ∈ {1, . . . , r} .

Assignment problems are one of the fundamental problems in combinatorial optimization

and have been deeply studied. There exist several methods to solve this problem in poly-

nomial time, for instance, the Hungarian method [86].

3.3.2 Searching the ‘closest’ (anonymised) profile of rankings

In some cases, we are not interested in obtaining the cost of changing a profile of rankings

into another one, but in the ‘closest’ profile of rankings satisfying a certain property given

a profile of rankings R. In this case, we will no longer have an assignment problem, as the

‘tasks’ are unknown. However, a transportation problem can be defined [101].

In a transportation problem, we have a number of supply points and a number of demand

points. At each supply point certain product is produced and it needs to be transported to

the demand points satisfying the required demands at each demand point. Transporting a

unit of product from a supply point to a demand point has an associated cost. An optimal

transportation distribution needs to be defined such that the demand is satisfied.

Note that in our particular setting, each ranking in L(C ) is both a supply point and a

demand point. The quantity of product produced at each supply point is given by R

and, as the number of rankings needs to be preserved, all the produced units need to be

transported to a demand point. There are no demands at each demand point. Formalizing

the problem is similar to the assignment problem where (k!)2 variables xij taking values
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in N ∪ {0} are defined, k being the number of candidates in C . For any i, j ∈ {1, . . . , k!},
xij = n means that n units of the i-th ranking in L(C ) are assigned to n units of the j-th

rankings in L(C ). In this case, we have an initial profile of rankings where each ranking �i
appears si times. These si can be seen as the number of units of product that are produced

at each supply point. The goal is to distribute these products satisfying the required global

demand and a certain property P that can be defined as a linear condition on the profile

of rankings. The constraints used in the assignment problem need to be modified, leading

to the following problem:

Minimize
k!∑
i=1

k!∑
j=1

Cijxij w.r.t. {xij}k!
i,j=1

s.t.
k!∑
j=1

xij = si, for any i ∈ {1, . . . , k!} ,

xij ≥ 0, for any i, j ∈ {1, . . . , k!} ,
xij ∈ Z, for any i, j ∈ {1, . . . , k!} ,
P, the property to be satisfied by the profile of rankings .

Transportation problems with additional constraints can also be solved in polynomial

time [84]. Note that, on the one hand, in the calculation of the cost of changing a profile

of rankings into another one, this polynomial time is in terms of r, the number of rankings

in the profiles. On the other hand, in the calculation of the ‘closest’ profile of rankings

satisfying a fixed property, this polynomial time is in terms of k!, which turns out to be

an euphemism for non-polynomial time. This is an obvious computational drawback, even

though in some fields of application of the aggregation of rankings, for instance in social

choice theory, the number of candidates in C is typically quite small. The simplest case

where the property P requires all the rankings in the profile to be the same (Kemeny [80])

has called the attention of several researchers. Although to compute its winning ranking

is proved to be an NP-hard problem [9], several algorithms improving the performance of

the method have been proposed [1, 13, 77]. Further research on the computational aspects

of the search for the ‘closest’ profile of rankings still needs to be addressed in the general

case.

Note that in case the required property does not take the order of the voters into account,

every profile of rankings given by a permutation of an anonymised profile of rankings

satisfies the same property. In that case, the search for the ‘closest’ profile of rankings

satisfying certain property is equivalent to the search for the ‘closest’ anonymised profile

of rankings.
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3.3.3 The special case of the zero-one monometric

The complexity of the problem of finding the ‘closest’ profile of rankings may depend on

the chosen monometric. For instance, a less complex problem can be solved in case the

zero-one monometric on L(C )r is considered.

M2

(
R1,R2

)
=

r∑
i=1

1− δ
(
�1
i ,�2

i

)
.

In this case, as every change is equally costly, looking for the assignment that will lead to

the lowest cost is not necessary. Therefore, an easier Integer Linear Programming problem

can be defined.

Firstly, we will define k! positive integer variables that will be denoted by xi. Each xi will

represent the number of times the i-th ranking in L(C ) appears in the closest profile of

rankings. Analogously, each oi will represent the number of times the i-th ranking in L(C )

appears in the given profile of rankings.

We will minimize the zero-one monometric M2

(
R1,R2

)
, which can be written in terms of

our variables as:
1

2

k!∑
i=1

|xi − oi| . (3.1)

Note that, due to the absolute values, we have an Integer Non-Linear Programming problem

(INLP) instead of an Integer Linear Programming problem (ILP). Fortunately, an absolute

value constraint can be turned into two linear constraints by adding an additional positive

variable. In particular, minimizing Eq. (3.1) is equivalent to minimizing:

1

2

k!∑
i=1

yi ,

under the additional constraints, for any i ∈ {1, . . . , k!},

xi − oi ≤ yi ,

oi − xi ≤ yi .
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Therefore, the problem to be optimized is the following:

Minimize
1

2

k!∑
i=1

yi w.r.t. {yi}k!
i=1

s.t.
k!∑
i=1

xi = r ,

xi − oi ≤ yi ,

oi − xi ≤ yi ,

xi, yi ≥ 0, for any i ∈ {1, . . . , k!} ,
xi, yi ∈ Z, for any i ∈ {1, . . . , k!} ,
P, the property to be satisfied by the profile of rankings .

Although the computational cost of the algorithm is still polynomial in terms of k!, a

significant reduction in the number of variables was addressed (2k! instead of (k!)2) with

respect to the general case.

3.4 Hierarchical combination of monometrics

There exist many different monometrics defined according to different criteria: number of

reversals made, number of rankings changed, etc. Moreover, in general, the uniqueness of a

‘closest’ (anonymised) profile of rankings is not assured. An intuitive idea to reduce the set

of ‘closest’ (anonymised) profiles of rankings satisfying a fixed property is to hierarchically

combine monometrics.

In the following proposition, we will see that any convex combination of a finite number

of monometrics is a monometric.

Proposition 3.27 Let A and B be two sets such that A ⊆ B, let R be a betweenness

relation on B and M1, . . . ,Mn : A × B → R be n monometrics (w.r.t. R). For any

(α1, . . . , αn) ∈ [0, 1]n such that
∑n

i=1 αi = 1, the function M : A×B → R defined by

M(a, b) =
n∑
i=1

αiMi(a, b)

is a monometric w.r.t. R.
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Proof: We prove that M satisfies the three axioms of a monometric w.r.t. R.

Non-negativity: immediate.

Coincidence: for any a ∈ A, any b ∈ B and any (α1, . . . , αn) ∈ [0, 1]n, it holds that

M(a, b) :=
n∑
i=1

αiMi(a, b) = 0

⇔ (∀i ∈ {1, . . . , n})(αi = 0 ∨Mi(a, b) = 0)

⇔ ∧ (∃i ∈ {1, . . . , n})(αi 6= 0 ∧Mi(a, b) = 0)

⇔ a = b .

Compatibility: for any a ∈ A and any b, c ∈ B such that [a, b, c] and any (α1, . . . , αn) ∈
[0, 1]n, it holds that

M(a, b) =
n∑
i=1

αiMi(a, b)

≤
n∑
i=1

αiMi(a, c)

= M(a, c) .

Thus, M is a monometric w.r.t. R. �

Remark 3.28 It must be noted that in the case of anonymised profiles of rankings, be-

tweenness relations induced by monometrics on L(C )r are commonly used. The result of

Proposition 3.27 does not hold when considering, instead of a fixed betweenness relation,

a different betweenness relation for each monometric. For instance, let us consider a be-

tweenness relation W on L(C )r. The function M :Mr(L(C )) ×Mr(L(C )) → R defined

by

M(Y1,Y2) =
n∑
i=1

αiMi(Y1,Y2)

where M1, . . . ,Mn are n monometrics onMr(L(C )) w.r.t. W1, . . . ,Wn (the n betweenness

relations on Mr(L(C )) induced by M1, . . . ,Mn) respectively, is not guaranteed to satisfy

compatibility w.r.t. W (the betweenness relation on Mr(L(C )) induced by M). This is

because ∩ni=1Wi is not necessarily included in W.



74 3.5 MONOMETRIC RATIONALISATION OF RANKING RULES

According to these results, a hierarchical combination of two monometrics where the second

monometric is used as a tie-breaker method between all the ‘closest’ anonymised profiles

of rankings can be proposed.

Let us consider two monometrics on L(C )r bounded from above by an upper bound Bu

and such that the cost of changing any profile of rankings into a different one is bounded

from below by a lower bound Bl > 0. If we consider the function

M(R1,R2) = αM1(R1,R2) + (1− α)M2(R1,R2) ,

then we can express M2 as a tie-breaker of M1 considering any α ∈ ] Bu

Bu+Bl
, 1[. Analogously,

we can express M1 as a tie-breaker of M2 considering any α ∈ ]0, Bl

Bu+Bl
[.

These results can be trivially extended to monometrics on Mr(L(C )).

i Mi/Mi Bl Bu

1 M1/M1 1 rk(k−1)
2

2 M2/M2 1 r

3 M3/M3 21−k r
2

4 M4/M4 1
(
rk(k−1)

2

)2

5 M5/M5 1 rk(k−1)
2

6 M6/M6 1 1

Table 3.1: Lower and upper bounds of the monometrics on L(C )r defined

in Subsection 3.2.3 (left) and of the monometrics on Mr(L(C )) defined in

Subsection 3.2.4 (right).

Note that, as can be seen in Table 3.1, the monometrics on L(C )r defined in Subsec-

tion 3.2.3 and the monometrics on Mr(L(C )) defined in Subsection 3.2.4 are bounded in

this way.

3.5 Monometric rationalisation of ranking rules

Under the name of metric rationalisation of ranking rules [2, 27, 49, 88, 100, 106], several

authors have discussed how most ranking rules can be characterized as minimizing the
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distance to a consensus state for some appropriate distance function. In this section, we

advocate for the use of a monometric instead, leading to the monometric rationalisation

of ranking rules.

However, when we are not dealing with a notion of closeness in the most geometrical sense,

the symmetry axiom of a distance function might not be necessary. Quoting Tversky and

Gati on the study of similarity measures [158, 159], one can understand that the term

closeness is not always interpreted as a symmetric term: “The poet writes ‘my love is as

deep as the ocean’, not ‘the ocean is as deep as my love’, because the ocean epitomizes

depth”.

Even more importantly, the triangle inequality of a distance function may not always be

linked to a notion of closeness. Quoting again Tversky and Gati, one may think about

how close two countries are: “Consider the similarity between countries: Jamaica is similar

to Cuba (because of geographical proximity); Cuba is similar to Russia (because of their

political affinity); but Jamaica and Russia are not similar at all. This example [...] suggests

that the perceived distance of Jamaica to Russia exceeds the perceived distance of Jamaica

to Cuba, plus that of Cuba to Russia - contrary to the triangle inequality.”

As another example, when thinking of a human, a centaur and a horse, the term closeness

is neither related with the triangle inequality (the perceived distance of a human to a horse

exceeds the perceived distance of a human to a centaur, plus that of a centaur to a horse).

Nevertheless, there is a clear betweenness relation: A centaur is between a human and a

horse and, therefore, a human should always be closer to a centaur than to a horse.

Figure 3.3: Images of a human (A), a centaur (B) and a horse (C).

Closeness is a vague term here. From a geometrical point of view, symmetry and the tri-

angle inequality are needed. Nevertheless, in the rationalisation of ranking rules, closeness

is not defined by a geometrical concept. Here, this closeness is related to the notion of
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(local) penalty function used in the aggregation of real numbers [25], where the axioms of

symmetry and the triangle inequality are no longer required, but an additional axiom of

quasi-convexity providing the penalty with a well-founded semantic basis is required. In

this work, this well-founded semantic basis is captured by requiring the preservation of a

natural betweenness relation. Therefore, closeness is no longer measured by a metric, but

by a monometric.

In that way, monometrics (instead of distance functions) should be considered in the ra-

tionalisation of ranking rules. Of course, a meaningful betweenness relation needs to be

fixed according to the nature of the considered problem. Although it may seem natural to

consider the one defined by Kemeny, this does not need to be an imposition.

The two-step procedure of the rationalisation of ranking rules is now as follows:

(i) Search for the ‘closest’ profile of rankings in the chosen consensus state by means of

a monometric.

(ii) Analysis of the consensus state to obtain the winning ranking.

Note that most consensus states do not take the order of the voters into account. Therefore,

every profile of rankings given by a permutation of an anonymised profile of rankings is in

the same consensus state of the anonymised profile as was explained in Subsection 3.3.2. In

case the order of the rankings is not relevant, the search for the ‘closest’ profile of rankings

in some consensus state is equivalent to the search for the ‘closest’ anonymised profile of

rankings in the same consensus state. This result allows us to systematically work with

anonymised profiles of rankings instead of profiles and to assure the privacy of the voters.

Conversely, we can, and will, directly work with profiles of rankings in order to ease the

understanding of this dissertation. Of course, when a consensus state takes the order of

the rankings into account (such as dictatorship or other weighted voting systems), this

anonymisation cannot be addressed.

We conclude that the use of a monometric better fits the spirit of the rationalisation of

ranking rules than the use of a distance function. Indeed, the (mono)metric rationalisa-

tion of ranking rules can be understood as a penalty-based approach for the aggregation

of rankings. Most of the times, as Yager described in his “general theory of information

aggregation” back in 1993 [166], aggregation outside the real line is understood as a process

of minimizing some notion of penalty that measures the deviation from a consensus ele-
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ment [62, 63]. Obviously, the ideas of Yager have long time been surpassed. However, over

the years, the use of penalty functions has shifted towards the aggregation of values in a

closed interval of the real line [24, 25, 26, 165, 167]. In this setting, the considered penalty

is more similar to the notion of monometric than to the notion of a distance function,

enforcing the monometric rationalisation of ranking rules over the metric rationalisation

of ranking rules.
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CHAPTER 4

Representations of votes

In the field of social choice theory, the preferences of the voters are usually compressed

into representations of votes gathering the most significant information. For instance, the

Borda count [18] reduces the preferences given by the voters to the scorix [125], which is a

matrix where the element at the i-th row and j-th column represents the number of times

that the i-th candidate is ranked at the j-th position in the profile of rankings given by

the voters. Besides the Borda count, all other scoring ranking rules [57, 102, 104, 169] also

reduce the profile of rankings given by the voters to the scoring matrix. Based on the ideas

of Condorcet [35], another representation of votes gathering a completely different type of

information is commonly used in social choice theory: the votrix [124]. The votrix is a

matrix where the element at the i-th row and j-th column represents the number of times

that the i-th candidate is preferred to the j-th candidate in the preferences given by the

voters. This type of representation of votes where candidates are head-to-head compared

with each other is said to be based on pairwise information. Many other representations of

votes based on pairwise information, such as the beatpath matrix [147] and the votex [124],

have been used in social choice theory.

4.1 The scorix

Let us recall that the position of candidate ai in ranking �j is denoted by Pj(ai) (consid-

ering position 1 is the best). Each profile of rankings defines a matrix, henceforth called
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a scorix1 [125], where each row represents a candidate in C and each column represents a

position ` ∈ {1, . . . , k}. In that way, the element at the i-th row and `-th column equals

the number of times that the i-th candidate is ranked at the `-th position.

Definition 4.1 Let C be a set of k candidates and r be the number of voters. A matrix

S ∈ {0, 1, . . . , r}k×k is called a scorix (plural scorices) on C if there exists a profile R of r

rankings on C such that, for any ai ∈ C and any ` ∈ {1, . . . , k}, it holds that

Si` = #{j ∈ {1, . . . , r} | Pj(ai) = `} .

The set of all scorices on C induced by any profile of r rankings on C is denoted by Sr(C ).

Remark 4.2 The notion of a scorix is well known [52, 53, 57, 58, 92, 93, 144, 154, 169]

in social choice theory, usually considered either in the form of a matrix or in the form of

an ensemble of vectors corresponding to the different rows of the scorix.

For any scorix S ∈ Sr(C ), the i-th row (i ∈ {1, . . . , k}) is called the vector of positions

of candidate ai and is denoted by Si. Note that, for any i ∈ {1, . . . , k}, it holds that

Si ∈ {0, 1, . . . , r}k.

In order to illustrate how the scorix induced by a profile of rankings can be obtained, we

consider the following example.

Example 4.3 Consider a set of four candidates C = {a, b, c, d} and a profile of rankings

R = (�i)3
i=1 given by three voters. These rankings are shown in Table 4.1.

# �i Rankings on C

1 a � b � c � d

1 a � d � b � c

1 d � a � c � b

Table 4.1: Frequency of the rankings on C expressed by three voters.

Note that candidate a is ranked twice at the first position and once at the second position

and it is not ranked at the third or fourth position in any of the rankings. Therefore, the

1Scorix is a contraction of the term ‘scoring matrix’.
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vector of positions of candidate a is (2, 1, 0, 0). In the same way, the vector of positions of

candidate b is (0, 1, 1, 1), the vector of positions of candidate c is (0, 0, 2, 1) and the vector

of positions of candidate d is (1, 1, 0, 1). The scorix is then given by:

S =


2 1 0 0

0 1 1 1

0 0 2 1

1 1 0 1

 .

As the number of candidates and the number of candidates ranked at each position are

constant, it is straightforward to see that a scorix always satisfies the properties listed in

the following proposition.

Proposition 4.4 Let C be a set of k candidates and r be the number of voters. For any

scorix S ∈ Sr(C ), the following properties are fulfilled:

(i) Completeness in candidates: for any i ∈ {1, . . . , k}, it holds that

k∑
`=1

Si` = r .

(ii) Completeness in positions: for any ` ∈ {1, . . . , k}, it holds that

k∑
i=1

Si` = r .

Proof: Completeness in candidates: for any i ∈ {1, . . . , k},
∑k

`=1 Si` represents the total

number of times that the i-th candidate is ranked at any position; as every voter provides

a ranking on the set of candidates, it obviously equals r.

Completeness in positions: for any ` ∈ {1, . . . , k},
∑k

i=1 Si` represents the total number of

times that any candidate is ranked at the `-th position; as every voter provides a ranking

on the set of candidates, it obviously equals r. �

The following result, due to Fine and Fine [52], expresses that any matrix satisfying the

properties listed in Proposition 4.4 is a scorix, i.e., there exists a profile of rankings on

the set of candidates such that the element at the i-th row and `-th column of the matrix

equals the number of times that the i-th candidate is ranked at the `-th position.
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Proposition 4.5 Let C be a set of k candidates and r be the number of voters. Any

matrix S ∈ {0, 1, . . . , r}k×k satisfying the properties listed in Proposition 4.4 is a scorix.

4.2 The votrix

The strength of support of candidate ai1 over candidate ai2 is then defined as the number

of times that candidate ai1 is preferred to candidate ai2 :

s(ai1 , ai2) = #{j ∈ {1, . . . , r} | ai1 �j ai2} .

This strength of support defines a matrix V , henceforth called a votrix2 [124], where the

element at the i-th row and the j-th column is the strength of support of the i-th candidate

over the j-th candidate.

Definition 4.6 Let C be a set of k candidates and r be the number of voters. A matrix

V ∈ {0, 1, . . . , r}k×k is called a votrix (plural votrices) on C if there exists a profile R of r

rankings on C such that, for any ai, aj ∈ C , it holds that

Vij = s(ai, aj) .

The set of all votrices on C induced by any profile of r rankings on C is denoted by Vr(C ).

Remark 4.7 The notion of a votrix is well known [35, 170] in social choice theory.

In order to illustrate how the votrix induced by a profile of rankings can be obtained, we

consider the following example.

Example 4.8 Consider a set of four candidates C = {a, b, c, d} and a profile of rankings

R = (�i)3
i=1 given by three voters provided in Table 4.1.

Note that the strength of support of candidate a over candidate b equals three, as a is

preferred to b in all three rankings. Analogously, the strength of support of candidate b over

2Votrix is a contraction of the term ‘voting matrix’.



CHAPTER 4 REPRESENTATIONS OF VOTES 83

# �i Rankings on C

1 a � b � c � d

1 a � d � b � c

1 d � a � c � b

Table 4.2: Frequency of the rankings on C expressed by three voters.

candidate a equals zero, as there is no ranking where b is preferred to a. The votrix is then

given by:

V =


0 3 3 2

0 0 2 1

0 1 0 1

1 2 2 0

 .

Compressing a profile of rankings into a votrix is a common tool in social choice theory [170].

Unfortunately, recovering a profile of rankings from a given votrix is not possible. More-

over, necessary and sufficient conditions that a matrix needs to satisfy in order to be a

representation of a profile of rankings are also unknown for a number of candidates greater

than or equal to six [61, 94]. In the following proposition, some properties of votrices are

listed.

Proposition 4.9 Let C be a set of k candidates and r be the number of voters. For any

votrix V ∈ Vr(C ), the following properties are fulfilled:

(i) Strictness: for any ai1 ∈ C , it holds that

Vi1i1 = 0 .

(ii) Reciprocity: for any two different ai1 , ai2 ∈ C , it holds that

Vi1i2 + Vi2i1 = r .

(iii) Triangle inequality: for any ai1 , ai2 , ai3 ∈ C , it holds that

Vi1i2 + Vi2i3 ≥ Vi1i3 .



84 4.2 THE VOTRIX

Proof: Strictness: evident.

Reciprocity: for any two different ai1 , ai2 ∈ C , it holds that

Vi1i2 + Vi2i1 = s(ai1 , ai2) + s(ai2 , ai1)

= #{j ∈ {1, . . . , r} | ai1 �j ai2}
+ #{j ∈ {1, . . . , r} | ai2 �j ai1}

=#{j ∈ {1, . . . , r} | ai1 �j ai2 ∨ ai2 �j ai1} = r ,

as ai1 �j ai2 and ai2 �j ai1 are disjoint events.

Triangle inequality: for any ai1 , ai2 , ai3 ∈ C , it holds that

Vi1i2 + Vi2i3 = s(ai1 , ai2) + s(ai2 , ai3)

= #{j ∈ {1, . . . , r} | ai1 �j ai2}
+ #{j ∈ {1, . . . , r} | ai2 �j ai3}
≥ #{j ∈ {1, . . . , r} | ai1 �j ai3}
= s(ai1 , ai3) = Vi1i3 . �

Note that these properties are the necessary and sufficient conditions that a matrix needs

to satisfy in order to be a representation of a profile of rankings for a set of at most five

candidates [61]. Although the sufficiency does not hold, they obviously remain necessary

conditions for a set of six or more candidates. Even though a characterization of votrices is

not known, we can identify a set of matrices that are ‘close’ to being votrices, by imposing

the necessary conditions listed in Proposition 4.9.

Definition 4.10 Let C be a set of k candidates and r be the number of voters. A matrix

V ∈ {0, 1, . . . , r}k×k is called a quasivotrix (plural quasivotrices) on C if it satisfies the

properties listed in Proposition 4.9. The set of all quasivotrices on C with r voters is

denoted by VQr (C ).

Of course, any votrix is a quasivotrix, i.e., Vr(C ) ⊆ VQr (C ).

We recall that a common notion in social choice theory related to the votrix is that of

the Condorcet ranking, which is a ranking such that every candidate is preferred by more
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than half of the voters to all the candidates ranked at a worse position than him/her.

Analogously, a weak Condorcet ranking is a ranking such that every candidate is preferred

by not less than half of the voters to all the candidates ranked at a worse position than

him/her.

Definition 4.11 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and V ∈ Vr(C ) be the votrix induced by R.

(i) A ranking � on C is called the Condorcet ranking if, for any ai, aj ∈ C such that

ai � aj, it holds that Vij > Vji.

(ii) A ranking � on C is called a weak Condorcet ranking if, for any ai, aj ∈ C such that

ai � aj, it holds that Vij ≥ Vji.

The Condorcet ranking is clearly unique, but there might exist several weak Condorcet

rankings. The existence of the Condorcet ranking or the existence of at least one weak

Condorcet ranking are not assured.

4.3 The votex

When a voter is providing a ranking a � b � c, he is actually declaring that he supports a

over c stronger than both a over b and b over c. This is not explicitly taken into account

in the votrix and a new tool gathering this additional information is introduced here. To

that end, we will provide a few notations that will be used throughout this paper. Let

C 2
6= = {(ai1 , ai2) ∈ C 2 | ai1 6= ai2}, K+ = {1, . . . , k − 1}, K− = {1 − k, . . . ,−1} and

K = K− ∪ K+.

Now, we will consider the ‘relative position’ of a candidate ai1 w.r.t. a different candidate

ai2 . This relative position of ai1 w.r.t. ai2 can be obtained as Pj(ai2) − Pj(ai1) for each

possible j ∈ {1, . . . , r}. This difference can take any value in K. Collecting the information

given by all the voters, we denote by ni(ai1 , ai2) the absolute frequency for the value i of

the relative position of ai1 w.r.t. ai2 , that is, the number of voters considering that ai1 is i

positions before ai2 (or after when considering negative values of i):

ni(ai1 , ai2) = #{j ∈ {1, . . . , r} | Pj(ai2)− Pj(ai1) = i} .



86 4.3 THE VOTEX

Note that ni(ai1 , ai2) = n−i(ai2 , ai1). Of course, these frequencies of relative positions can

be obtained for any couple of candidates in C 2
6=.

In order to illustrate how the frequencies of relative positions given by a profile of rankings

can be obtained, we consider the following example.

Example 4.12 Consider a set of four candidates C = {a, b, c, d} and a profile of rankings

R = (�i)3
i=1 given by three voters provided in Table 4.1.

# �i Rankings on C

1 a � b � c � d

1 a � d � b � c

1 d � a � c � b

Table 4.3: Frequency of the rankings on C expressed by three voters.

It holds that n3(a, d) = 1, n−1(a, d) = 1, n1(a, d) = 1 and ni(a, d) = 0 for any i ∈
K\{−1, 1, 3}, since in the first ranking a is preferred to d and there are two candidates

in between them, in the second ranking a is preferred to d and there are no candidates in

between them and in the third ranking d is preferred to a and there are no candidates in

between them. Thus, the frequency distribution of relative positions for the couple (a, d) is

given by

i −3 −2 −1 1 2 3

ni(a, d) 0 0 1 1 0 1

Relative positions will always be listed from 1 − k to k − 1 (not including 0). Hence, this

frequency distribution can be denoted just by (0, 0, 1, 1, 0, 1).

The frequency distributions for all couples of candidates are given by:

(a, b) → (0, 0, 0, 1, 2, 0) (c, a) → (1, 1, 1, 0, 0, 0)

(a, c) → (0, 0, 0, 1, 1, 1) (c, b) → (0, 0, 2, 1, 0, 0)

(a, d) → (0, 0, 1, 1, 0, 1) (c, d) → (0, 2, 0, 1, 0, 0)

(b, a) → (0, 2, 1, 0, 0, 0) (d, a) → (1, 0, 1, 1, 0, 0)

(b, c) → (0, 0, 1, 2, 0, 0) (d, b) → (0, 1, 0, 1, 0, 1)

(b, d) → (1, 0, 1, 0, 1, 0) (d, c) → (0, 0, 1, 0, 2, 0)
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Note that, as can be seen in Example 4.12, any profile of rankings R defines a function

of the form W : C 2
6= → {0, 1, . . . , r}2k−2. This function will be henceforth called the

votex3 [124] induced by the profile R.

Definition 4.13 Let C be a set of k candidates and r be the number of voters. A function

W : C 2
6= → {0, 1, . . . , r}2k−2 is called a votex (plural votices) on C if there exists a profile

R of r rankings on C such that, for any (ai1 , ai2) ∈ C 2
6= and any i ∈ K, it holds that

W (ai1 , ai2)(i) = ni(ai1 , ai2) .

The set of all votices on C induced by any profile of r rankings on C is denoted by Wr(C ).

Given a votex it is always possible to obtain the corresponding votrix. Unfortunately, the

converse is not possible.

Proposition 4.14 Let C be a set of k candidates, R be the profile of r rankings on C

given by the voters and W : C 2
6= → {0, 1, . . . , r}2k−2 be the votex induced by R. Then the

votrix induced by R can be obtained from the votex by means of the formula:

Vi1i2 =
∑
i∈K+

W (ai1 , ai2)(i) ,

for any (ai1 , ai2) ∈ C 2
6=. Obviously, Vi1i1 = 0 for any ai1 ∈ C .

Proof:

The result follows from the fact that
⋃
i∈K+{Pj(ai2)− Pj(ai1) = i} = {ai1 �j ai2}. �

As in the case of the votrix, necessary and sufficient conditions that a function W : C 2
6= →

{0, 1, . . . , r}2k−2 needs to satisfy in order to be the votex of a profile of rankings are un-

known.

In the following proposition, some properties of votices are listed. They can be seen as

necessary conditions that a function W : C 2
6= → {0, 1, . . . , r}2k−2 needs to satisfy in order

3Votex is a contraction of the words ‘voting’ and ‘vertex’. Note that a votex is the set of all frequency

distributions induced by a voting profile on the vertices of the Hasse diagram of the order relation A (see

Definition 5.16).
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to be a votex. These properties are completeness (for each couple of candidates the sum

of the frequencies should be equal to the number of voters), reciprocity (the distribution of

frequencies of any couple (ai1 , ai2) should be opposite to the distribution of frequencies of

the couple (ai2 , ai1)), regularity (the total number of couples of candidates at each relative

position is fixed), peakedness (if two candidates are not consecutive there should be a

candidate in between them), the triangle inequality (if ai1 is preferred to ai3 by more than

half of the number of voters, then for any other candidate ai2 it is not possible that ai3
is preferred to ai2 by more than half of the number of voters and, at the same time, ai2
is preferred to ai1 by more than half of the number of voters) and maximality (if two

candidates ai1 and ai2 are at maximum distance, then only ai1 and ai2 can be ranked first

or last).

Proposition 4.15 Let C be a set of k candidates and r be the number of voters. For any

votex W ∈ Wr(C ), the following properties are fulfilled:

(i) Completeness: for any (ai1 , ai2) ∈ C 2
6=:∑

i∈K

ni(ai1 , ai2) = r .

(ii) Reciprocity: for any i ∈ K and any (ai1 , ai2) ∈ C 2
6=:

ni(ai1 , ai2) = n−i(ai2 , ai1) .

(iii) Regularity: for any i ∈ K: ∑
(u,v)∈C 2

6=

ni(u, v) = r(k − |i|) .

(iv) Peakedness: for any ai1 ∈ C and any i ∈ K+\{1}:∑
u∈C \{ai1}

ni(ai1 , u) ≤
∑

u∈C \{ai1}

ni−1(ai1 , u) ,

∑
u∈C \{ai1}

ni(u, ai1) ≤
∑

u∈C \{ai1}

ni−1(u, ai1) ,

for any ai1 ∈ C and any i ∈ K−\{−1}:∑
u∈C \{ai1}

ni(ai1 , u) ≤
∑

u∈C \{ai1}

ni+1(ai1 , u) ,
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∑
u∈C \{ai1}

ni(u, ai1) ≤
∑

u∈C \{ai1}

ni+1(u, ai1) .

(v) Triangle inequality: for any three different ai1 , ai2 , ai3 ∈ C :∑
i∈K+

ni(ai1 , ai2) +
∑
i∈K+

ni(ai2 , ai3) ≥
∑
i∈K+

ni(ai1 , ai3) ,

∑
i∈K−

ni(ai1 , ai2) +
∑
i∈K−

ni(ai2 , ai3) ≥
∑
i∈K−

ni(ai1 , ai3) .

(vi) Maximality: for any (ai1 , ai2) ∈ C 2
6=:∑

u∈C \{ai1 ,ai2}

nk−1(ai1 , u) +
∑

v∈C \{ai1 ,ai2}

nk−1(v, ai2) ≤
∑

i∈K+\{k−1}

ni(ai1 , ai2) ,

∑
u∈C \{ai1 ,ai2}

n1−k(ai1 , u) +
∑

v∈C \{ai1 ,ai2}

n1−k(v, ai2) ≤
∑

i∈K−\{1−k}

ni(ai1 , ai2) .

Proof: Completeness: for any (ai1 , ai2) ∈ C 2
6=,
∑
i∈K

ni(ai1 , ai2) is the number of voters.

Reciprocity: for any i ∈ K+ and any (ai1 , ai2) ∈ C 2
6=, if ai1 is ranked i positions before ai2 ,

then ai2 is ranked i positions after ai1 . Similarly, for any i ∈ K− and any (ai1 , ai2) ∈ C 2
6=,

if ai1 is ranked |i| positions after ai2 , then ai2 is ranked |i| positions before ai1 . Therefore,

ni(ai1 , ai2) = n−i(ai2 , ai1).

Regularity: consider the notation

1(x = i) =

1, if x = i,

0, if x 6= i.

We have that ∑
(u,v)∈C 2

6=

ni(u, v) =
∑

(u,v)∈C 2
6=

r∑
j=1

1 (Pj(v)− Pj(u) = i)

=
r∑
j=1

∑
(u,v)∈C 2

6=

1 (Pj(v)− Pj(u) = i)

=
r∑
j=1

(k − |i|) = r(k − |i|) ,
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since there are exactly k − |i| couples of candidates with relative position i.

Peakedness: for any ai1 ∈ C and any i ∈ K+\{1}:

∑
u∈C \{ai1}

ni(ai1 , u) =
∑

u∈C \{ai1}

r∑
j=1

1 (Pj(u)− Pj(ai1) = i)

=
r∑
j=1

∑
u∈C \{ai1}

1 (Pj(u)− Pj(ai1) = i)

=
r∑
j=1

1 (k − Pj(ai1) ≥ i)

≤
r∑
j=1

1 (k − Pj(ai1) ≥ i− 1)

=
r∑
j=1

∑
u∈C \{ai1}

1 (Pj(u)− Pj(ai1) = (i− 1))

=
∑

u∈C \{ai1}

ni−1(ai1 , u) .

The other three peakedness formulas can be proved analogously.

Triangle inequality: for any (u, v) ∈ C 2
6=, it is immediate that

∑
i∈K+ ni(u, v) is equal to the

number of voters that preferred u to v, that is,

∑
i∈K+

ni(u, v) =
r∑
j=1

1 (u �j v) .

Thus, for any three different ai1 , ai2 , ai3 ∈ C , we have that

∑
i∈K+

ni(ai1 , ai2) +
∑
i∈K+

ni(ai2 , ai3) =
r∑
j=1

(1 (ai1 �j ai2) + 1 (ai2 �j ai3))

≥
r∑
j=1

1 (ai1 �j ai3)

=
∑
i∈K+

ni(ai1 , ai3) ,

due to the transitivity of the rankings �j.

The other triangle inequality formula can be proved analogously.



CHAPTER 4 REPRESENTATIONS OF VOTES 91

Maximality: for any (ai1 , ai2) ∈ C 2
6=:∑

u∈C \{ai1 ,ai2}

nk−1(ai1 , u) +
∑

v∈C \{ai1 ,ai2}

nk−1(v, ai2)

=
r∑
j=1

 ∑
u∈C \{ai1 ,ai2}

1 (Pj(u)− Pj(ai1) = k − 1)

+
∑

v∈C \{ai1 ,ai2}

1 (Pj(ai2)− Pj(v) = k − 1)


=

r∑
j=1

 ∑
u∈C \{ai1 ,ai2}

1 (Pj(ai1) = 1, Pj(u) = k)

+
∑

v∈C \{ai1 ,ai2}

1 (Pj(v) = 1, Pj(ai2) = k)


=

r∑
j=1

 ∑
u∈C \{ai1 ,ai2}

1 (Pj(ai1) = 1, 1 < Pj(ai2) < k, Pj(u) = k)

+
∑

v∈C \{ai1 ,ai2}

1 (Pj(v) = 1, 1 < Pj(ai1) < k, Pj(ai2) = k)


=

r∑
j=1

(
1 (Pj(ai1) = 1, 1 < Pj(ai2) < k)

+ 1 (1 < Pj(ai1) < k, Pj(ai2) = k)
)

≤
r∑
j=1

1 (1 ≤ Pj(ai2)− Pj(ai1) < k − 1) =
∑

K+\{k−1}

ni(ai1 , ai2).

The other maximality formula can be proved analogously. �

Remark 4.16 Assuming reciprocity is fulfilled, the regularity, peakedness, triangle inequal-

ity and maximality properties can be reduced to:

Regularity: for any i ∈ K+: ∑
(u,v)∈C 2

6=

ni(u, v) = r(k − i) .
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Peakedness: for any ai1 ∈ C and any i ∈ K+\{1}:∑
u∈C \{ai1}

ni(ai1 , u) ≤
∑

u∈C \{ai1}

ni−1(ai1 , u) ,

for any ai1 ∈ C and any i ∈ K−\{−1}:∑
u∈C \{ai1}

ni(ai1 , u) ≤
∑

u∈C \{ai1}

ni+1(ai1 , u) .

Triangle inequality: for any three different ai1 , ai2 , ai3 ∈ C :∑
i∈K+

ni(ai1 , ai2) +
∑
i∈K+

ni(ai2 , ai3) ≥
∑
i∈K+

ni(ai1 , ai3) .

Maximality: for any (ai1 , ai2) ∈ C 2
6=:∑

u∈C \{ai1 ,ai2}

nk−1(ai1 , u) +
∑

v∈C \{ai1 ,ai2}

nk−1(v, ai2) ≤
∑

i∈K+\{k−1}

ni(ai1 , ai2) .

A set of necessary properties that a function W : C 2
6= → {0, 1, . . . , r}2k−2 needs to satisfy

in order to be a votex has been given in Proposition 4.15. It is important to analyse

the independence of these properties proving that none of them can be eliminated. An

illustrative example showing that all the properties listed in Proposition 4.15 are indeed

independent and that none of them is irrelevant is shown right after.

Example 4.17 Consider a set C = {a, b, c, d} of four candidates and three voters. In

this example, we consider functions W : C 2
6= → {0, 1, . . . , r}2k−2 fulfilling all the properties

listed in Proposition 4.15 except for one. Reciprocity will be assumed in all cases, except in

the one concerning reciprocity, in order to ease notations. Of course, none of the following

functions is a votex as, as stated in Proposition 4.15, they must satisfy all the properties.

Completeness:

W : C 2
6= −→ {0, 1, 2, 3}6 W : C 2

6= −→ {0, 1, 2, 3}6

W (a, b) = (0, 0, 3, 0, 0, 0) W (b, c) = (0, 0, 1, 0, 0, 0)

W (a, c) = (0, 2, 1, 0, 0, 0) W (b, d) = (0, 2, 2, 0, 0, 0)

W (a, d) = (3, 1, 0, 0, 0, 0) W (c, d) = (0, 1, 2, 0, 0, 0)
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Completeness is the only property that is not satisfied:∑
i∈K

ni(a, d) = 4 6= 3 = r .

Reciprocity:

W : C 2
6= −→ {0, 1, 2, 3}6 W : C 2

6= −→ {0, 1, 2, 3}6

W (a, b) = (1, 1, 0, 1, 0, 0) W (c, a) = (0, 0, 1, 0, 1, 1)

W (a, c) = (0, 2, 1, 0, 0, 0) W (c, b) = (0, 0, 1, 1, 1, 0)

W (a, d) = (1, 0, 2, 0, 0, 0) W (c, d) = (0, 1, 1, 1, 0, 0)

W (b, a) = (0, 1, 0, 0, 1, 1) W (d, a) = (0, 0, 0, 3, 0, 0)

W (b, c) = (0, 0, 2, 1, 0, 0) W (d, b) = (0, 0, 1, 0, 1, 1)

W (b, d) = (1, 1, 0, 1, 0, 0) W (d, c) = (0, 0, 0, 1, 2, 0)

Reciprocity is not satisfied as:

n−2(a, c) = 2 6= 1 = n2(c, a) .

Regularity:

W : C 2
6= −→ {0, 1, 2, 3}6 W : C 2

6= −→ {0, 1, 2, 3}6

W (a, b) = (0, 1, 2, 0, 0, 0) W (b, c) = (0, 1, 2, 0, 0, 0)

W (a, c) = (0, 2, 1, 0, 0, 0) W (b, d) = (0, 2, 1, 0, 0, 0)

W (a, d) = (2, 0, 1, 0, 0, 0) W (c, d) = (0, 1, 2, 0, 0, 0)

Regularity is not satisfied as:∑
(u,v)∈C 2

6=

n3(u, v) = 2 6= 3 = r(k − |i|) .

Peakedness:

W : C 2
6= −→ {0, 1, 2, 3}6 W : C 2

6= −→ {0, 1, 2, 3}6

W (a, b) = (0, 2, 0, 0, 0, 1) W (b, c) = (0, 1, 2, 0, 0, 0)

W (a, c) = (0, 2, 0, 1, 0, 0) W (b, d) = (0, 0, 3, 0, 0, 0)

W (a, d) = (2, 0, 0, 1, 0, 0) W (c, d) = (0, 1, 2, 0, 0, 0)

Peakedness is not satisfied as:∑
u∈C \{a}

n3(a, u) = 1 6≤ 0 =
∑

u∈C \{a}

ni−1(a, u) .
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Maximality:

W : C 2
6= −→ {0, 1, 2, 3}6 W : C 2

6= −→ {0, 1, 2, 3}6

W (a, b) = (0, 2, 1, 0, 0, 0) W (b, c) = (0, 2, 1, 0, 0, 0)

W (a, c) = (2, 0, 1, 0, 0, 0) W (b, d) = (1, 0, 1, 1, 0, 0)

W (a, d) = (0, 1, 1, 1, 0, 0) W (c, d) = (0, 1, 1, 1, 0, 0)

Maximality is not satisfied as:∑
u∈C \{b}

nk−1(a, u) +
∑

v∈C \{a}

nk−1(v, b) = 1 6≤ 0 =
∑

i∈K+\{k−1}

ni(a, b) .

Triangle inequality:

It must be remarked that we could not identify an example of a function W : C 2
6= →

{0, 1, . . . , r}2k−2 fulfilling all the properties listed in Proposition 4.15 except for the trian-

gle inequality with four candidates. Therefore, we provide an example for a set of five

candidates C = {a, b, c, d, e} and corresponding C 2
6=.

W : C 2
6= −→ {0, 1, 2, 3}8 W : C 2

6= −→ {0, 1, 2, 3}8

W (a, b) = (0, 0, 0, 2, 1, 0, 0, 0) W (b, d) = (0, 2, 1, 0, 0, 0, 0, 0)

W (a, c) = (0, 1, 1, 1, 0, 0, 0, 0) W (b, e) = (0, 0, 1, 1, 0, 1, 0, 0)

W (a, d) = (1, 0, 2, 0, 0, 0, 0, 0) W (c, d) = (0, 0, 0, 3, 0, 0, 0, 0)

W (a, e) = (1, 2, 0, 0, 0, 0, 0, 0) W (c, e) = (0, 0, 1, 1, 1, 0, 0, 0)

W (b, c) = (0, 0, 0, 0, 1, 2, 0, 0) W (d, e) = (0, 0, 0, 1, 0, 0, 1, 1)

The triangle inequality is not satisfied as:∑
i∈K+

ni(c, b) +
∑
i∈K+

ni(b, a) = 2 6≥ 3 =
∑
i∈K+

ni(c, a) .

As necessary and sufficient conditions that a function W : C 2
6= → {0, 1, . . . , r}2k−2 needs

to satisfy in order to be a votex are unkown, a family of characterizable functions will be

defined. A function W : C 2
6= → {0, 1, . . . , r}2k−2 will be called a quasivotex if it satisfies

the necessary conditions listed in Proposition 4.15.

Definition 4.18 Let C be a set of k candidates and r be the number of voters. A function

W : C 2
6= → {0, 1, . . . , r}2k−2 is called a quasivotex (plural quasivotices) on C if it satisfies

the properties listed in Proposition 4.15. The set of all quasivotices on C with r voters is

denoted by WQr (C ).
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Of course, any votex is a quasivotex, i.e., Wr(C ) ⊆ WQr (C ).

4.4 The beatpath matrix

Due to the close relation of the method of Schulze and the beatpath matrix, the content

of this section is closely related to the content of Subsection 2.2.12. A reader aware of the

content of Subsection 2.2.12 could only glance through this section.

In a recent paper [147], Schulze formalized the ranking rule that he first discussed in public

mailing lists in 1997. This ranking rule is based on the use of beatpaths, which lead to

another natural representation of votes: the beatpath matrix. Recall that a path from a

candidate ai1 to a candidate ai2 , denoted by ai1→ai2 , is a list of couples
(
(ai, ai+1)

)n
i=1

such

that a1 = ai1 , a
n+1 = ai2 and (a1, . . . , an+1) are pairwisely different. The set of all paths

from a candidate ai1 to a candidate ai2 is denoted by P(ai1 , ai2).

The weakest link of a path
(
(ai, ai+1)

)n
i=1

from ai1 to ai2 is the couple (ai, ai+1) such that

the number of voters preferring ai to ai+1 (called the strength of the weakest link4) is the

minimum among all the couples in
(
(ai, ai+1)

)n
i=1

. A path from ai1 to ai2 that maximizes

the strength of the weakest link is called a beatpath5 from ai1 to ai2 .

Definition 4.19 Let C be a set of k candidates and r be the number of voters. A matrix

B ∈ {0, 1, . . . , r}k×k is called a beatpath matrix on C if there exists a profile R of r rankings

on C such that, for any ai1 , ai2 ∈ C , it holds that

Bi1i2 = max
→∈P(ai1 ,ai2 )

min
(ai,ai+1)∈→

#{j ∈ {1, . . . , r} | ai �j ai+1} .

Remark 4.20 In Schulze’s original proposal [147], the strength of the weakest link is given

by the couple formed by the number of voters preferring ai1 to ai2 and the number of voters

preferring ai2 to ai1. However, as in the setting of this paper each voter provides his/her

4In Schulze’s original proposal [147], the strength of the weakest link is given by the couple formed by

the number of voters preferring ai1 to ai2 and the number of voters preferring ai2 to ai1 . Nevertheless, as

in the setting of this dissertation each voter provides his/her preferences in the form of a ranking on the

set of candidates, the first element of the couple determines the second one.
5Schulze [147] actually allows candidates to appear several times in the path. Nevertheless, both

approaches are equivalent when maximizing the strength of the weakest link.
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preferences in the form of a ranking on the set of candidates, the first element of the couple

determines the second one.

