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Fe-Cr-C alloys with chromium concentrations in the 

range from ~2 wt% to 12 wt% form ferritic-martensitic 

structures by rapid cooling from the austenite state al-

ready in the presence of relatively low carbon concentra-

tions. In this process it is possible to obtain different rati-

os of ferrite and martensite, as well as formation of car-

bides, by varying the thermal treatment. The presence of 

ferrite or martensite might have an influence on the 

nanostructural evolution under irradiation of these alloys. 

Here, considering a tempered martensite reference alloy 

with 9% Cr, we make use of an already validated object 

kinetic Monte Carlo (OKMC) model in order to study the 

possible effect of the formation of martensite laths on the 

material nanostructural evolution under neutron irradia-

tion, assuming that the relevant boundaries act as sinks 

for radiation defects. The results show that the reduction 

of the grain size (including in this definition the average 

size of prior austenite grains, packets, blocks and laths) 

does not play any relevant role until sizes of the order of 

~0.5 μm are reached: for smaller grains the number of 

defects being absorbed by the boundaries becomes domi-

nant. However, this threshold is lower than the experi-

mentally observed martensite lath dimensions, thereby 

suggesting that what makes the difference in martensitic 

Fe-Cr-C alloys with respect to ferrite, concerning events 

and mechanisms taking place during irradiation, are not 

the lath boundaries as sinks. Differences between the 

nanostructural evolution under neutron irradiation in fer-

rite and martensite should therefore be ascribed to other 

factors. 
 

Copyright line will be provided by the publisher  

1 Introduction High-Cr ferritic/martensitic steels are 

candidate structural materials in the breeding blanket of 

future fusion reactors [1], as well as for fuel cladding and 

other core components in GenIV reactors [2, 3]. It is 

therefore important to develop computational models that 

are able to help understanding the mechanisms affecting 

their nanostructural evolution under irradiation. These 

steels present a structure that can be ferritic or martensitic 

in different proportion, depending on both composition and 

thermal treatment. Recent experiments reveal that ferrite 

and martensite experience different nanostructural 

evolution under irradiation, specifically swelling is more 

pronounced in ferrite than in martensite [4]. One possible 

reason for this behavior is that the lath structure of the 

martensite might be absorbing more defects than the large-

grain structure of the ferrite. It is also typical of the 

tempered martensite microstructure that C atoms that did 

not form carbides segregate at the lath boundaries, leaving 

the matrix virtually free of C [5]: this effect has been 

already addressed in [6].  

Martensite in steels is well-known to show a 

hierarchical microstructure consisting of packets 

containing blocks of laths. All the blocks of a packet are 

contained within prior austenitic grains. They present the 

same habit plane and consist of interleaved laths with a 

similar crystal orientation. Recently, it has also been 

recognized that, within a block, laths are reorganized in 

sub-blocks, each of which corresponds to a single variant 

characterized by the Kurdjumov-Sachs orientation 

relationship with the parent austenite [7, 8] that minimizes 
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the energy by aligning the laths, so that they share a close-

packed plane and close-packed direction. In the literature, 

martensite laths are reported not to exceed a few tens of 

μm in length and a few μm in width, while their thickness 

is ~0.5 μm [9], although the variability can be large. Sub-

block thicknesses are reported to measure, respectively, 

~0.5 μm [9] and between 4 μm [10] and 7 μm [9], while 

the prior austenite grains are generally estimated to range 

between 10 and 60 μm [11], depending on both thermal 

treatment and chemical composition of the material. 

The complex morphology of the martensite affects for 

example the toughness and strength of steels, because the 

sub-block boundaries work as barriers to dislocation 

glidings, and eventually increase the strength of 

martensitic versus ferritic steels. Likewise, lath and sub-

block boundaries might also be expected to have an effect 

on the nanostructural evolution under irradiation of 

martensite alloys, because they may act as sinks for 

radiation defects.  

In this work we explore the effect of the grain size on 

the nanostructural evolution under irradiation of 

martensitic steels, using an already developed OKMC 

model for neutron irradiated Fe-9%Cr-C alloys [6, 12]. In 

our previous work [6, 12] it was shown that the free C 

content in Fe-Cr-C alloys, i.e. the amount of C in the 

matrix, which is higher in ferrite than in martensite, is able 

to partially counteract the beneficial effect of Cr in terms 

of suppression of void swelling. Here we investigate 

whether the smaller grain size of the martensitic structure 

has also an effect and, if so, whether this effect is more or 

less important than the change in free C, in terms of impact 

on the nanostructure evolution of Fe-Cr-C alloys under 

neutron irradiation. 