In order to illustrate how the beatpath matrix induced by a profile of rankings can be

obtained, we consider the following example.

Example 4.21 Consider a set of four candidates C = {a, b, c, d} and a profile of rankings

R = (�i)14
i=1 given by fourteen voters. These rankings are shown in Table 4.4.

# �i Rankings on C

6 c � b � a � d

5 a � d � b � c

3 b � a � d � c

Table 4.4: Frequency of the rankings on C expressed by 14 voters.

There are five different paths from a candidate ai1 to a candidate ai2. For instance, for

going from a to b, there are the following five possible paths:(
(a, b)

)
leading to min(5) = 5 ,(

(a, c), (c, b)
)

leading to min(8, 6) = 6 ,(
(a, d), (d, b)

)
leading to min(14, 5) = 5 ,(

(a, c), (c, d), (d, b)
)

leading to min(8, 6, 5) = 5 ,(
(a, d), (d, c), (c, b)

)
leading to min(14, 8, 6) = 6 .

The paths maximizing the strength of the weakest link, leading to a value of six, are(
(a, c), (c, b)

)
and

(
(a, d), (d, c), (c, b)

)
. Therefore, the element of the beatpath matrix cor-

responding to (a, b), which is the element at the first row and second column, equals six.

The beatpath matrix induced by the profile R is

BR =


− 6 8 14

9 − 8 9

6 6 − 6

6 6 8 −

 .



CHAPTER 5

Monotonicity of a representation of votes

Monotonicity is a common desired property in mathematical modelling exercises, and its

importance has been acknowledged in several disciplines, e.g. in machine learning [12, 28,

43, 90] and fuzzy modelling [128, 155, 156, 160, 161]. However, real-life data is often

imperfect and does not fully comply with the monotonicity hypothesis. One option then

is to (minimally) adjust the data set restoring the monotonicity [132, 134, 135]. This is

particularly important as, for instance, in machine learning, some algorithms cannot be

trained with non-monotone datasets [134].

5.1 Monotonicity of the scorix

Stochastic dominance is a popular tool for the comparison of probability distributions [89].

It has been shown to have applications in decision theory [89], economics [10, 72], machine

learning [132, 163, 164] and social choice theory [124, 154]. Stochastic dominance estab-

lishes a relation between probability distributions that is based on the pairwise comparison

of the corresponding cumulative probability distributions. A probability distribution is said

to (first-order) stochastically dominate another probability distribution if the cumulative

probability distribution of the first one is smaller than or equal to the cumulative probabil-

ity distribution of the second one at any point. Similarly, a probability distribution is said

to second-order stochastically dominate another probability distribution if the cumulative

of the cumulative probability distribution of the first one is smaller than or equal to the

cumulative of the cumulative probability distribution of the second one at any point. It
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is known that (first-order) dominance implies second-order dominance [89]. In a similar

way, two dominance relations (first-order dominance and second-order dominance) between

vectors of positions are defined.

Definition 5.1 Let C be a set of k candidates, r be the number of voters and A =

(A1, . . . , Ak), B = (B1, . . . , Bk) ∈ {0, 1, . . . , r}k be the vectors of positions of two candi-

dates.

(i) A is said to (first-order) dominate B, denoted by AD1 B, if, for any j ∈ {1, . . . , k},
it holds that

j∑
i=1

Ai ≥
j∑
i=1

Bi .

(ii) A is said to second-order dominate B, denoted by AD2 B, if, for any ` ∈ {1, . . . , k},
it holds that ∑̀

j=1

j∑
i=1

Ai ≥
∑̀
j=1

j∑
i=1

Bi .

These dominance relations have already been analysed by several authors in the context

of scoring ranking rules. Fine and Fine [52] introduced the positional rule, which is a

pre-order relation on the set of candidates that assigns candidate ai1 a better ranking than

candidate ai2 if the vector of positions of candidate ai1 dominates the vector of positions of

candidate ai2 . Stein et al. [154] proved that the vector of positions of candidate ai1 strictly

dominates1 the vector of positions of another candidate ai2 if and only if there is no scoring

ranking rule ranking candidate ai2 at a better position than candidate ai1 . They also proved

that if the dominance is of second order, then this result holds for convex scoring ranking

rules. Llamazares and Peña [92] used this dominance relation to interpret a well-known

result by Saari [142, 144] (a candidate is a first ranked candidate for every scoring ranking

rule if and only if it is a first ranked candidate for every t-approval scoring ranking rule)

from a new point of view: the vector of positions of a candidate dominates the vector of

positions of all the other candidates if and only if it is a first ranked candidate for every

scoring ranking rule. The notion of (strict) dominance between vectors of positions is a

weaker version of the notions of positional dominance [60] and permutation dominance [56]

introduced by Fishburn.

1A is said to strictly dominate B, denoted by AB1 B, if ADB and A 6= B.
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As can be seen, this dominance relation has called the attention of several researchers. Here,

we propose to consider this dominance relation for introducing a consensus state [100, 126].

In that way, a ranking is considered a winning ranking when this dominance relation holds

for all couples in the ranking. Note that we write 1-monotonicity in case of first-order

dominance and, analogously, we write 2-monotonicty in case of second-order dominance.

Definition 5.2 Let C be a set of k candidates and r be the number of voters. A scorix

S ∈ Sr(C ) is said to be

(i) 1-monotone (or just monotone) w.r.t. a ranking � on C if, for any ai1 , ai2 ∈ C such

that ai1 � ai2, it holds that

Si1 D1 Si2 .

(ii) 2-monotone w.r.t. a ranking � on C if, for any ai1 , ai2 ∈ C such that ai1 � ai2, it

holds that

Si1 D2 Si2 .

Obviously, the scorix induced by most profiles of rankings is not monotone w.r.t. any

ranking. The set of all profiles of rankings with a monotone scorix can be understood as

a consensus state for the rationalisation of ranking rules. An interesting study subject is

the relation between different notions of consensus states. In particular, monotonicity and

2-monotonicity of the scorix are two concepts that are obviously weaker than unanimity,

but that respectively assure that all scoring ranking rules and all convex scoring ranking

rule coincide.

Theorem 5.3 Let C be a set of k candidates, R be the profile of r rankings on C given by

the voters, S ∈ Sr(C ) be the scorix induced by R and � be a ranking on C . The following

statements hold:

(i) If R is the unanimous profile where every voter expresses �, then S is monotone

w.r.t. �.

(ii) If S is monotone w.r.t. �, then S is 2-monotone w.r.t. �.

(iii) If S is monotone w.r.t. �, then every scoring ranking rule defines a ranking with ties

on the set of candidates that is linearly extended by �.
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(iv) If S is 2-monotone w.r.t. �, then every convex scoring ranking rule defines a ranking

with ties on the set of candidates that is linearly extended by �.

Proof: Statement (i). If R is the unanimous profile where every voter expresses �, then

S is the matrix such that, for any i ∈ {1, . . . , k}, the i-th row is a vector where the j-th

component equals r if j is the position at which the i-th candidate is ranked in � and zero

otherwise. Therefore, S is monotone w.r.t. �.

Statement (ii) is straightforward due to the fact that (first-order) dominance implies

second-order dominance.

Statement (iii) is a direct consequence of Theorem 1(a)2 in [154], when applied to all the

couples in �.

Statement (iv) is a direct consequence of Theorem 1(b)2 in [154], when applied to all the

couples in �. �

5.2 Recursive monotonicity of the scorix

In social choice theory, there are two large families of ranking rules: ranking rules based

on positional information [144] and ranking rules based on pairwise information [143].

Connecting both positional and pairwise election outcomes is a relevant topic in social

choice theory [145]. As a result of Theorem 5.3, we know that all ranking rules belonging

to the most prominent family of ranking rules based on positional information — scoring

ranking rules — lead to the same outcome in case the scorix is monotone. However, a

relation with the methods based on pairwise comparisons has not yet been established.

In order to describe such relation, the notion of sub-scorix needs to be introduced. As

a sub-scorix is related to the concept of restriction of a profile to a subset of the set of

candidates, the latter notion is introduced first.

Definition 5.4 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any non-empty C ′ ⊆ C , the restriction of R to C ′ is the profile

2Note that Stein et al. [154] actually considered strict dominance. However, the proof is analogous for

the case where dominance instead of strict dominance is considered.
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R ′ = (�′j)rj=1 of r rankings on C ′ such that, for any j ∈ {1, . . . , r} and any ai1 , ai2 ∈ C ′,

it holds that ai1 �′j ai2 if ai1 �j ai2.

A matrix is said to be a sub-scorix of a scorix if it is the scorix associated with the restriction

of the given profile of rankings to a subset of the set of candidates.

Definition 5.5 Let C be a set of k candidates, R be the profile of r rankings on C given by

the voters and S ∈ Sr(C ) be the scorix induced by R. For any non-empty subset C ′ ⊆ C , a

matrix S ′ ∈ {0, 1, . . . , r}k′×k′ (where k′ = |C ′|) is called the sub-scorix (plural sub-scorices)

of S on C ′ if S ′ is the scorix on C ′ induced by the restriction of R to C ′.

The fact that S ′ is the sub-scorix of S on a non-empty subset C ′ ⊆ C is denoted by S ′bS.

Remark 5.6 A scorix has 2k − 1 sub-scorices.

Remark 5.7 Any sub-scorix of a scorix on a singleton is a scalar expressing the number

of voters.

These concepts are illustrated in the following example.

Example 5.8 Let C = {a, b, c, d} be a set of candidates and R = {�1,�2,�3} be the

profile from Example 4.3. We recall that �1: a � b � c � d, �2: d � a � c � b,

�3: a � d � b � c and the scorix induced by R is given by:

S =


2 1 0 0

0 1 1 1

0 0 2 1

1 1 0 1

 .

Consider C ′ = {a, b, c} ⊆ C . The restriction of R to C ′ is the profile R ′ = {�′1,�′2,�′3}
with �′1: a � b � c, �′2: a � c � b and �′3: a � b � c. The scorix induced by R ′ is given

by:

S ′ =

3 0 0

0 2 1

0 1 2

 .

Thus, S ′ is the sub-scorix of S on C ′ and, therefore, it holds that S ′bS.
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In the same way a scorix can be monotone, the respective sub-scorices can also be mono-

tone. The monotonicity of all the sub-scorices of a scorix leads to a stronger type of

monotonicity: recursive monotonicity.

Definition 5.9 Let C be a set of k candidates and r be the number of voters.

(i) A scorix S ∈ Sr(C ) is said to be recursively monotone w.r.t. a ranking � on C if,

for any non-empty subset C ′ ⊆ C , the sub-scorix S ′ of S on C ′ is monotone w.r.t.

the restriction3 of � to C ′.

(ii) A scorix S ∈ Sr(C ) is said to be strictly recursively monotone w.r.t. a ranking �
on C if, for any non-empty subset C ′ ⊆ C , the sub-scorix S ′ of S on C ′ is stricly

monotone w.r.t. the restriction of � to C ′.

Again, the scorix induced by most profiles of rankings is not recursively monotone w.r.t.

any ranking.

Remark 5.10 Recursive monotonicity of the scorix actually is a property of the profile

of rankings and not of its scorix. This means that, given a scorix, it is not possible to

identify whether or not it is recursively monotone without knowing the profile of rankings.

For instance, consider the two profiles of rankings listed in Table 5.1.

R1 R2

a � b � c a � c � b

a � c � b a � c � b

b � a � c b � a � c

b � c � a b � a � c

c � a � b c � b � a

Table 5.1: Profiles R1 and R2 of five rankings.

The scorices S1 and S2 induced by R1 and R2 coincide:

S1 = S2 =

2 2 1

2 1 2

1 2 2

 .

3As a ranking is a special case of a profile with just one ranking, the restriction of a ranking to a subset

of the set of candidates follows from Definition 5.4.
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In case we consider C ′ = {b, c} ⊆ C , the corresponding restrictions R ′1 and R ′2 of R1 and

R2 to C ′ are listed in Table 5.2.

R ′1 R ′2
b � c c � b

c � b c � b

b � c b � c

b � c b � c

c � b c � b

Table 5.2: Profiles R′1 (left) and R′2 (right) of five rankings.

The scorices S ′1 and S ′2 induced by R ′1 and R ′1 are given by:

S ′1 =

(
3 2

2 3

)
, S ′2 =

(
2 3

3 2

)
.

Note that, in contrast to S ′1, S ′2 is not monotone w.r.t. b � c. Therefore, S2 is not recur-

sively monotone w.r.t. a � b � c (while S1 is).

We conclude that indeed recursive monotonicity is a property of the profile of rankings and

not of its scorix. Nevertheless, in order to ease the way of referring to this property, the

term recursive monotonicity of the scorix will be used.

Due to the definition of sub-scorix, the following lemma is straightforward.

Lemma 5.11 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and S ∈ Sr(C ) be the scorix induced by R. The following statements hold:

(i) A ranking � on C is a weak Condorcet ranking if and only if any sub-scorix S ′ of S

on a subset C ′ of C of cardinality two is monotone w.r.t. the restriction of � to C ′.

(ii) A ranking � on C is the Condorcet ranking if and only if any sub-scorix S ′ of S on

a subset C ′ of C of cardinality two is strictly monotone w.r.t. the restriction of �
to C ′.

The former lemma shows that, in case the set consists of three candidates, recursive mono-

tonicity of the scorix is nothing else but monotonicity of the scorix plus presence of a

(weak) Condorcet ranking.
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Corollary 5.12 Let C be a set of three candidates, R be the profile of r rankings on C

given by the voters, S ∈ Sr(C ) be the scorix induced by R and � be a ranking on C . The

following statements hold:

(i) S is recursively monotone w.r.t. � if and only if S is monotone w.r.t. � and � is a

weak Condorcet ranking.

(ii) S is strictly recursively monotone w.r.t. � if and only if S is strictly monotone w.r.t.

� and � is the Condorcet ranking.

Recursive monotonicity of the scorix obviously is a stronger property than monotonicity

of the scorix and a weaker property than unanimity. Furthermore, as we prove in the

following theorem, it guarantees the existence of a weak Condorcet ranking.

Theorem 5.13 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, S ∈ Sr(C ) be the scorix induced by R and � be a ranking on C . The

following statements hold:

(i) If R is the unanimous profile where every voter expresses �, then S is recursively

monotone w.r.t. �.

(ii) If S is recursively monotone w.r.t. �, then S is monotone w.r.t. �.

(iii) If S is recursively monotone w.r.t. �, then the first ranked candidate according to �
is a weak Condorcet winner and � is a weak Condorcet ranking.

(iv) If S is recursively monotone w.r.t. �, then every elimination method based on a

scoring ranking rule defines a ranking with ties on the set of candidates that is linearly

extended by �.

Proof: Statement (i). If R is the unanimous profile where every voter expresses �,

then S is the matrix where, for any i ∈ {1, . . . , k}, the i-th row is a vector where the j-th

component equals r if j is the position at which the i-th candidate is ranked in � and to

zero otherwise. Furthermore, any sub-scorix S ′bS will be of the same form considering the

restriction of � to the corresponding non-empty subset C ′ ⊆ C . Therefore, S is recursively

monotone w.r.t. �.
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Statement (ii). By definition of recursive monotonicity, any sub-scorix S ′bS is monotone

w.r.t. the corresponding restriction of �. As SbS, it trivially follows that S is monotone

w.r.t. �.

Statement (iii). Direct result of Lemma 5.11.

Statement (iv). As S is monotone w.r.t. �, the first set of ` eliminated candidates

{ai1 , . . . , ai`} corresponds to the last ` ranked candidates in �. Now, the current set

of candidates is C ′ = C \{ai1 , . . . , ai`} and the sub-scorix S ′ of S on C ′ is, due to the

recursive monotonicity of S w.r.t. �, monotone w.r.t. the restriction of � to C ′. There-

fore, proceeding analogously as above, we prove that every elimination method based on

a scoring ranking rule defines a ranking with ties on the set of candidates that is linearly

extended by �. �

The following result concerning the relation between a Condorcet ranking and a Borda

ranking follows from Theorem 5.13.

Corollary 5.14 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. If the scorix S ∈ Sr(C ) induced by R is recursively monotone w.r.t.

a ranking � on C , then � is a weak Condorcet ranking and linearly extends the Borda

ranking (with ties).

Corollary 5.15 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. If the scorix S ∈ Sr(C ) induced by R is strictly recursively monotone

w.r.t. a ranking � on C , then � is the Condorcet ranking and the Borda ranking.

From the previous corollary, we conclude that (strict) recursive monotonicity is a property

that links the works of Borda [18] and Condorcet [35], leading to the same social outcome.

Therefore, recursive monotonicity of the scorix can be understood as a necessary condition

for Condorcet and Borda to finally agree.
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5.3 Monotonicity of the votrix

In the context of social choice theory, there are many references to monotonicity (also

known as positive association of social and individual values) as a desirable property for

ranking rules [3, 60, 152]. In 2014, Rademaker and De Baets [133] proposed a new appli-

cation of monotonicity in social choice theory. According to their proposal, for a ranking

a � b � c, monotonicity means that the strength with which a � c is supported should

not be less than both the strength with which a � b and the strength with which b � c

are supported. They advocated that the ranking that best reflects the preferences of the

voters should be the one that is the closest to satisfying this assumption.

More formally, given a ranking � on C , a strict partial order relation between couples of

candidates can be defined.

Definition 5.16 Let C be a set of k candidates. A ranking � on C induces a strict partial

order relation A on C 2
6= such that, for any two different (ai1 , aj1), (ai2 , aj2) ∈ C 2

6=, it holds

that

(ai1 , aj1) A (ai2 , aj2) if (ai1 � aj1) ∧ (aj2 � ai2) ∧ (ai1 � aj1 ∨ aj2 � ai2) .

Figure 5.1 displays the Hasse diagram of the order relation A for the ranking a � b � c � d.

(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

(b, a) (c, b) (d, c)

(d, a)

(c, a) (d, b)

Figure 5.1: Hasse diagram of the order relation A for the ranking a � b �
c � d.



CHAPTER 5 MONOTONICITY OF A REPRESENTATION OF VOTES 107

According to Rademaker and De Baets, if the strength of support is decreasing on A, then

the strength of support is said to be monotone. Note that this property of the strength

of support can be understood as a property of the votrix itself. Therefore, from now on,

if the strength of support is decreasing on A, then the votrix is called monotone w.r.t. �.

The definition is naturally extended to any quasivotrix.

Definition 5.17 Let C be a set of k candidates and r be the number of voters. A quasiv-

otrix V ∈ VQr (C ) is said to be monotone w.r.t. a ranking � on C (with corresponding A)

if, for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A (ai2 , aj2), it holds that

Vi1j1 ≥ Vi2j2 .

Obviously, the votrix induced by most profiles of rankings is not monotone w.r.t. any

ranking. The set of all profiles of rankings with a monotone votrix can be understood as a

consensus state for the rationalisation of ranking rules for which most methods based on

pairwise information lead to the same social outcome, as will be discussed in Section 5.7.

Remark 5.18 The fact that there exists a ranking w.r.t. which the votrix is monotone

implies the property of strong stochastic transitivity [138]. A weaker property, usually

referred to as weak stochastic transitivity, has also called the attention of researchers [136].

As we will work with votrices and quasivotrices and they fulfill the reciprocity property

mentioned in Proposition 4.9, the lower half of the diagram defined by A does not actually

provide additional information beyond that provided by the upper half. To exploit this

knowledge, we may use the strict partial order relation A+ instead of A.

Definition 5.19 Let C be a set of k candidates. A ranking � on C induces a strict partial

order relation A+ on C 2
6= such that, for any two different (ai1 , aj1), (ai2 , aj2) ∈ C 2

6=, it holds

that

(ai1 , aj1) A
+ (ai2 , aj2) if ai1 � ai2 � aj2 � aj1 .

Figure 5.2 displays the Hasse diagram of the order relation A+ for the ranking a � b �
c � d.

Evidently, if the strength of support is decreasing on A+ and, at the same time, equals at

least half of the number of voters, then the votrix is monotone w.r.t. �.
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(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

Figure 5.2: Hasse diagram of the order relation A+ for the ranking a � b �
c � d.

Proposition 5.20 Let C be a set of k candidates, r be the number of voters, V ∈ VQr (C )

be a quasivotrix and � be a ranking on C (with corresponding A and A+). The following

three statements are equivalent:

(i) A quasivotrix V ∈ VQr (C ) is monotone w.r.t. �.

(ii) For any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A

+ (ai2 , aj2), it holds that Vi1j1 ≥
Vi2j2 and, for any ai, aj ∈ C such that ai � aj, it holds that Vij ≥ r

2
.

(iii) For any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A

+ (ai2 , aj2), it holds that Vi1j1 ≥
Vi2j2 and, for any ai, aj ∈ C such that ai � aj and @a` ∈ C satisfying ai � a` � aj,

it holds that Vij ≥ r
2
.

5.4 Monotonicity of the votex

With the votex representation, monotonicity can no longer be represented as the decrease

of the strength of support. Nevertheless, similarly to stochastic dominance, we introduce a

way to compare frequency distributions of couples of candidates based on their cumulative

frequency distributions.

Definition 5.21 Let C be a set of k candidates and r be the number of voters. For

any quasivotex W ∈ WQr (C ) and any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6=, we say that W (ai1 , aj1)

dominates W (ai2 , aj2), denoted as W (ai1 , aj1)DW (ai2 , aj2), if, for any j ∈ K, it holds that

Nj(ai1 , aj1) ≤ Nj(ai2 , aj2) ,
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where Nj denotes the cumulative absolute frequency, i.e., Nj(u, v) =
∑
i∈K
i≤j

ni(u, v).

For any possible ranking � on C , we have an associated strict partial order relation A

between couples of candidates (see Definition 5.16). Among all these rankings, we would

like to consider the one that is the closest to imposing monotonicity w.r.t.� on the provided

votex.

Definition 5.22 Let C be a set of k candidates and r be the number of voters. A quasivotex

W ∈ WQr (C ) is said to be monotone w.r.t. a ranking � on C (with corresponding A) if,

for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A (ai2 , aj2), it holds that

W (ai1 , aj1)DW (ai2 , aj2) .

Obviously, the votex induced by most profiles of rankings is not monotone w.r.t. any

ranking. The set of all profiles of rankings with a monotone votex can be understood as

a consensus state for the rationalisation of ranking rules for which most methods based

on pairwise information lead to the same social outcome and that (unlike most methods

based on pairwise information) also exploits the given positional information.

An interesting study subject is the relation between different notions of consensus states.

For instance, if a profile of rankings is the unanimous profile where every voter expresses

the ranking �, then the corresponding votrix and votex are monotone w.r.t. �. In the

following theorem, we establish a relation between four different notions of consensus:

unanimity, monotonicity of the votex, monotonicity of the votrix and presence of a weak

Condorcet ranking.

Theorem 5.23 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, V ∈ Vr(C ) be the votrix induced by R, W ∈ Wr(C ) be the votex induced by

R and � be a ranking on C . The following statements hold:

(i) If R is the unanimous profile where every voter expresses �, then W is monotone

w.r.t. �.

(ii) If W is monotone w.r.t. �, then V is monotone w.r.t. �.
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(iii) If V is monotone w.r.t. �, then the first ranked candidate according to � is a weak

Condorcet winner and � is a weak Condorcet ranking.

(iv) If V is monotone w.r.t. � and r is an odd number, then the first ranked candidate

according to � is the Condorcet winner and � is the Condorcet ranking.

Proof: Let �: a1 � . . . � ak be the considered ranking.

Statement (i). If R is the unanimous profile where every voter expresses � then, for any

(ai1 , ai2) ∈ C 2
6=, W (ai1 , ai2) is the vector where ni2−i1(ai1 , ai2) = r and ni(ai1 , ai2) = 0 for

any i ∈ K\{i2 − i1}. It is immediate to see that W is monotone w.r.t. �.

Statement (ii). If W is monotone w.r.t. � then, for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that

(ai1 , aj1) A (ai2 , aj2), it holds that W (ai1 , aj1)DW (ai2 , aj2).

As a result of Proposition 4.14, we know that, for any (a`, a`′) ∈ C 2
6=, it holds that

V`,`′ =
∑
i∈K+

W (a`, a`′)(i) .

Therefore, for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A (ai2 , aj2), it holds that

Vi1,j1 ≥ Vi2,j2 . Thus, V is monotone w.r.t. �.

Statement (iii). If V is monotone w.r.t. � then, for any i ∈ {2, . . . , k}, it holds that

V1,i ≥ Vi,1 .

In words, the number of voters preferring a1 to any ai is not smaller than the number of

voters preferring ai to a1, i.e., a1 is a weak Condorcet winner.

We now remove a1 and consider C ′ = C \{a1}. Then the restricted votrix on C will be

monotone w.r.t. �′: a2 �′ . . . �′ ak and we proceed analogously as above. Proceeding

iteratively, it is straightforward to prove that � is a weak Condorcet ranking.

Statement (iv) is a consequence of statement (iii) and of the fact that a weak Condorcer

winner (resp. ranking) always is the Condorcet winner (resp. ranking) in case the number

of voters is odd. �

Monotonicity of the votrix and monotonicity of the votex are two properties lying in be-

tween unanimity and the presence of a weak Condorcet ranking. Other properties such as

simple majority [95], absolute majority [139] or majorities based on difference of votes [65]

have no immediate relation with monotonicity of the votrix or the votex.
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5.5 Monotonicity of the beatpath matrix

The strict partial order relation between couples of candidates given in Definition 5.16 is

also used for defining monotonicity of the beatpath matrix [122].

Definition 5.24 Let C be a set of k candidates and r be the number of voters. A beatpath

matrix B is said to be monotone w.r.t. a ranking � on C if, for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6=

such that (ai1 , aj1) A (ai2 , aj2), it holds that

Bi1j1 ≥ Bi2j2 .

Again, the beatpath matrix induced by most profiles of rankings is not monotone w.r.t.

any ranking.

Note that monotonicity of the beatpath matrix is a weaker property than monotonicity of

the votrix and, therefore, than monotonicity of the votex and unanimity.

Theorem 5.25 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, V ∈ Vr(C ) be the votrix induced by R, B be the beatpath matrix induced by

R and � be a ranking on C . If V is monotone w.r.t. �, then B is monotone w.r.t. �.

Proof: In order to ease the understanding, and just throughout this proof, we consider

the notation r�(i) to refer to the label corresponding to the candidate ranked at the i-th

position in �. We first prove that, if V is monotone w.r.t. �, then the beatpath from a

candidate ai1 to a different candidate ai2 is the couple (ai1 , ai2) in case ai1 � ai2 and the

list of couples
(
(a`, a`+1)

)r�(i2)−1

`=r�(i1)
in case ai2 � ai1 . This is illustrated in Figure 5.3.

1. The case ai1 � ai2 . Suppose that there is a path from ai1 to ai2 such that the

strength of its weakest link is greater than the strength of support of ai1 over ai2 . We

distinguish three cases:

(a) There is a candidate ai3 in the path such that ai3 � ai1 � ai2 . Therefore, one of

the couples in the path is such that the first element is preferred to the second

one by less than half of the number of voters, a contradiction with the fact that

the strength of the weakest link is greater than the strength of support of ai1
over ai2 .
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(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

(b, a) (c, b) (d, c)

(d, a)

(c, a) (d, b)

Bij = Vij

Bij = min
`∈[i,j]

V`,`+1

Figure 5.3: Characterization of the beatpath matrix B in case the votrix V

is monotone.

(b) There is a candidate ai3 in the path such that ai1 � ai2 � ai3 . Therefore, one of

the couples in the path is such that the first element is preferred to the second

one by less than half of the number of voters, a contradiction with the fact that

the strength of the weakest link is greater than the strength of support of ai1
over ai2 .

(c) Any candidate ai3 in the path is such that ai1 � ai3 � ai2 . Therefore, as V

is monotone w.r.t. �, the strength of support of ai1 over ai2 is greater than or

equal to the strength of all the links in the path, a contradiction with the fact

that the strength of the weakest link is greater than the strength of support of

ai1 over ai2 .

2. The case ai2 � ai1 . Suppose that there is a path from ai2 to ai1 such that the

strength of its weakest link is greater than the lowest strength of support of a` over

a`+1, for ` ∈ {r�(i1), . . . , r�(i2) − 1}. We prove that, for any (a`, a`+1) with ` ∈
{r�(i1), . . . , r�(i2)− 1}, there is a couple (aj1 , aj2) in the path such that (a`, a`+1) A

(aj1 , aj2) or (a`, a`+1) = (aj1 , aj2). Let us suppose that, for a fixed ` ∈ {r�(i1), . . . ,

r�(i2) − 1}, there is no (aj1 , aj2) in the path such that (a`, a`+1) A (aj1 , aj2) or

(a`, a`+1) = (aj1 , aj2). It follows that there is no (aj1 , aj2) in the path such that a` �
aj1 or that aj2 � a`+1 or that (a`, a`+1) = (aj1 , aj2). However, as ai2 � a`+1 � a` � ai1 ,

there needs to be a couple (aj1 , aj2) in the path such that aj2 � a`+1 � a` � aj1 due

to the transitivity of �, the definition of path and the fact that a` and a`+1 are
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consecutive candidates in �. We conclude that a` � aj1 or that aj2 � a`+1 or that

(a`, a`+1) = (aj1 , aj2), a contradiction.

Finally, as V is monotone w.r.t. �, the strength of the weakest link in the path is

smaller than or equal to the strength of the lowest strength of support of a` over

a`+1, for ` ∈ {r�(i1), . . . , r�(i2)− 1}, a contradiction.

We conclude that, in case V is monotone w.r.t. the ranking �, the beatpath matrix B

equals V for couples in the upper half of the diagram of A and that for any couple in the

lower half of the diagram it equals the minimum of the values of V in the upper row of

the lower half of the diagram that dominate the chosen couple. Thus, as V is monotone

w.r.t. �, B obviously is decreasing on A and, therefore, monotone w.r.t. �. �

Unfortunately, the search for monotonicity of the beatpath matrix is not easily characteri-

zable as a transportation problem (see Chapter 6 for a discussion on how all other searches

can be addressed by solving a transportation problem). For this reason, monotonicity

of the beatpath matrix will no longer be considered in the computational studies of this

dissertation.

5.6 Monotonicity of the (anonymised) profile

Any (anonymised) profile is determined by the number of times that each ranking is voted4.

We denote by nR ∈ {0, 1, . . . , r}k! the vector of absolute frequencies of R, where nR(i)

is the absolute frequency of the i-th ranking in L(C ), i.e., the number of voters that

have expressed the i-th ranking in L(C ) in the profile R. Analogously, we denote by

fR ∈ {0, 1
r
, . . . , 1}k! the vector of relative frequencies of R, where fR(i) is the relative

frequency of the i-th ranking in L(C ) in the profile R. For any i ∈ {1, . . . , k!}, it obviously

holds that

r · fR(i) = nR(i) .

In addition, it holds that

k!∑
i=1

nR(i) = r ∧
k!∑
i=1

fR(i) = 1 .

4Here, we do not take the order of the voters into account.
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The set of all possible vectors f ∈ {0, 1
r
, . . . , 1}k! that can be seen as the vector of relative

frequencies of a profile R of r rankings on C is denoted by Rr(C ).

Each ranking � on C defines an order relation w≥ on L(C ) according to how far two

rankings in L(C ) are from � in terms of reversals. For any �i,�j∈ L(C ), the fact that

(�i,�j) ∈ w≥ is denoted by �i w≥ �j.

Proposition 5.26 Let C be a set of k candidates and � be a ranking on C . The relation

w≥ defined as

w≥ =
{

(�i,�j) ∈ L(C )2 |
(
∀(ai1 , ai2) ∈ C 2

) ((
(ai1 � ai2) ∧ (ai1 �j ai2)

)
⇒ (ai1 �i ai2)

)}
is an order relation on L(C ).

Proof: We prove that w≥ satisfies reflexivity, antisymmetry and transitivity.

Reflexivity: holds trivially.

Antisymmetry: for any �i,�j∈ L(C ), if �i w≥ �j and �j w≥ �i, then it holds that:(
∀(ai1 , ai2) ∈ C 2

) ((
(ai1 � ai2) ∧ (ai1 �j ai2)

)
⇒ (ai1 �i ai2)

)
,(

∀(ai1 , ai2) ∈ C 2
) ((

(ai1 � ai2) ∧ (ai1 �i ai2)
)
⇒ (ai1 �j ai2)

)
.

Therefore, for any ai1 , ai2 ∈ C such that ai1 � ai2 , it holds that

(ai1 �i ai2)⇔ (ai1 �j ai2) .

As � is complete, if ai1 6� ai2 , then it holds that ai1 = ai2 or ai2 � ai1 . If ai1 = ai2 , then,

as �i and �j are irreflexive by definition of ranking, it is trivial to see that (ai1 �i ai2)⇔
(ai1 �j ai2). If ai2 � ai1 , then it holds that (ai2 �i ai1) ⇔ (ai2 �j ai1), or, equivalently,

(ai2 6�i ai1) ⇔ (ai2 6�j ai1). As �i and �j are complete and ai2 � ai1 , it holds that

(ai1 �i ai2)⇔ (ai1 �j ai2).

Hence, for any ai1 , ai2 ∈ C , it holds that

(ai1 �i ai2)⇔ (ai1 �j ai2) ,

i.e., it holds that �i=�j.
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Transitivity: for any �i,�j,�`∈ L(C ), if �i w≥ �j and �j w≥ �`, then it holds that(
∀(ai1 , ai2) ∈ C 2

) ((
(ai1 � ai2) ∧ (ai1 �j ai2)

)
⇒ (ai1 �i ai2)

)
,(

∀(ai1 , ai2) ∈ C 2
) ((

(ai1 � ai2) ∧ (ai1 �` ai2)
)
⇒ (ai1 �j ai2)

)
.

Hence, for any ai1 , ai2 ∈ C such that ai1 � ai2 , it holds that

(ai1 �` ai2)⇒ (ai1 �j ai2)⇒ (ai1 �i ai2) ,

i.e., it holds that �i w≥ �`.

Thus, w≥ is an order relation on L(C ). �

Figure 5.4 displays the Hasse diagram of the order relation w≥, where a � b � c � d is

the ranking assumed to be the true ranking on a set of four candidates C = {a, b, c, d}.
Clearly, every ranking �i is closer (in terms of reversals) to � than �j if it holds that

�i w≥ �j.

Under the assumption that there exists a true ranking � on C , it seems natural that the

vector of frequencies of the given profile of rankings should be decreasing on the Hasse

diagram of the order relation w≥. A profile of rankings satisfying this property is said to be

monotone w.r.t. the ranking �.

Definition 5.27 Let C be a set of k candidates, r be the number of voters and � be a

ranking on C .

(i) A vector of relative frequencies f ∈ Rr(C ) is said to be monotone w.r.t. � if, for any

�i,�j∈ L(C ), it holds that(
�i w≥ �j

)
⇒
(
f(i) ≥ f(j)

)
.

(ii) A vector of absolute frequencies n is said to be monotone w.r.t. � if the corresponding

vector of relative frequencies f = n
r

is monotone w.r.t. �.

(iii) A profile R of rankings on C is said to be monotone w.r.t. � if the corresponding

vector of relative frequencies of R is monotone w.r.t. �.

Obviously, not all profiles of rankings are monotone w.r.t. a at least one ranking.
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abcd

bacd acbd abdc

bcad cabd badc acdb adbc

cbad bcda bdac cadb adcb dabc

cbda bdca cdab dbac dacb

cdba dbca dcab

dcba

Figure 5.4: Hasse diagram of the order relation w≥ for the ranking a � b �
c � d, where xyzt is a shorthand for x � y � z � t.

Remark 5.28 If the profile of rankings is monotone w.r.t. a ranking � on the set of

candidates, then � is a most frequent ranking in the profile of rankings.

Monotonicity of the profile of rankings implies the existence of a true ranking on the set

of candidates instead of a compromise ranking.

Obviously, monotonicity of the profile of rankings is a weaker condition than unanimity.

Theorem 5.29 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. If R is the unanimous profile where every voter expresses �, then R

is monotone w.r.t. �.
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Proof: The result follows immediately from the fact that, in case R is the unanimous

profile where every voter expresses �, it holds that � is the ranking at the top of the Hasse

diagram of the order relation w≥. �

5.7 Acclamation

The main aim of this dissertation is to analyse the conditions under which determining

the winning ranking on the set of candidates is obvious. Unanimity obviously is one of

this situations and, unfortunately, it is the only situation under which the winning ranking

on the set of candidates is indisputably determined. Fortunately, as discussed in the

previous sections, monotonicity of different representations of votes can be understood as

a cornerstone of social choice theory where almost all ranking rules lead to the same social

outcome.

First, recursive monotonicity of the scorix assures that all ranking rules based on positional

information lead to the same ranking on the set of candidates. Second, monotonicity of

the votrix assures that all ranking rules based on pairwise information lead to the same

ranking on the set of candidates. Note that monotonicity of the profile is not linked to an

agreement of a family of ranking rules. Rather, as discussed in the upcoming Chapter 7,

monotonicity of the profile may lead to winning rankings that significantly differ from

the rest of the ranking rules. Rather, as discussed in Section 5.6, monotonicity of the

profile is linked to the real existence of a true ranking on the set of candidates, i.e., the

philosophy advocated by Rousseau [139] and Condorcet [35] where personal preferences

are not considered, to identify the ‘general will’. This phylosophy is clearly described by

Arrow [4]: “each individual has two orderings, one which governs him in his everyday

actions, and one which would be relevant under some ideal conditions and which is in

some sense truer than the first ordering. It is the latter which is considered relevant to

social choice, and it is assumed that there is complete unanimity with regard to the truer

individual ordering”.

In this section, we propose to jointly consider these three types of monotonicity in order to

define a weaker condition than unanimity, but that still leads to an obvious social outcome.

From now on, a ranking w.r.t. which the scorix is recursively monotone, the votrix is

monotone and the profile is monotone, is referred to as an acclaimed ranking [119].
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Definition 5.30 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, S ∈ Sr(C ) be the scorix induced by R and V ∈ Vr(C ) be the votrix induced

by R. A ranking � on C is called the acclaimed ranking for R if the following three

statements hold:

(i) R is monotone w.r.t. �.

(ii) S is recursively monotone w.r.t. �.

(iii) V is monotone w.r.t. �.

Remark 5.31 The term acclamation historically refers to a voting system used in Ancient

Greece, where the winning candidate was decided by the (loudest) shouts of the people [69].

In case there exists an acclaimed ranking for a given profile of rankings, we say that the

profile belongs to the acclamation consensus state.

By definition, acclamation is obviously a weaker consensus state than unanimity and a

stronger consensus state than (recursive) monotonicity of the scorix, monotonicity of the

votrix and monotonicity of the profile.

Theorem 5.32 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, V ∈ Vr(C ) be the votrix induced by R, W ∈ Wr(C ) be the votex induced by

R and � be a ranking on C . The following statements hold:

(i) If R is the unanimous profile where every voter expresses �, then � is the acclaimed

ranking for R.

(ii) If � is the acclaimed ranking for R, then R is monotone w.r.t. �.

(iii) If � is the acclaimed ranking for R, then S is (recursively) monotone w.r.t. �.

(iv) If � is the acclaimed ranking for R, then V is monotone w.r.t. �.

(v) If � is the acclaimed ranking for R, then the first ranked candidate according to �
is a weak Condorcet winner and � is a weak Condorcet ranking.
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(vi) If � is the acclaimed ranking for R and r is an odd number, then the first ranked

candidate according to � is the Condorcet winner and � is the Condorcet ranking.

Proof:

Statement (i) is a consequence of Theorems 5.3, 5.23 and 5.29.

Statements (ii), (iii) and (iv) are straightforward due to the definition of an acclaimed

ranking.

Statements (v) and (vi) are a consequence of Theorem 5.23. �

We recall here that the introduction of consensus states broader than unanimity, but that

still lead to an obvious ranking on the set of candidates, represents a valuable topic in the

field of social choice theory. This is due to the fact that the broader the consensus state,

the less the ranking rule based on the search for this consensus state depends on the chosen

monometric. Unfortunately, it also holds that the broader the consensus state, the weaker

the support for the winning ranking associated with the consensus state. For this reason,

we advocate for the use of acclamation, which is the broadest consensus state for which

we could not identify a prominent ranking rule disagreeing with the associated winning

ranking.

As illustrated in Table 5.3, in case � is the acclaimed ranking for a given profile of rankings,

the ranking � is a winning ranking and/or the first ranked candidate in � is a winning

candidate for the most prominent voting rules. In Table 5.3, a symbol X (resp. −) in

the column WC means that the first ranked candidate in the acclaimed ranking is (resp.

does not need to be) a Winning Candidate for the method corresponding to the row; a

symbol X (resp. −) in the column UWC means that the first ranked candidate in the

acclaimed ranking is (resp. does not need to be) the Unique Winning Candidate for the

method corresponding to the row; a symbol X (resp. −) in the column WR means that

the acclaimed ranking is (resp. does not need to be) a Winning Ranking for the method

corresponding to the row; and a symbol X (resp. −) in the column UWR means that

the acclaimed ranking is (resp. does not need to be) the Unique Winning Ranking for the

method corresponding to the row. The symbol ∗ means that the method corresponding to

the row is not explicitly defined for identifying a winning ranking.
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Method WC UWC WR UWR

Plurality [153] X - X -

Borda count [18] X X X X

Veto [141] X - X -

Best-worst voting systems [66] X - X -

Scoring (ranking) rules [169] X - X -

Elimination methods based on a

scoring (ranking) rule [121]

X - X -

Simple majority rule [95] X X X X

Dodgson [46] X X * *

Condorcet’s least-reversals [99] X X * *

Kemeny [80] X X X X

Copeland [40] X X X X

Tideman [157] X X X X

Schulze [147] X X X X

Simpson [85, 151] X X X -

Bucklin [23] X - * *

Table 5.3: Concordance with the notion of acclamation by the most promi-

nent methods in social choice theory.

For plurality, the Borda count, veto, best-worst voting systems, scoring (ranking) rules

and elimination methods based on a scoring (ranking) rule, the facts that the first ranked

candidate in the acclaimed ranking is a winning candidate and that the acclaimed ranking

is a winning ranking are a direct result from Theorem 5.13. This theorem also implies

that the first ranked candidate in the acclaimed ranking is the unique winning candidate

for the Borda count and that the acclaimed ranking is the unique winning ranking for the

Borda count. We prove that the uniqueness is not assured for the remaining ranking rules

mentioned in this paragraph by providing a counterexample.

Consider the set C = {a, b, c, d} of k = 4 candidates and the profile R of r = 28 rankings

given in Table 5.4.
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Ranking Freq. Ranking Freq. Ranking Freq. Ranking Freq.

a � b � c � d 4 b � a � c � d 3 c � a � b � d 1 d � a � b � c 1

a � b � d � c 3 b � a � d � c 2 c � a � d � b 1 d � a � c � b 1

a � c � b � d 1 b � c � a � d 2 c � b � a � d 1 d � b � a � c 1

a � c � d � b 1 b � c � d � a 1 c � b � d � a 0 d � b � c � a 0

a � d � b � c 1 b � d � a � c 2 c � d � a � b 0 d � c � a � b 0

a � d � c � b 1 b � d � c � a 1 c � d � b � a 0 d � c � b � a 0

Table 5.4: Profile R of r = 28 rankings on C = {a, b, c, d}.

The scorix induced by R is:

S =


11 9 6 2

11 9 4 4

3 5 10 10

3 5 8 12

 .

Although a � b � c � d is the acclaimed ranking for R, all rankings a � b � c � d,

a � b � d � c, b � a � c � d and b � a � d � c are winning rankings for the plurality

rule. Analogously, in case we reverse the order of the candidates in all rankings in the

profile, we obtain a profile R ′ where, although d � c � b � a is the acclaimed ranking

for R ′, all rankings c � d � a � b, c � d � b � a, d � c � a � b and d � c � b � a

are winning rankings for the veto rule. As best-worst voting systems, scoring (ranking)

rules and elimination methods based on a scoring (ranking) rule have both the plurality

and the veto rules as a particular case, we conclude that the first ranked candidate in the

acclaimed ranking does not need to be the unique winner, and the acclaimed ranking does

not need to be the unique winning ranking for any of the aforementioned ranking rules.

By definition of the simple majority rule, in case of existence of the Condorcet ranking

– which is assured to coincide with the acclaimed ranking in case the latter exists – the

(unique) winning candidate coincides with the first ranked candidate in the Condorcet

ranking and the (unique) winning ranking coincides with the Condorcet ranking. Similarly,

as both the method of Dodgson and Condorcet’s least-reversals methods are based on the

search for the candidate that is the closest to becoming the Condorcet winner, in case

of existence of the Condorcet winner, the (unique) winning candidate for both methods

coincides with the first ranked candidate in the Condorcet ranking.
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The methods of Kemeny, Copeland, Tideman, Schulze and Simpson are Condorcet meth-

ods, i.e., in case of existence of a Condorcet winner, they select this Condorcet winner as

the unique winning candidate. Moreover, the first four are additionally Condorcet ranking

methods, i.e., in case of existence of a Condorcet ranking, they select this Condorcet rank-

ing as the unique winning ranking. Due to the property of monotonicity of the votrix, the

method of Simpson, which ranks the candidates according to their greatest pairwise defeat,

is trivially assured to select the acclaimed ranking as the winning ranking. However, the

uniqueness is not assured in this case.

Consider the set C = {a, b, c, d} of k = 4 candidates and the profile R of r = 11 rankings

given in Table 5.5.

Freq. Rankings on C

6 a � b � c � d

5 b � a � c � d

Table 5.5: Profile R of r = 11 rankings on C = {a, b, c, d}.

The votrix induced by R is:

S =


0 6 11 11

5 0 11 11

0 0 0 11

0 0 0 0

 .

Note that candidates c and d have the same greatest pairwise defeat. Therefore, although

a � b � c � d is the acclaimed ranking for R, both rankings a � b � c � d and

a � b � d � c are winning rankings for the method of Simpson.

As the vector of positions of candidate a (strictly) dominates the vectors of positions of

all other candidates, we conclude that the first ranked candidate in the acclaimed ranking

is a winning candidate for the method of Bucklin. For proving that the uniqueness does

not hold, we consider again the profile R of r = 28 rankings given in Table 5.4. Note that

there is no candidate that is ranked at the first position by more than half of the number

of voters. Therefore, according to the method of Bucklin, we need to consider also the

number of times that each candidate is ranked at the second position. Now, candidates a

and b are ranked at the first or second position by 20 voters, which is more than half of the

number of voters. Therefore, candidates a and b are winning candidates for the method of

Bucklin, while candidate b is not the first ranked candidate in the acclaimed ranking.
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We conclude this chapter with Figure 5.5 illustrating the relations between the different

types of consensus states discussed here. In this figure, an arrow indicates that the con-

sensus state from which the arrow starts implies the consensus state to which the arrow

points.

Recursively

monotone

scorix

Monotone

scorix

Monotone

votrix

Monotone

profile

Unanimity

Acclamation
Monotone

votex

Weak

Condorcet

ranking

Monotone

beatpath

matrix

Figure 5.5: Relation between the different consensus states.
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CHAPTER 6

The search for monotonicity as an
optimization problem

In this chapter, the search for all different types of monotonicity is addressed as an opti-

mization problem. This chapter is divided into two different sections. First, the search for

monotonicity is addressed by making changes in the representation of votes. Second, the

search for monotonicity is addressed by making changes in the profile of rankings. Although

both approaches are described here, we will only consider the latter after the conclusion of

this chapter. This is due to the fact that the search for monotonicity by means of changes

in the profile of rankings, unlike the search for monotonicity by means of changes in the

representation of votes, does not disregard all the information that is lost when contracting

the profile of rankings into a representation of votes. Moreover, in case we count changes

in the profile of rankings, the closeness to any consensus states becomes comparable with

the closeness to any other consensus states. The search for the same property by means

of a distance function at the representation level and of a distance function at the profile

level is a common topic in the field of social choice theory. For instance, the search for

a Condorcet winner [35] is addressed by means of a distance function at the votrix level

and of a distance function at the profile level by two well-known methods: Condorcet’s

least-reversal method [99] and Dodgson’s method [46].
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6.1 Changes in the representation of votes

In this section, we discuss the search for a monotone representation of votes. Note that, un-

like in the case of the scorix, the search for a monotone votrix (resp. votex) does not assure

the obtained construct to be a votrix (resp. votex), but a quasivotrix (resp. quasivotex).

6.1.1 Search for a monotone scorix

As discussed in [125], a natural ranking rule can be defined by searching for a construct

that satisfies the properties mentioned in Proposition 4.4 and that at the same time is

monotone w.r.t. a ranking on the set of candidates. Fortunately, as Fine and Fine proved

in [52], scorices are characterizable by means of the properties listed in Proposition 4.4,

thus the search for the closest scorix satisfying monotonicity can be addressed. This closest

scorix has an associated cost that is calculated by means of a monometric on Sr(C ).

Definition 6.1 Let C be a set of k candidates and r be the number of voters. A function

M : Sr(C )×Sr(C )→ R is called a monometric on Sr(C ) if it satisfies the following three

properties:

(i) Non-negativity: for any S, S ′ ∈ Sr(C ), it holds that

M(S, S ′) ≥ 0 .

(ii) Coincidence: for any S, S ′ ∈ Sr(C ), it holds that

M(S, S ′) = 0⇔ S = S ′ .

(iii) Compatibility: for any S, S ′, S ′′ ∈ Sr(C ) such that, for any i ∈ {1, . . . , k},

(Si D1 S
′
i D1 S

′′
i ) ∨ (S ′′i D1 S

′
i D1 Si) ,

it holds that

M(S, S ′) ≤M(S, S ′′) .

For any two scorices S, S ′ ∈ Sr(C ), M(S, S ′) is referred to as the cost of changing S into S ′.
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Definition 6.2 Let C be a set of k candidates, r be the number of voters, � be a ranking

on C , S ∈ Sr(C ) be a scorix and M : Sr(C )× Sr(C )→ R be a monometric on Sr(C ). A

closest monotone scorix S ′ ∈ Sr(C ) to S (w.r.t. �) is a scorix that is monotone w.r.t. �
and such that there exists no scorix S ′′ ∈ Sr(C ) that is monotone w.r.t. � and, at the same

time,

M(S, S ′′) < M(S, S ′) .

Thus, for each ranking �, we have the corresponding cost associated with a closest mono-

tone scorix (measured by means of the chosen monometric on Sr(C )). An optimal ranking

should be one whose corresponding closest monotone scorix is the closest to the scorix

given by the voters.

Definition 6.3 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, SR ∈ Sr(C ) be the scorix induced by R and M : Sr(C ) × Sr(C ) → R be

a monometric on Sr(C ). An optimal ranking � (with a corresponding closest monotone

scorix S ∈ Sr(C )) is a ranking for which it holds that there exists no ranking �′ (with a

corresponding closest monotone scorix S ′ ∈ Sr(C )) such that

M(SR , S
′) < M(SR , S) .

Note that the search for a closest 2-monotone scorix can be addressed in an analogous way.

Definition 6.4 Let C be a set of k candidates, r be the number of voters, � be a ranking

on C , S ∈ Sr(C ) be a scorix and M : Sr(C ) × Sr(C ) → R be a monometric on Sr(C ).

A closest 2-monotone scorix S ′ ∈ Sr(C ) to S (w.r.t. �) is a scorix that is 2-monotone

w.r.t. � and such that there exists no scorix S ′′ ∈ Sr(C ) that is 2-monotone w.r.t. � and,

at the same time,

M(S, S ′′) < M(S, S ′) .

The resolution of the problem is addressed for an interesting monometric on Sr(C ) based

on the total amount of changes in the vectors of positions of all the candidates. This leads

to the resolution of an Integer Linear Programming problem (ILP problem). The proposed

monometric on Sr(C ) is given by the sum of the absolute differences of the cumulative

vectors of positions of all candidates:

M(S, S ′) =
k∑
i=1

k∑
`=1

∣∣∣∣∣∑̀
j=1

(
Sij − S ′ij

)∣∣∣∣∣ . (6.1)
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Obviously, in case the given scorix is not monotone w.r.t. any ranking on the set of candi-

dates, different monometrics on Sr(C ) might lead to different optimal rankings.

We will now prove that Eq. (6.1) defines a monometric1 on Sr(C ).

Proposition 6.5 Let C be a set of k candidates, r be the number of voters and M :

Sr(C )× Sr(C )→ R be defined as in Eq. (6.1). Then M is a monometric on Sr(C ).

Proof: We will prove that M satisfies the three axioms of a monometric on Sr(C ).

Non-negativity. Immediate.

Coincidence. As it is a sum of absolute values, for any S, S ′ ∈ Sr(C ), M(S, S ′) = 0 if and

only if
∑`

j=1 Sij =
∑`

j=1 S
′
ij, for any i, ` ∈ {1, . . . , k}. This is equivalent to saying that

S = S ′.

Compatibility. For any S, S ′, S ′′ ∈ Sr(C ) satisfying that, for any i, ` ∈ {1, . . . , k},(∑̀
j=1

Sij ≥
∑̀
j=1

S ′ij ≥
∑̀
j=1

S ′′ij

)
∨

(∑̀
j=1

Sij ≤
∑̀
j=1

S ′ij ≤
∑̀
j=1

S ′′ij

)
,

the following is fulfilled:

M(S, S ′) =
k∑
i=1

k∑
`=1

∣∣∣∣∣∑̀
j=1

(
Sij − S ′ij

)∣∣∣∣∣
≤

k∑
i=1

k∑
`=1

∣∣∣∣∣∑̀
j=1

(
Sij − S ′′ij

)∣∣∣∣∣ = M(S, S ′′) .

Thus, M is a monometric on Sr(C ). �

In order to search for an optimal ranking, we will need to solve an Integer Linear Program-

ming problem for each possible ranking. The number of unknown variables (elements of

the scorix) and the number of constraints (given by the properties of Proposition 4.4) in

the optimization problem will depend on the number of candidates k:

(i) Number of (positive integer) variables: k2.

1As it is symmetric and satisfies the triangle inequality, Eq. (6.1) actually defines a distance function

that satisfies the additional axiom of compatibility.
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(ii) Completeness in candidates constraints (equalities): k.

(iii) Completeness in positions constraints (equalities): k.

(iv) Monotonicity constraints (inequalities): (k − 1)2.

More specifically, the Integer Linear Programming problem to be resolved is then encoded

in the following way. Firstly, we will define k2 integer variables that will be denoted by

xi` (xi` ∈ {0, 1, . . . , r}), where i, ` ∈ {1, . . . , k}. Note that xi` denotes the number of times

that the i-th candidate is ranked at the `-th position in the monotone scorix that we are

looking for.

We intend to minimize M(S, S ′), which can be written as

k∑
i=1

k∑
`=1

∣∣∣∣∣∑̀
j=1

(xij − oij)

∣∣∣∣∣ , (6.2)

where the values oi` represent the number of times that the i-th candidate is ranked at the

`-th position in the given profile of rankings.

It must be noted that Eq. (6.2) is a sum of absolute values and will lead to an Integer

Non-Linear Programming problem instead of an ILP problem. Fortunately, we can define

a family of auxiliary variables yi` (where i, ` ∈ {1, . . . , k}) such that minimizing Eq. (6.2)

is equivalent to minimizing:
k∑
i=1

k∑
`=1

yi` , (6.3)

under the additional constraints, for any i, ` ∈ {1, . . . , k}:

∑̀
j=1

(xij − oij) ≤ yi` , (6.4)

∑̀
j=1

(oij − xij) ≤ yi` , (6.5)

yi` ≥ 0 . (6.6)

As we are looking for a closest monotone scorix, we need to require the properties listed

in Proposition 4.4. These properties are encoded as follows.
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Completeness in candidates: for any i ∈ {1, . . . , k}:

k∑
`=1

xi` = r . (6.7)

Completeness in positions: for any ` ∈ {1, . . . , k}:

k∑
i=1

xi` = r . (6.8)

Additionally, we require the new scorix to be monotone. As D1 defines a transitive rela-

tion on the set of vectors of positions, in order to reduce the number of constraints, the

dominance relation can be required for consecutive elements in the ranking, i.e., mono-

tonicity can be required w.r.t. the covering relation � associated with the ranking �.

More formally, the covering relation is defined as:

�= {(ai1 , ai2) ∈�| (@i3 ∈ {1, . . . , k})(ai1 � ai3 � ai2)} .

Monotonicity: for any ` ∈ {1, . . . , k− 1} and any i1, i2 ∈ {1, . . . , k} such that ai1 � ai2 :∑̀
j=1

xi1j ≥
∑̀
j=1

xi2j . (6.9)

Therefore, the cost of a closest monotone scorix w.r.t. � is the minimum value of Eq. (6.3)

under the constraints of Eqs. (6.4)–(6.9).

Remark 6.6 The cost of a closest 2-monotone scorix w.r.t. � is the minimum value of

Eq. (6.3) under the constraints of Eqs. (6.4)–(6.8) and additionally requiring the following

condition: for any ` ∈ {1, . . . , k} and any i1, i2 ∈ {1, . . . , k} such that ai1 � ai2:

∑̀
j=1

j∑
i=1

xi1j ≥
j∑
i=1

∑̀
j=1

xi2j . (6.10)

Proposition 6.7 There exists a solution of the Integer Linear Programming problem of

minimizing Eq. (6.3) under the constraints of Eqs. (6.4)–(6.9).

Proof: There exists a finite number of possible scorices with k candidates and r voters.

Each scorix has an associated cost of changing the scorix given by the voters into this
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new scorix defined by Eq. (6.2). As we are minimizing the function over a finite set,

if the feasible region has at least one element, then there is an optimal solution of the

optimization problem minimizing Eq. (6.2) under the constraints of Eqs. (6.7)–(6.9). Let

us prove the existence of this optimal solution by showing that there exists at least one

solution satisfying all the constraints.

Consider the profile of rankings where all r rankings are identical to the ranking � w.r.t.

which the monotonicity is required. The scorix S ∈ Sr(C ) induced by this particular

profile is obviously monotone w.r.t. �. Furthermore, as it is a scorix, it will also fulfill all

the properties listed in Proposition 4.4. Thus, S is a solution of the optimization problem

and, therefore, there exists an optimal solution.

Finally, we know that minimizing the function defined in Eq. (6.2) under the constraints

of Eqs. (6.7)–(6.9) is equivalent to minimizing the function defined in Eq. (6.3) under the

constraints of Eqs. (6.4)–(6.9). �

Remark 6.8 The existence of a solution of the Integer Linear Programming problem of

minimizing Eq. (6.3) under the constraints of Eqs. (6.4)–(6.8) and (6.10) is analogously

proved.

6.1.2 Search for a monotone (quasi)votrix

If the votrix induced by a profile of rankings is monotone w.r.t. a ranking �, then � is called

an optimal ranking. If there is no such ranking, then the cost of imposing monotonicity

w.r.t. each possible ranking is computed. This cost is measured by means of a monometric

on VQr (C ).

Definition 6.9 Let C be a set of k candidates and r be the number of voters. A function

M : VQr (C ) × VQr (C ) → R is called a monometric on VQr (C ) if it satisfies the following

three properties:

(i) Non-negativity: for any V, V ′ ∈ VQr (C ), it holds that

M(V, V ′) ≥ 0 .
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(ii) Coincidence: for any V, V ′ ∈ VQr (C ), it holds that

M(V, V ′) = 0⇔ V = V ′

(iii) Compatibility: for any V, V ′, V ′′ ∈ VQr (C ) such that, for any two i, j ∈ {1, . . . , k},

(Vij ≥ V ′ij ≥ V ′′ij ) ∨ (Vij ≤ V ′ij ≤ V ′′ij ) ,

it holds that

M(V, V ′) ≤M(V, V ′′) .

For any two (quasi)votrices V, V ′ ∈ VQr (C ), M(V, V ′) is referred to as the cost of changing

V into V ′.

Definition 6.10 Let C be a set of k candidates, r be the number of voters, � be a ranking

on C , V ∈ Vr(C ) be a votrix and M : VQr (C )×VQr (C )→ R be a monometric on VQr (C ). A

closest monotone quasivotrix V ′ ∈ VQr (C ) to V is a quasivotrix that is monotone w.r.t. �
and such that there exists no quasivotrix V ′′ ∈ VQr (C ) that is monotone w.r.t. � and, at

the same time,

M(V, V ′′) < M(V, V ′) .

Thus, for each ranking �, we have the corresponding cost associated with a closest mono-

tone quasivotrix (measured by means of the chosen monometric on VQr (C )). An optimal

ranking should be one whose corresponding closest monotone quasivotrix is the closest to

the original votrix.

Definition 6.11 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, VR ∈ Vr(C ) be the votrix induced by R and M : VQr (C ) × VQr (C ) → R be

a monometric on VQr (C ). An optimal ranking � (with a corresponding closest monotone

quasivotrix V ∈ VQr (C )) is a ranking for which it holds that there exists no ranking �′

(with a corresponding closest monotone quasivotrix V ′ ∈ VQr (C )) such that

M(VR , V
′) < M(VR , V ) .
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The cost of imposing monotonicity w.r.t. a given ranking on C was calculated in [133]

as the sum of absolute differences between two quasivotrices. More formally, for any two

quasivotrices V, V ′ ∈ VQr (C ), the following monometric on VQr (C ) was considered:

M(V, V ′) =
1

2

k∑
i,j=1

|Vij − V ′ij| . (6.11)

Although in [133] only reciprocity was taken into account, we propose to extend that

proposal by looking for a closest monotone quasivotrix to the given votrix.

We will now prove that Eq. (6.11) defines a monometric on VQr (C ).

Proposition 6.12 Let C be a set of k candidates, r be the number of voters and M :

VQr (C )× VQr (C )→ R be defined as in Eq. (6.11). Then M is a monometric on VQr (C ).

Proof: We will prove that M satisfies the three axioms of a monometric on VQr (C ).

Non-negativity. Immediate.

Coincidence. As it is a sum of absolute values, for any V, V ′ ∈ VQr , M(V, V ′) = 0 if and

only if Vij = V ′ij, for any i, j ∈ {1, . . . , k}. This is equivalent to saying that V = V ′.

Compatibility. For any V, V ′, V ′′ ∈ VQr (C ) such that, for any two i, j ∈ {1, . . . , k},

(Vij ≥ V ′ij ≥ V ′′ij ) ∨ (Vij ≤ V ′ij ≤ V ′′ij ) ,

the following is fulfilled:

M(V, V ′) =
1

2

k∑
i,j=1

|Vij − V ′ij|

≤ 1

2

k∑
i,j=1

|Vij − V ′′ij | = M(V, V ′′) .

Thus, M is a monometric on VQr (C ). �

In their work, Rademaker and De Baets were able to calculate the cost of a closest mono-

tone matrix satisfying reciprocity by solving a flow network problem [132, 133, 134, 135].

However, we propose to consider an Integer Linear Programming (ILP) problem instead,

in order to consider new properties such as the triangle inequality.
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The number of unknown variables (elements of the matrix) and the number of constraints

(given by the properties of Proposition 4.9) in the ILP problem depend on the number

of candidates k. Note that strictness does not need to be considered in the ILP problem

and only elements that are not on the diagonal are taken into account. In addition, due

to reciprocity, half of these non-diagonal values become superfluous. Therefore, only the

triangle inequality and monotonicity need to be considered. This yields the following

numbers of constraints:

(i) Number of (positive integer) variables:
k(k − 1)

2
.

(ii) Triangle inequality constraints (inequalities): k(k − 1)(k − 2).

(iii) Monotonicity constraints (inequalities): (k − 1)2.

More specifically, the Integer Linear Programming problem to be resolved is then encoded

in the following way. Firstly, we will define k(k−1)
2

integer variables that will be denoted

by xi (xi ∈ {0, 1, . . . , r}), where i ∈ {1, . . . , k(k−1)
2
}. Note that xi denotes the strength of

support of the i-th couple in C 2
6= (where, for simplicity, the elements in C 2

6= are listed starting

from top to bottom and in each level from left to right in the diagram of A+). We will

denote by i(u,v) the index corresponding to a couple (u, v) ∈ C 2
6= and by i(ai1 ,aj1 ) o i(ai2 ,aj2 )

the fact that (ai1 , aj1) A
+ (ai2 , aj2) for a given ranking �.

We now aim to minimize the cost M(V, V ′) given by Eq. (6.11). In terms of the variables

of the ILP problem, this cost is given by

k(k−1)
2∑
i=1

|xi − oi| , (6.12)

where the values oi represent the corresponding values of the votrix induced by the given

profile of rankings.

It must be noted that Eq. (6.12) is a sum of absolute values and will lead to an Integer

Non-Linear Programming (INLP) problem instead of an ILP problem. Fortunately, such

absolute values can be easily handled. A well-known result in optimization theory [110] is

that we can define a family of auxiliary variables (yi)
k(k−1)

2
i=1 such that minimizing Eq. (6.12)
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is equivalent to minimizing:
k(k−1)

2∑
i=1

yi , (6.13)

under the additional constraints, for any i ∈
{

1, . . . , k(k−1)
2

}
,

xi − oi ≤ yi , (6.14)

oi − xi ≤ yi , (6.15)

yi ≥ 0 . (6.16)

The constraints associated with the triangle inequality and monotonicity can be given in

the following way:

Triangle inequality: for any three different ai1 , ai2 , ai3 ∈ C :

xi(ai1 ,ai2
)

+ xi(ai2 ,ai3
)
≥ xi(ai1 ,ai3

)
, (6.17)

where xi(v,u) equals xi(u,v) when u � v.

Monotonicity: for any i1, i2 ∈ {1, . . . , k(k−1)
2
} such that i1 o i2:

xi1 ≤ xi2 . (6.18)

For any i ∈ { (k−1)(k−2)
2

+ 1, . . . , k(k−1)
2
}:

xi ≥
r

2
. (6.19)

Therefore, the cost of a closest monotone quasivotrix w.r.t. � is the minimum value of

Eq. (6.13) under the constraints of Eqs. (6.14)–(6.19).

When dealing with an optimization problem, the existence of a solution and its uniqueness

are relevant matters of study. In our case, the uniqueness is not necessary as we are

interested in the cost of changing a votrix to a closest monotone quasivotrix and not in

the closest monotone quasivotrix in itself. However, the existence of a solution is indeed

an important question to be studied.

Proposition 6.13 There exists a solution of the Integer Linear Programming problem of

minimizing Eq. (6.13) under the constraints of Eqs. (6.14)–(6.19).
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Proof: There exists a finite number of possible quasivotrices with k candidates and

r voters. Each quasivotrix has an associated cost w.r.t. the original votrix defined by

Eq. (6.12). This cost takes a value in N ∪ {0} and is bounded from below by 0. As we are

minimizing the function over a finite set, if the feasible region has at least one element,

then there is an optimal solution of the optimization problem minimizing Eq. (6.12) under

the constraints of Eqs. (6.17)–(6.19). Let us prove the existence of this optimal solution

by showing that there exists at least one solution satisfying all the constraints.

Consider the profile of rankings where all r rankings are identical to the ranking � w.r.t.

which the monotonicity is required. The votrix V ∈ Vr(C ) induced by this particular

profile is obviously monotone w.r.t. �. Furthermore, as it is a votrix, it will also fulfill all

the properties listed in Proposition 4.9. Thus, V is a solution of the optimization problem

and, therefore, there exists an optimal solution.

Finally, we know that minimizing the function defined in Eq. (6.12) under the constraints

of Eqs. (6.17)–(6.19) is equivalent to minimizing the function defined in Eq. (6.13) under

the constraints of Eqs. (6.14)–(6.19). �

6.1.3 Search for a monotone (quasi)votex

Of course, it is possible that a votex is not monotone w.r.t. a ranking on the set of candi-

dates. Unfortunately, it can be even the case that it is not monotone w.r.t. any ranking.

In that case, the goal would be to look for a new votex such that it is monotone w.r.t.

at least one ranking. Obviously, among all the possible monotone votices, we want the

closest to the observed one. Unfortunately, as we have discussed in the previous chapter,

votices are not characterizable and, whenever a change in a votex is made, we can no longer

assure that it still continues being a votex. Therefore, we will need to look for the closest

monotone quasivotex as it can easily be characterized. The cost of imposing monotonicity

on a votex can be measured by means of a monometric on WQr (C ).

Definition 6.14 Let C be a set of k candidates and r be the number of voters. A function

M :WQr (C )×WQr (C )→ R is called a monometric on WQr (C ) if it satisfies the following

three properties:
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(i) Non-negativity: for any W,W ′ ∈ WQr (C ), it holds that

M(W,W ′) ≥ 0 .

(ii) Coincidence: for any W,W ′ ∈ WQr (C ), it holds that

M(W,W ′) = 0⇔ W = W ′ .

(iii) Compatibility: for any W,W ′,W ′′ ∈ WQr (C ) such that, for any (ai1 , ai2) ∈ C 2
6=,(

W (ai1 , ai2)DW
′(ai1 , ai2)DW

′′(ai1 , ai2)
)
∨
(
W ′′(ai1 , ai2)DW

′(ai1 , ai2)DW (ai1 , ai2)
)
,

it holds that

M(W,W ′) ≤M(W,W ′′) .

For any two (quasi)voticesW,W ′ ∈ WQr (C ), M(W,W ′) is referred to as the cost of changing

W into W ′.

After fixing a monometric on WQr (C ), we look for the closest quasivotex to the original

one such that it is monotone w.r.t. �.

Definition 6.15 Let C be a set of k candidates, r be the number of voters, � be a ranking

on C , W ∈ Wr(C ) be a votex and M :WQr (C )×WQr (C )→ R be a monometric onWQr (C ).

A closest monotone quasivotex W ′ ∈ WQr (C ) to W is a quasivotex that is monotone w.r.t. �
and such that there exists no quasivotex W ′′ ∈ WQr (C ) that is monotone w.r.t. � and, at

the same time,

M(W,W ′′) < M(W,W ′) .

Thus, for each ranking �, we have the corresponding cost associated with a closest mono-

tone quasivotex. An optimal ranking should be one whose corresponding closest monotone

quasivotex is the closest to the original votex.

Definition 6.16 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters, WR ∈ Wr(C ) be the votex induced by R and M :WQr (C )×WQr (C )→ R be

a monometric on WQr (C ). An optimal ranking � (with a corresponding closest monotone

quasivotex W ∈ WQr (C )) is a ranking for which it holds that there exists no ranking �′

(with a corresponding closest monotone quasivotex W ′ ∈ WQr (C )) such that

M(WR ,W
′) < M(WR ,W ) .
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For each possible ranking � on C , a closest monotone quasivotex needs to be identified.

All the rankings whose corresponding closest monotone quasivotex has a minimal cost are

declared optimal rankings.

Note that the existence of both a closest monotone quasivotex and an optimal ranking is

assured. However, the uniqueness of neither of them can be assured.

Now that the problem setting has been established, the resolution of the problem can be

addressed. We have introduced an optimization problem whose characteristics depend on

the nature of the monometric on WQr (C ). In the following, we will analyse the particu-

lar case of a natural and intuitive monometric on WQr (C ) based on the total amount of

changes in the cumulative frequencies. This leads to the resolution of an Integer Linear

Programming problem (ILP problem).

Our proposal is based on the changes in the cumulative frequencies, where we can see

reflected the changes between distant positions in the frequency distributions. It must be

remarked that these changes will be made in the votex and not in the profile of rankings.

The proposed monometric on WQr (C ) is given by:

M(W,W ′) =
∑

(u,v)∈C 2
6=

m (W (u, v),W ′(u, v)) , (6.20)

where, for any (ai1 , ai2) ∈ C 2
6=,

m (W (ai1 , ai2) , W
′(ai1 , ai2)) =

∑
j∈K

|Ni(ai1 , ai2)−N ′i(ai1 , ai2)| .

We will now prove that Eq. (6.20) defines a monometric on WQr (C ).

Proposition 6.17 Let C be a set of k candidates, r be the number of voters and M :

WQr (C )×WQr (C )→ R be defined as in Eq. (6.20). Then M is a monometric on WQr (C ).

Proof: We will prove that M satisfies the three axioms of a monometric on WQr (C ).

Non-negativity. Immediate.

Coincidence. As it is a sum of absolute values, for any W,W ′ ∈ WQr (C ), M(W,W ′) = 0

if and only if Ni(ai1 , ai2) = N ′i(ai1 , ai2), for any j ∈ K and any (ai1 , ai2) ∈ C 2
6=. This is

equivalent to saying that W = W ′.
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Compatibility. For any W,W ′,W ′′ ∈ WQr (C ) satisfying, for any (ai1 , ai2) ∈ C 2
6=,(

W (ai1 , ai2)DW
′(ai1 , ai2)DW

′′(ai1 , ai2)
)
∨
(
W ′′(ai1 , ai2)DW

′(ai1 , ai2)DW (ai1 , ai2)
)
,

the following is fulfilled by definition of D:

M(W,W ′) =
∑

(u,v)∈C 2
6=

∑
i∈K

|Ni(u, v)−N ′i(u, v)|

≤
∑

(u,v)∈C 2
6=

∑
i∈K

|Ni(u, v)−N ′′i (u, v)| = M(W,W ′′) .

Thus, M is a monometric on WQr (C ). �

Once a monometric on WQr (C ) has been fixed, the search for an optimal ranking can be

addressed. Analogously to the votrix case, we will need to solve an Integer Linear Program-

ming problem for each possible ranking. The number of unknown variables (frequencies of

the votex) and the number of constraints (given by the properties of Proposition 4.15) in the

ILP problem will depend on the number of candidates k. Due to reciprocity, some of these

constraints become superfluous as the frequency distribution of each couple (ai1 , ai2) ∈ C 2
6=

characterizes the frequency distribution of the couple (ai2 , ai1) (and vice versa). Neverthe-

less, for defining the monotonicity constraints, we cannot focus on A+ instead of A as in

the votrix case. This yields the following numbers of constraints:

(i) Number of (positive integer) variables: k(k − 1)2.

(ii) Completeness constraints (equalities):
k(k − 1)

2
.

(iii) Regularity constraints (equalities): (k − 1).

(iv) Peakedness constraints (inequalities): 2k(k − 2).

(v) Triangle inequality constraints (inequalities): k(k − 1)(k − 2).

(vi) Maximality constraints (inequalities): k(k − 1).

(vii) Monotonicity constraints (inequalities): 4(k − 1)2(k − 2) + (k − 1)2.
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More specifically, the Integer Linear Programming problem to be resolved is then encoded

in the following way. Firstly, we will define k(k− 1)2 integer variables that will be denoted

by xi,j (xi,j ∈ {0, 1, . . . , r}), where i ∈ {1, . . . , k(k−1)
2
} and j ∈ {1, . . . , 2(k − 1)}. Note

that xi,j denotes the j-th component of the frequency distribution of the i-th couple in C 2
6=

(where, for simplicity, the elements in C 2
6= are listed starting from top to bottom and in

each level from left to right in the Hasse diagram of the order relation A). We will denote

by i(u,v) the index corresponding to a couple (u, v) ∈ C 2
6= and by i(ai1 ,aj1 ) o i(ai2 ,aj2 ) the fact

that (ai1 , aj1) A (ai2 , aj2) for a given ranking �.

We intend to minimize M(W,W ′), which can be written as

k(k−1)
2∑
i=1

2k−1∑
j=1

∣∣∣∣∣
j∑

k=1

(xi,k − oi,k)

∣∣∣∣∣+

k(k−1)
2∑
i=1

2k−1∑
j=1

∣∣∣∣∣
2k−1∑
k=j

(xi,k − oi,k)

∣∣∣∣∣ ,
where the values oi,j represent the values of the frequency distributions of the votex induced

by the given profile of rankings, or, equivalently,

2

k(k−1)
2∑
i=1

2k−1∑
j=1

∣∣∣∣∣
j∑

k=1

(xi,k − oi,k)

∣∣∣∣∣ . (6.21)

It must be noted that Eq. (6.21) is a sum of absolute values and we will have an INLP

problem instead of an ILP problem. We can define a family of auxiliary variables yi,j where

i ∈
{

1, . . . , k(k−1)
2

}
and j ∈ {1, . . . , 2k − 1} such that minimizing Eq. (6.21) is equivalent

to minimizing:

2

k(k−1)
2∑
i=1

2k−1∑
j=1

yi,j , (6.22)

under the additional constraints, for any i ∈
{

1, . . . , k(k−1)
2

}
and any j ∈ {1, . . . , 2k − 1},

j∑
k=1

(xi,k − oi,k) ≤ yi,j , (6.23)

j∑
k=1

(oi,k − xi,k) ≤ yi,j , (6.24)

yi,j ≥ 0 . (6.25)

As we are looking for a closest monotone quasivotex, we will need to require the properties

listed in Proposition 4.15. These properties are encoded as follows.
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Completeness: for any i ∈ {1, . . . , k(k−1)
2
}:

2k−2∑
j=1

xi,j = r . (6.26)

Regularity: for any j ∈ {1, . . . , k − 1}:

k(k−1)
2∑
i=1

xi,j +

k(k−1)
2∑
i=1

xi,2k−1−j = jr . (6.27)

Peakedness: for any ai1 ∈ C and any j ∈ {2, . . . , k − 1}:∑
u∈C \{ai1}

xi(ai1 ,u),j−1 +
∑

u∈C \{ai1}

xi(u,ai1 ),2k−j ≤
∑

u∈C \{ai1}

xi(ai1 ,u),j +
∑

u∈C \{ai1}

xi(u,ai1 ),2k−1−j .

(6.28)

for any ai1 ∈ C and any j ∈ {k, . . . , 2k − 3}:∑
u∈C \{ai1}

xi(ai1 ,u),j+1 +
∑

u∈C \{ai1}

xi(u,ai1 ),2k−2−j ≤
∑

u∈C \{ai1}

xi(ai1 ,u),j +
∑

u∈C \{ai1}

xi(u,ai1 ),2k−1−j .

(6.29)

Triangle inequality: for any three different ai1 , ai2 , ai3 ∈ C :

2k−2∑
j=k

xi(ai1 ,ai2
),j +

2k−2∑
j=k

xi(ai2 ,ai3
),j ≥

2k−2∑
j=k

xi(ai1 ,ai3
),j , (6.30)

where xi(v,u),j equals xi(u,v),2k−j−1 when u � v.

Maximality: for any (ai1 , ai2) ∈ C 2
6=:

∑
i(ai1 ,u)

u∈C \{ai1 ,ai2}

xi(ai1 ,u),2k−2 +
∑
i(v,ai2 )

v∈C \{ai1 ,ai2}

xi(v,ai2 ),2k−2 ≤
2k−1∑
j=k

xi(ai1 ,ai2
),j , (6.31)

where xi(v,u),j equals xi(u,v),2k−j−1 when u � v.

Additionally, we want to require the new quasivotex to be monotone.

Monotonicity: for any j ∈ {1, . . . , 2(k − 1)} and any i1, i2 ∈ {1, . . . , k(k−1)
2
} such that

i1 o i2:
j∑
`=1

xi1,` ≤
j∑
`=1

xi2,` . (6.32)
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For any j ∈ {1, . . . , k − 1} and any i ∈ { (k−1)(k−2)
2

+ 1, . . . , k(k−1)
2
}:

j∑
`=1

xi,` ≤
2(k−1)∑

`=2k−1−j

xi,` . (6.33)

Therefore, the cost of a closest monotone quasivotex w.r.t. � is the minimum value of

Eq. (6.22) under the constraints of Eqs (6.23)–(6.33).

Proposition 6.18 There exists a solution of the Integer Linear Programming problem of

minimizing Eq. (6.22) under the constraints of Eqs. (6.23)–(6.33).

Proof: There exists a finite number of possible quasivotices with k candidates and r vot-

ers. Each quasivotex has an associated cost w.r.t. the original votex defined by Eq. (6.21).

As we are minimizing the function over a finite set, if the feasible region has at least one ele-

ment, then there is an optimal solution of the optimization problem minimizing Eq. (6.21)

under the constraints of Eqs. (6.26)–(6.33). Let us prove the existence of this optimal

solution by showing that there exists at least one solution satisfying all the constraints.

Consider the profile of rankings where all r rankings are identical to the ranking � w.r.t.

which the monotonicity is required. The votex W ∈ Wr(C ) induced by this particular

profile is obviously monotone w.r.t. �. Furthermore, as it is a votex, it will also fulfill

all the properties listed in Proposition 4.15. Thus, W is a solution of the optimization

problem and, therefore, there exists an optimal solution.

Finally, we know that minimizing the function defined in Eq. (6.21) under the constraints

of Eqs. (6.26)–(6.33) is equivalent to minimizing the function defined in Eq. (6.22) under

the constraints of Eqs. (6.23)–(6.33). �

The search for monotonicity by making changes in the representation of votes is computa-

tionally friendlier than the search for monotonicity by making changes in the profile. How-

ever, letting aside the fact that the obtained construct is not assured to be a votrix/votex,

it is not possible to compare the cost of imposing monotonicity on different representations

of votes. Therefore, in the following section we will address the search for monotonicity by

making changes in the profile of rankings.
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6.2 Changes in the profile of rankings

Since the early 2000s, the field of social choice is facing a computational turn. The subfield

of computational social choice is calling the attention of the scientific community to the fact

that not only the normative properties of ranking rules are to be studied, but that also the

execution time of these ranking rules needs to be taken into account [21]. One of the most

prominent examples of ranking rules that are computationally unfriendly is the method of

Kemeny [80], which has been extensively analysed from a computational point of view [9].

The Kemeny score problem (given a profile and a nonnegative integer k, is there a ranking

that has score at most k?) is proved to be NP-complete, while the Kemeny winner problem

(given a profile and a candidate ai, is there a ranking that has minimum score and ranks

ai first?), the Kemeny ranking problem (given a profile and two candidates ai1 and ai2 , is

there a ranking that has minimum score and ranks ai1 at a better position than ai2?) and

the Kemeny rank aggregation problem (given a profile, find a ranking that has minimum

score) are proved to be NP-hard (see Chapter 4 of [21]). Obviously, the corresponding

adaptation of these problems to the search for monotonicity of a representation of votes

is computationally harder. In [126], we proposed an algorithm for identifying the optimal

ranking running in factorial time. We recall this algorithm throughout this section.

Although many betweenness relations on L(C )r may be considered, as discussed in [126],

the most interesting betweenness relation in the field of social choice is the one given by

Kemeny [80]. A profile of rankings R ′ = (�′j)rj=1 is said to be in between two other profiles

of rankings R = (�j)rj=1 and R ′′ = (�′′j )rj=1, denoted by [R,R ′,R ′′], if it holds that

r∑
j=1

K(�j,�′′j ) =
r∑
j=1

K(�j,�′j) +
r∑
j=1

K(�′j,�′′j ) ,

where K denotes the Kendall distance function [82] defined, for any two rankings �1 and

�2, as K(�1,�2) = #{(ai1 , ai2) ∈ C 2
6= | ai1 �1 ai2 ∧ ai2 �2 ai1}.

Definition 6.19 Let C be a set of k candidates and r be the number of voters. A function

M : L(C )r×L(C )r → R is called a monometric if it satisfies the following three properties:

(i) Non-negativity: for any R,R ′ ∈ L(C )r, it holds that M(R,R ′) ≥ 0.

(ii) Coincidence: for any R,R ′ ∈ L(C )r, it holds that M(R,R ′) = 0⇔ R = R ′.
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(iii) Compatibility: for any R,R ′,R ′′ ∈ L(C )r such that [R,R ′,R ′′], it holds that

M(R,R ′) ≤M(R,R ′′).

The ranking that is the closest to imposing monotonicity on the representation of votes

should then be considered the optimal ranking. Of course, this optimal ranking depends

on the chosen representation of votes.

Definition 6.20 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. Let M : L(C )r × L(C )r → R be a monometric and consider a fixed

representation of votes.

(i) A closest profile of rankings with a monotone representation of votes is a profile of

rankings R ′ such that there exists a ranking � w.r.t. which the representation of

votes induced by R ′ is monotone and for which it holds that there exists no profile

of rankings R ′′ such that there exists a ranking � w.r.t. which the representation of

votes induced by R ′′ is monotone, while M(R,R ′′) < M(R,R ′).

(ii) An optimal ranking � is a ranking imposing monotonicity on at least one closest

profile of rankings with a monotone representation of votes.

As there exists a finite number of profiles of r rankings on C , the existence of both a

closest profile of rankings with a monotone scorix/votrix/votex and an optimal ranking is

assured2. Unfortunately, the uniqueness cannot be assured.

As discussed by Pérez-Fernández et al. [126] for a more general problem setting, the search

for a closest profile of rankings satisfying some desired property can be addressed as a

transportation problem [101] in case the property can be expressed as a constraint of an

Integer Linear Programming problem. Indeed, monotonicity of all previously discussed

representations of votes can be expressed as a transportation problem. In a transportation

problem, we have a number of supply points and a number of demand points. At each

supply point certain product is produced and it needs to be transported to the demand

points satisfying the required demands at each demand point. Transporting a unit of

2Unlike the setting of [124] where changes are considered in the votrix/votex leading to the introduction

of the notion of quasivotrix/quasivotex, here changes are considered in the profile of rankings. Therefore,

by definition, the votrix/votex associated to the new profile can always be obtained.
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product from a supply point to a demand point has an associated cost. An optimal

transportation distribution needs to be defined such that the demand is satisfied.

In our setting, each ranking in L(C ) is both a supply point and a demand point. The

production in the supply point corresponding to a ranking � on C represents the frequency

of this ranking in the profile of rankings R given by the voters. The demand in the demand

point corresponding to a ranking � on C represents the frequency of this ranking in the

closest profile of rankings R ′ with a monotone representation of votes.

A general demand needs to be satisfied (the number of rankings in R ′ needs to be equal to

the number of rankings in R). Formalizing the problem, (k!)2 variables xij taking values

in N ∪ {0} are defined, k being the number of candidates in C . For any i, j ∈ {1, . . . , k!},
xij = n means that n units of the i-th ranking in L(C ) are assigned to the j-th ranking in

L(C ). In this case, we have an initial profile of rankings where each ranking �i appears si

times. These si’s can be seen as the number of units of product that are produced at each

supply point. We are then dealing with the following optimization problem:

Minimize
k!∑
i=1

k!∑
j=1

Cijxij w.r.t. {xij}k!
i,j=1

s.t.
k!∑
j=1

xij = si, for any i ∈ {1, . . . , k!} ,

xij ≥ 0, for any i, j ∈ {1, . . . , k!} ,
xij ∈ Z, for any i, j ∈ {1, . . . , k!} ,

under the additional constraint of monotonicity of the representation of votes w.r.t. the

ranking �∈ L(C ).

A transportation problem can be solved in polynomial time [84]. Unfortunately, this poly-

nomial time is in terms of the number of variables, which equals k! in our setting. This

is an obvious computational drawback, even though in social choice theory, the number of

candidates in C is typically quite small. The development of a more efficient3 method for

searching for a closest profile of rankings with a recursively monotone scorix remains an

open problem.

3Note that two similar ranking rules, such as the methods of Dodgson [46] and Kemeny [80], are proved

to be NP-hard problems [9].
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CHAPTER 7

Monotonicity and axiomatic social choice
theory

7.1 Axiomatic social choice theory

The study of properties that a ranking rule may or may not satisfy is a relevant matter

of study in social choice theory [3, 60, 133, 152]. Unfortunately, as Arrow stated in [3],

there is no ranking rule simultaneously satisfying all the properties that can be considered

desirable. In the following, we will briefly introduce the most common ones:

(i) Non-dictatorship: there is no voter whose ranking is always elected as the winning

ranking.

(ii) Anonymity: reassigning the rankings over the voters does not change the outcome.

(iii) Neutrality: if some permutation of candidates is applied to each voter’s ranking,

the same permutation should be observed in the winning ranking.

(iv) Non-imposition: for any ranking on the set of candidates there exists a profile of

rankings such that this ranking is the winning ranking.

(v) Unanimity (Pareto efficiency): if every voter prefers a candidate over another

one, then this must also be the case in the winning ranking.
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(vi) Independence of irrelevant alternatives: the order between two candidates de-

pends only on the individual preferences between these two candidates.

The properties fulfilled by the ranking rules proposed in this dissertation may depend on the

chosen monometric. It is immediate to see that, when considering the Kendall distance

function and considering changes in the profile of rankings, the first four properties are

trivially satisfied. Unanimity can also be proved to be satisfied (it suffices to see that, if

every voter prefers ai1 over ai2 , then it trivially holds that the cost of the closest profile of

rankings in the chosen consensus state where the winning ranking � satisfies that ai1 � ai2
is lower than or equal to the cost of the closest profile of rankings in the chosen consensus

state where the winning ranking is the result of permuting candidates ai1 and ai2 in �).

On the other hand, independence of irrelevant alternatives is not satisfied as monotonic-

ity is a global property and does not depend only on the individual preferences between

two candidates. Arrow’s impossibility theorem [3] states that there is no ranking rule

satisfying, at the same time, non-dictatorship, unanimity and independence of irrelevant

alternatives. Therefore, as non-dictatorship and unanimity are satisfied, independence of

irrelevant alternatives cannot be satisfied.

Finding axiomatic characterizations of ranking rules is an important aspect in the field of

social choice theory. As pointed out by Merlin [97], Arrow’s theorem [3] can be understood

as an axiomatization of dictatorship. Characterizations of the simple majority rule [95],

scoring functions [169], best-worst voting systems [66] and other voting rules have been

proposed. Characterizing the search for monotonicity is still an open problem that will be

addressed in the near future.

7.2 Independence of all proposed ranking rules

In this section, we prove the independence of the ranking rules proposed in this dissertation

w.r.t. each other. The most important comparisons are detailed in an illustrative subsec-

tion. Note that, throughout this section, the Kendall distance function will be considered

as monometric.



CHAPTER 7 MONOTONICITY AND AXIOMATIC SOCIAL CHOICE THEORY 149

7.2.1 The search for monotonicity of the scorix and the search for recursive
monotonicity of the scorix

In this subsection, we prove that the search for monotonicity of the scorix and the search

for recursive monotonicity of the scorix are independent w.r.t. each other by providing a

profile of rankings for which both methods lead to a different winning ranking. Consider

the profile of r = 20 rankings listed in Table 7.1.

# �i Rankings on C

5 b � c � d � a

4 b � c � a � d

3 a � d � c � b

2 c � a � d � b

2 d � a � c � b

1 a � c � b � d

1 a � c � d � b

1 b � a � c � d

1 c � d � a � b

Table 7.1: Expressed rankings and their frequency.

On the one hand, in case we address the search for monotonicity of the scorix, the optimal

ranking is c � a � b � d with a cost of six, while the ranking c � b � a � d leads to a

cost of seven. On the other hand, in case we address the search for recursive monotonicity

of the scorix, the optimal ranking is c � b � a � d with a cost of seven, while the ranking

c � a � b � d leads to a cost of eight. Therefore, the search for monotonicity of the scorix

and the search for recursive monotonicity of the scorix are independent w.r.t. each other.

7.2.2 The search for (recursive) monotonicity of the scorix and all scoring rank-
ing rules

In this subsection, we prove that the search for monotonicity and the search for recursive

monotonicity of the scorix are independent w.r.t. all scoring ranking rules by considering

two examples that lead to contradictory conditions on the weights of the considered scoring

ranking rule.
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On the one hand, we consider the profile of r = 20 rankings listed in Table 7.2.

# �i Rankings on C

5 b � d � a � c

5 b � d � c � a

5 d � a � c � b

4 a � c � d � b

1 a � d � c � b

Table 7.2: Expressed rankings and their frequency.

The scorix induced by the profile of rankings listed in Table 7.2 is:

S =


5 5 5 5

10 0 0 10

0 4 11 5

5 11 4 0

 .

Applying the search for monotonicity of the scorix, the optimal ranking is d � b � a � c

with a cost of eight. Analogously, applying the search for recursive monotonicity of the

scorix, the optimal ranking is also d � b � a � c with a cost of eight. As b � a in the

optimal ranking, any scoring ranking rule coinciding with both methods will satisfy that

the score s(b) of candidate b is greater than the score s(a) of candidate a. In particular, it

holds that

s(b) = 10α1 + 10α4 > 5α1 + 5α2 + 5α3 + 5α4 = s(a) . (7.1)

On the other hand, we consider the profile of r = 20 rankings listed in Table 7.3.