Specifically, we first consider a case of neutron 

irradiation at 290°C and at a dose-rate of ~1×10
-7

 dpa/s, as 

dictated by the reference experiments [13, 14]. The grain 

dimensions in the model were varied in a range going from 

the size of prior austenite grains to that of the sub-blocks, 

and down to sizes of the order of the martensite laths, or 

smaller. We then studied the influence of both irradiation 

temperature and dose-rate on the interactions between 

defect clusters and grain boundaries (GBs), for two grain 

sizes, namely 0.2 and 20 μm: the first value has been 

chosen because it falls in a range where the effect of the 

grain size has been observed to be relevant, while 20 μm is 

the average grain size for tempered martensite Fe-9%Cr-C 

[14].  

The paper is organized as follows: the simulation 

method and the parameterization adopted are briefly pre-

sented in section 2, while in section 3 we show and com-

pare the main results of our investigation. Finally, section 4 

summarizes our conclusions. 

2 Method and parameterization For all our simu-

lations we used the object kinetic Monte Carlo (OKMC) 

code LAKIMOCA, thoroughly described in [15], while the 

approach we adopted is also explained in detail in [6, 16, 

17]. However, for convenience, we provide here a concise 

overview of the assumptions and the most relevant pa-

rameters that we have adopted. In our model we describe 

the nanostructure evolution of defects, namely vacancies 

(Va) and self-interstitial atoms (SIA) which may also form 

clusters, in materials subjected to irradiation, focusing on 

the properties of defects, treated as objects. Single carbon 

(C) atoms or carbon-vacancy (C2Va) complexes are also 

treated. Specifically, in our model C atoms and C2Va com-

plexes act as immobile spherical traps for mobile defects 

(Va and SIA clusters) and are characterized, respectively, 

by a binding energy of 0.6 and 1.3 eV towards clusters > 4 

SIA [6], while Va clusters bigger than size 6 are trapped 

with an energy of 0.35 eV [6]. Every object inside the sim-

ulation volume is characterized by a set of coordinates and 

can thereby be tracked throughout the irradiation process 

[16]. 

It is important to note that Cr atoms are not introduced 

explicitly in the model, but their presence is reflected in the 

change of the mobility of SIA objects, i.e. applying a "grey 

alloy" approach [6] based on the works of Refs. [18, 19]. 

The properties of vacancy type defects, in contrast, are as-

sumed not to be influenced by the presence of Cr: both ex-

perimental and theoretical studies show that Cr atoms in Fe 

interact only very weakly with vacancies, with hardly any 

influence on their stability and mobility [20, 21, 22]. 

SIA and Va objects have an associated reaction 

volume, which is generally spherical with the exception of 

large dislocation loops (>150 SIA) that are represented by 

toroids. Throughout the simulation, the defects and their 

clusters can undergo events such as migration, recombina-

tion, clustering or dissociation, which take place in the 

simulation volume (or box) according to pre-defined 

probabilities given in terms of Arrhenius frequencies for 

thermally activated processes:  

𝛤𝑖 = 𝜈𝑖𝑒𝑥𝑝 (
−𝐴𝑖

𝑘𝐵𝑇
)    (1) 

Here νi is the attempt frequency (alias the prefactor) of the 

event i; Ai is the corresponding activation energy, which 

must embody both the thermodynamics and the kinetics of 

the system being studied; kB is the Boltzmann’s constant 

and T is the irradiation temperature expressed in K. For 

every simulation step, among all the possible events, one is 

chosen, based on the corresponding probabilities and 

according to the stochastic Monte Carlo algorithm [23]. 

Time elapses according to the residence time algorithm 

[24]: 

𝛥𝑡 ∝
1

∑ i
𝑁
1

     (2) 
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where the time increase is obtained as inverse of the sum 

of all the frequencies i associated with each of the N 

possible independent events.  

Our model simulates the damage production from the 

impinging neutron flux with a random introduction in the 

simulation system of Va and SIA objects of different sizes, 

representing debris of displacement cascades, as well as of 

residual Frenkel pairs [15]. The displacement cascades 

used were simulated using molecular dynamics (MD) [25–

27] and range over different energies (5 keV, 10 keV, 20 

keV, … , 100 keV). The number of introduced defects per 

unit time and volume directly corresponds to a well 

defined dpa rate, while the accumulated dpa is calculated 

using the NRT formula [23]. At every simulation of 

neutron irradiation a residual Frenkel pair or a 

displacement cascade of a certain energy have the same 

probability to be picked. 