The scorix induced by the profile of rankings listed in Table 7.3 is:

S =


5 5 5 5

10 0 1 9

0 6 11 3

5 9 3 3

 .

Applying the search for monotonicity of the scorix, the optimal ranking is d � a � b � c

with a cost of six. Analogously, applying the search for recursive monotonicity of the

scorix, the optimal ranking is also d � a � b � c with a cost of eight. As a � b in the

optimal ranking, any scoring ranking rule coinciding with both methods will satisfy that
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# �i Rankings on C

4 a � d � c � b

4 b � d � c � a

3 b � c � a � d

3 d � a � c � b

2 b � a � d � c

2 d � c � a � b

1 a � d � b � c

1 b � c � d � a

Table 7.3: Expressed rankings and their frequency.

the score s(a) of candidate a is greater than the score s(b) of candidate b. In particular, it

holds that

s(a) = 5α1 + 5α2 + 5α3 + 5α4 > 10α1 + α3 + 9α4 = s(b) . (7.2)

As the intersection of Eqs. (7.1) and (7.2) with the constraints on the weights of a scoring

ranking rule (α1 ≥ α2 ≥ α3 ≥ α4 ≥ 0 and α1 > α4) is empty, we conclude that there exists

no scoring ranking rule satisfying at the same time both constraints. Therefore, the search

for (recursive) monotonicity of the scorix is proved to be independent w.r.t. all scoring

ranking rules.

7.2.3 The search for monotonicity of the votrix and the search for monotonicity
of the votex

In this subsection, we prove that the search for monotonicity of the votrix and the search

for monotonicity of the votex are independent w.r.t. each other by providing a profile of

rankings for which both methods lead to a different winning ranking. Consider the profile

of r = 20 rankings listed in Table 7.4.

On the one hand, in case we address the search for monotonicity of the votrix, the optimal

ranking is c � b � a � d with a cost of one, while the ranking b � c � a � d leads to a

cost of six. On the other hand, in case we address the search for monotonicity of the votex,

the optimal ranking is b � c � a � d with a cost of 13, while the ranking c � b � a � d

leads to a cost of 14. Therefore, the search for monotonicity of the votrix and the search

for monotonicity of the votex are independent w.r.t. each other.
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# �i Rankings on C

5 b � c � d � a

4 b � c � a � d

3 a � d � c � b

2 c � a � d � b

2 d � a � c � b

1 a � c � b � d

1 a � c � d � b

1 b � a � c � d

1 c � d � a � b

Table 7.4: Expressed rankings and their frequency.

7.2.4 The search for monotonicity of the votrix and the search for a Condorcet
ranking and unanimity

In this subsection, we prove that the search for monotonicity of the votrix is independent

w.r.t. the search for a Condorcet ranking and unanimity by providing a profile of rankings

for which the first method leads to a different winning ranking than the other two methods.

We consider the profile of r = 20 rankings listed in Table 7.5.

# �i Rankings on C

11 a � b � c � d

9 b � c � d � a

Table 7.5: Expressed rankings and their frequency.

When searching for monotonicity of the votrix, the optimal ranking is b � a � c � d with

a cost of ten. Note that the cost associated with the Condorcet ranking, a � b � c � d,

equals 18. Therefore, the search for monotonicity of the votrix is independent w.r.t. the

search for a Condorcet ranking. As in case a Condorcet ranking exists it always is the

Kemeny winner, the independence w.r.t. the search for unanimity also holds.
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7.2.5 The search for monotonicity of the profile and the search for all other con-
sensus states

In this subsection, we prove that the search for monotonicity of the profile is independent

w.r.t. the search for all other consensus states by providing a profile of rankings for which

the first method leads to a different winning ranking than all the other methods. We

consider the profile of r = 20 rankings listed in Table 7.6.

# �i Rankings on C

9 a � b � c � d

6 b � a � c � d

3 b � c � a � d

2 b � c � d � a

Table 7.6: Expressed rankings and their frequency.

Note that the profile of rankings is monotone w.r.t. the ranking a � b � c � d. Therefore,

it is the optimal ranking and trivially leads to a cost of zero. Note that this optimal

ranking differs from the Condorcet ranking, b � a � c � d, which leads to a cost of two.

Therefore, the search for monotonicity of the profile is independent w.r.t. the search for

the Condorcet ranking and w.r.t. all Condorcet-consistent ranking rules. In addition, the

optimal ranking according to the search for all other consensus states discussed in this

dissertation is also b � a � c � d. Therefore, the search for monotonicity of the profile is

proved to be independent w.r.t. the search for all other consensus states here discussed.

7.2.6 The search for monotonicity of the scorix and the search for monotonicity
of the votrix

In this subsection, we prove that the search for monotonicity of the scorix and the search

for monotonicity of the votrix are independent w.r.t. each other by providing a profile of

rankings for which both methods lead to a different winning ranking. Consider the profile

of r = 20 rankings listed in Table 7.7.

On the one hand, in case we address the search for monotonicity of the scorix, the optimal

ranking is b � a � c � d with a cost of seven, while the ranking b � a � d � c leads
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# �i Rankings on C

8 b � c � d � a

7 a � b � c � d

4 b � d � c � a

1 a � d � b � c

Table 7.7: Expressed rankings and their frequency.

to a cost of eight. On the other hand, in case we address the search for monotonicity of

the votrix, the optimal ranking is b � a � d � c with a cost of nine, while the ranking

b � a � c � d leads to a cost of ten. Therefore, the search for monotonicity of the scorix

and the search for monotonicity of the votrix are independent w.r.t. each other.

7.2.7 The search for acclamation and the search for a Condorcet ranking and
unanimity

In this subsection, we prove that the search for monotonicity of the votrix is independent

w.r.t. the search for a Condorcet ranking and unanimity by providing a profile of rankings

for which the first method leads to a different winning ranking than the other two methods.

We consider the profile of r = 20 rankings listed in Table 7.5.

As previously discussed, the ranking a � b � c � d is the Condorcet ranking of the profile

of rankings. Therefore, it is the optimal ranking according to the search for a Condorcet

ranking and for unanimity. Nevertheless, when searching for acclamation, it leads to a

cost of 18, which is lower than 16, the cost associated with the ranking b � a � c � d.

Therefore, the search for acclamation is independent w.r.t. the search for a Condorcet

ranking and unanimity.

7.2.8 The search for a Condorcet ranking and the search for unanimity

In this subsection, we prove that the search for a Condorcet ranking and the search for

unanimity are independent w.r.t. each other by providing a profile of rankings for which

both methods lead to a different winning ranking. This is a well-known result in social
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choice theory and we refer to an example profile given in [83]. This profile of r = 34

rankings is listed in Table 7.8.

# �i Rankings on C

9 a � b � c � d

5 a � c � b � d

5 b � d � c � a

5 c � d � b � a

5 d � b � a � c

5 d � c � a � b

Table 7.8: Expressed rankings and their frequency.

On the one hand, in case we address the search for a Condorcet ranking, the optimal

rankings are b � c � d � a, b � d � a � c and d � a � b � c with a cost of six, while the

ranking a � b � c � d leads to a cost of eight. On the other hand, in case we address the

search for unanimity, the unique optimal ranking is a � b � c � d with a cost of 95, while

the costs associated with the other three rankings equals 97. Therefore, the search for a

Condorcet ranking and the search for unanimity are independent w.r.t. each other.

7.2.9 Summary

In this subsection, we provide a summary (see Table 7.9) of the set of optimal rankings

in the search for all different consensus states mentioned in this dissertation for different

profiles of rankings.

The reader may notice that the five considered profiles lead to an exhaustive comparison1

of the independence of the search for the eight different consensus states analysed in this

dissertation w.r.t. each other. It suffices to check that, for any two consensus states, there

is at least one profile of rankings for which the intersection of both sets of optimal rankings

is empty.

1The search for a Condorcet ranking and the search for unanimity are not proved to be independent

w.r.t. each other in Table 7.9, but in the profile of rankings listed in Table 7.8.
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Search for Table 7.1 Table 7.2 Table 7.5 Table 7.6 Table 7.7

Monotonicity
c � a � b � d d � b � a � c b � a � c � d b � a � c � d b � a � c � d

of the scorix

Recursive monotonicity
c � b � a � d d � b � a � c b � a � c � d b � a � c � d b � a � c � d

of the scorix

Monotonicity
c � b � a � d d � b � a � c b � a � c � d b � a � c � d b � a � d � c

of the votrix

Monotonicity

b � c � a � d
b � d � a � c

d � b � a � c
b � a � c � d b � a � c � d

b � a � c � d

of the votex b � c � a � d

b � c � d � a

Monotonicity
c � a � b � d d � b � a � c a � b � c � d a � b � c � d

b � c � a � d

of the profile b � c � d � a

Condorcet ranking

b � c � a � d

b � d � a � c a � b � c � d b � a � c � d b � c � d � ac � a � b � d

c � b � a � d

Acclamation c � a � b � d
d � a � b � c

b � a � c � d b � a � c � d
b � c � a � d

d � b � a � c b � c � d � a

Unanimity

b � c � a � d

b � d � a � c a � b � c � d b � a � c � d b � c � d � ac � a � b � d

c � b � a � d

Table 7.9: Search for all consensus states and corresponding sets of optimal

rankings.



CHAPTER 8

Impact of ties on the representations of
votes

8.1 The three-way setting

In the previous chapters, we have discussed several monotonicity-based ranking rules fo-

cused on the search for a profile of rankings with a monotone representation of votes. We

consider here the special case where each voter is assumed to provide a ranking with ties

on the set of candidates, which is a common situation in real-life problems where voters

might consider two or more candidates equally suitable [117]. This situation subsumes a

three-way decision [168], where each voter needs to decide whether ‘candidate a is better

than candidate b’, ‘candidate b is better than candidate a’ or ‘candidates a and b are equally

suitable’. This type of decision can be seen as a representation of bipolar information [34]

on a three-label bipolar qualitative scale. As each voter directly provides a ranking with

ties on the set of candidates, the relations ‘the first candidate is better than the second

candidate’ (and its transpose) and ‘both candidates are equally suitable’ are considered to

be transitive.

In this case, every voter is allowed to provide a weak order relation %j on C , i.e., a complete

and transitive relation on C that might not be antisymmetric. Any weak order relation %
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can be written as the union of two relations � and ∼, where:

� = {(ai1 , ai2) ∈ C 2 | (ai1 % ai2) ∧ (ai2 6% ai1)} ,
∼ = {(ai1 , ai2) ∈ C 2 | (ai1 % ai2) ∧ (ai2 % ai1)} .

The relation �, called ranking with ties (or strict weak order relation), is irreflexive, tran-

sitive and antisymmetric and the relation ∼, called indifference relation, is reflexive, tran-

sitive and symmetric. Due to the completeness of a weak order relation, the weak order

relation %j on C expressed by a voter and the corresponding ranking with ties �j are used

interchangeably1.

The set of all rankings with ties on C is denoted by L∗(C ). As a ranking is a particular

case of a ranking with ties, it obviously holds that L(C ) ⊆ L∗(C ). The list of r rankings

with ties given by the voters is called a profile of rankings with ties and is denoted by

R∗ = (�j)rj=1. Obviously, it holds that R∗ ∈ L∗(C )r.

In the following, we will see how the representations of votes analysed in the previous

chapters are affected by ties.

8.2 The weak-scorix

In case a ranking with ties is provided, the position of a candidate is no longer determined

by a number, but rather by an interval, where the left endpoint equals the best position

of the candidate in any linear extension of the ranking with ties and the right endpoint

equals the worst position of the candidate in any linear extension of the ranking with ties.

Definition 8.1 Let C be a set of k candidates. For a weak order relation % on C , the

position P�(ai) of candidate ai is defined as the interval [`1, `2], where

`1 = #{j ∈ {1, . . . , k} | aj � ai}+ 1 ,

`2 = k −#{j ∈ {1, . . . , k} | ai � aj} .

All intervals of this form are called interval positions.

1When a strict weak order relation is understood as a ranking with ties, the incomparable elements in

the ranking with ties correspond to indifferent elements in the weak order relation.
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Interval positions are based on the generalization of the Borda count to rankings with ties.

Several extensions of the Borda count have been proposed (see, for instance [50]). Here,

we have considered a similar methodology to the two-valued approach discussed in [15].

Example 8.2 Let C = {a, b, c, d} be a set of candidates and a � b ∼ c � d be a weak order

relation on C . Note that there are two linear extensions of a � b ∼ c � d: a � b � c � d

and a � c � b � d. As it is always ranked at the first position, the position of candidate

a in % is the (degenerated) interval [1, 1]. Analogously, as it is always ranked at the last

position, the position of candidate d in % is the (degenerated) interval [4, 4]. As they are

ranked, in the best case scenario, at the second position and, in the worst case scenario,

at the third position, the interval position of both candidates b and c in % is the interval

[2, 3].

Remark 8.3 The set Pk of all interval positions for a set of k candidates is denoted by

Pk, and it can be characterized in the following way2:

Pk ={[`1, `2] ∈ I(N) | `1 ≤ `2 ≤ k} = I({1, . . . , k}) .

An intuitive order relation on Pk is defined according to how good a candidate is ranked

in a given ranking with ties.

Proposition 8.4 Let Pk be the set of all interval positions for a set of k candidates. The

relation ≤Pk
defined as

≤Pk
=
{(

[`1, `2], [`′1, `
′
2]
)
∈ P2

k | `1 ≥ `′1 ∧ `2 ≥ `′2
}
,

is an order relation on Pk.

Proof: The proof of this proposition is immediate as ≤Pk
coincides with the converse of

the partial order on intervals induced by the usual product order on N2. �

In Figure 8.1, the Hasse diagram of the order relation ≤Pk
is shown for a set of four

candidates.

2Throughout this chapter, I(X) refers to the set of intervals in a totally ordered set X and N refers to

the set of natural numbers, not including zero.
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[1, 1]

[1, 2]

[2, 2][1, 3]

[1, 4] [2, 3]

[2, 4] [3, 3]

[3, 4]

[4, 4]

Figure 8.1: Hasse diagram of the order relation ≤Pk
.

Remark 8.5 When restricting to the case where ties are not allowed, it holds that, for any

candidate, its interval position [`1, `2] reduces to a single value, i.e., `1 = `2. Furthermore,

as the position ` in a ranking is the interval position [`, `] when a ranking is interpreted

as a ranking with ties, it holds that [`, `] ≤Pk
[`′, `′] if and only if ` ≥ `′. Hence, the order

relation ≤Pk
is a total order relation when restricting to rankings without ties.

The scorix can no longer be defined in the form of a matrix for the case of rankings with

ties. Instead, we define the weak-scorix.

Definition 8.6 Let C be a set of k candidates and r be the number of voters. A function

S∗ : C×Pk → {0, 1, . . . , r} is called a weak-scorix (plural weak-scorices) on C if there exists

a profile R∗ of r rankings with ties on C such that, for any ai ∈ C and any [`1, `2] ∈ Pk,
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it holds that

S∗(ai, [`1, `2]) = #{j ∈ {1, . . . , r} | Pj(ai) = [`1, `2]} .

The set of all weak-scorices on C induced by any profile of r rankings with ties on C is

denoted by S∗r (C ).

Similarly to monotonicity of a scorix, we define monotonicity of a weak-scorix.

Definition 8.7 Let C be a set of k candidates and r be the number of voters. A weak-

scorix S∗ ∈ S∗r (C ) is said to be monotone w.r.t. a ranking � on C if, for any ai1 , ai2 ∈ C

such that ai1 � ai2 and any [`1, `2] ∈ Pk, it holds that∑
[`′1,`

′
2]∈Pk

[`′1,`
′
2]≤Pk [`1,`2]

S∗
(
ai1 , [`

′
1, `
′
2]
)
≤

∑
[`′1,`

′
2]∈Pk

[`′1,`
′
2]≤Pk [`1,`2]

S∗
(
ai2 , [`

′
1, `
′
2]
)
,

∑
[`′1,`

′
2]∈Pk

[`1,`2]≤Pk [`′1,`
′
2]

S∗
(
ai1 , [`

′
1, `
′
2]
)
≥

∑
[`′1,`

′
2]∈Pk

[`1,`2]≤Pk [`′1,`
′
2]

S∗
(
ai2 , [`

′
1, `
′
2]
)
.

Again, the weak-scorix induced by most profiles of rankings with ties is not monotone w.r.t.

any ranking. The set of all profiles of rankings with ties with a monotone weak-scorix can

also be understood as a consensus state for the rationalisation of ranking rules.

8.3 The weak-votrix

Among the three main representations of votes discussed in this dissertation (scorix, votrix

and votex), the votrix is the least affected by ties in the sense that the definition of the given

representation of votes remains almost the same when rankings with ties are considered.

Definition 8.8 Let C be a set of k candidates and r be the number of voters. A matrix

V ∗ ∈ {0, 1, . . . , r}k×k is called a weak-votrix (plural votrices) on C if there exists a profile

R∗ of r rankings with ties on C such that, for any ai1 , ai2 ∈ C , it holds that

V ∗i1i2 = #{j ∈ {1, . . . , r} | ai1 �j ai2} .

The set of all weak-votrices on C induced by any profile of r rankings with ties on C is

denoted by V∗r (C ).
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The notion of monotonicity of a votrix is easily extended to weak-votrices.

Definition 8.9 Let C be a set of k candidates and r be the number of voters. A weak-

votrix V ∗ is said to be monotone w.r.t. a ranking � on C (with corresponding A) if, for

any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A (ai2 , aj2), it holds that

V ∗i1j1 ≥ V ∗i2j2 ,

V ∗j1i1 ≤ V ∗j2i2 .

Again, the weak-votrix induced by most profiles of rankings with ties is not monotone w.r.t.

any ranking. The set of all profiles of rankings with ties with a monotone weak-votrix can

also be understood as a consensus state for the rationalisation of ranking rules.

8.4 The weak-votex

In order to define the ‘relative position’ of a candidate ai1 w.r.t. another candidate ai2 in a

ranking with ties �, the sizes of the equivalence classes in % of both candidates ai1 and ai2
need to be taken into account. For any candidate a ∈ C , we denote by [a]% the equivalence

class of candidate a in the weak order relation %, i.e., [a]% = {a′ ∈ C | a ∼ a′}.

The relative position of ai1 w.r.t. ai2 depends on three values: the size of the largest

equivalence class among [ai1 ]% and [ai2 ]%, the size of the smallest equivalence class among

[ai1 ]% and [ai2 ]%, and the relative position of both equivalence classes defined as

P%([ai1 ]%, [ai2 ]%) =


#{i ∈ {1, . . . , k} | ai1 � ai � ai2}+ 1 , if ai1 � ai2 ,

0 , if ai1 ∼ ai2 ,

−#{i ∈ {1, . . . , k} | ai2 � ai � ai1} − 1 , if ai2 � ai1 .

Definition 8.10 Let C be a set of k candidates. For a weak order relation % on C , the

relative position of candidate ai1 w.r.t. candidate ai2 is defined as the triplet:

(s1, s2, p) =
(

max(#[ai1 ]%,#[ai2 ]%),min(#[ai1 ]%,#[ai2 ]%), P%([ai1 ]%, [ai2 ]%)
)
,

in case P%([ai1 ]%, [ai2 ]%) 6= 0, or, otherwise, as the triplet (s1, s2, p) = (0, 0, 0). All triplets

of this form are called positional triplets. The set of all positional triplets for a set of k

candidates is denoted by Bk.
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Remark 8.11 Note that Bk can be characterized in the following way:

Bk = {(s1, s2, p) ∈ N2 × Z | (s1 ≥ s2) ∧ (s1 + s2 + |p| ≤ k + 1) ∧ (p 6= 0)} ∪ {(0, 0, 0)} .

In the following example we illustrate the notion of a positional triplet.

Example 8.12 Let C = {a, b, c, d} be a set of candidates and a � b ∼ c � d be a weak

order relation on C . For candidates a and d, the size of both equivalence classes equals one

(#[a]% = #[d]% = 1) and the relative position of both equivalence classes equals three due

to the fact that there are two candidates strictly in between a and d (P%([a]%, [d]%) = 3).

Therefore, the relative position of a w.r.t. d is (1, 1, 3). Analogously, the relative position

of d w.r.t. a is (1, 1,−3). For candidates a and b, the size of the equivalence class of a

equals one (#[a]% = 1), the size of the equivalence class of b equals two (#[b]% = 2) and

the relative position of both equivalence classes equals one due to the fact that there are no

candidates strictly in between a and b (P%([a]%, [b]%) = 1). Therefore, the relative position

of a w.r.t. b is (2, 1, 1). Analogously, the relative position of b w.r.t. a is (2, 1,−1). As

candidates b and c belong to the same equivalence class, the relative position of b w.r.t. c

is (0, 0, 0). Analogously, the relative position of c w.r.t. b also is (0, 0, 0).

The set of all positional triplets (s1, s2, p) ∈ Bk such that p ≥ 1 is denoted by B+
k , the

(singleton) set of all positional triplets (s1, s2, p) ∈ Bk such that p = 0 is denoted by B0
k

and the set of all positional triplets (s1, s2, p) ∈ Bk such that p ≤ −1 is denoted by B−k . It

obviously holds that B+
k , B0

k and B−k are disjoint sets and

Bk = B+
k ∪ B

0
k ∪ B−k .

An intuitive order relation on Bk is defined according to how far apart two candidates are

in a given ranking with ties. In order to do so, we will first define three order relations on

B+
k , B0

k and B−k separately. The order relation on B+
k follows from the intuition that the

addition (resp. removal) of a candidate strictly in between a and b or in the equivalence

class of either a or b should make the relative position of a w.r.t. b to increase (resp.

decrease). The order relation on B0
k is trivially determined due to the fact that B0

k is a

singleton. The order relation on B−k should be analogous to B+
k due to the fact that the

relative position of a w.r.t. b and the relative position of b w.r.t. a play opposite roles. In

that way, the order relation on Bk should be defined as the linear sum of the order relations

on B−k , B0
k and B+

k .
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Proposition 8.13 Let Bk be the set of all positional triplets for a set of k candidates.

(i) The relation ≤+
Bk , defined as

≤+
Bk=


(
(s1, s2, p), (s

′
1, s
′
2, p
′)
)
∈ (B+

k )2

∣∣∣∣∣∣∣∣∣
(p ≤ p′)

∧(p+ s1 ≤ p′ + s′1)

∧(p+ s2 ≤ p′ + s′2)

∧(p+ s1 + s2 ≤ p′ + s′1 + s′2)

 ,

is an order relation on B+
k .

(ii) The relation ≤0
Bk , defined as ≤0

Bk= (B0
k)

2, is an order relation on B0
k.

(iii) The relation ≤−Bk , defined as

≤−Bk=
{(

(s1, s2, p), (s
′
1, s
′
2, p
′)
)
∈ (B−k )2

∣∣((s′1, s′2,−p′), (s1, s2,−p)
)
∈≤+

Bk

}
,

is an order relation on B−k .

(iv) The relation ≤Bk , defined as

≤Bk=≤+
Bk ∪ ≤

0
Bk ∪ ≤

−
Bk ∪

(
B−k × B

0
k

)
∪
(
B−k × B

+
k

)
∪
(
B0
k × B+

k

)
,

is an order relation on Bk.

Proof: If the three relations ≤+
Bk , ≤0

Bk and ≤−Bk are order relations on, respectively, B+
k ,

B0
k and B−k , then, as we are considering the linear sum (see [41]) of three disjoint partially

ordered sets, ≤Bk is an order relation on Bk. Trivially, ≤0
Bk is an order relation on B0

k. Let

us prove that ≤+
Bk and ≤−Bk are reflexive, antisymmetric and transitive relations.

Reflexivity: evident.

Antisymmetry: for any (s1, s2, p), (s
′
1, s
′
2, p
′) ∈ B+

k such that (s1, s2, p) ≤+
Bk (s′1, s

′
2, p
′) and

(s′1, s
′
2, p
′) ≤+

Bk (s1, s2, p), it holds that

(p ≤ p′) ∧ (p′ ≤ p) which implies p = p′ ,

(p+ s1 ≤ p′ + s′1) ∧ (p′ + s′1 ≤ p+ s1) ∧ (p = p′) which implies s1 = s′1 ,

(p+ s2 ≤ p′ + s′2) ∧ (p′ + s′2 ≤ p+ s2) ∧ (p = p′) which implies s2 = s′2 .

Therefore, we conclude that (s1, s2, p) = (s′1, s
′
2, p
′).
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For any (s1, s2, p), (s
′
1, s
′
2, p
′) ∈ B−k such that (s1, s2, p) ≤−Bk (s′1, s

′
2, p
′) and (s′1, s

′
2, p
′) ≤−Bk

(s1, s2, p), it holds that (s′1, s
′
2,−p′) ≤+

Bk (s1, s2,−p) and (s1, s2,−p) ≤+
Bk (s′1, s

′
2,−p′). As

≤+
Bk is antisymmetric, it holds that (s1, s2,−p) = (s′1, s

′
2,−p′) and, therefore, we conclude

that (s1, s2, p) = (s′1, s
′
2, p
′).

Transitivity: for any (s1, s2, p), (s
′
1, s
′
2, p
′), (s′′1, s

′′
2, p
′′) ∈ B+

k such that (s1, s2, p) ≤+
Bk (s′1, s

′
2, p
′)

and (s′1, s
′
2, p
′) ≤+

Bk (s′′1, s
′′
2, p
′′), it holds that

(p ≤ p′) ∧ (p′ ≤ p′′) which implies p ≤ p′′ ,

(p+ s1 ≤ p′ + s′1) ∧ (p′ + s′1 ≤ p′′ + s′′1) which implies p+ s1 ≤ p′′ + s′′1 ,

(p+ s2 ≤ p′ + s′2) ∧ (p′ + s′2 ≤ p′′ + s′′2) which implies p+ s2 ≤ p′′ + s′′2 ,

(p+ s1 + s2 ≤ p′ + s′1 + s′2) ∧ (p′ + s′1 + s′2 ≤ p′′ + s′′1 + s′′2)

which implies p′ + s1 + s2 ≤ p′′ + s′′1 + s′′2 .

Therefore, we conclude that (s1, s2, p) ≤+
Bk (s′′1, s

′′
2, p
′′).

For any (s1, s2, p), (s
′
1, s
′
2, p
′), (s′′1, s

′′
2, p
′′) ∈ B−k such that (s1, s2, p) ≤−Bk (s′1, s

′
2, p
′) and

(s′1, s
′
2, p
′) ≤−Bk (s′′1, s

′′
2, p
′′), it holds that (s′1, s

′
2,−p′) ≤+

Bk (s1, s2,−p) and (s′′1, s
′′
2,−p′′) ≤+

Bk
(s′1, s

′
2,−p′). As ≤+

Bk is transitive, it holds that (s′′1, s
′′
2,−p′′) ≤+

Bk (s1, s2,−p). Therefore, we

conclude that (s1, s2, p) ≤−Bk (s′′1, s
′′
2, p
′′). �

In Figure 8.2, the Hasse diagrams of the order relations ≤+
Bk , ≤0

Bk and ≤−Bk are shown for a

set of four candidates. The considered order relation on Bk is the one given by the linear

sum of the three disjoint partially ordered sets (B−k ,≤
−
Bk), (B0

k,≤0
Bk) and (B+

k ,≤
+
Bk). The

Hasse diagram of the order relation ≤Bk is shown in Figure 8.3. Note that the relative

position of two candidates is smaller than or equal to the relative position of two other

candidates if the first two candidates are closer in the given weak order relation than the

second couple of candidates.

Remark 8.14 When restricting to the case where ties are not allowed, it holds that max(#[ai1 ]%,#[ai2 ]%) =

min(#[ai1 ]%,#[ai2 ]%) = 1 and P%([ai1 ]%, [ai2 ]%) 6= 0 (for any two different candidates

ai1 , ai2 ∈ C ).

In addition, it holds that p ≤ p′ if and only if (1, 1, p) ≤Bk (1, 1, p′). As the relative position

p in the sense of [124] is the relative position (1, 1, p) in the sense of this section, the usual

order relation on relative positions defined in [124] is preserved. The order relation ≤Bk is

a total order relation when restricting to rankings without ties (s1 = s2 = 1).
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(1, 1, 3)

(2, 1, 2)

(2, 2, 1)

(1, 1, 1)

(2, 1, 1)

(1, 1, 2) (3, 1, 1)(0, 0, 0)

(1, 1,−1)

(2, 1,−1)

(2, 2,−1)

(1, 1,−3)

(2, 1,−2)

(1, 1,−2) (3, 1,−1)

(a) (b) (c)

Figure 8.2: Hasse diagrams of the order relations ≤−Bk (a), ≤0
Bk (b) and ≤+

Bk
(c).

Gathering the information given by all the voters, we denote by n(s1,s2,p)(ai1 , ai2) the (ab-

solute) frequency of the relative position (s1, s2, p) ∈ Bk for the couple (ai1 , ai2) ∈ C 2
6=, i.e.,

the number of voters considering that the relative position of candidate ai1 w.r.t. candi-

date ai2 equals (s1, s2, p). The vector (n(s1,s2,p)(ai1 , ai2))(s1,s2,p)∈Bk is called the frequency

distribution of the couple (ai1 , ai2).

As ≤Bk does not define a total order relation on Bk but a partial order relation, two cumu-

lative frequency distributions (instead of one) are associated with a frequency distribution:

a top-down and a bottom-up one. For any (s1, s2, p) ∈ Bk, the top-down cumulative

frequency distribution of the couple (ai1 , ai2) ∈ C 2
6= is given by

n(s1,s2,p)(ai1 , ai2) =
∑

(s′1,s
′
2,p
′)∈Bk

(s1,s2,p)≤Bk (s′1,s
′
2,p
′)

n(s′1,s
′
2,p
′)(ai1 , ai2) .

Analogously, for any (s1, s2, p) ∈ Bk, the bottom-up cumulative frequency distribution of

the couple (ai1 , ai2) ∈ C 2
6= is given by

n(s1,s2,p)
(ai1 , ai2) =

∑
(s′1,s

′
2,p
′)∈Bk

(s′1,s
′
2,p
′)≤Bk (s1,s2,p)

n(s′1,s
′
2,p
′)(ai1 , ai2) .

In order to illustrate how the frequency distribution given by a profile of rankings with ties

and the corresponding top-down and bottom-up cumulative frequency distributions can be

obtained, we consider the following example.
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(1, 1, 3)

(2, 1, 2)

(2, 2, 1)

(1, 1, 1)

(2, 1, 1)

(1, 1, 2) (3, 1, 1)

(0, 0, 0)

(1, 1,−1)

(2, 1,−1)

(2, 2,−1)

(1, 1,−3)

(2, 1,−2)

(1, 1,−2) (3, 1,−1)

Figure 8.3: Hasse diagram of the order relation ≤Bk .

Example 8.15 Let C = {a, b, c, d} be a set of candidates and R∗ = {�1,�2,�3} be a

profile of three rankings with ties with %1: a � b ∼ c � d, %2: d � a ∼ c � b and

%3: a ∼ b ∼ d � c.

As the equivalence classes of both a and d have size one in %1 and the relative position of

the first equivalence class w.r.t. the second one is three, it holds that n(1,1,3)(a, d) = 1. As

the equivalence class of a has size two and the one of d has size one in %2 and the relative

position of the first equivalence class w.r.t. the second one is (minus) one, it holds that
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1

0

0

0

0

0 01

0

1

0

0

0

0 0

Figure 8.4: Frequency distribution of the couple (a, d).

n(2,1,−1)(a, d) = 1. Finally, as the equivalence classes of a and d coincide in %3, it holds

that n(0,0,0)(a, d) = 1. Of course, n(s1,s2,p)(a, d) = 0 for any other (s1, s2, p) ∈ Bk. Thus,

the frequency distribution3 of relative positions of the couple (a, d) is shown in Figure 8.4.

1

1

1

1

1

1 12

2

3

3

3

3

3 3

Figure 8.5: Top-down cumulative frequency distribution of the couple (a, d).

The top-down and bottom-up cumulative frequency distributions of the couple (a, d) are

shown in Figures 8.5 and 8.6, respectively.

3Due to the lack of available space, in Figures 8.4–8.6, the frequency distribution is shown over the

Hasse diagrams of Figure 8.2 and not over the Hasse diagram of Figure 8.3. Two arrows have been added

for indicating that (1, 1,−1) ≤Bk
(0, 0, 0) and that (0, 0, 0) ≤Bk

(1, 1, 1).
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3

2

2

2

2

2 22

1

1

0

0

0

0 0

Figure 8.6: Bottom-up cumulative frequency distribution of the couple (a, d).

Finally, the frequency distributions of all couples of candidates are given in Tables 8.1

and 8.2.

(s1, s2, p) (1, 1,−3) (2, 1,−2) (2, 2,−1) (1, 1,−2) (3, 1,−1) (2, 1,−1) (1, 1,−1)

n(s1,s2,p)(a, b) 0 0 0 0 0 0 0

n(s1,s2,p)(a, c) 0 0 0 0 0 0 0

n(s1,s2,p)(a, d) 0 0 0 0 0 1 0

n(s1,s2,p)(b, a) 0 0 0 0 0 2 0

n(s1,s2,p)(b, c) 0 0 0 0 0 1 0

n(s1,s2,p)(b, d) 1 0 0 0 0 0 0

n(s1,s2,p)(c, a) 0 0 0 0 1 1 0

n(s1,s2,p)(c, b) 0 0 0 0 1 0 0

n(s1,s2,p)(c, d) 0 0 0 0 1 1 0

n(s1,s2,p)(d, a) 1 0 0 0 0 0 0

n(s1,s2,p)(d, b) 0 0 0 0 0 1 0

n(s1,s2,p)(d, c) 0 0 0 0 0 1 0

Table 8.1: Frequency distribution of all couples in C 2
6= (first part).

As can be seen in Example 8.15, any profile of rankings with ties R∗ defines a function

of the form W ∗ : C 2
6= → {0, 1, . . . , r}#Bk . This function will be henceforth called the

weak-votex (plural weak-votices) induced by the profile of rankings with ties R∗.
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(s1, s2, p) (0, 0, 0) (1, 1, 1) (2, 1, 1) (2, 2, 1) (1, 1, 2) (3, 1, 1) (2, 1, 2) (1, 1, 3)

n(s1,s2,p)(a, b) 1 0 2 0 0 0 0 0

n(s1,s2,p)(a, c) 1 0 1 0 0 1 0 0

n(s1,s2,p)(a, d) 1 0 0 0 0 0 0 1

n(s1,s2,p)(b, a) 1 0 0 0 0 0 0 0

n(s1,s2,p)(b, c) 1 0 0 0 0 1 0 0

n(s1,s2,p)(b, d) 1 0 1 0 0 0 0 0

n(s1,s2,p)(c, a) 1 0 0 0 0 0 0 0

n(s1,s2,p)(c, b) 1 0 1 0 0 0 0 0

n(s1,s2,p)(c, d) 0 0 1 0 0 0 0 0

n(s1,s2,p)(d, a) 1 0 1 0 0 0 0 0

n(s1,s2,p)(d, b) 1 0 0 0 0 0 0 1

n(s1,s2,p)(d, c) 0 0 1 0 0 1 0 0

Table 8.2: Frequency distribution of all couples in C 2
6= (second part).

Definition 8.16 Let C be a set of k candidates and r be the number of voters. A function

W ∗ : C 2
6= → {0, 1, . . . , r}#Bk is called a weak-votex (plural weak-votices) on C if there

exists a profile R∗ of r rankings with ties on C such that, for any (ai1 , ai2) ∈ C 2
6= and any

(s1, s2, p) ∈ Bk, it holds that

W ∗(ai1 , ai2) =
(
n(s1,s2,p)(ai1 , ai2)

)
(s1,s2,p)∈Bk

.

The set of all weak-votices on C induced by any profile of r rankings with ties on C is

denoted by W∗r (C ).

Similarly to the dominance relation defined on votices, we define a dominance relation on

weak-votices.

The strict partial order relation A between couples of candidates associated to a given

ranking � on C is used to define monotonicity of the weak-votex w.r.t. this ranking.

Definition 8.17 Let C be a set of k candidates and r be the number of voters. A weak-

votex W ∗ ∈ W∗r (C ) is said to be monotone w.r.t. a ranking � on C (with corresponding A)

if, for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that (ai1 , aj1) A (ai2 , aj2) and any (s1, s2, p) ∈ Bk,

it holds that the following two conditions are satisfied:
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(i) Dominance w.r.t. the top-down cumulative frequency distribution:

n(s1,s2,p)(ai1 , aj1) ≥ n(s1,s2,p)(ai2 , aj2) .

(ii) Dominance w.r.t. the bottom-up cumulative frequency distribution:

n(s1,s2,p)
(ai1 , aj1) ≤ n(s1,s2,p)

(ai2 , aj2) ,

Remark 8.18 In case a total order relation on Bk would be considered, dominance w.r.t.

the top-down cumulative frequency distribution and dominance w.r.t. the bottom-up cumu-

lative frequency distribution would coincide. However, as ≤Bk is a partial order relation,

dominance w.r.t. the top-down cumulative frequency distribution and dominance w.r.t. the

bottom-up cumulative frequency distribution might not coincide.

Again, the weak-votex induced by most profiles of rankings with ties is not monotone w.r.t.

any ranking. The set of all profiles of rankings with ties with a monotone weak-votex can

also be understood as a consensus state for the rationalisation of ranking rules.

8.5 The profile of rankings with ties

In case voters express rankings with ties instead of rankings, monotonicity of the profile of

rankings with ties does not follow immediately from the definition of monotonicity of the

profile of rankings. The relation w≥ needs to be extended to L∗(C ). In order to do so, we

note that, for a ranking with ties �i, the conditions ai1 �i ai2 and ai2 6�i ai1 are no longer

equivalent. Therefore, the former unique condition for rankings (without ties) now needs

to be divided in two parts.

Proposition 8.19 Let C be a set of k candidates and � be a ranking on C . The relation

w≥ defined as

w≥ =

(�i,�j) ∈ L∗(C )2 |
(
∀(ai1 , ai2) ∈ C 2

)(
ai1 � ai2

) (ai1 �j ai2)⇒ (ai1 �i ai2)
∧

(ai2 �i ai1)⇒ (ai2 �j ai1)




is an order relation on L∗(C ).
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Proof: We prove that w≥ satisfies reflexivity, antisymmetry and transitivity.

Reflexivity: holds trivially.

Antisymmetry: for any �i,�j∈ L∗(C ), if �i w≥ �j and �j w≥ �i, then it holds that:

(
∀(ai1 , ai2) ∈ C 2

)(
ai1 � ai2

)( (ai1 �j ai2)⇒ (ai1 �i ai2)
(ai2 �i ai1)⇒ (ai2 �j ai1)

)
,

and (
∀(ai1 , ai2) ∈ C 2

)(
ai1 � ai2

)( (ai1 �i ai2)⇒ (ai1 �j ai2)
(ai2 �j ai1)⇒ (ai2 �i ai1)

)
.

Therefore, for any ai1 , ai2 ∈ C such that ai1 � ai2 , it holds that(
(ai1 �i ai2)⇔ (ai1 �j ai2)

)
∧

(
(ai2 �i ai1)⇔ (ai2 �j ai1)

)
. (8.1)

As � is complete, if ai1 6� ai2 , then it holds that ai1 = ai2 or ai2 � ai1 . The case ai2 � ai1
is equivalent to the case ai2 � ai1 as both ai1 and ai2 play a symmetric role in Eq. (8.1).

The case ai1 = ai2 is immediate due to the fact that both �i and �j are irreflexive by

definition of ranking. Hence, for any ai1 , ai2 ∈ C , it holds that

(ai1 �i ai2)⇔ (ai1 �j ai2) ,

i.e., it holds that �i=�j.

Transitivity: for any �i,�j,�`∈ L∗(C ), if �i w≥ �j and �j w≥ �`, then it holds that

(
∀(ai1 , ai2) ∈ C 2

)(
ai1 � ai2

) (ai1 �j ai2)⇒ (ai1 �i ai2)
∧

(ai2 �i ai1)⇒ (ai2 �j ai1)

 ,

(
∀(ai1 , ai2) ∈ C 2

)(
ai1 � ai2

) (ai1 �` ai2)⇒ (ai1 �j ai2)
∧

(ai2 �j ai1)⇒ (ai2 �` ai1)

 .

Hence, for any ai1 , ai2 ∈ C such that ai1 � ai2 , it holds that

(ai1 �` ai2)⇒ (ai1 �j ai2)⇒ (ai1 �i ai2)
(ai2 �i ai1)⇒ (ai2 �j ai1)⇒ (ai2 �` ai1)

,

i.e., it holds that �i w≥ �`.

Thus, w≥ is an order relation on L∗(C ). �
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Remark 8.20 For any ranking � on C , the restriction of the relation w≥ on L∗(C ) to

L(C ) coincides with the relation w≥ on L(C ). Therefore, the use of the same notation is

justified.

Figure 8.7 displays the Hasse diagram of the order relation w≥ on L∗(C ) for the set of

candidates C = {a, b, c} and the ranking a � b � c. Note that this Hasse diagram

coincides with that used by Kemeny [80] for defining a distance function on L∗(C ).

a � b � c

a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b a ∼ b ∼ c b � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � a

c � b � a

Figure 8.7: Hasse diagram of the order relation w≥ on L∗(C ) for the ranking

a � b � c.

Unfortunately, this diagram may be inappropriate for modelling real-world problems. For

any (ai1 , ai2) ∈ C 2
6=, voters might show inclination towards either ai1 � ai2 and ai2 � ai1 or

ai1 ∼ ai2 . In order to model this inclination, we introduce here the notions of signature

and ordered signature.

Definition 8.21 Let C be a set of k candidates. The signature S of a ranking with ties

� on C , denoted by S (�), is a vector where the i-th component equals the size of the i-th

equivalence class in �. The set of all the signatures on C is denoted by S(C ).
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Definition 8.22 Let C be a set of k candidates. The ordered signature O of a ranking

with ties � on C , denoted by O(�), is a vector where the i-th component equals the size

of the i-th largest equivalence class in �. The set of all the ordered signatures on C is

denoted by O(C ).

Remark 8.23 Each signature S ∈ S(C ) leads to a unique ordered signature O ∈ O(C ).

Note that the lengths of S and O coincide. The fact that the signature S leads to the

ordered signature O is denoted by S  O.

The notions of signature and ordered signature are illustrated in the following example.

Example 8.24 Consider the set of candidates C = {a, b, c}. The signature of the ranking

with ties a � b � c is the vector (1, 1, 1) and its ordered signature is (1, 1, 1). Therefore, it

holds that

S (a � b � c) = O(a � b � c) = (1, 1, 1) .

Analogously, the signature of the ranking with ties a � b ∼ c is the vector (1, 2) and its

ordered signature is (2, 1). Therefore, it holds that

S (a � b ∼ c) = (1, 2) and O(a � b ∼ c) = (2, 1) .

In general, the set of all signatures on C is given by:

S(C ) = {(1, 1, 1), (1, 2), (2, 1), (3)} .

Analogously, the set of all ordered signatures on C is given by:

O(C ) = {(1, 1, 1), (2, 1), (3)} .

We prove the following lemma, which will be useful in the upcoming proofs.

Lemma 8.25 Let E be an equivalence relation and R be an order relation on a set X.

The relation E ∩R is an order relation on X.

Proof: Reflexivity follows immediately from the reflexivity of both E and R.
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Antisymmetry. Suppose that E ∩ R is not antisymmetric. Therefore, there exist two

different elements x, y ∈ X such that x(E ∩ R)y and y(E ∩ R)x. It follows that xRy and

yRx, a contradiction with the fact that R is antisymmetric.

Transitivity. Suppose that E ∩ R is not transitive. Therefore, there exist three elements

x, y, z ∈ X such that x(E ∩ R)y and y(E ∩ R)z but such that x(E ∩ R)cz. On the one

hand, it holds that xEy and yEz and, therefore, that xEz, due to the transitivity of

an equivalence relation. On the other hand, it holds that xRy and yRz and, therefore,

that xRz, due to the transitivity of an order relation. We conclude that x(E ∩ R)z, a

contradiction. �

These (ordered) signatures can be used for defining two natural order relations L∗(C ). In

the first order relation, only couples of rankings with ties belonging to w≥ and that have the

same signature are considered comparable elements, while, in the second order relation,

only couples of rankings with ties belonging to w≥ and that have the same ordered signature

are considered comparable elements.

Proposition 8.26 Let C be a set of k candidates and � be a ranking on C . The relation

w≥S defined as

w≥S = w≥ ∩ {(�i,�j) ∈ L∗(C )2 | S (�i) = S (�j)} ,

is an order relation on L∗(C ).

Proof:

The proof follows immediately from Lemma 8.25. �

Figure 8.8 displays the Hasse diagram of the order relation w≥S on L∗(C ) for the set of

candidates C = {a, b, c} and the ranking a � b � c. Note that we use dashed lines for

separating sets of incomparable rankings with ties.

Proposition 8.27 Let C be a set of k candidates and � be a ranking on C . The relation

w≥O defined as

w≥O = w≥ ∩ {(�i,�j) ∈ L∗(C )2 | O(�i) = O(�j)} ,

is an order relation on L∗(C ).
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a � b � c a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b

a ∼ b ∼ c

b � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � a

c � b � a

Figure 8.8: Hasse diagram of the order relation w≥S on L∗(C ) for the ranking

a � b � c.

Proof:

The proof follows immediately from Lemma 8.25. �

Figure 8.9 displays the Hasse diagram of the order relation w≥O on L∗(C ) for the set of

candidates C = {a, b, c} and the ranking a � b � c. Note that, as in Figure 8.8, we use

dashed lines for separating sets of incomparable rankings with ties.

a � b � c a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b a ∼ b ∼ cb � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � ac � b � a

Figure 8.9: Hasse diagram of the order relation w≥O on L∗(C ) for the ranking

a � b � c.

Of course, there is an immediate relation between the three relations w≥, w≥S and w≥O.
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Proposition 8.28 Let C be a set of k candidates and � be a ranking on C . The following

statement holds:

w≥S ⊆ w≥O ⊆ w≥ .

Proof: The fact that w≥O ⊆ w≥ is straightforward by definition of w≥O. The fact that

w≥S ⊆ w≥O follows from the fact that, if two rankings with ties have the same signature,

then they have the same ordered signature. �

Consider the relation �S on S(C ), where ‘S1 �S S2’ represents that the length of the

signature S1 equals the length of the signature S2 plus one and, at the same time, the

signature S2 is obtained by merging two consecutive components of S1. For instance, the

signature (1, 2) is obtained by merging the last two components of the signature (1, 1, 1),

therefore (1, 1, 1) �S (1, 2). This relation is used for defining a natural order relation on

S(C ).

Proposition 8.29 Let C be a set of k candidates. The relation ≥S, defined as the pre-

order closure4 of �S, is an order relation on S(C ).

Proof: By definition of pre-order closure, ≥S obviously is reflexive and transitive. We

need to prove that ≥S satisfies antisymmetry.

By definition, all couples in �S satisfy that the length of the first signature in the couple

is greater than the length of the second signature in the couple. Note that this property is

preserved by the smallest transitive relation containing �S. Therefore, when considering

the pre-order closure of �S, it only holds that S ≥S S and S ≥S S in case S = S. We

conclude that ≥S satisfies the antisymmetry property. �

Figure 8.10 displays the Hasse diagram of the order relation ≥S on S(C ) for a set C of

three and of four candidates.

Analogously, a natural order relation can be defined for ordered signatures. Consider

the relation �O on O(C ), where ‘O1 �O O2’ represents that there exist two signatures

S1,S2 ∈ S(C ) such that S1  O1, S2  O2 and S1 �S S2. For instance, for the

ordered signature (2, 1) and (1, 1, 1), it holds that (1, 2)  (2, 1), (1, 1, 1)  (1, 1, 1) and

4The pre-order closure of a relation R is the smallest reflexive and transitive relation containing R.
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(2, 1)

(1, 1, 1)

(3)

(1, 2)

(3, 1)

(2, 1, 1)

(4)

(2, 2)

(1, 2, 1)

(1, 1, 1, 1)

(1, 1, 2)

(1, 3)

Figure 8.10: Hasse diagram of the order relation ≥S on S(C ) for a set C of

three (left) and of four (right) candidates.

(1, 1, 1) �S (1, 2). Therefore, it holds that (1, 1, 1) �O (2, 1). This relation is used for

defining a natural order relation on O(C ).

Proposition 8.30 Let C be a set of k candidates. The relation ≥O, defined as the pre-

order closure of �O, is an order relation on O(C ).

Proof: By definition of pre-order closure, ≥O obviously is reflexive and transitive. We

need to prove that ≥O satisfies antisymmetry.

By definition, all couples in�O satisfy that the length of the first ordered signature in the

couple is greater than the length of the second ordered signature in the couple. Therefore,

as ≥S is only defined for couples where the length of the first signature in the couple is

greater than the length of the second signature in the couple (or for couples where both

signatures coincide), there exists no couple (O1,O2) ∈ O(C )2 such that O1 ≥O O2 and

O2 ≥O O1. �

Figure 8.11 displays the Hasse diagram of the order relation ≥O on O(C ) for a set C of

three and of four candidates.

The following result follows immediately.
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(2, 1)

(1, 1, 1)

(3)

(3, 1)

(2, 1, 1)

(4)

(2, 2)

(1, 1, 1, 1)

Figure 8.11: Hasse diagram of the order relation ≥O on O(C ) for a set C of

three (left) and of four (right) candidates.

Corollary 8.31 Let C be a set of k candidates. For any S1,S2 ∈ S(C ) and O1,O2 ∈
O(C ) such that S1  O1 and S2  O2, it holds that

S1 ≥S S2 ⇒ O1 ≥O O2 .

We prove the following lemma, which will be useful in the upcoming proofs.

Lemma 8.32 Let R and S be two order relations on a set X. The relation R ∩ S is an

order relation on X.

Proof: Reflexivity follows immediately from the reflexivity of both R and S.

Antisymmetry. Suppose that R ∩ S is not antisymmetric. Therefore, there exist two

different elements x, y ∈ X such that x(R ∩ S)y and y(R ∩ S)x. It follows that xRy and

yRx, a contradiction with the fact that R is antisymmetric.

Transitivity. Suppose that R ∩ S is not transitive. Therefore, there exist three elements

x, y, x ∈ X such that x(R∩S)y and y(R∩S)z but such that x(R∩S)cz. On the one hand,

it holds that xRy and yRz and, therefore, that xRz, due to the transitivity of an order

relation. On the other hand, it holds that xSy and ySz and, therefore, that xSz, due to

the transitivity of an order relation. We conclude that x(R ∩ S)z, a contradiction. �
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These order relations on the set of (ordered) signatures can be used for defining four natural

order relations L∗(C ), where only couples of rankings with ties belonging to sqsupseteqbis

and satisfying these additional requirements are considered comparable elements.

Proposition 8.33 Let C be a set of k candidates and � be a ranking on C . The relations

defined as

w≥S↓ = w≥ ∩ {(�i,�j) ∈ L∗(C )2 | S (�i) ≥S S (�j)} ,

w≥S↑ = w≥ ∩ {(�i,�j) ∈ L∗(C )2 | S (�j) ≥S S (�i)} ,

w≥O↓ = w≥ ∩ {(�i,�j) ∈ L∗(C )2 | O(�i) ≥O O(�j)} ,

w≥O↑ = w≥ ∩ {(�i,�j) ∈ L∗(C )2 | O(�j) ≥O O(�i)} ,

are four order relations on L∗(C ).

Proof:

The proof follows immediately from Lemma 8.32. �

Figure 8.12 displays the Hasse diagram of the order relation w≥O↓ on L∗(C ) for the set of

candidates C = {a, b, c} and the ranking a � b � c.

Figure 8.13 displays the relation between the different order relations on L∗(C ) introduced

in this section.

From now on, we denote by nR∗ the vector of absolute frequencies of the profile of rankings

with ties R∗, where nR∗(i) is the absolute frequency of the i-th ranking with ties in L∗(C ),

i.e., the number of voters that expressed the i-th ranking with ties in L∗(C ) in the profile

of rankings with ties R∗.

Under the assumption that there exists a true ranking � on C , it seems natural that the

vector of absolute frequencies of the given profile of rankings with ties should be decreasing

on the Hasse diagram of the order relation w≥ (note that now seven different diagrams are

considered). A profile of rankings with ties satisfying this property is said to be monotone

w.r.t. the ranking �.

Definition 8.34 Let C be a set of k candidates, r be the number of voters and � be a

ranking on C .
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a � b � c

a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b

a ∼ b ∼ c

b � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � a

c � b � a

Figure 8.12: Hasse diagram of the order relationw≥O↓ on L∗(C ) for the ranking

a � b � c.

w≥

w≥O↑ w≥O↓

w≥S↑ w≥O w≥S↓

w≥S

Figure 8.13: Relation between different order relations on L∗(C ).
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(i) A profile R∗ of rankings with ties on C is said to be monotone w.r.t. � if, for any

�i,�j∈ L∗(C ), it holds that(
�i w≥ �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

(ii) A profile R∗ of rankings with ties on C is said to be O↓-monotone w.r.t. � if, for

any �i,�j∈ L∗(C ), it holds that(
�i w≥O↓ �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

(iii) A profile R∗ of rankings with ties on C is said to be O↑-monotone w.r.t. � if, for

any �i,�j∈ L∗(C ), it holds that(
�i w≥O↑ �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

(iv) A profile R∗ of rankings with ties on C is said to be O-monotone w.r.t. � if, for any

�i,�j∈ L∗(C ), it holds that(
�i w≥O �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

(v) A profile R∗ of rankings with ties on C is said to be S↓-monotone w.r.t. � if, for any

�i,�j∈ L∗(C ), it holds that(
�i w≥S↓ �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

(vi) A profile R∗ of rankings with ties on C is said to be S↑-monotone w.r.t. � if, for any

�i,�j∈ L∗(C ), it holds that(
�i w≥S↑ �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

(vii) A profile R∗ of rankings with ties on C is said to be S-monotone w.r.t. � if, for any

�i,�j∈ L∗(C ), it holds that(
�i w≥S �j

)
⇒
(
nR∗(i) ≥ nR∗(j)

)
.

In general, in case the considered order relation on L∗(C ) is not specified, we talk about

∗-monotonicity w.r.t. a ranking on the set of candidates.
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8.6 Search for monotonicity of representations of votes affected by
ties

When the chosen representation of votes is not monotone w.r.t. any ranking, the goal is

to look for a new profile of rankings with ties with a monotone representation of votes

w.r.t. at least one ranking. Obviously, among all the profiles of rankings with ties with

a monotone representation of votes, we want to find the closest to the given one. This

closeness can be measured by means of a monometric.

The notion of betweenness to be considered between profiles of rankings with ties is based

on the Kemeny distance function [80] on rankings with ties5, which is an extension of the

Kendall distance function [82] on rankings.

Definition 8.35 Let C be a set of k candidates. For any two weak order relations %1 and

%2 on C , the Kemeny distance between %1 and %2 is defined as

K(%1,%2) = #{(ai1 , ai2) ∈ C 2
6= | ai1 �1 ai2 , ai2 �2 ai1}

+
1

2
#{(ai1 , ai2) ∈ C 2

6= | ai1 �1 ai2 , ai1 ∼2 ai2}

+
1

2
#{(ai1 , ai2) ∈ C 2

6= | ai1 ∼1 ai2 , ai1 �2 ai2} .

Remark 8.36 For any two rankings with ties �1 and �2 on C , we interchangeably write

K(%1,%2) or K(�1,�2).

Considering the Kemeny distance function on L∗(C ), the following betweenness relation

on L∗(C ) can be defined.

Definition 8.37 Let C be a set of k candidates and r be the number of voters.

(i) The betweenness relation S on L∗(C ) is defined as

S =
{

(�1,�2,�3) ∈ L∗(C )3 | K(�1,�3) = K(�1,�2) +K(�2,�3)
}
.

5The original Kemeny distance function proposed in [80] is the double of the distance function used

in this dissertation. However, in order to maintain a consistency with the Kendall distance function [82]

when restricted to rankings, this rescaled distance function will be considered.
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(ii) The betweenness relation R on L∗(C )r is defined as

R =
{(

R∗1 ,R
∗
2 ,R

∗
3

)
∈ (L∗(C )r)3 |

(
∀i ∈ {1, . . . , r}

)(
(�1

i ,�2
i ,�3

i ) ∈ S
)}

,

where, for any i ∈ {1, . . . , r} and any j ∈ {1, 2, 3}, �ji represents the i-th ranking

with ties in R∗j .

In order to ease notations, for any R∗1 ,R
∗
2 ,R

∗
3 ∈ L∗(C )r,

(
R∗1 ,R

∗
2 ,R

∗
3

)
∈ R is denoted by

[R∗1 ,R
∗
2 ,R

∗
3 ]. As a ranking with ties is a particular case of a profile of rankings with ties,

for any �1,�2,�3∈ L∗(C ), (�1,�2,�3) ∈ S is also denoted by [�1,�2,�3].

Definition 8.38 Let C be a set of k candidates and r be the number of voters. A func-

tion M : L∗(C )r × L∗(C )r → R is called a monometric if it satisfies the following three

properties:

(i) Non-negativity: for any R∗,R∗′ ∈ L∗(C )r, it holds that M(R∗,R∗′) ≥ 0.

(ii) Coincidence: for any R∗,R∗′ ∈ L∗(C )r, it holds that M(R∗,R∗′) = 0 ⇔ R∗ =

R∗′.

(iii) Compatibility: for any R∗,R∗′,R∗′′ ∈ L∗(C )r such that [R∗,R∗′,R∗′′], it holds

that M(R∗,R∗′) ≤M(R∗,R∗′′).

Several monometrics can be considered w.r.t. the betweenness relation based on the Ke-

meny distance function between rankings with ties. In the following, three intuitive exam-

ples are provided:

(i) M1(R∗1 ,R
∗
2) =

∑r
i=1 K(�1

i ,�2
i ).

(ii) M2(R∗1 ,R
∗
2) =

∑r
i=1 1 − δ(�1

i ,�2
i ), where δ(�,�′) equals one if �=�′ and zero

otherwise. M2 counts the number of rankings with ties that differ from a profile of

rankings with ties to another one.

(iii) M3(R∗1 ,R
∗
2) =

M1(R∗1 ,R
∗
2) , if �1

i⊆�2
i for any i ,

rk(k−1)
2

, otherwise ,

M3 counts the number of ties that are broken in the profile in case that R∗2 can be

reached from R∗1 by only breaking ties. Otherwise, it is equal to an upper bound of

M1.
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A procedure for hierarchically combining monometrics was analysed in [126].

After fixing a monometric, the search for a profile of rankings with ties with a monotone

representation of votes w.r.t. � that is closest to the profile of rankings with ties given

by the voters can be addressed. However, under some circumstances, all ties may need

to be avoided. In that case, the search for a closest profile of rankings with a monotone

representation of votes should be addressed.

Definition 8.39 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. Let M : L(C )r × L(C )r → R be a monometric and consider a fixed

representation of votes.

(i) A closest profile of rankings with ties with a monotone representation of votes is a

profile of rankings with ties R ′∗ such that there exists a ranking � w.r.t. which the

representation of votes induced by R ′∗ is monotone and for which it holds that there

exists no profile of rankings with ties R ′′∗ such that there exists a ranking � w.r.t.

which the representation of votes induced by R ′′∗ is monotone, while M(R∗,R ′′∗) <

M(R∗,R ′∗).

(ii) A closest profile of rankings with a monotone representation of votes is a profile of

rankings R ′ such that there exists a ranking � w.r.t. which the representation of

votes induced by R ′ is monotone and for which it holds that there exists no profile

of rankings R ′′ such that there exists a ranking � w.r.t. which the representation of

votes induced by R ′′ is monotone, while M(R,R ′′) < M(R,R ′).

As L∗(C )r and L(C )r are finite, the existence of both a closest profile of rankings with ties

with a monotone representation of votes and a closest profile of rankings with a monotone

representation of votes is assured. Unfortunately, the uniqueness cannot be assured.

As a profile of rankings (without ties) is a particular case of a profile of rankings with ties,

the following result is straightforward.

Proposition 8.40 Let C be a set of k candidates and R∗ ∈ L∗(C )r be the profile of r

rankings with ties given by the voters. Let M : L∗(C )r × L∗(C )r → R be a monometric

and consider a fixed representation of votes. For any closest profile of rankings with ties

R∗′ with a monotone representation of votes and any closest profile of rankings R ′ with a

monotone representation of votes, it holds that M(R∗,R∗′) ≤M(R∗,R ′).
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Now, two kinds of optimal rankings can be defined: a weak-optimal ranking and a total-

optimal ranking. On the one hand, a weak-optimal ranking is one whose corresponding

closest profile of rankings with ties with a monotone representation of votes is closest to the

profile of rankings with ties given by the voters. On the other hand, a total-optimal ranking

is one whose corresponding closest profile of rankings with a monotone representation of

votes is closest to the profile of rankings with ties given by the voters.

Definition 8.41 Let C be a set of k candidates and R∗ be the profile of r rankings with

ties on C given by the voters. Let M : L∗(C )r × L∗(C )r → R be a monometric.

(i) A weak-optimal ranking � is a ranking imposing monotonicity on at least one closest

profile of rankings with ties with a monotone representation of votes.

(ii) A total-optimal ranking � is a ranking imposing monotonicity on at least one closest

profile of rankings with a monotone representation of votes.

Obviously, the existence of both a weak-optimal ranking and a total-optimal ranking is

assured. Unfortunately, the uniqueness cannot be assured.

The extension of the method of Kemeny to rankings with ties (and to tournaments and

to binary relations) is a common problem in social choice [8, 21, 30, 31], usually referred

to as the search for ‘median orders’ or ‘median relations’. These extensions are obtained

by allowing the relations in the profile to be rankings with ties (or tournaments, or binary

relations) or by allowing the winning relations to be rankings with ties (or tournaments,

or binary relations). This approach differs from the one followed in this dissertation (it

suffices to see that the method of Kemeny does not need to coincide with the search for

monotonicity of a representation of votes).

8.7 Relation with the antisymmetric case

A profile of rankings is a special case of a profile of rankings with ties. The methods

recalled in Chapter 6 based on the search for monotonicity of a representation of votes

should then coincide with the methods introduced in this chapter when restricted to the

case where voters are not allowed to express ties in their preferences.
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Any scorix has a weak-scorix representation when the corresponding profile of rankings is

considered as a profile of rankings with ties.

Proposition 8.42 Let C be a set of k candidates and R ∈ L(C )r be the profile of r

rankings on C given by the voters. Let us denote by SR ∈ Sr(C ) the scorix of R and by

S∗R ∈ S∗r (C ) the weak-scorix of R. For any ai ∈ C , it holds that

(i) for any [`1, `2] ∈ Pk such that `1 = `2,

S∗R
(
ai, [`1, `2]

)
= (SR)i`1 ,

(ii) for any [`1, `2] ∈ Pk such that `1 6= `2,

S∗R
(
ai, [`1, `2]

)
= 0 .

Any votrix has a weak-votrix representation when the corresponding profile of rankings is

considered as a profile of rankings with ties.

Proposition 8.43 Let C be a set of k candidates and R ∈ L(C )r be the profile of r

rankings on C given by the voters. Let us denote by VR ∈ Vr(C ) the votrix of R and by

V ∗R ∈ V∗r (C ) the weak-votrix of R. For any (ai1 , ai2) ∈ C 2
6=, it holds that

(V ∗R)i1i2 = (VR)i1i2 .

Any votex has a weak-votex representation when the corresponding profile of rankings is

considered as a profile of rankings with ties.

Proposition 8.44 Let C be a set of k candidates and R ∈ L(C )r be the profile of r

rankings on C given by the voters. Let us denote by WR ∈ Wr(C ) the votex of R and by

W ∗
R ∈ W∗r (C ) the weak-votex of R. For any (ai1 , ai2) ∈ C 2

6=, it holds that

(i) for any (s1, s2, p) ∈ Bk such that s1 = s2 = 1 and p 6= 0,

W ∗
R(ai1 , ai2)(1, 1, p) = WR(ai1 , ai2)(p) ,

(ii) for any (s1, s2, p) ∈ Bk such that s1 6= 1 or p = 0,

W ∗
R(ai1 , ai2)(s1, s2, p) = 0 .
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It follows from the previous propositions that the scorix/votrix/votex of a profile R of rank-

ings on C is monotone w.r.t. a ranking � on C if and only if the weak-scorix/votrix/votex

of R is monotone w.r.t. �.

Proposition 8.45 Let C be a set of k candidates and R ∈ L(C )r be the profile of r

rankings on C given by the voters. Let us denote by SR ∈ Sr(C ) the scorix of R, by

S∗R ∈ S∗r (C ) the weak-scorix of R, by VR ∈ Vr(C ) the votrix of R, by V ∗R ∈ V∗r (C ) the

weak-votrix of R, by WR ∈ Wr(C ) the votex of R and by W ∗
R ∈ W∗r (C ) the weak-votex

of R. For any ranking � on C , the following three equivalences hold:

(i) SR is monotone w.r.t. � if and only if S∗R is monotone w.r.t. �.

(ii) VR is monotone w.r.t. � if and only if V ∗R is monotone w.r.t. �.

(iii) WR is monotone w.r.t. � if and only if W ∗
R is monotone w.r.t. �.

(iv) R is monotone w.r.t. � if and only if R∗ is S-monotone (or O-monotone) w.r.t. �.

Proof: (i) As ≤ is a total order relation on {1, . . . , k} and it holds that [`, `] ≤Pk
[`′, `′]

if and only if ` ≥ `′, the equivalence follows from Proposition 8.42.

(ii) Follows immediately from Proposition 8.43.

(iii) As ≤ is a total order relation on K and it holds that (1, 1, p) ≤Bk (1, 1, p′) if and only

if p ≤ p′, the equivalence follows from Proposition 8.44.

(iv) Follows immediately from the definition of w≥S and w≥O �

The chosen monometric on L∗(C )r needs to coincide with the monometric on L(C )r when

restricted to profiles of rankings.

Definition 8.46 Let C be a set of k candidates and r be the number of voters. A

monometric M : L(C )r × L(C )r → R is called the restriction of a monometric M∗ :

L∗(C )r×L∗(C )r → R to L(C )r if, for any two profiles of rankings R and R ′, it holds that

M(R,R ′) = M∗(R,R ′).

Remark 8.47 The restriction of a monometric M∗ : L∗(C )r × L∗(C )r → R to L(C )r is

unique.
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In case a monometric on L∗(C )r and its restriction to L(C )r are considered, it is straightfor-

ward to see that the search for a closest profile of rankings with a monotone representation

of votes in the set of profiles of rankings is equivalent to the search for a closest profile of

rankings with a monotone representation of votes in the set of profiles of rankings with

ties.

Proposition 8.48 Let C be a set of k candidates, r be the number of voters, � be a ranking

on C , R ∈ L(C )r be a profile of rankings and M : L(C )r × L(C )r → R be the restriction

of a monometric M∗ : L∗(C )r ×L∗(C )r → R to L(C )r. A profile of rankings R ′ ∈ L(C )r

is a closest profile of rankings with a monotone representation of votes w.r.t. � considering

M∗ if and only if it is a closest profile of rankings with a monotone representation of votes

w.r.t. � considering M .

We conclude that the methods introduced in the previous chapters coincide with the one

introduced in this chapter when restricted to the search for total-optimal rankings.

Corollary 8.49 Let C be a set of k candidates, R be the profile of r rankings on C

given by the voters and M : L(C )r × L(C )r → R be the restriction of a monometric

M∗ : L∗(C )r × L∗(C )r → R to L(C )r. A ranking � on C is an optimal ranking if and

only if it is a total-optimal ranking.
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CHAPTER 9

Winning candidates

In this chapter, we do not discuss the problem of the aggregation of rankings, but, instead,

we address the problem of identifying the best candidate on the set of candidates. There

are some situations in which the selection of a winning candidate is easy, for instance, when

every voter agrees on the candidate that needs to be selected as the winner. Such can-

didate is called the unanimous winner [6]. Unfortunately, the unanimous winner usually

does not exist. In case more than half of the voters agree on the candidate that should be

selected as the winner, one talks about the majority1 winner [107]. Obviously, the major-

ity winner might not exist either. Based only on the head-to-head comparisons between

candidates, Condorcet [35] advocated a weaker condition than that of the unanimous or

the majority winner: if a candidate is preferred by more than half of the voters to each of

the other candidates, then it should be selected as the winner; said candidate is referred

to as the Condorcet winner. The existence of the Condorcet winner is neither assured due

to the more than famous ‘voting paradox’ where, although all the voters provide transitive

preferences on the set of candidates, the collective preference might be cyclic.

Although the existence of the unanimous winner entails the existence of an undoubtedly

clear winner, we find several examples where selecting the majority winner or the Condorcet

winner is more than questionable. This is due to the fact that both the majority winner

and the Condorcet winner disregard an important part of the preferences of the voters;

quoting a well-known phrase by Sen [150], “... the method of majority decision takes no

1The concept of a majority winner is not related with that of the (simple) majority rule [54, 64, 76, 95,

149] whenever more than two candidates are considered.
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account of intensities of preference, and it is certainly arguable that what matters is not

merely the number who prefer x to y and the number who prefer y to x, but also by how

much each prefers one alternative to the other”. Although Sen’s statement tries to call

attention to the need of requiring voters to express intensities in their preferences, there

is also some unconsidered intensity of preference when voters express rankings on the set

of candidates. After all, when a voter is providing a ranking x � y � z, he is actually

declaring that he supports x over z stronger than both x over y and y over z. Pérez-

Fernández et al. [124] proposed a new representation of votes capturing this information:

the votex. Another way of exploiting all the information provided by the voters is to focus

not only on the “the number who prefer x to y”, but also on the number who prefer x and

y to any other candidate z. We will explore this direction throughout this section resulting

in a new type of winner: the pairwise winner [120]. The quasipositional winner, which

is the winner given by the positional rule [52, 98], and a stronger version - the positional

winner [118] - will also be analysed.

9.1 On being better than another candidate

In this section, we discuss three motivations for assuring that a candidate is better than

another candidate considering either positional or pairwise information.

9.1.1 On being quasipositionally better than another candidate

In case the vector of positions of a candidate (strictly) dominates the vector of positions

of another candidate, the first candidate will always be ranked at a better position than

the other candidate by any ranking rule. The first candidate is then considered to be

quasipositionally as good as the second candidate.

Definition 9.1 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and S be the scorix induced by R. For any ai1 , ai2 ∈ C , ai1 is said to be

quasipositionally as good as ai2, denoted by2 ai1 m∼B ai2, if Si1 D1 Si2.

2The subindex ‘B’ stands from Borda, the forefather of the exploitation of quasipositional information

in the field of social choice theory.
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If ai1 m∼B ai2 and Si1 B1 Si2, then ai1 is said to be quasipositionally better than ai2, denoted

by ai1 mB ai2. The reflexive closure3 of the relation mB is denoted by mB.

Of course, being quasipositionally better than or equal to another candidate implies being

quasipositionally as good as this candidate.

Proposition 9.2 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any ai1 , ai2 ∈ C , it holds that ai1 mB ai2 implies that ai1 m∼B ai2.

Note that the fact that a candidate is quasipositionally better than another candidate

trivially implies that the Borda score4 of the first candidate is greater than the Borda score

of the second candidate.

Proposition 9.3 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any ai1 , ai2 ∈ C such that ai1 mB ai2, it holds that B(ai1) > B(ai2).

From now on, we focus on the relation mB as it leads to an order relation on the set of

candidates instead of a preorder relation.

Proposition 9.4 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The relation mB is an order relation on C .

Proof: By definition of D1, the relation mB obviously is transitive. As we consider the

reflexive closure of an irreflexive relation, the reflexivity and the antisymmetry are also

satisfied. �

The previous definitions are illustrated in the following example.

Example 9.5 Consider a set of four candidates C = {a, b, c, d} and the profile of rankings

R = (�i)14
i=1 provided by fourteen voters shown in Table 9.1.

3The reflexive closure of a relation R is the smallest reflexive relation containing R.
4The Borda score B(ai) of candidate ai is defined as the number of times that a candidate is ranked at

a worse position than candidate ai in the profile of rankings given by the voters, i.e., B(ai) =
∑

a`∈C\{ai}

Vi`.
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# �i Rankings on C

6 c � b � a � d

5 a � d � b � c

3 b � a � d � c

Table 9.1: Frequency of the rankings on C expressed by 14 voters.

The scorix induced by R is given by:

SR =


5 3 6 0

3 6 5 0

6 0 0 8

0 5 3 6

 .

Note that, for instance, considering candidates a and d, it holds that:

5 = S11 > S41 = 0 ,

8 = S11 + S12 > S41 + S42 = 5 ,

14 = S11 + S12 + S13 > S41 + S42 + S43 = 8 .

Thus, it holds that amB d. In general, mB is given by:

mB = {(a, d), (b, d)} .

Obviously, mB is given by:

mB = {(a, a), (a, d), (b, b), (b, d), (c, c), (d, d)} .

This leads to the partially ordered set with the Hasse diagram in Figure 9.1.

•a

•d

• c

• b

Figure 9.1: Hasse diagram of the order relation mB.
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9.1.2 On being positionally better than another candidate

Based on the notion of sub-scorix, we define the notion of being quasipositionally better

than another candidate.

Definition 9.6 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and S be the scorix induced by R. For any ai1 , ai2 ∈ C , ai1 is said to be

positionally as good as ai2, denoted by5 ai1 m∼R ai2, if, for any C ′ ⊆ C such that ai1 , ai2 ∈ C ′

and the corresponding sub-scorix of S on C ′, it holds that S ′i1 D1 S
′
i2

.

If, for any C ′ ⊆ C such that ai1 , ai2 ∈ C ′ and the corresponding sub-scorix of S on C ′, it

holds that S ′i1B1S
′
i2

, then ai1 is said to be positionally better than ai2, denoted by ai1 mR ai2.

The reflexive closure of the relation mR is denoted by mR.

Of course, being positionally better than or equal to another candidate implies being

positionally as good as this candidate.

Proposition 9.7 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any ai1 , ai2 ∈ C , it holds that ai1 mR ai2 implies that ai1 m∼R ai2.

Note that the fact that a candidate is positionally better than another candidate trivially

implies that the candidate is quasipositionally better than another candidate. The same

result holds for the relations ‘being positionally as good’ as and ‘being quasipositionally as

good as’.

Proposition 9.8 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any ai1 , ai2 ∈ C such that ai1 m∼R ai2, it holds that ai1 m∼B ai2.

Moreover, for any ai1 , ai2 ∈ C such that ai1 mR ai2, it holds that ai1 mB ai2.

From now on, we focus on the relation mR as it leads to an order relation on the set of

candidates instead of a preorder relation.

5The subindex ‘R’ stands from ‘recursive’ monotonicity of the scorix.
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Proposition 9.9 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The relation mR is an order relation on C .

Proof: By definition of D1, the relation mR obviously is transitive. As we consider the

reflexive closure of an irreflexive relation, the reflexivity and the antisymmetry are also

satisfied. �

The previous definitions are illustrated in the following example.

Example 9.10 Consider the set of four candidates C = {a, b, c, d} and the profile of

rankings R = (�i)14
i=1 provided in Example 9.5. As a result of Proposition 9.8, it holds that

mR ⊆ mB = {(a, d), (b, d)}.

We check whether (a, d) belongs to mR. First, the scorix induced by the restriction of R to

Cabd = {a, b, d} is given by:

Sabd =

5 9 0

9 0 5

0 5 9

 .

Note that, for candidates a and d, it holds that:

5 = S11 > S31 = 0 ,

14 = S11 + S12 > S31 + S32 = 5 .

Second, the scorix induced by the restriction of R to Cacd = {a, c, d} is given by:

Sacd =

8 6 0

6 0 8

0 8 6

 .

Note that, for candidates a and d, it holds that:

8 = S11 > S31 = 0 ,

14 = S11 + S12 > S31 + S32 = 8 .

Third, the scorix induced by the restriction of R to Cad = {a, d} is given by:

Sad =

(
14 0

0 14

)
.
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Note that, for candidates a and d, it holds that:

14 = S11 > S21 = 0 .

Thus, (a, d) ∈ mR.

However, it holds that (b, d) /∈ mR in case Cbcd = {b, c, d} is considered. The scorix induced

by the restriction of R to Cbcd is given by:

Sbcd =

3 11 0

6 0 8

5 3 6

 .

Note that, for candidates b and d, it holds that:

3 = S11 6> S31 = 5 .

Thus, it holds that mR is given by:

mR = {(a, d)} .

Obviously, mR is given by:

mR = {(a, a), (a, d), (b, b), (c, c), (d, d)} .

This leads to the partially ordered set with the Hasse diagram in Figure 9.2.

•a

•d

• c• b

Figure 9.2: Hasse diagram of the order relation mR.

9.1.3 On being pairwisely better than another candidate

In social choice theory, researchers have focused too strongly on the notion of a candidate

that beats another one (the strength of support of the first candidate over the second
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one is greater than the strength of support of the second candidate over the first one)

following the ideas of Condorcet [35]. Nevertheless, this notion disregards the comparisons

with all the other candidates leading sometimes to the well-known voting paradox (also

known as Condorcet’s paradox) where a first candidate beats a second candidate, this

second candidate beats a third candidate but this third candidate beats the first candidate.

Several ways of avoiding the voting paradox have been analysed; obtaining choice sets [22]

such as the Smith Set [70, 152] or the Schwarz set [148] and the use of beatpaths [147] being

the most prominent ones. With the intention of avoiding such paradox, we propose here

to also consider the relations with all the other candidates when comparing a candidate

with another one.

Definition 9.11 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any ai1 , ai2 ∈ C , ai1 is said to be pairwisely as good as ai2, denoted

by6 ai1 m∼C ai2, if the following conditions hold:

(i) Vi1i2 ≥ Vi2i1,

(ii) Vi1` ≥ Vi2`, for any a` ∈ C \{ai1 , ai2},

(iii) V`i1 ≤ V`i2, for any a` ∈ C \{ai1 , ai2}.

If ai1 m∼C ai2 and Vi1i2 > Vi2i1, then ai1 is said to be pairwisely better than ai2, denoted by

ai1 mC ai2. The reflexive closure of the relation mC is denoted by mC.

Remark 9.12 In case we restrict our attention to the case where voters express rankings

(without ties) on the set of candidates, conditions (ii) and (iii) are equivalent.

Remark 9.13 Dutta and Laslier [47] generalized the covering relation, which is an old

acquaintance for scholars of social choice [59, 103, 129] in the context of (weak) tourna-

ments, by introducing comparison functions. In this generalized case, the relation ‘being

pairwisely better than’ and the covering relation turn out to be equivalent in case the fol-

lowing two conditions hold: (a) each voter expresses a ranking (without ties) on the set

of candidates (forcing conditions (ii) and (iii) to be equivalent) and (b) the considered

comparison function g is defined as g(ai1 , ai2) = Vi1i2 − Vi2i1.

6The subindex ‘C’ stands from Condorcet, the forefather of the exploitation of pairwise information in

the field of social choice theory.
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Of course, being pairwisely better than or equal to another candidate implies being pair-

wisely as good as this candidate. The converse is also true for an odd number of voters.

Proposition 9.14 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. For any ai1 , ai2 ∈ C , the following two statements hold:

(i) ai1 mC ai2 implies that ai1 m∼C ai2.

(ii) If r is an odd number, then it holds that ai1 mC ai2 if and only if ai1 m∼C ai2.

Proof: Statement (i) is evident by definition. Statement (ii) follows from the fact that

both Vi1i2 and Vi2i1 are natural numbers and, at the same time, Vi1i2 +Vi2i1 = r. Therefore,

it holds that Vi1i2 ≥ Vi2i1 if and only if Vi1i2 > Vi2i1 . �

Note that the fact that a candidate is pairwisely better than another candidate implies

that the Borda score of the first candidate is greater than the Borda score of the second

candidate.

Proposition 9.15 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. For any ai1 , ai2 ∈ C such that ai1 mC ai2, it holds that B(ai1) > B(ai2).

Proof: As ai1 mC ai2 , it follows that,

B(ai1) =
∑

a`∈C \{ai1}

Vi1`

= Vi1i2 +
∑

a`∈C \{ai1 ,ai2}

Vi1`

> Vi2i1 +
∑

a`∈C \{ai1 ,ai2}

Vi2`

=
∑

a`∈C \{ai2}

Vi2`

= B(ai2) .

We conclude that B(ai1) > B(ai2). �
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From now on, we focus on the relation mC as it leads to an order relation on the set of

candidates, while the relation m∼C leads to a pre-order relation only. Note that, although

Condorcet’s proposal might not be transitive, the relation mC is transitive and it avoids

the voting paradox.

Proposition 9.16 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. The relation mC is an order relation on C .

Proof: We prove that mC is reflexive, antisymmetric and transitive.

(a) Reflexivity: as mC is defined as the reflexive closure of mC , it trivially holds that mC

is reflexive.

(b) Antisymmetry: as mC obviously is asymmetric, mC is antisymmetric.

(c) Transitivity: for any ai1 , ai2 , ai3 ∈ C such that ai1 mC ai2 and that ai2 mC ai3 , we need

to prove that ai1 mC ai3 . If ai1 = ai2 or ai1 = ai3 or ai2 = ai3 , then it is trivial.

Consider the case where ai1 6= ai2 6= ai3 6= ai1 (only necessary if k ≥ 3). First, as

ai1 mC ai2 and as ai3 ∈ C \{ai1 , ai2}, it holds that Vi1i3 ≥ Vi2i3 and, therefore, that

Vi3i1 ≤ Vi3i2 . Furthermore, as ai2 mC ai3 , it holds that Vi2i3 > Vi3i2 . Thus, it holds

that:

Vi1i3 ≥ Vi2i3 > Vi3i2 ≥ Vi3i1 .

Second, for any a` ∈ C \{ai1 , ai3}, we need to prove that

Vi1` ≥ Vi3` .

We distinguish two cases: ` = i2 and ` 6= i2.

(i) If ` = i2, then it follows from ai1 mC ai2 and ai2 mC ai3 that

Vi1i2 ≥
r

2
≥ Vi3i2 .

(ii) If ` 6= i2 (only necessary if k ≥ 4), then it follows from ai1 mC ai2 and ai2 mC ai3
that

Vi1` ≥ Vi2` ≥ Vi3` .

Thus, it holds that ai1 mC ai3 and, therefore, mC is transitive.
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We conclude that mC is an order relation on C . �

As a consequence of this proposition, we conclude that the voting paradox results from the

fact that the relation of the candidates with respect to all the other ones is disregarded in

Condorcet’s proposal.

Example 9.17 Consider a set of four candidates C = {a, b, c, d} and the profile of rank-

ings R = (�i)14
i=1 provided by fourteen voters shown in Table 9.2.

# �i Rankings on C

6 c � b � a � d

5 a � d � b � c

3 b � a � d � c

Table 9.2: Frequency of the rankings on C expressed by 14 voters.

The votrix induced by R is given by:

VR =


0 5 8 14

9 0 8 9

6 6 0 6

0 5 8 0

 .

Note that, for instance, considering candidates a and d, it holds that:

14 = V (a, d) > V (d, a) = 0 ,

5 = V (a, b) ≥ V (d, b) = 5 ,

8 = V (a, c) ≥ V (d, c) = 8 .

Thus, it holds that amC d. In general, mC is given by:

mC = {(a, d), (b, c), (b, d)} .

Obviously, mC is given by:

mC = {(a, a), (a, d), (b, b), (b, c), (b, d), (c, c), (d, d)} .

This leads to the partially ordered set with the Hasse diagram in Figure 9.3.
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•a

•d • c

• b

Figure 9.3: Hasse diagram of the order relation mC .

9.2 On being the best candidate

In this section, we discuss several existing notions of winning candidate. We also propose

two new types of winner, positioning them with respect to the rest of existing notions.

9.2.1 Some existing notions of best candidate

The choice of the winner of an election is an easy problem when all the voters agree on

which candidate is the best. In that case, one talks about a unanimous winner [6].

Definition 9.18 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. A candidate ai1 is called the unanimous winner if, for any other

candidate ai2 ∈ C \{ai1}, it holds that Vi1i2 = r.

However, the existence of a unanimous winner does not hold in almost any election. Instead,

a weaker version is often considered requiring that more than half of the voters agree on

the candidate that should be selected as the winner [107].

Definition 9.19 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. A candidate ai1 is called the majority winner if it holds that

#{j ∈ {1, . . . , r} | (∀ai2 ∈ C \{ai1})(ai1 �j ai2)} >
r

2
.

Nevertheless, the existence of such a majority winner usually does not hold when more

than two candidates are considered.
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In 1781, Borda [18] proposed to exploit the positions at which every candidate is ranked

in order to determine a new type of winner: the Borda winner.

Definition 9.20 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. A candidate ai1 is called the Borda winner if, for any other candidate

ai2 ∈ C \{ai1}, it holds that B(ai1) > B(ai2).

Remark 9.21 Some authors consider that a Borda winner is one that maximizes the

Borda score, without requiring this maximum to be unique. Here, we require the Borda

winner to be unique and, therefore, it is not assured to exist.

In 1785, Condorcet [35] gave another condition that at first sight seems to be sufficient for

selecting a candidate as the winner. He advocated that, if a candidate is preferred to each

of the other candidates by more than half of the voters, then it should be selected as the

winner.

Definition 9.22 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. A candidate ai1 is called the Condorcet winner if, for any other

candidate ai2 ∈ C \{ai1}, it holds that Vi1i2 >
r
2
.

Remark 9.23 Some authors consider that a Condorcet winner ai1 is one that satisfies

that, for any other candidate ai2 ∈ C \{ai1}, it holds that Vi1i2 > Vi2i1. Note that both

definitions are equivalent in the main setting considered in this dissertation where each

voter expresses his/her preferences in the form of a ranking on the set of candidates.

However, as it disregards a big part of the information provided by the voters, this concept

has withstood a big criticism from part of the scientific community [18, 142]. In the

following example, we provide a case where the suitability of the Condorcet winner may

be questioned.

Example 9.24 Consider a set of four candidates C = {a, b, c, d} and the profile of rank-

ings R = (�i)101
i=1 provided by 101 voters shown in Table 9.3.
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# �i Rankings on C

51 a � b � c � d

50 b � c � d � a

Table 9.3: Frequency of the rankings on C expressed by 101 voters.

The votrix induced by R is given by:

VR =


0 51 51 51

50 0 101 101

50 0 0 101

50 0 0 0

 .

Note that although candidate b - which is the Borda winner - seems to be the most reasonable

choice, candidate a is the Condorcet winner (and the majority winner). However, it clearly

is a questionable choice for this particular example. This counter-intuitive result derives

from the fact that candidate b is pairwisely better than candidates c and d and just a small

change of one of the rankings a � b � c � d into b � a � c � d will also make b pairwisely

better than a. Many more changes are needed for turning candidate a pairwisely better than

candidates b and c.

9.2.2 On being the quasipositionally best candidate

The quasipositional winner is a candidate that is quasipositionally better than each can-

didate in the set of candidates.

Definition 9.25 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. A candidate ai1 is called the quasipositional winner if, for any other

candidate ai2 ∈ C \{ai1}, it holds that ai1 mB ai2.

It is known that the unanimous winner, the majority winner, the Borda winner and the

Condorcet winner are not assured to exist but, if they do exist, they are unique. Note that

this is also the case for the quasipositional winner.

Proposition 9.26 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters.
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(i) A quasipositional winner might not exist.

(ii) If a quasipositional winner exists, then it is unique.

Proof:

Statement (i). It suffices to consider the profile of rankings given in Example 9.5 and the

Hasse diagram represented in Figure 9.1.

Statement (ii). Suppose that ai1 and ai2 are two different quasipositional winners. It then

holds that ai1 mB ai2 and ai2 mB ai1 . By definition of mB, it holds that Si1` = Si2`, for any

` ∈ {1, . . . , k} and, at the same time, there exist `1, `2 ∈ {1, . . . , k} such that Si1`1 > Si2`1
and Si1`2 < Si2`2 , a contradiction.

Therefore, if a quasipositional winner exists, it is unique. �

Evidently, the notion of quasipositional winner is a stronger notion than that of Borda

winner and a weaker notion than that of unanimous winner.

Theorem 9.27 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the unanimous winner exists, then the quasipositional exists and it coincides with

the unanimous winner.

(ii) If the quasipositional winner exists, then the unanimous winner might not exist.

Proof:

Statement (i). If a candidate ai1 is the unanimous winner, then it is ranked at the first

position by every voter. For any other candidate ai2 ∈ C \{ai1}, it trivially holds that

r = Si11 > Si21 = 0. Furthermore, for any ` ∈ {2, . . . , k}, it holds that r =
∑`

j=1 Si1` ≥∑`
j=1 Si2`. Thus, for any other candidate ai2 ∈ C \{ai1}, it holds that ai1 mB ai2 . Therefore,

if the unanimous winner ai1 exists, then the quasipositional winner exists and it coincides

with ai1 .

Statement (ii). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.4.
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# �i Rankings on C

9 a � b � c

1 c � a � b

Table 9.4: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the quasipositional winner, but there does not exist a unanimous

winner. �

Theorem 9.28 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the quasipositional winner exists, then the Borda winner exists and it coincides

with the pairwise winner.

(ii) If the Borda winner exists, then the quasipositional winner might not exist.

Proof:

Statement (i). Note that the Borda score of any candidate ai ∈ C can be expressed in the

following way as a linear combination of the components of the vector of positions of ai:

B(ai) =
k∑
`=1

(k − `)Si` .

We conclude that, as the vector of positions of candidate ai dominates the vector of posi-

tions of any other candidate (due to the fact that it is the quasipositional winner), then

the Borda score of candidate ai is greater than the Borda score of any other candidate.

Statement (ii) immediately follows from Example 9.24. �

In Theorems 9.27 and 9.28, we described the relation between the notions of unanimous

winner, quasipositional winner and Borda winner. We will now prove that there is no

immediate relation between the existence of the quasipositional winner and the existence

of the Condorcet winner nor the majority winner. Note that, in case both the majority

winner and the quasipositional winner exist, then they need to coincide. However, this is

not the case for the quasipositional winner and the Condorcet winner.
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Theorem 9.29 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the quasipositional winner exists, then the majority winner might not exist.

(ii) If the majority winner exists, then the quasipositional winner might not exist.

(iii) If both the majority winner and the quasipositional winner exist, then they coincide.

Proof:

Statement (i). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.5.

# �i Rankings on C

4 a � b � c

3 b � a � c

3 c � a � b

Table 9.5: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the quasipositional winner, but there does not exist a majority

winner.

Statement (ii) immediately follows from Example 9.24.

Statement (iii). Note that if the majority winner exists, then the first component of the

vector of positions of this candidate needs to be greater than half of the number of voters.

Therefore, this vector of positions cannot be dominated by any other vector of positions.

We conclude that, if the quasipositional winner also exists, then the majority candidate

and the quasipositional winner coincide. �

Theorem 9.30 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the quasipositional winner exists, then the Condorcet winner might not exist.

(ii) If the Condorcet winner exists, then the quasipositional winner might not exist.
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(iii) If both the Condorcet winner and the quasipositional winner exist, then they might

not coincide.

Proof:

Statement (i). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.6.

# �i Rankings on C

4 a � c � b

3 b � a � c

3 c � b � a

Table 9.6: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the quasipositional winner, but there does not exist a Condorcet

winner.

Statement (ii) immediately follows from Example 9.24.

Statement (iii). Consider the set of candidates C = {a, b, c, d} and the profile of rankings

shown in Table 9.7.

# �i Rankings on C

4 a � c � b � d

3 b � a � c � d

3 d � b � a � c

Table 9.7: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Note that candidate a is the quasipositional winner and candidate b is the Condorcet

winner. �

9.2.3 On being the positionally best candidate

The positional winner is a candidate that is positionally better than each candidate in the

set of candidates.