Grain boundaries act as a spherical surface sinks for 

defect clusters of all sizes. In the model the absorption of 

Va and SIA defects is taken into account by applying the 

algorithm described in [28]: since the moment it appears in 

the box each object has two sets of coordinates, one, 

subjected to periodic boundary conditions, that expresses 

its position in the simulation box, and a second one, not 

subjected to periodicity, that expresses its distance from 

the centre of a supposedly spherical grain. Defect objects 

are absorbed by grain boundaries as soon as one of the 

following situations occurs: i.) the defect object reaches the 

grain boundary, or ii.) the distance travelled by the defect 

object equals the grain radius, irrespective of its position 

inside the box. In this work, the grain size was varied 

between 250 μm (size adopted in [16, 17] and typical of 

ferritic Fe-C) and 0.1 μm, which is about five times lower 

than the typically smallest possible size of martensite laths 

in one direction of space. Thus, in our OKMC model the 

concept of grain size is translated into a diameter, 

representing the average effective size of the material 

elements (e.g. martensite laths) that we want to investigate. 

A second kind of sink in irradiated material are 

dislocations, which are reproduced here by spherical sinks 

randomly distributed in the simulation volume: their 

number and size are chosen in such a way that the sink 

strength associated with them equals the corresponding 

material dislocation density [6, 29]. However, we only 

allow defect clusters smaller than the core of the 

dislocations, i.e. size 1-4, to be absorbed because bigger 

SIA clusters are often observed by transmission electron 

microscopy to decorate dislocations in the alloys of interest 

[5, 14, 30]. The dislocation density of the reference Fe-

9%Cr-C model alloys was reported to be 6.3×10
13 

m
-2

 [5]. 

The C concentration in the matrix, that determines the 

concentration of traps for point defect clusters, unless 

otherwise stated, is assumed to be 20 appm, according to 

[6, 31]. 

All other parameters used here are exactly the same as 

reported in [6]. All simulations were performed in a non-

cubic simulation box of size 600×750×1000 a0
3
 (a0 = 

2.87×10
-10

 m is the lattice parameter of α-Fe) in order to 

avoid potential anomalies from 1D-migrating defects en-

tering a migration trajectory loop, as discussed in [32], due 

to the periodic boundary conditions which were applied in 

all three directions. 

3 Results Figure 1 shows the number density of both 

Va and SIA objects present in the simulation system at 10
-3

 

dpa, as a function of the grain size. The ordinate axis is in 

logaritmic scale and all values refer to a dose-rate of ~10
-7

 

dpa/s and to an irradiation temperature of 290°C. It can be 

clearly seen that, below ~0.5 μm, there is an important 

drop in the total amount of surviving defects, as a 

consequence of the fact that most SIA and Va, both single 

defects and defect clusters, are absorbed by the GBs. 

Above this threshold, the number of SIA and Va objects 

that interact with GBs has been verified to gradually 

decrease with the increase of the grain size, in agreement 

with [32], while the nanostructural evolution under neutron 

irradiation of Fe-9%Cr-C is not altered any more by the 

choice of the grain size: both SIA and Va object number 

densities and mean sizes remain constant for values bigger 

than ~0.5–1 μm and similar irradiation conditions. 

 

 
Figure 1 Number density of Va and SIA objects predicted by the 

OKMC model to be present in the simulation system at 10-3
  dpa, 

as a function of grain size. 

 

Figure 2 shows two electron back-scatter diffraction 

(EBSD) images for the same analyzed section of the 

modeled Fe-9%Cr-C alloy. They show the unique grain 

color maps for the martensite laths (a) and for the 

martensite blocks (b): the lath thickness and average size 

of the martensitic blocks were found to be, respectively, 

2.6 and 4.4 μm. Since the experimental value for the lath 

thickness is several times larger than the threshold value of 

~0.5-1 μm suggested by our OKMC model, we can 

conservatively conclude that the presence of martensite 

laths should not be considered as a major factor 

influencing the evolution of the system of interest under 

irradiation. From the same ESBD data analysis it was also 
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possible to establish that most misorientations between 

martensite blocks are > 30°, with a peak about 60° (repre-

senting stable martensitic boundaries formed by the orien-

tation relationship with prior austenite grains). However, in 

this range of grain misorientations the absorption efficien-

cy of radiation-induced defects at the grain boundary is not 

expected to vary significantly.  Finally, between laths no 

major preferences for misorientation (of low angle type, 

with maximum values around 15°) were observed, with 

corresponding negligible expected influence on defect ab-

sorption efficiency. 