CHAPTER 9 WINNING CANDIDATES 209

Definition 9.31 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. A candidate ai1 is called the positional winner if, for any other

candidate ai2 ∈ C \{ai1}, it holds that ai1 mR ai2.

The positional winner is not assured to exist but, if it does exist, it is unique.

Proposition 9.32 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters.

(i) A positional winner might not exist.

(ii) If a positional winner exists, then it is unique.

Proof:

Statement (i). It suffices to consider the profile of rankings given in Example 9.10 and the

Hasse diagram represented in Figure 9.2.

Statement (ii). Suppose that ai1 and ai2 are two different positional winners. It then holds

that ai1mRai2 and ai2mRai1 . Therefore, as a result of Proposition 9.8, it holds that ai1mBai2
and ai2 mB ai1 . By definition of mB, it holds that Si1` = Si2`, for any ` ∈ {1, . . . , k} and,

at the same time, there exist `1, `2 ∈ {1, . . . , k} such that Si1`1 > Si2`1 and Si1`2 < Si2`2 , a

contradiction.

Therefore, if a positional winner exists, it is unique. �

Evidently, the notion of positional winner is a stronger notion than that of quasiposi-

tional winner (and therefore than that of Borda winner) and a weaker notion than that of

unanimous winner.

Theorem 9.33 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the unanimous winner exists, then the positional exists and it coincides with the

unanimous winner.

(ii) If the positional winner exists, then the unanimous winner might not exist.
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Proof:

Statement (i). If a candidate ai1 is the unanimous winner, then it is ranked at the first

position by every voter. For any other candidate ai2 ∈ C \{ai1}, it trivially holds that

r = Si11 > Si21 = 0. Furthermore, for any ` ∈ {2, . . . , k}, it holds that r =
∑`

j=1 Si1` ≥∑`
j=1 Si2`. The previous result trivially holds for any sub-scorix of S on any subset of the

set of candidates containing ai1 and ai2 . Thus, for any other candidate ai2 ∈ C \{ai1}, it

holds that ai1 mR ai2 . Therefore, if the unanimous winner ai1 exists, then the positional

winner exists and it coincides with ai1 .

Statement (ii). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.8.

# �i Rankings on C

9 a � b � c

1 c � a � b

Table 9.8: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the positional winner, but there does not exist a unanimous win-

ner. �

Theorem 9.34 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the positional winner exists, then the quasipositional winner exists and it coincides

with the positional winner.

(ii) If the quasipositional winner exists, then the quasipositional winner might not exist.

Proof:

Statement (i) trivially follows from Proposition 9.8.

Statement (ii). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.9.
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# �i Rankings on C

4 a � b � c

3 b � c � a

3 c � a � b

Table 9.9: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the quasipositional winner, but there does not exist a positional

winner (it suffices to consider the sub-scorix on C ′ = {a, c} to see that a is not positionally

better than c). �

In Theorems 9.33 and 9.34, we described the relation between the notions of unanimous

winner, positional winner and quasipositional winner. The positional winner is understood

as a natural link between the Borda winner and the Condorcet winner, leading to the same

social outcome.

Theorem 9.35 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the positional winner exists, then the Condorcet winner exists and it coincides with

the positional winner.

(ii) If the Condorcet winner exists, then the positional winner might not exist.

Proof:

Statement (i). Note that a consequence of the relation mR is that, for any ai1 , ai2 ∈ C

with ai1 mR ai2 and any C ′ ⊆ C such that ai1 , ai2 ∈ C ′, it holds that S ′i1 B1 S
′
i2

, where S ′

is the corresponding sub-scorix of S on C ′. The result immediately follows by considering

C ′ = {ai1 , ai2}. Therefore, if the positional winner exists, then the Condorcet winner exists

and it coincides with ai1 .

Statement (ii). Immediately follows from Example 9.24. �

As a result of Theorem 9.35, we conclude that every Condorcet method will select the

positional winner (in case it exists) as the winner of the election.
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Corollary 9.36 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. If a candidate ai ∈ C is the positional winner, then ai will be the

winner for any Condorcet method.

Therefore, the most well-known Condorcet methods, such as the ones due to Kemeny [80],

Copeland [40], Tideman [157], Dodgson [46] or Schulze [147], will select the positional

winner (in case it exists) as the winner.

We will now prove that there is no immediate relation between the existence of the po-

sitional winner and the existence of the majority winner. Note that, in case both the

majority winner and the positional winner exist, then they need to coincide.

Theorem 9.37 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the positional winner exists, then the majority winner might not exist.

(ii) If the majority winner exists, then the positional winner might not exist.

(iii) If both the majority winner and the quasipositional winner exist, then they coincide.

Proof:

Statement (i). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.10.

# �i Rankings on C

4 a � b � c

4 a � c � b

3 b � a � c

3 b � c � a

3 c � a � b

3 c � b � a

Table 9.10: Frequency of the rankings on C = {a, b, c} expressed by 20 voters.

Candidate a is the positional winner, but there does not exist a majority winner.
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Statement (ii) immediately follows from Example 9.24.

Statement (iii). Note that if the majority winner exists, then it coincides with the Con-

dorcet winner. As a result of Theorem 9.35, if the positional winner exists, then it coincides

with the Condorcer winner. We conclude that, if both the majority winner and the quasi-

positional winner exist, then they coincide. �

9.2.4 On being the pairwisely best candidate

From Example 9.24 we conclude that, although the Condorcet winner may seem a natural

choice when it exists, it may also be subject of controversy. We propose here a stronger

version of the Condorcet winner, the pairwise winner, which is a candidate that is pairwisely

better than each candidate in the set of candidates.

Definition 9.38 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. A candidate ai1 is called the pairwise winner if, for any other candidate

ai2 ∈ C \{ai1}, it holds that ai1 mC ai2.

The pairwise winner is not assured to exist but, if it does exist, it is unique.

Proposition 9.39 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters.

(i) A pairwise winner might not exist.

(ii) If a pairwise winner exists, then it is unique.

Proof:

Statement (i). It suffices to consider the profile of rankings given in Example 9.17 and the

Hasse diagram represented in Figure 9.3.

Statement (ii). Suppose that ai1 and ai2 are two different pairwise winners. It then holds

that ai1 mC ai2 and ai2 mC ai1 . By definition of mC , it holds that Vi1i2 > Vi2i1 and that

Vi2i1 > Vi1i2 , a contradiction.
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Therefore, if a pairwise winner exists, it is unique. �

Evidently, the notion of pairwise winner is a stronger notion than that of Condorcet winner

and a weaker notion than that of unanimous winner.

Theorem 9.40 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the unanimous winner exists, then the pairwise winner exists and it coincides with

the unanimous winner.

(ii) If the pairwise winner exists, then the unanimous winner might not exist.

Proof:

Statement (i). If a candidate ai1 is the unanimous winner, then it is ranked at the first

position by every voter. For any other candidate ai2 ∈ C \{ai1}, it trivially holds that

r = Vi1i2 > Vi2i1 = 0. Furthermore, for any a` ∈ C \{ai1 , ai2}, it holds that r = Vi1` ≥ Vi2`.

Thus, for any other candidate ai2 ∈ C \{ai1}, it holds that ai1 mC ai2 . Therefore, if the

unanimous winner ai1 exists, then the pairwise winner exists and it coincides with ai1 .

Statement (ii). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.11.

# �i Rankings on C

4 a � b � c

3 b � a � c

3 c � a � b

Table 9.11: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the pairwise winner, but there does not exist a unanimous winner. �

Theorem 9.41 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.
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(i) If the pairwise winner exists, then the Condorcet winner exists and it coincides with

the pairwise winner.

(ii) If the Condorcet winner exists, then the pairwise winner might not exist.

Proof:

Statement (i). Note that the first condition of the relation mC is that ai1 mC ai2 implies

that Vi1i2 >
r
2
> Vi2i1 . Therefore, if the pairwise winner exists, then the Condorcet winner

exists and it coincides with ai1 .

Statement (ii). Immediately follows from Example 9.24. �

As a result of Theorem 9.41, we conclude that every Condorcet method will select the

pairwise winner (in case it exists) as the winner of the election.

Corollary 9.42 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. If a candidate ai ∈ C is the pairwise winner, then ai will be the winner

for any Condorcet method.

Therefore, the most well-known Condorcet methods, such as the ones due to Kemeny [80],

Copeland [40], Tideman [157], Dodgson [46] or Schulze [147], will select the pairwise winner

(in case it exists) as the winner.

In Theorems 9.40 and 9.41, we described the relation between the notions of unanimous

winner, pairwise winner and Condorcet winner. It is clear that the majority winner also

lies between the unanimous winner and the Condorcet winner. We will now prove that,

although they need to coincide if both exist, there is no immediate relation between the

existence of the pairwise winner and the existence of the majority winner.

Theorem 9.43 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the pairwise winner exists, then the majority winner might not exist.

(ii) If the majority winner exists, then the pairwise winner might not exist.
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(iii) If both the majority winner and the pairwise winner exist, then they coincide.

Proof:

Statement (i). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.11. Clearly, candidate a is the pairwise winner, but there does not exist

a majority winner.

Statement (ii) immediately follows from Example 9.24.

Statement (iii). Note that if the majority winner aM exists, then the Condorcet winner

also exists and it coincides with aM . As a result of Theorem 9.41, we know that, if the

pairwise winner aP exists, then the Condorcet winner also exists and it coincides with aP .

Due to the uniqueness of the Condorcet winner, both the majority winner and the pairwise

winner coincide when they exist. �

An even more surprising observation is that the pairwise winner also turns out to be a

stronger winner than the Borda winner. This implies that the pairwise winner is a type

of winner that finally unites the works of Borda and Condorcet, assuring that both the

Borda winner and the Condorcet winner lead to the same social outcome.

Theorem 9.44 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the pairwise winner exists, then the Borda winner exists and it coincides with the

pairwise winner.

(ii) If the Borda winner exists, then the pairwise winner might not exist.

Proof:

Statement (i). Let aP be the pairwise winner. By definition, for any other candidate

ai ∈ C \{aP}, it holds that aP mC ai. As a result of Proposition 9.15, it follows that

B(aP ) > B(ai). We conclude that aP is the Borda winner.

Statement (ii) immediately follows from Example 9.24. �
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Although it obeys a stronger condition than that of the Borda and Condorcet winners, the

pairwise winner is the actual cornerstone of social choice theory; it is under the absence of

the pairwise winner when the need of making a decision arises.

9.2.5 Relation between the (quasi)positional and the pairwise winners

We conclude this section by comparing the (quasi)positional winner and the pairwise win-

ner.

Theorem 9.45 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the pairwise winner exists, then the quasipositional winner might not exist.

(ii) If the quasipositional winner exists, then the pairwise winner might not exist.

(iii) If both the quasipositional winner and the pairwise winner exist, then they coincide.

Proof:

Statement (i). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.12.

# �i Rankings on C

4 b � a � c

3 a � c � b

3 c � a � b

Table 9.12: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the pairwise winner, but there does not exist a quasipositional

winner.

Statement (ii). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.13.
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# �i Rankings on C

5 a � b � c

2 b � c � a

2 c � a � b

1 b � a � c

Table 9.13: Frequency of the rankings on C = {a, b, c} expressed by 10 voters.

Clearly, candidate a is the quasipositional winner, but there does not exist a pairwise

winner.

Statement (iii). As a result of Theorem 9.28, we know that, if the quasipositional winner

exists, then the Borda winner exists and it coincides with the quasipositional winner. As

a result of Theorem 9.44, we know that, if the pairwise winner exists, then the Borda

winner exists and it coincides with the pairwise winner. We conclude that, if both the

quasipositional winner and the pairwise winner exist, then the Borda winner exists and all

three need to coincide. �

Theorem 9.46 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters.

(i) If the pairwise winner exists, then the positional winner might not exist.

(ii) If the positional winner exists, then the pairwise winner might not exist.

(iii) If both the positional winner and the pairwise winner exist, then they coincide.

Proof:

Statement (i). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.12. Clearly, candidate a is the pairwise winner, but there does not exist

a positional winner.

Statement (ii). Consider the set of candidates C = {a, b, c} and the profile of rankings

shown in Table 9.13. Clearly, candidate a is the positional winner, but there does not exist

a pairwise winner.
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Statement (iii). As a result of Theorems 9.28 and 9.34, we know that, if the positional

winner exists, then the Borda winner exists and it coincides with the positional winner.

As a result of Theorem 9.44, we know that, if the pairwise winner exists, then the Borda

winner exists and it coincides with the pairwise winner. We conclude that, if both the

positional winner and the pairwise winner exist, then the Borda winner exists and all three

need to coincide. �

Figure 9.4 displays the relation between the different types of winners analysed in this

chapter. In this figure, an arrow indicates that, if the winner from which the arrow starts

exists, then the winner to which the arrow points also exists and it coincides with the

former.

Unanimous winner

Pairwise winner

Condorcet winner

Majority winnerPositional winner

Quasipositional winner

Borda winner

Figure 9.4: Relation between the different types of winners.

9.3 On being a potential best candidate

In this section, we discuss what candidates could be considered potential winning can-

didates considering either quasipositional or pairwise information. In order to do so, we

define the undominated sets for the relations mB, mR and mC .
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9.3.1 The quasipositionally undominated set

In case the quasipositional winner does not exist, a natural solution we propose to consider

the quasipositionally undominated set, i.e., the set of all elements for which there exists

no quasipositionally better element.

Definition 9.47 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The quasipositionally undominated set is the subset UB of C defined

as

UB = {ai1 ∈ C | (6 ∃ai2 ∈ C )(ai2 mB ai1)} .

Note that there always exists at least one candidate that belongs to the quasipositionally

undominated set.

Proposition 9.48 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. It holds that UB 6= ∅.

Proof: The result is straightforward due to the fact that mB defines an order relation on

C , that C is a finite set and that the quasipositionally undominated set coincides with the

set of maximal elements of mB. �

The existence of the quasipositional winner is equivalent to the fact that the quasiposi-

tionally undominated set is a singleton.

Proposition 9.49 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. A candidate aP is the quasipositional winner if and only if UB = {aP}.

Proof: Let aP be the quasipositional winner. By definition of the quasipositional winner,

for any other candidate ai ∈ C \{aP}, it holds that aP mB ai. It obviously follows that the

unique element that can belong to the quasipositionally undominated set is aP . As a result

of Proposition 9.48, we know that UB 6= ∅. Therefore, we conclude that UB = {aP}.

Let UB = {aP}. Suppose that aP is not the quasipositional winner. Therefore, there exists

ai1 ∈ C \{aP} such that it does not hold that aP mB ai1 . As ai1 6∈ UB and mB is an order
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relation on a finite set, there exists a maximal element ai2 ∈ C \{aP , ai1} of mB such that

ai2mBai1 . Note that ai2 is a maximal element of mB not belonging to UB, a contradiction.�

9.3.2 The positionally undominated set

As discussed in the previous sections, the positional winner seems to be an intuitive winner

in case it exists. In case it does not exist, a natural solution is to consider the positionally

undominated set, i.e., the set of all elements for which there exists no positionally better

element. This set is always not empty and, as we will show next, in case the positional

winner does not exist, contains at least two elements. As it likely is a proper subset of the

set of candidates itself, the choice of the best candidate can be restricted to that subset.

Definition 9.50 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The positionally undominated set is the subset UR of C defined as

UR = {ai1 ∈ C | (6 ∃ai2 ∈ C )(ai2 mR ai1)} .

Remark 9.51 As a result of Proposition 9.8, we know that mR ⊆ mB. Therefore, it

trivially holds that

UB ⊆ UR .

Note that there always exists at least one candidate that belongs to the positionally un-

dominated set.

Proposition 9.52 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. It holds that UR 6= ∅.

Proof: The result is straightforward due to the fact that mR defines an order relation on

C , that C is a finite set and that the positionally undominated set coincides with the set

of maximal elements of mR. �

The existence of the positional winner is equivalent to the fact that the positionally un-

dominated set is a singleton.
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Proposition 9.53 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. A candidate aP is the positional winner if and only if UR = {aP}.

Proof: Let aP be the positional winner. By definition of the positional winner, for

any other candidate ai ∈ C \{aP}, it holds that aP mR ai. It obviously follows that the

unique element that can belong to the positionally undominated set is aP . As a result of

Proposition 9.52, we know that UR 6= ∅. Therefore, we conclude that UR = {aP}.

Let UR = {aP}. Suppose that aP is not the positional winner. Therefore, there exists

ai1 ∈ C \{aP} such that it does not hold that aP mR ai1 . As ai1 6∈ UR and mR is an order

relation on a finite set, there exists a maximal element ai2 ∈ C \{aP , ai1} of mR such that

ai2mRai1 . Note that ai2 is a maximal element of mR not belonging to UR, a contradiction.�

9.3.3 The pairwisely undominated set

Similarly, the pairwise winner also seems to be an intuitive winner in case it exists. In

case it does not exist, a natural solution is to consider the pairwisely undominated set,

i.e., the set of all elements for which there exists no pairwisely better element. Like the

(quasi)positionally undominated set, the pairwisely undominated set is always not empty

and, in case the pairwise winner does not exist, contains at least two elements.

Definition 9.54 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The pairwisely undominated set is the subset UC of C defined as

UC = {ai1 ∈ C | ( 6 ∃ai2 ∈ C )(ai2 mC ai1)} .

Note that there always exists at least one candidate that belongs to the pairwisely undom-

inated set.

Proposition 9.55 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. It holds that UC 6= ∅.

Proof: The result is straightforward due to the fact that mC defines an order relation on

C , that C is a finite set and that the pairwisely undominated set coincides with the set of



CHAPTER 9 WINNING CANDIDATES 223

maximal elements of mC . �

The existence of the pairwise winner is equivalent to the fact that the pairwisely undomi-

nated set is a singleton.

Proposition 9.56 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. A candidate aP is the pairwise winner if and only if UC = {aP}.

Proof: Let aP be the pairwise winner. By definition of the pairwise winner, for any other

candidate ai ∈ C \{aP}, it holds that aPmC ai. It obviously follows that the unique element

that can belong to the pairwisely undominated set is aP . As a result of Proposition 9.55,

we know that UC 6= ∅. Therefore, we conclude that UC = {aP}.

Let UC = {aP}. Suppose that aP is not the pairwise winner. Therefore, there exists

ai1 ∈ C \{aP} such that it does not hold that aP mC ai1 . As ai1 6∈ UC and mC is an order

relation on a finite set, there exists a maximal element ai2 ∈ C \{aP , ai1} of mC such that

ai2mCai1 . Note that ai2 is a maximal element of mC not belonging to UC , a contradiction.�

9.4 On being the best ranking

In this section, we discuss the case where the partial order relations “being quasipositionally

as good as” and “being pairwisely as good as” turn out to be total order relations on the

set of candidates.

9.4.1 On being the quasipositionally best ranking

The fact that the scorix is monotone w.r.t. a ranking � on the set of candidates turns

out to be equivalent to the fact that every two candidates ai1 , ai2 ∈ C such that ai1 � ai2
satisfy that ai1 is quasipositionally as good as ai2 .
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Proposition 9.57 Let C be a set of k candidates, R be the profile of r rankings on C

given by the voters, S be the scorix induced by R and � be a ranking on C . The following

two statements are equivalent:

(i) S is monotone w.r.t. �.

(ii) For any ai1 , ai2 ∈ C such that ai1 � ai2, it holds that ai1 m∼B ai2.

Proof: The proof is straightforward by definition of monotonicity of the scorix and of

the relation ‘being quasipositionally as good as’. �

Unfortunately, monotonicity of the scorix might hold w.r.t. different rankings on the set

of candidates. Instead of the relation ‘being quasipositionally as good as’, we propose

to consider the relation ‘being quasipositionally better than’ in the characterization of

monotonicity of the scorix given in Proposition 9.57, leading to a strict version of the

property of monotonicity of the scorix. This strictness leads to the uniqueness of the

ranking w.r.t. which monotonicity of the scorix holds, something that was not assured

before.

Definition 9.58 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The scorix S induced by R is said to be strictly monotone w.r.t. a

ranking � on C if, for any ai1 , ai2 ∈ C such that ai1 � ai2, it holds that ai1 mB ai2.

Strict monotonicity of the scorix can be understood as the requirement for the relation

mB to be a strict total order relation on the set of candidates. This property results in an

intuitive condition for the Borda ranking to exist.

Theorem 9.59 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and S be the scorix induced by R. If S is strictly monotone w.r.t. a ranking

� on C , then � is the Borda ranking.

Proof: It follows from the fact that, for any ai1 , ai2 ∈ C , ai1 mB ai2 implies that

B(ai1) > B(ai2). �
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The search for the ranking that is the closest to imposing strict monotonicity on the scorix

will lead to the definition of different ranking rules depending on the chosen notion of

closeness.

9.4.2 On being the positionally best ranking

The fact that the scorix is recursively monotone w.r.t. a ranking � on the set of candidates

turns out to be equivalent to the fact that every two candidates ai1 , ai2 ∈ C such that

ai1 � ai2 satisfy that ai1 is positionally as good as ai2 .

Proposition 9.60 Let C be a set of k candidates, R be the profile of r rankings on C

given by the voters, S be the scorix induced by R and � be a ranking on C . The following

two statements are equivalent:

(i) S is recursively monotone w.r.t. �.

(ii) For any ai1 , ai2 ∈ C such that ai1 � ai2, it holds that ai1 m∼R ai2.

Proof: The proof is straightforward by definition of recursive monotonicity of the scorix

and of the relation ‘being positionally as good as’. �

Analogously, the fact that the scorix is strictly recursively monotone w.r.t. a ranking �
on the set of candidates turns out to be equivalent to the fact that every two candidates

ai1 , ai2 ∈ C such that ai1 � ai2 satisfy that ai1 is positionally better than ai2 .

Proposition 9.61 Let C be a set of k candidates, R be the profile of r rankings on C

given by the voters, S be the scorix induced by R and � be a ranking on C . The following

two statements are equivalent:

(i) S is strictly recursively monotone w.r.t. �.

(ii) For any ai1 , ai2 ∈ C such that ai1 � ai2, it holds that ai1 mR ai2.

Proof: The proof is straightforward by definition of strict recursive monotonicity of the

scorix and of the relation ‘being positionally better than’. �
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Strict monotonicity of the scorix can be understood as the requirement for the relation

mR to be a strict total order relation on the set of candidates. This property results in an

intuitive condition for the Borda ranking and the Condorcet ranking to finally agree.

Theorem 9.62 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and S be the scorix induced by R. If S is strictly recursively monotone w.r.t.

a ranking � on C , then � is both the Borda ranking and the Condorcet ranking.

Proof: It follows from the fact that, for any ai1 , ai2 ∈ C , ai1 mR ai2 implies that

B(ai1) > B(ai2) and Vi1i2 > Vi2i1 . �

The search for the ranking that is the closest to imposing strict recursive monotonicity

on the scorix will lead to the definition of different ranking rules depending on the chosen

notion of closeness.

9.4.3 On being the pairwisely best ranking

The fact that the votrix is monotone w.r.t. a ranking � on the set of candidates turns

out to be equivalent to the fact that every two candidates ai1 , ai2 ∈ C such that ai1 � ai2
satisfy that ai1 is pairwisely as good as ai2 .

Proposition 9.63 Let C be a set of k candidates, R be the profile of r rankings on C

given by the voters, V be the votrix induced by R and � be a ranking on C . The following

two statements are equivalent:

(i) V is monotone w.r.t. �.

(ii) For any ai1 , ai2 ∈ C such that ai1 � ai2, it holds that ai1 m∼C ai2.

Proof: The implication (i)⇒(ii). Firstly, for any ai1 , ai2 ∈ C such that ai1 � ai2 , it holds

that (ai1 , ai2) A (ai2 , ai1). Therefore, as V is monotone w.r.t. �, it holds that Vi1i2 ≥ Vi2i1 .

Secondly, for any ai1 , ai2 ∈ C such that ai1 � ai2 and any ai3 ∈ C \{ai1 , ai2}, it holds that
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(ai1 , ai3) A (ai2 , ai3). Therefore, as V is monotone w.r.t. �, it holds that Vi1i3 ≥ Vi2i3 .

Thus, we conclude that, for any ai1 , ai2 ∈ C such that ai1 � ai2 , it holds that ai1 m∼C ai2 .

The implication (ii)⇒(i). Let us assume that, for any ai1 , ai2 ∈ C such that ai1 � ai2 ,

it holds that ai1 m∼C ai2 . By definition of A, for any (ai1 , aj1), (ai2 , aj2) ∈ C 2
6= such that

(ai1 , aj1) A (ai2 , aj2), it holds that

(ai1 � ai2) ∧ (aj2 � aj1) ∧ (ai1 � ai2 ∨ aj2 � aj1) .

We distinguish three cases: if ai1 � ai2 and aj2 � aj1 , then it holds that ai1 m∼C ai2 and

aj2 m∼C aj1 , therefore it holds that Vi1j1 ≥ Vi2j1 ≥ Vi2j2 ; if ai1 � ai2 and aj2 = aj1 , then it

holds that ai1 m∼C ai2 , therefore it holds that Vi1j1 ≥ Vi2j1 = Vi2j2 ; if ai1 = ai2 and aj2 � aj1 ,

then it holds that aj2 m∼C aj1 , therefore it holds that Vi1j1 = Vi2j1 ≥ Vi2j2 . We conclude

that Vi1j1 ≥ Vi2j2 and, therefore, V is monotone w.r.t. �. �

Unfortunately, monotonicity of the votrix might hold w.r.t. different rankings on the set of

candidates. Instead of the relation ‘being pairwisely as good as’, we propose to consider the

relation ‘being pairwisely better than’ in the characterization of monotonicity of the votrix

given in Proposition 9.63, leading to a strict version of the property of monotonicity of the

votrix. This strictness leads to the uniqueness of the ranking w.r.t. which monotonicity of

the votrix holds, something that was not assured before.

Definition 9.64 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. The votrix V induced by R is said to be strictly monotone w.r.t. a

ranking � on C if, for any ai1 , ai2 ∈ C such that ai1 � ai2, it holds that ai1 mC ai2.

Strict monotonicity of the votrix can be understood as the requirement for the relation

m to be a strict total order relation on the set of candidates. This property results in an

intuitive condition for the Borda ranking and the Condorcet ranking to finally agree.

Theorem 9.65 Let C be a set of k candidates, R be the profile of r rankings on C given

by the voters and V be the votrix induced by R. If V is strictly monotone w.r.t. a ranking

� on C , then � is both the Borda ranking and the Condorcet ranking.

Proof: From Proposition 9.15, it follows that, for any ai1 , ai2 ∈ C , ai1 m ai2 implies

that B(ai1) > B(ai2). In addition, by definition of m, it follows that, for any ai1 , ai2 ∈ C ,
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ai1 m ai2 implies that Vi1i2 > Vi2i1 . We conclude that � is both the Borda ranking and the

Condorcet ranking. �

The search for the ranking that is the closest to imposing strict monotonicity on the votrix

will lead to the definition of different ranking rules depending on the chosen notion of

closeness.

9.5 A new social choice function

As discussed in this chapter, the pairwise winner is a natural type of winner finally uniting

the Borda winner and the Condorcet winner. In this section, we recall part of the work

in [120], where we introduced a social choice function that selects the candidate(s) that is

the closest to becoming the pairwise winner. Of course, this closeness can be measured in

many different ways. For instance, the search for the Condorcet winner is addressed by

means of a distance function at the votrix level and of a distance function at the profile

level by two prominent methods: Condorcet’s least-reversal method [99] and the method

of Dodgson [46].

Here, we consider to assign a score to each candidate ai according to how close it is to

becoming the pairwise winner. In order to fulfill the conditions of Definition 9.11, we need

to increase Vi` until the following three conditions hold: (a) Vi` is greater than V`i (i.e., it

is greater than or equal to r
2

+ 1, in case r is even, or r+1
2

, in case r is odd), for any other

candidate a`; (b) Vi` is greater than or equal to Vt`, for any other candidates a` and at;

(c) V`i is smaller than or equal to V`t, for any other candidates a` and at. Analogously,

we need to decrease the counterpart V`i until the following three conditions hold: (a) V`i

is smaller than Vi`; (b) V`i is smaller than or equal to V`t, for any other candidates a` and

at; (c) Vi` is greater than or equal to Vt`, for any other candidates a` and at. The score for

each candidate ai is then given by7

s(ai) =
1

2

∑
a`∈C \{ai}

∣∣∣∣Vi` −max

(
r

2
+ 1, max

at∈C \{ai,a`}
Vt`

)∣∣∣∣
−

+
1

2

∑
a`∈C \{ai}

∣∣∣∣min

(
r

2
− 1, min

at∈C \{ai,a`}
Vt`

)
− V`i

∣∣∣∣
−
,

7We denote the negative part of x by |x|− = −min(x, 0).
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in case r is an even number, and

s(ai) =
1

2

∑
a`∈C \{ai}

∣∣∣∣Vi` −max

(
r + 1

2
, max
at∈C \{ai,a`}

Vt`

)∣∣∣∣
−

+
1

2

∑
a`∈C \{ai}

∣∣∣∣min

(
r − 1

2
, min
at∈C \{ai,a`}

Vt`

)
− V`i

∣∣∣∣
−
,

in case r is an odd number.

In the setting where each voter provides a ranking (without ties) on the set of candidates,

the terms corresponding to the same index are identical in both sums in each of the above

expressions due to the fact that Vi` = r−V`i, for any two candidates ai, a` ∈ C . Moreover,

the reader can easily check that both maxat∈C \{ai,a`} Vt` and maxat∈C Vt` lead to the same

result. We sketch the proof for the case where r is an even number (the case where r is an

odd number is analogous). It suffices to distinguish three cases:

(a)
r

2
+ 1 ≥ Vi` > maxat∈C \{ai,a`} Vt`, where it holds that∣∣∣∣Vi` −max

(
r

2
+ 1, max

at∈C \{ai,a`}
Vt`

)∣∣∣∣
−

=
∣∣∣Vi` − r

2
− 1
∣∣∣
−

=

∣∣∣∣Vi` −max

(
r

2
+ 1,max

at∈C
Vt`

)∣∣∣∣
−

;

(b) Vi` ≥
r

2
+ 1 ≥ maxat∈C \{ai,a`} Vt` (with Vi` > maxat∈C \{ai,a`} Vt`), where it holds that∣∣∣∣Vi` −max

(
r

2
+ 1, max

at∈C \{ai,a`}
Vt`

)∣∣∣∣
−

= 0 =

∣∣∣∣Vi` −max

(
r

2
+ 1,max

at∈C
Vt`

)∣∣∣∣
−

;

(c) Vi` > maxat∈C \{ai,a`} Vt` ≥
r

2
+ 1, where it holds that∣∣∣∣Vi` −max

(
r

2
+ 1, max

at∈C \{ai,a`}
Vt`

)∣∣∣∣
−

= 0 =

∣∣∣∣Vi` −max

(
r

2
+ 1,max

at∈C
Vt`

)∣∣∣∣
−
.

Therefore, the above expressions can be simplified to

s(ai) =
∑

a`∈C \{ai}

K` − Vi` , (9.1)

whereK` = max

(
r

2
+ 1,max

at∈C
Vt`

)
in case r is an even number, andK` = max

(
r + 1

2
,max
at∈C

Vt`

)
in case r is an odd number.

Obviously, in case the pairwise winner aP exists, its score s(aP ) equals zero. In the following

example, we illustrate how the score of a candidate can be easily obtained by just analysing

the corresponding votrix.
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Example 9.66 The votrix induced by the profile of rankings listed in Example 9.17 is given

by:

VR =


0 5 8 14

9 0 8 9

6 6 0 6

0 5 8 0

 .

The score of the i-th candidate equals the sum (for all columns j 6= i) of the costs of making

the element at the i-th row and j-th column the maximum of the column and, at the same

time, greater than half of the number of voters. We illustrate how to obtain the score of

candidate a. For the second column we need to increase five until it becomes the maximum

of the column (six) and, at the same time, it becomes greater than half of the number of

voters, i.e., it becomes at least eight. Therefore, for the second column, we need to increase

five until it becomes eight, leading to a cost of three. Note that, for the third column, eight

is already the maximum of the column and at the same time greater than half of the number

of voters and, for the fourth column, fourteen is already the maximum of the column and at

the same time greater than half of the number of voters. Therefore, the score of candidate

a equals

s(a) = 3 + 0 + 0 = 3 .

Analogously, the scores of the other candidates are s(b) = 5, s(c) = 13 and s(d) = 12.

We suggest that a candidate should be elected a winner if it minimizes the score given by

Eq. (9.1), i.e., a candidate ai is a winning candidate if it belongs to

A = arg min
ai∈C

s(ai) . (9.2)

Remark 9.67 As s(ai) = −B(ai)−Ki+
∑

a`∈C K`, the proposed method can be understood

as a modified version of the Borda method, where, for any candidate ai, the term Ki is

added to the Borda score:

A = arg max
ai∈C

B(ai) +Ki .

Remark 9.68 The search for a pairwise winner in the same fashion as the method of

Dodgson searches for a Condorcet winner (i.e., by minimizing the number of consecutive

candidates that need to be switched in the profile of rankings) has also been implemented.
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This has resulted in the same scores in most of the analysed profiles. Nevertheless, this was

not always the case, for instance, in case we consider the set of candidates C = {a, b, c, d}
and the profile of rankings listed in Table 9.14.

# �i Rankings on C

26 c � d � a � b

25 a � b � d � c

25 b � a � d � c

25 c � b � a � d

Table 9.14: Frequency of the rankings on C = {a, b, c, d} expressed by 101

voters.

The unique minimizer of Eq. (9.2) is candidate a, while the set of minimizers for the search

for a pairwise winner by minimizing the number of consecutive candidates that are switched

in the profile of rankings is {a, b}.

In case a candidate ai1 is pairwisely better than another candidate ai2 , the score of ai1 is

smaller than the score of ai2 .

Proposition 9.69 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. For any ai1 , ai2 ∈ C , ai1 mC ai2 implies that s(ai1) < s(ai2).

Proof: Let ai1 , ai2 ∈ C be such that ai1 mC ai2 . As ai1 mC ai2 , it follows that, for any

a` ∈ C \{ai1 , ai2},
K` − Vi1` ≤ K` − Vi2` . (9.3)

It immediately follows that∑
a`∈C \{ai1 ,ai2}

K` − Vi1` ≤
∑

a`∈C \{ai1 ,ai2}

K` − Vi2` .

As s(ai) =
∑

a`∈C \{ai}K` − Vi`, in order for s(ai1) < s(ai2) to hold, it would suffice that

Ki1 − Vi2i1 < Ki2 − Vi1i2 .

Unfortunately, this may not be the case. However, it is also sufficient to prove that

Ki1 − Vi2i1 +K` − Vi1` < Ki2 − Vi1i2 +K` − Vi2` ,
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for some appropriate index `, or

Ki1 − Vi2i1 +K`1 − Vi1`1 +K`2 − Vi1`2 < Ki2 − Vi1i2 +K`1 − Vi2`1 +K`2 − Vi2`2 ,

for some appropriate indices `1 and `2.

Let T1 be an index t maximizing Vti1 and T2 be an index t maximizing Vti2 (we assume

here k > 2, otherwise this proof is unnecessary). We distinguish five cases:8 (a) T1 = i2

and T2 = i1; (b) T1 = i2 and T2 6∈ {i1, i2}; (c) T1 6∈ {i1, i2} and T2 = i1; (d) T1, T2 6∈ {i1, i2}
and T1 = T2; (e) T1, T2 6∈ {i1, i2} and T1 6= T2 (only needed in case k > 3).

The cases (a) and (c) trivially lead to s(ai1) < s(ai2).

The case (b). It holds that Ki1 =
r

2
+ 1 (in case r is even) or Ki1 =

r + 1

2
(in case r is

odd) and, due to the fact that Vi1i2 >
r
2
, it follows that Ki2 = VT2i2 = r − Vi2T2 . We will

prove that the strict inequality

Ki2 − Vi1i2 +KT2 − Vi1T2 < Ki1 − Vi2i1 +KT2 − Vi2T2 (9.4)

holds, or, equivalently, in case r is even (the case r is odd is analogous),

Vi2i1 − Vi1i2 +
r

2
− 1− Vi1T2 < 0 .

This indeed holds due to the fact that Vi2i1 − Vi1i2 < 0 and VT2i1 ≤ VT1i1 ≤
r

2
+ 1. We

conclude that the strict inequality in Eq. (9.4) holds and, combining Eqs. (9.3) and (9.4),

it follows that s(ai1) < s(ai2).

The case (d). Let T = T1 = T2. We will prove that the strict inequality

Ki2 − Vi1i2 +KT − Vi1T < Ki1 − Vi2i1 +KT − Vi2T (9.5)

holds, or, equivalently,

Ki2 −Ki1 + Vi2i1 − Vi1i2 + Vi2T − Vi1T < 0 . (9.6)

Note that Ki1 = VT i1 or Ki1 =
r

2
+ 1 (in case r is even) or Ki1 =

r + 1

2
(in case r is

odd) and, due to the fact that Vi1i2 >
r
2
, it follows that Ki2 = VT i2 = r − Vi2T . In case

Ki1 = VT i1 = r − Vi1T , Eq. (9.6) leads to:

Vi2i1 − Vi1i2 + Vi2T − Vi1T < 0 .

8Note that the case where T1 = i1 and T2 = i2 does not need to be considered because Vii = 0.
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This indeed holds due to the fact that Vi2i1−Vi1i2 < 0 and VT i1 ≤ VT i2 . In case Ki1 =
r

2
+1

(the case Ki1 =
r + 1

2
is analogous), Eq. (9.6) leads to:

Vi2i1 − Vi1i2 +
r

2
− 1− Vi1T < 0 .

This indeed holds due to the fact that Vi2i1 − Vi1i2 < 0 and VT1i1 ≤
r

2
+ 1. We conclude

that the strict inequality in Eq. (9.5) holds and, combining Eqs. (9.3) and (9.5), it follows

that s(ai1) < s(ai2).

The case (e). We will prove that the strict inequality

Ki2 − Vi1i2 +KT1 − Vi1T1 +KT2 − Vi1T2 < Ki1 − Vi2i1 +KT1 − Vi2T1 +KT2 − Vi2T2 (9.7)

holds, or, equivalently,

Ki2 −Ki1 + Vi2i1 − Vi1i2 + Vi2T1 − Vi1T1 + Vi2T2 − Vi1T2 < 0 . (9.8)

Note that Ki1 = VT1i1 or Ki1 =
r

2
+ 1 (in case r is even) or Ki1 =

r + 1

2
(in case r is

odd) and, due to the fact that Vi1i2 >
r
2
, it follows that Ki2 = VT2i2 = r − Vi2T2 . In case

Ki1 = VT1i1 = r − Vi1T1 , Eq. (9.8) leads to:

Vi2i1 − Vi1i2 + Vi2T1 − Vi1T2 < 0 .

This indeed holds due to the fact that Vi2i1 − Vi1i2 < 0 and VT2i1 ≤ VT1i1 ≤ VT1i2 . In case

Ki1 =
r

2
+ 1 (the case Ki1 =

r + 1

2
is analogous), Eq. (9.8) leads to:

Vi2i1 − Vi1i2 + Vi2T1 − Vi1T2 +
r

2
− 1− Vi1T1 < 0 .

This indeed holds due to the fact that Vi2i1 − Vi1i2 < 0, VT2i1 ≤ VT1i1 ≤ VT1i2 and VT1i1 ≤
r

2
+ 1.

We conclude that the strict inequality in Eq. (9.7) holds and, combining Eqs. (9.3) and (9.7),

it follows that s(ai1) < s(ai2). �

The preceding proposition implies that the winner(s) needs to belong to the pairwisely

undominated set.

Corollary 9.70 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. It holds that A ⊆ UC.
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Corollary 9.71 Let C be a set of k candidates and R be the profile of r rankings on C

given by the voters. If the pairwise winner aP exists, then it holds that s(aP ) = 0 < s(ai),

for any ai ∈ C \{aP}, and A = UC = {aP}.

Example 9.72 For the profile of rankings listed in Example 9.17, the scores associated

with each candidate are the following:

s(a) = 3 ,

s(b) = 5 ,

s(c) = 13 ,

s(d) = 12 .

Therefore, candidate a, which belongs to the pairwisely undominated set UC = {a, b},
should be considered the winner in Example 9.17.

For the profile of rankings listed in Example 9.24, the scores associated with each candidate

are the following:

s(a) = 100 ,

s(b) = 1 ,

s(c) = 52 ,

s(d) = 153 .

Therefore, candidate b, which belongs to the pairwisely undominated set UC = {a, b}, should

be considered the winner in Example 9.24.

In the following, we analyse some intuitive properties of the proposed method.

Proposition 9.73 Let C be a set of k candidates and R be the profile of r rankings on

C given by the voters. The search for the candidate(s) that minimizes Eq. (9.2)

(i) satisfies the non-dictatorship criterion, i.e., there is no voter whose winning

candidate is always elected winner;

(ii) satisfies the non-imposition criterion, i.e., every candidate can be elected win-

ner if unanimously desired by the group;
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(iii) satisfies the anonymity criterion, i.e., reassigning the rankings over the voters

does not change the outcome;

(iv) satisfies the neutrality criterion, i.e., if some permutation of the candidates is

applied to each voter’s ranking, the winner should be the result of this same permu-

tation;

(v) is not a Condorcet method (is not Condorcet consistent), i.e., the Condorcet

winner is not always elected the winner in case of existence;

(vi) is not Borda consistent, i.e., the Borda winner is not always elected the winner

in case of existence;

(vii) does not satisfy the majority criterion, i.e., the majority winner is not always

elected the winner in case of existence;

(viii) is not independent of clones, i.e., the winner could change due to the addition

of a non-winning candidate who is a clone of a candidate already present;

(ix) satisfies the monotonicity criterion, i.e., a winner remains a winner in case it

is raised in the rankings of some of the voters;

(x) does not satisfy the homogeneity criterion, i.e., the set of winning candidates

may not remain the same in case the rankings of the voters are repeated a finite

number of times.

Proof: Statements (i), (ii), (iii) and (iv) are straightforward.

Statements (v) and (vii) follow from Example 9.24. As discussed in Example 9.72, the

winner for the profile of rankings given in Example 9.24 is candidate b, while candidate a

is the majority winner, and thus the Condorcet winner.

Statement (vi) follows from the following example. Consider the set of candidates C =

{a, b, c, d} and the profile of rankings shown in Table 9.15. The Borda winner is candidate

d, while the candidate minimizing Eq. (9.2) is candidate a.

Statement (viii) follows from the following example. Consider the set of candidates C =

{a, b, c} and the profile of rankings shown in Table 9.16 (left). Candidate a is the pairwise

winner, therefore it is the unique candidate minimizing Eq. (9.2). Nevertheless, if we add
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# �i Rankings on C

8 a � b � c � d

5 a � c � b � d

5 b � d � c � a

5 c � d � b � a

5 d � b � a � c

5 d � c � a � b

1 d � a � b � c

Table 9.15: Frequency of the rankings on C = {a, b, c, d} expressed by 34

voters (statement (vi)).

a candidate d that is a clone of candidate b, the resulting profile will be the one shown in

Table 9.16 (right). The candidate minimizing Eq. (9.2) is now candidate b.

# �i Rankings on C # �i Rankings on C

2 a � b � c 2 a � b � d � c

1 a � c � b 1 a � c � b � d

1 b � a � c 1 b � d � a � c

1 b � c � a 1 b � d � c � a

1 c � a � b 1 c � a � b � d

1 c � b � a 1 c � b � d � a

Table 9.16: Frequency of the rankings on C = {a, b, c} (left) and on C =

{a, b, c, d} (right) expressed by 7 voters (statement (viii)).

Statement (ix). We prove that, after improving a winning candidate ai1 exactly one position

in one of the rankings, this candidate remains being a winner. The monotonicity criterion

would then be satisfied. Let us denote by S, V and K the terms related to the original

profile and by S ′, V ′ and K ′ the terms related to the profile obtained by raising candidate

ai1 exactly one position in one of the rankings. Suppose that there exists another candidate

ai2 satisfying that s(ai2) ≥ s(ai1), while S ′(ai2) < S ′(ai1). Note that it holds that∑
a`∈C \{ai1}

−Vi1` = −1 +
∑

a`∈C \{ai1}

−V ′i1` ,
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while ∑
a`∈C \{ai2}

−Vi2` ≥
∑

a`∈C \{ai2}

−V ′i2` .

This implies that, for S ′(ai2) < S ′(ai1) to hold, it should hold that

K ′i2 < Ki2 − 1 ,

which is a contradiction as the maximum of the i2-th column has increased at most one

unit.

Statement (x) follows from the following example. Consider the set of candidates C =

{a, b, c, d} and the profile of rankings shown in Table 9.17. The set of candidates minimizing

Eq. (9.2) is {a, b}. Nevertheless, in case we repeat the profile twice, the unique candidate

minimizing Eq. (9.2) is a. �

# �i Rankings on C

4 b � a � d � c

2 c � a � b � d

1 a � c � d � b

1 b � c � a � d

1 c � a � d � b

1 d � c � b � a

Table 9.17: Frequency of the rankings on C = {a, b, c, d} expressed by 10

voters (statement (x)).

In this chapter, we have identified seven different types of winning candidates. A study

of the relations between all these types of winner has also been addressed. We concluded

this section by proposing a social choice rule based on the search for the pairwise winner,

resulting in a Borda-like method where a correction term is added to the Borda count.
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PART III
THE APPLICATION





CHAPTER 10

Case studies

The aggregation of rankings has been addressed in many scientific disciplines, including

medicine [91], consumer preference analysis [162], computer science [48], management sci-

ence [173] and social choice theory [6, 14]. Nevertheless, due to the natural interpretation

of the aggregation of rankings as a voting procedure, social choice theory is considered (one

of) the most prominent field of application. All these scientific disciplines represent some

of the possible large-scale applications of the contents of this dissertation. Indeed, the

theoretical development in this dissertation should be understood as a necessary tool for

proposing a solution for ranking all available alternatives/rankings, which is the ultimate

goal of this research.

Throughout this chapter, we analyse three different real-life problems: an ecosystem man-

agement problem where the goal is to rank four plans according to their perceived suit-

ability for the Lar rangeland in Iran; an environmental decision making problem where the

goal is to identify the best estimation method for the production of orange trees in the

Argentinian province of Corrientes; and a consumer preference analysis problem where the

goal is to check whether or not consumers are able to distinguish between different degrees

of spoilage of some cod fish samples at the Laboratory of Food Microbiology and Food

Preservation at Ghent University, Belgium. In each of the three cases, we search for all dif-

ferent consensus states and analyse the obtained results. Due to its natural interpretation,

the Kendall distance function is always considered in this chapter.
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10.1 Lar rangeland in Iran

The methodologies discussed in this dissertation are applied here to a dataset coming

from a decision making problem concerning the management of the Lar rangeland in Iran,

an area of great local economic, ecological and social importance. When drawing up

new management plans, the Iranian government asked r = 31 representatives of different

stakeholder groups to rank four plans according to their perceived suitability on different

criteria. For more details, we refer to [173].

10.1.1 The wildlife diversity criterion

In Table 10.1, we list the rankings given by the voters in the Lar rangeland decision

problem corresponding to the wildlife diversity criterion. We see that a majority of voters

has expressed the ranking a � b � c � d. However, an optimal ranking could differ from

the most frequent ranking.

# �i Rankings on C

18 a � b � c � d

3 c � d � b � a

3 d � c � b � a

2 b � a � c � d

1 b � c � a � d

1 b � c � d � a

1 b � d � c � a

1 c � b � d � a

1 d � b � c � a

Table 10.1: Expressed rankings and their frequency for the Wildlife Diversity

Criterion in the Lar rangeland decision problem.

The scorix induced by the profile of rankings given by the voters is:

S =


18 2 1 10

5 20 6 0

4 5 22 0

4 4 2 21

 .
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We see that S is not (recursively) monotone w.r.t. any ranking on the set of candidates

due to the fact that the vector of positions of candidate a does not dominate the vector of

positions of candidate b (18 + 2 < 5 + 20) and, at the same time, the vector of positions of

candidate b does not dominate the vector of positions of candidate a (18 > 5).

The relation mB is given by:

mB = {(a, d), (b, c), (b, d), (c, d)} .

Evidently, mB is given by:

mB = {(a, a), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)} .

Figure 10.1 displays the Hasse diagram of the order relation mB. Note that the quasiposi-

tionally undominated set is here given by UB = {a, b}.

•a

•d

• c

• b

Figure 10.1: Hasse diagram of the order relation mB.

Similarly, the relation mR is given by:

mR = {(a, d), (c, d)} .

Evidently, mR is given by:

mR = {(a, a), (a, d), (b, b), (c, c), (c, d), (d, d)} .

Figure 10.2 displays the Hasse diagram of the order relation mR. Note that the positionally

undominated set is here given by UB = {a, b, c}.

In Table 10.2, the costs of imposing monotonicity and recursive monotonicity on the scorix

w.r.t. each possible ranking are listed. We conclude that a � b � c � d is the ranking

w.r.t. which the closest profile of rankings with a monotone scorix and the closest profile of

rankings with a recursively monotone scorix lead to the lowest cost (11 and 14). Of course,

the ranking a � b � c � d linearly extends the strict partial order relation given by mB.
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•a

•d

• c

• b

Figure 10.2: Hasse diagram of the order relation mR.

Ranking Cost S Cost RS Ranking Cost S Cost RS

a � b � c � d 11 14 c � a � b � d 21 25

a � b � d � c 20 21 c � a � d � b 33 35

a � c � b � d 17 21 c � b � a � d 18 23

a � c � d � b 28 32 c � b � d � a 34 39

a � d � b � c 28 31 c � d � a � b 39 42

a � d � c � b 28 34 c � d � b � a 40 45

b � a � c � d 15 15 d � a � b � c 38 40

b � a � d � c 19 19 d � a � c � b 39 42

b � c � a � d 17 21 d � b � a � c 39 42

b � c � d � a 30 31 d � b � c � a 41 45

b � d � a � c 29 29 d � c � a � b 41 46

b � d � c � a 33 35 d � c � b � a 41 48

Table 10.2: Cost of a closest profile of rankings with a monotone scorix (Cost

S) and with a recursively monotone scorix (Cost RS) w.r.t. each possible

ranking on C .

As expected due to Theorem 5.13, the cost of imposing monotonicity on the scorix is

always lower than or equal to the cost of imposing recursive monotonicity on the scorix.

Nevertheless, the fact that the cost of imposing monotonicity on the scorix w.r.t. a ranking

� is lower than the cost of imposing recursive monotonicity on the scorix w.r.t. another

ranking �′ does not imply that the cost of imposing recursive monotonicity on the scorix

w.r.t. � is lower than the cost of imposing monotonicity w.r.t. �′. For instance, the cost

of imposing monotonicity on the scorix w.r.t. the ranking c � b � a � d (18) is lower than

the cost of imposing monotonicity on the scorix w.r.t. the ranking a � b � d � c (20);

nevertheless, the cost of imposing recursive monotonicity on the scorix w.r.t. the ranking

c � b � a � d (23) is greater than the cost of imposing recursive monotonicity on the

scorix w.r.t. the ranking a � b � d � c (21).
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In Table 10.3, a closest profile of rankings with a monotone scorix (left) w.r.t. the ranking

a � b � c � d and a closest profile of rankings with a recursively monotone scorix (right)

w.r.t. the ranking a � b � c � d are shown.

# �i Rankings on C # �i Rankings on C

18 a � b � c � d 16 a � b � c � d

2 b � a � c � d 3 b � a � c � d

2 b � d � a � c 2 a � b � d � c

2 c � d � b � a 2 c � a � d � b

2 d � c � a � b 1 b � c � d � a

1 b � c � a � d 1 b � d � c � a

1 c � a � b � d 1 c � b � d � a

1 c � a � d � b 1 c � d � a � b

1 d � a � b � c 1 d � a � b � c

1 d � c � b � a 1 d � a � c � b

1 d � b � a � c

1 d � c � b � a

Table 10.3: Closest profile of rankings with a monotone scorix (left) and with

a recursively monotone scorix (right) w.r.t. the ranking a � b � c � d.

The scorix induced by the closest profile of rankings with a recursively monotone scorix

listed in Table 10.3 is the following:

S ′ =


18 7 2 4

5 20 2 4

4 2 21 4

4 2 6 19

 .

We easily see that S ′ is monotone w.r.t. the ranking a � b � c � d. The four sub-scorices

associated with the restriction of the profile of rankings to a subset of the set of candidates

of cardinality three are the following:

Sabc =

20 7 4

6 21 4

5 3 23

 ,
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which is monotone w.r.t. a � b � c;

Sabd =

20 6 5

6 20 5

5 5 21

 ,

which is monotone w.r.t. a � b � d;

Sacd =

21 5 5

5 21 5

5 5 21

 ,

which is monotone w.r.t. a � c � d; and

Sbcd =

23 3 5

4 22 5

4 6 21

 ,

which is monotone w.r.t. b � c � d.

In order to prove the monotonicity of the six sub-scorices associated with the restriction

of the profile of rankings to a subset of the set of candidates of cardinality two, it suffices

to see that a � b � c � d is a weak Condorcet ranking (Lemma 5.11). The votrix induced

by the closest profile of rankings with a recursively monotone scorix listed in Table 10.3 is

the following:

V ′ =


0 23 24 23

8 0 25 24

7 6 0 24

8 7 7 0

 .

As a � b � c � d is a ranking such that every candidate is preferred by not less than half of

the voters to all the candidates ranked at a worse position, we conclude that a � b � c � d

is a weak Condorcet ranking. Therefore, the six sub-scorices associated with the restriction

of the profile of rankings to a subset of the set of candidates of cardinality two are monotone.

We conclude that S ′ is recursively monotone1 w.r.t. a � b � c � d.

The votrix induced by the profile of rankings given by the voters is:

V =


0 18 20 21

13 0 24 24

11 7 0 26

10 7 5 0

 .

1S′ actually is strictly recursively monotone w.r.t. a � b � c � d.
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We see that V is not monotone w.r.t. any ranking on the set of candidates due to the fact

that a � b � c � d is the Condorcet ranking but, at the same time, Vad = 21 < 24 = Vbd.

The relation mC is given by:

mC = {(a, d), (b, d), (c, d)} .

Evidently, mC is given by:

mC = {(a, a), (a, d), (b, b), (b, d), (c, c), (c, d), (d, d)} .

Figure 10.3 displays the Hasse diagram of the order relation mC .

•a

•d

• c• b

Figure 10.3: Hasse diagram of the order relation mC .

Note that the pairwisely undominated set is here given by UC = {a, b, c}. Applying the

Borda-like social choice function introduced at the end of Chapter 9, the scores associated

with each candidate are the following:

s(a) = 9 ,

s(b) = 5 ,

s(c) = 16 ,

s(d) = 36 .

Therefore, candidate b is the winning candidate according to the search for a pairwise

winner.

The votex induced by the profile of rankings given by the voters is:

W : C 2
6= −→ {0, . . . , 31}6 W : C 2

6= −→ {0, . . . , 31}6

W (a, b) = (2, 3, 8, 18, 0, 0) W (b, c) = (0, 3, 4, 21, 3, 0)

W (a, c) = (4, 4, 3, 2, 18, 0) W (b, d) = (0, 3, 4, 2, 19, 3)

W (a, d) = (4, 4, 2, 1, 2, 18) W (c, d) = (0, 1, 4, 24, 2, 0)
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As the votrix is not monotone w.r.t. any ranking on the set of candidates, we conclude

that the votex induced by the profile of rankings given by the voters is not monotone w.r.t.

any ranking either (see Theorem 5.23).

In Table 10.4, the costs of imposing monotonicity on the votrix and on the votex w.r.t.

each possible ranking are listed. We conclude that b � a � c � d is the ranking w.r.t.

which the closest profile of rankings with a monotone votrix leads to the lowest cost (8),

while a � b � c � d is the ranking w.r.t. which the closest profile of rankings with a

monotone votex leads to the lowest cost (16). As expected due to Theorem 5.23, the cost

of imposing monotonicity on the votrix is always lower than or equal to the cost of imposing

monotonicity on the votex. Nevertheless, the ranking leading to the lowest cost does not

need to coincide for both the search for monotonicity of the votrix and of the votex, as can

be seen in this example. Note that both a � b � c � d and b � a � c � d linearly extend

the strict partial order relation given by mC .

Ranking Cost V Cost W Ranking Cost V Cost W

a � b � c � d 9 16 c � a � b � d 19 33

a � b � d � c 18 26 c � a � d � b 36 41

a � c � b � d 16 25 c � b � a � d 17 29

a � c � d � b 31 36 c � b � d � a 41 41

a � d � b � c 31 39 c � d � a � b 41 46

a � d � c � b 32 40 c � d � b � a 42 47

b � a � c � d 8 21 d � a � b � c 36 45

b � a � d � c 15 30 d � a � c � b 41 46

b � c � a � d 18 29 d � b � a � c 37 46

b � c � d � a 32 37 d � b � c � a 42 48

b � d � a � c 32 39 d � c � a � b 42 48

b � d � c � a 33 41 d � c � b � a 43 48

Table 10.4: Cost of a closest profile of rankings with a monotone votrix (Cost

V) and with a monotone votex (Cost W) w.r.t. each possible ranking on C .

In Table 10.5, a closest profile of rankings with a monotone votrix (left) w.r.t. the ranking

b � a � c � d and a closest profile of rankings with a monotone votex (right) w.r.t. the

ranking a � b � c � d are shown.
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# �i Rankings on C # �i Rankings on C

11 a � b � c � d 17 a � b � c � d

5 b � a � c � d 2 b � a � c � d

4 a � b � d � c 1 a � b � d � c

3 c � d � b � a 1 a � c � b � d

3 d � c � b � a 1 a � d � c � b

2 b � d � c � a 1 b � c � a � d

1 b � c � a � d 1 b � c � d � a

1 c � b � d � a 1 b � d � a � c

1 d � b � c � a 1 c � a � b � d

1 c � a � d � b

1 c � d � b � a

1 d � a � c � b

1 d � b � a � c

1 d � c � b � a

Table 10.5: Closest profile of rankings with a monotone votrix (left) w.r.t. the

ranking b � a � c � d and with a monotone votex (right) w.r.t. the ranking

a � b � c � d.

The votrix associated with the closest profile of rankings with a monotone votrix listed in

Table 10.5 is the following:

V ′ =


0 15 20 21

16 0 24 24

11 7 0 21

10 7 10 0

 .

We easily see that V ′ is monotone w.r.t. the ranking b � a � c � d.

Analogously, the votex associated with the closest profile of rankings with a monotone

votex listed in Table 10.5 is the following:

W ′ : C 2
6= −→ {0, . . . , 31}6 W ′ : C 2

6= −→ {0, . . . , 31}6

W (a, b) = (1, 2, 5, 19, 3, 1) W (b, c) = (1, 2, 4, 19, 4, 1)

W (a, c) = (1, 2, 3, 6, 18, 1) W (b, d) = (1, 2, 3, 4, 18, 3)

W (a, d) = (1, 2, 3, 3, 4, 18) W (c, d) = (1, 2, 3, 21, 3, 1)

We easily see that W ′ is monotone w.r.t. the ranking a � b � c � d.
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Figure 10.4 displays the given profile of rankings represented on the diagram of w≥ (where

� represents the ranking a � b � c � d). Note that the profile of rankings is not monotone

w.r.t. the ranking a � b � c � d. As a � b � c � d is the most frequent ranking, the

profile of rankings cannot be monotone w.r.t. any other ranking on the set of candidates.

Nevertheless, although there are some violations of monotonicity, the cost of imposing

monotonicity w.r.t. the ranking a � b � c � d should be ‘low’.

18× abcd

2× bacd 0× acbd 0× abdc

1× bcad 0× cabd 0× badc 0× acdb 0× adbc

0× cbad 1× bcda 0× bdac 0× cadb 0× adcb 0× dabc

1× cbda 1× bdca 0× cdab 0× dbac 0× dacb

3× cdba 1× dbca 0× dcab

3× dcba

Figure 10.4: Frequencies of Table 10.1 represented on the Hasse diagram of

the order relation w≥ for the ranking a � b � c � d.

In Table 10.6, the costs of imposing monotonicity on the profile w.r.t. each possible ranking

are listed. We conclude that a � b � c � d is the ranking w.r.t. which the closest monotone

profile of rankings leads to the lowest cost (19).

Figure 10.5 displays the closest monotone profile of rankings w.r.t. the ranking a � b �
c � d represented on the diagram of w≥ (where � represents the ranking a � b � c � d).

As it is decreasing on the diagram, we clearly see that this profile of rankings is monotone

w.r.t. the ranking a � b � c � d.
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Ranking Cost Ranking Cost Ranking Cost Ranking Cost

a � b � c � d 19 b � a � c � d 20 c � a � b � d 26 d � a � b � c 38

a � b � d � c 29 b � a � d � c 28 c � a � d � b 35 d � a � c � b 45

a � c � b � d 25 b � c � a � d 24 c � b � a � d 30 d � b � a � c 42

a � c � d � b 32 b � c � d � a 30 c � b � d � a 35 d � b � c � a 44

a � d � b � c 36 b � d � a � c 33 c � d � a � b 40 d � c � a � b 49

a � d � c � b 41 b � d � c � a 37 c � d � b � a 43 d � c � b � a 52

Table 10.6: Cost of a closest monotone profile of rankings w.r.t. each possible

ranking on C .

16× abcd

1× bacd 1× acbd 1× abdc

1× bcad 1× cabd 1× badc 1× acdb 0× adbc

1× cbad 1× bcda 1× bdac 1× cadb 0× adcb 0× dabc

1× cbda 1× bdca 1× cdab 0× dbac 0× dacb

1× cdba 0× dbca 0× dcab

0× dcba

Figure 10.5: Frequencies of the closest monotone profile of rankings w.r.t. a �
b � c � d represented on the Hasse diagram of the order relation w≥.

The last analysis for the Lar rangeland problem is linked to the search for a Condorcet

ranking, acclamation and unanimity. As previously discussed, the ranking a � b � c � d

is the Condorcet ranking for the profile of rankings given by the voters. Obviously, the
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ranking that leads to the lowest cost (zero) when searching for a Condorcet ranking is the

ranking a � b � c � d. Under the existence of a Condorcet ranking, the ranking that leads

to the lowest cost (53) when searching for unanimity (which is the winner according to the

method of Kemeny) always coincides with this Condorcet ranking. It remains to identify

the ranking that leads to the lowest cost when searching for acclamation.

In Table 10.7, the costs associated with the search for a Condorcet ranking, acclamation

and unanimity w.r.t. each possible ranking are listed. We conclude that a � b � c � d is

the ranking that leads to the lowest cost in all three cases.

Ranking Cost C Cost A Cost U Ranking Cost C Cost A Cost U

a � b � c � d 0 22 53 c � a � b � d 14 34 79

a � b � d � c 11 31 74 c � a � d � b 23 41 96

a � c � b � d 9 28 70 c � b � a � d 17 32 84

a � c � d � b 18 40 87 c � b � d � a 23 44 95

a � d � b � c 20 41 91 c � d � a � b 29 49 107

a � d � c � b 29 43 108 c � d � b � a 32 50 112

b � a � c � d 3 25 58 d � a � b � c 26 48 102

b � a � d � c 14 32 79 d � a � c � b 35 49 119

b � c � a � d 8 31 67 d � b � a � c 29 49 107

b � c � d � a 14 40 78 d � b � c � a 34 53 116

b � d � a � c 20 42 90 d � c � a � b 40 52 128

b � d � c � a 25 44 99 d � c � b � a 43 54 133

Table 10.7: Cost of a closest profile with a Condorcet ranking (Cost C), a

closest acclaimed profile (Cost A) and a closest unanimous profile (Cost U)

w.r.t. each possible ranking on C .

As expected due to Theorem 5.32, the cost associated with the search for a Condorcet rank-

ing is always lower than or equal to the cost associated with the search for acclamation.

As also expected due to Theorem 5.32, the cost associated with the search for acclamation

is always lower than or equal to the cost associated with the search for unanimity. Never-

theless, as discussed in Chapter 7, the ranking leading to the lowest cost does not need to

coincide for the three searches, although this is the case in this example.

We conclude this section by analysing the optimal ranking w.r.t. the search for each of

the considered consensus states. Note that, as listed in Table 10.8, the optimal ranking
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according to the search for all consensus states - but monotonicity of the votrix - is the

ranking a � b � c � d. Note that the optimal ranking according to the search for

monotonicity of the votrix is the ranking b � a � c � d.

Search for Optimal ranking Search for Optimal ranking

Monotone scorix a � b � c � d Rec. monotone scorix a � b � c � d

Monotone votrix b � a � c � d Monotone votex a � b � c � d

Monotone profile a � b � c � d Condorcet ranking a � b � c � d

Acclamation a � b � c � d Unanimity a � b � c � d

Table 10.8: Optimal ranking w.r.t. the search for all the considered consensus

states.

From the results of this case study it follows that the ranking a � b � c � d seems to be

the most natural ranking of the four plans proposed for the Lar rangeland. After all, it is

the optimal ranking according to the search for seven out of eight consensus states and it

is only one unit of cost away from being optimal according to the other one.

For this case study, there does not exist a unanimous winner. A quasipositional winner, a

positional winner or a pairwise winner does not exist either. However, the majority winner,

the Condorcet winner and the Borda winner exist. Candidate a is both the majority winner

and the Condorcet winner, while candidate b is the Borda winner.

10.1.2 Allowing for ties

For the four available plans in the Lar rangeland problem, some representatives of the

stakeholder groups considered that, sometimes, two or more plans were almost equally

suitable for the management of the rangeland. In order to prevent them from taking an

arbitrary decision when ranking the plans, the representatives of the stakeholder groups

were also asked to provide rankings with ties whenever they considered one candidate was

as equally suitable as another candidate. This profile of rankings with ties is listed in

Table 10.9.

At this point, the goal is to look for the set of (weak/total)-optimal rankings. In Ta-

ble 10.10, the cost associated to a closest profile of rankings and to a closest profile of
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# %i Ranking with ties # %i Ranking with ties

7 a � b � c � d 6 a ∼ b ∼ c ∼ d

3 a � b � c ∼ d 3 a � b ∼ c ∼ d

3 a ∼ b � c � d 2 c ∼ d � a ∼ b

1 a ∼ b � c ∼ d 1 c � a ∼ b ∼ d

1 c � d � a ∼ b 1 b � a � c � d

1 d � c � b � a 1 d � a ∼ b ∼ c

1 b � c � a ∼ d

Table 10.9: Expressed rankings with ties and their frequency for the Wildlife

Diversity Criterion in the Lar rangeland decision problem.

rankings with ties with a monotone representation of votes w.r.t. each possible ranking

and its associated cost are listed.

As expected due to Proposition 8.40, the cost associated to a closest profile of rankings

with ties with a monotone weak-scorix/votrix/votex is always lower than or equal to the

cost of a closest profile of rankings with a monotone scorix/votrix/votex. Furthermore, as

monotonicity of the votex implies monotonicity of the votrix [124], the cost associated to

the (weak-)votrix is always lower than or equal to the cost associated to the (weak-)votex.

We conclude that the ranking a � b � c � d clearly is the weak-optimal ranking considering

either the monotonicity of the scorix, votrix or votex. Nevertheless, we see that, although it

still is the total-optimal ranking considering either the monotonicity of the scorix, votrix or

votex, there are also other total-optimal rankings. This is due to the fact that the minimum

cost of changing the given profile of rankings with ties into an arbitrary profile of rankings

(without ties) equals 32.5. In that way, we impose, with a minimum cost, monotonicity on

the scorix w.r.t. the rankings a � b � c � d, a � b � d � c and a � c � b � d and on the

votrix w.r.t. the rankings a � b � c � d, a � b � d � c, b � a � c � d and b � a � d � c.

This is caused due to the six appearances of the ranking with ties a ∼ b ∼ c ∼ d in the

profile of rankings with ties given by the experts.

In Table 10.11, the cost associated to a closest ∗-monotone2 profile of rankings with ties

w.r.t. each possible ranking and its associated cost are listed. We note that the compar-

2The notation ∗-monotone is a shorthand for referring to any of w≥-monotone, w≥O↑-monotone, w≥O↓-

monotone, w≥O-monotone, w≥S↑-monotone, w≥S↓-monotone or w≥S-monotone.
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Ranking Cost WS Cost TS Cost WV Cost TV Cost WW Cost TW

a � b � c � d 1.5 32.5 3.5 32.5 9 32.5

a � b � d � c 7 32.5 7.5 32.5 14 34.5

a � c � b � d 7.5 32.5 10.5 33.5 17.5 36.5

a � c � d � b 16.5 34.5 19.5 34.5 23.5 41.5

a � d � b � c 17 35.5 21 33.5 25 41.5

a � d � c � b 17 36.5 20 34.5 25 43.5

b � a � c � d 8 33.5 8.5 32.5 14 34.5

b � a � d � c 13.5 33.5 13.5 32.5 19.5 35.5

b � c � a � d 16.5 37.5 20 35.5 24.5 41.5

b � c � d � a 27 41.5 29 38.5 32.5 48.5

b � d � a � c 25.5 39.5 29 36.5 32 45.5

b � d � c � a 27.5 43.5 29 38.5 33 48.5

c � a � b � d 16 35.5 18.5 36.5 23 41.5

c � a � d � b 24.5 39.5 25.5 39.5 29 46.5

c � b � a � d 16.5 37.5 18.5 36.5 24 43.5

c � b � d � a 29 42.5 34.5 39.5 34.5 50.5

c � d � a � b 29.5 43.5 34.5 40.5 35.5 51.5

c � d � b � a 29.5 44.5 34.5 40.5 35.5 52.5

d � a � b � c 27 40.5 29.5 37.5 33 47.5

d � a � c � b 29 43.5 34.5 39.5 34.5 50.5

d � b � a � c 27.5 42.5 29.5 37.5 34 48.5

d � b � c � a 29.5 46.5 34.5 39.5 37 53.5

d � c � a � b 29.5 45.5 34.5 40.5 35.5 52.5

d � c � b � a 29.5 46.5 34.5 40.5 36.5 53.5

Table 10.10: Cost of a closest profile of rankings (with ties) with a monotone

weak-scorix (Cost WS), with a monotone scorix (Cost TS), with a monotone

weak-votrix (Cost WV), with a monotone votrix (Cost V), with a monotone

weak-votex (Cost WW) and with a monotone votex (Cost TW) w.r.t. each

possible ranking on C .

ison of costs in different columns respects the relations between different order relations

illustrated in Figure 8.13.
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Ranking Cost w≥ Cost w≥O↑ Cost w≥O↓ Cost w≥O Cost w≥S↑ Cost w≥S↓ Cost w≥S

a � b � c � d 25.5 8.5 22.5 8.5 5.5 21.5 5.5

a � b � d � c 32.5 14 29.5 14 11.5 29 11

a � c � b � d 29 10.5 27.5 10.5 9.5 25.5 9.5

a � c � d � b 29.5 13.5 29.5 13.5 7 26 7

a � d � b � c 36 19 32.5 19 11.5 31.5 11

a � d � c � b 34.5 16 33 16 12.5 32 12.5

b � a � c � d 30.5 11.5 28 11.5 10.5 26.5 10.5

b � a � d � c 36.5 17 32.5 17 13 32 13

b � c � a � d 34 17.5 31.5 17.5 11 29.5 11

b � c � d � a 37.5 16.5 36.5 16.5 9.5 32 9.5

b � d � a � c 37.5 21 35 21 16.5 34 16.5

b � d � c � a 42.5 17.5 41.5 17.5 14.5 37.5 14.5

c � a � b � d 32 13 30.5 13 7.5 29 7.5

c � a � d � b 36.5 22 34 22 13.5 33 13.5

c � b � a � d 35 15 33.5 15 11.5 32 11.5

c � b � d � a 41.5 25.5 40 25.5 23.5 36.5 23.5

c � d � a � b 39.5 27 38 27 19.5 37.5 19

c � d � b � a 49.5 30 46 30 23.5 41 23.5

d � a � b � c 40 16 37 16 8 34.5 8

d � a � c � b 42.5 25 40 25 23.5 38.5 23.5

d � b � a � c 41.5 17.5 40 17.5 12 38 12

d � b � c � a 50 35.5 48 35 34 44 33

d � c � a � b 50 30 47 30 23.5 43 23.5

d � c � b � a 61 36.5 51 36.5 34.5 49 34.5

Table 10.11: Cost of a closest ∗-monotone profile of rankings with ties w.r.t.

each possible ranking on C .

We conclude that the ranking a � b � c � d is the ranking that is the closest to imposing

all types of ∗-monotonicity.
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10.2 Orange harvest in Argentina

In this section, the proposed methodology is illustrated on a decision making problem

concerning the orange harvest in the Argentinian province of Corrientes. The farmers

of this province have four different methods (from now on referred to as candidates and

denoted by a, b, c and d) to estimate the production of an orange tree based on, among

other factors, the amount of fallen pieces of fruit and the volume of its crown. Although

the original number of orange trees in the considered orchards equals 2462, as part of a

preliminary process of data cleaning, trees with a missing value for at least one of the

methods were disregarded, yielding estimates for 1565 trees for further analysis.

In order to reduce the cost associated with the estimation, all these factors are measured

inaccurately, leading to estimates with a varying degree of error. A quick glance at the

data shows that the average production of each tree equals 586.51, while the average

estimation error embarrassingly equals 378.79. The number of outliers is overwhelming.

Rather than being the exception, they may be considered the standard. This issue hinders

the ranking of the methods by means of techniques based on the analysis of the estimation

errors. Therefore, the farmers tend to disregard the value of the estimates and exclusively

consider the ordinal part of the data.

After the harvest, farmers ranked the four considered methods according to how accurate

they were estimating the production of each tree. The final goal is to rank the four methods

according to their accuracy for estimating the production of the local orange trees in order

to decide what method should be used during the next harvest season. In that way, we do

not consider here a voting problem where each voter expresses his/her personal preferences

on the set of candidates, but an identification problem where the goal is to recognize the

unknown true ranking on the set of candidates. For more details, we refer to [45].

In Table 10.12, the expressed r = 1565 rankings and their frequency are provided. Note

that the profile of rankings is not monotone w.r.t. any ranking on the set of candidates.

It should be remarked that the most frequent ranking in the profile is the ranking c � d �
b � a. However, as the profile of rankings is not monotone w.r.t. any ranking on the set

of candidates, the optimal ranking could differ from the most frequent ranking. It should

also be remarked that, as we observe from the low values of the first column and the two

first rows of Table 10.12, method a clearly is less accurate than the other three methods.
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Ranking Freq. Ranking Freq. Ranking Freq. Ranking Freq.

a � b � c � d 3 b � a � c � d 8 c � a � b � d 10 d � a � b � c 6

a � b � d � c 2 b � a � d � c 11 c � a � d � b 17 d � a � c � b 12

a � c � b � d 1 b � c � a � d 76 c � b � a � d 98 d � b � a � c 71

a � c � d � b 0 b � c � d � a 135 c � b � d � a 165 d � b � c � a 148

a � d � b � c 1 b � d � a � c 60 c � d � a � b 113 d � c � a � b 111

a � d � c � b 0 b � d � c � a 134 c � d � b � a 204 d � c � b � a 179

Table 10.12: Expressed rankings and their frequency for the orange harvest

problem in the Argentinian province of Corrientes.

The scorix induced by the profile of rankings given by the voters is:

S =


7 64 529 965

424 487 401 253

607 502 305 151

527 512 330 196

 .

We easily see that S is monotone w.r.t. the ranking c � d � b � a. Actually, S is

recursively monotone w.r.t. c � d � b � a.

The relation mB is given by:

mB = {(b, a), (c, a), (c, b), (c, d), (d, a), (d, b)} .

Actually, mB is the ranking c � d � b � a. This result follows from the fact that the

scorix is monotone w.r.t. the ranking c � d � b � a. We conclude that candidate c is the

quasipositional winner.

Evidently, mB is given by:

mB = {(a, a), (b, a), (b, b), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b), (d, d)} .

Figure 10.6 displays the Hasse diagram of the order relation mB. Note that the quasiposi-

tionally undominated set is here given by UB = {c}.

Similarly, the relation mR is given by:

mR = {(b, a), (c, a), (c, b), (c, d), (d, a), (d, b)} .
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•a

•d

•c

•b

Figure 10.6: Hasse diagram of the order relation mB.

Actually, mR is the ranking c � d � b � a. This result follows from the fact that the scorix

is recursively monotone w.r.t. the ranking c � d � b � a. We conclude that candidate c is

the positional winner.

Evidently, mR is given by:

mR = {(a, a), (b, a), (b, b), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b), (d, d)} .

Figure 10.7 displays the Hasse diagram of the order relation mR. Note that the positionally

undominated set is here given by UR = {c}.

•a

•d

•c

•b

Figure 10.7: Hasse diagram of the order relation mR.

In Table 10.13, the costs of imposing monotonicity and recursive monotonicity on the scorix

w.r.t. each possible ranking are listed. Obviously, as the scorix is already monotone w.r.t.

this ranking, we conclude that c � d � b � a is the ranking w.r.t. which the closest profile

of rankings with a (recursively) monotone scorix leads to the lowest cost (zero).

Note that, as expected due to Theorem 5.13, the cost of imposing monotonicity on the

scorix is always lower than or equal to the cost of imposing recursive monotonicity on the

scorix. We also note that all rankings where candidate a is not ranked at the last position

lead to a really big cost.
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Ranking Cost S Cost RS Ranking Cost S Cost RS

a � b � c � d 1671 1925 c � a � b � d 1457 1702

a � b � d � c 1671 1928 c � a � d � b 1457 1582

a � c � b � d 1671 1878 c � b � a � d 1375 1399

a � c � d � b 1671 1777 c � b � d � a 151 151

a � d � b � c 1671 1926 c � d � a � b 1185 1185

a � d � c � b 1671 1845 c � d � b � a 0 0

b � a � c � d 1605 1889 d � a � b � c 1525 1845

b � a � d � c 1605 1925 d � a � c � b 1525 1690

b � c � a � d 1410 1523 d � b � a � c 1492 1531

b � c � d � a 283 313 d � b � c � a 262 288

b � d � a � c 1508 1605 d � c � a � b 1195 1239

b � d � c � a 283 356 d � c � b � a 104 105

Table 10.13: Cost of a closest profile of rankings with a monotone scorix

(Cost S) and with a recursively monotone scorix (Cost RS) w.r.t. each possible

ranking on C .

The votrix induced by the profile of rankings given by the voters is:

V =


0 276 175 227

1289 0 655 703

1390 910 0 830

1338 862 735 0

 .

We see that V is monotone w.r.t. the ranking c � d � b � a.

The relation mC is given by:

mC = {(b, a), (c, a), (c, b), (c, d), (d, a), (d, b)} .

Actually, mC is the ranking c � d � b � a. This result follows from the fact that the

votrix is monotone w.r.t. the ranking c � d � b � a. We conclude that candidate c is the

pairwise winner.

Evidently, mC is given by:

mC = {(a, a), (b, a), (b, b), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b), (d, d)} .
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•a

•d

•c

•b

Figure 10.8: Hasse diagram of the order relation mC .

Figure 10.8 displays the Hasse diagram of the order relation mC .

Note that the pairwisely undominated set is here given by UC = {c}.

The votex induced by the profile of rankings given by the voters is:

W : C 2
6= −→ {0, . . . , 1565}6

W (a, b) = (269, 449, 571, 245, 31, 0)

W (a, c) = (369, 525, 496, 152, 20, 3)

W (a, d) = (327, 520, 491, 203, 20, 4)

W (b, c) = (130, 325, 455, 369, 215, 71)

W (b, d) = (123, 298, 441, 372, 247, 84)

W (c, d) = (77, 221, 437, 463, 259, 108)

Although the votrix is monotone w.r.t. the ranking c � d � b � a, the votex is not

monotone w.r.t. any ranking. Note that the votex is not monotone w.r.t. the ranking

c � d � b � a since candidate b is never ranked at the last position at the same time that

a is ranked at the first position, but candidate c is ranked three times at the last position

at the same time that a is ranked at the first position. As the votrix is only monotone

w.r.t. the ranking c � d � b � a, the votex cannot be monotone w.r.t. any other ranking

on the set of candidates (see Theorem 5.23).

In Table 10.14, the costs of imposing monotonicity on the votrix and on the votex w.r.t.

each possible ranking are listed. Note that, as expected due to Theorem 5.23, the cost

of imposing monotonicity on the votrix is always lower than or equal to the cost of im-

posing monotonicity on the votex. We conclude that c � d � b � a is the ranking w.r.t.

which the closest profile of rankings with a monotone votrix/votex leads to the lowest cost

(zero/three).
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Ranking Cost V Cost W Ranking Cost V Cost W

a � b � c � d 1926 1927 c � a � b � d 1703 1703

a � b � d � c 1927 1928 c � a � d � b 1702 1702

a � c � b � d 1925 1925 c � b � a � d 1702 1702

a � c � d � b 1845 1845 c � b � d � a 209 211

a � d � b � c 1926 1927 c � d � a � b 1463 1463

a � d � c � b 1846 1846 c � d � b � a 0 3

b � a � c � d 1925 1926 d � a � b � c 1846 1846

b � a � d � c 1926 1927 d � a � c � b 1845 1845

b � c � a � d 1830 1830 d � b � a � c 1845 1845

b � c � d � a 356 356 d � b � c � a 356 356

b � d � a � c 1925 1925 d � c � a � b 1511 1511

b � d � c � a 357 357 d � c � b � a 148 148

Table 10.14: Cost of a closest profile of rankings with a monotone votrix

(Cost V) and with a monotone votex (Cost W) w.r.t. each possible ranking

on C .

Figure 10.9 displays the given profile of rankings represented on the diagram of w≥ (where

� represents the ranking c � d � b � a). Note that the profile of rankings is not monotone

w.r.t. the ranking c � d � b � a. As c � d � b � a is the most frequent ranking, the

profile of rankings cannot be monotone w.r.t. any other ranking on the set of candidates.

Nevertheless, although there are some violations of monotonicity, the cost of imposing

monotonicity w.r.t. the ranking c � d � b � a should be ‘low’.

In Table 10.15, the costs of imposing monotonicity on the profile w.r.t. each possible ranking

are listed. We conclude that c � d � b � a is the ranking w.r.t. which the closest monotone

profile of rankings leads to the lowest cost (five).

The last analysis for the orange harvest problem is linked to the search for a Condorcet

ranking, acclamation and unanimity. As the votrix induced by the profile of rankings given

by the voters is monotone w.r.t. the ranking c � d � b � a, the ranking c � d � b � a

is the Condorcet ranking for the profile of rankings given by the voters. Obviously, the

ranking that leads to the lowest cost (zero) when searching for a Condorcet ranking is the

ranking c � d � b � a. Under the existence of a Condorcet ranking, the ranking that leads

to the lowest cost (2771) when searching for unanimity (which is the winner according
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204× cdba

179× dcba 165× cbda 113× cdab

148× dbca 135× bcda 111× dcab 98× cbad 17× cadb

134× bdca 71× dbac 12× dacb 76× bcad 10× cabd 0× acdb

60× bdac 6× dabc 8× bacd 0× adcb 1× acbd

11× badc 1× adbc 3× abcd

2× abdc

Figure 10.9: Frequencies of Table 10.12 represented on the Hasse diagram of

the order relation w≥ for the ranking c � d � b � a.

Ranking Cost Ranking Cost Ranking Cost Ranking Cost

a � b � c � d 1883 b � a � c � d 1374 c � a � b � d 973 d � a � b � c 1216

a � b � d � c 1931 b � a � d � c 1424 c � a � d � b 891 d � a � c � b 1086

a � c � b � d 1712 b � c � a � d 669 c � b � a � d 593 d � b � a � c 788

a � c � d � b 1676 b � c � d � a 139 c � b � d � a 46 d � b � c � a 105

a � d � b � c 1852 b � d � a � c 840 c � d � a � b 341 d � c � a � b 367

a � d � c � b 1699 b � d � c � a 161 c � d � b � a 6 d � c � b � a 20

Table 10.15: Cost of a closest monotone profile of rankings w.r.t. each possible

ranking on C .

to the method of Kemeny) always coincides with this Condorcet ranking. It remains to

identify the ranking that leads to the lowest cost when searching for acclamation.
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In Table 10.16, the costs associated with the search for a Condorcet ranking, acclamation

and unanimity w.r.t. each possible ranking are listed. We conclude that c � d � b � a is

the ranking that leads to the lowest cost in all three cases.

Ranking Cost C Cost A Cost U Ranking Cost C Cost A Cost U

a � b � c � d 1879 1928 6524 c � a � b � d 1143 1703 5054

a � b � d � c 1927 1933 6619 c � a � d � b 1063 1702 4895

a � c � b � d 1751 1925 6269 c � b � a � d 636 1702 4041

a � c � d � b 1671 1845 6110 c � b � d � a 80 212 2930

a � d � b � c 1847 1932 6460 c � d � a � b 507 1463 3784

a � d � c � b 1719 1846 6205 c � d � b � a 0 6 2771

b � a � c � d 1372 1927 5511 d � a � b � c 1291 1846 5349

b � a � d � c 1420 1928 5606 d � a � c � b 1163 1845 5094

b � c � a � d 764 1830 4296 d � b � a � c 784 1845 4336

b � c � d � a 208 356 3185 d � b � c � a 176 356 3121

b � d � a � c 864 1925 4495 d � c � a � b 555 1511 3879

b � d � c � a 256 357 3280 d � c � b � a 48 148 2866

Table 10.16: Cost of a closest profile with a Condorcet ranking (Cost C), a

closest acclaimed profile (Cost A) and a closest unanimous profile (Cost U)

w.r.t. each possible ranking on C .

As expected due to Theorem 5.32, the cost associated with the search for a Condorcet rank-

ing is always lower than or equal to the cost associated with the search for acclamation.

As also expected due to Theorem 5.32, the cost associated with the search for acclamation

is always lower than or equal to the cost associated with the search for unanimity. Never-

theless, as discussed in Chapter 7, the ranking leading to the lowest cost does not need to

coincide for the three searches, although this is the case in this example.

We conclude this section by analysing the optimal ranking w.r.t. the search for each of

the considered consensus states. Note that, as listed in Table 10.17, the optimal ranking

according to the search for all consensus states is the ranking c � d � b � a.

From the results of this case study it follows that the ranking c � d � b � a clearly is the

most natural ranking of the four methods used by the farmers in Corrientes.
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Search for Optimal ranking Search for Optimal ranking

Monotone scorix c � d � b � a Rec. monotone scorix c � d � b � a

Monotone votrix c � d � b � a Monotone votex c � d � b � a

Monotone profile c � d � b � a Condorcet ranking c � d � b � a

Acclamation c � d � b � a Unanimity c � d � b � a

Table 10.17: Optimal ranking w.r.t. the search for all the considered consen-

sus states.

For this case study, there does not exist a unanimous winner, nor a majority winner.

However, candidate c is the quasipositional winner, the positional winner, the pairwise

winner, the Condorcet winner and the Borda winner.

10.3 Food spoilage in Belgium

In this section, we apply the methodology proposed in this dissertation to a dataset of an

acceptance test that measures the degree of freshness of samples of cod fish [87, 127]. At

the Laboratory of Food Microbiology and Food Preservation at Ghent University, r = 9

experts were asked to give their appreciation of the cod fish samples by ranking them, in

terms of perceived freshness based on their smell.

Four different samples of cod fish were considered. We denote by a the zero-days-old

sample, b the three-days-old sample, c the five-days-old sample and d the seven-days-old

sample. In Table 10.18, the expressed rankings and their frequency are provided.

# �i Rankings on C

4 a � b � c � d

2 a � b � d � c

1 a � c � b � d

1 d � b � a � c

1 d � c � b � a

Table 10.18: Expressed rankings and their frequency for the food spoilage

problem.
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Note that the problem considered in this section has a different nature than the problems

considered in the previous two sections. While the true ranking on the set of candidates is

totally unknown in the Lar rangeland and the orange harvest problem, here, the freshness

of each sample is known and, therefore, samples can actually be ranked according to the

known freshness.

The scorix induced by the profile of rankings given by the voters is:

S =


7 0 1 1

0 7 2 0

0 2 4 3

2 0 2 5

 .

We see that S is not (recursively) monotone w.r.t. any ranking on the set of candidates

due to the fact that the vector of positions of candidate b does not dominate the vector of

positions of candidate d (0 < 2) and, at the same time, the vector of positions of candidate

d does not dominate the vector of positions of candidate b (0 + 7 > 2 + 0).

The relation mB is given by:

mB = {(a, c), (a, d), (b, c)} .

Evidently, mB is given by:

mB = {(a, a), (a, c), (a, d), (b, b), (b, c), (c, c), (d, d)} .

Figure 10.10 displays the Hasse diagram of the order relation mB. Note that the quasipo-

sitionally undominated set is here given by UB = {a, b}.

•a

•d • c

• b

Figure 10.10: Hasse diagram of the order relation mB.

Similarly, the relation mR is given by:

mR = {(a, c), (a, d), (b, c)} .
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Evidently, mR is given by:

mR = {(a, a), (a, c), (a, d), (b, b), (b, c), (c, c), (d, d)} .

Figure 10.11 displays the Hasse diagram of the order relation mR. Note that the positionally

undominated set is here given by UR = {a, b}.

•a

•d • c

• b

Figure 10.11: Hasse diagram of the order relation mR.

In Table 10.19, the costs of imposing monotonicity and recursive monotonicity on the scorix

w.r.t. each possible ranking are listed. We conclude that both rankings a � b � c � d and

a � b � d � c are a ranking w.r.t. which the closest profile of rankings with a (recursively)

monotone scorix leads to the lowest cost (three). Of course, both rankings a � b � c � d

and a � b � c � d linearly extend the strict partial order relation given by mB.

Note that, as expected due to Theorem 5.13, the cost of imposing monotonicity on the

scorix is always lower than or equal to the cost of imposing recursive monotonicity on the

scorix.

The votrix induced by the profile of rankings given by the voters is:

V =


0 7 8 7

2 0 7 7

1 2 0 5

2 2 4 0

 .

We see that V is not monotone w.r.t. any ranking on the set of candidates. First, we note

that the ranking a � b � c � d is the Condorcet ranking. Therefore, the only ranking

on the set of candidates w.r.t. the votrix can be monotone is the ranking a � b � c � d.

Nevertheless, the number of voters preferring candidate a to candidate c (eight) is greater

than the number of voters preferring candidate a to candidate d (seven).

The relation mC is given by:

mC = {(a, b), (a, c), (a, d), (b, c), (b, d)} .
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Ranking Cost S Cost RS Ranking Cost S Cost RS

a � b � c � d 3 3 c � a � b � d 11 12

a � b � d � c 3 3 c � a � d � b 13 13

a � c � b � d 7 7 c � b � a � d 12 13

a � c � d � b 8 8 c � b � d � a 14 15

a � d � b � c 6 6 c � d � a � b 14 16

a � d � c � b 7 8 c � d � b � a 15 16

b � a � c � d 5 5 d � a � b � c 11 11

b � a � d � c 5 5 d � a � c � b 13 14

b � c � a � d 9 10 d � b � a � c 12 12

b � c � d � a 12 13 d � b � c � a 14 16

b � d � a � c 10 11 d � c � a � b 14 16

b � d � c � a 12 13 d � c � b � a 15 17

Table 10.19: Cost of a closest profile of rankings with a monotone scorix

(Cost S) and with a recursively monotone scorix (Cost RS) w.r.t. each possible

ranking on C .

We conclude that candidate a is the pairwise winner. Evidently, mC is given by:

mC = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (d, d)} .

Figure 10.12 displays the Hasse diagram of the order relation mC .

•a

•d • c

• b

Figure 10.12: Hasse diagram of the order relation mC .

Note that the pairwisely undominated set is here given by UC = {a}.