  

 
Figure 2 EBSD images for the same analyzed area of the 

modeled Fe-9%Cr-C alloy. The unique grain color maps for the 

martensite laths (a) and for the martensite blocks (b) are reported. 

 

Since in Ref. [6] the actual C concentration in the 

matrix has been identified as the main responsible in 

tempered martensite Fe-Cr-C alloys for partially 

counteracting the beneficial effect of Cr on void swelling, 

the vacancy cluster size distribution in neutron irradiated 

Fe-9%Cr-C at 0.001 dpa has been here analyzed for three 

different C concentrations in the matrix, namely 2, 20 and 

134 appm. The last two values correspond, respectively, to 

the experimental C concentration in the neutron-irradiated 

Fe-9%Cr-C alloy and to the free C concentration 

characteristic of ferrite Fe-C [16]. The main objective was 

to study whether void swelling is mostly influenced by the 

C content in the matrix rather than from the choice of the 

grain dimension. In order to do this, two grain sizes (0.2 

and 20 μm) were investigated.  

Figure 3 shows that, regardless of the dimension of the 

grain, the lower C concentration never allows the 

formation of big vacancy clusters. For the other C 

concentrations, instead, the formation of bigger vacancy 

clusters was observed, especially in the case of the higher 

C content. It is also relevant to notice that C is seen to play 

a role on vacancy clustering only for grain sizes larger than 

~0.5 μm: in this case for relatively high C concentrations 

the effect of Cr on SIA cluster mobility is not enough alone 

to completely suppress the formation of bigger vacancy 

clusters. At very low C concentrations, in contrast, the 

reduced presence of traps for defect objects makes the 

latter more likely to reach sinks and be absorbed at GBs, 

thereby preventing vacancies from clustering. 

 

 
Figure 3 Size distribution, expressed in number density, of the 

vacancy cluster population for three different C concentrations: 

results for a grain size of 0.2 μm (above) and 20 μm (below) are 

reported. All model predictions are given for 10-3
 dpa. 

 

In Figure 4 the effect of the irradiation temperature on 

the number of absorptions of defect objects at GBs is 

shown for two grain sizes, 0.2 μm (above) and 20 μm 

(below). Three different irradiation temperatures (250, 290 

or 330°C) were investigated at a constant dose-rate of 

~10
-7

 dpa/s. Each histogram bar represents a different 

irradiation temperature and is composed by the relative 

contributions to the total number of absorptions at GBs (in 

percentage) of the two classes of defect populations. 

The superimposed orange lines represent the total fraction 

of absorbed defects: the number of absorptions at GBs 

increases with the irradiation temperature in the case of the 

larger grain size, while for a grain dimension of 0.2 μm 

any effect of the irradiation temperature on the 

nanostructural evolution of the material appears to be 
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inhibited. The first result is intuitive because, at higher 

temperature, defect clusters are more mobile and thus also 

more likely to diffuse through distances comparable with 

that of the grain size. The defect behavior at the GBs in the 

case of the smaller grain size, on the other hand, is in 

agreement with that shown in Figure 1: below grain sizes 

of ~0.5–1 μm the role of GBs as sinks for defects becomes 

dominant. 

Solute atoms are transported by point defects, thus radia-

tion induced segregation [33] can be used as a verification 

of the temperature above which the absorption of defects at 

GBs becomes important. As a matter of fact, the element 

concentrations at grain boundaries changes under irradia-

tion, either opposite to the direction of the vacancy flux 

(inverse Kirkendall effect), i.e. away from sinks, or in the 

same direction, if an attraction exists between vacancies 

and solutes (or by interstitial mechanism), thereby influ-

encing some material properties, such as ductility, strength 

or corrosion resistance. The results given in Figure 4 for 

the 20 m grain size suggest that only at 330°C more than 

50% of the absorbed defects disappear at grain boundaries, 

consistently with Ref. [34], where radiation-induced Cr 

segregation at GBs was reported to sharply increase with 

temperature, at ~350°C: although this result was obtained 

for austenitic steels and not for tempered martensite, it can 

nonetheless be used as indicative experimental reference 

for our study. Moreover, in Ref. [12] a significant number 

density reduction for both defect populations was also ob-

served above ~290°C as a consequence of the enhanced 

defect mobilities with temperature, which resulted in an in-

crease of defect absorptions at sinks. 

 

 
Figure 4 Relative contribution to the total number of absorptions 

at GBs of V and SIA objects at 5×10-4
 dpa and 10-7 dpa/s, for 

different irradiation temperatures. OKMC results for two grain 

sizes are reported: 0.2 μm (above) and 20 μm (below). The 

superimposed orange lines represent the total fraction of absorbed 

defects at GBs, separately for the two analyzed grain sizes. 

 

In Figure 5 shows a similar analysis conducted for 

three different dose-rates (1×10
-9

, 1×10
-7

 and 1×10
-5

 dpa/s), 

at a constant irradiation temperature of 290°C. The lowest 

dose-rate approaches the value seen by the core-

components of a reactor, while the highest value may cor-

respond to ion irradiation. Again, the effect of the dose-rate 

on the number of absorptions of defect clusters at GBs is 

shown for two grain sizes of reference, 0.2 μm (above) and 

20 μm (below). Each histogram bar represents a different 

dose-rate and is composed by the relative contributions to 

the total number of absorptions at GBs (in percentage) of 

the two classes of defect populations. The superimposed 

red lines represent the total fraction of absorbed defects: 

for the larger grain size the number of absorptions at GBs 

is seen to significantly decrease when higher dose-rates are 

applied. This result can be explained in terms of a twofold 

effect: on the one side, at higher dose-rates more defects 

per unit time form in the bulk and they have no time to dif-

fuse to the GBs before the reference dose (i.e. 5×10
-4

 dpa) 

is reached; on the other, the formation of bigger (and thus 

slower) vacancy clusters is observed as a direct conse-

quence of the shorter lapse of time between cascades, 

which leads to enhanced clustering (Figure 6). For the 

grain dimension of 0.2 μm, instead, almost no effect is ob-

served with the dose-rate, similarly to what already dis-

cussed in Figure 4, i.e. as a consequence of the dominance 

of grain boundaries as sinks, irrespective of other irradia-

tion conditions.  

 

 
Figure 5 Relative contribution to the total number of absorptions 

at GBs of V and SIA objects at 5×10-4
 dpa and 290°C, for 

different dose-rates. OKMC results for two grain sizes are 

reported: 0.2 μm (above) and 20 μm (below). The superimposed 

red lines represent the total fraction of absorbed defects at GBs, 

separately for two analyzed grain sizes. 

 

In Figure 6 the vacancy cluster number density at the 

three dose-rates analyzed is reported for both grain sizes of 

0.2 and 20 μm. It is possible to notice that with a larger 

grain size the vacancy cluster dimensions tend to increase 

at higher dose-rates, while the defect number densities are 

also higher. This result is in agreement with Ref. [12], 

where it is clearly shown that an increase in dose-rate leads 
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to higher densities in Fe-Cr-C alloys. However, this effect 

can be compensated by smaller grain sizes, which are op-

timum competitors to void nuclei as vacancy absorbers, 

thereby probably hindering the appearance of radiation-

induced swelling in martensitic alloys. 

 

 
Figure 6 Size distribution of the vacancy cluster population for 

three different dose-rates and two grain sizes: 0.2 μm (left) and 

20 μm (right). All results are given at 5×10-4 dpa. 

 

One more remark concerns the proportion between Va 

and SIA objects that interact with GBs when a grain size of 

20 μm is assumed. Figure 4 shows that the amount of Va 

objects being absorbed at GBs is always bigger by a factor 

2–3 than that of SIA objects. The same consideration can 

be extended to the two lower dose-rates shown in Figure 5, 

while for the neutron flux of 1×10
-5

 dpa/s the number of 

SIA and Va objects reaching the GBs was found to be 

almost the same, meaning that, despite their different 

diffusivity, there was no difference in flux towards GBs for 

the two radiation-induced defect populations. This result 

can be explained in terms of ratio between the time that 

elapses between cascades and the average time required for 

defects to diffuse until the GBs. In order to clarify this 

statement, in Figure 7 we report the average distance that 

each object up to size 10, either SIA or Va, covers in 50 

seconds, which correspond to the time needed to reach 

5×10
-4

 dpa under a neutron flux of 10
-5

 dpa/s at 290°C, 

expressed as: 

 

𝑑 = 𝜆√𝑁     (3) 

Where: λ = 𝑎0
√3

2
 and the number of jumps is obtained as 

𝑁 = 𝛤𝛥𝑡, with Γ given by Eq. (1). 