The votex induced by the profile of rankings given by the voters is:

W : C 2
6= −→ {0, . . . , 9}6 W : C 2

6= −→ {0, . . . , 9}6

W (a, b) = (0, 0, 2, 6, 1, 0) W (b, c) = (0, 0, 2, 4, 3, 0)

W (a, c) = (0, 1, 0, 2, 4, 2) W (b, d) = (0, 1, 1, 3, 4, 0)

W (a, d) = (1, 1, 0, 0, 2, 5) W (c, d) = (1, 0, 3, 4, 1, 0)
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As the votrix is not monotone w.r.t. any ranking on the set of candidates, we conclude

that the votex induced by the profile of rankings given by the voters is not monotone w.r.t.

any ranking either (see Theorem 5.23).

In Table 10.20, the costs of imposing monotonicity on the votrix and on the votex w.r.t.

each possible ranking are listed. Note that, as expected due to Theorem 5.23, the cost of

imposing monotonicity on the votrix is always lower than or equal to the cost of imposing

monotonicity on the votex. We conclude that both rankings a � b � c � d and a � b � d �
c are a ranking w.r.t. which the closest profile of rankings with a monotone votrix/votex

leads to the lowest cost (one/six). Note that both a � b � c � d and a � b � d � c

linearly extend the strict partial order relation given by mC .

Ranking Cost V Cost W Ranking Cost V Cost W

a � b � c � d 1 6 c � a � b � d 11 15

a � b � d � c 1 6 c � a � d � b 14 15

a � c � b � d 6 10 c � b � a � d 12 16

a � c � d � b 7 11 c � b � d � a 15 19

a � d � b � c 6 8 c � d � a � b 15 18

a � d � c � b 8 10 c � d � b � a 15 21

b � a � c � d 4 8 d � a � b � c 12 14

b � a � d � c 5 9 d � a � c � b 15 16

b � c � a � d 11 12 d � b � a � c 13 16

b � c � d � a 12 15 d � b � c � a 16 20

b � d � a � c 12 12 d � c � a � b 16 20

b � d � c � a 13 16 d � c � b � a 17 22

Table 10.20: Cost of a closest profile of rankings with a monotone votrix

(Cost V) and with a monotone votex (Cost W) w.r.t. each possible ranking

on C .

Figure 10.13 displays the given profile of rankings represented on the diagram of w≥ (where

� represents the ranking a � b � c � d). Note that the profile of rankings is not monotone

w.r.t. the ranking a � b � c � d. As a � b � c � d is the most frequent ranking, the

profile of rankings cannot be monotone w.r.t. any other ranking on the set of candidates.
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4× abcd

0× bacd 1× acbd 2× abdc

0× bcad 0× cabd 0× badc 0× acdb 0× adbc

0× cbad 0× bcda 0× bdac 0× cadb 0× adcb 0× dabc

0× cbda 0× bdca 0× cdab 1× dbac 0× dacb

0× cdba 0× dbca 0× dcab

1× dcba

Figure 10.13: Frequencies of Table 10.18 represented on the Hasse diagram

of the order relation w≥ for the ranking a � b � c � d.

In Table 10.21, the costs of imposing monotonicity on the profile w.r.t. each possible ranking

are listed. We conclude that a � b � c � d is the ranking w.r.t. which the closest monotone

profile of rankings leads to the lowest cost (five).

The last analysis for the orange harvest problem is linked to the search for a Condorcet

ranking, acclamation and unanimity. As previously discussed, the ranking a � b � c � d

is the Condorcet ranking for the profile of rankings given by the voters. Obviously, the

ranking that leads to the lowest cost (zero) when searching for a Condorcet ranking is the

ranking a � b � c � d. Under the existence of a Condorcet ranking, the ranking that leads

to the lowest cost (13) when searching for unanimity (which is the winner according to the

method of Kemeny) always coincides with this Condorcet ranking. It remains to identify

the ranking that leads to the lowest cost when searching for acclamation.
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Ranking Cost Ranking Cost Ranking Cost Ranking Cost

a � b � c � d 5 b � a � c � d 6 c � a � b � d 12 d � a � b � c 11

a � b � d � c 6 b � a � d � c 8 c � a � d � b 13 d � a � c � b 11

a � c � b � d 7 b � c � a � d 11 c � b � a � d 13 d � b � a � c 12

a � c � d � b 10 b � c � d � a 13 c � b � d � a 17 d � b � c � a 18

a � d � b � c 9 b � d � a � c 9 c � d � a � b 17 d � c � a � b 18

a � d � c � b 11 b � d � c � a 13 c � d � b � a 22 d � c � b � a 23

Table 10.21: Cost of a closest monotone profile of rankings w.r.t. each possible

ranking on C .

In Table 10.22, the costs associated with the search for a Condorcet ranking, acclamation

and unanimity w.r.t. each possible ranking are listed. We conclude that a � b � c � d is

the ranking that leads to the lowest cost in all three cases, but the ranking a � b � d � c

also leads to a lowest cost for the search for acclamation.

Ranking Cost C Cost A Cost U Ranking Cost C Cost A Cost U

a � b � c � d 0 6 13 c � a � b � d 7 17 25

a � b � d � c 1 6 14 c � a � d � b 10 18 30

a � c � b � d 3 10 18 c � b � a � d 10 18 30

a � c � d � b 6 12 23 c � b � d � a 13 21 35

a � d � b � c 4 10 19 c � d � a � b 13 21 35

a � d � c � b 7 12 24 c � d � b � a 16 26 40

b � a � c � d 3 8 18 d � a � b � c 7 14 24

b � a � d � c 4 9 19 d � a � c � b 10 17 29

b � c � a � d 7 13 25 d � b � a � c 10 17 29

b � c � d � a 10 16 30 d � b � c � a 14 22 36

b � d � a � c 7 14 24 d � c � a � b 14 22 36

b � d � c � a 11 17 31 d � c � b � a 17 27 41

Table 10.22: Cost of a closest profile with a Condorcet ranking (Cost C), a

closest acclaimed profile (Cost A) and a closest unanimous profile (Cost U)

w.r.t. each possible ranking on C .

As expected due to Theorem 5.32, the cost associated with the search for a Condorcet rank-

ing is always lower than or equal to the cost associated with the search for acclamation.
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As also expected due to Theorem 5.32, the cost associated with the search for acclama-

tion is always lower than or equal to the cost associated with the search for unanimity.

Nevertheless, as discussed in Chapter 7, the ranking leading to the lowest cost does not

need to coincide for the three searches. For intance, we see that the search for acclamation

leads to two optimal rankings, while the search for a Condorcet ranking and the search for

unanimity lead to a unique optimal ranking.

We conclude this section by analysing the optimal ranking w.r.t. the search for each of the

considered consensus states. As listed in Table 10.23, the ranking a � b � c � d is an

optimal ranking according to the search for all consensus states. Nevertheless, the ranking

a � b � d � c is also an optimal ranking for the search for most consensus states.

Search for Optimal ranking Search for Optimal ranking

Monotone scorix
a � b � c � d

Rec. monotone scorix
a � b � c � d

a � b � d � c a � b � d � c

Monotone votrix
a � b � c � d

Monotone votex
a � b � c � d

a � b � d � c a � b � d � c

Monotone profile a � b � c � d Condorcet ranking a � b � c � d

Acclamation
a � b � c � d

Unanimity a � b � c � d
a � b � d � c

Table 10.23: Optimal ranking w.r.t. the search for all the considered consen-

sus states.

From the results of this case study it follows that the ranking a � b � c � d is the

most natural ranking of the cod fish samples according to the perceived freshness. This

result was already expected due to the fact that a represents the zero-days-old sample,

b the three-days-old sample, c the five-days-old sample and d the seven-days-old sample.

Nevertheless, the fact that the ranking a � b � d � c is the optimal ranking according to

the search for five out of eight consensus states - and it is only one unit of cost away from

being optimal according the three other searches - may lead us to think that experts do

not easily identify the difference in freshness between samples c and d.

For this case study, there does not exist a unanimous winner. A quasipositional winner or

a positional winner does not exist either. However, candidate a is the pairwise winner, the

majority winner, the Condorcet winner and the Borda winner.



PART IV
EPILOGUE





CHAPTER 11

Conclusions and perspectives

The field of social choice dates back to the eighteenth century, when Borda and Condorcet

started an endless discussion about the use of either positional or pairwise information.

Three centuries later, after countless axiomatic characterizations of ranking rules, impos-

sibility theorems and many other study subjects that have called the attention of the

scientific community, researchers still debate whether positional information is really sen-

sitive to manipulation or pairwise information disregards the transitivity of the voters’

preferences. Three centuries have passed and the scholars of social choice theory are still

returning to the same old topics that led Borda and Condorcet to embark on more than

one dialectic battle.

This eternal comeback makes us wonder how such an easy, intuitive and natural property

as monotonicity - in the sense of this dissertation - has been disregarded through the years.

It is not until a couple of years ago that Rademaker and De Baets pointed out that, for

a ranking a � b � c to represent a group’s opinion, the number of voters preferring can-

didate a to candidate c should not be less than both the number of candidates preferring

candidate a to candidate b and the number of voters preferring candidate b to candidate

c. In particular, they proposed a ranking rule that amounts to finding the ranking that

is the closest to satisfying this natural property. The idea was undoubtedly revolution-

ary. Probably, Rademaker and De Baets did not know at the time that they just opened

Pandora’s box. Indeed, it resulted in the starting point of this PhD thesis and has led to

an overwhelming number of open problems, which certainly matches the number of closed

problems.
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This monotonicity property can be understood as a property of a particular representation

of votes, the voting matrix or votrix. In general, a representation of votes is a construct that

gathers the most important information given by the voters. Two representations of votes

are historically considered in the field of social choice theory: the votrix and the scorix.

One then wonders whether the notion of monotonicity can be translated to the scorix or

not. As discussed in the very first chapters of this dissertation, the answer is affirmative.

Monotonicity of the scorix can be understood as that, for a ranking a � b � c to represent

a group’s opinion, the positions at which candidate a is ranked should be better than both

the positions at which candidate b is ranked and the positions at which candidate c is

ranked; and, at the same time, the positions at which candidate b is ranked should be

better than the positions at which candidate c is ranked. Monotonicity of the scorix did

not result in such a revolutionary concept as monotonicity of the votrix, as several authors

already analysed this property in the context of scoring ranking rules. Nevertheless, the

search for monotonicity of the scorix did result in a novelty for social choice.

In general, the search for a property is a natural way of defining a ranking rule. Indeed, the

method of Kemeny searches for the ranking that is the closest to becoming unanimous in

the profile of rankings in terms of the Kendall distance function, the Borda count searches

for the candidate that is the closest to becoming the unanimous winner in terms of the

Kendall distance function, the plurality rule searches for the candidate that is the closest to

becoming the unanimous winner in terms of the zero-one distance function, the method of

Dodgson searches for the candidate that is the closest to becoming the Condorcet winner

in terms of the Kendall tau distance function, etc. The set of all profiles of rankings

satisfying certain property that obviously leads to a winning ranking (sometimes winning

candidate) is referred to as a consensus state. The characterization of ranking rules by the

minimization of the distance to a consensus state for some appropriate distance function

is known by the name of distance rationalisation of ranking rules or metric rationalisation

of ranking rules. However, as discussed in Chapter 3, we are not dealing with a notion

of closeness in the most geometrical sense. The axioms of symmetry and, specially, the

triangle inequality lack sense here. The role that the triangle inequality plays in giving

a real meaning to a distance function is replaced by the preservation of a substantial

betweenness relation. In that way, monometrics are introduced, leading to the monometric

rationalisation of ranking rules.

By means of these newly introduced monometrics, we can now address the search for

the best consensus state. But, what does ‘best’ mean here? Unanimity, as proposed by
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Kemeny, seems to be too restrictive. As unanimity tends not to hold in real-life elections,

the search for unanimity turns out to highly depend on the chosen monometric. In most of

the cases, just a change in the monometric may lead to a noteworthy change in the winning

ranking. On the other hand, the presence of a Condorcet ranking seems to be too loose.

As Saari explains in one of my favourite quotes in social choice: “the combination of the

pairwise vote with the Condorcet terms loses the crucial fact that voters have transitive

preferences. [...] An equally surprising assertion is that rather than being the standard,

the Condorcet winner must be held suspect”. Therefore, we need to find a consensus state

that is considerably broader than unanimity, but that, at the same time, still leads to a

consistent and undisputed winning ranking. Monotonicity comes again into play.

First, monotonicity of the scorix is proved to be a meeting point for all scoring ranking

rules. Second, monotonicity of the votrix is proved to be a meeting point for most ranking

rules based on pairwise information. Therefore, the intersection of both consensus states

(w.r.t. the same ranking) turns out to be a meeting point for most ranking rules. Many

other monotonicity-based consensus states are discussed in this dissertation. Recursive

monotonicity of the scorix turns out to be a meeting point between the Borda and the

Condorcet rankings. Monotonicity of the profile is linked to the real existence of a true

ranking on the set of candidates, linked to the philosophy advocated by Rousseau and

Condorcet where personal preferences are not considered and where we try to identify the

‘general will’. This phylosophy is clearly described by Arrow: “each individual has two

orderings, one which governs him in his everyday actions, and one which would be relevant

under some ideal conditions and which is in some sense truer than the first ordering. It

is the latter that is considered relevant to social choice, and it is assumed that there is

complete unanimity with regard to the truer individual ordering”. Monotonicity of other

representations of votes, such as the votex and the beatpath matrix, has also been anal-

ysed. Throughout this dissertation, we advocate that acclamation, which is defined as the

intersection of recursive monotonicity of the scorix, monotonicity of the votrix and mono-

tonicity of the profile (w.r.t. the same ranking), leads to an agreement of most ranking rules

and should be considered in the monometric rationalisation of ranking rules. Obviously,

acclamation is a much broader consensus state than unanimity and its consideration will

decrease the dependence of the ranking rule w.r.t. the chosen monometric.

The search for a consensus state is solved in this dissertation as an optimization problem,

in particular as a well-known type of Integer Linear Programming problem: a transporta-

tion problem. Undoubtedly, there is still a lot of work to be done here. Our proposed
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solution leads to an inconvenient factorial time complexity, which complicates the com-

putation of the optimization problem even for a moderately small number of candidates.

Although similar problems are proved to be NP-hard problems, there is still many room

for improvement here. Several approximations and pruning techniques have been proposed

for the search for unanimity and for a Condorcet ranking, considerably decreasing the com-

putational time. This suggests a clear future direction that will be addressed in the near

future.

Monotonicity of both the scorix and the votrix is a global property that leads to an obvious

winning ranking(s) on the set of candidates. In case either monotonicity of the scorix or

monotonicity of the votrix does not hold, instead of directly searching for this monotonicity,

we may be interested in analysing the underlying reasons why this monotonicity does not

hold. In that way, based on the same principles of (recursive) monotonicity of the scorix,

we can define a strict partial order relation on the set of candidates according to how good

all candidates are in terms of positional information. When there exists a greatest element

for this partial order relation, one talks about the positional winner, and the fact that

the partial order relation is a total relation turns out to be equivalent to the fact that

the scorix is (strictly) recursively monotone. Analogously, based on the same principles

of monotonicity of the votrix, we can define a strict partial order relation on the set of

candidates according to how good all candidates are in terms of pairwise information.

When there exists a greatest element for this partial order relation, one talks about the

pairwise winner, and the fact that the partial order relation is a total relation turns out to

be equivalent to the fact that the votrix is (strictly) monotone.

Last, but definitely not least, we have discussed the potential applications of this dis-

sertation. The aggregation of rankings has been addressed in many scientific disciplines,

including medicine, consumer preference analysis, computer science, management science

and social choice theory. Nevertheless, due to the natural interpretation of the aggregation

of rankings as a voting procedure, social choice theory is considered the most prominent

field of application. Here, we have considered three different real-life problems: an ecosys-

tem management problem where the goal is to rank four plans according to their perceived

suitability for the Lar rangeland in Iran; an environmental decision making problem where

the goal is to identify the best estimation method for the production of orange trees in the

Argentinian province of Corrientes; and a consumer preference analysis problem where the

goal is to check whether or not consumers are able to distinguish between different degrees
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of spoilage of some cod fish samples at the Laboratory of Food Microbiology and Food

Preservation at Ghent University, Belgium.

The methodology introduced in this dissertation has been exclusively analysed here for

the particular case of the aggregation of rankings. Nevertheless, as part of a side joint

project with the Laboratory of Food Microbiology and Food Preservation at Ghent Uni-

versity, a first approach to the aggregation of labels given on a qualitative scale has been

addressed based on the notion of monotonicity. The aggregation of compositional data,

directional data, strings and many other types of structured and/or unstructured data un-

doubtedly is a future research line. The introduction of betweenness relations, consensus

states and monometrics in the field of aggregation results in promising tools that may help

the understanding and progress in the study of the aggregation of such complex types of

data.
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[66] J. L. Garćıa-Lapresta, A. A. J. Marley, M. Mart́ınez-Panero, Characterizing best-

worst voting systems in the scoring context, Social Choice and Welfare 34 (2010)

487–496.

[67] P. Gärdenfors, Positionalist voting functions, Theory and Decision 4 (1) (1973) 1–24.

[68] A. Gibbard, Manipulation of voting schemes: A general result, Econometrica 41

(1973) 587–601.

[69] C. Girard, Acclamation voting in Sparta: An early use of approval voting, Studies

in Choice and Welfare, Springer-Verlag, Berlin Heidelberg, 2010, pp. 15–17.

[70] I. J. Good, A note on Condorcet sets, Public Choice 10 (1971) 97–101.

[71] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, Cambridge

University Press, Cambridge, 2009.

[72] J. Hadar, W. R. Russell, Rules for ordering uncertain prospects, The American

Economic Review (1969) 25–34.

[73] R. W. Hamming, Error detecting and error correcting codes, The Bell System Tech-

nical Journal 29 (2) (1950) 147–160.
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Summaries

In the following, we provide a summary of this dissertation in English, Spanish and Dutch.

11.1 English summary

Social choice theory concerns the study of the conclusions that can be drawn from the

preferences expressed by several voters over a set of candidates. In particular, throughout

this dissertation, we consider the setting where each voter expresses a ranking on the set of

candidates. Although at first sight it might appear to be an artificial theoretical problem

with little application outside the election framework, nothing could be further from the

truth. The application field results to be very rich, attracting the attention of many

different fields such as social sciences, computer sciences, economical sciences, biological

sciences and mathematical sciences.

In Chapter 1, we motivate the problem in the paragraph above and highlight the most

important objectives of this research. We also provide an outline of this dissertation,

together with some suggestions for its adequate reading.

In Chapter 2, we review the history of social choice theory, recalling the most prominent

ranking rules. Plurality, the Borda count, scoring (ranking) rules, majority, the notions

of Condorcet winner and Condorcet ranking, the method of Kemeny - among others -

are recalled and illustrated with some toy examples. It is supposed to serve as a tool

for making this dissertation fully self-contained. We conclude the chapter by explaining

a ranking procedure based on a natural monotonicity constraint proposed by Rademaker

and De Baets, which was the starting point of this thesis.
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In Chapter 3, we review the metric rationalisation of ranking rules, which represents the

characterization of ranking rules by minimizing the distance to a consensus state for some

appropriate distance function. A consensus state is the set of all profiles of rankings

satisfying a natural property that leads to an obvious winning ranking. Monometrics,

which are closely related to distance functions or metrics, are introduced here. Like a

distance function, a monometric satisfies the axioms of non-negativity and coincidence, but

a monometric requires compatibility with a given betweenness relation and does not impose

symmetry nor the triangle inequality. As discussed throughout this chapter, monometrics

are a more suitable tool for the rationalisation of ranking rules than metrics, and will lead

to the introduction of the monometric rationalisation of ranking rules.

In Chapter 4, we analyse different representations of votes, which are tools that play a

key role in the field of social choice theory. Usually, the profile of rankings provided by

the voters is compressed into these representations of votes gathering the most significant

information. For instance, the Borda count, probably the most well-known ranking rule,

reduces the rankings given by the voters to the scoring matrix (from now on referred

to as the scorix), which is a matrix where the element at the i-th row and j-th column

equals the number of times that the i-th candidate is ranked at the j-th position in the

rankings given by the voters. Besides the Borda count, all other scoring ranking rules also

reduce the rankings given by the voters to the scorix. Based on the ideas of Condorcet,

another representation of votes that gathers a completely different type of information is

also commonly used in social choice theory: the voting matrix (from now on referred to

as the votrix). The votrix is a matrix where the element at the i-th row and j-th column

equals the number of times that the i-th candidate is preferred to the j-th candidate in

the rankings given by the voters. Relative positions between candidates are not explicitly

gathered by the votrix, and we propose a new representation of votes gathering this hitherto

unconsidered information: the votex. The beatpath matrix, which is a recently introduced

representation of votes based on the notion of beatpath, is also briefly recalled in this

chapter.

In Chapter 5, we discuss the notion of monotonicity of a representation of votes, which will

be proven to be a cornerstone for social choice theory. Monotonicity is a common desired

property in mathematical modelling exercises, and its importance has been acknowledged

in several disciplines. However, real-life data is often imperfect and does not fully comply

with the monotonicity hypothesis. In the field of social choice theory, the concept of

monotonicity is an old acquaintance for scholars that can easily be traced back to the early
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1970s. This classical concept of monotonicity differs from the one advocated by Rademaker

and De Baets (discussed in Chapter 2), that was the starting point of this thesis. Here,

monotonicity is not understood as a property of the ranking rule. Rather, monotonicity is

a property of the representation of votes that will serve as a tool for defining the ranking

rule. Different monotonicity-based consensus states are discussed in this chapter. Most of

them will be used - together with the presence of a Condorcet ranking and unanimity - for

defining natural ranking rules. Special attention will be paid to acclamation: the consensus

state formed by the intersection of recursive monotonicity of the scorix, monotonicity of

the votrix and monotonicity of the profile (w.r.t. the same ranking).

In Chapter 6, we address the search for all different monotonicity-based consensus states

as an optimization problem. This search is formalized as an Integer Linear Programming

problem. We divide the chapter into two different sections. First, the search for mono-

tonicity is addressed by making changes in the representation of votes. Second, the search

for monotonicity is addressed by making changes in the profile of rankings. The search

for the same property by means of a distance function at the representation level and of a

distance function at the profile level is a common topic in the field of social choice theory.

For instance, the search for a Condorcet winner is addressed by means of a distance func-

tion at the votrix level and of a distance function at the profile level by two well-known

methods: Condorcet’s least-reversal method and Dodgson’s method.

In Chapter 7, we address two main study subjects. First, as Arrow stated in his well-known

Impossibility Theorem, there is no ranking rule simultaneously satisfying all the properties

that can be considered desirable. This leads to an increasing interest of the scientific

community in the search for axiomatic characterizations of different ranking rules. Here,

although we do not provide any axiomatic characterization, we discuss some properties

satisfied by the ranking rules based on the search for monotonicity. Second, we discuss the

independence of the search for all monotonicity-based consensus states described in this

dissertation w.r.t. each other.

In Chapter 8, we consider the more general setting where each voter is assumed to provide

a ranking with ties on the set of candidates instead of a ranking on the set of candidates.

This situation subsumes a three-way decision, where each voter needs to decide whether

‘candidate a is better than candidate b’, ‘candidate b is better than candidate a’ or ‘can-

didates a and b are equally suitable’. This type of decision can be seen as a representation

of bipolar information on a three-label bipolar qualitative scale. As each voter directly
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provides a ranking with ties on the set of candidates, the three aforementioned relations

are considered to be transitive.

In Chapter 9, we discuss different types of winning candidates. There are obviously some

situations in which the selection of a winning candidate is easy; for instance, when every

voter agrees on the candidate that should be the winner. Such candidate is called the

unanimous winner, and, unfortunately, it usually does not exist in real-life elections. In

case more than half of the voters agree on the candidate that should be the winner, one

talks about the (absolute) majority winner. Obviously, the majority winner might not

exist either. Based only on the head-to-head comparisons between candidates, Condorcet

advocated a weaker condition than that of the unanimous or the majority winner: in case a

candidate is preferred by more than half of the voters to each of the other candidates, then it

should be the winner; said candidate is referred to as the Condorcet winner. The existence

of the Condorcet winner is neither assured due to the more than famous ‘voting paradox’

where, although all the voters provide transitive preferences on the set of candidates, the

collective preference might be cyclic. Also, the Borda winner, which is the candidate that

maximizes the Borda score is often considered. In this chapter, two new types of winner

are discussed: the (quasi)positional winner and the pairwise winner. These two winners

will be understood as necessary conditions for the Borda winner and the Condorcet winner

to finally agree.

In Chapter 10, we apply the methodology discussed in this dissertation to different real-life

problems. Presidential elections (social choice), ranking of governmental plans (multiple-

criteria decision analysis) and search for consensus among a group of experts (group de-

cision making) are some of the possible large-scale applications. However, every daily

decision where more than one judgement/criterion is considered turns into an immediate

potential application. The content of this dissertation is mainly of interest to fields such

as ecosystem management, sustainability assessment or consumer preference analysis. In

particular, we consider three problems: an ecosystem management problem in Iran, an

environmental decision making problem in Argentina and a consumer preference analysis

problem in Belgium.

In Chapter 11, we end with some conclusions and a discussion on future research directions.
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11.2 Spanish summary

La teoŕıa de la elección social estudia las conclusiones que se pueden sacar de las preferencias

de distintos votantes sobre un conjunto de candidatos. En particular, a lo largo de esta

memoria, consideramos el marco teórico en el que cada votante expresa un orden total o

ranking de los candidatos. Aunque a primera vista pueda parecer un problema con una

fuerte inclinación teórica y poca aplicación más allá del marco electoral, nada más lejos

de la realidad. Pueden encontrarse numerosos ejemplos de aplicaciones en campos tan

diferentes como las ciencias sociales, las ciencias de la computación, las ciencias económicas,

las ciencias biológicas o las ciencias matemáticas.

En el Caṕıtulo 1, planteamos el problema aqúı considerado y explicamos los objetivos más

importantes de esta investigación. En este caṕıtulo, también esbozamos brevemente como

debe ser léıda esta memoria.

En el Caṕıtulo 2, repasamos las reglas de ordenación más importantes en el campo de

la teoŕıa de la elección social, aśı como los conceptos de pluralidad, el recuento Borda,

las reglas de puntuación, las reglas mayoritarias, las nociones de ganador y ranking de

Condorcet y el método de Kemeny, entre otros. Todos estos conceptos son ilustrados por

medio de ejemplos. El principal objetivo de este caṕıtulo es hacer que esta memoria resulte

comprensible en śı misma, sin recurrir a elementos explicativos adicionales. Concluimos con

una explicación detallada de una regla de ordenación basada en la propiedad de monotońıa

propuesta por Rademaker y De Baets, que supuso el punto de partida de esta tesis.

En el Caṕıtulo 3, repasamos la racionalización matemática de las reglas de ordenación,

que es la rama de la teoŕıa de la elección social que caracteriza las reglas de ordenación

por medio de la minimización de la distancia a un estado de consenso para una deter-

minada métrica. Un estado de consenso está formado por todas las listas de rankings

que cumplen una propiedad que, de una manera natural, determina inequivocamente el

ranking que debe ser considerado el ganador. En este caṕıtulo introducimos el concepto

de monométrica, un tipo de función que está ı́ntimamente relacionado con las métricas.

Al igual que las métricas, una monométrica cumple los axiomas de no-negatividad y co-

incidencia, pero require además la compatibilidad con una relación de ‘intermediación’ y

no impone el axioma de simetŕıa, ni la desigualdad triangular. Tal y como explicamos

a lo largo de este caṕıtulo, las monométricas son una herramienta más adecuada para la
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racionalización matemática de las reglas de ordenación que las propias métricas. Por este

motivo introducimos la racionalización monométrica de las reglas de ordenación.

En el Caṕıtulo 4, analizamos diferentes representaciones de votos, que son herramientas que

juegan un papel clave en la teoŕıa de la elección social. Normalmente, una representación

de votos recoge la información más importante de la lista de rankings dada por los votantes.

Por ejemplo, el recuento Borda, probablemente la regla de ordenación más conocida, reduce

la lista de rankings dada por los votantes a la matriz de puntuación (de ahora en adelante

referida como la scorix), que es una matriz en la que el elemento de la i-ésima fila y j-ésima

columna representa el número de veces que el i-ésimo candidato es clasificado en la j-ésima

posición. Además del recuento Borda, el resto de reglas de puntuación también reducen

la lista de rankings dada por los votantes a la scorix. Basada en las ideas de Condorcet,

otra representación de votos que recoge un tipo de información totalmente diferente es la

matriz de votación (de ahora en adelante referida como la votrix), que es una matriz en la

que el elemento de la i-ésima fila y j-ésima columna representa el número de veces en las

que el i-ésimo candidato es preferido al j-ésimo candidato. Las posiciones relativas entre

los candidatos no son explicitamente reflejadas en la votrix. Por esto proponemos en este

caṕıtulo una nueva representación de votos que tiene en cuenta este tipo de información:

el votex. Además, también mencionamos otra conocida representación de votos: la matriz

de rutas más fuertes.

En el Caṕıtulo 5, definimos una propiedad que puede ser considerada como una piedra

angular para la teoŕıa de elección social: la monotońıa de una representación de votos.

La propiedad de monotońıa es una propiedad deseable en problemas de modelización

matemática y su importancia ha sido reconocida en gran cantidad de disciplinas. Desafor-

tunadamente, las bases de datos procedentes de problemas reales suelen ser imperfectas,

impidiendo que la propiedad de monotońıa se cumpla. La noción de monotońıa es una vieja

amiga para los eruditos de la teoŕıa de la elección social que ha sido analizada desde el prin-

cipio de la década de 1970. Este concepto clásico de monotońıa difiere de aquel propuesto

por Rademaker y De Baets (del cual hablamos en el Caṕıtulo 2) y que supuso el punto de

partida de esta investigación. En este caso, el concepto de monotońıa no es considerado

una propiedad de una regla de decisión, sino una propiedad de las representaciones de vo-

tos. En este caṕıtulo, proponemos diferentes estados de consenso basados en la propiedad

de monotońıa. La mayoŕıa de ellos serán usados (junto con la presencia de un ranking

de Condorcet y la propiedad de unanimidad) para definir distintas reglas de ordenación.

Prestaremos especial atención al estado de consenso ‘aclamación’, que es definido como la
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intersección de los estados de consenso de monotońıa recursiva de la scorix, monotońıa de

la votrix y monotońıa de la lista de ranking (con respecto al mismo ranking)

En el Caṕıtulo 6, proponemos un problema de optimización para la búsqueda de los dis-

tintos estados de consenso propuestos en el caṕıtulo anterior. En particular, definimos un

problema de programación lineal entera. Este caṕıtulo está dividido en dos secciones difer-

entes. En primer lugar, abordamos la búsqueda de monotońıa por medio de cambios en las

distintas representaciones de votos. En segundo lugar, abordamos la búsqueda de mono-

tońıa por medio de cambios en la lista de rankings dada por los votantes. La búsqueda de

la misma propiedad por medio de cambios en la representación de votos y de cambios en la

lista de rankings es un problema común en la teoŕıa de la elección social. Por ejemplo, dos

métodos conocidos en el campo buscan un ganador de Condorcet por medio de cambios

en la votrix (método de mı́nimas inversiones de Condorcet) y de cambios en la lista de

rankings (método de Dodgson).

En el Caṕıtulo 7, centramos nuestra atención en dos temas de caracter teórico. En primer

lugar, tal y como Arrow manifestó en su conocido Teorema de Imposibilidad, no existe

ninguna regla de ordenación que cumpla al mismo tiempo tres propiedades que pueden ser

consideradas elementales. Esto conlleva un creciente interés por parte de la comunidad

cient́ıfica en la búsqueda de caracterizaciones axiomáticas de las diferentes reglas de orde-

nación. Aunque no proponemos una axiomatización de las reglas de ordenación propuestas

en esta memoria, discutimos las propiedades que todas estas reglas de ordenación cumplen.

En segundo lugar, probamos que todas las reglas de ordenación basadas en la búsqueda de

un estado de consenso propuestas en esta investigación son independientes entre ellas.

En el Caṕıtulo 8, consideramos el caso más general en el que cada votante expresa una

ranking con empates en lugar de un ranking (sin empates). Esta situación subsume una

decisión a tres bandas, donde cada votante debe decidir si ‘el candidato a es mejor que

el candidato b’, ‘el candidato b es mejor que el candidato a’ o ‘los candidatos a y b son

igualmente buenos’. Como cada votante expresa directamente un ranking con empates de

los candidatos, las tres relaciones ya mencionadas son consideradas transitivas.

En el Caṕıtulo 9, mostramos distintas nociones de candidato ganador. En algunas situa-

ciones, el candidato que debe ser erigido ganador es obvio. Por ejemplo, en caso de que

todos los votantes estén de acuerdo en apoyar a un mismo candidato. En este caso nos refe-

rimos a un ganador unánime. Desafortunadamente, este tipo de ganador no suele existir

en condiciones reales. En caso de que más de la mitad de los votantes estén de acuerdo en
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el candidato que debe ser erigido ganador, hablamos de un ganador (absolutamente) may-

oritario. Obviamente, el ganador mayoritario tampoco tiene por qué existir. Basándose

solo en las comparaciones dos-a-dos entre los distintos candidatos, Condorcet propuso una

condición más débil que la existencia de un ganador unánime o mayoritario: en caso de

que un candidato sea preferido por más de la mitad de los votantes a cada uno de los otros

candidatos, debe ser erigido el ganador. Este tipo de ganador es conocido como el ganador

de Condorcet. La existencia de un ganador de Condorcet no está asegurada debido a la más

que conocida ‘paradoja de la votación’ donde, aunque todos los votantes expresan prefer-

encias transitivas, la preferencia colectiva puede resultar ćıclica. El ganador de Borda, que

es aquel candidato que maximiza el recuento de Borda, es también habitualmente consid-

erado en el campo de la teoŕıa de la elección social. En este caṕıtulo, dos nuevos tipos de

ganador son propuestos: el ganador (quasi)posicional y el ganador por pares. Estos dos

tipos de ganadores serán entendidos como condiciones suficientes para que los ganadores

de Condorcet y Borda coincidan finalmente.

En el Caṕıtulo 10, aplicamos los método propuestos en esta memoria a distintos problemas

de la vida real. Elecciones presidenciales (teoŕıa de la elección social), la ordenación de

planes gubernamentales (análisis de decisión multi-criterio) y la búsqueda de consenso en-

tre un grupo de expertos (toma de decisión grupal) son algunas de las posibles aplicaciones.

Sin embargo, cualquier acción diaria donde se considere más de un criterio se convierte en

una potencial aplicación de esta investigación. El contenido de esta memoria es de interés,

principalmente, en campos como la gerencia de ecosistemas, la evaluación de sostenibil-

idad o el análisis de preferencias de los consumidores. En concreto, consideramos tres

casos: un primero de gerencia de ecosistemas en Irán, un segundo de toma de decisiones

medioambiental en Argentina y un tercero de análisis de preferencias de los consumidores

en Bélgica.

En el Caṕıtulo 11, terminamos con unas conclusiones y una pequeña discusion de futuras

ĺıneas de investigación.

11.3 Dutch summary

Sociale keuzetheorie behandelt de vraag welke conclusies getrokken kunnen worden uit

de preferenties uitgedrukt door een aantal stemmers over een aantal kandidaten. Meer

bepaald bekijken we in deze thesis de setting waarin elke stemmer een rangschikking van

302



het set van kandidaten heeft uitgedrukt. Misschien lijkt dit op het eerste zicht een nogal

artificieel-theoretisch probleem, maar het tegenovergestelde blijkt al gauw waar te zijn. De

toepassingsgebieden zijn zeer diverse en relevant, zoals sociale wetenschappen, computer-

wetenschappen, economische wetenschappen, biologische wetenschappen en wiskunde.

In Hoofdstuk 1 motiveren we belangrijkheid van de probleemstelling en lichten we belan-

grijkste doelstellingen van deze thesis uit. Dit hoofdstuk bevat ook een overzicht van de

opbouw van deze thesis, alsook enkele tips hoe deze best gelezen kan worden.

Hoofdstuk 2 bespreekt de geschiedenis van sociale keuzetheorie, waar we de meest belangri-

jke rangschikking regels even herhalen. Pluraliteit, Borda, scoring (rangschikking) regels,

de meerderheidsregel, het concept ‘Condorcet winnaar’ en ‘Condorcet winning ranking’, de

Kemeny methode en anderen worden hier uitgelegd en gëıllustreerd met kleine voorbeelden.

Het doel van dit hoofdstuk is om van deze thesis een op zich staand geheel te maken, waar

geen verdere naslagwerk bij te pas hoeft te komen. Op het einde van dit hoofdstuk be-

spreken we een rangschikking regel gebaseerd op een natuurlijke monotoniteit voorwaarde

zoals geformuleerd door Rademaker en De Baets. Deze regel vormt het startpunt van deze

thesis.

In Hoofdstuk 3 behandelen we het metriek-aspect van rangschikking regels, waar we

rangschikking regels dus beschouwen als ‘manieren om de afstand tot een staat van con-

sensus te becijferen’ voor enkele toepasselijke afstandsfuncties. Een staat van consensus

is een set rangschikkingen waarvoor de winnende rangschikking evident is. Monometrics,

sterk gerelateerd aan afstandsfuncties of metrieken, worden hier geÃ¯ntroduceerd. Net als

een afstandsfunctie vervult een monometriek the axima van niet-negativiteit en samen-

valling, maar niet symmetrie of de driehoeksongelijkheid. In de plaats van die twee is

een monometriek compatibel met een ‘tussenin’ relatie. Dit hoofdstuk beargumenteert

dat monometrieken toepasselijker zijn dan afstandsfuncties om rangschikking regels te ra-

tionaliseren, en resulteert aldus in de invoering van de monometriek rationalisering van

rangsschikkingsregels.

In Hoofdstuk 4 analyseren we verschillende manieren om stemmen te representeren, een

essentieel en belangrijk deel van het onderzoeksdomein van sociale keuzetheorie. Meestal

zal het profiel van rangschikkingen zoals uitgedrukt door de stemmers samengevat worden

in een van deze representaties, om de meest belangrijke informatie makkelijk verwerkbaar

te maken. De Borda telling bijvoorbeeld, wellicht de best gekende rangschikking regel,

reduceert de rangschikkingen uitgedrukt door de stemmers tot de score matrix (vanaf nu
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de scorix genoemd), een matrix waarin een element in rij i en kolom j het aantal keer

dat de i-de kandidaat op de j-de plaats weer gevonden werd in de rangschikkingen uitge-

drukt door de stemmers. Niet enkel de Borda telling, maar ook alle andere scorende

rangschikkings regels reduceren de stemmen tot de scorematrix. Een andere voorstelling

van de uitgebrachte stemmen is de stemmen matrix (vanaf nu votrix genoemd), gebaseerd

op de opvattingen van Condorcet en een gericht op een wezenlijk verschillend type infor-

matie. De votrix is een matrix waarin het element in de i-de rij en de j-de kolom het aantal

keer dat de i-de kandidaat verkozen wordt boven de j-de kandidaat in de rangschikkingen

uitgedrukt door de stemmers. Relatieve posities tussen kandidaten blijven niet bewaard

in de votrix, en we formuleren een nieuwe representatie die toelaat om deze vooralsnog

ongebruikte informatie alsnog in rekening te brengen, en noemen deze representatie de vo-

tex. De beatpath matrix, een recentelijk geformuleerde manier representatie van stemmen

gebaseerd op het beatpath concept, wordt ook even kort aangehaald in dit hoofdstuk.

Hoofdstuk 5 bespreekt de notie van monotoniteit in een representatie van stemmen, en we

zullen bewijzen dat dit een hoeksteen van sociale keuzetheorie vormt. Monotoniteit is een

vaak vereiste eigenschap in wiskundige modellering toepassingen, en de belangrijkheid er-

van wordt in verschillende disciplines expliciet erkend. Maar data komende uit de realiteit

is vaak niet foutloos en vervult dan ook niet de monotoniteitvereiste. In het onderzoeks-

domein van social choice theorie vormt het een oude bekende die voor het eerst opdook in

de jaren 70 van de vorige eeuw. Dit monotoniteit-concept verschilt van het concept onder-

schreven door RAdemaker en De Baets (besproken in Hoofdstuk 2), het startpunt van deze

thesis. De monotoniteit bedoeld door Rademaker en De Baets is geen eigenschap van de

rangschikking regel, maar eerder als een mogelijke eigenschap die vervuld kan worden door

een representatie van de stemmen, en zal dienen als een onderdeel van de definitie van de

rangschikkings regel. Verschillende monotoniteit-gebaseerde consensus regels worden be-

sproken in dit hoofdstuk. De meeste van deze alsook ‘de aanwezigheid van een Condorcet

ranking’ en ‘unanimiteit’ zullen gebruikt worden om intüıtieve rangschikkigns regels te for-

muleren. We zullen extra aandacht besteden aan acclamation: de consensus toestand waar

recursieve monotoniteit van de scorix, monotoniteit van de votrix en monotoniteit van het

profiel met betrekking tot een en dezelfde rangschikking, alledrie samen aanwezig zijn.

In Hoofdstuk 6 zullen we uiteenzetten hoe het kwantificeren van monotoniteit als een

optimalisatievraagstuk bekeken kan worden. Meer bepaald kan deze vraag geformaliseerd

worden als een Integer Lineair Programmeringsprobleem. Dit hoofdstuk bestaat uit twee

verschillende secties. In de eerste aanpak zal de zoektocht naar een consensus toestand
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gebeuren worden door aanpassingen in de representatie van de stemmen uit te voeren. In

de tweede aanpak zullen we aanpassingen in de stemmen zelf doorvoeren, dus vòòr we de

informatie reduceren tot representatie niveau. We zullen als voorbeeld bespreken hoe een

Condorcet winnaar te bepalen wanneer we de afstandsfunctie op votrix-niveau berekenen

en wanneer we die een afstandsfunctie op niveau van de stemmen berekenen, zowel voor

de Condorcet methode van minste omkeringen en de methode van Dodgson.

Hoofdstuk 7 zal twee onderwerpen behandelen. Vooreerst bespreken we het Onmogelijkhei-

dstheorema van Arrow, welke stelt dat er geen rangschikking regel bestaat die een aantal

intüıtieve en aantrekkelijke eigenschappen simultaan vertoont. Welke rangschikking regels

dan wel welke eigenschappen vertonen, is dan ook een dankbaar onderwerp voor onderzoek

geweest. In dit hoofdstuk zullen we dan ook een aantal eigenschappen bespreken van de

rangschikking regels gebaseerd op monotoniteit, al zullen we geen volledige axiomatische

karakterisatie doorvoeren. Vervolgens bespreken we of de zoektochten naar elk van de

verschillende monotoniteit-gebaseerde consensus toestanden, onafhankelijk zijn van elkaar.

In Hoofdstuk 8 bekijken we de meer algemene setting waar een stemmer een rangschikking

uitdrukt waarin sommige kandidaten als evenwaardig beschouwd worden, een niet-strikte

rangschikking. Met andere woorden, voor elke twee kandidaten a en b, zal elke stemmer

uitdrukken ‘a is beter dan b’, ‘b is beter dan a’ of ‘a en b zijn even goed’. We kunnen dit

beschouwen als een representatie op een bipolaire kwalitatieve schaal met drie verschillende

labels. Aangezien de stemmers nog steeds een rangschikking uitdrukken, veronderstellen

we dat de beter dan en even goed relaties transitief zijn.

In Hoofdstuk 9 bespreken we verschillende types winnende kandidaten. Er zijn om-

standigheden waarin het bepalen van de winnende kandidaat eenvoudig is; bijvoorbeeld

wanneer elke stemmer dezelfde kandidaat boven alle andere verkiest. Een dergelijke ‘una-

nieme winnaar’ zal in de realiteit jammer genoeg slechts zelden aanwezig zijn. Wanneer

(meer dan) de helft van alle stemmers dezelfde kandidaat boven alle anderen verkiest

hebben we een (strikte) meerderheid kandidaat. Het spreekt vanzelf dat ook de aan-

wezigheid van een meerderheid kandidaat niet verzekerd is. Condorcet, die enkel de paars-

gewijze preferentie relatie beschouwde, suggereerde een zwakkere voorwaarde voor een

meerderheid kandidaat: de Condorcet winnaar is een kandidaat die door meer dan de helft

van de stemmers boven elke andere kandidaat verkozen wordt. Jammer genoeg is ook het

bestaan van een dergelijke kandidaat niet verzekerd, aangezien er een cykel kan optreden,

waarbij de Condorcet meerderheid relatie niet transitief blijkt te zijn. Aangezien dit kan
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optreden zelfs wanneer elke stemmer zelf transitiviteit respecteert, wordt dit al een para-

dox beschouwd. Een Borda winnaar, een kandidaat die de grootste Borda score behaald,

is wel steeds aanwezig. In dit hoofdstuk introduceren we twee nieuwe types winnaars: De

(quasi)positionele winnaar en de paarsgewijze winnaar. De aanwezigheid van deze twee

winnaars zal volstaan om Borda en Condorcet eindelijk met elkaar te verzoenen: Wanneer

deze twee tegelijkertijd aanwezig zijn, zullen de Borda en de Condorcet winnaar een en

dezelfde zijn.

In Hoofdstuk 10 passen we de methodologiën uit de vorige hoofdstukken toe op enkele

problemen uit de praktijk. Presidentsverkiezingen (social choice), rangschikking van be-

heersplannen (meervoudige criteria analyse) and zoektocht naar consensus in een groep ex-

perts (groepsbeslissing technieken) zijn enkele van de mogelijke grootschalige toepassingen.

Eigenlijk is elke dagdagelijkse beslissing waar meer dan een criterium of oordeel in reken-

ing gebracht wordt, een potentiële toepassing. In deze thesis behandelen we voorbeelden

uit een ecosysteem beheersprobleem in Iran, een milieugerelateerd beslissingsprobleem in

Argentinië en een consumenten preferentie analyse toepassing in België.

Hoofdstuk 11 ten slotte bevat de conclusies en een blik vooruit naar potentieel verder

onderzoek.
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R. Pérez-Fernández, P. Alonso, H. Bustince, I. Dı́az, A. Jurio, S. Montes, Ordering

finitely generated sets and finite-interval valued hesitant fuzzy sets, Information Sciences

325 (2015) 375–392.
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