Clearly, migration is not the only event allowed for defect 

objects in an OKMC simulation, so the presence of traps 
will significantly reduce the diffusivity of defect clusters; 

furthermore, single Va are easily emitted from bigger 

clusters at ~300°C, thereby increasing the amount of small 
and more mobile Va defects that are present in the 

simulated system. Va point defects and small Va clusters 
are thus more likely than trapped SIA clusters to reach 

grain boundaries and be absorbed, even if, a priori, 1D 
migrating defects are expected to reach the GB more 

efficiently: bigger cluster sizes and interactions with traps 

significantly reduce their mobility. Moreover, not all SIA 

and Va objects are introduced in the system since the very 
beginning of the simulation. Thus, the distances reported in 

Figure 7 can only be regarded as an upper limit. However, 

what is important to notice is that both SIA and Va type 
objects have time to cover a distance of 0.1 μm (i.e. radius 

corresponding to the smaller grain size), so they can be 
both absorbed at GBs.  

 

 
Figure 7 Average distance that SIA and V defect objects can 

travel in 50 s at 290°C, as a function of defect size. The radii of 

the grain sizes of interest have also been indicated. 

 

Finally, the role of martensite lath boundaries as major 

point defect sinks during neutron irradiation assumes even 

more importance if we consider that irradiation induced 

segregation at GBs is attributed to a preferential coupling 

of point defects with solute atoms (SIA with Cr, Mn and P, 

all other solutes with Va [33]). The diffusion of solutes to 

GBs is thus driven by differences in single defect fluxes 

within the matrix [34] and solute segregation may thus be 

suppressed, or at least be hindered, in the case of higher 

fluxes or lower irradiation temperatures. 

The current OKMC model for martensite Fe-Cr-C 

steels adopts a "grey alloy" approach. Therefore, solute at-

om transport is not simulated and so no information can be 

deduced on the evolution under irradiation of the chemical 

composition at grain boundaries. Despite this the results 

reported here show that the reduction of the grain size, 

within sizes typical of martensite laths, does not play a ma-

jor role on the nanostructural evolution under neutron irra-

diation in martensitic alloys, thereby suggesting that the 

different response to neutron irradiation of martensite and 

ferrite alloys must be ascribed to other factors, such as 

chemical composition or carbon concentration in the ma-

trix. 

4 Conclusions This work shows that, within sizes 

typical of martensite laths, the choice of the grain size does 

not have large influence on the nanostructural evolution 

under neutron irradiation of Fe-Cr-C alloys. On the basis 

of our OKMC model, it was possible to conclude that the 
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role of GBs as sinks for defect objects becomes dominant 

only below grain sizes of the order of ~0.5–1 μm. The 

approach that we implemented did not take into account 

the effect of misorientations between neighboring grains. 

Nonetheless, from ESBD data analysis on a sample of the 

modeled Fe-9%Cr-C alloy it was observed that most miso-

rientations between the martensite blocks are > 30°, with a 

peak about 60°: in this range of grain misorientations the 

absorption efficiency of radiation-induced defects at the 

grain boundary is expected to be negligible. Moreover, in 

our model we assume spherical grains while laths are 

elongated, so our results can be considered rather 

conservative. This allows us to state that, since ~0.5–1 μm 

also coincides with the lower bound size for martensite 

laths as reported in the literature and it is at the same time 

much smaller that the lath thickness suggested by EBSD 

data analysis on samples of the model alloy used here as 

reference, in martensite Fe-Cr-C alloys the material 

nanostructural behavior is not significantly altered by the 

presence of the martensite laths. 

The total number of Va and SIA objects absorbed at  

GBs was also verified to increase with irradiation 

temperature, in agreement with analogous experimental 

observations [35], as well as to be significantly reduced 

when the dose-rate approaches ~10
-5

 dpa/s. This result is of 

particular interest because martensite Fe-Cr-C steels are, 

between others, candidate structural materials for fuel 

cladding and other core components in GenIV reactors [2, 

3] where the irradiation fluxes are expected to be higher 

than in commercial light water reactors. 
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